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Preface

PREFACE

The present monograph deals with some topical problems of stability

theory of nonlinear large-scale systems. The purpose of this book is to de-

scribe some new applications of Liapunov matrix-valued functions method

to the theory of stability of evolution problems governed by nonlinear equa-

tions with structural perturbations.

The concept of structural perturbations has extended the possibilities

of engineering simulation of the classes of real world phenomena. We have

written this book for the broadest audience of potentially interested learn-

ers: applied mathematicians, applied physicists, control and electrical en-

gineers, commmunication network specialists, performance analysts, oper-

ations researchers, etc., who deal with qualitative analysis of ordinary dif-

ferential equations, difference equations, impulsive equations, and singular

perturbed equations.

To accomplish our aims, we have thought it necessary to make the anal-

ysis:

(i) general enough to apply to the many variety of applications which

arise in science and engineering, and

(ii) simple enough so that it can be understood by persons whose math-

ematical training does not extend beyond the classical methods of stability

theories which were popular at the end of the twentieth century.

Of course, we understood that it is not possible to achive generality and

simplicity in a perfect union but, in fact, the new generalization of direct

Liapunov’s method give us new possibilities in the direction.

In this monograph the concept of structural perturbations is developed

in the framework of four classes of systems of nonlinear equations mentioned

above. The direct Liapunov method being one of the main methods of qual-

itative analysis of solutions to nonlinear systems is used in this monograph
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in the direction of its generalization in terms of matrix-valued auxiliary

functions.

Thus, the concept of structural perturbations combined with the method

of Liapunov matrix-valued functions is a methodological base for the new

direction of investigations in nonlinear systems dynamics.

The monograph is arranged as follows.

Chapter 1 provides an overview of recent results for four classes of sys-

tems of equations (continuous, discrete-time, impulsive, and singular per-

turbed systems), which are a necessary introduction to the qualitative the-

ory of the same classes of systems of equations but under structural per-

turbations.

Chapters 2 – 5 expose the mathematical stability theory of equations un-

der structural perturbations. The sufficient existence conditions for various

dynamical properties of solutions to the classes of systems of equations

under consideration are obtained in terms of the matrix-valued Liapunov

functions and are easily available for practical applications. All main re-

sults are illustrated by many examples from mechanics, power engineering

and automatical control theory.

Final Sections of Chapters 2 – 5 deal with the discussion of some direc-

tions of further generalization of obtained results and their applications.

To this end new problems of nonlinear dynamics and system theory are

involved.

Some of the important features of the monograph are as follows. This is

the first book that

(i) treats the stability theory of large scale dynamical systems via

matrix-valued Lyapunov functions;

(ii) demonstrates that developing of the direct Lyapunov method for

time-continuous, discrete-time, impulsive and singularly perturbed

large scale systems via matrix auxiliary functions is a powerful tech-

nique for the qualitative study of large scale systems;

(iii) presents sufficient stability conditions in terms of sign definiteness

of special matrices;

(iv) shows that utilizing of the matrix-valued Lyapunov functions in

investigating the stability theory of large scale dynamical systems

is significantly more useful.
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Notation

NOTATION

R — the set of all real numbers

R+ = [0, +∞) ⊂ R — the set of all nonnegative numbers

Rk — k-th dimensional real vector space

R × Rn — the Cartesian product of R and Rn

G1 × G1 — topological product

(a, b) — open interval a < t < b

[a, b] — closed interval a ≤ t ≤ b

A ∪ B — union of sets A and B

A ∩ B — intersection of sets A and B

D — closure of set D

∂D — boundary of set D

N+
τ � {τ0, . . . , τ0 + k, . . . }, τ0 ≥ 0, k = 1, 2, . . .

{x : Φ(x)} — set of x’s for which the proposition Φ is true

T = [−∞, +∞] = {t : −∞ ≤ t ≤ +∞} — the largest time interval

Tτ = [τ, +∞) = {t : τ ≤ t < +∞} — the right semi-open unbounded

interval associated with τ

Ti ⊆ R — a time interval of all initial moments t0 under consideration (or,

all admissible t0)

T0 = [t0, +∞) = {t : t0 ≤ t < +∞} — the right semi-open unbounded

interval associated with t0

�x� — the Euclidean norm of vector x in Rn

χ(t; t0, x0) — a motion of a system at t ∈ R iff x(t0) = x0, χ(t0; t0, x0) ≡

x0

Bε = {x ∈ Rn : �x� < ε} — open ball with center at the origin and radius

ε > 0

δM (t0, ε) = max {δ : δ = δ(t0, ε) ∋ x0 ∈ Bδ(t0, ε) ⇒ χ(t; t0, x0) ∈ Bε,

∀t ∈ T0} — the maximal δ obeying the definition of stability

Typeset by AMS-TEX
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NOTATION xiii

∆M (t0) = max {∆: ∆ = ∆(t0), ∀ρ > 0, ∀x0 ∈ B∆, ∃τ(t0, x0, ρ) ∈ (0, +∞)

∋ χ(t; t0, x0) ∈ Bρ, ∀ t ∈ Tτ} — the maximal ∆ obeying the

definition of attractivity

τm(t0, x0, ρ) = min {τ : τ = τ(t0, x0, ρ) ∋ χ(t; t0, x0) ∈ Bρ, ∀ t ∈ Tτ} —

the minimal τ satisfying the definition of attractivity

N — a time-invariant neighborhood of original of Rn

f : R ×N → Rn — a vector function mapping R ×N into Rn

C(Tτ ×N ) — the family of all functions continuous on Tτ ×N

C(i,j)(Tτ ×N ) — the family of all functions i-times differentiable on Tτ

and j-times differentiable on N

C = C([−τ, 0], Rn) — the space of continuous functions which map [−τ, 0]

into Rn

U(t, x), U : Tτ × Rn → Rs×s — matrix-valued Liapunov function,

s = 2, 3, . . . , m

V (t, x), V : Tτ × Rn → Rs — vector Liapunov function

v(t, x), v : Tτ × Rn → R+ — scalar Liapunov function

D+v(t, x) (D−v(t, x)) — the upper right (left) Dini derivative of v along

χ(t; t0, x0) at (t, x)

D+v(t, x) (D−v(t, x)) — the lower right (left) Dini derivative of v along

χ(t; t0, x0) at (t, x)

D∗v(t, x) — denotes that both D+v(t, x) and D+v(t, x) can be used

Dv(t, x) — the Eulerian derivative of v along χ(t; t0, x0) at (t, x)

λi(·) — the i-th eigenvalue of a matrix (·)

λM (·) — the maximal eigenvalue of a matrix (·)

λm(·) — the minimal eigenvalue of a matrix (·)
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Generalities

1

GENERALITIES

1.1 Introduction

This Chapter contains description of some classes of large scale dynamical

systems and a concept of nonclassical structural perturbations. These types

of systems are investigated in Chapters 2 – 5 for the same classes of large

scale systems of equations which, however, contain nonclassical structural

perturbations.

The Chapter is arranged as follows.

Section 1.2 deals with description of stability problems for continuous,

discrete-time, impulsive and singularly perturbed large scale dynamical

systems. The definitions for various types of motion stability of nonau-

tonomous and nonlinear systems are presented.

Section 1.3 presents some approaches to qualitative analysis of nonlinear

systems under structural perturbations.

Section 1.4 exposes general concept of stability under nonclassical struc-

tural perturbations.

Section 1.5 sets out a version of generalization of the Liapunov direct

method via matrix-valued Liapunov functions as a main approach to sta-

bility analysis under nonclassical structural perturbations in the book.

Finaly, in Section 1.6 there are some comments to Chapter 1.

1.2 Some Types of Large-Scale Dynamical Systems

In this Section the notions of motion stability corresponding to the mo-

tion properties of nonautonomous systems are presented being necessary in

Typeset by AMS-TEX
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2 1. STABILITY THEORY

subsequent presentation. Basic notions of the method of matrix-valued Li-

apunov functions are discussed and general theorems and some corollaries

are set out.

Throughout this Section, real systems of ordinary differential equations

will be considered. Notations will be used.

1.2.1 Ordinary differential large-scale systems We start with a

general description of a dynamic system of ordinary differential equations

(1.2.1)
dyi

dt
= Yi(t, y1, . . . , yn), i = 1, 2, . . . , n,

or in the equivalent vector form

(1.2.2)
dy

dt
= Y (t, y),

where x ∈ Rn, Y (t, y) = (Y1(t, y), . . . , Yn(t, y))T, Y : T × Rn → Rn.

We will assume that the right-hand part of (1.2.2) satisfies the solution

existence and uniqueness conditions of the Cauchy problem

(1.2.3)
dy

dt
= Y (t, y), y(t0) = y0,

for any (t0, y0) ∈ T × Ω, 0 ∈ Ω and Ω is an open connected subset of Rn.

Let y(t) = ψ(t; t0, y0) be the solution of system (1.2.2), definite on the

interval [t0, τ) and noncontinuable behind the point τ , i.e. y(t) is not

definite for t = τ, . Then

(1.2.4) lim �y(t)� = +∞ as t → τ − 0.

Using solution y(t) and the right-hand part of system (1.2.2) we construct

the vector-function

(1.2.5) f(t, x) = Y (t, x + ψ(t)) − Y (t, ψ(t))

and consider the system

(1.2.6)
dx

dt
= f(t, x).
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and consider the system

(1.2.6)
dx

dt
= f(t, x).1.2 TYPES OF LARGE-SCALE SYSTEMS 3

It is easy to verify that the solutions of systems (1.2.2) and (1.2.6) are

correlated as

x(t) = y(t) − ψ(t)

on the general interval of existence of solutions y(t) and ψ(t). It is clear that

system (1.2.6) has a trivial solution x(t) ≡ 0. This solution corresponds

to the solution y(t) = ψ(t) of system (1.2.2). Obviously, the reduction of

system (1.2.2) to system (1.2.6) is possible only when the solution y(t) =

ψ(t) is known.

Qualitative investigation of solutions of system (1.2.2) relatively solution

ψ(t) is reduced to the investigation of behavior of solution x(t) to system

(1.2.6) which differs “little” from the trivial one for t = t0 .

In motion stability theory system (1.2.6) is called the system of perturbed

motion equations.

Since equations (1.2.6) can generally not be solved analytically in closed

from, the qualitative properties of the equilibrium state are of great prac-

tical interest. We start with a series of definitions.

Definition 1.2.1 The equilibrium state x = 0 of the system (1.2.6) is:

(i) stable iff for every t0 ∈ Ti and every ε > 0 there exists δ(t0, ε) > 0,

such that �x0� < δ(t0, ε) implies

�x(t; t0, x0)� < ε for all t ∈ T0;

(ii) uniformly stable iff both (i) holds and for every ε > 0 the corre-

sponding maximal δM obeying (i) satisfies

inf [δM (t, ε) : t ∈ Ti] > 0;

(iii) stable in the whole iff both (i) holds and

δM (t, ε) → +∞ as ε → +∞ for all t ∈ R;

(iv) uniformly stable in the whole iff both (ii) and (iii) hold;

(v) unstable iff there are t0 ∈ Ti, ε ∈ (0, +∞) and τ ∈ T0, τ > t0,

such that for every δ ∈ (0, +∞) there is x0, �x0� < δ, for which

�x(τ ; t0, x0)� ≥ ε.
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Definition 1.2.2 The equilibrium state x = 0 of the system (1.2.6) is:

(i) attractive iff for every t0 ∈ Ti there exists ∆(t0) > 0 and for every

ζ > 0 there exists τ(t0; x0, ζ) ∈ [0, +∞) such that �x0� < ∆(t0)

implies �x(t; t0, x0)� < ζ for all t ∈ (t0 + τ(t0; x0, ζ), +∞);

(ii) x0-uniformly attractive iff both (i) is true and for every t0 ∈ R there

exists ∆(t0) > 0 and for every ζ ∈ (0, +∞) there exists τu[t0,

∆(t0), ζ] ∈ [0, +∞) such that

sup [τm(t0; x0, ζ) : x0 ∈ B∆(t0)] = τu(t0, x0, ζ);

(iii) t0-uniformly attractive iff both (i) is true, there is ∆ > 0 and for

every (x0, ζ) ∈ B∆ × (0, +∞) there exists τu(R, x0, ζ) ∈ [0, +∞)

such that

sup [τm(t0); x0, ζ) : t0 ∈ Ti] = τu(Ti, x0, ζ);

(iv) uniformly attractive iff both (ii) and (iii) hold, that is, that (i)

is true, there exists ∆ > 0 and for every ζ ∈ (0, +∞) there is

τu(R, ∆, ζ) ∈ [0, +∞) such that

sup [τm(t0; x0, ζ) : (t0, x0) ∈ Ti × B∆] = τ(Ti, ∆, ζ);

The properties (i) – (iv) hold “in the whole” iff (i) is true for every

∆(t0) ∈ (0, +∞) and every t0 ∈ Ti.

Definition 1.2.3 The equilibrium state x = 0 of the system (1.2.6) is:

(i) asymptotically stable iff it is both stable and attractive;

(ii) equi-asymptotically stable iff it is both stable and x0-uniformly at-

tractive;

(iii) quasi-uniformly asymptotically stable iff it is both uniformly stable

and t0-uniformly attractive;

(iv) uniformly asymptotically stable iff it is both uniformly stable and

uniformly attractive;
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Definition 1.2.2 The equilibrium state x = 0 of the system (1.2.6) is:
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every (x0, ζ) ∈ B∆ × (0, +∞) there exists τu(R, x0, ζ) ∈ [0, +∞)
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sup [τm(t0; x0, ζ) : (t0, x0) ∈ Ti × B∆] = τ(Ti, ∆, ζ);

The properties (i) – (iv) hold “in the whole” iff (i) is true for every

∆(t0) ∈ (0, +∞) and every t0 ∈ Ti.

Definition 1.2.3 The equilibrium state x = 0 of the system (1.2.6) is:

(i) asymptotically stable iff it is both stable and attractive;

(ii) equi-asymptotically stable iff it is both stable and x0-uniformly at-

tractive;

(iii) quasi-uniformly asymptotically stable iff it is both uniformly stable

and t0-uniformly attractive;

(iv) uniformly asymptotically stable iff it is both uniformly stable and

uniformly attractive;

(v) The properties (i) – (iv) hold “in the whole” iff both the correspond-

ing stability of x = 0 and the corresponding attraction of x = 0

hold in the whole;

(vi) exponentially stable iff there are ∆ > 0 and real numbers α ≥ 1

and β > 0 such that �x0� < ∆ implies

�x(t; t0, x0)� ≤ α�x0� exp[−β(t − t0)], for all t ∈ T0, for all t0 ∈ Ti.

This holds in the whole iff it is true for ∆ = +∞.1.2 TYPES OF LARGE-SCALE SYSTEMS 5

In the investigation of both system (1.2.2) and (1.2.11) the solution x(t)

is assumed to be definite for all t ∈ T (for all t ∈ T0).

Further, with reference to system (1.2.6) we introduce the notations

(1.2.7)

xT = (xT

1
, xT

2
, . . . , xT

m)T ∈ Rn, xs ∈ Rns ,

fT(t, x) = (fT

1 (t, x1), . . . , f
T

m(t, xm))T,

gT(t, x) = (gT

1
(t, x), . . . , gT

m(t, x))T,

m∑

s=1

ns = n.

System (1.2.6) has the meaning of a large scale system, if for its dimen-

sions being large enough the decomposition to the form

(1.2.8)
dxs

dt
= fs(t, xs) + gs(t, x1, . . . , xn), s = 1, 2, . . . , m,

with the independent subsystems

(1.2.9)
dxs

dt
= fs(t, xs), s = 1, 2, . . . , m,

and interconnection functions

(1.2.10) gs : gs(t, x1, . . . , xn), s = 1, 2, . . . , m,

simplifies the procedure of qualitative analysis of its solutions.

The decomposition is correct if systems (1.2.6) and (1.2.8) are equivalent

by their dynamical properties.

Since the decomposition of system (1.2.6) to (1.2.8) can be accomplished

in several ways, the dynamical properties of its independent subsystems

(1.2.9) may differ. Besides, the interconnection functions (1.2.10) can in-

flunce essentially the dynamical properties of subsystems (1.2.8).

Note that if subsystems (1.2.9) possess strong stability, for example, the

zero solution of subsystems (1.2.9) is uniformly asymptotically stable or

exponentially stable, then for bounded at each instant of time intercon-

nection functions (1.2.10) the solution of system (1.2.7) possesses the same

type of stability even in the case of gs(t, x1, . . . , xn) not equal to zero for

x1 = x2 = · · · = xm = 0, though being small at each instant of time on

semiaxis.
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1.2.2 Ordinary difference large-scale systems Consider a system

with finite number of degrees of freedom described by the system of differ-

ence equations in the form

(1.2.11) x(τ + 1) = f(τ, x(τ)),

where τ ∈ N+
τ � {τ0, . . . , τ0 + k, . . . }, τ0 ≥ 0, k = 1, 2, . . . , x ∈ Rn,

f : N+
τ × Rn → Rn, f(τ, x) is continuous in x. Let solution x(τ ; τ0, x0) of

system (1.2.11) be definite for all τ ∈ N+
τ and x(τ0; τ0, x0) = x0. Assume

that f(τ, x) = x for all τ ∈ N+
τ iff x = 0. Besides, system (1.2.11) admits

zero solution x = 0 and it corresponds to the unique equilibrium state of

system (1.2.11).

The definitions of the dynamical properties of solutions of system (1.2.11)

are obtained by replacing the independent variable t ∈ R by τ ∈ N+
τ in

Definitions 1.2.1 – 1.2.3 and so are omitted.

Stability (instability) of the equilibrium state x = 0 of system (1.2.11)

is sometimes studied by means of reducing this system to the form

(1.2.12) x(τ + 1) = Ax(τ) + g(τ, x(τ)),

where A is a constant n×n–matrix, g : N+
τ ×Rn → Rn is a vector-function

continuous in x and satisfies certain conditions of smallness.

In this case, under some additional restrictions on the properties of ma-

trix A, stability (instability) of the state x = 0 of system (1.2.12) can be

studied in terms of the first order approximation equations.

Of essential interest is the case when the order of system (1.2.11) is rather

high, or when this system is a composition of more simple subsystems. In

this case the finite-dimensional system of equations of the type of

(1.2.13)
xi(τ + 1) = fi(τ, xi(τ)) + gi(τ, x1(τ), . . . , xm(τ)),

i = 1, 2, . . . , m,

is considered, where xi ∈ Rni , fi : N+
τ × Rni , gi : N+

τ × Rn1 × · · · ×

Rnm → Rni .

Via designation (1.2.7) system (1.2.13) can be presented in the vector

form

(1.2.14) x(τ + 1) = f(τ, x(τ)) + g(τ, x(τ)) � H(τ, x(τ)).1.2 TYPES OF LARGE-SCALE SYSTEMS 7

Formally system (1.2.14) coinsides in form with system (1.2.11). However,

if g(τ, x(τ)) ≡ 0 , this system falls into the independent subsystems

(1.2.15) xi(τ + 1) = fi(τ, xi(τ)), i = 1, 2, . . . , m,

each of the latter can possess the same degree of complexity of the solution

behavior as the system (1.2.11).

1.2.3 Ordinary impulsive large-scale systems The impulsive system

of differential equations of general type

(1.2.16)

dx

dt
= f(t, x), t �= τk(x),

∆x = Ik(x), t = τk(x), k = 1, 2, . . . ,

has the meaning of a large scale impulsive system, if it can be decomposed

into m interconnected impulsive subsystems

(1.2.17)

dxj

dt
= fj(t, xj) + f∗

j (t, x), t �= τk(x), j = 1, 2, . . . , m,

∆xj = Ikj(xj) + I∗kj(x), t = τk(x), k = 1, 2, . . . .

We assume on system (1.2.16) that

(1) x ∈ Rn, f(t, x) = 0 iff x = 0;

(2) 0 < τk(x) < τk+1(x), τk(x) → +∞ as k → ∞;

(3) Ik : Rn → Rn and Ik = 0 iff x = 0;

(4) functions f(t, x) and Ik(x) are definite and continuous in the domain

T0 × S(ρ) = [t0,∞) × {x : �x� ≤ ρ ≤ ρ0}, t0 ≥ 0;

(5) functions τk(x), k = 1, 2, . . . , and number ρ satisfy conditions ex-

cluding beating of solutions of system (1.2.16) against the hyper-

surfaces Si : t = τk(x), k = 1, 2, . . . , t ≥ 0.

We assume on system (1.2.17) that

(1) xj = (0, . . . , 0, xT
j , 0, . . . , 0)T ∈ Rn, xj ∈ Rnj ,

f = (fT
1

, . . . , fT
m)T, f∗

j (t, x) = fj(t, x) − fj(t, xj);

(2) Ikj = (IT

k1
, IT

k2
, . . . , IT

km)T, I∗kj(x) = Ikj(x) − Ikj(xj), n = n1 +

· · · + nm.
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8 1. STABILITY THEORY

The state of the j-th noninteracting impulsive subsystem is described by

the equations

(1.2.18)

dxj

dt
= fj(t, xj), t �= τk(xj);

∆xj = Ikj(xj), t = τk(xj).

The problem on stability for large scale impulsive system (1.2.16) is

formulated as follows:

To establish conditions under which stability of equilibrium state x = 0

of system (1.2.17) is derived from the properties of stability of impulse sub-

systems (1.2.18) and properties of connection functions f∗

j (t, x) and I∗kj(x).

Let x0(t) = x(t; t0, y0) (y0 �= x0) be a given solution of the system

(1.2.16). Since the times of impulsive effects on solution x0(t) may not

coincide with those on any neighboring solution x(t) of system (1.2.16), the

smallness requirement for the difference �x(t)−x0(t)� for all t ≥ t0 seems

not natural.

Therefore the stability definitions presented in Section 1.2.1 for the sys-

tem of ordinary differential equations should be adapted to system (1.2.16).

We designate by Ξ a set of functions continuous from the left with dis-

continuities of the first kind, defined on R+ with the values in Rn. Let the

set of the discontinuity point of each of these functions be no more than

countable and do not contain finite limit points in R1. Let ζ ≥ 0 be a fixed

number.

Definition 1.2.4 A function y(t) ∈ Ξ is in ζ-neighborhood of function

x(t) ∈ Ξ, if

(1) discontinuity points of function y(t) are in ζ-neighborhoods of dis-

continuity points of function x(t);

(2) for all t ∈ R+, that do not belong to ζ-neighborhoods of discon-

tinuity points of function x(t), the inequality �x(t) − y(t)� < ζ is

satisfied.

The totality of ζ-neighborhoods, ζ ∈ (0,∞), of all elements of the set Ξ

forms the basis of topology, which is referred to as B-topology.

Let x(t) be a solution of system (1.2.16), and t = τk, k ∈ Z, be an

ordered sequence of discontinuity points of this solution.
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Definition 1.2.5 Solution x(t) of system (1.2.16) satisfies

(1) α-condition, if there exists a number ϑ ∈ R+, ϑ > 0, such that for

all k ∈ Z: τk+1 − τk ≥ ϑ;

(2) β-condition, if there exists a k ≥ 0 such that every unit segment of

the real axis R+ contains no more than k points of sequence τk.

Let the solution x(t) satisfy one of the conditions (α or β) and be definite

on [a,∞), a ∈ R. Besides, the solution x(t) is referred to as unboundedly

continuable to the right.

Let the solution x0(t) = x(t; t0, y0) of system (4.2.1) exist for all t ≥ t0
and be unperturbed. We assume that x0(t) reaches the surface Sk : t =

τk(x) at times tk, tk+1 > tk and tk → ∞ as k → ∞.

Definition 1.2.6 Solution x0(t) of system (1.2.16) is

(i) stable, if for any tolerance ε > 0, ∆ > 0, t0 ∈ R+ a δ =

δ(t0, ε, ∆) > 0 exists such that condition �x0 − y0� < δ implies

�x(t) − x0(t)� < ε for all t ≥ t0 and |t − tk| > ∆, where x(t) is an

arbitrary solution of system (1.2.16) existing on interval [t0,∞);

(ii) uniformly stable, if δ in condition (1) of Definition 1.2.6 does not

depend on t0;

(iii) attractive, if for any tolerance ε > 0, ∆ > 0, t0 ∈ R+ there

exist δ0 = δ0(t0) > 0 and T = T (t0, ε, ∆) > 0 such that when-

ever �x0 − y0� < δ0, then �x(t) − x0(t)� < ε for t ≥ t0 + T

and |t − tk| > ∆;

(iv) uniformly attractive, if δ0 and T in condition (3) of Definition 1.2.6

do not depend on t0;

(v) asymptotically stable, if conditions (1) and (3) of Definition 1.2.6

hold;

(vi) uniformly asymptotically stable, if conditions (2) and (3) of Defini-

tion 1.2.6 hold.

Remark 1.2.1 If f(t, 0) = 0 and Ik(0) = 0, k ∈ Z, then system (1.2.16)

admits zero solution. Moreover, if τk(x) ≡ tk, k ∈ Z, are such that τk(x)

do not depend on x, then any solution of system (1.2.16) undergoes the

impulsive effect at one and the same time. This situation shows that the

notion of stability for system (1.2.16) is an ordinary one.

Remark 1.2.2 Actually the condition (1) of Definition 1.2.6 means that

for the solution x0(t) of system (1.2.16) to be stable in the sense of Liapunov,
10 1. STABILITY THEORY

it is necessary that for �x(t0)−x0(t0)� < δ any solution x(t) of the system

remain in the neighborhood of solution x0(t) for all t ∈ [t0,∞), and point

t0 is not to be the discontinuity point of solutions x(t) and x0(t).

1.2.4 Ordinary singularly perturbed large-scale systems The

perturbed equations of motion of a singularly perturbed large-scale system

are

dxi

dt
= fi(t, x, y), i = 1, 2, . . . , q,(1.2.19)

µj

dyj

dt
= gj(t, x, y, M), j = 1, 2, . . . , r,(1.2.20)

where xi ∈ Rni , n1+n2+ · · ·+nq = n, yj ∈ Rmj , m1+m2+ · · ·+mr = m

and q+r = s; fi and gj are continuous vector functions of the corresponding

dimensions, µj are positional parameters, taking arbitrary small values,

µj ∈ ]0, 1] , and M = diag {µ1, . . . , µr}. The set of all admissible values of

M is denoted by

M = {M : 0 < M ≤ I} I = diag {1, 1, . . . , 1}

and then

Mm = {M : 0 < µj < µjm ∀ j ∈ [1, r]},

where µjm is the upper admissible value of µj . If the small parameters µj

are not interconnected then the system (1.2.19), (1.2.20) has r essentially

independent timescales tj :

(1.2.21) tj =
t − t0

µj

, j = 1, 2, . . . , r.

In this case the timescale is graduated nonuniformly. The timescales tj can

be interconnected through values τj :

(1.2.22)
tj

t1
= τj , j = 1, 2, . . . , r,

varying within the limits

(1.2.23) τj ∈ [τ j , τ j ], j = 1, 2, . . . , r,
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t0 is not to be the discontinuity point of solutions x(t) and x0(t).

1.2.4 Ordinary singularly perturbed large-scale systems The

perturbed equations of motion of a singularly perturbed large-scale system

are

dxi

dt
= fi(t, x, y), i = 1, 2, . . . , q,(1.2.19)

µj

dyj

dt
= gj(t, x, y, M), j = 1, 2, . . . , r,(1.2.20)

where xi ∈ Rni , n1+n2+ · · ·+nq = n, yj ∈ Rmj , m1+m2+ · · ·+mr = m

and q+r = s; fi and gj are continuous vector functions of the corresponding

dimensions, µj are positional parameters, taking arbitrary small values,

µj ∈ ]0, 1] , and M = diag {µ1, . . . , µr}. The set of all admissible values of

M is denoted by

M = {M : 0 < M ≤ I} I = diag {1, 1, . . . , 1}

and then

Mm = {M : 0 < µj < µjm ∀ j ∈ [1, r]},

where µjm is the upper admissible value of µj . If the small parameters µj

are not interconnected then the system (1.2.19), (1.2.20) has r essentially

independent timescales tj :

(1.2.21) tj =
t − t0

µj

, j = 1, 2, . . . , r.

In this case the timescale is graduated nonuniformly. The timescales tj can

be interconnected through values τj :

(1.2.22)
tj

t1
= τj , j = 1, 2, . . . , r,

varying within the limits

(1.2.23) τj ∈ [τ j , τ j ], j = 1, 2, . . . , r,
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it is necessary that for �x(t0)−x0(t0)� < δ any solution x(t) of the system

remain in the neighborhood of solution x0(t) for all t ∈ [t0,∞), and point

t0 is not to be the discontinuity point of solutions x(t) and x0(t).

1.2.4 Ordinary singularly perturbed large-scale systems The

perturbed equations of motion of a singularly perturbed large-scale system

are

dxi

dt
= fi(t, x, y), i = 1, 2, . . . , q,(1.2.19)

µj

dyj

dt
= gj(t, x, y, M), j = 1, 2, . . . , r,(1.2.20)

where xi ∈ Rni , n1+n2+ · · ·+nq = n, yj ∈ Rmj , m1+m2+ · · ·+mr = m

and q+r = s; fi and gj are continuous vector functions of the corresponding

dimensions, µj are positional parameters, taking arbitrary small values,

µj ∈ ]0, 1] , and M = diag {µ1, . . . , µr}. The set of all admissible values of

M is denoted by

M = {M : 0 < M ≤ I} I = diag {1, 1, . . . , 1}

and then

Mm = {M : 0 < µj < µjm ∀ j ∈ [1, r]},

where µjm is the upper admissible value of µj . If the small parameters µj

are not interconnected then the system (1.2.19), (1.2.20) has r essentially

independent timescales tj :

(1.2.21) tj =
t − t0

µj

, j = 1, 2, . . . , r.

In this case the timescale is graduated nonuniformly. The timescales tj can

be interconnected through values τj :

(1.2.22)
tj

t1
= τj , j = 1, 2, . . . , r,

varying within the limits

(1.2.23) τj ∈ [τ j , τ j ], j = 1, 2, . . . , r,
1.2 TYPES OF LARGE-SCALE SYSTEMS 11

where 0 < τ j ≤ τ j < +∞ for all j ∈ [1, r].

In the case (1.2.23), (1.2.24) we have uniform graduation of the timescale.

This implies that

(1.2.24) τj =
µ1

µj

, j = 1, 2, . . . , r.

It is clear then that τ1 = τ1 = τ1 = 1.

The interconnected i-th singularly perturbed subsystem Si of the system

(1.2.19, (1.2.20) is described by the equations

dxi

dt
= fi(t, x, y),(1.2.25)

µi

dyi

dt
= gi(t, x, y, M),(1.2.26)

and the independent i-th singularly perturbed subsystem Ŝi is described

by the equations

dxi

dt
= fi(t, x

i, yi),(1.2.27)

µi

dyi

dt
= gi(t, x

i, yi, M),(1.2.28)

where

xi = (0, 0, . . . , 0, xi, 0, . . . , 0)T ∈ Rn, xi ∈ Rni ,

yi = (0, 0, . . . , 0, yi, 0, . . . , 0)T ∈ Rn, yi ∈ Rmi .

When q = r, we can consider the equations

dxi

dt
= fi(t, x

i, yi),(1.2.29)

0 = gi(t, x
i, yi, 0),(1.2.30)

which are referred to as the equations of the i-th degenerate independent

subsystem Ŝi0 of the system (1.2.19), (1.2.20), and the equations

(1.2.31) µj

dyi

dt
= gi(α, bi, yi, 0)
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of the j-th independent subsystem of the boundary layer (fast subsystem)

Sj of the system (1.2.19), (1.2.20). In the system (1.2.31) α ∈ R, bi =

(0, 0, . . . , 0, bi, 0, . . . , )T ∈ Rn, bi ∈ Rni .

If in (1.2.19), (1.2.20) all µj (formally) comprise a zero set then the

equations

dxi

dt
= fi(t, x, y), i = 1, 2, . . . , q,(1.2.32)

0 = gj(t, x, y, 0), j = 1, 2, . . . , r,(1.2.33)

are called an interconnected degenerate subsystem S0 of the system (1.2.19),

(1.2.20), and the equations

(1.2.34) µj

dyj

dt1
= gj(α, b, y, 0), j = 1, 2, . . . , r,

are said to be an interconnected fast subsystem St (a boundary layer) of the

system (1.2.19), (1.2.20). Here α ∈ R and b ∈ Rn.

We suppose that the equations 0 = gj(t, x, y, 0) for all (t, x, y) ∈ R ×

Nx × Ny are satisfied iff y = 0 and 0 = gj(t, x
i, yj , 0) for all (t, xi, yj) ∈

R × Nix × Njy iff yj = 0. Therefore the systems (1.2.29), (1.2.30) and

(1.2.32), (1.2.33) are equivalent to the systems

dxi

dt
= fi(t, x

i, 0), i = 1, 2, . . . , q,(1.2.35)

dxi

dt
= fi(t, x, 0), i = 1, 2, . . . , q,(1.2.36)

respectively.

The separation of the time scales in the investigation of the stability of

the system (1.2.19), (1.2.20) is essential since the analysis of the degenerate

system (1.2.29), (1.2.30) and the fast system (1.2.31) is simpler problem

than that of general problem of stability of the system (1.2.19), (1.2.20).

Stability analysis of systems of (1.2.19) and (1.2.20) type under nonclas-

sical structural perturbations is the subject of Chapter 5. In this chapter

the development of the direct Liapunov method in terms of matrix-valued

functions is proposed.1.6 STRUCTURAL PERTURBATIONS 13

1.3 Structural Perturbations of Dynamical Systems

The processes and phenomena of the real world are modeled correctly by

the systems of equations or inequalities only when the model admits small

changes. In other words the phenomenon model is correct provided that

it allows some uncertainties in definitions of both the parameters and the

external effects on the real system or process and at the same time displays

the main properties of the modeled process.

1.3.1 Classical structural perturbations Let, for example, the dif-

ferential equation

(1.3.1)
dx

dt
= g(x), x ∈ M,

determine the vector field on the compact manifold M . The naive specu-

lations above lead to the following notion of structural stability.

Definition 1.3.1 (see Arnol’d [1]) System (1.3.1) is structurally stable,

if for arbitrary small changes of the vector field the obtained system is

equivalent to the initial one in the sense of fixed dynamical property.

Andronov and Pontriagin [1] considered dynamical system on the disk

D2 and said that a system X is “rough” if, by perturbing it slightly in

the C1, one gets a system Y X and the corresponding homeomorphism can

be made arbitrarily small by taking Y close enough to X . They gave a set

of conditions as being necessary and sufficient for X to be rough (see de

Baggis [1]).

It seems that Lefschetz [1] was the first who translated “rough” by the

much better sounding “structurally stable”. He exhibited the true meaning

of the new concept, namely a fusion of the two concepts of stability and

qualitative behavior in the sense of topological equivalence.

Let ρ be a metric in X, and we assume that there is also a metric in Mn.

Definition 1.3.2 (see, e.g., Peixoto [1]) On a compact differentiable

manifold Mn a vector field X ∈ X is said to be structurally stable, if given

ε > 0, one may find δ > 0 such that wherenever ρ(X, Y ) < δ, then Y ∼ X

and the corresponding homeomorphism is within ε from the identity.

The problems of structural stability in one-dimensional case (M -circle),

systems on two-dimensional sphere, equations on torus and U -systems are
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1.3 Structural Perturbations of Dynamical Systems

The processes and phenomena of the real world are modeled correctly by

the systems of equations or inequalities only when the model admits small

changes. In other words the phenomenon model is correct provided that

it allows some uncertainties in definitions of both the parameters and the

external effects on the real system or process and at the same time displays

the main properties of the modeled process.

1.3.1 Classical structural perturbations Let, for example, the dif-

ferential equation

(1.3.1)
dx

dt
= g(x), x ∈ M,

determine the vector field on the compact manifold M . The naive specu-

lations above lead to the following notion of structural stability.

Definition 1.3.1 (see Arnol’d [1]) System (1.3.1) is structurally stable,

if for arbitrary small changes of the vector field the obtained system is

equivalent to the initial one in the sense of fixed dynamical property.

Andronov and Pontriagin [1] considered dynamical system on the disk

D2 and said that a system X is “rough” if, by perturbing it slightly in

the C1, one gets a system Y X and the corresponding homeomorphism can

be made arbitrarily small by taking Y close enough to X . They gave a set

of conditions as being necessary and sufficient for X to be rough (see de

Baggis [1]).

It seems that Lefschetz [1] was the first who translated “rough” by the

much better sounding “structurally stable”. He exhibited the true meaning

of the new concept, namely a fusion of the two concepts of stability and

qualitative behavior in the sense of topological equivalence.

Let ρ be a metric in X, and we assume that there is also a metric in Mn.

Definition 1.3.2 (see, e.g., Peixoto [1]) On a compact differentiable

manifold Mn a vector field X ∈ X is said to be structurally stable, if given

ε > 0, one may find δ > 0 such that wherenever ρ(X, Y ) < δ, then Y ∼ X

and the corresponding homeomorphism is within ε from the identity.

The problems of structural stability in one-dimensional case (M -circle),

systems on two-dimensional sphere, equations on torus and U -systems are
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discussed in the book by Arnol’d [1]. The Anosov’s theorem on structural

stability of torus automorphism and the Grobman-Hartman theorem on

structural stability of saddle are presented in this book as well. The readers

who are interested in the results in this direction can find some references

in the survey by Sell [1].

In our monograph we apply the model of dynamical system under non-

classical structural perturbation which appeared in motion stability theory

of large scale systems. This model originates from one idea of Chetaev [1],

presented below and the notion of structural perturbations introduced ear-

lier in the works by Siljak [1 – 3].

1.3.2 An idea of parametric perturbations Chetaev [1] proposed a

constructive realization of the Andronov-Pontryagin idea of motion stability

investigation of rough systems within the framework of the Liapunov direct

method. The general Chetaev’s approach is as follows.

Let the motion of system with finite degrees of freedom in “linear” ap-

proximation be described by the equations

(1.3.2)
dx

dt
= Px, x(t0) = x0,

where x ∈ Rn and P = C + εF (t, x), C is a constant matrix, F (t, x)

is unknown in general matrix function with bounded real elements in the

domain R+ × Ω, Ω ⊂ Rn, ε is a real parameter. The fact that the system

(1.3.2) is of the form

(1.3.3)
dx

dt
= Cx + εF (t, x)x

yields that for ε = 0 the system (1.3.3) does not have structural pertur-

bations and the properties of its equilibrium state x = 0 are completely

determined by signs of real parts of roots of the characteristic equation

(1.3.4) det (C − λE) = 0.

In the case when all Re λi(C) < 0, i = 1, 2, . . . , n, under certain con-

ditions the equilibrium state x = 0 of (1.3.2) possesses the same type of

asymptotic stability as the system (1.3.3) for ε = 0.

A key idea in this approach is that the mathematical models of a real

system with structural perturbations is “decomposed” into a “stationary”

1.6 STRUCTURAL PERTURBATIONS 13
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The processes and phenomena of the real world are modeled correctly by

the systems of equations or inequalities only when the model admits small

changes. In other words the phenomenon model is correct provided that

it allows some uncertainties in definitions of both the parameters and the

external effects on the real system or process and at the same time displays

the main properties of the modeled process.

1.3.1 Classical structural perturbations Let, for example, the dif-

ferential equation

(1.3.1)
dx

dt
= g(x), x ∈ M,

determine the vector field on the compact manifold M . The naive specu-

lations above lead to the following notion of structural stability.

Definition 1.3.1 (see Arnol’d [1]) System (1.3.1) is structurally stable,

if for arbitrary small changes of the vector field the obtained system is

equivalent to the initial one in the sense of fixed dynamical property.

Andronov and Pontriagin [1] considered dynamical system on the disk

D2 and said that a system X is “rough” if, by perturbing it slightly in

the C1, one gets a system Y X and the corresponding homeomorphism can

be made arbitrarily small by taking Y close enough to X . They gave a set

of conditions as being necessary and sufficient for X to be rough (see de

Baggis [1]).

It seems that Lefschetz [1] was the first who translated “rough” by the

much better sounding “structurally stable”. He exhibited the true meaning

of the new concept, namely a fusion of the two concepts of stability and

qualitative behavior in the sense of topological equivalence.

Let ρ be a metric in X, and we assume that there is also a metric in Mn.

Definition 1.3.2 (see, e.g., Peixoto [1]) On a compact differentiable

manifold Mn a vector field X ∈ X is said to be structurally stable, if given

ε > 0, one may find δ > 0 such that wherenever ρ(X, Y ) < δ, then Y ∼ X

and the corresponding homeomorphism is within ε from the identity.

The problems of structural stability in one-dimensional case (M -circle),

systems on two-dimensional sphere, equations on torus and U -systems are

1.6 STRUCTURAL PERTURBATIONS 15

part and the terms bearing the information on structural and/or parametric

perturbations. Anyway the parametric perturbations must be small and

such that the solutions of system (1.3.3) must exist on the interval not

smaller than that on which the dynamics of system (1.3.3) is studied.

This Chetaev’s idea is used in the implicit form in modern nonlinear

dynamics of systems with uncertain parameter values.

1.3.3 Šiljak’s idea of connective stability D.D. Siljak [1 – 3] pro-

posed a description of structural perturbations which appear in stability

investigation of large scale systems. In his model some dynamical system

(1.3.5)
dx

dt
= f(t, x, E),

where x ∈ Rn, f : R+ × Rn → Rn, is decomposed into m interconnected

subsystems

(1.3.6)
dxi

dt
= fi(t, xi) + gi(t, x), i = 1, 2, . . . , m,

where xi ∈ Rni , gi : R+ × Rni → Rni , gi : R+ × Rn → Rni .

It is assumed that system (1.3.5) and the free subsystems

(1.3.7)
dxi

dt
= fi(t, xi), i = 1, 2, . . . , m,

satisfy the existence conditions for solutions x(t, t0, x0) for all (t0, x0) ∈

R+ × Rn and f(t, 0) = fi(t, 0) = 0 for all t ∈ R+, i.e. the motions of

system (1.3.5) and subsystems (1.3.7) can be realized on any given time

interval.

In order to take into account the mutual interaction between subsystems

(1.3.7) in system (1.3.5) and the dynamical properties of the initial system

(1.3.5) the binary elements eij of the interaction matrix E are introduced

in the form

eij =

{
1, i-subsystem acts on j-subsystem,

0, i-subsystem does not act on j-subsystem.

In this case the interconnection functions gi(t, x) are represented as

(1.3.8) gi(t, x) = gi(t, ei1x1, ei2x2, . . . , eimxm), i = 1, 2, . . . , m.

Download free eBooks at bookboon.com



Stability Theory of Large-Scale  
Dynamical Systems

26 

Generalities

1.6 STRUCTURAL PERTURBATIONS 15
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This Chetaev’s idea is used in the implicit form in modern nonlinear
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1.3.3 Šiljak’s idea of connective stability D.D. Siljak [1 – 3] pro-
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investigation of large scale systems. In his model some dynamical system

(1.3.5)
dx

dt
= f(t, x, E),

where x ∈ Rn, f : R+ × Rn → Rn, is decomposed into m interconnected

subsystems

(1.3.6)
dxi

dt
= fi(t, xi) + gi(t, x), i = 1, 2, . . . , m,

where xi ∈ Rni , gi : R+ × Rni → Rni , gi : R+ × Rn → Rni .

It is assumed that system (1.3.5) and the free subsystems

(1.3.7)
dxi

dt
= fi(t, xi), i = 1, 2, . . . , m,

satisfy the existence conditions for solutions x(t, t0, x0) for all (t0, x0) ∈

R+ × Rn and f(t, 0) = fi(t, 0) = 0 for all t ∈ R+, i.e. the motions of

system (1.3.5) and subsystems (1.3.7) can be realized on any given time

interval.

In order to take into account the mutual interaction between subsystems

(1.3.7) in system (1.3.5) and the dynamical properties of the initial system

(1.3.5) the binary elements eij of the interaction matrix E are introduced

in the form

eij =

{
1, i-subsystem acts on j-subsystem,

0, i-subsystem does not act on j-subsystem.

In this case the interconnection functions gi(t, x) are represented as

(1.3.8) gi(t, x) = gi(t, ei1x1, ei2x2, . . . , eimxm), i = 1, 2, . . . , m.
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As a result structural perturbations to be considered in this connection

are such that any number of existing interconnections among the subsys-

tems (1.3.6) can be ON or OFF as arbitrary functions of the state x(t) ∈ Rn

and/or time t ∈ T0. At each instant of time t ∈ T0 there is an intercon-

nection matrix E which describes the structure of system (1.3.5).

In terms of the above model of structural perturbations various stability

problems are investigated for the system (1.3.5) and its generalizations in

the sense of the following definition (see Siljak [4, 5]).

Definition 1.3.3 The equilibrium state x = 0 of a free dynamical

system (1.3.5) is connectively stable if and only if it is stable in the sense

of Liapunov for all interconnection matrices E.

It should be noted that in the above model the action of structural

perturbations “is revealed” as a result of the analysis of the initial systems

(1.3.5) decomposed into a series of the independent subsystems (1.3.7).

Besides, the right-hand side of the system (1.3.5) does not undergo any

changes.

Before we finish these comments we note that connective stability is a

Liapunov-type stability, and the differences between stability under struc-

tural perturbations and structural stability (catastrophe theory) are be-

tween stability in the sense of Liapunov and structural stability in the

sense of Andronov and Pontriagin. A system can be structurally stable,

yet unstable in the sense of Liapunov! For the details see Thom [1].

1.4 Stability under Nonclassical Structural Perturbations

The concept of stability under nonclassical structural perturbations is set

out using the example of large scale system of ordinary differential equa-

tions.

Let the behaviour of a mechanical or other nature system be described

by differential equations of the form

(1.4.1)
dx

dt
= Q(t, x, P, S),

where x(t) ∈ Rn for all t ∈ (−∞, +∞), P ∈ P , S ∈ S, Q : R × Rn ×

P × S → Rn. Here P is a compact set in Rm describing parametric per-

turbations and S = (S1, . . . , Sn) is a finite set characteristic of admissible

structures Sk of system (1.4.1).
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As a result structural perturbations to be considered in this connection

are such that any number of existing interconnections among the subsys-

tems (1.3.6) can be ON or OFF as arbitrary functions of the state x(t) ∈ Rn

and/or time t ∈ T0. At each instant of time t ∈ T0 there is an intercon-

nection matrix E which describes the structure of system (1.3.5).

In terms of the above model of structural perturbations various stability

problems are investigated for the system (1.3.5) and its generalizations in

the sense of the following definition (see Siljak [4, 5]).

Definition 1.3.3 The equilibrium state x = 0 of a free dynamical

system (1.3.5) is connectively stable if and only if it is stable in the sense

of Liapunov for all interconnection matrices E.

It should be noted that in the above model the action of structural

perturbations “is revealed” as a result of the analysis of the initial systems

(1.3.5) decomposed into a series of the independent subsystems (1.3.7).

Besides, the right-hand side of the system (1.3.5) does not undergo any

changes.

Before we finish these comments we note that connective stability is a

Liapunov-type stability, and the differences between stability under struc-

tural perturbations and structural stability (catastrophe theory) are be-

tween stability in the sense of Liapunov and structural stability in the

sense of Andronov and Pontriagin. A system can be structurally stable,

yet unstable in the sense of Liapunov! For the details see Thom [1].

1.4 Stability under Nonclassical Structural Perturbations

The concept of stability under nonclassical structural perturbations is set

out using the example of large scale system of ordinary differential equa-

tions.

Let the behaviour of a mechanical or other nature system be described

by differential equations of the form

(1.4.1)
dx

dt
= Q(t, x, P, S),

where x(t) ∈ Rn for all t ∈ (−∞, +∞), P ∈ P , S ∈ S, Q : R × Rn ×

P × S → Rn. Here P is a compact set in Rm describing parametric per-

turbations and S = (S1, . . . , Sn) is a finite set characteristic of admissible

structures Sk of system (1.4.1).
1.6 STRUCTURAL PERTURBATIONS 17

Further in Chapters 2–5 these sets will be concretized which is necessary

for constructing algorithms of motion stability analysis of the appropriate

systems of equations.

Associated with (1.4.1) we consider the initial value problem given by

(1.4.2)
dx

dt
= Q(t, x, P, S), x(t0) = x0,

where t0 ∈ R+ and x0 ∈ Ω.

The function ψ = ψ(t; t0, x0) is a solution to initial value problem (1.4.2)

for any (P, S) ∈ P×S if and only if ψ is a solution of the integral equation

(1.4.3) ψ(t) = x0 +

t∫

t0

Q(τ, ψ(τ), P, S) dτ

for all t ∈ [t0, b) and any (P, S) ∈ P × S.

On the product C([t0, b), Rn) × P × S we determine the operator

(1.4.4) (Tψ)(t) = x0 +

t∫

t0

Q(τ, ψ(τ), P, S) dτ.

Function ψ is a solution of the system (1.4.2) if and only if ψ is a fixed

point of the operator T , i.e. the condition (see Miller [1])

ψ = Tψ

is to be satisfied for any (P, S) ∈ P × S.

Let P ∗ be fixed parameter values and S∗ be a given structure of system

(1.4.1). Consider nominal system

(1.4.5)
dx

dt
= Q(t, x, P ∗, S∗)

and the transformed system (1.4.1)

(1.4.6)
dy

dt
= Q(t, x, P ∗, S∗) + ∆Q(t, x, P, S),

where ∆Q(t, x, P, S) = Q(t, x, P, S) − Q(t, x, P ∗, S∗).
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Further in Chapters 2–5 these sets will be concretized which is necessary

for constructing algorithms of motion stability analysis of the appropriate

systems of equations.

Associated with (1.4.1) we consider the initial value problem given by

(1.4.2)
dx

dt
= Q(t, x, P, S), x(t0) = x0,

where t0 ∈ R+ and x0 ∈ Ω.

The function ψ = ψ(t; t0, x0) is a solution to initial value problem (1.4.2)

for any (P, S) ∈ P×S if and only if ψ is a solution of the integral equation

(1.4.3) ψ(t) = x0 +

t∫

t0

Q(τ, ψ(τ), P, S) dτ

for all t ∈ [t0, b) and any (P, S) ∈ P × S.

On the product C([t0, b), Rn) × P × S we determine the operator

(1.4.4) (Tψ)(t) = x0 +

t∫

t0

Q(τ, ψ(τ), P, S) dτ.

Function ψ is a solution of the system (1.4.2) if and only if ψ is a fixed

point of the operator T , i.e. the condition (see Miller [1])

ψ = Tψ

is to be satisfied for any (P, S) ∈ P × S.

Let P ∗ be fixed parameter values and S∗ be a given structure of system

(1.4.1). Consider nominal system

(1.4.5)
dx

dt
= Q(t, x, P ∗, S∗)

and the transformed system (1.4.1)

(1.4.6)
dy

dt
= Q(t, x, P ∗, S∗) + ∆Q(t, x, P, S),

where ∆Q(t, x, P, S) = Q(t, x, P, S) − Q(t, x, P ∗, S∗).18 1. STABILITY THEORY

We introduce some assumptions on systems (1.4.1) and (1.4.5).

H1. Vector-function Q is given for all t ∈ (−∞, +∞), x ∈ Ω ⊂ Rn,

P ∗ ∈ P , S∗ ∈ S, and is real and continuous.

H2. For every t0 ∈ (−∞, +∞), x0 ∈ Ω, P ∗ ∈ P and S∗ ∈ S positive

numbers a, b, c and K can be found such that the sphere �x − x0� ≤ b is

contained in the domain Ω and the sphere �P ∗� ≤ c is embedded into the

set P and the Lipschitz condition

�Q(t, x′, P ∗, S∗) − Q(t, x′′, P ∗, S∗)� ≤ K�x′
− x′′

�

is satisfied for |t− t0| ≤ a, �x− x0� ≤ b, �P − P ∗� ≤ c, for given S∗ ∈ S.

H3. For any (P, S) ∈ P × S δ2 = max(�∆Q(t, x, P, S)� for |t − t0| ≤

h) < k < +∞.

Proposition 1.4.1 Under conditions H1 – H3 there exists a unique solution

x(t) = x(t, t0, x0, P, S) of system (1.4.1) determined for |t − t0| ≤ h, h =

min(a, b/M) where

M = max(�Q(t, x, P ∗, S∗)� for |t−t0| ≤ a, �x−x0� ≤ b, �P−P ∗
� ≤ c)

for S∗ ∈ S, which satisfies condition x(t) = x0 for t = t0. This solution is

a continuous function of parameters P ∈ P in closed domain �P−P ∗� ≤ c

for given structure S∗ ∈ S.

Proof of this assertion is based on the fundamental inequality

(1.4.7) �x(t) − y(t)� ≤ δ1e
L(t−t0) +

(
δ2

K

)(

eL(t−t0) − 1
)

,

were the value δ1 characterizes the initial deviations of solutions x(t) and

y(t) of systems (1.4.5) and (1.4.6) for t = t0, i.e. �x0 − y0� ≤ δ1.

Estimate (1.4.7) allows one to show that the solutions of systems (1.4.5)

and (1.4.6) depend continuously on the system structure and/or parameter

only on the finite time interval. Hence it follows closeness of the appropriate

solutions on finite interval.

The problem on closeness of solutions to systems (1.4.5) and (1.4.6) on

infinite interval is a subject of special investigation of theory of stability un-

der nonclassical structural perturbations which is basic in this monograph.

We add one more assumption to H1 –H3.
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We introduce some assumptions on systems (1.4.1) and (1.4.5).

H1. Vector-function Q is given for all t ∈ (−∞, +∞), x ∈ Ω ⊂ Rn,

P ∗ ∈ P , S∗ ∈ S, and is real and continuous.

H2. For every t0 ∈ (−∞, +∞), x0 ∈ Ω, P ∗ ∈ P and S∗ ∈ S positive

numbers a, b, c and K can be found such that the sphere �x − x0� ≤ b is

contained in the domain Ω and the sphere �P ∗� ≤ c is embedded into the

set P and the Lipschitz condition

�Q(t, x′, P ∗, S∗) − Q(t, x′′, P ∗, S∗)� ≤ K�x′
− x′′

�

is satisfied for |t− t0| ≤ a, �x− x0� ≤ b, �P − P ∗� ≤ c, for given S∗ ∈ S.

H3. For any (P, S) ∈ P × S δ2 = max(�∆Q(t, x, P, S)� for |t − t0| ≤

h) < k < +∞.

Proposition 1.4.1 Under conditions H1 – H3 there exists a unique solution

x(t) = x(t, t0, x0, P, S) of system (1.4.1) determined for |t − t0| ≤ h, h =

min(a, b/M) where

M = max(�Q(t, x, P ∗, S∗)� for |t−t0| ≤ a, �x−x0� ≤ b, �P−P ∗
� ≤ c)

for S∗ ∈ S, which satisfies condition x(t) = x0 for t = t0. This solution is

a continuous function of parameters P ∈ P in closed domain �P−P ∗� ≤ c

for given structure S∗ ∈ S.

Proof of this assertion is based on the fundamental inequality

(1.4.7) �x(t) − y(t)� ≤ δ1e
L(t−t0) +

(
δ2

K

)(

eL(t−t0) − 1
)

,

were the value δ1 characterizes the initial deviations of solutions x(t) and

y(t) of systems (1.4.5) and (1.4.6) for t = t0, i.e. �x0 − y0� ≤ δ1.

Estimate (1.4.7) allows one to show that the solutions of systems (1.4.5)

and (1.4.6) depend continuously on the system structure and/or parameter

only on the finite time interval. Hence it follows closeness of the appropriate

solutions on finite interval.

The problem on closeness of solutions to systems (1.4.5) and (1.4.6) on

infinite interval is a subject of special investigation of theory of stability un-

der nonclassical structural perturbations which is basic in this monograph.

We add one more assumption to H1 –H3.
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H4. System (1.4.1) possesses a trivial solution x = 0, which is preserved

for any (P, S) ∈ P × S.

Since further solutions of system (1.4.1) are considered on the infinite

time interval, we recall some conditions ensuring the existence of such so-

lutions.

Proposition 1.4.2 Let vector-function Q(t, x, P, S) be definite and

continuous in the domain of values (t, x) ∈ R+×Rn for any (P, S) ∈ P×S

and in this domain the inequality

�Q(t, x, P, S)� ≤ L(�x�) for (P, S) ∈ P × S

holds true, where L(r) is a continuous function of r satisfying the condition

r∫

r0

dr

L(r)
→ +∞ for r → +∞.

Moreover, the vector-function Q(t, x, P, S) satisfies the Lipschits condi-

tion in x in any domain {x ∈ Rn : �x� ≤ N} with constant K.

Then any solution x(t) of system (1.4.1) can be extended for all values

t0 ≤ t < +∞.

Note that the constant K can depend on the value N and also on (P, S) ∈

P × S, i.e. K = K(N, P, S).

This assertion is proved by a slight modification of the proof of Theorem

2.1.2 by Lakshmikantham and Leela [1].

System (1.4.1) is called the system with nonclassical structural perturba-

tions if for it assumptions H1–H4 are satisfied and any of its solutions has

an extension on the interval [t0, +∞).

In the investigation of the dynamical behavior of solutions to system

(1.4.1) under nonclassical structural perturbations we shall use definitions

obtained in terms of Definitions 1.2.1 – 1.2.3.

Definition 1.4.1 The equilibrium state x = 0 of system (1.4.1) is

(i) stable (in the whole) under nonclassical structural perturbations if

and only if it is stable (in the whole) in the sense of Liapunov (in the

sense of Barbashin-Krasovskii) for any (P, S) ∈ (P ,S) respectively;

(ii) unstable under nonclassical structural perturbations if and only if it

is unstable in the sense of Liapunov for at least one pair (P, S) ∈

(P ,S).
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H4. System (1.4.1) possesses a trivial solution x = 0, which is preserved

for any (P, S) ∈ P × S.

Since further solutions of system (1.4.1) are considered on the infinite

time interval, we recall some conditions ensuring the existence of such so-

lutions.

Proposition 1.4.2 Let vector-function Q(t, x, P, S) be definite and

continuous in the domain of values (t, x) ∈ R+×Rn for any (P, S) ∈ P×S

and in this domain the inequality

�Q(t, x, P, S)� ≤ L(�x�) for (P, S) ∈ P × S

holds true, where L(r) is a continuous function of r satisfying the condition

r∫

r0

dr

L(r)
→ +∞ for r → +∞.

Moreover, the vector-function Q(t, x, P, S) satisfies the Lipschits condi-

tion in x in any domain {x ∈ Rn : �x� ≤ N} with constant K.

Then any solution x(t) of system (1.4.1) can be extended for all values

t0 ≤ t < +∞.

Note that the constant K can depend on the value N and also on (P, S) ∈

P × S, i.e. K = K(N, P, S).

This assertion is proved by a slight modification of the proof of Theorem

2.1.2 by Lakshmikantham and Leela [1].

System (1.4.1) is called the system with nonclassical structural perturba-

tions if for it assumptions H1–H4 are satisfied and any of its solutions has

an extension on the interval [t0, +∞).

In the investigation of the dynamical behavior of solutions to system

(1.4.1) under nonclassical structural perturbations we shall use definitions

obtained in terms of Definitions 1.2.1 – 1.2.3.

Definition 1.4.1 The equilibrium state x = 0 of system (1.4.1) is

(i) stable (in the whole) under nonclassical structural perturbations if

and only if it is stable (in the whole) in the sense of Liapunov (in the

sense of Barbashin-Krasovskii) for any (P, S) ∈ (P ,S) respectively;

(ii) unstable under nonclassical structural perturbations if and only if it

is unstable in the sense of Liapunov for at least one pair (P, S) ∈

(P ,S).
20 1. STABILITY THEORY

Definitions of other types of stability are formulated in the same way as

Definition 1.4.1(i) and are presented in the book when necessary.

Remark 1.4.1 The concept of stability under nonclassical structural per-

turbations is not identical with the concept of connected stability intro-

duced by Siljak [1–3] and is further development of the notion of stability

in mathematical system theory.

Remark 1.4.2 Further on for the sake of briefness alongside the expres-

sion “under nonclassical structural perturbations” a more short expression

“on P × S” is used.

1.5 Method of Stability Analysis of Motion

The main method of stability analysis of systems of (1.4.1) type is the

method of Liapunov functions. In the monograph by Grujić et al. [1] the

results of stability analysis of systems under nonclassical structural per-

turbations are presented obtained in terms of vector Liapunov functions.

Besides new aggregation forms are presented for large-scale systems and

conditions for different types of motion stability are established. Models of

large-scale Lurie-Postnikov systems and power systems are considered as

examples.

In this monograph we propose to apply the matrix-valued Liapunov func-

tions for stability analysis of large-scale systems mentioned in Section 1.2.

This method is developed recently in qualitative theory of equations and is

set out in Martynyuk [1, 2]. We shall recall some notions of this technique.

Presently the Liapunov direct method (see Liapunov [1]) in terms of three

classes of auxiliary functions: scalar, vector and matrix ones is intensively

applied in qualitative theory. In this point we shall present the description

of the matrix-valued auxiliary functions.

For the system (1.2.6) we shall consider a continuous matrix-valued func-

tion

(1.5.1) U(t, x) = [vij(t, x)], i, j = 1, 2, . . . , m,

where vij ∈ C(Tτ × Rn, R) for all i, j = 1, 2, . . . , m. We assume that the

following conditions are fulfilled

(i) vij(t, x), i, j = 1, 2, . . . , m, are locally Lipschitzian in x;
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Definitions of other types of stability are formulated in the same way as

Definition 1.4.1(i) and are presented in the book when necessary.

Remark 1.4.1 The concept of stability under nonclassical structural per-

turbations is not identical with the concept of connected stability intro-

duced by Siljak [1–3] and is further development of the notion of stability

in mathematical system theory.

Remark 1.4.2 Further on for the sake of briefness alongside the expres-

sion “under nonclassical structural perturbations” a more short expression

“on P × S” is used.

1.5 Method of Stability Analysis of Motion

The main method of stability analysis of systems of (1.4.1) type is the

method of Liapunov functions. In the monograph by Grujić et al. [1] the

results of stability analysis of systems under nonclassical structural per-

turbations are presented obtained in terms of vector Liapunov functions.

Besides new aggregation forms are presented for large-scale systems and

conditions for different types of motion stability are established. Models of

large-scale Lurie-Postnikov systems and power systems are considered as

examples.

In this monograph we propose to apply the matrix-valued Liapunov func-

tions for stability analysis of large-scale systems mentioned in Section 1.2.

This method is developed recently in qualitative theory of equations and is

set out in Martynyuk [1, 2]. We shall recall some notions of this technique.

Presently the Liapunov direct method (see Liapunov [1]) in terms of three

classes of auxiliary functions: scalar, vector and matrix ones is intensively

applied in qualitative theory. In this point we shall present the description

of the matrix-valued auxiliary functions.

For the system (1.2.6) we shall consider a continuous matrix-valued func-

tion

(1.5.1) U(t, x) = [vij(t, x)], i, j = 1, 2, . . . , m,

where vij ∈ C(Tτ × Rn, R) for all i, j = 1, 2, . . . , m. We assume that the

following conditions are fulfilled

(i) vij(t, x), i, j = 1, 2, . . . , m, are locally Lipschitzian in x;
1.6 STRUCTURAL PERTURBATIONS 21

(ii) vij(t, 0) = 0 for all t ∈ R+ (t ∈ Tτ ), i, j = 1, 2, . . . , m;

(iii) vij(t, x) = vji(t, x) in any open connected neighborhood N of point

x = 0 for all t ∈ R+ (t ∈ Tτ ).

Definition 1.5.1 All functions of the type

(1.5.2) v(t, x, α) = αTU(t, x)α, α ∈ Rm,

where U ∈ C(Tτ ×N , Rm×m), are attributed to the class SL.

Here the vector α can be specified as follows:

(i) α = y ∈ Rm, y �= 0;

(ii) α = ξ ∈ C(Rn, Rm
+

), ξ(0) = 0;

(iii) α = ψ ∈ C(Tτ × Rn, Rm
+

), ψ(t, 0) = 0;

(iv) α = η ∈ Rm
+

, η > 0.

Note that the choice of vector α can influence the property of having a

fixed sign of function (1.5.1) and its total derivative along solutions of sys-

tem (1.2.6).

For the functions of the class SL we shall cite some definitions which are

applied in the investigation of dynamics of system in the book.

Definition 1.5.2 The matrix-valued function U : Tτ × Rn → Rm×m

is:

(i) positive semi-definite on Tτ = [τ, +∞), τ ∈ R, iff there are time-

invariant connected neighborhood N of x = 0, N ⊆ Rn, and vector

y ∈ Rm, y �= 0, such that

(a) v(t, x, y) is continuous in (t, x) ∈ Tτ ×N × Rm;

(b) v(t, x, y) is non-negative on N , v(t, x, y) ≥ 0 for all (t, x, y �=

0) ∈ Tτ ×N × Rm, and

(c) vanishes at the origin: v(t, 0, y) = 0 for all t ∈ Tτ × Rm;

(d) iff the conditions (a) – (c) hold and for every t ∈ Tτ , there

is w ∈ N such that v(t, w, y) > 0, then v is strictly positive

semi-definite on Tτ .

The expression “on Tτ” is omitted iff all corresponding requirements

hold for every τ ∈ R.
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(ii) vij(t, 0) = 0 for all t ∈ R+ (t ∈ Tτ ), i, j = 1, 2, . . . , m;

(iii) vij(t, x) = vji(t, x) in any open connected neighborhood N of point

x = 0 for all t ∈ R+ (t ∈ Tτ ).

Definition 1.5.1 All functions of the type

(1.5.2) v(t, x, α) = αTU(t, x)α, α ∈ Rm,

where U ∈ C(Tτ ×N , Rm×m), are attributed to the class SL.

Here the vector α can be specified as follows:

(i) α = y ∈ Rm, y �= 0;

(ii) α = ξ ∈ C(Rn, Rm
+

), ξ(0) = 0;

(iii) α = ψ ∈ C(Tτ × Rn, Rm
+

), ψ(t, 0) = 0;

(iv) α = η ∈ Rm
+

, η > 0.

Note that the choice of vector α can influence the property of having a

fixed sign of function (1.5.1) and its total derivative along solutions of sys-

tem (1.2.6).

For the functions of the class SL we shall cite some definitions which are

applied in the investigation of dynamics of system in the book.

Definition 1.5.2 The matrix-valued function U : Tτ × Rn → Rm×m

is:

(i) positive semi-definite on Tτ = [τ, +∞), τ ∈ R, iff there are time-

invariant connected neighborhood N of x = 0, N ⊆ Rn, and vector

y ∈ Rm, y �= 0, such that

(a) v(t, x, y) is continuous in (t, x) ∈ Tτ ×N × Rm;

(b) v(t, x, y) is non-negative on N , v(t, x, y) ≥ 0 for all (t, x, y �=

0) ∈ Tτ ×N × Rm, and

(c) vanishes at the origin: v(t, 0, y) = 0 for all t ∈ Tτ × Rm;

(d) iff the conditions (a) – (c) hold and for every t ∈ Tτ , there

is w ∈ N such that v(t, w, y) > 0, then v is strictly positive

semi-definite on Tτ .

The expression “on Tτ” is omitted iff all corresponding requirements

hold for every τ ∈ R.22 1. STABILITY THEORY

Definition 1.5.3 The matrix-valued function U : Tτ × Rn → Rm×m

is:

(i) positive definite on Tτ , τ ∈ R, iff there are a time-invariant con-

nected neighborhood N of x = 0, N ⊆ Rn and a vector y ∈ Rm,

y �= 0, such that both it is positive semi-definite on Tτ × N and

there exists a positive definite function w on N , w : Rn → R+,

obeying w(x) ≤ v(t, x, y) for all (t, x, y) ∈ Tτ ×N × Rm;

(ii) negative definite (in the whole) on Tτ (on Tτ ×N ×Rm) iff (−v) is

positive definite (in the whole) on Tτ (on Tτ ×N×Rm) respectively.

The expression “on Tτ” is omitted iff all corresponding requirements hold

for every τ ∈ R.

The set vζ(t) is the largest connected neighborhood of x = 0 at t ∈ R

which can be associated with a function U : R × Rn → Rm×m so that

x ∈ vζ(t) implies v(t, x, y) < ζ, y ∈ Rm.

Definition 1.5.4 The matrix-valued function U : R×Rn → Rs×s is:

(i) decreasing on Tτ , τ ∈ R, iff there is a time-invariant neighborhood

N of x = 0 and a positive definite function w on N , w : Rn → R+,

such that yTU(t, x)y ≤ w(x) for all (t, x) ∈ Tτ ×N ;

(ii) decreasing in the whole on Tτ iff (i) holds for N = Rn.

The expression “on Tτ” is omitted iff all corresponding conditions still

hold for every τ ∈ R.

Definition 1.5.5 The matrix-valued function U : R × Rn → Rm×m

is:

(i) radially unbounded on Tτ , τ ∈ R, iff �x�→∞ implies yTU(t, x)y →

+∞ for all t ∈ Tτ , y ∈ Rm, y �= 0;

(ii) radially unbounded, iff �x� → ∞ implies yTU(t, x)y → +∞ for all

t ∈ Tτ for all τ ∈ R, y ∈ Rm, y �= 0.

According to Liapunov [1] function (1.5.2) is applied in motion investi-

gation of system (1.2.6) together with its total derivative along solutions

x(t) = x(t; t0, x0) of system (1.2.6). Assume that each element vij(t, x)

of the matrix-valued function (1.5.2) is definite on the open set Tτ × N ,

N ⊂ Rn, i.e. vij(t, x) ∈ C(Tτ ×N , R).

If γ(t; t0, x0) is a solution of system (1.2.6) with the initial conditions

x(t0) = x0, i.e. γ(t0; t0, x0) = x0, , the right-hand upper derivative of
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function (1.5.2) for α = y, y ∈ Rm, with respect to t along the solution of

(1.2.6) is determined by the formula

(1.5.3) D+v(t, x, y) = yTD+U(t, x)y,

where D+U(t, x) = [D+vij(t, x)], i, j = 1, 2, . . . , m, and

(1.5.4)

D+vij(t, x) = lim sup
{

sup
γ(t,t,x)=x

[vij(t + σ, γ(t + σ, t, x))

− vij(t, x)] σ−1 : σ → 0+

}

, i, j = 1, 2, . . . , m.

If the matrix-valued function U(t, x) ∈ C1,1(Tτ ×N , Rm×m), i.e. all its

elements vij(t, x) are functions continuously differentiable in t and x, then

the expression (1.5.4) is equivalent to

(1.5.5) Dvij(t, x) =
∂vij

∂t
(t, x) +

n∑

s=1

∂vij

∂xs

(t, x) fs(t, x),

where fs(t, x) are components of the vector-function f(t, x) = (f1(t, x), . . . ,

fn(t, x))T.

In Chapter 2, Sections 2.1 – 2.5, we will establish the sufficient conditions

for asymptotic stability (in the whole), uniform asymptotic stability (in the

whole), exponential stability (in the whole), and instability of solutions of

nonlinear large scale systems under nonclassical structural perturbations

by applying Liapunov’s matrix functions (1.5.1) and its derivative (1.5.3)

or (1.5.5)

1.6 Notes and References

Section 1.2 The problem of motion stability arises whenever the engineering or

physical problem is formulated as a mathematical problem of qualitative analysis

of equations. Poincare and Liapunov laid a background for the method of aux-

iliary functions for continuous systems which allow not to integrate the motion

equations for their qualitative analysis. The ideas of Poincare and Liapunov were

further developed and applied in many branches of modern natural sciences.

The results of Liapunov [1], Chetaev [1], Persidskii [1], Malkin [1], Ascoli [1],

Barbasin and Krasovskii [1], Massera [1], and Zubov [1], were a base for Defi-

nitions 1.2.1 – 1.2.3 (ad hoc see Grujić et al. [1], pp. 8 – 12 and cf. Rao Mohana
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function (1.5.2) for α = y, y ∈ Rm, with respect to t along the solution of
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(1.5.3) D+v(t, x, y) = yTD+U(t, x)y,

where D+U(t, x) = [D+vij(t, x)], i, j = 1, 2, . . . , m, and

(1.5.4)

D+vij(t, x) = lim sup
{

sup
γ(t,t,x)=x

[vij(t + σ, γ(t + σ, t, x))

− vij(t, x)] σ−1 : σ → 0+

}

, i, j = 1, 2, . . . , m.

If the matrix-valued function U(t, x) ∈ C1,1(Tτ ×N , Rm×m), i.e. all its
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(1.5.5) Dvij(t, x) =
∂vij

∂t
(t, x) +

n∑

s=1

∂vij

∂xs

(t, x) fs(t, x),

where fs(t, x) are components of the vector-function f(t, x) = (f1(t, x), . . . ,

fn(t, x))T.
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or (1.5.5)
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of equations. Poincare and Liapunov laid a background for the method of aux-

iliary functions for continuous systems which allow not to integrate the motion

equations for their qualitative analysis. The ideas of Poincare and Liapunov were

further developed and applied in many branches of modern natural sciences.

The results of Liapunov [1], Chetaev [1], Persidskii [1], Malkin [1], Ascoli [1],

Barbasin and Krasovskii [1], Massera [1], and Zubov [1], were a base for Defi-

nitions 1.2.1 – 1.2.3 (ad hoc see Grujić et al. [1], pp. 8 – 12 and cf. Rao Mohana
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Rao [1], Yoshizawa [1], Rouche et al. [1], Antosiewicz [1], Lakshmikantham an

Leela [1], Hahn [2], etc.). For Definitions 1.2.4 – 1.2.7, and 1.2.13 see Hahn [2],

and Martynyuk [9]. Definitions 1.2.8 – 1.2.12 are based on some results by Li-

apunov [1], Hahn [2], Barbashin and Krasovskii [1] (see and cf. Djordjevic [1],

Grujić [3], and Martynyuk [2, 3, 5, 10, 13, 17]).

Discrete systems appear to be efficient mathematical models in the investiga-

tion of many real world processes and phenomena (see Samarskii and Gulia [1]).

Note that yet in the works by Euler and Lagrange the so-called recurrent series

and some problems of probability theory were studied being described by discrete

(finite difference) equations. The active investigation of discrete systems (for the

last three decades) is stipulated by new problems of the technical progress. Dis-

crete equations prove to be the most efficient model in description of the mechan-

ical system with impulse perturbations as well as the systems comprising digital

computing devices. Recently the discrete systems have been applied in the mod-

elling of processes in population dynamics, macro-economy, chaotic dynamics of

economic systems, modelling of recurrent neuron networks, chemical reactions,

dynamics of discrete Markov processes, finite and probably automatic machines

and computing processes.

The dynamics of discrete-time systems is in the focus of attention of many

experts (see, for example, Aulbach [1], Diamond [1], Elaydi and Peterson [1],

Luca and Talpalaru [1], Maslovskaya [1], etc.).

Many evolution processes are characterized by the fact that at certain mo-

ments of time they experience a change of state abruptly. This is due to short

term perturbations whose duration is negligible in comparison with the dura-

tion of the process. It is natural, therefore, to assume that such perturbations

act instantaneously, that is, in the form of impulses. Thus impulsive differen-

tial equations, namely, differential equations involving impulse effects, appear as

natural description of observed evolution phenomenon of several real-world prob-

lems. Of course, the theory of impulsive differential equations is much richer

than the corresponding theory of differential equations without impulse effects

(see Blaquiere [1], Krylov and Bogoliubov [1], Mil’man and Myshkis [1], Myshkis

and Samoilenko [1], etc.).

For Definitions 1.4.1 – 1.4.3 see Lakshmikantham, Bainov, et al. [1], Samoilenko

and Perestyuk [1], Simeonov and Bainov [1], etc.

Original results and the surveys of some directions of investigations are pre-

sented in the monographs by Lakshmikantham, Leela, and Martynyuk [1, 2], Pan-

dit and Deo [1], and in many papers.
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The physical system can consist of subsystems that react differently to the

external impacts (see Pontryagin [1], Tikhonov [1], Volosov [1], Hopensteadt [1],

Grujić, et al. [1], etc.). Moreover, each of the subsystems has its own scale of

natural time. In the case when the subsystems are not interconnected, the dy-

namical properties of each subsystem are examined in terms of the corresponding

time scale. It turned out that it is reasonable to use such information when the

additional conditions on the subsystems are formulated in the investigation of

large scale systems. The existence of various time scales related to the separated

subsystems is mathematically expressed by arbitrarily small positive parameters

µi present at the part of the higher derivatives in differential equation. If the

parameters µi vanish, the number of differential equations of the large scale sys-

tem is diminished and, hence the appearance of algebraic equations. This is just

the singular case allowing the consideration of various peculiarities of the system

with different time scales.

Modern analytical and qualitative methods of analysis of singularly perturbed

systems are based on some ideas and results of the classical works by Tikhonov and

Pontryagin. The development of general ideas in the direction is presented in the

papers and monographs by Vasil’eva and Butuzov [1], Mishchenko and Rozov [1],

Eckhaus [1], Carrier [1], O’Malley [1], Kokotovic and Khalil [1], Miranker [1],

Chang and Howes [1], etc.

Section 1.3 Various problems of the stability theory under classical structural

perturbations were studied in many papers (see, e.g. Aeppli and Markus [1],

Arnol’d [1], Bowen and Ruelle [1], Conley and Zehnder [1], Coppel [1], Cronin [1],

Hale [1], Hirsch [1], Kneser [1], Kaplan [1], Markus [1], Moser [1], Pilugin [1],

Shub [1], Zeeman [1], etc.).

This Section encorporates some results by Arnol’d [1], Sell [1], Lefshetz [1],

Peixoto [1], Šiljak [1], and Chetaev [1], etc.

Section 1.4 We focused main attention on the concept of stability under non-

classical structural perturbations in the sense of Liapunov. We used in the point

the results from monograph by Grujić, Martynyuk and Ribbens-Pavella [1].

Section 1.5 For the details of the method of matrix-valued Liapunov functions

see Martynyuk [1–3] and Djordjević [1]. This method has been developed at

the Stability of Processes Department of the Institute of Mechanics of NAS of

Ukraine since 1979 (see Ph.D. thesises by Shegai [1], Miladzhanov [1], Azimov [1],

Begmuratov [1], Martynyuk-Chernienko [1], Slyn’ko [1], Lykyanova [1]).

For the recent papers concerning the topics of Sections 1.2 – 1.5 see Kramer

and Hofman [1].
26 1. STABILITY THEORY

We note that the two-index system of functions (1.5.1) being suitable for con-

struction of the Liapunov functions allows to involve more wide classes of func-

tions as compared with those usually applied in motion stability theory. For

example, the bilinear forms prove to be natural non-diagonal elements of matrix-

valued functions. Another peculiar feature of the approach being of importance

is the fact that the application of the matrix-valued function in the investigation

of multidimensional systems enables to allow for the interconnections between

the subsystems in their natural form, i.e. not necessarily as the destabilizing fac-

tor. Finally, for the determination of the property of having a fixed sign of the

total derivative of auxiliary function along solutions of the system under con-

sideration it is not necessary to encorporate the estimation functions with the

quasi-monotonicity property. Naturally, the awkwardness of calculations in this

case is the price.

Download free eBooks at bookboon.com



Stability Theory of Large-Scale  
Dynamical Systems

36 

Continuous Large-Scale Systems

2

CONTINUOUS LARGE-SCALE SYSTEMS

2.1 Introduction

Qualitative analysis of nonlinear systems by Liapunov’s direct (second)

method (see Liapunov [1]) can be effectively done only when there is an

algorithm of construction of an appropriate function for the system under

consideration. A series of investigations simplify the initial problem so

that stability properties are defined not immediatelly, but via investigation

of an intermediate system. Here we study large scale nonlinear continuous

systems under nonclassical structural perturbations in context with method

of Liapunov matrix-valued functions.

The purpose of this Chapter is to obtain sufficient conditions for asymp-

totic stability (in the whole), uniform asymptotic stability (in the whole),

exponential stability (in the whole), and instability of solutions of nonlinear

large scale systems under nonclassical structural perturbations by applying

matrix Liapunov’s functions method.

The present chapter is arranged as follows.

In Section 2.2 the composition of continuous large scale system under

given models of connectedness is described.

Section 2.3 provides necessary information about the matrix-valued func-

tions which are applied in the investigation of large scale continuous systems

under nonclassical structural perturbations.

Section 2.4 is focussed on the new sufficient conditions for various types

of stability of nonlinear systems under nonclassical structural perturba-

tions. These conditions were established while solving Problem CA and

Problem CB.

In Section 2.5 the method of choosing the elements of the matrix-valued

function is concretized and the results of stability investigation of linear

Typeset by AMS-TEX
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Qualitative analysis of nonlinear systems by Liapunov’s direct (second)

method (see Liapunov [1]) can be effectively done only when there is an

algorithm of construction of an appropriate function for the system under

consideration. A series of investigations simplify the initial problem so

that stability properties are defined not immediatelly, but via investigation

of an intermediate system. Here we study large scale nonlinear continuous

systems under nonclassical structural perturbations in context with method

of Liapunov matrix-valued functions.

The purpose of this Chapter is to obtain sufficient conditions for asymp-

totic stability (in the whole), uniform asymptotic stability (in the whole),

exponential stability (in the whole), and instability of solutions of nonlinear

large scale systems under nonclassical structural perturbations by applying

matrix Liapunov’s functions method.

The present chapter is arranged as follows.

In Section 2.2 the composition of continuous large scale system under

given models of connectedness is described.

Section 2.3 provides necessary information about the matrix-valued func-

tions which are applied in the investigation of large scale continuous systems

under nonclassical structural perturbations.

Section 2.4 is focussed on the new sufficient conditions for various types

of stability of nonlinear systems under nonclassical structural perturba-

tions. These conditions were established while solving Problem CA and

Problem CB.

In Section 2.5 the method of choosing the elements of the matrix-valued

function is concretized and the results of stability investigation of linear
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system under nonclassical structural perturbations are presented. General

results are illustrated by the numerical examples.

The final Section 2.6 indicates some possible trends of the further deve-

lopment of the method of matrix-valued functions and their applications.

Namely, in point 2.6.1 Liapunov’s matrix-valued function is applied in sta-

bility investigation with respect to two measures under nonclassical struc-

tural perturbations. In point 2.6.2 the problem of stability of large scale

power system under nonclassical structural perturbations is discussed.

2.2 Nonclassical Structural Perturbations in Time-Continuous

Systems

We consider nonlinear continuous systems whose description is based on

the assumptions below. Furtheron the systems, subsystems, of this class

are designated by C, Ci, respectively.

H1. The imaginary mechanical or other system C consists of m inter-

acting subsystems Ci, whose behaviour is described by continuous systems

of ordinary differential equations the order of which is not changed on the

interval of the system functionning.

H2. The internal (e.g., parametric) or external perturbations of the C

are characterized by the matrix P = (pT
1 , pT

2 , . . . , pT
m)T ∈ Rm×q. The set

of all admissible matrices P is designated by

(2.2.1) P = {P : P1 ≤ P (t) ≤ P2, for all t ∈ R},

where P1 and P2 are the prescribed constant matrices.

H3. The family F , is determined consisting of the vector functions f1,

f2, . . . , fm for which fk
i ∈ C(T ×Rn ×R1×q, Rni), for all k = 1, 2, . . . , N,

where N is a real number, n = n1 + n2 + · · · + nm, and i = 1, 2, . . . , m.

H4. The dynamics of the interconnected subsystem Ci in system C is

described by the equations

(2.2.2)
dxi

dt
= fi(t, x, pi), i = 1, 2, . . . , m,

where xi ∈ Rni, fi ∈ Fi, Fi = {f1
i , f2

i , . . . , fN
i }, x = (xT

1, . . . , x
T
i , . . . , x

T
m)T.

The functions fi in system (2.2.2) satisfy the condition fi(t, 0, 0) = 0 for

all t ∈ T .
2.2 A MODEL OF NONCLASSICAL PERTURBATIONS 29

H5. The dynamics of the i-th isolated subsystem �Ci is descibed by the

equations

(2.2.3)
dxi

dt
= gi(t, xi), xi(t0) = x0

i .

Here xi ∈ Rni , the state vector of the subsystem �Ci, and the functions

gi : T × Rni → Rni are determined by the correlations

gi(t, xi) = fi(t, x
i, 0), i = 1, 2, . . . , m,

where xi = (0, . . . , 0, xT

i , 0, . . . , 0)T.

The subsystems (2.2.3) do not contain structural and/or parametric per-

turbations and bear the main information on the dynamical properties of

subsystems �Ci, while the functions

hi(t, x, pi) = fi(t, x, pi) − gi(t, xi), i = 1, 2, . . . , m

in the system

(2.2.4)
dxi

dt
= gi(t, xi) + hi(t, x, pi), i = 1, 2, . . . , m,

describe the effect of the subsystems C1, . . . , Ci−1, Ci+1, . . . , Cm of sys-

tem C on the subsystem Ci.

Designate by Hi the set of all possible hi, from

h
j
i (t, x, pi) = f

j
i (t, x, pi) − gi(t, xi), j = 1, 2, . . . , N, i = 1, 2, . . . , m.

The fact that f
j
i (t, x, pi) ∈ Fi implies that h

j
i (t, x, pi) ∈ Hi for all

i = 1, 2, . . . , m.

The binary function sij : T → {0, 1} is applied as a structural parameter

of system (sij : T → [0, 1] ). This function represents the (i, j)-th element

of the structural matrix Si : R → Rni×Nni of the i-th interconnecting

subsystem Si.

If we designate

S =







S : S =






S1 012 . . . 01m

021 S2 . . . 02m

. . . . . . . . . . . . . . . . . . . .

0m1 0m2 . . . Sm












, 0ij ∈ Rni×nj ,
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where xi = (0, . . . , 0, xT

i , 0, . . . , 0)T.
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turbations and bear the main information on the dynamical properties of

subsystems �Ci, while the functions

hi(t, x, pi) = fi(t, x, pi) − gi(t, xi), i = 1, 2, . . . , m

in the system

(2.2.4)
dxi

dt
= gi(t, xi) + hi(t, x, pi), i = 1, 2, . . . , m,

describe the effect of the subsystems C1, . . . , Ci−1, Ci+1, . . . , Cm of sys-
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Designate by Hi the set of all possible hi, from

h
j
i (t, x, pi) = f

j
i (t, x, pi) − gi(t, xi), j = 1, 2, . . . , N, i = 1, 2, . . . , m.

The fact that f
j
i (t, x, pi) ∈ Fi implies that h

j
i (t, x, pi) ∈ Hi for all

i = 1, 2, . . . , m.

The binary function sij : T → {0, 1} is applied as a structural parameter

of system (sij : T → [0, 1] ). This function represents the (i, j)-th element

of the structural matrix Si : R → Rni×Nni of the i-th interconnecting

subsystem Si.

If we designate

S =
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. . . . . . . . . . . . . . . . . . . .
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, 0ij ∈ Rni×nj ,
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where Si = (si1Ii, si2Ii, . . . , siNIi), sij ∈ {0, 1}, Ii = diag {1, 1, . . . , 1} ∈

Rni × Rni, the dynamics of the i-th interconnecting subsystem Ci can be

deccribed by the equations

(2.2.5)
dxi

dt
= gi(t, xi) + Si(t)hi(t, x, pi), i = 1, 2, . . . , m.

where hi ∈ C(T × Rn × R1×q, , Re Nni ).

In general the dynamics of the system C can be represented by the vector

differential equation

(2.2.6)
dx

dt
= g(t, x) + S(t)h(t, x, P ), P ∈ P , S(t) ∈ S,

where

x ∈ Rn, g(t, x) =
(
gT

1 (t, x1), . . . , g
T

m(t, xm)
)T

,

h =
(
hT

1 (t, x, p1), . . . , h
T

m(t, x, pm)
)T

.

Remark 2.2.1 On the set N = {1, . . . , N} the variation of the exponent

k(t) ∈ N for all t ∈ R describes structural changes of system C. System

C is structurally invariant if and only if k(t) = const, or if the set N is

unitary. Thus, N indicates the number of all possible structures of the

system C.

Remark 2.2.2 The set P can be either singleton, i.e. P � p, p ∈ ∆ ⊂

R1, ∆ is a compact in R1, or empty (P1 ≡ P2 ≡ 0). In the case when

P = ∅ the system C does not have parametric perturbations, but it can

have structural changes, since f ∈ F .

Remark 2.2.3 It is easy to notice that the proposed formalization of

motion equations for continuous multidimansional system C and their rep-

resentations in the form of (2.2.5) or the vector form (2.2.6) is one of possible

realizations of the general Chetayev’s idea [1] described above.

2.3 Estimates of Matrix-Valued Functions

Together with (2.2.6) we consider a matrix-valued function

(2.3.1) U(t, x) = [vij(t, x)] for all (i, j) = 1, 2, . . . , m,
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T

m(t, x, pm)
)T

.
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realizations of the general Chetayev’s idea [1] described above.

2.3 Estimates of Matrix-Valued Functions
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where vii ∈ C(R+ × Rn, R+) for all i = 1, 2, . . . , m and vij ∈ C(R+ ×

Rn, R) for all i �= j, i, j = 1, 2, . . . , m. By means of (2.3.1) a scalar

function

(2.3.2) v(t, x, ψ) = ψTU(t, x)ψ

is introduced with ψ = (ψ1, ψ2, . . . , ψm)T, ψi �= 0, i = 1, 2, . . . , m. Note,

that if ψ = (1, 1, . . . , 1)T ∈ Rm
+ then (2.3.2) becomes

(2.3.3) v(t, x) =

m∑

i,j=1

vij(t, x).

Let vii = vii(t, xi) correspond to subsystems (2.2.3) and vij = vji =

vij(t, xi, xj) take into consideration connections Si(t)hi(t, x, pi) between

the equations (2.2.3) for all v �= j, i, j = 1, 2, . . . , m.

Assumption 2.3.1 There exist

(1) open connected neighbourhoods Nix ⊆ Rni of the states (xi = 0) ∈

Rni for all i = 1, 2, . . . , m;

(2) functions ϕik : Nix → R+, for all i = 1, 2, . . . , m; k = 1, 2, ϕik ∈ K

(ϕik ∈ KR);

(3) constants αij , αij , i, j = 1, 2, . . . , m, and a function ∆(t) ∈

C(R, R+), ∆(t) ≥ c > 0, and

(4) a matrix-valued function U(t, x) with elements vii(t, xi), vii(t, 0) =

0 for all t ∈ R+, and vij(t, xi, xj), vij(t, 0, 0) = 0 for all i �= j

and for all t ∈ R+ satisfying the estimates:

(a) αiiϕ
2

i1(�xi�)∆(t) ≤ vii(t, xi) ≤ αiiϕ
2

i2(�xi�)

for all (t, xi) ∈ R+ ×Nix (for all (t, xi) ∈ R+ × Rni),

i = 1, 2, . . . , m;

(b) αijϕi1(�xi�)ϕj1(�xj�)∆(t) ≤ vij(t, xi, xj)

≤ αijϕi1(�xi�)ϕj2(�xj�) for all (t, xi, xj) ∈ R+ ×Nix ×Njx

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ) for all i �= j,

i, j = 1, 2, . . . , m.

If we can find a matrtix-valued function U(t, x) which satisfies the con-

ditions in Assumption 2.3.1, we can prove the following assertion.
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2.3 ESTIMATES OF MATRIX-VALUED FUNCTIONS 31

where vii ∈ C(R+ × Rn, R+) for all i = 1, 2, . . . , m and vij ∈ C(R+ ×

Rn, R) for all i �= j, i, j = 1, 2, . . . , m. By means of (2.3.1) a scalar

function

(2.3.2) v(t, x, ψ) = ψTU(t, x)ψ

is introduced with ψ = (ψ1, ψ2, . . . , ψm)T, ψi �= 0, i = 1, 2, . . . , m. Note,

that if ψ = (1, 1, . . . , 1)T ∈ Rm
+ then (2.3.2) becomes

(2.3.3) v(t, x) =

m∑

i,j=1

vij(t, x).

Let vii = vii(t, xi) correspond to subsystems (2.2.3) and vij = vji =

vij(t, xi, xj) take into consideration connections Si(t)hi(t, x, pi) between

the equations (2.2.3) for all v �= j, i, j = 1, 2, . . . , m.

Assumption 2.3.1 There exist

(1) open connected neighbourhoods Nix ⊆ Rni of the states (xi = 0) ∈

Rni for all i = 1, 2, . . . , m;

(2) functions ϕik : Nix → R+, for all i = 1, 2, . . . , m; k = 1, 2, ϕik ∈ K

(ϕik ∈ KR);

(3) constants αij , αij , i, j = 1, 2, . . . , m, and a function ∆(t) ∈

C(R, R+), ∆(t) ≥ c > 0, and

(4) a matrix-valued function U(t, x) with elements vii(t, xi), vii(t, 0) =

0 for all t ∈ R+, and vij(t, xi, xj), vij(t, 0, 0) = 0 for all i �= j

and for all t ∈ R+ satisfying the estimates:

(a) αiiϕ
2

i1(�xi�)∆(t) ≤ vii(t, xi) ≤ αiiϕ
2

i2(�xi�)

for all (t, xi) ∈ R+ ×Nix (for all (t, xi) ∈ R+ × Rni),

i = 1, 2, . . . , m;

(b) αijϕi1(�xi�)ϕj1(�xj�)∆(t) ≤ vij(t, xi, xj)

≤ αijϕi1(�xi�)ϕj2(�xj�) for all (t, xi, xj) ∈ R+ ×Nix ×Njx

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ) for all i �= j,

i, j = 1, 2, . . . , m.

If we can find a matrtix-valued function U(t, x) which satisfies the con-

ditions in Assumption 2.3.1, we can prove the following assertion.32 2. CONTINUOUS LARGE-SCALE SYSTEMS

Proposition 2.3.1 If all conditions of Assumption 2.3.1 hold for func-

tion (2.3.1), then

(2.3.7)

∆(t)ΦT

1
HTAHΦ1 ≤ v(t, x, ψ) ≤ ΦT

2
HTBHΦ2

for all (t, xi, xj) ∈ R+ ×Nix ×Njx

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ) ,

where

ΦT

1
= (ϕ11(�x1�), ϕ21(�x2�), . . . , ϕm1(�xm�)),

ΦT

2
= (ϕ12(�x1�), ϕ22(�x2�), . . . , ϕm2(�xm�)),

H = diag [ψ1, ψ2, . . . , ψm],

A = [αij ], αij = αji,

B = [αij ], αij = αji, i, j = 1, 2, . . . , m.

Proof Let all conditions of Assumption 2.3.1 be satisfied. Simple alge-

braic transformations of the expression (2.3.2) lead to the estimates

v(t, x, ψ) =

m�

i=1

ψ2

i vii(t, xi) + 2

m�

i=1

s�

j=2

j>i

ψiψjvij(t, xi, xj)

≥

m�

i=1

ψ2

i αiiϕ
2

i1(�xi�)∆(t) + 2

m�

i=1

s�

j=2

j>i

ψiψjαijϕi1(�xi�)ϕj1(�xj�)∆(t)

= ∆(t)(ϕ11(�x1�), ϕ21(�x2�), . . . , ϕm1(�xm�))
T

× diag [ψ1, ψ2, . . . , ψm ]





α
11

α
12

. . . α
1s

. . . . . . . . . . . . . . . . . . . . . .

α1m α2m . . . αmm



diag [ψ1, ψ2, . . . , ψm ]

×(ϕ11(�x1�), ϕ21(�x2�), . . . , ϕm1(�xm�)) = ∆(t)ΦT

1 HTAHΦ1

for all (t, xi, xj) ∈ R+ ×Nix ×Njx (for all (t, xi, xj) ∈ R+ × Rni × Rnj ).

The estimate from above in inequality (2.3.7) is proved similarly.
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32 2. CONTINUOUS LARGE-SCALE SYSTEMS

Proposition 2.3.1 If all conditions of Assumption 2.3.1 hold for func-

tion (2.3.1), then

(2.3.7)

∆(t)ΦT

1
HTAHΦ1 ≤ v(t, x, ψ) ≤ ΦT

2
HTBHΦ2

for all (t, xi, xj) ∈ R+ ×Nix ×Njx

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ) ,

where

ΦT

1
= (ϕ11(�x1�), ϕ21(�x2�), . . . , ϕm1(�xm�)),

ΦT

2
= (ϕ12(�x1�), ϕ22(�x2�), . . . , ϕm2(�xm�)),

H = diag [ψ1, ψ2, . . . , ψm],

A = [αij ], αij = αji,

B = [αij ], αij = αji, i, j = 1, 2, . . . , m.

Proof Let all conditions of Assumption 2.3.1 be satisfied. Simple alge-

braic transformations of the expression (2.3.2) lead to the estimates

v(t, x, ψ) =

m�

i=1

ψ2

i vii(t, xi) + 2

m�

i=1

s�

j=2

j>i

ψiψjvij(t, xi, xj)

≥

m�

i=1

ψ2

i αiiϕ
2

i1(�xi�)∆(t) + 2

m�

i=1

s�

j=2

j>i

ψiψjαijϕi1(�xi�)ϕj1(�xj�)∆(t)

= ∆(t)(ϕ11(�x1�), ϕ21(�x2�), . . . , ϕm1(�xm�))
T

× diag [ψ1, ψ2, . . . , ψm ]





α
11

α
12

. . . α
1s

. . . . . . . . . . . . . . . . . . . . . .

α1m α2m . . . αmm



diag [ψ1, ψ2, . . . , ψm ]

×(ϕ11(�x1�), ϕ21(�x2�), . . . , ϕm1(�xm�)) = ∆(t)ΦT

1 HTAHΦ1

for all (t, xi, xj) ∈ R+ ×Nix ×Njx (for all (t, xi, xj) ∈ R+ × Rni × Rnj ).

The estimate from above in inequality (2.3.7) is proved similarly.2.4 TESTS FOR STABILITY ANALYSIS 33

2.4 Tests for Stability Analysis

2.4.1 The Problem CA This section gives a solution of the following

problem.

Problem CA. Let the continuous dynamical system C be obtained as a

result of composition of the interacting subsystems (2.2) according to the

adopted model of generalized connectedness. It is necessary to establish

sufficient conditions of various types of stability for the equilibrium state

x = 0 of the system (2.6) in terms of the dynamical characteristics of the

isolated subsystems (2.3) and qualitative estimates of the interconnection

functions between these subsystems.

But first, for the reader’s convenience, we recall some definitions.

Definition 2.4.1 The equilibrium x = 0 of system (2.2.6) possesses

certain dynamical property under parametric and/or nonclassical structural

perturbations if and only if this equilibrium state possesses the correspond-

ing dynamical property for any (P, S) ∈ P × S.

According to some results from Section 1.5 we will use the following

definitions.

Definition 2.4.2 The function

D+v(t, x, ψ)

= lim
δ→0+

sup{[v(t + δ, x + δ(g(t, x) + S(t)h(t, x, P )), ψ) − v(t, x, ψ)] δ−1
}

for all (t, x) ∈ R+ × Rn and (P, S) ∈ P × S is called total derivative of

the matrix-valued function (2.3.2) along solutions of the system (2.2.6).

We designate Nix0 = {xi : xi ∈ Nix ⊆ Rni , xi �= 0}, and formulate one

more assumption.

Assumption 2.4.1 There exist

(1) open connected neighbourhoods Nix ⊆ Rni of the states 0 ∈ Rni

for all i = 1, 2, . . . , m and a connected neighbourhood Nx ⊆ N1x×

N2x × . . . ×Nmx of the state x = 0;

(2) functions ϕi : Nix → R+, i = 1, 2, . . . , m, ϕi ∈ K (KR) and the

functions vij , i, j = 1, 2, . . . , m, mentioned in Assumption 2.3.1

and moreover
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2.4 Tests for Stability Analysis

2.4.1 The Problem CA This section gives a solution of the following

problem.

Problem CA. Let the continuous dynamical system C be obtained as a

result of composition of the interacting subsystems (2.2) according to the

adopted model of generalized connectedness. It is necessary to establish

sufficient conditions of various types of stability for the equilibrium state

x = 0 of the system (2.6) in terms of the dynamical characteristics of the

isolated subsystems (2.3) and qualitative estimates of the interconnection

functions between these subsystems.

But first, for the reader’s convenience, we recall some definitions.

Definition 2.4.1 The equilibrium x = 0 of system (2.2.6) possesses

certain dynamical property under parametric and/or nonclassical structural

perturbations if and only if this equilibrium state possesses the correspond-

ing dynamical property for any (P, S) ∈ P × S.

According to some results from Section 1.5 we will use the following

definitions.

Definition 2.4.2 The function

D+v(t, x, ψ)

= lim
δ→0+

sup{[v(t + δ, x + δ(g(t, x) + S(t)h(t, x, P )), ψ) − v(t, x, ψ)] δ−1
}

for all (t, x) ∈ R+ × Rn and (P, S) ∈ P × S is called total derivative of

the matrix-valued function (2.3.2) along solutions of the system (2.2.6).

We designate Nix0 = {xi : xi ∈ Nix ⊆ Rni , xi �= 0}, and formulate one

more assumption.

Assumption 2.4.1 There exist

(1) open connected neighbourhoods Nix ⊆ Rni of the states 0 ∈ Rni

for all i = 1, 2, . . . , m and a connected neighbourhood Nx ⊆ N1x×

N2x × . . . ×Nmx of the state x = 0;

(2) functions ϕi : Nix → R+, i = 1, 2, . . . , m, ϕi ∈ K (KR) and the

functions vij , i, j = 1, 2, . . . , m, mentioned in Assumption 2.3.1

and moreover34 2. CONTINUOUS LARGE-SCALE SYSTEMS

(a) vii ∈ C(R+ × Nix0, R+) (vii ∈ C(R+ × Rni, R+)) for all

i = 1, 2, . . . , m, and

(b) vij ∈ C(R+ ×Nix0 ×Njx0, R) (vij ∈ C(R+ ×Rni × Rnj, R))

for all i �= j, i, j = 1, 2, . . . , m;

(3) constants ρi
1i, ρ

j
2i, ρi

3j , ρi
4i(P, S), ρ

j
mi(P, S), ρi

qj(P, S), ρkij ,

ρlij(P, S), ρrij(P, S), k = 1, 2; l = 3, 4; r = 6, 7; m = 5, 7; q = 6, 8;

i, j = 1, 2, . . . , m, and conditions

(a) D+

t vii + (D+

xi
vii)

Tgi(t, xi) ≤ ρi
1iϕ

2

i (�xi�) for all

(t, xi) ∈ R+ ×Nix0 (for all (t, xi) ∈ R+ × Rni),

i = 1, 2, . . . , m;

(b) D+

t vij + (D+

xi
vij)

Tgi(t, xi) ≤ ρ
j
2iϕ

2

i (�xi�)

+ ρ1ijϕi(�xi�)ϕj(�xj�) for all (t, xi, xj) ∈ R+×Nix0×Njx0

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ) for all i �= j,

i, j = 1, 2, . . . , m;

(c) (D+

xj
vij)

Tgj(t, xj) ≤ ρi
3jϕ

2

j (�xj�) + ρ2ijϕi(�xi�)ϕj(�xj�)

for all (t, xi, xj) ∈ R+ ×Nix0 ×Njx0 (for all (t, xi, xj) ∈

R+ × Rni × Rnj ) for all i �= j, i, j = 1, 2, . . . , m;

(d) (D+

xi
vii)

TSi(t)hi(t, x, pi) ≤ ρi
4i(P, S)ϕ2

i (�xi�)

+
m∑

j=1

j �=i

ρ3ij(P, S)ϕi(�xi�)ϕj(�xj�), i = 1, 2, . . . , m,

for all (t, xi, xj) ∈ R+ ×Nix0 ×Njx0

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ),

for all (P, S) ∈ P × S;

(e) (D+

xi
vij)

TSi(t)hi(t, x, pi) ≤ ρ
j
5i(P, S)ϕ2

i (�xi�)

+

m∑

i=1
i�=j

ρ4ij(P, S)ϕi(�xi�)ϕj(�xj�)
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(a) vii ∈ C(R+ × Nix0, R+) (vii ∈ C(R+ × Rni, R+)) for all

i = 1, 2, . . . , m, and

(b) vij ∈ C(R+ ×Nix0 ×Njx0, R) (vij ∈ C(R+ ×Rni × Rnj, R))

for all i �= j, i, j = 1, 2, . . . , m;

(3) constants ρi
1i, ρ

j
2i, ρi

3j , ρi
4i(P, S), ρ

j
mi(P, S), ρi

qj(P, S), ρkij ,

ρlij(P, S), ρrij(P, S), k = 1, 2; l = 3, 4; r = 6, 7; m = 5, 7; q = 6, 8;

i, j = 1, 2, . . . , m, and conditions

(a) D+

t vii + (D+

xi
vii)

Tgi(t, xi) ≤ ρi
1iϕ

2

i (�xi�) for all

(t, xi) ∈ R+ ×Nix0 (for all (t, xi) ∈ R+ × Rni),

i = 1, 2, . . . , m;

(b) D+

t vij + (D+

xi
vij)

Tgi(t, xi) ≤ ρ
j
2iϕ

2

i (�xi�)

+ ρ1ijϕi(�xi�)ϕj(�xj�) for all (t, xi, xj) ∈ R+×Nix0×Njx0

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ) for all i �= j,

i, j = 1, 2, . . . , m;

(c) (D+

xj
vij)

Tgj(t, xj) ≤ ρi
3jϕ

2

j (�xj�) + ρ2ijϕi(�xi�)ϕj(�xj�)

for all (t, xi, xj) ∈ R+ ×Nix0 ×Njx0 (for all (t, xi, xj) ∈

R+ × Rni × Rnj ) for all i �= j, i, j = 1, 2, . . . , m;

(d) (D+

xi
vii)

TSi(t)hi(t, x, pi) ≤ ρi
4i(P, S)ϕ2

i (�xi�)

+
m∑

j=1

j �=i

ρ3ij(P, S)ϕi(�xi�)ϕj(�xj�), i = 1, 2, . . . , m,

for all (t, xi, xj) ∈ R+ ×Nix0 ×Njx0

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ),

for all (P, S) ∈ P × S;

(e) (D+

xi
vij)

TSi(t)hi(t, x, pi) ≤ ρ
j
5i(P, S)ϕ2

i (�xi�)

+

m∑

i=1
i�=j

ρ4ij(P, S)ϕi(�xi�)ϕj(�xj�)
2.4 TESTS FOR STABILITY ANALYSIS 35

+

m∑

j=1

j �=i

ρ5ij(P, S)ϕi(�xi�)ϕj(�xj�) + ρ
j
7i(P, S)ϕ2

j (�xj�),

for all (t, xi, xj) ∈ R+ ×Nixo ×Njx0

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ), for all (P, S) ∈ P × S,

for all i �= j, i, j = 1, 2, . . . , m;

(f) (D+

xj
vij)

TSj(t)hj(t, x, pj) ≤ ρi
6j(P, S)ϕ2

i (�xi�)

+

s∑

i=1

ρ6ij(P, S)ϕi(�xi�)ϕj(�xj�)

+

m∑

j=1

j �=i

ρ7ij(P, S)ϕi(�xi�)ϕj(�xj�) + ρi
8j(P, S)ϕ2

j (�xj�),

for all (t, xi, xj) ∈ R+ ×Nixo ×Njx0

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ), for all (P, S) ∈ P × S,

for all i �= j, i, j = 1, 2, . . . , m,

hold true.

Proposition 2.4.1 If all conditions of Assumption 2.4.1 are satisfied

then

(2.4.1) D+v(t, x, ψ) ≤ wTQ(P, S)w

for all (t, xi, xj) ∈ R+ ×Nix0×Njx0 (for all (t, xi, xj) ∈ R+ ×Rni ×Rnj )

and for all (P, S) ∈ P × S, where

wT = (ϕ1(�x1�), ϕ2(�x2�), . . . , ϕm(�xm�)),

Q(P, S) = [qij(P, S)], qij = qji, i, j = 1, 2, . . . , m

and

qii(P, S) = ψ2

i (ρi
1i + ρi

4i(P, S)) + 2

m∑

j=1

j �=i

ψiψj{ρ
j
2i + ρi

3j

+ ρ
j
5i(P, S) + ρ

j
7i(P, S) + ρi

6j(P, S) + ρi
8j(P, S)}, i = 1, 2, . . . , m;
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+

m∑

j=1

j �=i

ρ5ij(P, S)ϕi(�xi�)ϕj(�xj�) + ρ
j
7i(P, S)ϕ2

j (�xj�),

for all (t, xi, xj) ∈ R+ ×Nixo ×Njx0

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ), for all (P, S) ∈ P × S,

for all i �= j, i, j = 1, 2, . . . , m;

(f) (D+

xj
vij)

TSj(t)hj(t, x, pj) ≤ ρi
6j(P, S)ϕ2

i (�xi�)

+

s∑

i=1

ρ6ij(P, S)ϕi(�xi�)ϕj(�xj�)

+

m∑

j=1

j �=i

ρ7ij(P, S)ϕi(�xi�)ϕj(�xj�) + ρi
8j(P, S)ϕ2

j (�xj�),

for all (t, xi, xj) ∈ R+ ×Nixo ×Njx0

(for all (t, xi, xj) ∈ R+ × Rni × Rnj ), for all (P, S) ∈ P × S,

for all i �= j, i, j = 1, 2, . . . , m,

hold true.

Proposition 2.4.1 If all conditions of Assumption 2.4.1 are satisfied

then

(2.4.1) D+v(t, x, ψ) ≤ wTQ(P, S)w

for all (t, xi, xj) ∈ R+ ×Nix0×Njx0 (for all (t, xi, xj) ∈ R+ ×Rni ×Rnj )

and for all (P, S) ∈ P × S, where

wT = (ϕ1(�x1�), ϕ2(�x2�), . . . , ϕm(�xm�)),

Q(P, S) = [qij(P, S)], qij = qji, i, j = 1, 2, . . . , m

and

qii(P, S) = ψ2

i (ρi
1i + ρi

4i(P, S)) + 2

m∑

j=1

j �=i

ψiψj{ρ
j
2i + ρi

3j

+ ρ
j
5i(P, S) + ρ

j
7i(P, S) + ρi

6j(P, S) + ρi
8j(P, S)}, i = 1, 2, . . . , m;36 2. CONTINUOUS LARGE-SCALE SYSTEMS

qij(P, S) =
1

2
ψ2

i (ρ3ij(P, S) + ρ3ji(P, S))

+ ψiψj

{

ρ1ij + ρ2ij +
m∑

l=1
l�=j

m∑

q=1

q �=l

(ρ4lq(P, S) + ρ6lq(P, S))

+

m∑

q=1

q �=i

m∑

l=1
l�=q

(ρ5lq(P, S) + ρ7lq(P, S))

}

, i �= j, i, j = 1, 2, . . . , m.

Proof Let all conditions of Assumption 2.4.1 be satisfied. Then for the

expression D+v(t, x, ψ) we have

(2.4.2)

D+v(t, x, ψ) = ψTD+U(t, x)ψ =
m∑

i=1

ψ2

i D+vii(t, xi)

+ 2

m∑

i=1

m∑

j=2

j>i

ψiψjD
+vij(t, xi, xj).

Furthermore, by conditions (3)(a) – (f), we have

D+v(t, x, ψ) ≤

m∑

i=1

{

ψ2

i (ρi
1i + ρi

4i(P, S)) + 2

m∑

j=1

j �=i

ψiψj(ρ
j
2i + ρi

3j

+ ρ
j
5i(P, S) + ρ

j
7i(P, S) + ρi

6j(P, S) + ρi
8j(P, S))

}

ϕ2

i (�xi�)

+ 2

m∑

i=1

m∑

j=1

j>i

{
1

2
ψ2

i (ρ3ij(P, S) + ρ3ji(P, S))

+ ψiψj

(

ρ1ij + ρ2ij +
m∑

l=1
l�=j

(ρ4lj(P, S) + ρ6lj(P, S))

+

m∑

q=1

q �=i

(ρ5iq(P, S) + ρ7iq(P, S))

)}

ϕi(�xi�)ϕj(�xj�)

=
m∑

i=1

ξii(P, S)ϕ2

i (�xi�) + 2
m∑

i=1

m∑

j=2

j>i

ξij(P, S)ϕi(�xi�)ϕj(�xj�)
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= wTQ(P, S)w

for all (t, xi, xj) ∈ R+ ×Nix0 ×Njx0 (for all (t, xi, xj) ∈ R+ ×Rni ×Rnj )

and for all (P, S) ∈ P × S.

This completes the proof of Proposition 2.4.1.

By means of Ũ(t, x) = diag U(t, x) = [v11(t, x1), . . . , vmm(t, xm)], a ma-

trix K and a vector ψ ∈ Rm we construct the vector function

(2.4.3) L(t, x, ψ) = KŨ(t, x)ψ

with components L1(t, x, ψ), L2(t, x, ψ), . . . , Lm(t, x, ψ).

Following Grujić et al. [1] we will use the next definitions.

Definition 2.4.3 We say that the set Lζ(t) is a maximal connected

neighborhood of the origin for each ζ ∈ (0, +∞) and t ∈ R if x ∈ Lζ(t)

implies Lζ(t, x, ψ) < ζ.

Let O be a set {x : x = 0}.

Definition 2.4.4 We say that time-varying set Π(t) is asymptotically

contractive (or asymptotically contracts to O) iff:

(1) there exists a τ ∈ R such that Π(t) is a neighbourhood of the origin

for any t ≤ τ and

(2) lim [Π(t) : t → +∞] = O.

We note that the notions of asymptotically contractive sets with respect

to functions were discovered by Grujić [1].

The following theorem provides our main characterization of stability

under nonclassical structural perturbations.

Theorem 2.4.1 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.4.1 are satisfied

except for upper estimates of the functions vii(t, xi) and vij(t, xi, xj) for all

i, j = 1, 2, . . . , m and moreover

(1) there exist positive numbers ξi (or ξi = +∞) such that the sets

Liζi
(t) are asymptotically contractive for any ζi ∈ (0, ξi) and

any i = 1, 2, . . . , m;

(2) the matrix A is positive definite;

(3) there exists a negative definite matrix Q ∈ Rm×m such that

1

2
(Q(P, S) + QT(P, S)) ≤ Q for all (P, S) ∈ P × S.
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Let O be a set {x : x = 0}.

Definition 2.4.4 We say that time-varying set Π(t) is asymptotically

contractive (or asymptotically contracts to O) iff:

(1) there exists a τ ∈ R such that Π(t) is a neighbourhood of the origin

for any t ≤ τ and

(2) lim [Π(t) : t → +∞] = O.

We note that the notions of asymptotically contractive sets with respect

to functions were discovered by Grujić [1].

The following theorem provides our main characterization of stability

under nonclassical structural perturbations.

Theorem 2.4.1 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.4.1 are satisfied

except for upper estimates of the functions vii(t, xi) and vij(t, xi, xj) for all

i, j = 1, 2, . . . , m and moreover

(1) there exist positive numbers ξi (or ξi = +∞) such that the sets

Liζi
(t) are asymptotically contractive for any ζi ∈ (0, ξi) and

any i = 1, 2, . . . , m;

(2) the matrix A is positive definite;

(3) there exists a negative definite matrix Q ∈ Rm×m such that
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2
(Q(P, S) + QT(P, S)) ≤ Q for all (P, S) ∈ P × S.
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for all (t, xi, xj) ∈ R+ ×Nix0 ×Njx0 (for all (t, xi, xj) ∈ R+ ×Rni ×Rnj )

and for all (P, S) ∈ P × S.

This completes the proof of Proposition 2.4.1.

By means of Ũ(t, x) = diag U(t, x) = [v11(t, x1), . . . , vmm(t, xm)], a ma-

trix K and a vector ψ ∈ Rm we construct the vector function

(2.4.3) L(t, x, ψ) = KŨ(t, x)ψ

with components L1(t, x, ψ), L2(t, x, ψ), . . . , Lm(t, x, ψ).

Following Grujić et al. [1] we will use the next definitions.

Definition 2.4.3 We say that the set Lζ(t) is a maximal connected

neighborhood of the origin for each ζ ∈ (0, +∞) and t ∈ R if x ∈ Lζ(t)

implies Lζ(t, x, ψ) < ζ.

Let O be a set {x : x = 0}.

Definition 2.4.4 We say that time-varying set Π(t) is asymptotically

contractive (or asymptotically contracts to O) iff:

(1) there exists a τ ∈ R such that Π(t) is a neighbourhood of the origin

for any t ≤ τ and

(2) lim [Π(t) : t → +∞] = O.

We note that the notions of asymptotically contractive sets with respect

to functions were discovered by Grujić [1].

The following theorem provides our main characterization of stability

under nonclassical structural perturbations.

Theorem 2.4.1 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.4.1 are satisfied

except for upper estimates of the functions vii(t, xi) and vij(t, xi, xj) for all

i, j = 1, 2, . . . , m and moreover

(1) there exist positive numbers ξi (or ξi = +∞) such that the sets

Liζi
(t) are asymptotically contractive for any ζi ∈ (0, ξi) and

any i = 1, 2, . . . , m;

(2) the matrix A is positive definite;

(3) there exists a negative definite matrix Q ∈ Rm×m such that

1

2
(Q(P, S) + QT(P, S)) ≤ Q for all (P, S) ∈ P × S.38 2. CONTINUOUS LARGE-SCALE SYSTEMS

Then the equilibrium state x = 0 of the system (2.2.10) is asymptotically

stable on P × S

If all hypotheses of the theorem hold for Nix = Rni , for radially un-

bounded functions vii(t, xi) and vij(t, xi, xj) and for ξi = +∞ for any

i = 1, 2, . . . , m, then the equilibrium state x = 0 of the system (2.2.10) is

asymptotically stable in the whole on P × S.

Proof If Assumption 2.3.1, Proposition 2.3.1 and hypothesis (b) of the

theorem are satisfied, the function (2.3.2) is positive definite on N1x×N2x×

. . . ×Nmx. Hypothesis (a) of the theorem ensures asymptotic contraction

of the set L1ζ1
(t) × L2ζ2

(t) × . . . × Lmζm
(t) for every ζi ∈ (0, ξi) for all

i = 1, 2, . . . , m. Let Lζ(t) be the largest connected neighbourhood of x = 0,

so that Lζ(t, x, ψ) < ζ for all x ∈ Lζ(t) and for all t ∈ R+. Therefore,

the set Lζ(t) is asymptotically contractive for every ζ ∈ (0, ξ), where ξ =

min{ψ2

i ξi : i = 1, 2, . . . , m}.

Further by Assumption 2.4.1 there exists a connected neighbourhood Nx

of the state x = 0: Nx ⊆ N1x ×N2x × . . .×Nmx such that the conditions

of Proposition 2.4.1 hold. By hypothesis (c) of the theorem the expression

D+v(t, x, ψ) is negative definite for any (P, S) ∈ P × S. As is known (see

Theorem 1.2.3) these conditions are sufficient for asymptotic stability of

equilibrium state of the system (2.2.1) on P × S.

In case Nix = Rni the function (2.3.2) is positive definite and radially

unbounded. This fact together with other hypotheses of Theorem 2.4.1

proves its second assertion. This completes the proof of Theorem 2.4.1.

Theorem 2.4.2 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.4.1 are satisfied

with ∆(t) = 1 for all t ∈ R+ and

(1) the matrices A and B are positive definite;

(2) there exists a negative definite matrix Q ∈ Rm×m such that

1

2
(Q(P, S) + QT(P, S)) ≤ Q for all (P, S) ∈ P × S.

Then the equilibrium state x = 0 of the system (2.2.10) is uniformly asymp-

totically stable on P × S.

If moreover for Nix = Rni the functions vii(t, xi) and vij(t, xi, xj) are

radially unbounded and the functions ϕi ∈ KR, then the equilibrium state

2.4 TESTS FOR STABILITY ANALYSIS 39

x = 0 of the system (2.2.10) is uniformly asymptotically stable in the whole

on P × S.

The Proof of Theorem 2.4.2 is similar to the proof of Theorem 2.4.1.

Theorem 2.4.3 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.4.1 are satisfied

with ∆(t) = 1 for all t ∈ R+ and

(1) for given functions ϕi(�xi�) there exist positive numbers βi and γi

such that

βi�xi� ≤ ϕi(�xi�) ≤ γi�xi�

for all xi ∈ Nix (for all xi ∈ Rni) and all i = 1, 2, . . . , m;

(2) the matrices

A∗ =
[
α∗

ij

]
, α∗

ij = α∗

ji;

B∗ =
[
α∗

ij

]
, α∗

ij = α∗

ji, i, j = 1, 2, . . . , m,

with elements

α∗

ii = αiiβ
2

i , α∗

ii = αiiγ
2

i ,

α∗

ij =

{
αijβiβj if αij ≥ 0 for all i �= j;

αijγiγj if αij < 0 for all i �= j;

α∗

ij =

{
αijγiγj if αij ≥ 0 for all i �= j;

αijβiβj if αij < 0 for all i �= j,

are positive definite;

(3) there exists a negative definite matrix Q
∗

∈ Rm×m such that

1

2
(Q∗(P, S) + Q∗T(P, S)) ≤ Q

∗

for all (P, S) ∈ P × S.

Here Q∗(P, S) = [σ∗

ij(P, S)], σ∗

ij = σ∗

ji for all i �= j, i, j = 1, 2, . . . , m,

σ∗

ii(P, S) = ψ2

i

(
ρi
1iki1 + ρi

4iki2

)

+ 2

s∑

j=1

j �=i

ψiψj

{
ρ

j
2iki3 + ρi

3jkj4 + ρ
j
5i(P, S)ki5
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x = 0 of the system (2.2.10) is uniformly asymptotically stable in the whole

on P × S.

The Proof of Theorem 2.4.2 is similar to the proof of Theorem 2.4.1.

Theorem 2.4.3 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.4.1 are satisfied

with ∆(t) = 1 for all t ∈ R+ and

(1) for given functions ϕi(�xi�) there exist positive numbers βi and γi

such that

βi�xi� ≤ ϕi(�xi�) ≤ γi�xi�

for all xi ∈ Nix (for all xi ∈ Rni) and all i = 1, 2, . . . , m;

(2) the matrices

A∗ =
[
α∗

ij

]
, α∗

ij = α∗

ji;

B∗ =
[
α∗

ij

]
, α∗

ij = α∗

ji, i, j = 1, 2, . . . , m,

with elements

α∗

ii = αiiβ
2

i , α∗

ii = αiiγ
2

i ,

α∗

ij =

{
αijβiβj if αij ≥ 0 for all i �= j;

αijγiγj if αij < 0 for all i �= j;

α∗

ij =

{
αijγiγj if αij ≥ 0 for all i �= j;

αijβiβj if αij < 0 for all i �= j,

are positive definite;

(3) there exists a negative definite matrix Q
∗

∈ Rm×m such that

1

2
(Q∗(P, S) + Q∗T(P, S)) ≤ Q

∗

for all (P, S) ∈ P × S.

Here Q∗(P, S) = [σ∗

ij(P, S)], σ∗

ij = σ∗

ji for all i �= j, i, j = 1, 2, . . . , m,

σ∗

ii(P, S) = ψ2

i

(
ρi
1iki1 + ρi

4iki2

)

+ 2

s∑

j=1

j �=i

ψiψj

{
ρ

j
2iki3 + ρi

3jkj4 + ρ
j
5i(P, S)ki5
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+ ρ
j
7i(P, S)kj6 + ρi

6j(P, S)ki7 + ρi
8j(P, S)kj8

�
;

σ∗

ij(P, S) = ψiψj

�
ρ1ijk

1

ij + ρ2ijk
2

ij

�
+

1

2
ψ2

i ρ3ij(P, S)k3

ij

+

s�

l=1
l�=j

ψlψj

�
ρ4lj(P, S)k4

lj + ρ6lj(P, S)k5

lj

�

+

s�

m=1
m �=i

ψiψm

�
ρ5im(P, S)k6

im + ρ7im(P, S)k7

im

�
,

for all i, j = 1, 2, . . . , m and r = 1, 2, . . . , 8

kir =







γ2
i (or γ2

j ) if the corresponding multiplier

ϕ2

i (�xi�) (or ϕ2

j (�xj�)) is positive,

β2

i (or β2

j ) if the corresponding multiplier

ϕ2

i (�xi�) (or ϕ2

j (�xj�)) is negative;

for all i, j = 1, 2, . . . , m and q = 1, 2, . . . , 7

k
q
ij =







γiγj if the corresponding multiplier

ϕ2

i (�xi�)ϕ
2

j (�xj�) is positive,

βiβj if the corresponding multiplier

ϕ2
i (�xi�)ϕ

2
j (�xj�) is negative.

Then the equilibrium state x = 0 of (2.2.10) is exponentially stable

on P × S.

If all hypotheses of the theorem are satisfied for Nix = Rni then the

equilibrium state x = 0 of (2.2.10) is exponentially stable in the whole

on P × S.

Proof Provided that Assumption 2.3.1 and Proposition 2.3.3, and hy-

potheses (a), (b) of Theorem 2.4.3 are satisfied, we have for function (2.3.2)

λm(HTA∗H)�x�2
≤ v(t, x, ψ) ≤ λM (HTB∗H)�x�2

for all x ∈ Nx ⊆ Rn, where λm(·) is a minimal eigenvalue of the matrix

HTA∗H , and λM (·) is a maximal eigenvalue of the matrix HTB∗H , x =

(xT
1
, xT

2
, . . . , xT

m)T, and H = diag [ψ1, ψ2, . . . , ψm].
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j ) if the corresponding multiplier

ϕ2
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q
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γiγj if the corresponding multiplier
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i (�xi�)ϕ
2

j (�xj�) is positive,

βiβj if the corresponding multiplier

ϕ2
i (�xi�)ϕ

2
j (�xj�) is negative.

Then the equilibrium state x = 0 of (2.2.10) is exponentially stable

on P × S.

If all hypotheses of the theorem are satisfied for Nix = Rni then the

equilibrium state x = 0 of (2.2.10) is exponentially stable in the whole

on P × S.

Proof Provided that Assumption 2.3.1 and Proposition 2.3.3, and hy-

potheses (a), (b) of Theorem 2.4.3 are satisfied, we have for function (2.3.2)

λm(HTA∗H)�x�2
≤ v(t, x, ψ) ≤ λM (HTB∗H)�x�2

for all x ∈ Nx ⊆ Rn, where λm(·) is a minimal eigenvalue of the matrix

HTA∗H , and λM (·) is a maximal eigenvalue of the matrix HTB∗H , x =

(xT
1
, xT

2
, . . . , xT

m)T, and H = diag [ψ1, ψ2, . . . , ψm].
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If all conditions of Assumption 2.4.1 and hypothesis (c) of Theorem 2.4.3

are satisfied, then for D+v(t, x, ψ) the estimate

D+v(t, x, ψ) ≤ λM (Q
∗

1)�x�
2 for all (t, x, P, S) ∈ R ×Nx × P × S

is valid, where λM (Q
∗

1) < 0, and Q
∗

1 = 1

2

(
Q

∗

+ Q
∗T)

. Therefore the

equilibrium state x = 0 of (2.2.10) is exponentially stable on P × S.

If Nix = Rni for all i = 1, 2, . . . , m, then Nx = Rn and all hypotheses

of Theorem 2.5.6 by Martynyuk [13] are satisfied for all (P, S) ∈ P × S.

Hence, the equilibrium state x = 0 of (2.2.10) is exponentially stable in

the whole on P × S. This completes the proof of Theorem 2.4.3.

Remark 2.4.1. If ϕi(�xi�) = α�xi�, α ∈ R+, then Theorem 2.4.3 re-

mains valid for A∗ = αA, B∗ = αB and Q
∗

1
= 1

2
α
(
Q

∗

+ Q
∗T)

.

Assumption 2.4.2 Let in the inequalities (3) (a) – (f) of Assump-

tion 2.4.1 sign “≤” be reversed, i.e. “≥”.

Proposition 2.4.2 If all hypotheses of Assumption 2.4.2 hold, then

D+v(t, x, ψ) ≥ wTQ(P, S)w

for all (t, x) ∈ R+ ×Nx0 and for all (P, S) ∈ P × S.

Here the vector w and matrix Q(P, S) are defined in the same way as in

Proposition 2.4.1.

The Proof is similar to that of Proposition 2.1.2.

Theorem 2.4.4 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.4.2 are satisfied

with function ∆(t) = 1 for all t ∈ R+ and

(1) matrices A and B are positive definite,

(2) there exists a positive definite matrix D ∈ Rm×m such that for

matrix Q(P, S) the estimate

1

2
(Q(P, S) + QT(P, S)) ≥ D

holds at least for one pair (P, S) ∈ P × S.
42 2. CONTINUOUS LARGE-SCALE SYSTEMS

Then the equilibrium state x = 0 of (2.2.10) is unstable on P × S.

Proof We construct a scalar function (2.3.2) based on a matrix-valued

function U(t, x). Due to Assumption 2.3.1, Proposition 2.3.3 and conditions

(a) of Theorem 2.4.4 the function v(t, x, ψ) is positive definite and admits

infinitely small upper bound on Nx. By Assumption 2.4.2, Proposition 2.4.2

and conditions (b) of Theorem 2.4.4 the function D+v(t, x, ψ) is positive

definite at least for one pair (P, S) ∈ P × S.

These conditions are sufficient (see Theorem 2.5.7 by Martynyuk [13])

for instability of the equilibrium state x = 0 of (2.2.10).

Example 2.4.1 Let a fourth order system be given, which consists of two

subsystems of second order

(2.4.4)

dx1

dt
=

1

1 + t2

{

− (1 + t)x1 + s11(t)

(
−sat 0.1x11

0

)

+ s12(t)

(
0.5x22

0

)

+ s13(t)

(
0

0.1x21

)}

;

dx2

dt
=

1

1 + t2

{

− (2 + t)x2 + s21(t)

(
0.4x11

0

)

+ s22(t)

(
0

0.4x12

)

+ s23(t)

(
0

sat 0.2x22

)}

,

where x1 = (x11, x12)
T, x2 = (x21, x22)

T, sat ξ = ξ for |ξ| ≤ 1 and sat ξ =

sign ξ for |ξ| > 1.

In this example P = {0} and the structural matrices Si(t) have the

form

Si(t) =

(
si1(t) 0 si2(t) 0 si3(t) 0

0 si1(t) 0 si2(t) 0 si3(t)

)

,

S(t) =

(
S1(t) 0

0 S2(t)

)

, i = 1, 2.

The structural set of the system (2.4.4) is defined as

S =

{

S(t) : S(t) =

(
S1(t) 0

0 S2(t)

)

, Si(t) = (si1(t)I2, si2(t)I2, si3(t)I2),

sij(t) ∈ {0, 1} for all t ∈ R, for all i = 1, 2, j = 1, 2, 3

}

.
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Then the equilibrium state x = 0 of (2.2.10) is unstable on P × S.

Proof We construct a scalar function (2.3.2) based on a matrix-valued

function U(t, x). Due to Assumption 2.3.1, Proposition 2.3.3 and conditions

(a) of Theorem 2.4.4 the function v(t, x, ψ) is positive definite and admits

infinitely small upper bound on Nx. By Assumption 2.4.2, Proposition 2.4.2

and conditions (b) of Theorem 2.4.4 the function D+v(t, x, ψ) is positive

definite at least for one pair (P, S) ∈ P × S.

These conditions are sufficient (see Theorem 2.5.7 by Martynyuk [13])

for instability of the equilibrium state x = 0 of (2.2.10).

Example 2.4.1 Let a fourth order system be given, which consists of two

subsystems of second order

(2.4.4)

dx1

dt
=

1

1 + t2

{

− (1 + t)x1 + s11(t)

(
−sat 0.1x11

0

)

+ s12(t)

(
0.5x22

0

)

+ s13(t)

(
0

0.1x21

)}

;

dx2

dt
=

1

1 + t2

{

− (2 + t)x2 + s21(t)

(
0.4x11

0

)

+ s22(t)

(
0

0.4x12

)

+ s23(t)

(
0

sat 0.2x22

)}

,

where x1 = (x11, x12)
T, x2 = (x21, x22)

T, sat ξ = ξ for |ξ| ≤ 1 and sat ξ =

sign ξ for |ξ| > 1.

In this example P = {0} and the structural matrices Si(t) have the

form

Si(t) =

(
si1(t) 0 si2(t) 0 si3(t) 0

0 si1(t) 0 si2(t) 0 si3(t)

)

,

S(t) =

(
S1(t) 0

0 S2(t)

)

, i = 1, 2.

The structural set of the system (2.4.4) is defined as

S =

{

S(t) : S(t) =

(
S1(t) 0

0 S2(t)

)

, Si(t) = (si1(t)I2, si2(t)I2, si3(t)I2),

sij(t) ∈ {0, 1} for all t ∈ R, for all i = 1, 2, j = 1, 2, 3

}

.2.4 TESTS FOR STABILITY ANALYSIS 43

Note that structural changes of the given system within structural set S

are inadmissible in the frames of connected stability (see Šiljak [1]) and

equality sij = smn(t) is admissible for all i, m = 1, 2 and j, n = 1, 2, 3.

All possible interactions are described by means of the matrices

S1(t)h1(t, x) and S2(t)h2(t, x),

where

h1(t, x) = (−sat 0.1x11, 0, 0.5x22, 0, 0, 0.1x21)
T,

h2(t, x) = (0.4x11, 0, 0, 0.4x12, 0, sat 0.2x22)
T

and “sat” is the saturation nonlinearity.

We connect with the independent subsystems

(2.4.5)
dx1

dt
= −

1 + t

1 + t2
x1,

dx2

dt
= −

2 + t

1 + t2
x2

the functions

(2.4.6) vii(t, xi) = (1 + t2)x2

i , i = 1, 2.

The sets Liξ(t) are defined as follows

Liξ(t) =

{

xi : x2

i1 + x2

i2 <
ξ

1 + t2

}

, for i = 1, 2.

It is clear that they are asymptotically contractive for any ζ ∈ (0, +∞).

Further we define the functions vij(t, xi, xj) as follows

(2.4.7) v21(t, x1, x2) = v12(t, x1, x2) = 0.1(1 + t2)x1x2.

For the functions (2.4.6) and (2.4.7) the estimates

vii(t, xi) ≥ (1 + t2)�xi�
2, i = 1, 2;

vij(t, x1, x2) ≥ −0.1(1 + t2)�x1� �x2�

are satisfied and matrix Ã corresponding to matrix A of Proposition 2.3.1

Ã =

(
1 −0.1

−0.1 1

)
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Note that structural changes of the given system within structural set S

are inadmissible in the frames of connected stability (see Šiljak [1]) and

equality sij = smn(t) is admissible for all i, m = 1, 2 and j, n = 1, 2, 3.

All possible interactions are described by means of the matrices

S1(t)h1(t, x) and S2(t)h2(t, x),

where

h1(t, x) = (−sat 0.1x11, 0, 0.5x22, 0, 0, 0.1x21)
T,

h2(t, x) = (0.4x11, 0, 0, 0.4x12, 0, sat 0.2x22)
T

and “sat” is the saturation nonlinearity.

We connect with the independent subsystems

(2.4.5)
dx1

dt
= −

1 + t

1 + t2
x1,

dx2

dt
= −

2 + t

1 + t2
x2

the functions

(2.4.6) vii(t, xi) = (1 + t2)x2

i , i = 1, 2.

The sets Liξ(t) are defined as follows

Liξ(t) =

{

xi : x2

i1 + x2

i2 <
ξ

1 + t2

}

, for i = 1, 2.

It is clear that they are asymptotically contractive for any ζ ∈ (0, +∞).

Further we define the functions vij(t, xi, xj) as follows

(2.4.7) v21(t, x1, x2) = v12(t, x1, x2) = 0.1(1 + t2)x1x2.

For the functions (2.4.6) and (2.4.7) the estimates

vii(t, xi) ≥ (1 + t2)�xi�
2, i = 1, 2;

vij(t, x1, x2) ≥ −0.1(1 + t2)�x1� �x2�

are satisfied and matrix Ã corresponding to matrix A of Proposition 2.3.1

Ã =

(
1 −0.1

−0.1 1

)
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is positive definite and the function ∆(t) = 1 + t2 ≥ 1 > 0 for all t ∈ R+.

Let ψ = (1, 1)T, then for given choice of the elements vij , i, j = 1, 2,

of the matrix-valued function U(t, x), the elements of the matrix Q̃(S)

corresponding to the matrix Q(P, S) in Proposition 2.4.1 take the values

σ̃11(S) = − 2 + 0.1s11 + 0.025s12 + 0.005s13,

σ̃22(S) = − 4 + 0.25s23 + 0.04s22,

σ̃12(S) = σ̃21(S) = 0.25s12 + 0.2
√

s2
21

+ s2
22

+ 0.3 + 0.01s11 + 0.04s21,

and the matrix Q̃ corresponding to matrix Q in Theorem 2.4.1

Q̃ =

(
−1.87 0.6 + 0.2

√
2

0.6 + 0.2
√

2 −3.76

)

is negative definite.

Since all hypotheses of Theorem 2.4.1 are satisfied, the state x = 0

(x ∈ R4) of (2.4.4) is asymptotically stable in the whole on S.

Remark 2.4.2 Example 2.4.1 was studied by Grujić, et al. [1] by means

of Liapunov vector function with the components

vi(t, xi) = (1 + t2)(|xi1| + |xi2|), i = 1, 2.

By means of this function the aggregation matrix for Example 2.4.1 was

obtained as follows

A(S) =

(
−1 + 0.1s11 0.5s12 + 0.1s13

0.4(s21 + s22) −2 + 0.2s23

)

for which

A(S) ≤

(
−0.9 0.6

0.8 −1.8

)

= A, for all S ∈ S.

Having compared the matrix Q̃ obtained in terms of the matrix-valued

function with elements (2.4.6), (2.4.7) with the matrix A obtained in terms

of the vector-function one can easily see that the estimates of total deri-

vative of the auxiliary function along solutions of system (2.4.4) based on

the matrix Q extend the possibilities of the Liapunov direct method in the

investigation of this system.

2.4.2 The Problem CB In this section we propose a solution of Prob-

lem CB which is formulated as follows.
Download free eBooks at bookboon.com
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is positive definite and the function ∆(t) = 1 + t2 ≥ 1 > 0 for all t ∈ R+.

Let ψ = (1, 1)T, then for given choice of the elements vij , i, j = 1, 2,

of the matrix-valued function U(t, x), the elements of the matrix Q̃(S)

corresponding to the matrix Q(P, S) in Proposition 2.4.1 take the values

σ̃11(S) = − 2 + 0.1s11 + 0.025s12 + 0.005s13,

σ̃22(S) = − 4 + 0.25s23 + 0.04s22,

σ̃12(S) = σ̃21(S) = 0.25s12 + 0.2
√

s2
21

+ s2
22

+ 0.3 + 0.01s11 + 0.04s21,

and the matrix Q̃ corresponding to matrix Q in Theorem 2.4.1

Q̃ =

(
−1.87 0.6 + 0.2

√
2

0.6 + 0.2
√

2 −3.76

)

is negative definite.

Since all hypotheses of Theorem 2.4.1 are satisfied, the state x = 0

(x ∈ R4) of (2.4.4) is asymptotically stable in the whole on S.

Remark 2.4.2 Example 2.4.1 was studied by Grujić, et al. [1] by means

of Liapunov vector function with the components

vi(t, xi) = (1 + t2)(|xi1| + |xi2|), i = 1, 2.

By means of this function the aggregation matrix for Example 2.4.1 was

obtained as follows

A(S) =

(
−1 + 0.1s11 0.5s12 + 0.1s13

0.4(s21 + s22) −2 + 0.2s23

)

for which

A(S) ≤

(
−0.9 0.6

0.8 −1.8

)

= A, for all S ∈ S.

Having compared the matrix Q̃ obtained in terms of the matrix-valued

function with elements (2.4.6), (2.4.7) with the matrix A obtained in terms

of the vector-function one can easily see that the estimates of total deri-

vative of the auxiliary function along solutions of system (2.4.4) based on

the matrix Q extend the possibilities of the Liapunov direct method in the

investigation of this system.

2.4.2 The Problem CB In this section we propose a solution of Prob-

lem CB which is formulated as follows.2.4 TESTS FOR STABILITY ANALYSIS 45

Problem CB. Let the continuous dynamical system (C) be obtained

as a result of composition of the interacting subsystems (2.2) according to

the adopted generalized model of connectedness. It is necessary to establish

sufficient conditions of various types of stability for the equilibrium state

x = 0 of system (2.6) in terms of the dynamical characteristics of the

interacting subsystems (2.2) when there is no information on the dynamical

properties of the isolated subsystems (2.3).

Let with interconnected subsystems (2.2.5) the elements of matrix-valued

function U(t, x) be connected for which Assumption 2.2.1 holds. Now we

shall formulate some more assumptions.

Assumption 2.4.3 There exist

(1) open connected neighbourhoods Nix ⊆ Rni of the states (xi = 0) ∈

Rni, for all i = 1, 2, . . . , m;

(2) the functions ϕi : Nix → R+, i = 1, 2, . . . , m (ϕi ∈ K(KR)) and

the functions vij(t, ·) mentioned in Assumption 2.3.1 and besides

(a) the functions vii ∈ C(R+ × Nix0, R+) or vii ∈ C(R+ × Rni,

R+) for all i = 1, 2, . . . , m;

(b) the functions vij ∈ C(R+ ×Nix0 ×Njx0, R) or vij ∈ C(R+ ×

Rni × Rnj, R) for all i �= j, i, j = 1, 2, . . . , m;

(3) positive definite function β(t, x), β : R+ ×Rn → R+ and constants

ρ2ij , ρki(P, S), ρ3j(P, S), ρrij(P, S), k = 1, 2, r = 1, 3, 4, i, j =

1, 2, . . . , m, i �= j, for which the following conditions hold

(a) D+

t vii + (D+
xi

vii)
Tgi(t, xi) + (D+

xi
vii)

TSihi(t, x, pi)

≤

{

ρ1i(P, S)ϕ2

i (�xi�) +

s∑

j=1

j �=i

ρ1ij(P, S)ϕi(�xi�)ϕj(�xj�)

}

β(t, x)

for all (t, xi, xj) ∈ R+ ×Nix0 ×Njx0 (for all (t, xi, xj) ∈ R+×

Rni × Rnj ) and for all (P, S) ∈ P × S, i = 1, 2, . . . , m;

(b) D+

t vij + (D+
xi

vij)
Tgi(t, xi) + (D+

xi
vij)

TSihi(t, x, pi)

+ (D+
xj

vij)
Tgj(t, xj) + (D+

xj
vij)

TSihi(t, x, pi)

≤

{

ρ2i(P, S)ϕ2

i (�xi�) + ρ3j(P, S)ϕ2

j (�xj�)
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Problem CB. Let the continuous dynamical system (C) be obtained

as a result of composition of the interacting subsystems (2.2) according to

the adopted generalized model of connectedness. It is necessary to establish

sufficient conditions of various types of stability for the equilibrium state

x = 0 of system (2.6) in terms of the dynamical characteristics of the

interacting subsystems (2.2) when there is no information on the dynamical

properties of the isolated subsystems (2.3).

Let with interconnected subsystems (2.2.5) the elements of matrix-valued

function U(t, x) be connected for which Assumption 2.2.1 holds. Now we

shall formulate some more assumptions.

Assumption 2.4.3 There exist

(1) open connected neighbourhoods Nix ⊆ Rni of the states (xi = 0) ∈

Rni, for all i = 1, 2, . . . , m;

(2) the functions ϕi : Nix → R+, i = 1, 2, . . . , m (ϕi ∈ K(KR)) and

the functions vij(t, ·) mentioned in Assumption 2.3.1 and besides

(a) the functions vii ∈ C(R+ × Nix0, R+) or vii ∈ C(R+ × Rni,

R+) for all i = 1, 2, . . . , m;

(b) the functions vij ∈ C(R+ ×Nix0 ×Njx0, R) or vij ∈ C(R+ ×

Rni × Rnj, R) for all i �= j, i, j = 1, 2, . . . , m;

(3) positive definite function β(t, x), β : R+ ×Rn → R+ and constants

ρ2ij , ρki(P, S), ρ3j(P, S), ρrij(P, S), k = 1, 2, r = 1, 3, 4, i, j =

1, 2, . . . , m, i �= j, for which the following conditions hold

(a) D+

t vii + (D+
xi

vii)
Tgi(t, xi) + (D+

xi
vii)

TSihi(t, x, pi)

≤

{

ρ1i(P, S)ϕ2

i (�xi�) +

s∑

j=1

j �=i

ρ1ij(P, S)ϕi(�xi�)ϕj(�xj�)

}

β(t, x)

for all (t, xi, xj) ∈ R+ ×Nix0 ×Njx0 (for all (t, xi, xj) ∈ R+×

Rni × Rnj ) and for all (P, S) ∈ P × S, i = 1, 2, . . . , m;

(b) D+

t vij + (D+
xi

vij)
Tgi(t, xi) + (D+

xi
vij)

TSihi(t, x, pi)

+ (D+
xj

vij)
Tgj(t, xj) + (D+

xj
vij)

TSihi(t, x, pi)

≤

{

ρ2i(P, S)ϕ2

i (�xi�) + ρ3j(P, S)ϕ2

j (�xj�)
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+ρ2ij(P, S)ϕi2(�xi�)ϕj2(�xj�)+

s∑

l=1
l�=j

ρ3lj(P, S)ϕl(�xl�)ϕj(�xj�)

+

s∑

m=1
m �=i

ρ1im(P, S)ϕi(�xi�)ϕm(�xm�)

}

β(t, x)

for all (t, xi, xj) ∈ R+ ×Nix0 ×Njx0 (for all (t, xi, xj) ∈ R+×

Rni × Rnj ) and for all (P, S) ∈ P × S for i �= j,

i, j = 1, 2, . . . , m.

Proposition 2.4.3 If all conditions of Assumption 2.4.2 hold, then

D+v(t, x, ψ) ≤ wTΘ(P, S)w|β(t, x)|

for all (t, x) ∈ R+ × Nx0 (for all (t, x) ∈ R+ × Rn) and for all (P, S) ∈

P × S, where

wT = (ϕ1(�x1�), ϕ2(�x2�), . . . , ϕm(�xm�));

Θ(P, S) = [θij(P, S)], θij = θji, i, j = 1, 2, . . . , m;

θii(P, S) = ψ2

i ρ1i(P, S) + 2

s∑

j=1

j �=i

ψiψj [ρ2i(P, S) +

+ ρ3j(P, S)], for all i = 1, 2, . . . , m;

θij(P, S) =
1

2
ψ2

i [ρ1ij(P, S) + ρ1ji(P, S)]

+ ψiψj

[

ρ2ij +
s∑

l=1
l�=j

ρ3lj(P, S) +
s∑

m=1
m �=i

ρ4im(P, S)

]

for all i �= j, i, j = 1, 2, . . . , m.

The Proof of Proposition 2.4.3 is similar to that of Proposition 2.4.1.

We now adapt the matrix-valued Liapunov functions method to the sys-

tem under nonclassical structural perturbation (2.2.1).

Theorem 2.4.5 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.4.3 are satisfied
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+ρ2ij(P, S)ϕi2(�xi�)ϕj2(�xj�)+

s∑

l=1
l�=j

ρ3lj(P, S)ϕl(�xl�)ϕj(�xj�)

+

s∑

m=1
m �=i

ρ1im(P, S)ϕi(�xi�)ϕm(�xm�)

}

β(t, x)

for all (t, xi, xj) ∈ R+ ×Nix0 ×Njx0 (for all (t, xi, xj) ∈ R+×

Rni × Rnj ) and for all (P, S) ∈ P × S for i �= j,

i, j = 1, 2, . . . , m.

Proposition 2.4.3 If all conditions of Assumption 2.4.2 hold, then

D+v(t, x, ψ) ≤ wTΘ(P, S)w|β(t, x)|

for all (t, x) ∈ R+ × Nx0 (for all (t, x) ∈ R+ × Rn) and for all (P, S) ∈

P × S, where

wT = (ϕ1(�x1�), ϕ2(�x2�), . . . , ϕm(�xm�));

Θ(P, S) = [θij(P, S)], θij = θji, i, j = 1, 2, . . . , m;

θii(P, S) = ψ2

i ρ1i(P, S) + 2

s∑

j=1

j �=i

ψiψj [ρ2i(P, S) +

+ ρ3j(P, S)], for all i = 1, 2, . . . , m;

θij(P, S) =
1

2
ψ2

i [ρ1ij(P, S) + ρ1ji(P, S)]

+ ψiψj

[

ρ2ij +
s∑

l=1
l�=j

ρ3lj(P, S) +
s∑

m=1
m �=i

ρ4im(P, S)

]

for all i �= j, i, j = 1, 2, . . . , m.

The Proof of Proposition 2.4.3 is similar to that of Proposition 2.4.1.

We now adapt the matrix-valued Liapunov functions method to the sys-

tem under nonclassical structural perturbation (2.2.1).

Theorem 2.4.5 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.4.3 are satisfied
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except for upper estimates of the functions vii(t, xi) and vij(t, xi, xj) for all

i, j = 1, 2, . . . , m and moreover

(1) there exist positive numbers ξi (or ξi = +∞) such that sets

Liξi
(t) are asymptotically contractive for any ζi ∈ (0, ξi) and

every i = 1, 2, . . . , m;

(2) the matrix A in the inequalities (2.3.7) is positive definite;

(3) there exists a negative definite matrix H ∈ Rm×m such that

1

2
(θ(P, S) + θT(P, S)) ≤ H for all (P, S) ∈ P × S

is satisfied component-wise.

Then the equilibrium state x = 0 of the system (2.2.10) is asymptotically

stable on P × S.

If all hypotheses of Theorem 2.4.5 hold for Nix = Rni for radially

unbounded functions vij(t, ·), i, j = 1, 2, . . . , m, then the equilibrium state

x = 0 of the system (2.2.10) is asymptotically stable in the whole on P×S.

The Proof of Theorem 2.4.5 is similar to that of Theorem 2.4.1.

Theorem 2.4.6 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.3.2 are satisfied for

β(t, x) ≡ 1 and

(1) the conditions (a) and (c) of Theorem 2.3.1 are satisfied;

(2) the matrices A and B in the inequalities (2.3.7) are positive definite.

Then the equilibrium state x = 0 of the system (2.2.10) is uniformly asymp-

totically stable on P × S.

If moreover Nix = Rni for all i = 1, 2, . . . , m, the functions vij(t, ·)

are radially unbounded and functions ϕi ∈ KR, then the equilibrium state

x = 0 of the system (2.2.10) is uniformly asymptotically stable in the whole

on P × S.

The Proof of Theorem 2.4.6 is similar to that of Theorem 2.4.2.

Theorem 2.4.7 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.4.1 and 2.4.3 and hypotheses

(a) and (b) of Theorem 2.4.5 are satisfied and moreover, there exist

(1) positive numbers βi and γi such that

βi�xi� ≤ ϕi(�xi�) ≤ γi�xi�
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except for upper estimates of the functions vii(t, xi) and vij(t, xi, xj) for all

i, j = 1, 2, . . . , m and moreover

(1) there exist positive numbers ξi (or ξi = +∞) such that sets

Liξi
(t) are asymptotically contractive for any ζi ∈ (0, ξi) and

every i = 1, 2, . . . , m;

(2) the matrix A in the inequalities (2.3.7) is positive definite;

(3) there exists a negative definite matrix H ∈ Rm×m such that

1

2
(θ(P, S) + θT(P, S)) ≤ H for all (P, S) ∈ P × S

is satisfied component-wise.

Then the equilibrium state x = 0 of the system (2.2.10) is asymptotically

stable on P × S.

If all hypotheses of Theorem 2.4.5 hold for Nix = Rni for radially

unbounded functions vij(t, ·), i, j = 1, 2, . . . , m, then the equilibrium state

x = 0 of the system (2.2.10) is asymptotically stable in the whole on P×S.

The Proof of Theorem 2.4.5 is similar to that of Theorem 2.4.1.

Theorem 2.4.6 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.3.2 are satisfied for

β(t, x) ≡ 1 and

(1) the conditions (a) and (c) of Theorem 2.3.1 are satisfied;

(2) the matrices A and B in the inequalities (2.3.7) are positive definite.

Then the equilibrium state x = 0 of the system (2.2.10) is uniformly asymp-

totically stable on P × S.

If moreover Nix = Rni for all i = 1, 2, . . . , m, the functions vij(t, ·)

are radially unbounded and functions ϕi ∈ KR, then the equilibrium state

x = 0 of the system (2.2.10) is uniformly asymptotically stable in the whole

on P × S.

The Proof of Theorem 2.4.6 is similar to that of Theorem 2.4.2.

Theorem 2.4.7 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.4.1 and 2.4.3 and hypotheses

(a) and (b) of Theorem 2.4.5 are satisfied and moreover, there exist

(1) positive numbers βi and γi such that

βi�xi� ≤ ϕi(�xi�) ≤ γi�xi�
48 2. CONTINUOUS LARGE-SCALE SYSTEMS

for all xi ∈ Nix (for all xi ∈ Rni) and for all i = 1, 2, . . . , m;

(2) the matrix A in the inequalities (2.3.7) is equal to A∗ = [α∗

ij ],

α∗

ij = α∗

ji and is positive definite;

(3) a symmetric negative definite matrix H∗ ∈ Rm×m such that

Θ∗(P, S) ≤ H∗
for all (P, S) ∈ P × S,

where

Θ∗(P, S) =
�
θ∗ij(P, S)

�
, θ∗ij = θ∗ji for all i, j = 1, 2, . . . , m;

θ∗ii(P, S) = ψ2

i ρ1i(P, S)ki1 + 2

s�

j=1

j �=i

ψiψj(ρ2i(P, S)ki2 + ρ3j(P, S)kj3);

θ∗ij(P, S) =
1

2
ψ2

i [ρ1ij(P, S) + ρ1ji(P, S)]k1

ij + ψiψj

�

ρ2ijk
2

ij

+

s�

l=1
l�=j

ρ3lj(P, S)k3

lj +

s�

m=1
m �=i

ρ4im(P, S)k4

im

�

for all i �= j, i, j = 1, 2, . . . , m,

kijr =







γ2

i (or γ2

j ) if the corresponding multiplier

ϕ2

i (�xi�) (or ϕ2

j(�xj�)) is positive,

β2
i (or β2

j ) if the corresponding multiplier

ϕ2

i (�xi�) (or ϕ2

j (�xj�)) is negative,

for all i, j = 1, 2, . . . , m and r = 1, 2, 3;

k
q
ij =







γiγj if the corresponding multiplier

ϕi(�xi�)ϕj(�xj�) is positive,

βiβj if the corresponding multiplier

ϕi(�xi�)ϕj(�xj�) is negative,

for all i, j = 1, 2, . . . , m and q = 1, 2, 3, 4;

(4) constant α > 0 such that

|β(t, x)| ≥ α for all (t, x) ∈ R+ ×Nx, Nx ⊆ Rn.
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for all xi ∈ Nix (for all xi ∈ Rni) and for all i = 1, 2, . . . , m;

(2) the matrix A in the inequalities (2.3.7) is equal to A∗ = [α∗

ij ],

α∗

ij = α∗

ji and is positive definite;

(3) a symmetric negative definite matrix H∗ ∈ Rm×m such that

Θ∗(P, S) ≤ H∗
for all (P, S) ∈ P × S,

where

Θ∗(P, S) =
�
θ∗ij(P, S)

�
, θ∗ij = θ∗ji for all i, j = 1, 2, . . . , m;

θ∗ii(P, S) = ψ2

i ρ1i(P, S)ki1 + 2

s�

j=1

j �=i

ψiψj(ρ2i(P, S)ki2 + ρ3j(P, S)kj3);

θ∗ij(P, S) =
1

2
ψ2

i [ρ1ij(P, S) + ρ1ji(P, S)]k1

ij + ψiψj

�

ρ2ijk
2

ij

+

s�

l=1
l�=j

ρ3lj(P, S)k3

lj +

s�

m=1
m �=i

ρ4im(P, S)k4

im

�

for all i �= j, i, j = 1, 2, . . . , m,

kijr =







γ2

i (or γ2

j ) if the corresponding multiplier

ϕ2

i (�xi�) (or ϕ2

j(�xj�)) is positive,

β2
i (or β2

j ) if the corresponding multiplier

ϕ2

i (�xi�) (or ϕ2

j (�xj�)) is negative,

for all i, j = 1, 2, . . . , m and r = 1, 2, 3;

k
q
ij =







γiγj if the corresponding multiplier

ϕi(�xi�)ϕj(�xj�) is positive,

βiβj if the corresponding multiplier

ϕi(�xi�)ϕj(�xj�) is negative,

for all i, j = 1, 2, . . . , m and q = 1, 2, 3, 4;

(4) constant α > 0 such that

|β(t, x)| ≥ α for all (t, x) ∈ R+ ×Nx, Nx ⊆ Rn.
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Then the equilibrium state x = 0 of the system (2.2.10) is exponentially

stable on P × S.

If all hypotheses of Theorem 2.4.7 are satisfied for Nix = Rni , then the

equilibrium state x = 0 of the system (2.2.10) is exponentially stable in the

whole on P × S.

The Proof of Theorem 2.4.7 is similar to that of Theorem 2.4.3.

Example 2.4.2 We consider a fourth order system consisting of two sub-

systems of the second order

(2.4.8)

dx1

dt
=

�
0 −1
−1 −2

�

x1

+






−
5 + t + 5t2

1 + t2
x11 +

1

3
P11S11x21 +

1

6
P11S11x22

−
1

1 + t2
x12 +

1

6
P11S11x21 +

1

3
P11S11x22




 ;

dx2

dt
=

�
0 −0.5

−0.5 −1

�

x2

+






1

2
P21S21x11 +

1

4
P21S21x12 −

4 + t + 4t2

1 + t2
x21

1

4
P21S21x11 +

1

2
P21S21x12 −

t

1 + t2
x22




 ,

where x1 = (x11, x12)
T and x2 = (x21, x22)

T.

Structural matrices and structural set of the system are defined as

S =






S11 0 0 0
0 S11 0 0
0 0 S11 0
0 0 0 S11




 =







S11

�
1 0
0 1

�

0

0 S21

�
1 0
0 1

�







=

�
S1 0
0 S2

�

, S = {S : 0 ≤ S ≤ I4}.

Parametric perturbation matrix has the form

P = (P11, P21)
T

50 2. CONTINUOUS LARGE-SCALE SYSTEMS

and the set P of addmissible perturbations is described as

P =

{

P :

(
−0.75
−0.25

)

≤ P ≤

(
0.75
0.25

)}

.

The elements of matrix-valued function U(t, x) are defined by

vii(t, xi) = (1 + t2)x2

i , i = 1, 2;

v12(t, x1, x2) = v21(t, x1, x2) = 0.1(1 + t2)x1x2.

and for them estimates

vii(t, xi) ≥ (1 + t2)�x2

i �, i = 1, 2;

v12(t, x1, x2) ≥ −0.1(1 + t2)�x1� �x2�

hold.

The matrix

A =

(
1 −0.1

−0.1 1

)

is positive definite and the function ϕ(t) = 1 + t2 ≥ 1 > 0.

Let η = (1, 1)T, then given choice of elements vii(t, xi), i = 1, 2,

v12(t, x1, x2) of matrix-valued function U(t, x), the elements of matrix

G(P, S) are defined as

σ11(P, S) = −3.39 +
1

2
|P21S21|;

σ22(P, S) = −1.8 +
1

3
|P11S11|;

σ12(P, S) = 0.88 + |P11S11| +
3

2
|P21S21|.

For such a definition of elements of matrix G(P, S) the matrix

G(P, S) ≤ G =

(
−3.265 2.005

2.005 −1.55

)

is negative definite and the function

ψ(t, x) = ϕ(t) = 1 + t2 ≥ 1 > 0 for all t ∈ R+.
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and the set P of addmissible perturbations is described as

P =

{

P :

(
−0.75
−0.25

)

≤ P ≤

(
0.75
0.25

)}

.

The elements of matrix-valued function U(t, x) are defined by

vii(t, xi) = (1 + t2)x2

i , i = 1, 2;

v12(t, x1, x2) = v21(t, x1, x2) = 0.1(1 + t2)x1x2.

and for them estimates

vii(t, xi) ≥ (1 + t2)�x2

i �, i = 1, 2;

v12(t, x1, x2) ≥ −0.1(1 + t2)�x1� �x2�

hold.

The matrix

A =

(
1 −0.1

−0.1 1

)

is positive definite and the function ϕ(t) = 1 + t2 ≥ 1 > 0.

Let η = (1, 1)T, then given choice of elements vii(t, xi), i = 1, 2,

v12(t, x1, x2) of matrix-valued function U(t, x), the elements of matrix

G(P, S) are defined as

σ11(P, S) = −3.39 +
1

2
|P21S21|;

σ22(P, S) = −1.8 +
1

3
|P11S11|;

σ12(P, S) = 0.88 + |P11S11| +
3

2
|P21S21|.

For such a definition of elements of matrix G(P, S) the matrix

G(P, S) ≤ G =

(
−3.265 2.005

2.005 −1.55

)

is negative definite and the function

ψ(t, x) = ϕ(t) = 1 + t2 ≥ 1 > 0 for all t ∈ R+.
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and the set P of addmissible perturbations is described as

P =

{

P :

(
−0.75
−0.25

)

≤ P ≤

(
0.75
0.25

)}

.

The elements of matrix-valued function U(t, x) are defined by

vii(t, xi) = (1 + t2)x2

i , i = 1, 2;

v12(t, x1, x2) = v21(t, x1, x2) = 0.1(1 + t2)x1x2.

and for them estimates

vii(t, xi) ≥ (1 + t2)�x2

i �, i = 1, 2;

v12(t, x1, x2) ≥ −0.1(1 + t2)�x1� �x2�

hold.

The matrix

A =

(
1 −0.1

−0.1 1

)

is positive definite and the function ϕ(t) = 1 + t2 ≥ 1 > 0.

Let η = (1, 1)T, then given choice of elements vii(t, xi), i = 1, 2,

v12(t, x1, x2) of matrix-valued function U(t, x), the elements of matrix

G(P, S) are defined as

σ11(P, S) = −3.39 +
1

2
|P21S21|;

σ22(P, S) = −1.8 +
1

3
|P11S11|;

σ12(P, S) = 0.88 + |P11S11| +
3

2
|P21S21|.

For such a definition of elements of matrix G(P, S) the matrix

G(P, S) ≤ G =

(
−3.265 2.005

2.005 −1.55

)

is negative definite and the function

ψ(t, x) = ϕ(t) = 1 + t2 ≥ 1 > 0 for all t ∈ R+.2.4 TESTS FOR STABILITY ANALYSIS 51

The sets viζ(t) defined by

viζ(t) =

{

xi : x2

i1 + x2

i2 <
ζ

1 + t2

}

, i = 1, 2,

are asymptotically contractive for all ζ ∈ (0, +∞). Therefore ξi = +∞ for

i = 1, 2. Thus, all hypotheses of Theorem 2.4.5 are satisfied and equilibrium

state (x = 0) ∈ R4 of the system in question is asymptotically stable in

the whole on P × S.

Assumption 2.4.4 Assume that

(1) the conditions (1) and (2) of Assumption 2.4.3 are satisfied;

(2) there exist constants ρii(P, S) and ρij(P, S), i = 1, 2, . . . , m, j =

2, 3, . . . , m, i < j, such that

m∑

i=1

η2

i {D
+

t vii + (D+

xi
vii)

Tfi(t, x
i, 0) + (D+

xi
vii)

T + Sihi(t, x, pi)}

+ 2

m−1∑

i=1

m∑

j=2

i<j

ηiηj{D
+

t vij + (D+

xi
vij)

Tfi(t, x
i, 0) + (D+

xj
vij)

Tfj(t, x
j , 0)

+ (D+

xi
vij)

TSihi(t, x, pi) + (D+

xj
vij)

TSjhj(t, x, pj)}

≤

m∑

i=1

ρii(P, S)ϕ2

i (xi) +

m∑

i=1

m∑

j=2

ρij(P, S)ϕi(xi)ϕj(xj)

for all (t, xi, xj) ∈ R+ ×Nix0 ×Njx0 and for all (P, S) ∈ P × SS .

Proposition 2.4.4 If Assumption 2.4.4 holds, then estimate

D+v(t, x, η) ≤ uTĜ(P, S)u for all (t, x, P, S) ∈ R+ ×Nx0 × P × S

is valid, where

uT = (ϕ1(x1), ϕ2(x2), . . . , ϕm(xm)),

Ĝ(P, S) = [σ̂ij(P, S)], i, j = 1, 2, . . . , m,

σ̂ii(P, S) = ρii(P, S), i = 1, 2, . . . , m,

σ̂ij(P, S) =
1

2
ρij(P, S), i = 1, 2, . . . , m, j = 2, 3, . . . , m,

i < j.
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Theorem 2.4.8 Let perturbed motion equations (2.2.10) be such that

all conditions of Assumptions 2.3.1 and 2.4.4 are satisfied, except for the

estimate from above of functions v(t, x, η).

If hypotheses (a) and (b) of Theorem 2.4.5 are satisfied and there exists

a negative definite matrix Ĝ ∈ Rm×m such that for matrix Ĝ(P, S) the

estimate

1

2
(Ĝ(P, S) + ĜT(P, S)) ≤ Ĝ for all (P, S) ∈ P × S

holds elementwise, then the equilibrium state x = 0 of system (2.2.10) is

asymptotically stable on P × S.

If all hypotheses of Theorem 2.4.8 are satisfied for Nix = Rni and for ra-

dially unbounded functions vij and for ξi = +∞ when each i = 1, 2, . . . , m,

then the equilibrium state x = 0 of (2.2.10) is asymptotically stable in the

whole on P × S.

The Proof of Theorem 2.4.8 is similar to that of Theorem 2.4.1.

Theorem 2.4.9 Let perturbed motion equations (2.2.10) be such that

all conditions of Assumptions 2.3.1 and 2.4.4 are satisfied for ϕ(t) ≡ 1

and

(1) the matrices A and B are positive definite;

(2) there exists a negative definite matrix Ĝ ∈ Rm×m such that for

matrix Ĝ(P, S) the estimate

1

2
(Ĝ(P, S) + ĜT(P, S)) ≤ Ĝ for all (P, S) ∈ P × S

holds.

Then the equilibrium state x = 0 of (2.2.10) is uniformly asymptotically

stable on P × S.

If, moreover Nix = Rni, functions vij are radially unbounded and func-

tions ϕi are of Hahn class KR, then the equilibrium state x = 0 of (2.2.10)

is uniformly asymptotically stable in the whole on P × S.

The Proof of Theorem 2.4.9 is similar to that of Theorem 2.4.2.2.4 TESTS FOR STABILITY ANALYSIS 53

Theorem 2.4.10 Let perturbed motion equations (2.2.10) be such that

all conditions of Assumptions 2.3.1 and 2.4.4 are satisfied for ϕ(t) ≡ 1 and

hypotheses (a) and (b) of Theorem 2.4.3 hold and, moreover, there exists

a symmetric negative definite matrix �G∗ ∈ Rm×m such that for matrix

�G∗(P, S) the estimate

1

2
( �G∗(P, S) + �G∗T(P, S)) ≤ �G∗

for all (P, S) ∈ P × S

is valid, where

�G∗(P, S) = kiiσ̂ii(P, S), σ̂∗

ij(P, S) = kij σ̂ij(P, S), i �= j = 1, 2, . . . , m,

kii =

�
γ2

i , if σ̂ii(P, S) > 0,

β2

i , if σ̂ii(P, S) < 0,
i = 1, 2, . . . , m,

kij =

�
γiγj , if σ̂ij(P, S) > 0,

βiβj , if σ̂ij(P, S) < 0,
i, j = 1, 2, . . . , m, j �= j.

Then the equilibrium state x = 0 of system (2.2.10) is exponentially

stable in the whole on P × S.

If all conditions of Theorem 2.4.10 hold for Nix = Rni , then the equilib-

rium state x = 0 of (2.2.10) is exponentially stable in the whole on P ×S.

The Proof of Theorem 2.4.10 is similar to that of Theorem 2.4.3.

Example 2.4.3 Consider the forth order system (S) consisting of two

subsystems (Si) of the second order

(2.4.9)

dxi

dt
= −αxi + si1

�
2
1

�

ϕi(σi), σi = (−4,−2)(2xi − xj),

i, j = 1, 2, i �= j

when the conditions

ϕi(σi)σ
−1

i ∈ [0, +∞), for all σi ∈ R, α ∈ (0, +∞), α = const

hold.

We suppose that

S =







S : S =

�
S1 0
0 S2

�

=






s11 0 0 0
0 s22 0 0
0 0 s22 0
0 0 0 s22












,

si1 ∈ {0, 1}, i = 1, 2.
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Theorem 2.4.10 Let perturbed motion equations (2.2.10) be such that

all conditions of Assumptions 2.3.1 and 2.4.4 are satisfied for ϕ(t) ≡ 1 and

hypotheses (a) and (b) of Theorem 2.4.3 hold and, moreover, there exists

a symmetric negative definite matrix �G∗ ∈ Rm×m such that for matrix

�G∗(P, S) the estimate

1

2
( �G∗(P, S) + �G∗T(P, S)) ≤ �G∗

for all (P, S) ∈ P × S

is valid, where

�G∗(P, S) = kiiσ̂ii(P, S), σ̂∗

ij(P, S) = kij σ̂ij(P, S), i �= j = 1, 2, . . . , m,

kii =

�
γ2

i , if σ̂ii(P, S) > 0,

β2

i , if σ̂ii(P, S) < 0,
i = 1, 2, . . . , m,

kij =

�
γiγj , if σ̂ij(P, S) > 0,

βiβj , if σ̂ij(P, S) < 0,
i, j = 1, 2, . . . , m, j �= j.

Then the equilibrium state x = 0 of system (2.2.10) is exponentially

stable in the whole on P × S.

If all conditions of Theorem 2.4.10 hold for Nix = Rni , then the equilib-

rium state x = 0 of (2.2.10) is exponentially stable in the whole on P ×S.

The Proof of Theorem 2.4.10 is similar to that of Theorem 2.4.3.

Example 2.4.3 Consider the forth order system (S) consisting of two

subsystems (Si) of the second order

(2.4.9)

dxi

dt
= −αxi + si1

�
2
1

�

ϕi(σi), σi = (−4,−2)(2xi − xj),

i, j = 1, 2, i �= j

when the conditions

ϕi(σi)σ
−1

i ∈ [0, +∞), for all σi ∈ R, α ∈ (0, +∞), α = const

hold.

We suppose that

S =







S : S =

�
S1 0
0 S2

�

=






s11 0 0 0
0 s22 0 0
0 0 s22 0
0 0 0 s22












,

si1 ∈ {0, 1}, i = 1, 2.
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Let vii = 2x2
i , v12 = v21 = −x1x2.

Matrix Â, corresponding to matrix A in the estimate from Proposi-

tion 2.3.1, has the form

Â =

(
2 −1

−1 2

)

and is positive definite.

We set η = (1, 1)T, then

Dv(t, x) =

2∑

i=1

Dvii + 2Dv12 = −4αx2

1 − 4αx2

2 − s11ϕ1(σ1)σ1

− s21ϕ2(σ2)σ2 + 4αx1x2 ≤ −4α�x1�
2 + 4α�x1� �x2� − 4α�x2�

2

and the matrix

Ĝ =

(
−4α 2α

2α −4α

)

= 2α

(
−2 1

1 −2

)

is negative definite.

Thus, all hypotheses of Theorem 2.4.9 are satisfied and the state x = 0

of (2.4.9) is uniformly asymptotically stable in the whole on S.

2.4.3 Instability conditions Some modifications of Assumptions 2.4.1

and 2.4.3 allow to apply the obtained inequalities for establishing instability

of the equilibrium state x = 0 of system (2.2.1).

Assumption 2.4.5 Let in the inequalities (iii) (a) – (b) of Assump-

tion 2.4.3 the sign “≤” be reversed, i.e. “≥”.

Proposition 2.4.5 If all conditions of Assumption 2.4.5 are satisfied,

then

D+v(t, x, ψ) ≥ wTΞ(P, S)w|β(t, x)|

for all (t, x) ∈ R+ × Nx0 (for all (t, x) ∈ R+ × Rn) and for all (P, S) ∈

P × S.

Here the function β(t, x), vector w and matrix Θ(P, S) are defined as in

Proposition 2.4.3. 2.4 TESTS FOR STABILITY ANALYSIS 55

Theorem 2.4.11 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.4.5 are satisfied

with function β(t, x) = 1 for all t ∈ R+ and

(1) the matrices A and B are positive definite;

(2) there exists a positive definite matrix D∗ ∈ Rm×m such that

1

2
(Ξ(P, S) + ΞT(P, S)) ≥ D∗

at least for one pair (P, S) ∈ P × S.

Then the equilibrium state x = 0 of the system (2.2.10) is unstable.

Proof We construct a scalar function (2.3.2) based on a matrix-valued

function (2.3.2). Due to Assumption 2.3.1, Proposition 2.3.1 and condition

(a) of Theorem 2.4.11 the function (2.3.2) is positive definite and admits

infinitely small upper bound on Nx ⊆ Rn. By Assumption 2.4.5, Propo-

sition 2.4.4 and condition (b) of Theorem 2.4.11 the function D+v(t, x, ψ)

is positive definite at least for one pair (P, S) ∈ P × S. These conditions

(see Theorem 2.5.7 by Martynyuk [13]) are sufficient for the instability of

the equilibrium state x = 0 of (2.2.10).

Assumption 2.4.6 Let in inequalities of Assumption 2.4.4 the sign

“≤” be reversed, i.e. “≥”.

Proposition 2.4.6 If all conditions of Assumption 2.4.4 are satisfied,

then for D+v(t, x, ψ) the estimate

D+v(t, x, ψ) ≥ uTĜ(P, S)u

takes place for all (t, x) ∈ R ×Nx0, and for all (P, S) ∈ P × S.

Here the vector u and the matrix Ĝ(P, S) are defined in the same way

as in Proposition 2.4.4.

The Proof of Proposition 2.4.6 is similar to that of Proposition 2.4.5.

Theorem 2.4.12 Let perturbed motion equations (2.2.10) be such that

all conditions of Assumptions 2.3.1 and 2.4.6 are satisfied and

(1) the matrices A and B are positive definite;

(2) there exists a positive definite matrix Ĝ ∈ Rm×m, such that the

estimate

1

2
(Ĝ(P, S) + ĜT(P, S)) ≥ Ĝ for all (P, S) ∈ P × S

is true.
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Theorem 2.4.11 Assume that the perturbed motion equations (2.2.10)

are such that all conditions of Assumptions 2.3.1 and 2.4.5 are satisfied

with function β(t, x) = 1 for all t ∈ R+ and

(1) the matrices A and B are positive definite;

(2) there exists a positive definite matrix D∗ ∈ Rm×m such that

1

2
(Ξ(P, S) + ΞT(P, S)) ≥ D∗

at least for one pair (P, S) ∈ P × S.

Then the equilibrium state x = 0 of the system (2.2.10) is unstable.

Proof We construct a scalar function (2.3.2) based on a matrix-valued

function (2.3.2). Due to Assumption 2.3.1, Proposition 2.3.1 and condition

(a) of Theorem 2.4.11 the function (2.3.2) is positive definite and admits

infinitely small upper bound on Nx ⊆ Rn. By Assumption 2.4.5, Propo-

sition 2.4.4 and condition (b) of Theorem 2.4.11 the function D+v(t, x, ψ)

is positive definite at least for one pair (P, S) ∈ P × S. These conditions

(see Theorem 2.5.7 by Martynyuk [13]) are sufficient for the instability of

the equilibrium state x = 0 of (2.2.10).

Assumption 2.4.6 Let in inequalities of Assumption 2.4.4 the sign

“≤” be reversed, i.e. “≥”.

Proposition 2.4.6 If all conditions of Assumption 2.4.4 are satisfied,

then for D+v(t, x, ψ) the estimate

D+v(t, x, ψ) ≥ uTĜ(P, S)u

takes place for all (t, x) ∈ R ×Nx0, and for all (P, S) ∈ P × S.

Here the vector u and the matrix Ĝ(P, S) are defined in the same way

as in Proposition 2.4.4.

The Proof of Proposition 2.4.6 is similar to that of Proposition 2.4.5.

Theorem 2.4.12 Let perturbed motion equations (2.2.10) be such that

all conditions of Assumptions 2.3.1 and 2.4.6 are satisfied and

(1) the matrices A and B are positive definite;

(2) there exists a positive definite matrix Ĝ ∈ Rm×m, such that the

estimate

1

2
(Ĝ(P, S) + ĜT(P, S)) ≥ Ĝ for all (P, S) ∈ P × S

is true.

56 2. CONTINUOUS LARGE-SCALE SYSTEMS

Then the equilibrium state x = 0 of (2.2.10) is unstable on P × S.

The Proof of Theorem 2.4.7 is similar to that of Theorem 2.4.11.

2.5 Linear Systems Analysis

We consider the linear system

(2.5.1)
dxi

dt
= Aixi +

m∑

j=1

j �=i

sijAijxj , i = 1, 2, . . . , m,

where Aij are constant matrices of the corresponding order,

S = {S : S = diag [S1, S2, . . . , Ss]},

Si = [si1, . . . , si,i−1, I, si,i+1, . . . , sis],

0 ≤ sij ≤ I,

where I is a unique matrix of the corresponding dimension, n1 +n2 + · · ·+

nm = n, x = (xT
1
, xT

2
, . . . , xT

m)T ∈ Rn.

For the system (2.5.1) we construct a matrix function

(2.5.2) U(x) =
[
vij(xi, xj)

]
, vij = vji for all i, j = 1, 2, . . . , m

with the elements

(2.5.3)
vii(xi) = xT

i Biixi for all i = 1, 2, . . . , m,

vij(xi, xj) = xT

i Bijxj for all i �= j, i, j = 1, 2, . . . , m,

where Bii are symmetric positive definite matrices and Bij are constant

matrices for all i �= j . It can be easily verified that for the functions

(2.5.3) the estimates (cf. Krasovskii [1], and Djordjevic [1])

λm(Bii)�xi�
2
≤ vii(xi) ≤ λM (Bii)�xi�

2

for all xi ∈ Nix0 and i = 1, 2, . . . , m;

−λ
1/2

M (BijB
T

ij)�xi��xj� ≤ vij(xi, xj) ≤ λ
1/2

M (BijB
T

ij)�xi� �xj�

for all (xi, xj) ∈ Nix0 ×Njx0 and i �= j, i, j = 1, 2, . . . , m
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Then the equilibrium state x = 0 of (2.2.10) is unstable on P × S.

The Proof of Theorem 2.4.7 is similar to that of Theorem 2.4.11.

2.5 Linear Systems Analysis

We consider the linear system

(2.5.1)
dxi

dt
= Aixi +

m∑

j=1

j �=i

sijAijxj , i = 1, 2, . . . , m,

where Aij are constant matrices of the corresponding order,

S = {S : S = diag [S1, S2, . . . , Ss]},

Si = [si1, . . . , si,i−1, I, si,i+1, . . . , sis],

0 ≤ sij ≤ I,

where I is a unique matrix of the corresponding dimension, n1 +n2 + · · ·+

nm = n, x = (xT
1
, xT

2
, . . . , xT

m)T ∈ Rn.

For the system (2.5.1) we construct a matrix function

(2.5.2) U(x) =
[
vij(xi, xj)

]
, vij = vji for all i, j = 1, 2, . . . , m

with the elements

(2.5.3)
vii(xi) = xT

i Biixi for all i = 1, 2, . . . , m,

vij(xi, xj) = xT

i Bijxj for all i �= j, i, j = 1, 2, . . . , m,

where Bii are symmetric positive definite matrices and Bij are constant

matrices for all i �= j . It can be easily verified that for the functions

(2.5.3) the estimates (cf. Krasovskii [1], and Djordjevic [1])

λm(Bii)�xi�
2
≤ vii(xi) ≤ λM (Bii)�xi�

2

for all xi ∈ Nix0 and i = 1, 2, . . . , m;

−λ
1/2

M (BijB
T

ij)�xi��xj� ≤ vij(xi, xj) ≤ λ
1/2

M (BijB
T

ij)�xi� �xj�

for all (xi, xj) ∈ Nix0 ×Njx0 and i �= j, i, j = 1, 2, . . . , m
2.5 LINEAR SYSTEMS ANALYSIS 57

hold true, where λm(Bii) and λM (Bii) are minimal and maximal eigen-

values of the matrices Bii for all i = 1, 2, . . . , m and λ
1/2

M (BijB
T

ij) are

norms of matrices Bij for i �= j, i, j = 1, 2, . . . , m.

We introduce the function

(2.5.4) v(x, ψ) = ψTU(x)ψ, ψ ∈ Rm
+ , ψ > 0.

For the function v(x, ψ) in view of Proposition 2.3.1 we have

(2.5.5) ηTHTAHη ≤ v(x, ψ) ≤ ηTHTBHη,

where

ηT = (�x1�, �x2�, . . . , �xs�),

H = diag [ψ1, ψ2, . . . , ψs ],

A = [aij ], B = [bij ], i, j = 1, 2, . . . , m,

aii = λm(Bii), bii = λM (Bii), i = 1, 2, . . . , m,

aij = −bij = −λ
1/2

M (BijB
T

ij), i = 1, 2, . . . , m − 1, j = 1, 2, . . . , m,

aij = aji, bij = bji for all i �= j.

Together with the function v(x, ψ) in (2.5.4) its total derivative

(2.5.6) D+v(x, ψ) = ψTD+U(x)ψ, ψ ∈ Rm
+ , ψ > 0,

along solutions of the system (2.5.1) is considered.

Proposition 2.5.1 If for the system (2.5.1) there exists the matrix-

valued function (2.5.2) with elements (2.5.3), then the total derivative of

(2.5.3) by virtue of system (2.5.1) satisfies the estimates

(a) ψ2

i (D+

xi
vii(xi))

T
dxi

dt
≤ ρ1i�xi�

2 + 2

m∑

j=1

j �=i

ρ1ij(S)�xi� �xj�

for all (xi, xj) ∈ Rni × Rnj , i = 1, 2, . . . , m, S ∈ S; d

(b) 2ψiψj

[

(D+

xi
vij(xi, xj))

T
dxi

dt
+ (D+

xj
vij(xi, xj))

T
dxj

dt

]

≤ ρ2i(S)�xi�
2 + (ρ2ij + ρ3ij(S))�xi� �xj�

for all (xi, xj) ∈ Rni × Rnj , for i �= j, i, j = 1, 2, . . . , m,
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hold true, where λm(Bii) and λM (Bii) are minimal and maximal eigen-

values of the matrices Bii for all i = 1, 2, . . . , m and λ
1/2

M (BijB
T

ij) are

norms of matrices Bij for i �= j, i, j = 1, 2, . . . , m.

We introduce the function

(2.5.4) v(x, ψ) = ψTU(x)ψ, ψ ∈ Rm
+ , ψ > 0.

For the function v(x, ψ) in view of Proposition 2.3.1 we have

(2.5.5) ηTHTAHη ≤ v(x, ψ) ≤ ηTHTBHη,

where

ηT = (�x1�, �x2�, . . . , �xs�),

H = diag [ψ1, ψ2, . . . , ψs ],

A = [aij ], B = [bij ], i, j = 1, 2, . . . , m,

aii = λm(Bii), bii = λM (Bii), i = 1, 2, . . . , m,

aij = −bij = −λ
1/2

M (BijB
T

ij), i = 1, 2, . . . , m − 1, j = 1, 2, . . . , m,

aij = aji, bij = bji for all i �= j.

Together with the function v(x, ψ) in (2.5.4) its total derivative

(2.5.6) D+v(x, ψ) = ψTD+U(x)ψ, ψ ∈ Rm
+ , ψ > 0,

along solutions of the system (2.5.1) is considered.

Proposition 2.5.1 If for the system (2.5.1) there exists the matrix-

valued function (2.5.2) with elements (2.5.3), then the total derivative of

(2.5.3) by virtue of system (2.5.1) satisfies the estimates

(a) ψ2

i (D+

xi
vii(xi))

T
dxi

dt
≤ ρ1i�xi�

2 + 2

m∑

j=1

j �=i

ρ1ij(S)�xi� �xj�

for all (xi, xj) ∈ Rni × Rnj , i = 1, 2, . . . , m, S ∈ S; d

(b) 2ψiψj

[

(D+

xi
vij(xi, xj))

T
dxi

dt
+ (D+

xj
vij(xi, xj))

T
dxj

dt

]

≤ ρ2i(S)�xi�
2 + (ρ2ij + ρ3ij(S))�xi� �xj�

for all (xi, xj) ∈ Rni × Rnj , for i �= j, i, j = 1, 2, . . . , m,
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where

ρ1i = λM [ψ2

i (BiiAi + AT

i Bii)], i = 1, 2, . . . , m,

ρ2i(S) = λM

[ i−1∑

j=1

ψiψj(B
T

jiSjiAji + (SjiAji)
TBji)

+

m∑

j=i+1

ψiψj(B
T

ijSjiAji + (SjiAji)
TBij)

]

for all i �= j, i, j = 1, 2, . . . , m,

λM are minimal eigenvalues of matrices ( · ) respectively, and

ρ1ij(S) =

∥
∥
∥
∥

1

2
ψ2

i

(
BiiSijAij + (SijAij)

T
)
∥
∥
∥
∥
,

ρ2ij = ‖ψiψj(a
T

i Bij + BijAj)‖,

ρ3ij(S) =

∥
∥
∥
∥

i−1∑

k=1

ψk(ψiB
T

kiSkjAkj + (SkjAkj)
TψjBkj)

+

m∑

k=i+1

ψk(ψiB
T

ikSkjAkj + (SkiAki)
TψjBkj)

+

m∑

k=j+1

ψk(ψiB
T

ikSkjAkj + (SkiAki)
TψjBjk)

∥
∥
∥
∥

for all i �= j, i, j = 1, 2, . . . , m.

Proof Let for the system (2.5.1) the matrix-valued function (2.5.2) be

constructed with elements (2.5.3). Then we have in case (a)

ψ2

i

(
D+

xi
vii(xi)

)T dxi

dt
= ψ2

i

[

Aixi +
m∑

j=1

j �=i

SijAijxj

]T

Biixi

+ ψ2

i xT

i Bii

[

Aixi +

m∑

j=1

j �=i

SijAijxj

]

= xT

i ψ2

i [BiiAi + AT

i Bii]xi
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where

ρ1i = λM [ψ2

i (BiiAi + AT

i Bii)], i = 1, 2, . . . , m,

ρ2i(S) = λM

[ i−1∑

j=1

ψiψj(B
T

jiSjiAji + (SjiAji)
TBji)

+

m∑

j=i+1

ψiψj(B
T

ijSjiAji + (SjiAji)
TBij)

]

for all i �= j, i, j = 1, 2, . . . , m,

λM are minimal eigenvalues of matrices ( · ) respectively, and

ρ1ij(S) =

∥
∥
∥
∥

1

2
ψ2

i

(
BiiSijAij + (SijAij)

T
)
∥
∥
∥
∥
,

ρ2ij = ‖ψiψj(a
T

i Bij + BijAj)‖,

ρ3ij(S) =

∥
∥
∥
∥

i−1∑

k=1

ψk(ψiB
T

kiSkjAkj + (SkjAkj)
TψjBkj)

+

m∑

k=i+1

ψk(ψiB
T

ikSkjAkj + (SkiAki)
TψjBkj)

+

m∑

k=j+1

ψk(ψiB
T

ikSkjAkj + (SkiAki)
TψjBjk)

∥
∥
∥
∥

for all i �= j, i, j = 1, 2, . . . , m.

Proof Let for the system (2.5.1) the matrix-valued function (2.5.2) be

constructed with elements (2.5.3). Then we have in case (a)

ψ2

i

(
D+

xi
vii(xi)

)T dxi

dt
= ψ2

i

[

Aixi +
m∑

j=1

j �=i

SijAijxj

]T

Biixi

+ ψ2

i xT

i Bii

[

Aixi +

m∑

j=1

j �=i

SijAijxj

]

= xT

i ψ2

i [BiiAi + AT

i Bii]xi
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+ 2

m∑

j=1

j �=i

xT

i

1

2
ψ2

i [BiiSijAij + (SijAij)
T

Bii]xj

≤ ρ1i�xi�
2 + 2

m∑

j=1

j �=i

ρ1ij(S)�xi� �xj�

for all (xi, xj) ∈ Rni × Rnj , for all S ∈ S.

The estimate (b) is proved similarly.

Proposition 2.5.2 If estimates (a) and (b) of Proposition 2.5.1 hold,

then the total derivative (2.5.6) of the function (2.5.4) by virtue of the

system (2.5.1) is estimated by the inequality

(2.5.7) D+v(x, ψ) ≤ ηTΩ(S)η for all x ∈ Rn
and S ∈ S,

where

Ω(S) = [σij(S)], σij = σji i, j = 1, 2, . . . , m,

σii(S) = ρ1i + ρ2i(S), i = 1, 2, . . . , m,

σij(S) =
1

2
(ρ1ij(S) + ρ1ji(S)) + ρ2ij + ρ3ij(S)

for all i �= j, i, j = 1, 2, . . . , m and S ∈ S.

The Proof of Proposition 2.5.2 is similar to that of Proposition 2.3.1.

Theorem 2.5.1 Assume that the system (2.5.1) is such that

(1) there exists a matrix-valued function (2.5.2) with elements (2.5.3);

(2) the matrix A in (2.5.5) is positive definite;

(3) there exists a negative definite matrix Ω ∈ Rm×m such that

1

2
(ΩT(S) + Ω(S)) ≤ Ω for all S ∈ S.

Then the equilibrium state x = 0 of the system (2.5.1) is asymptotically

stable in the whole on S. Download free eBooks at bookboon.com
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+ 2

m∑

j=1

j �=i

xT

i

1

2
ψ2

i [BiiSijAij + (SijAij)
T

Bii]xj

≤ ρ1i�xi�
2 + 2

m∑

j=1

j �=i

ρ1ij(S)�xi� �xj�

for all (xi, xj) ∈ Rni × Rnj , for all S ∈ S.

The estimate (b) is proved similarly.

Proposition 2.5.2 If estimates (a) and (b) of Proposition 2.5.1 hold,

then the total derivative (2.5.6) of the function (2.5.4) by virtue of the

system (2.5.1) is estimated by the inequality

(2.5.7) D+v(x, ψ) ≤ ηTΩ(S)η for all x ∈ Rn
and S ∈ S,

where

Ω(S) = [σij(S)], σij = σji i, j = 1, 2, . . . , m,

σii(S) = ρ1i + ρ2i(S), i = 1, 2, . . . , m,

σij(S) =
1

2
(ρ1ij(S) + ρ1ji(S)) + ρ2ij + ρ3ij(S)

for all i �= j, i, j = 1, 2, . . . , m and S ∈ S.

The Proof of Proposition 2.5.2 is similar to that of Proposition 2.3.1.

Theorem 2.5.1 Assume that the system (2.5.1) is such that

(1) there exists a matrix-valued function (2.5.2) with elements (2.5.3);

(2) the matrix A in (2.5.5) is positive definite;

(3) there exists a negative definite matrix Ω ∈ Rm×m such that

1

2
(ΩT(S) + Ω(S)) ≤ Ω for all S ∈ S.

Then the equilibrium state x = 0 of the system (2.5.1) is asymptotically

stable in the whole on S.60 2. CONTINUOUS LARGE-SCALE SYSTEMS

Remark 2.5.1 If in the system (2.5.1) there are no structural perturba-

tions, i.e. Sij = I, then for the total derivative of the function (2.5.4), by

virtue of the system (2.5.1), the following estimate should be applied

D+v(x, ψ) ≤

m∑

i=1

λM (Cii)�xi�
2 + 2

m∑

i=1

m∑

j=2

λ
1/2

M (CijC
T

ij)�xi� �xj�

for all (xi, xj) ∈ Rni × Rnj ,

where

Cii = ψ2

i (BiiAi + AT

i Bii) +

i−1∑

j=1

ψiψj

(
AT

jiBji + BT

jiAji

)

+

m∑

j=i+1

ψiψj

(
BijAij + AT

ijA
T

ij

)
, i = 1, 2, . . . , m,

Cij =
1

2
ψ2

i

(
BiiAij + AT

ijBii

)
+ ψiψj

(
AT

i Bij + BijAj

)

+

i−1∑

k=1

ψk

(
ψiB

T

ikAkj + AT

kiηjBkj

)

+

j−1
∑

k=i

ψk

(
ψiB

T

ikAkj + AT

kiηjBkj

)

+

m∑

k=j

ψk

(
ψiB

T

ikAkj + AT

kiηjBkj

)
,

i = 1, 2, . . . , m − 1, j = 2, 3, . . . , m, i < j,

Cij = Cji for all i �= j.

In this case matrix Ω has the form

Ω = [σij ], σij = σji, i, j = 1, 2, . . . , m,

where σii = λM (Cii) and σij = λ
1/2

M (CijC
T

ij) are maximal eigenvalues of

matrices Cii and λ
1/2

M (·) are norms of matrices Cij , i, j = 1, 2, . . . , m.
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Remark 2.5.1 If in the system (2.5.1) there are no structural perturba-

tions, i.e. Sij = I, then for the total derivative of the function (2.5.4), by

virtue of the system (2.5.1), the following estimate should be applied

D+v(x, ψ) ≤

m∑

i=1

λM (Cii)�xi�
2 + 2

m∑

i=1

m∑

j=2

λ
1/2

M (CijC
T

ij)�xi� �xj�

for all (xi, xj) ∈ Rni × Rnj ,

where

Cii = ψ2

i (BiiAi + AT

i Bii) +

i−1∑

j=1

ψiψj

(
AT

jiBji + BT

jiAji

)

+

m∑

j=i+1

ψiψj

(
BijAij + AT

ijA
T

ij

)
, i = 1, 2, . . . , m,

Cij =
1

2
ψ2

i

(
BiiAij + AT

ijBii

)
+ ψiψj

(
AT

i Bij + BijAj

)

+

i−1∑

k=1

ψk

(
ψiB

T

ikAkj + AT

kiηjBkj

)

+

j−1
∑

k=i

ψk

(
ψiB

T

ikAkj + AT

kiηjBkj

)

+

m∑

k=j

ψk

(
ψiB

T

ikAkj + AT

kiηjBkj

)
,

i = 1, 2, . . . , m − 1, j = 2, 3, . . . , m, i < j,

Cij = Cji for all i �= j.

In this case matrix Ω has the form

Ω = [σij ], σij = σji, i, j = 1, 2, . . . , m,

where σii = λM (Cii) and σij = λ
1/2

M (CijC
T

ij) are maximal eigenvalues of

matrices Cii and λ
1/2

M (·) are norms of matrices Cij , i, j = 1, 2, . . . , m.2.5 LINEAR SYSTEMS ANALYSIS 61

Example 2.5.1 We consider a linear fourth order system consisting of

two second order subsystems

(2.5.8)

dx1

dt
=

(
−1 0.5
−0.5 −2

)

x1 +

(
s21 0
0 s21

) (
0.5 1
−1 0.5

)

x2,

dx2

dt
=

(
−2 −1
0.5 −3

)

x2 +

(
s11 0
0 s11

) (
0.1 −1
1 0.1

)

x1,

where xi ∈ R2, i = 1, 2. Structural matrices S, Si, and Sij , i, j = 1, 2, are

of the form

S = diag {S1, S2}, S1 = [Is12], S2 = [Is21],

s12 = s21I2, s21 = s11I2, I2 = diag {1, 1}.

The structural set S is defined by the formula

S = {S : 0 ≤ S ≤ I4}, I4 = diag {1, 1, 1, 1}.

We construct the matrix-valued function (2.5.2) with the elements

vii = xT

i diag {2, 2}xi, i = 1, 2,

v12(x1, x2) = v21(x1, x2) = xT

1
diag {0.1, 0.1}x2.

For this function the following estimates

vii(xi) ≥ 2�xi�
2 for all xi ∈ R2, i = 1, 2;

v12(x1, x2) ≥ −0.1�x1� �x2� for all (x1, x2) ∈ R2
× R2

hold.

If ψT = (1, 1), then the matrix A has the form

A =

(
2 −0.1

−0.1 2

)

and is positive definite.

Elements of the matrix Ω are

σ11(S) = −2 + 0.02s11, σ22(S) = −3.59 + 0.1s21,

σ12(S) = σ21(S) = 0.274 + 0.1s11 + 0.5s21.
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Example 2.5.1 We consider a linear fourth order system consisting of

two second order subsystems

(2.5.8)

dx1

dt
=

(
−1 0.5
−0.5 −2

)

x1 +

(
s21 0
0 s21

) (
0.5 1
−1 0.5

)

x2,

dx2

dt
=

(
−2 −1
0.5 −3

)

x2 +

(
s11 0
0 s11

) (
0.1 −1
1 0.1

)

x1,

where xi ∈ R2, i = 1, 2. Structural matrices S, Si, and Sij , i, j = 1, 2, are

of the form

S = diag {S1, S2}, S1 = [Is12], S2 = [Is21],

s12 = s21I2, s21 = s11I2, I2 = diag {1, 1}.

The structural set S is defined by the formula

S = {S : 0 ≤ S ≤ I4}, I4 = diag {1, 1, 1, 1}.

We construct the matrix-valued function (2.5.2) with the elements

vii = xT

i diag {2, 2}xi, i = 1, 2,

v12(x1, x2) = v21(x1, x2) = xT

1
diag {0.1, 0.1}x2.

For this function the following estimates

vii(xi) ≥ 2�xi�
2 for all xi ∈ R2, i = 1, 2;

v12(x1, x2) ≥ −0.1�x1� �x2� for all (x1, x2) ∈ R2
× R2

hold.

If ψT = (1, 1), then the matrix A has the form

A =

(
2 −0.1

−0.1 2

)

and is positive definite.

Elements of the matrix Ω are

σ11(S) = −2 + 0.02s11, σ22(S) = −3.59 + 0.1s21,

σ12(S) = σ21(S) = 0.274 + 0.1s11 + 0.5s21.
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For such a definition of the elements of Ω(S) we have

Ω(S) ≤ Ω =

(
−1.98 0.874
0.874 −3.49

)

.

The matrix Ω is negative definite. Thus the equilibrium state x = 0 of the

system (2.5.7) is asymptotically stable in the whole on S.

2.6 Certain Trends of Generalizations and Applications

2.6.1 Stability analysis with respect to two measures For the

reader’s convinience we shall recall some notions of stability theory where

the motion properties are studied with the application of two measures.

Further system (2.2.7) is considered under all but one assumptions made

in Section 2.2. In this subsection the right-hand side of system (2.2.7) is

not assumed vanishing for x = 0.

The state of system (2.2.7) is characterised by means of two measures

ρ0(t, x) and ρ(t, x), taking their values from the sets

M =
{
ρ ∈ C(T × R2k, R+) : inf

(t,x)

ρ(t, x) = 0
}
,

M0 =
{
ρ ∈ M : inf

x
ρ(t, x) = 0 for all t ∈ T

}
.

Let U(t, x) be a matrix-valued function, i.e. U : T ×Rn → Rm×m with

the elements

(2.6.1) uij : T × Rn
→ R, (i, j) = 1, 2, . . . , m.

The property of having a fixed sign of the matrix-valued function U(t, x)

with respect to measure ρ(t, x) is determined as follows.

Let w ∈ Rm and v : T ×Rn ×Rm → R be determined by w and U by

the formula

(2.6.2) v(t, x, w) = wTU(t, x)w.
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Definition 2.6.1 The matrix-valued function U : R×Rn → Rm×m is

(1) ρ-positive definite on Tτ , τ ∈ R, if there exist an open connected

subset N ⊆ Rn, 0 ∈ N , a comparison function a ∈ K and a

constant ∆1 > 0 such that

(2.6.3) a(ρ(t, x)) ≤ v(t, x, w) for all (t, x, w �= 0) ∈ Tτ ×N × Rm

whenever ρ(t, x) < ∆1;

(2) ρ-positive definite on Tτ × S, if all conditions of definition (1) are

satisfied for N = S;

(3) ρ-positive definite in the whole on Tτ , if conditions of definition (1)

are satisfied for N = Rn, a ∈ KR and ∆1 = +∞;

(4) ρ-negative definite (in the whole) on Tτ (on Tτ × N ), if (−v) is

ρ-positive definite (in the whole) on Tτ (on Tτ ×N ).

The expression “on Tτ” is omitted in Definitions (1) – (4) if and only if

the conditions of these definitions are satisfied for τ ∈ R.

Proposition 2.6.1 For the matrix-valied function U : R×Rn → Rm×m

to be ρ-positive definite on Tτ , it is necessary and sufficient that it can be

represented as

(2.6.4)
v(t, x, w) = wTU+(t, x)w + a(ρ(t, x))

for ρ(t, x) < ∆1 and (t, x, w �= 0) ∈ Tτ ×N × Rm,

where U+(t, x) is positive semi-definite on Tτ matrix-valued function

and a ∈ K.

For the the proof see Martynyuk [8].

Definition 2.6.2 The matrix-valued function U : R×Rn → Rm×m is

(1) ρ-decreasing on Tτ , τ ∈ R, if there exist an open connected subset

N ⊆ Rn, 0 ∈ N , a comparison function b ∈ K and a constant

∆2 > 0 such that

v(t, x, w) ≤ b(ρ(t, x)) for all (t, x, w �= 0) ∈ Tτ ×N × Rm

whenever ρ(t, x) < ∆2;

(2) ρ-decreasing on Tτ ×S, if all conditions of definition (1) are satisfied

for N = S;
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Definition 2.6.1 The matrix-valued function U : R×Rn → Rm×m is

(1) ρ-positive definite on Tτ , τ ∈ R, if there exist an open connected

subset N ⊆ Rn, 0 ∈ N , a comparison function a ∈ K and a

constant ∆1 > 0 such that

(2.6.3) a(ρ(t, x)) ≤ v(t, x, w) for all (t, x, w �= 0) ∈ Tτ ×N × Rm

whenever ρ(t, x) < ∆1;

(2) ρ-positive definite on Tτ × S, if all conditions of definition (1) are

satisfied for N = S;

(3) ρ-positive definite in the whole on Tτ , if conditions of definition (1)

are satisfied for N = Rn, a ∈ KR and ∆1 = +∞;

(4) ρ-negative definite (in the whole) on Tτ (on Tτ × N ), if (−v) is

ρ-positive definite (in the whole) on Tτ (on Tτ ×N ).

The expression “on Tτ” is omitted in Definitions (1) – (4) if and only if

the conditions of these definitions are satisfied for τ ∈ R.

Proposition 2.6.1 For the matrix-valied function U : R×Rn → Rm×m

to be ρ-positive definite on Tτ , it is necessary and sufficient that it can be

represented as

(2.6.4)
v(t, x, w) = wTU+(t, x)w + a(ρ(t, x))

for ρ(t, x) < ∆1 and (t, x, w �= 0) ∈ Tτ ×N × Rm,

where U+(t, x) is positive semi-definite on Tτ matrix-valued function

and a ∈ K.

For the the proof see Martynyuk [8].

Definition 2.6.2 The matrix-valued function U : R×Rn → Rm×m is

(1) ρ-decreasing on Tτ , τ ∈ R, if there exist an open connected subset

N ⊆ Rn, 0 ∈ N , a comparison function b ∈ K and a constant

∆2 > 0 such that

v(t, x, w) ≤ b(ρ(t, x)) for all (t, x, w �= 0) ∈ Tτ ×N × Rm

whenever ρ(t, x) < ∆2;

(2) ρ-decreasing on Tτ ×S, if all conditions of definition (1) are satisfied

for N = S;
64 2. CONTINUOUS LARGE-SCALE SYSTEMS

(3) ρ-decreasing in the whole on Tτ , if all conditions of definition (1)

are satisfied for N = Rn, b ∈ KR and ∆2 = +∞;

(4) weakly ρ-decreasing on Tτ , if all conditions of definition (1) are

satisfied with the comparison function b of class CK, i.e.

v(t, x, w) ≤ b(t, ρ(t, x)) for all (t, x, w �= 0) ∈ Tτ ×N × Rm

whenever ρ(t, x) < ∆3, ∆3 > 0;

(5) asymptotically ρ-decreasing on Tτ , if all conditions of definition (1)

are satisfied with the comparison function b of class KL, i.e

v(t, x, w) ≤ b(ρ(t, x), t) for all (t, x, w �= 0) ∈ Tτ ×N × Rm

whenever ρ(t, x) < ∆4, ∆4 > 0.

The expression “on Tτ” in definitions (1) – (3) is omitted, if all conditions

are satisfied for τ ∈ R.

Proposition 2.6.2 For the matrix-valued function U : R×Rn → Rm×m

to be ρ-decreasing on Tτ , it is necessary and sufficient that it can be rep-

resented as

(2.6.5)
v(t, x, w) = wTU−(t, x)w + b(ρ(t, x))

for ρ(t, x) < ∆2 and (t, x, w �= 0) ∈ Tτ ×N × Rm,

where U−(t, x) is negative semi-definite on Tτ matrix-valued function and

function b is of class K.

The proof is similar to the proof of Proposition 2.6.1 with the function

wTU−(t, x)w = v(t, x, w) − b(ρ(t, x)).

Definition 2.6.3 The matrix-valued function U : R×Rn → Rm×m is

(1) radially ρ-unbounded on Tτ , if for ρ(t, x) → +∞

v(t, x, w) → +∞ for all t ∈ Tτ ;

(2) radially ρ-unbounded, if for ρ(t, x) → +∞

v(t, x, w) → +∞ for all t ∈ Tτ for all τ ∈ R.

For the measures ρ(t, x) and ρ0(t, x) taking values from the sets M

and M0 respectively the notions below are the generalizations of property

of Movchan’s metrices (cf. Movchan [1], and Lakshmikantham, Leela, and

Martynyuk [1]).
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Definition 2.6.4 Let ρ0, ρ ∈ M. We claim that

(1) the measure ρ(t, x) is continuous with respect to the measure ρ0(t, x),

if there exist a constant δ1 > 0 and a comparison function ϕ ∈ CK

such that

ρ(t, x) < ϕ(t, ρ0(t, x))

whenever ρ0(t, x) < δ1;

(2) the measure ρ(t, x) is uniformly continuous with respect to the mea-

sure ρ0(t, x), if in definition (1) the comparison function ϕ ∈ K,

i.e. ϕ does not depend on t;

(3) the measure ρ(t, x) is asymptotically continuous with respect to the

measure ρ0(t, x), if there exist a constant δ2 > 0 and a comparison

function ψ ∈ KL such that

ρ(t, x) < ψ(t, ρ0(t, x))

whenever ρ0(t, x) < δ2.

We return now to the system (2.2.7) and assume that the operator (2.2.9)

is contractive for all (P, S) ∈ P × S. The solution x(t; t0, x0) of system

(2.2.7) is designated by x(t) and its dependence on (P, S) ∈ P ×S is taken

into account.

Definition 2.6.5 System (2.2.7) is

(1) (ρ0, ρ)-stable on P ×S, if for every t0 ∈ Ti and ε > 0 there exists

a positive function δ(t0, ε), continuous in t0 for each ε so that for

ρ0(t0, x0) < δ the inequality ρ(t, x(t)) < ε holds for all t ∈ T0 and

all (P, S) ∈ P × S;

(2) (ρ0, ρ)-attractive on P × S, if for any t0 ∈ Ti and any ζ > 0

there exist ∆(t0) > 0 and τ = τ(t0, x0, ζ) ∈ [0, +∞) such that

for ρ0(t0, x0) < ∆(t0) the inequality ρ(t, x(t)) < ζ holds for all

t ∈ (t0 + τ,∞) when all (P, S) ∈ P × S;

(3) asymptotically (ρ0, ρ)-stable on P×S, if it is (ρ0, ρ)-stable on P×S

and (ρ0, ρ)-attractive on P × S.

The definitions of other types of dynamical properties of system (2.2.5)

with respect to two measures under nonclassical structural perturbations

can be formulated in terms of Definition 2.6.5 and the corresponding Defi-

nitions 1.2.1 – 1.2.3.66 2. CONTINUOUS LARGE-SCALE SYSTEMS

2.6.1.2 Test for stability analysis The application of matrix-valued Li-

apunov function and two measures allows one to extend the set of the

dynamical properties of the system under consideration which can be in-

vestigated by the Liapunov direct method. Moreover, it is possible to use

less strict assumptions on the components of auxiliary matrix-valued func-

tion.

Theorem 2.6.1 In system (2.2.7) let the vector-function Q be conti-

nuous on R × Ω × P × S. If

(1) the measures ρ0 and ρ are of class M;

(2) there exist a matrix-valued function U(t, x) and a vector w ∈ Rm

such that v(t, x, w) ∈ C(R×S×Rm, R+) and is locally Lipschitzian

in x;

(3) function v(t, x, w) satisfies the estimates

(a) a(ρ(t, x)) ≤ v(t, x, w) ≤ b(t, ρ0(t, x)) for all (t, x, w) ∈

S(ρ, H) × Rm or

(b) a(ρ(t, x)) ≤ v(t, x, w) ≤ c(ρ0(t, x)) for all (t, x, w) ∈

S(ρ, H) × Rm,

where a and c are of class K and b is of class CK;

(4) there exists a matrix Φ(P, S) such that

D+v(t, x, w)|(·) ≤ eTΦ̂(P, S)e for all (P, S) ∈ P × S,

where e = (1, 1, . . . , 1)T∈Rm and Φ̂(P, S)=
1

2
(Φ(P, S)+ΦT(P, S));

(5) there exists a constant m×m matrix Φ such that Φ̂(P, S) ≤ Φ for

all (P, S) ∈ P × S.

Then

(1) system (2.2.7) is (ρ0, ρ)-stable on P×S, if the matrix Φ is negative

semi-definite, the measure ρ is continuous with respect to measure

ρ0 and condition (3a) is satisfied;

(2) system (2.2.7) is uniformly (ρ0, ρ)-stable on P × S, if the matrix

Φ is negative semi-definite, the measure ρ is uniformly continuous

with respect to measure ρ0 and condition (3b) is satisfied.

Proof Note that the function v(t, x, w) determined by the formula (2.6.2)

is scalar pseudoquadratic with respect to w ∈ Rm
+

. Therefore the property
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2.6.1.2 Test for stability analysis The application of matrix-valued Li-

apunov function and two measures allows one to extend the set of the

dynamical properties of the system under consideration which can be in-

vestigated by the Liapunov direct method. Moreover, it is possible to use

less strict assumptions on the components of auxiliary matrix-valued func-

tion.

Theorem 2.6.1 In system (2.2.7) let the vector-function Q be conti-

nuous on R × Ω × P × S. If

(1) the measures ρ0 and ρ are of class M;

(2) there exist a matrix-valued function U(t, x) and a vector w ∈ Rm

such that v(t, x, w) ∈ C(R×S×Rm, R+) and is locally Lipschitzian

in x;

(3) function v(t, x, w) satisfies the estimates

(a) a(ρ(t, x)) ≤ v(t, x, w) ≤ b(t, ρ0(t, x)) for all (t, x, w) ∈

S(ρ, H) × Rm or

(b) a(ρ(t, x)) ≤ v(t, x, w) ≤ c(ρ0(t, x)) for all (t, x, w) ∈

S(ρ, H) × Rm,

where a and c are of class K and b is of class CK;

(4) there exists a matrix Φ(P, S) such that

D+v(t, x, w)|(·) ≤ eTΦ̂(P, S)e for all (P, S) ∈ P × S,

where e = (1, 1, . . . , 1)T∈Rm and Φ̂(P, S)=
1

2
(Φ(P, S)+ΦT(P, S));

(5) there exists a constant m×m matrix Φ such that Φ̂(P, S) ≤ Φ for

all (P, S) ∈ P × S.

Then

(1) system (2.2.7) is (ρ0, ρ)-stable on P×S, if the matrix Φ is negative

semi-definite, the measure ρ is continuous with respect to measure

ρ0 and condition (3a) is satisfied;

(2) system (2.2.7) is uniformly (ρ0, ρ)-stable on P × S, if the matrix

Φ is negative semi-definite, the measure ρ is uniformly continuous

with respect to measure ρ0 and condition (3b) is satisfied.

Proof Note that the function v(t, x, w) determined by the formula (2.6.2)

is scalar pseudoquadratic with respect to w ∈ Rm
+

. Therefore the property
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of having a fixed sign of function (2.6.2) with respect to measure ρ does not

requre the ρ-signdefiniteness of elements uij(t, x) of matrix (2.6.1).

First we shall prove the assertion (1) of Theorem 2.6.1. Conditions (1),

(2) and (4a) imply that the function v(t, x, w) is weakly ρ0-decreasing.

Therefore there exists a constant ∆0 = ∆0(t0) > 0 for t0 ∈ R such that

for ρ0(t0, x0) < ∆0

(2.6.6) v(t0, x0, w) ≤ b(t0, ρ0(t0, x0)).

Also, by condition (4a) there exists ∆1 ∈ (0, H) such that

(2.6.7) a(ρ(t, x)) ≤ v(t, x, w) for ρ(t, x) ≤ ∆1.

The facf that the measure ρ is continuous with respect to the measure ρ0

yields the existence of a function ϕ ∈ CK and a constant ∆2 = ∆2(t0) > 0

such that

(2.6.8) ρ(t0, x0) ≤ ϕ(t0, ρ0(t0, x0)) for ρ0(t0, x0) < ∆2,

where ∆2 is taken so that

(2.6.9) ϕ(t0, ∆2) < ∆1.

Let ε ∈ (0, ∆0) and t0 ∈ R . Since the functions a ∈ K and b ∈ CK,

given ε and t0, one can take ∆3 = ∆3(t0, ε) > 0 so that

(2.6.10) b(t0, ∆3) < a(ε).

We take δ(t0) = min (∆1, ∆2, ∆3). Conditions (2.6.6) – (2.6.10) imply

that for ρ0(t0, x0) < δ

a(ρ(t0, x0)) ≤ v(t0, x0, w) ≤ b(t0, ρ0(t0, x0)) < a(ε),

from which it follows that

ρ(t0, x0) < ε.

Let x(t; t0, x0) = x(t) be a solution of system (2.2.7) with the initial

conditions for which ρ0(t0, x0) < δ. Let us verify that under conditions of

Theorem 2.6.1 the estimate

(2.6.11) ρ(t, x(t)) < ε for all t ≥ t0 and for all (P, S) ∈ P × S
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of having a fixed sign of function (2.6.2) with respect to measure ρ does not

requre the ρ-signdefiniteness of elements uij(t, x) of matrix (2.6.1).

First we shall prove the assertion (1) of Theorem 2.6.1. Conditions (1),

(2) and (4a) imply that the function v(t, x, w) is weakly ρ0-decreasing.

Therefore there exists a constant ∆0 = ∆0(t0) > 0 for t0 ∈ R such that

for ρ0(t0, x0) < ∆0

(2.6.6) v(t0, x0, w) ≤ b(t0, ρ0(t0, x0)).

Also, by condition (4a) there exists ∆1 ∈ (0, H) such that

(2.6.7) a(ρ(t, x)) ≤ v(t, x, w) for ρ(t, x) ≤ ∆1.

The facf that the measure ρ is continuous with respect to the measure ρ0

yields the existence of a function ϕ ∈ CK and a constant ∆2 = ∆2(t0) > 0

such that

(2.6.8) ρ(t0, x0) ≤ ϕ(t0, ρ0(t0, x0)) for ρ0(t0, x0) < ∆2,

where ∆2 is taken so that

(2.6.9) ϕ(t0, ∆2) < ∆1.

Let ε ∈ (0, ∆0) and t0 ∈ R . Since the functions a ∈ K and b ∈ CK,

given ε and t0, one can take ∆3 = ∆3(t0, ε) > 0 so that

(2.6.10) b(t0, ∆3) < a(ε).

We take δ(t0) = min (∆1, ∆2, ∆3). Conditions (2.6.6) – (2.6.10) imply

that for ρ0(t0, x0) < δ

a(ρ(t0, x0)) ≤ v(t0, x0, w) ≤ b(t0, ρ0(t0, x0)) < a(ε),

from which it follows that

ρ(t0, x0) < ε.

Let x(t; t0, x0) = x(t) be a solution of system (2.2.7) with the initial

conditions for which ρ0(t0, x0) < δ. Let us verify that under conditions of

Theorem 2.6.1 the estimate

(2.6.11) ρ(t, x(t)) < ε for all t ≥ t0 and for all (P, S) ∈ P × S
68 2. CONTINUOUS LARGE-SCALE SYSTEMS

holds true.

Assume that there exists t1 ≥ t0 such that

ρ(t1, x(t)) = ε and ρ(t, x(t)) < ε, t ∈ [t0, t1),

for the solution x(t) with the initial conditions ρ0(t0, x0) < δ. Condition

(3) and the fact that the matrix Φ̂(P, S) is negative semi-definite in the

domain S(ρ, H) imply that the roots λi = λi(Φ̂(P, S)) of the equation

(2.6.12) det [Φ̂ − λE ] = 0

satisfy the condition λi(Φ̂(P, S)) ≤ 0, i = 1, 2, . . . , m, in the domain

S(ρ, H). Therefore

D+v(t, x, w)|(2.2.7) ≤ eTΦ̂(P, S)e ≤ 0 for all (P, S) ∈ P × S

and for all t ∈ [t0, t1] . Hence it follows that

a(ε) = a(ρ(t1, x(t1))) ≤ v(t, x, w) ≤ v(t0, x0, w)

≤ b(t0, ρ0(t0, x0)) < a(ε).

The contradiction obtained shows that the assertion t1 ∈ [t0, +∞) is false.

Consequently, system (2.2.7) is (ρ0, ρ)–stable on P × S.

The assertion (2) of Theorem 2.6.1 is proved in a similar manner. Be-

sides, it is taken into account that condition (4b) is satisfied and the measure

ρ is uniformly continuous with respect to the measure ρ0, and the value δ

can be taken independent of t0 ∈ R (t0 ∈ Tτ ). Hence, system (2.2.7) is

uniformly (ρ0, ρ)–stable on P × S.

The assertion below is an analogue of the Liapunov’s theorem on asymp-

totic stability in the framework of stability investigation of system (2.2.7)

with respect to two measures.

Theorem 2.6.2 In system (2.2.7) let the vector-function Q be conti-

nuous on R+ × Ω × P × S. If

(1) the measures ρ0 and ρ are of class M;

(2) there exist a matrix-valued function U ∈ C(R × S, Rm×m) and a

vector w ∈ Rm
+ such that the function v(t, x, w) is locally Lipschitz-

ian in x and satisfies estimates

a(ρ(t, x)) ≤ v(t, x, w) ≤ c(ρ0(t, x))

Download free eBooks at bookboon.com



Stability Theory of Large-Scale  
Dynamical Systems

74 

Continuous Large-Scale Systems

68 2. CONTINUOUS LARGE-SCALE SYSTEMS

holds true.

Assume that there exists t1 ≥ t0 such that

ρ(t1, x(t)) = ε and ρ(t, x(t)) < ε, t ∈ [t0, t1),

for the solution x(t) with the initial conditions ρ0(t0, x0) < δ. Condition

(3) and the fact that the matrix Φ̂(P, S) is negative semi-definite in the

domain S(ρ, H) imply that the roots λi = λi(Φ̂(P, S)) of the equation

(2.6.12) det [Φ̂ − λE ] = 0

satisfy the condition λi(Φ̂(P, S)) ≤ 0, i = 1, 2, . . . , m, in the domain

S(ρ, H). Therefore

D+v(t, x, w)|(2.2.7) ≤ eTΦ̂(P, S)e ≤ 0 for all (P, S) ∈ P × S

and for all t ∈ [t0, t1] . Hence it follows that

a(ε) = a(ρ(t1, x(t1))) ≤ v(t, x, w) ≤ v(t0, x0, w)

≤ b(t0, ρ0(t0, x0)) < a(ε).

The contradiction obtained shows that the assertion t1 ∈ [t0, +∞) is false.

Consequently, system (2.2.7) is (ρ0, ρ)–stable on P × S.

The assertion (2) of Theorem 2.6.1 is proved in a similar manner. Be-

sides, it is taken into account that condition (4b) is satisfied and the measure

ρ is uniformly continuous with respect to the measure ρ0, and the value δ

can be taken independent of t0 ∈ R (t0 ∈ Tτ ). Hence, system (2.2.7) is

uniformly (ρ0, ρ)–stable on P × S.

The assertion below is an analogue of the Liapunov’s theorem on asymp-

totic stability in the framework of stability investigation of system (2.2.7)

with respect to two measures.

Theorem 2.6.2 In system (2.2.7) let the vector-function Q be conti-

nuous on R+ × Ω × P × S. If

(1) the measures ρ0 and ρ are of class M;

(2) there exist a matrix-valued function U ∈ C(R × S, Rm×m) and a

vector w ∈ Rm
+ such that the function v(t, x, w) is locally Lipschitz-

ian in x and satisfies estimates

a(ρ(t, x)) ≤ v(t, x, w) ≤ c(ρ0(t, x))
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for all (t, x, w) ∈ S(ρ, H) × Rm
+ , where a, c ∈ K;

(3) there exists a constant m × m–matrix B(P, S), such that

D+v(t, x, w) ≤ uTB(P, S)u for all (P, S) ∈ P × S

where uT = (ρ
1/2

01
(t, x), . . . , ρ

1/2

0m (t, x)) and ρ
1/2

0s (t, x) = sρ
1/2

0
(t, x),

s = 1, 2, . . . , m;

(4) there exists a constant m × m–matrix B such that

B̂(P, S) =
1

2
(B(P, S) + BT(P, S)) ≤ B for all (P, S) ∈ P × S.

Then system (2.2.7) is uniformly asymptotically (ρ0, ρ)–stable on P×S,

if the matrix B is negative definite and the measure ρ is uniformly conti-

nuous with respect to the measure ρ0.

Proof Condition (2) of Theorem 2.6.2 implies that for the function

v(t, x, w) = wTU(t, x)w, w ∈ Rm
+

the constants 0 < H0 ≤ H and ∆0 > 0 exist so that

a(ρ(t, x)) ≤ v(t, x, w) for all (t, x, w) ∈ S(ρ, H0) × Rm
+

and

v(t, x, w) ≤ b(ρ0(t, x)) for ρ0(t, x) < ∆0, w ∈ Rm
+

.

Having compared the conditions of Theorem 2.6.1 and those of Theorem

2.6.2 we conclude that system (2.2.7) is uniformly (ρ0, ρ)–stable on P ×S.

Hence it follows that for ε = H0 one can take ∆1 = ∆1(H0) so that the

inequality ρ(t, x(t)) < H0 holds true whenever ρ0(t0, x0) < ∆1 for any

solution x(t) = x(t; t0, x0) of system (2.2.7).

By condition (3) of Theorem (2.2.6) we have

(2.6.13)

D+v(t, x, w) ≤ uTB(P, S)u ≤ λM (B)uTu

= λM (B)

m∑

s=1

ρ0s(t, x) for all (P, S) ∈ P × S.
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for all (t, x, w) ∈ S(ρ, H) × Rm
+ , where a, c ∈ K;

(3) there exists a constant m × m–matrix B(P, S), such that

D+v(t, x, w) ≤ uTB(P, S)u for all (P, S) ∈ P × S

where uT = (ρ
1/2

01
(t, x), . . . , ρ

1/2

0m (t, x)) and ρ
1/2

0s (t, x) = sρ
1/2

0
(t, x),

s = 1, 2, . . . , m;

(4) there exists a constant m × m–matrix B such that

B̂(P, S) =
1

2
(B(P, S) + BT(P, S)) ≤ B for all (P, S) ∈ P × S.

Then system (2.2.7) is uniformly asymptotically (ρ0, ρ)–stable on P×S,

if the matrix B is negative definite and the measure ρ is uniformly conti-

nuous with respect to the measure ρ0.

Proof Condition (2) of Theorem 2.6.2 implies that for the function

v(t, x, w) = wTU(t, x)w, w ∈ Rm
+

the constants 0 < H0 ≤ H and ∆0 > 0 exist so that

a(ρ(t, x)) ≤ v(t, x, w) for all (t, x, w) ∈ S(ρ, H0) × Rm
+

and

v(t, x, w) ≤ b(ρ0(t, x)) for ρ0(t, x) < ∆0, w ∈ Rm
+

.

Having compared the conditions of Theorem 2.6.1 and those of Theorem

2.6.2 we conclude that system (2.2.7) is uniformly (ρ0, ρ)–stable on P ×S.

Hence it follows that for ε = H0 one can take ∆1 = ∆1(H0) so that the

inequality ρ(t, x(t)) < H0 holds true whenever ρ0(t0, x0) < ∆1 for any

solution x(t) = x(t; t0, x0) of system (2.2.7).

By condition (3) of Theorem (2.2.6) we have

(2.6.13)

D+v(t, x, w) ≤ uTB(P, S)u ≤ λM (B)uTu

= λM (B)

m∑

s=1

ρ0s(t, x) for all (P, S) ∈ P × S.
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Since the matrix B is symmetric and negative definite, λM (B) < 0. The

measure ρ0 is of class M, so there exists a function ψ ∈ K such that

(2.6.14) ψ(ρ0(t, x)) ≥
m∑

s=1

ρ0s(t, x).

Therefore

(2.6.15) D+v(t, x, w) ≤ −λM (B)ψ(ρ0(t, x))

for all (t, x, w) ∈ S(ρ, H) × Rm
+

and for all (P, S) ∈ P × S.

Further for arbitrary 0 < ε < H0 we take δ = δ(ε) being the same as in

the definition of uniform (ρ0, ρ)–stability. Assume that ρ0(t0, x0) < δ∗ =

min {∆0, ∆1} and take

T (ε) =
b(δ∗)

λM (B)ψ(δ)
+ 1,

where λM (B) is the maximal eigenvalue of the symmetric matrix B(w) and

the function ψ is of class K. We shall prove uniform asymptotic (ρ0, ρ)–

stability on P×S of system (2.2.7), if we make sure that a t∗ ∈ [t0, t0+T ]

exists such that

(2.6.16) ρ0(t
∗, x(t∗)) < δ.

If this is not true, then there exists a solution x(t) = x(t; t0, x0) of system

(2.2.7) with local values ρ0(t0, x0) < δ∗ for which

(2.6.17) ρ0(t, x(t)) ≥ δ for all t∗ ∈ [t0, t0 + T ].

We have from (2.6.16)

(2.6.18)

λM (B)

t0+T∫

t0

ψ(ρ0(s, x(s))) ds ≤ v(t0, x0, w) ≤ b(ρ0(t0, x0) ≤ b(δ∗).

In view of (2.6.16) we have from (2.6.13)

(2.6.19) λM (B)

t0+T∫

t0

ψ(ρ0(s, x(s))) ds ≥ λm(B)ψ(δ)T > b(δ∗)
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Since the matrix B is symmetric and negative definite, λM (B) < 0. The

measure ρ0 is of class M, so there exists a function ψ ∈ K such that

(2.6.14) ψ(ρ0(t, x)) ≥
m∑

s=1

ρ0s(t, x).

Therefore

(2.6.15) D+v(t, x, w) ≤ −λM (B)ψ(ρ0(t, x))

for all (t, x, w) ∈ S(ρ, H) × Rm
+

and for all (P, S) ∈ P × S.

Further for arbitrary 0 < ε < H0 we take δ = δ(ε) being the same as in

the definition of uniform (ρ0, ρ)–stability. Assume that ρ0(t0, x0) < δ∗ =

min {∆0, ∆1} and take

T (ε) =
b(δ∗)

λM (B)ψ(δ)
+ 1,

where λM (B) is the maximal eigenvalue of the symmetric matrix B(w) and

the function ψ is of class K. We shall prove uniform asymptotic (ρ0, ρ)–

stability on P×S of system (2.2.7), if we make sure that a t∗ ∈ [t0, t0+T ]

exists such that

(2.6.16) ρ0(t
∗, x(t∗)) < δ.

If this is not true, then there exists a solution x(t) = x(t; t0, x0) of system

(2.2.7) with local values ρ0(t0, x0) < δ∗ for which

(2.6.17) ρ0(t, x(t)) ≥ δ for all t∗ ∈ [t0, t0 + T ].

We have from (2.6.16)

(2.6.18)

λM (B)

t0+T∫

t0

ψ(ρ0(s, x(s))) ds ≤ v(t0, x0, w) ≤ b(ρ0(t0, x0) ≤ b(δ∗).

In view of (2.6.16) we have from (2.6.13)

(2.6.19) λM (B)

t0+T∫

t0

ψ(ρ0(s, x(s))) ds ≥ λm(B)ψ(δ)T > b(δ∗)
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for the above choice of T . Inequality (2.6.19) contradicts inequality (2.6.18).

This proves Theorem 2.6.2.

Remark 2.6.1 The further development of stability theory of nonlinear

systems under nonclassical structural perturbations with respect to two

measures (ρ0, ρ) is associated with the construction of the matrix-valued

functions which satisfy the conditions of sign-definiteness with respect to a

given measure. In the investigation of the dynamical properties of system

(2.2.7) it is reasonable to consider the following measures;

(1) in the investigation of stability of the state x = 0 in the sense of

Liapunov the two measures ρ0 and ρ are taken as follows: ρ(t, x) =

�x� and ρ0(t0, x0) = �x0�;

(2) in the investigation of stability of the prescribed motion x0(t) of

system (2.2.7) the two measures are taken as ρ(t, x) = ρ0(t, x) =

�x − x0(t)�;

(3) in the stability investigation of the zero solution of system (2.2.7)

with respect to a part of variables the two measures are taken as

ρ(t, x) = �x�s, 1 ≤ s < n, and ρ0(t, x) = �x�;

(4) if Ti = R, ρ(t, x) = ρ0(t, x) = �x� + σ(t), where σ is of class L,

then Definition 2.6.5 (a) characterizes stability of the asymptotically

invariant set {0};

(5) let A ⊂ Rn, Ti = R and ρ(t, x) = ρ0(t, x) = d(x, A), where d(x, A)

is the distance from the set A to the point x. Then the two given

measures characterize stability of the invariant set A;

(6) let A ⊂ B ⊂ Rn, Ti = R and ρ(t, x) = d(x, B), ρ0(t, x) = d(x, A).

Then the two given measures characterize stability of the invariant

set B with respect to the set A;

(7) let the k-dimensional integral manifold M of system (2.2.7) contain

the point x = 0 and the vector-function Q(t, x, P, S) = 0 for x = 0,

and also Ti = R, ρ(t, x) = ρ0(t, x) = �x�n+k + d(x, M). Then

the two given measures are characteristics of conditional stability

of the state x = 0 of system (2.2.7) under nonclassical structural

perturbations;

(8) let system (2.2.7) have a periodic solution and C be a closed orbit

in the phase space. If ρ(t, x) = ρ0(t, x) = d(x, C) and Ti = R,

then the two given measures are characteristics of orbital stability

of the periodic motion under nonclassical structural perturbations.
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for the above choice of T . Inequality (2.6.19) contradicts inequality (2.6.18).

This proves Theorem 2.6.2.

Remark 2.6.1 The further development of stability theory of nonlinear

systems under nonclassical structural perturbations with respect to two

measures (ρ0, ρ) is associated with the construction of the matrix-valued

functions which satisfy the conditions of sign-definiteness with respect to a

given measure. In the investigation of the dynamical properties of system

(2.2.7) it is reasonable to consider the following measures;

(1) in the investigation of stability of the state x = 0 in the sense of

Liapunov the two measures ρ0 and ρ are taken as follows: ρ(t, x) =

�x� and ρ0(t0, x0) = �x0�;

(2) in the investigation of stability of the prescribed motion x0(t) of

system (2.2.7) the two measures are taken as ρ(t, x) = ρ0(t, x) =

�x − x0(t)�;

(3) in the stability investigation of the zero solution of system (2.2.7)

with respect to a part of variables the two measures are taken as

ρ(t, x) = �x�s, 1 ≤ s < n, and ρ0(t, x) = �x�;

(4) if Ti = R, ρ(t, x) = ρ0(t, x) = �x� + σ(t), where σ is of class L,

then Definition 2.6.5 (a) characterizes stability of the asymptotically

invariant set {0};

(5) let A ⊂ Rn, Ti = R and ρ(t, x) = ρ0(t, x) = d(x, A), where d(x, A)

is the distance from the set A to the point x. Then the two given

measures characterize stability of the invariant set A;

(6) let A ⊂ B ⊂ Rn, Ti = R and ρ(t, x) = d(x, B), ρ0(t, x) = d(x, A).

Then the two given measures characterize stability of the invariant

set B with respect to the set A;

(7) let the k-dimensional integral manifold M of system (2.2.7) contain

the point x = 0 and the vector-function Q(t, x, P, S) = 0 for x = 0,

and also Ti = R, ρ(t, x) = ρ0(t, x) = �x�n+k + d(x, M). Then

the two given measures are characteristics of conditional stability

of the state x = 0 of system (2.2.7) under nonclassical structural

perturbations;

(8) let system (2.2.7) have a periodic solution and C be a closed orbit

in the phase space. If ρ(t, x) = ρ0(t, x) = d(x, C) and Ti = R,

then the two given measures are characteristics of orbital stability

of the periodic motion under nonclassical structural perturbations.72 2. CONTINUOUS LARGE-SCALE SYSTEMS

2.6.2 Large-scale power systems In this Section, besides the general

notation used throughout the book, the following symbols will be used (see

Grujić, et al. [1])

N is a number of system’s generators (or machines);

n, n = N − 1, contrary to the previous Sections n does not denote here

the dimension of system’s state;

Aij = EiEjYij ;

Di is a mechanical damping coefficient of the i-th generator;

Dij is an electromagnetic damping coefficient between the i-th and j-th

generators;

Ei is a modulus of the i-th generator’s internal electromotive force (volt-

age);

ki = M−1

i ;

Mi is an inertia coefficient of the i-th generator;

Pmi is a mechanical power delivered to the i-th generator from its tur-

bine;

Pei is an electrical power delivered by the i-th generator to the network;

pmi is a variation of the mechanical power of the i-th generator;

P 0

mi is a steady state value of Pmi;

p0

mi is a steady state value of pmi;

pi = pmi − p0

mi;

p
iN

= p
i
− p

N
;

Y is an admittance matrix of the network reduced at the internal gen-

erator nodes;

Yij is a modulus of the ij-th element of Y , Yij = Yji;

αiµ
−1

i is a gain of the first order proportional regulator of the i-th

generator;

βij = AijM
−1

i ;

Γi = λi + λNi +
n∑

j=1

j �=i

λij ;

δi is a rotor angle of the i-th generator relative to a reference;

δij = δi − δj;

δ0

i is the equilibrium under consideration of the i-th generator;

δ0

iN is a value of δiN at the equilibrium state;

θij is an argument of the ij-th element of Y , θij = θji;

λi = DiM
−1

i , if λi = λ, constant for i = 1, 2, . . . , N ;

λ is a “uniform” (mechanical) damping;
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Ei is a modulus of the i-th generator’s internal electromotive force (volt-

age);

ki = M−1
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Mi is an inertia coefficient of the i-th generator;

Pmi is a mechanical power delivered to the i-th generator from its tur-

bine;

Pei is an electrical power delivered by the i-th generator to the network;

pmi is a variation of the mechanical power of the i-th generator;

P 0

mi is a steady state value of Pmi;

p0

mi is a steady state value of pmi;

pi = pmi − p0

mi;

p
iN

= p
i
− p

N
;

Y is an admittance matrix of the network reduced at the internal gen-

erator nodes;

Yij is a modulus of the ij-th element of Y , Yij = Yji;

αiµ
−1

i is a gain of the first order proportional regulator of the i-th

generator;

βij = AijM
−1

i ;

Γi = λi + λNi +
n∑

j=1

j �=i

λij ;

δi is a rotor angle of the i-th generator relative to a reference;

δij = δi − δj;

δ0

i is the equilibrium under consideration of the i-th generator;

δ0

iN is a value of δiN at the equilibrium state;

θij is an argument of the ij-th element of Y , θij = θji;

λi = DiM
−1

i , if λi = λ, constant for i = 1, 2, . . . , N ;

λ is a “uniform” (mechanical) damping;
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λij = DijM
−1

i ;

Λij = λij − λNj for all i = 1, 2, . . . , n;

ΛNi = λN − λi + λiN ;

µ−1

i is a time constant of the first order proportional speed regulator of

the i-th generator;

σiN = δiN − δ0

iN ;

σij = σiN − σjN ;

Ωi is a rotor speed of the i-th generator above the synchronous speed:

Ωi = δ̇i;

Ω0

i is the value of Ωi at the steady state operation called “equilibrium

state”;

Ωij = Ωi − Ωj ;

ωi = Ωi − Ω0

i ;

ωij = ωi − ωj .

According to Shaaban [1], Shaaban and Grujic [1], and Grujic, et al. [1],

pp. 341 – 345, an N -machine power system is decomposed into subsystems,

each consisting of two machines in addition to the comparison machine. The

system is decomposed into (N − 1)/2 interconnected subsystems for odd

number N . When considering transfer conductances, mechanical damp-

ing, electromagnetic damping and speed governor action, the mathemati-

cal model of the system is derived, and it is decomposed into (N − 1)/2

sixth-order and one second-order interconnected subsystems. If N is even,

then the system is decomposed into (N −2)/2 sixth-order, one third-order

and one second-order sybsystems.

In this section N is odd, without loss of generality. The system

(2.6.20)

dωi

dt
= −λiωi −

N∑

j=1

λij(ωi − ωj) + ki

(

pi −

N∑

j=1

Aijφij

)

,

dpi

dt
= −µipi − αiωi, i = 1, 2, . . . , n, N = n + 1,

is decomposed into (N − 1)/2 interconnected subsystems, each consisting

of two machines and the comparison machine, using the triplewise decom-

position. It is to be noted that none of the system machines (except for the

comparison machine) can be included in more than one subsystem.
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λij = DijM
−1

i ;

Λij = λij − λNj for all i = 1, 2, . . . , n;

ΛNi = λN − λi + λiN ;

µ−1

i is a time constant of the first order proportional speed regulator of

the i-th generator;

σiN = δiN − δ0

iN ;

σij = σiN − σjN ;

Ωi is a rotor speed of the i-th generator above the synchronous speed:

Ωi = δ̇i;

Ω0

i is the value of Ωi at the steady state operation called “equilibrium

state”;

Ωij = Ωi − Ωj ;

ωi = Ωi − Ω0

i ;

ωij = ωi − ωj .

According to Shaaban [1], Shaaban and Grujic [1], and Grujic, et al. [1],

pp. 341 – 345, an N -machine power system is decomposed into subsystems,

each consisting of two machines in addition to the comparison machine. The

system is decomposed into (N − 1)/2 interconnected subsystems for odd

number N . When considering transfer conductances, mechanical damp-

ing, electromagnetic damping and speed governor action, the mathemati-

cal model of the system is derived, and it is decomposed into (N − 1)/2

sixth-order and one second-order interconnected subsystems. If N is even,

then the system is decomposed into (N −2)/2 sixth-order, one third-order

and one second-order sybsystems.

In this section N is odd, without loss of generality. The system

(2.6.20)

dωi

dt
= −λiωi −

N∑

j=1

λij(ωi − ωj) + ki

(

pi −

N∑

j=1

Aijφij

)

,

dpi

dt
= −µipi − αiωi, i = 1, 2, . . . , n, N = n + 1,

is decomposed into (N − 1)/2 interconnected subsystems, each consisting

of two machines and the comparison machine, using the triplewise decom-

position. It is to be noted that none of the system machines (except for the

comparison machine) can be included in more than one subsystem.
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Now, by introducing the set JI = {iI , iI + 1} and defining the state

vectors xI and xN as follows:

(2.6.21)

xI = [σiIN , σiI+1,N , ωiIN , ωiI+1,N , PiIN , PiI+1,N ]T

= [xI1, xI2, xI3, xI4, xI5, xI6 ]T,

xN = [ωN , PN ]T = [xN1, xN2 ]T,

we can decompose the system mathematical model

(2.6.22) x = [σ1N , ω1, p1, σ2N , ω2, p2, . . . , σnN , ωn, pn, ωN , pN ]T

into s = (N − 1)/2 sixth-order interconnected subsystems and the second-

order interconnected subsystem, which has the general form

(2.6.23)
dxN

dt
= PNxN + hN (x),

where

PN =

�
−λN M−1

N

−αN µN

�

,

and

hN =






N−1�

j=1

{λNjωjN − M−1

N ANjφNj(σNj)}

0




 .

Each of the sixth-order subsystems may be written in the general form

(2.6.24)
dxI

dt
= PIxI + BIfI(σI) + hI(x) for I = 1, 2, . . . , m,

and it can be decomposed into the free (disconnected) subsystems given by

(2.6.25)
dxI

dt
= PIxI + BIfI(σI),

where

(2.6.26) σI = CT

I xI for I = 1, 2, . . . , m

and the interconnections hI(x).
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Now, by introducing the set JI = {iI , iI + 1} and defining the state

vectors xI and xN as follows:

(2.6.21)

xI = [σiIN , σiI+1,N , ωiIN , ωiI+1,N , PiIN , PiI+1,N ]T

= [xI1, xI2, xI3, xI4, xI5, xI6 ]T,

xN = [ωN , PN ]T = [xN1, xN2 ]T,

we can decompose the system mathematical model

(2.6.22) x = [σ1N , ω1, p1, σ2N , ω2, p2, . . . , σnN , ωn, pn, ωN , pN ]T

into s = (N − 1)/2 sixth-order interconnected subsystems and the second-

order interconnected subsystem, which has the general form

(2.6.23)
dxN

dt
= PNxN + hN (x),

where

PN =

�
−λN M−1

N

−αN µN

�

,

and

hN =






N−1�

j=1

{λNjωjN − M−1

N ANjφNj(σNj)}

0




 .

Each of the sixth-order subsystems may be written in the general form

(2.6.24)
dxI

dt
= PIxI + BIfI(σI) + hI(x) for I = 1, 2, . . . , m,

and it can be decomposed into the free (disconnected) subsystems given by

(2.6.25)
dxI

dt
= PIxI + BIfI(σI),

where

(2.6.26) σI = CT

I xI for I = 1, 2, . . . , m

and the interconnections hI(x).2.6 GENERALIZATIONS AND APPLICATIONS 75

In (2.6.25), the matrices PI , BI and CT

I are constant matrices, and

fI(σI) is a nonlinear vector function. Referring to (2.6.22), we can define

the matrix PI as

(2.6.27) Pi =












0 0 1 0 0 0

0 0 0 1 0 0

0 0 −ΓI ΛI M−1

iI
0

0 0 Λ̄I −Γ̄I 0 M−1

iI+1

0 0 −αiI
0 −µiI

0

0 0 0 −αiI+1 0 −µiI+1












.

Assuming that the free subsystem (2.6.25) contains the six nonlinarities

given by

(2.6.28)
φI1(σI1) = cos(σiIN + δ◦iIN − θiIN ) − cos(δ◦iIN − θiIN ),

φI2(σI2) = cos(σiI+1,N + δ◦iI+1,N − θiI+1,N ) − cos(δ◦iI+1,N − θiI+1,N ),

φI3(σI3) = cos(σiI ,iI+1 + δ◦iI ,iI+1
− θiI ,iI+1) − cos(δ◦iI ,iI+1

− θiI ,iI+1),

φI4(σI4) = cos(σiI+1,iI
+ δ◦iI+1,iI

− θiI+1,iI
) − cos(δ◦iI+1,iI

− θiI+1,iI
),

φI5(σI5) = cos(σNiI
+ δ◦NiI

− θiIN ) − cos(δ◦NiI
− θiIN ),

φI6(σI6) = cos(σN,iI+1 + δ◦N,iI+1 − θiI+1,N ) − cos(δ◦N,iI+1 − θiI+1,N ),

we can define the following matrices

fI(σI) = [φI1(σI1), φI2(σI2), φI3(σI3),

φI4(σI4), φI5(σI5), φI6(σI6)]
T,

(2.6.29)

BI =













0 0 0 0 0 0

0 0 0 0 0 0

−M−1

iI
AI 0 −M−1

iI

�AI 0 M−1

N AI M−1

N ĀI

0 −M−1

iI+1
AI 0 −M−1

iI+1
�AI M−1

N AI M−1

N ĀI

0 0 0 0 0 0

0 0 0 0 0 0













,

(2.6.30)
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CT

I =












1 0 0 0 0 0

0 1 0 0 0 0

1 −1 0 0 0 0

−1 1 0 0 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0












,(2.6.31)

hI(x) =





























0

0

τIxN1 + ηIxN2 +

N−1�

j∈JI

�

ΛIjωjN

−
AiIjφiI j(σiIj)

MiI

+
ANjφNj(σNj)

MN

�

τ̄IxN1 + η̄IxN2 +

N−1�

j �∈JI

�

Λ̄IjωjN

−
AiI+1,jφiI+1,j(σiI+1,j)

MiI+1

+
ANjφNj(σNj)

MN

�

−αIxN1 − µIxN2

−ᾱIxN1 − µ̄IxN2





























.

(2.6.32)

In (2.6.27) – (2.6.32) the following additional notation is used:

Aij = EiEjYij ,

AI = EiI
ENYiIN , ĀI = EiI+1ENYiI+1,N , �AI = EiI

EiI+1YiI ,iI+1,

σiIN = δiIN − δ◦iIN , σiI+1,N = δiI+1,N − δ◦iI+1,N ,

σiI ,iI+1 = σiIN − σiI+1,N = δiI ,iI+1 − δ◦iI ,iI+1
,

ωiIN = ωiI
− ωN , ωiI+1,N = δiI+1 − ωN ,

τI = λN − λiI
, τ̄I = λN − λiI+1,

ΛI = λiI ,iI+1 − λN,iI+1, Λ̄I = λiI+1,iI
− λNiI

,

ΛIj = λiIj − λNj , Λ̄Ij = λiI+1,j − λNj ,

γI = λiI
+ λNiI

+

N�

j �=iI

λiIj , γ̄I = λiI+1 + λN,iI+! +

N�

j �=iI+1

λiI+1,j,

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.fuqua.duke.edu/globalmba

BUSINESS HAPPENS HERE.BUSINESS HAPPENS

http://s.bookboon.com/fuqua


Stability Theory of Large-Scale  
Dynamical Systems

82 

Continuous Large-Scale Systems

76 2. CONTINUOUS LARGE-SCALE SYSTEMS
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hI(x) =





























0

0

τIxN1 + ηIxN2 +

N−1�

j∈JI

�

ΛIjωjN

−
AiIjφiI j(σiIj)

MiI

+
ANjφNj(σNj)

MN

�

τ̄IxN1 + η̄IxN2 +

N−1�

j �∈JI

�

Λ̄IjωjN

−
AiI+1,jφiI+1,j(σiI+1,j)

MiI+1

+
ANjφNj(σNj)

MN

�

−αIxN1 − µIxN2

−ᾱIxN1 − µ̄IxN2





























.

(2.6.32)

In (2.6.27) – (2.6.32) the following additional notation is used:

Aij = EiEjYij ,

AI = EiI
ENYiIN , ĀI = EiI+1ENYiI+1,N , �AI = EiI

EiI+1YiI ,iI+1,

σiIN = δiIN − δ◦iIN , σiI+1,N = δiI+1,N − δ◦iI+1,N ,

σiI ,iI+1 = σiIN − σiI+1,N = δiI ,iI+1 − δ◦iI ,iI+1
,

ωiIN = ωiI
− ωN , ωiI+1,N = δiI+1 − ωN ,

τI = λN − λiI
, τ̄I = λN − λiI+1,

ΛI = λiI ,iI+1 − λN,iI+1, Λ̄I = λiI+1,iI
− λNiI

,

ΛIj = λiIj − λNj , Λ̄Ij = λiI+1,j − λNj ,

γI = λiI
+ λNiI

+

N�

j �=iI

λiIj , γ̄I = λiI+1 + λN,iI+! +

N�

j �=iI+1

λiI+1,j,2.6 GENERALIZATIONS AND APPLICATIONS 77

µI = µiI
− µN , µ̄I = µiI+1 − µN ,

αI = αiI
− αN , ᾱI = αiI+1 − αN ,

ηI = M−1

iI
− M−1

N , η̄I = M−1

iI+1
− M−1

N .

It is obvious that the state vector of the whole system is given now by

(2.6.33) x = [xT

1
, xT

2
, . . . , xT

m, xT

N ]T.

For system (2.6.24) the problem of stability is formulated as follows.

Find the conditions under which stability of the equilibrium state x = 0

of system (2.6.30) is deduced from the stability properties of the free sub-

systems

(2.6.34)
dxI

dt
= PIxI + BIFI(σI) for all I = 1, 2, . . . , m

and the properties of the interconnection functions.

According to the general method of investigation of the large scale sys-

tems we shall consider together with system (2.6.25) and subsystems

(2.6.34) the matrix function U(x) whose elements are defined as follows

(2.6.35)

vII(xI) = xT

I QIIxI for all I = 1, 2, . . . , m,

vIJ (xI , xJ) = xT

I QIJxJ for all I, J = 1, 2, . . . , m, I �= J,

vIJ (xI , xJ) = vJI(xI , xJ ) for all I = 1, 2, . . . , m, I �= J,

where QII = [qI
αβ ], qI

αβ = qI
βα, α, β = 1, . . . , 5, are symmetric positive

definite matrices of the order of 5 × 5; QIJ = [qIJ
αβ ], α, β = 1, . . . , 5 are

constant matrices of the order of 5 × 5.

It is easy to verify that for the functions (2.6.41) the bilaterial inequalities

(2.6.36)

λm(QII)�xI�
2
≤ vII(xI) ≤ λM (QII)�xI�

2

for all xI ∈ NIx, I = 1, 2, . . . , m;

−λ
1/2

M (QT

IJQIJ)�xI��xJ� ≤ vIJ(xI , xJ ) ≤ λ
1/2

M (QT

IJQIJ)�xI��xJ�

for all (xI , xJ ) ∈ NIx × NJx, I, J = 1, 2, . . . , m, I �= J

are satisfied, where λm(QII) are minimal and λM (QII) are maximal eigen-

values of the matrices QII ; λ
1/2

M (QT

IJQIJ) are the norms of the matrices

QIJ respectively, NIx is the neighborhood of the state xI = 0.
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For the function

(2.6.37) v(x, η) = ηTU(x)η, η ∈ Rm
+

the estimates

(2.6.38) uTHTQHu ≤ v(x, η) ≤ uTHTQHu

are valid for all x ∈ Nx ⊆ N1x × N2x × . . . × N3x, where

Q = [q
IJ

], Q = [qIJ ], I, J = 1, 2, . . . , m,

q
II

= λm(QII), qII = λM (QII), I, J = 1, 2, . . . , m,

q
IJ

= −qIJ = −λ
1/2

M (QT

IJ , QIJ), I, J = 1, 2, . . . , m, I �= J.

For the total derivatives of functions (2.6.35) along solutions of system

(2.6.24) we get

(2.6.39)

(a) η2

IDvII(xI)
∣
∣
(2.6.34)

≤ ρ
(1)

I �xI�
2,

for all xI ∈ NIx0, I = 1, 2, . . . , m,

(b)

m∑

I=1

η2

IDvII(xI)
ThI(x, S) + 2

m∑

I=1

m∑

J=2

ηIηJDvIJ (xI , xJ )
∣
∣
(2.6.24)

≤

m∑

I=1

ρ
(2)

I + 2

m∑

I=1

m∑

J=2
J>1

ρIJ�xI� �xJ�,

for all (xI , xJ ) ∈ NIx0 × NJx0, Sij ∈ Gij , i, j = 1, 2, . . . , N,

where ρ
(1)

I and ρ
(2)

I are maximal eigenvalues of the matrices

QIIPI + PT

I QII + A1I(S
∗)AT

1I(S
∗),

A2I(S
∗) + AT

2I(S
∗) +

m∑

J=1
J �=I

AJ
2I(S

∗) + AJT

2I (S∗)

respectively; ρIJ are the norms of the matrices

1

2

(
A3I(S

∗) + AT

3I(S
∗) + A3J (S∗) + AT

3J (S∗) + QIJPJ

+ PT

J QIJ + AJ
1I(S

∗) + AIT

1J (S∗) + AJ
3I(S

∗) + AIT

3J (S∗)
)
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Here S∗ ∈ Gij is the constant matrix such that

AkI(S) ≤ AkI(S
∗), Ar

kl(S) ≤ Ar
kl(S

∗),

r, l = I, J, k = 1, 2, 3;

AkI(S) =











akI
11

akI
12

0 0 0

akI
21

akI
22

0 0 0

akI
31 akI

32 0 0 0

akI
41

akI
42

0 0 0

akI
51 akI

52 0 0 0











,

Ar
kl(S) =











arkl
11 arkl

12 0 0 0

arkl
21

arkl
22

0 0 0

arkl
31

arkl
32

0 0 0

arkl
41 arkl

42 0 0 0

arkl
51

arkl
52

0 0 0











,

r, l = I, J, k = 1, 2, 3.

The elements akI
ij , arkl

ij , i = 1, . . . , 5, j = 1, 2, k = 1, 2, 3, r, l = I, J are

determined by means of the constants found in estimates (2.6.45).

It is easy to show that for the function (2.6.37) the estimate

(2.6.40)
Dv(x, η)

�
�
(2.6.24)

≤ uTCu,

for all x ∈ Nx0, Sij ∈ Gij , i, j = 1, 2, . . . , N,

holds true, where

uT = (�x1�, �x2�, . . . , �xm�), C = [cIJ ], cIJ = cJI ,

I, J = 1, 2, . . . , m, cII = ρ
(1)

I + ρ
(2)

I , I = 1, 2, . . . , m,

cIJ = ρIJ , J > I, I = 1, 2, . . . , m, J = 2, 3, . . . , m,

Nx0 ⊆ N1x0 × N2x0 × . . . × Nmx0.

Sufficient conditions of asymptotic stability of system (2.6.24) under non-

classical structural perturbations are as follows.
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Here S∗ ∈ Gij is the constant matrix such that

AkI(S) ≤ AkI(S
∗), Ar

kl(S) ≤ Ar
kl(S

∗),

r, l = I, J, k = 1, 2, 3;

AkI(S) =











akI
11

akI
12

0 0 0

akI
21

akI
22

0 0 0

akI
31 akI

32 0 0 0

akI
41

akI
42

0 0 0

akI
51 akI

52 0 0 0











,

Ar
kl(S) =











arkl
11 arkl

12 0 0 0

arkl
21

arkl
22

0 0 0

arkl
31

arkl
32

0 0 0

arkl
41 arkl

42 0 0 0

arkl
51

arkl
52

0 0 0











,

r, l = I, J, k = 1, 2, 3.

The elements akI
ij , arkl

ij , i = 1, . . . , 5, j = 1, 2, k = 1, 2, 3, r, l = I, J are

determined by means of the constants found in estimates (2.6.45).

It is easy to show that for the function (2.6.37) the estimate

(2.6.40)
Dv(x, η)

�
�
(2.6.24)

≤ uTCu,

for all x ∈ Nx0, Sij ∈ Gij , i, j = 1, 2, . . . , N,

holds true, where

uT = (�x1�, �x2�, . . . , �xm�), C = [cIJ ], cIJ = cJI ,

I, J = 1, 2, . . . , m, cII = ρ
(1)

I + ρ
(2)

I , I = 1, 2, . . . , m,

cIJ = ρIJ , J > I, I = 1, 2, . . . , m, J = 2, 3, . . . , m,

Nx0 ⊆ N1x0 × N2x0 × . . . × Nmx0.

Sufficient conditions of asymptotic stability of system (2.6.24) under non-

classical structural perturbations are as follows.
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Theorem 2.6.3 For the large scale power system (2.6.24) let matrix-

valued function U(x) with elements (2.6.35) be constructed. If the matrix

HTQH is positive definite and the matrix C is negative definite, then the

equilibrium state x = 0 of system (2.6.24) is asymptotically stable under

nonclassical structural perturbations.

The Proof of this theorem follows immediately from the proof of Theo-

rem 2.4.1.

Remark 2.6.2 System (2.6.24) was studied earlier be means of the vector

Liapunov function. The comparison of results of the above monograph with

the approach based on the matrix-valued function shows that the aggrega-

tion matrices in both cases are of the same order. The difference between

the aggregation matrices is that in the determination of the diagonal ele-

ments of the aggregation matrix C the matrices

(2.6.41) AJ
2I(S

∗) + AJT

2I (S∗)

are added, while in the determination of non-diagonal elements the matrices

(2.6.42) QIJPJPT

I QIJ + AJ
1I(S

∗) + AJT

1I (S∗) + AJ
3I(S

∗) + AJT

3I (S∗)

are required. The matrices (2.6.41) and (2.6.42) appear because of the

presence of the functions

vIJ (xI , xJ ) = xT

I QIJxJ ,

I, J = 1, 2, . . . , m, I �= J . If we allow for the fact that QIJ are only sym-

metric positive definite matrices and QIJ (I �= J) are arbitrary constant

ones such that λm(HTQH) > 0, then one can “influence” the choice of

the matrix-valued function U(x) by choosing the matrices QIJ . This makes

possible to extend the classes of functions suitable for establishing the cri-

teria for construction of sufficient stability conditions for system (2.6.30).

Besides, the matrix C can be constructed so that the absolute values of the

diagonal elements will be maximally large while the non-diagonal elements

will be minimal. This fact allows to get more refined results as compared

with those obtained by means of the vector Liapunov function. However

we note that for a large number of subsystems it becomes difficult on the

analytical level to choose matrices QIJ (I �= J ) and to verify the property
2.6 GENERALIZATIONS AND APPLICATIONS 81

of having a fixed sign of the aggregation matrix C. In such a case it is

expedient to employ computer programmes in the direction.

2.6.3 Large-scale Lur’e-Postnikov systems In this section for the

analysis of absolute stability under structural perturbations a special Li-

apunov function is constructed in terms of matrix-valued function. This

allows to obtain new sufficient conditions for structural absolute stability

of the equilibrium state of the system under consideration.

Consider a large-scale Lur’e system decomposed into s subsystems

(2.6.43)

dxi

dt
=

s∑

l=1

S
(1)

il Ailxl +

s∑

l=1

S
(2)

il qilfilσil,

σil = CT

il x, i = 1, 2, . . . , s,

where σ−1

il fil(σil) ∈ [0, kil] ⊆ R+, Ail are constant matrices, xi ∈ Rni ,

n1 + n2 + · · ·+ ns = n, kil are constants. Here all matrices and vectors are

of the corresponding dimensions, and S
(1)

il and S
(2)

il are diagonal matrices.

By means of the structural matrices

Si =

(

S
(1)

i1 S
(1)

i2 . . . S
(1)

i,i−1
I S

(1)

i,i+1
S

(1)

is

S
(2)

i1 S
(2)

i2 . . . S
(2)

i,i−1
I S

(2)

i,i+1
S

(2)

is

)

,

S = diag {S1, S2, . . . , Ss},

the structural set S is determined by the formula

S = {S : 0 ≤ S
(k)

il ≤ I, S
(1)

ii = I, i, l = 1, 2, . . . , s, k = 1, 2},

where I is an identity matrix of corresponding dimensions.

Independent subsystems corresponding to system (2.6.43) are obtained

as a result of substitution by the vector xi for x:

(2.6.44)
dxi

dt
= Aiixi + S

(2)

ii qiifii(s̃ii),

where σ̃ii = CT

iix
i, xi = (0T, 0T, . . . , 0T, xT

i , 0T, . . . 0T)T ∈ Rn, i ∈ [1, s].
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of having a fixed sign of the aggregation matrix C. In such a case it is

expedient to employ computer programmes in the direction.

2.6.3 Large-scale Lur’e-Postnikov systems In this section for the

analysis of absolute stability under structural perturbations a special Li-

apunov function is constructed in terms of matrix-valued function. This

allows to obtain new sufficient conditions for structural absolute stability

of the equilibrium state of the system under consideration.

Consider a large-scale Lur’e system decomposed into s subsystems

(2.6.43)

dxi

dt
=

s∑

l=1

S
(1)

il Ailxl +

s∑

l=1

S
(2)

il qilfilσil,

σil = CT

il x, i = 1, 2, . . . , s,

where σ−1

il fil(σil) ∈ [0, kil] ⊆ R+, Ail are constant matrices, xi ∈ Rni ,

n1 + n2 + · · ·+ ns = n, kil are constants. Here all matrices and vectors are

of the corresponding dimensions, and S
(1)

il and S
(2)

il are diagonal matrices.

By means of the structural matrices

Si =

(

S
(1)

i1 S
(1)

i2 . . . S
(1)

i,i−1
I S

(1)

i,i+1
S

(1)

is

S
(2)

i1 S
(2)

i2 . . . S
(2)

i,i−1
I S

(2)

i,i+1
S

(2)

is

)

,

S = diag {S1, S2, . . . , Ss},

the structural set S is determined by the formula

S = {S : 0 ≤ S
(k)

il ≤ I, S
(1)

ii = I, i, l = 1, 2, . . . , s, k = 1, 2},

where I is an identity matrix of corresponding dimensions.

Independent subsystems corresponding to system (2.6.43) are obtained

as a result of substitution by the vector xi for x:

(2.6.44)
dxi

dt
= Aiixi + S

(2)

ii qiifii(s̃ii),

where σ̃ii = CT

iix
i, xi = (0T, 0T, . . . , 0T, xT

i , 0T, . . . 0T)T ∈ Rn, i ∈ [1, s].82 2. CONTINUOUS LARGE-SCALE SYSTEMS

We introduce the designations

fi(x
i) = Aiixi + S

(2)

ii qiifii(σ̃ii);

f∗

i (x, S) =

s∑

l=1
l�=i

S
(1)

il Ailxl +

s∑

l=1
l�=i

S
(2)

il qilfil(σl) + S
(2)

ii qii[fii(σii) + fii(σ̃)];

σil = CT

il x, i ∈ [1, s].

Then system (2.6.43) becomes

(2.6.45)
dxi

dt
= fi(x

i) + f∗

i (x, S), i = 1, 2, . . . , s.

Alongside system (2.6.43) and subsystems (2.6.44) we shall consider the

matrix-valued function (2.5.2) with elements (2.5.3) for which estimates

(2.5.5) hold.

Together with function (2.5.4) its total derivative

(2.6.46) D+v(x, ψ) = ψTD+U(x)ψ

along solutions of system (2.6.43) is considered.

Proposition 2.6.2 If for system (2.6.43) the matrix-valued function

(2.5.2) with elements (2.5.3) is constructed, then for the Dini derivatives

of function (2.5.4) along solutions of system (2.6.43) the following estimates

hold

(a) ψ2

i (D+

xi
vii)

Tfi(x
i) ≤ ρ

(1)

i (S)�xi�
2

for all xi ∈ Nix0, i ∈ [1, s];

(b)

s∑

i=1

ψ2

i (D+

xi
vii)

Tf∗

i (x, S) + 2

s∑

i=1

s∑

j=2

j>i

ψiψj{(D
+

xi
)T(fi(x

i) + f∗

i (x, S))

+ (D+

xj
vij)

T(fj(x
j) + f∗

j (x, S)) ≤

s∑

i=1

ρ
(2)

i (S)�xi�
2

+ 2
s∑

i=1

s∑

j=2

j>i

ρij(S)�xi� �xj� for all (xi, xj , S) ∈ Nix0
×Njx0

× S,
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We introduce the designations

fi(x
i) = Aiixi + S

(2)

ii qiifii(σ̃ii);

f∗

i (x, S) =

s∑

l=1
l�=i

S
(1)

il Ailxl +

s∑

l=1
l�=i

S
(2)

il qilfil(σl) + S
(2)

ii qii[fii(σii) + fii(σ̃)];

σil = CT

il x, i ∈ [1, s].

Then system (2.6.43) becomes

(2.6.45)
dxi

dt
= fi(x

i) + f∗

i (x, S), i = 1, 2, . . . , s.

Alongside system (2.6.43) and subsystems (2.6.44) we shall consider the

matrix-valued function (2.5.2) with elements (2.5.3) for which estimates

(2.5.5) hold.

Together with function (2.5.4) its total derivative

(2.6.46) D+v(x, ψ) = ψTD+U(x)ψ

along solutions of system (2.6.43) is considered.

Proposition 2.6.2 If for system (2.6.43) the matrix-valued function

(2.5.2) with elements (2.5.3) is constructed, then for the Dini derivatives

of function (2.5.4) along solutions of system (2.6.43) the following estimates

hold

(a) ψ2

i (D+

xi
vii)

Tfi(x
i) ≤ ρ

(1)

i (S)�xi�
2

for all xi ∈ Nix0, i ∈ [1, s];

(b)

s∑

i=1

ψ2

i (D+

xi
vii)

Tf∗

i (x, S) + 2

s∑

i=1

s∑

j=2

j>i

ψiψj{(D
+

xi
)T(fi(x

i) + f∗

i (x, S))

+ (D+

xj
vij)

T(fj(x
j) + f∗

j (x, S)) ≤

s∑

i=1

ρ
(2)

i (S)�xi�
2

+ 2
s∑

i=1

s∑

j=2

j>i

ρij(S)�xi� �xj� for all (xi, xj , S) ∈ Nix0
×Njx0

× S,
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where ρ
(k)

i (S), k = 1, 2, i ∈ [1, s] are maximal eigenvalues of the matrices

ψ2

i [PiiAii + AT

iiPii + PiiS
(2)

ii qiik
∗

ii(c
i
ii)

T + (S
(2)

ii qiik
∗

ii(c
i
ii)

T)TPii];

i−1∑

l=1

ψiψl|{[(S
(1)

li Ali)
T + (S

(2)

li qlik
∗

li(c
i
li)

T)T]Pli + PT

li [S
(1)

li Ali

+ S
(2)

li qlik
∗

li(c
i
li)

T]}

s∑

l=i+1

ψiψl{Pil[S
(1)

li Ali + S
(2)

li qlik
∗

li(c
i
li)

T] + [(S
(1)

li Ali)
T

+ (S
(2)

li qlik
∗

li(c
i
li)

T)T]PT

il } + ψ2

i [PiiS
(2)

ii qiik
∗

ii(c
i
ii)

T + (S
(2)

ii qiik
∗

ii(c
i
ii)

T)TPii]

respectively; ρij(S), i < j, i = 1, 2, . . . , s, j = 2, 3, . . . , s, are norms of the

matrices

j−1
∑

l=1

ψjψl[(S
(1)

li AT

li) + (S
(2)

li qlik
∗

li(c
i
li)

T)T]Plj +

s∑

l=j+1

ψjψl[(S
(1)

li Ali)
T

+ (S
(2)

li qlik
∗

li(c
i
li)

T)T]PT

jl +
i−1∑

l=1

ψiψlP
T

li [S
(1)

lj Alj + S
(2)

lj qljk
∗

lj(c
j
lj)

T]

+

s∑

l=i+1

ψiψlPil[S
(1)

lj Alj + S
(2)

lj qljk
∗

lj(c
j
lj)

T] +
1

2
ψ2

i

{

Pii(S
(1)

ij Aij)

+ (S
(1)

ij Aij)
TPii + Pii(S

(2)

ij qijk
∗

ij(c
j
ij)

T) + (S
(2)

ij qijk
∗

ij(c
j
ij)

T)TPii

+ Pii(S
(2)

ii qiik
∗

ii(c
j
ii)

T) + (S
(2)

ii qqqk
∗

ii(c
j
ii)

T)TPii

}

+
1

2
ψ2

j

{

Pji(S
(1)

ji Aji) + (S
(1)

ji Aji)
TPji + Pjj(S

(2)

ji qjik
∗

ji(c
i
ji)

T)

+ (S
(2)

ji qjik
∗

ji(c
i
ji)

T)TPjj + Pjj(S
(2)

jj qjjk
∗

jj(c
i
jj)

T) + (S
(2)

jj qjjk
∗

jj(c
i
jj)

T)TPjj

}

respectively. Here

k∗

ij =

{

kij for σij(S
(k)

ij qij)
TPijxj > 0, i, j = 1, 2, . . . , s; k = 1, 2;

0 in other cases;

k∗

ii =

{

kii for σii(S
(2)

ii qii)
TPiixi > 0, i = 1, 2, . . . , s;

−kii for σii(S
(2)

ii qii)
TPiixi < 0, i = 1, 2, . . . , s;

ck
ij ∈ Rnk is the k-th component of the vector cij .
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where ρ
(k)

i (S), k = 1, 2, i ∈ [1, s] are maximal eigenvalues of the matrices

ψ2

i [PiiAii + AT

iiPii + PiiS
(2)

ii qiik
∗

ii(c
i
ii)

T + (S
(2)

ii qiik
∗

ii(c
i
ii)

T)TPii];

i−1∑

l=1

ψiψl|{[(S
(1)

li Ali)
T + (S

(2)

li qlik
∗

li(c
i
li)

T)T]Pli + PT

li [S
(1)

li Ali

+ S
(2)

li qlik
∗

li(c
i
li)

T]}

s∑

l=i+1

ψiψl{Pil[S
(1)

li Ali + S
(2)

li qlik
∗

li(c
i
li)

T] + [(S
(1)

li Ali)
T

+ (S
(2)

li qlik
∗

li(c
i
li)

T)T]PT

il } + ψ2

i [PiiS
(2)

ii qiik
∗

ii(c
i
ii)

T + (S
(2)

ii qiik
∗

ii(c
i
ii)

T)TPii]

respectively; ρij(S), i < j, i = 1, 2, . . . , s, j = 2, 3, . . . , s, are norms of the

matrices

j−1
∑

l=1

ψjψl[(S
(1)

li AT

li) + (S
(2)

li qlik
∗

li(c
i
li)

T)T]Plj +

s∑

l=j+1

ψjψl[(S
(1)

li Ali)
T

+ (S
(2)

li qlik
∗

li(c
i
li)

T)T]PT

jl +
i−1∑

l=1

ψiψlP
T

li [S
(1)

lj Alj + S
(2)

lj qljk
∗

lj(c
j
lj)

T]

+

s∑

l=i+1

ψiψlPil[S
(1)

lj Alj + S
(2)

lj qljk
∗

lj(c
j
lj)

T] +
1

2
ψ2

i

{

Pii(S
(1)

ij Aij)

+ (S
(1)

ij Aij)
TPii + Pii(S

(2)

ij qijk
∗

ij(c
j
ij)

T) + (S
(2)

ij qijk
∗

ij(c
j
ij)

T)TPii

+ Pii(S
(2)

ii qiik
∗

ii(c
j
ii)

T) + (S
(2)

ii qqqk
∗

ii(c
j
ii)

T)TPii

}

+
1

2
ψ2

j

{

Pji(S
(1)

ji Aji) + (S
(1)

ji Aji)
TPji + Pjj(S

(2)

ji qjik
∗

ji(c
i
ji)

T)

+ (S
(2)

ji qjik
∗

ji(c
i
ji)

T)TPjj + Pjj(S
(2)

jj qjjk
∗

jj(c
i
jj)

T) + (S
(2)

jj qjjk
∗

jj(c
i
jj)

T)TPjj

}

respectively. Here

k∗

ij =

{

kij for σij(S
(k)

ij qij)
TPijxj > 0, i, j = 1, 2, . . . , s; k = 1, 2;

0 in other cases;

k∗

ii =

{

kii for σii(S
(2)

ii qii)
TPiixi > 0, i = 1, 2, . . . , s;

−kii for σii(S
(2)

ii qii)
TPiixi < 0, i = 1, 2, . . . , s;

ck
ij ∈ Rnk is the k-th component of the vector cij .84 2. CONTINUOUS LARGE-SCALE SYSTEMS

Estimate (a) is proved by transformation of the left-hand part of (a).

Namely,

ψ2

i (D+

xi
vii)

Tfi(x
i) = ψ2

i {ẋ
T

i Piixi + xT

i Piiẋi}

= ψ2

i {[Aiixi + S
(2)

ii qiifii(σ̃ii)
T]Piixi + xT

i Pii[Aiixi + S
(2)

ii qiifii(σ̃)]

≤ xT

i {ψ
2

i [PiiAii + AT

iiPii + PiiS
(2)

ii qiik
∗

ii(c
i
ii)

T

+ (S
(2)

ii qiik
∗

ii(c
i
ii)

T)TPii]}xi ≤ ρ
(1)

i (S)�xi�
2

for all xi ∈ Nix0
, i ∈ [1, s].

Estimate (b) is proved in the same way as estimate (a).

Proposition 2.6.3 Let all conditions of Proposition 2.6.2 be satisfied.

Then for expression (2.6.46) the inequality

(2.6.47) D∗v(x, ψ) ≤ uTCu for all (x, S) ∈ Nx0
× S,

is satisfied, where C = [cij ], i, j ∈ [1, s], cii = ρ
(1)

i (S∗) + ρ
(2)

i (S∗), cij =

cji = ρij(S
∗), (i �= j) ∈ [1, s], S∗ ∈ S is a constant matrix such that

ρ
(k)

i (S) ≤ ρ
(k)

i (S∗), ρij(S) ≤ ρij(S
∗), k = 1, 2.

Proof When all conditions of Proposition 2.6.3 are satisfied, we have

D+v(x, ψ) � ψT[D+vij(xi, xj)]ψ =
s∑

i=1

ψ2

i (D+vii(xi))
T(fi(x

i)+ f∗

i (x, S))

+ 2
s∑

i=1

s∑

j=2

j>i

ψiψj(D
∗vij(xi, xj))

T(fi(x
i) + f∗

i (x, S))

≤

s∑

i=1

(ρ
(1)

i (S) + ρ
(2)

i (S))�xi�
2 + 2

s∑

i=1

s∑

j=2

j>i

ρij(S)�xi� �xj�

≤

s∑

i=1

(ρ
(1)

i (S∗) + ρ
(2)

i (S∗))�xi�
2 + 2

s∑

i=1

s∑

j=2

j>i

ρij(S
∗)�xi� �xj�

=

s∑

i=1

cii�xi�
2 + 2

s∑

i=1

s∑

j=2

j>i

cij�xi� �xj� = uTCu

for all (x, s) ∈ Nx0
× S. QED.

Basing on the obtained estimates for the matrix-valued function the

following result is stated.
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(1)
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× S. QED.

Basing on the obtained estimates for the matrix-valued function the

following result is stated.2.6 GENERALIZATIONS AND APPLICATIONS 85

Theorem 2.6.4 Let the motion equations of large-scale Lur’e system

(2.6.43) be such that for them the matrix-valued function (2.5.2) is con-

structed with elements (2.5.3) and for derivative (2.6.46) estimate (2.6.47)

is satisfied. If

(a) matrices A and B in estimate (2.5.5) are positive definite;

(b) matrix C in estimate (2.6.46) is negative definite on S,

then the equilibrium state x = 0 of system (2.6.43) is uniformly

asymptotically stable on S.

Moreover, if Nix = Rni , then the equilibrium state x = 0 of system

(2.6.43) is uniformly asymptotically stable in the whole on S.

Proof If estimates (2.5.5) are satisfied, then under condition (a) of The-

orem 2.6.4 the function (2.5.4) is positive definite and decreasing on Nix.

Estimate (2.6.47) and condition (b) of Theorem 2.6.4 imply that the ex-

pression D+v(x, ψ)|(2.6.43) is negative definite on Nx0
× S.

These conditions are sufficient for structural uniform asymptotic stability

of the equilibrium state x = 0 of system (2.6.43) on S.

In the case Nix = Rni function (2.5.4) is positive definite decreasing and

radially unbounded. This together with other conditions of the theorem

proves its second assertion.

Remark 2.6.1 Theorem 2.6.4 remains valid, if the matrix A is condition-

ally positive definite and the matrix C is conditionally negative definite.

Example 2.6.1 Let system (2.6.43) be the fourth-order system of Lur’e

type decomposed into two interconnected second order subsystems defined

by the vectors and matrices

(2.6.48)

A11 =

(
−3 0

0 −3

)

, A12 =

(
−5 0
−1 −5

)

, A21 =

(
5 0
1 5

)

,

A22 =

(
0.1 0
0 0.1

)

, q1l =

(
0.1
0

)

, q2l =

(
0

0.1

)

,

cT

1l = (0.1; 0; 0.1; 0), cT

2l = (0.1; 0; 0; 0.1), kil = 1, i, l = 1, 2;

S
(1)

ij = I, S
(2)

ij = sijI, i, j = 1, 2, I = diag (1, 1).

Here sij : [−∞, +∞] → [0, 1] is a structural parameter.

The structural set S is determined as follows

S = {S : S
(1)

ij = I, 0 ≤ S
(2)

ij ≤ I, i, j,= 1, 2}

Download free eBooks at bookboon.com



Stability Theory of Large-Scale  
Dynamical Systems

90 

Continuous Large-Scale Systems
86 2. CONTINUOUS LARGE-SCALE SYSTEMS

For the elements of matrix-valued function (2.5.2) taken in the form

vii(xi) = xT

i Ix, i = 1, 2;

v12(x1, x2) = v21(x1, x2) = xT

1 0.1 Ix2,

the estimates

vii(xi) ≥ �xi�
2, i = 1, 2;

v12(x1, x2) ≥ −0.1 �x1� �x2�

are satisfied. Let ψT = (1, 1), then the matrix Ã corresponding to the

matrix A in estimate (2.5.5)

Ã =

�
1 −0.1

−0.1 1

�

is positive definite.

For this choice of the elements vij(·), i, j = 1, 2, we have

(1) for k∗

i = 0: ρ
(1)

1
(S) = −6, ρ

(1)

2
(S) = 0.2, ρ

(1)

12
(S) = 1.1 + 0.02 S11,

ρ
(2)

21
(S) = −0.9 + 0.02 S22, ρ12(S) = 0.29;

(2) for k∗

i = ki = 1: ρ
(1)

1
(S) = −6 + 0.02 S11, ρ

(1)

2
(S) = 0.2 + 0.01 S22,

ρ
(2)

1
(S) = 1.1 + 0.02 S11 + 0.001 S21, ρ

(2)

2
(S) = −0.9 + 0.001 S12 +

0.02 S22, ρ12(S) = 0.29+0.011 S11+0.01 S12+0.005 S21+0.007 S22.

The matrix �C corresponding to the matrix C in estimate (2.6.47) has

the form

�C =







�
−4.88 0.29

0.29 −0.68

�

for k∗

i = 0;

�
−4.859 0.323

0.323 −0.669

�

for k∗

i = ki = 1

and is negative definite.

Thus, all conditions of Theorem 2.6.3 are satisfied and the equilibrium

state x = 0 of system (2.6.43) with vectors and matrices (2.6.48) is struc-

turally asymptotically stable in the whole on S.
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2.7 Notes and References

Section 2.1 Mathematical methods of investigation of continuous large scale

systems in the absence of structural perturbations are presented in the well-known

monographs. The known defects of the stability criteria obtained in terms of the

Liapunov vector functions (see Piontkovskii and Rutkovskaya [1], and Martynyuk

and Slyn’ko [1]) impelled many investigators to develop other approaches for

qualitative analysis of motions of large scale systems. The method of Liapunov

matrix-valued functions is one of them (for the details see Martynyuk [13, 17]).

Section 2.2 In the description of the adopted model of nonclassical structural

perturbations we proceed from the fact that the architecture of complexity and/or

multidimensionness of a real system presumes the evolution from “simple” to

“complex” (see Simon [1], Levins [1], Bronowski [1], etc.) with the stable structure

on each hierarchical level. In other words, the dynamics of free subsystems (2.2.3)

is a prototype of the dynamical properties of the interacting subsystems (2.2.2)

and the whole system (C ). That is why system (2.2.5) and system (11) from

the monograph by Grujić, et al. [1], pp. 157 – 160, are similar in their form but

different in their content. Namely, system (2.2.5) is a result of mathematical

composition of the individual subsystems (2.2.3) for a given model of nonclassical

structural perturbations. For Remarks 2.2.1 and 2.2.2 see Grujic et al. [1].

Section 2.3 The estimates for the class of Liapunov functions applied in this

section were obtained by Martynyuk and Miladzhanov [1, 2]. In this section some

results of Krasovskii [1], and Djordjević [1] were used.

Section 2.4 This section is based on the results by Martynyuk [6], Martynyuk and

Miladzhanov [1 – 3], Martynyuk and Stavroulakis [1, 2], and Miladzhanov [1, 2].

Definition 2.4.1 is based on some results of Liapunov [1], Chetaev [2], and Sil-

jak [1 – 3] (see and cf. Grujic et al. [1], pp. 160, and Martynyuk and Miladzha-

nov [1, 2]).

Section 2.5 The results of analysis of large scale linear system are new. Alongside

the results obtained in Section 2.4 some results by Djordjević [1] are applied.

Section 2.6 The results of Sections 2.6.1 and 2.6.3 are new as referred to the

application of matrix-valued function and two measures in the investigation of

stability of nonlinear system under nonclassical structural perturbations. Some

results in the direction were presented in the paper by Martynyuk [8]. The anal-

ysis of stability with respect to two measures of nonlinear systems without struc-
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tural perturbations in terms of matrix-valued function was carried out by Mar-

tynyuk and Chernienko [1]. The investigations of motion stability with respect

to two measures by means of scalar Liapunov function were summarized in the

monograph by Lakshmikantham, Leela, et al. [1], Lakshmikantham and Liu [1].

The mathematical model of energy system studied in Section 2.6.2 was investi-

gated earlier by means of scalar (see Ribbens-Pavella [1, 2]) and vector Liapunov

functions (see Grujic et al. [1], Voronov and Matrosov [1], etc.). The results ob-

tained via the application of matrix-valued function in the investigation of this

model are presented according to Martynyuk and Miladzhanov [7].

The results for large-scale Lur’e-Postnikov systems under nonclassical struc-

tural perturbations are new.
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3

DISCRETE-TIME LARGE-SCALE SYSTEMS

3.1 Introduction

An important place in the investigation of stability of discrete systems

belongs to the Liapunov direct method, which is a natural generalization of

the Liapunov direct method for continuous systems. Various generalizations

of the Liapunov method for large scale discrete-time systems are based on

the use of a scalar, vector or auxiliary matrix-valued function

The aim of Chapter 3 is to establish tests for the stability of an equi-

librium state of large scale discrete-time systems under nonclassical struc-

tural perturbations by using the matrix-valued Liapunov function. As in

the continuous case (see Chapter 2) we consider two general statements of

the problem, i.e. Problem DA and Problem DB.

The presentation of the main results of the chapter is arranged as follows:

Section 3.2 provides a description of the composition of large scale dis-

crete system for the given connectedness model.

Section 3.3 deals with a description of the classes of matrix-valued func-

tions applied in the investigation of stability-like properties of discrete sys-

tems. Also general theorems on stability under nonclassical structural per-

turbations in terms of existence of auxiliary matrix-valued function are

presented here.

In Section 3.4 various sufficient stability conditions are set out for the

system of equations under consideration within the framework of solution

of Problems DA and DB.

In Section 3.5 the efficiency of the applied approaches is analysed; the

approaches are based on three classes of auxiliary Liapunov functions in

the estimation of robustness boundary of uncertain linear system. It is

shown that the application of the heirarchical Liapunov functions yields
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3.1 Introduction
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of the Liapunov method for large scale discrete-time systems are based on

the use of a scalar, vector or auxiliary matrix-valued function

The aim of Chapter 3 is to establish tests for the stability of an equi-

librium state of large scale discrete-time systems under nonclassical struc-

tural perturbations by using the matrix-valued Liapunov function. As in

the continuous case (see Chapter 2) we consider two general statements of

the problem, i.e. Problem DA and Problem DB.

The presentation of the main results of the chapter is arranged as follows:

Section 3.2 provides a description of the composition of large scale dis-

crete system for the given connectedness model.

Section 3.3 deals with a description of the classes of matrix-valued func-

tions applied in the investigation of stability-like properties of discrete sys-

tems. Also general theorems on stability under nonclassical structural per-

turbations in terms of existence of auxiliary matrix-valued function are

presented here.

In Section 3.4 various sufficient stability conditions are set out for the

system of equations under consideration within the framework of solution

of Problems DA and DB.

In Section 3.5 the efficiency of the applied approaches is analysed; the

approaches are based on three classes of auxiliary Liapunov functions in

the estimation of robustness boundary of uncertain linear system. It is

shown that the application of the heirarchical Liapunov functions yields
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the widest estimates for the norms of the matrices describing uncertainties

in dynamical system.

3.2 Nonclassical Structural Perturbations in Discrete-Time

Systems

The object of investigation in this chapter are the models of real systems

and/or processes whose mathematical description is made by the systems of

the first order ordinary difference equations under nonclassical structural

and/or parametric perturbations. For the class of systems (subsystems)

under consideration the notations D and Di are used respectively and the

following hypotheses are adopted.

H1. The time-discrete system D consists of m interacting subsystems

Di, each of the subsystems is described by the subsystem of the first order

ordinary difference equations whose order is not changed on the interval of

motion investigation of this system.

H2. Parametric and/or external perturbations of system D are charac-

terized by the matrix P = (pT
1 , p

T
2 , . . . , p

T
m)T ∈ Rm×q as in the continuous

case. The set of all the matrices addmissible for the given system is desig-

nated by

(3.2.1) P = {P : P1 ≤ P (τ) ≤ P2, τ ∈ N+

τ }.

Here P1 and P2 are the prescribed constant matrices.

H3. The family F of vector-mappings (f1, f2, . . . , fN) is determined,

fk : N+
τ × Rn × Rs×q → Rn, where N is a real number, fk

i : N+
τ × Rn ×

R1×q → Rni, for all k = 1, 2, . . . , N , i = 1, 2, . . . , m, n1+n2+· · ·+nm = n.

H4. The dynamics of the i-th interconnected subsystem Di in system D

is described by the finite-dimentional first order ordinary difference equa-

tions

(3.2.2) xi(τ + 1) = fi(τ, x(τ), pi), i = 1, 2, . . . , m,

where xi ∈ Rni, fi ∈ Fi = {f1

i , f2

i , . . . , fN
i }, x = (xT

1 , xT
2 , . . . , x

T

i , . . . , xT
m)T.

It is assumed that fi(τ, 0, 0) = 0 for all τ ∈ N+
τ .
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The number N in the definition of the families F and Fi, i = 1, 2, . . . , m,

and the variations of the exponent k = k(τ) on the set N = {1, . . . , N},

k(τ) ∈ N for all τ ∈ N+
τ , describe structural changes in system (3.2.2).

H5. The dynamics of the i-th isolated subsystem Di in system D is

described by the finite-dimensional first order ordinary difference equations

(3.2.3) xi(τ + 1) = gi(τ, xi), i = 1, 2, . . . , m,

where xi ∈ Rni, and the functions gi : N+
τ × Rni → Rni are determined

by the correlations

gi(τ, xi) = fi(τ, x
i, 0), i = 1, 2, . . . , m.

It is assumed that gi(τ, 0) = 0 for all τ ∈ N .

Similarly to Section 2.2 the dynamics of the whole system D can be

described in terms of systems (3.2.2) and (3.2.3) by the systems of the first

order ordinary difference equations

(3.2.4) xi(τ + 1) = gi(τ, xi) + Si(τ)hi(τ, x, pi), i = 1, 2, . . . , m,

where Si(τ) is a structural matrix of the i-the subsystem Si : N+
τ →

Rni×Nni , hi : N+
τ × Rn × R1×q → RNni .

Setting

g = (gT

1
, . . . , gT

m)T, h = (hT

1
, . . . , hT

n)T

and taking into account the designations from Section 2.2, one can present

system (3.2.4) in the vector form

(3.2.5) x(τ + 1) = g(τ, x(τ)) + S(τ)h(τ, x(τ), P ),

where x ∈ Rn, g : N+
τ × Rn → Rn, h : N+

τ × Rn × Rm×q → Rn, S(τ) is

the structural matrix of system D.

Further we assume that the system (3.2.5) satisfies the existence and

uniqueness conditions for a solution x(τ ; x0, t0) of equation (3.2.1) for any

x0 ∈ Rn, t0 ≥ 0, and τ ∈ N+. Moreover, x(t0; x0, t0) = x0.

Assume that g(τ, x(τ)) = 0 for all τ ∈ N+ and P ∈ P if and only

if x(τ) = xe, i.e. the state x(τ) = xe is the unique equilibrium state of

system (3.2.5).
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τ , describe structural changes in system (3.2.2).

H5. The dynamics of the i-th isolated subsystem Di in system D is

described by the finite-dimensional first order ordinary difference equations

(3.2.3) xi(τ + 1) = gi(τ, xi), i = 1, 2, . . . , m,

where xi ∈ Rni, and the functions gi : N+
τ × Rni → Rni are determined

by the correlations

gi(τ, xi) = fi(τ, x
i, 0), i = 1, 2, . . . , m.

It is assumed that gi(τ, 0) = 0 for all τ ∈ N .

Similarly to Section 2.2 the dynamics of the whole system D can be

described in terms of systems (3.2.2) and (3.2.3) by the systems of the first

order ordinary difference equations

(3.2.4) xi(τ + 1) = gi(τ, xi) + Si(τ)hi(τ, x, pi), i = 1, 2, . . . , m,

where Si(τ) is a structural matrix of the i-the subsystem Si : N+
τ →

Rni×Nni , hi : N+
τ × Rn × R1×q → RNni .

Setting

g = (gT

1
, . . . , gT

m)T, h = (hT

1
, . . . , hT

n)T

and taking into account the designations from Section 2.2, one can present

system (3.2.4) in the vector form

(3.2.5) x(τ + 1) = g(τ, x(τ)) + S(τ)h(τ, x(τ), P ),

where x ∈ Rn, g : N+
τ × Rn → Rn, h : N+

τ × Rn × Rm×q → Rn, S(τ) is

the structural matrix of system D.

Further we assume that the system (3.2.5) satisfies the existence and

uniqueness conditions for a solution x(τ ; x0, t0) of equation (3.2.1) for any

x0 ∈ Rn, t0 ≥ 0, and τ ∈ N+. Moreover, x(t0; x0, t0) = x0.

Assume that g(τ, x(τ)) = 0 for all τ ∈ N+ and P ∈ P if and only

if x(τ) = xe, i.e. the state x(τ) = xe is the unique equilibrium state of

system (3.2.5).
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Remark 3.2.1 The discrete analogue of system of differential inequalities

(2.2.10) for system (3.2.5) is the system of difference inequalities of the form

(3.2.6) T m(τ, x(τ), P1 , S) ≤ x(τ + 1) ≤ T M (τ, x(τ), P2, S).

Here T (τ, x(τ), P, S) = g(τ, x(τ)) + S(τ)h(τ, x(τ), p), T m : N+
τ × Rn ×

Rm×q × S → Rn, T M : N+
τ × Rn × Rm×q × S → Rn, τ ∈ N+

τ .

By definition of the set P for all (τ, x, P, S) ∈ N+
τ × Rn × P × S the

ineqiality

T m(τ, x(τ), P1, S) ≤ T M (τ, x(τ), P2 , S).

is fulfilled.

The vector-function χ(τ) determined on N+
τ0

= [τ0, +∞)∩N+
τ is called

the solution of inequality (3.2.6), if

T m(τ, χ(τ), P1, S) ≤ χ(τ + 1) ≤ T M (τ, χ(τ), P2, S)

for all τ ∈ N+
τ .

Since

T m(τ, x(τ), P1, S) ≤ T (τ, x(τ), P, S) ≤ T M (τ, x(τ), P2, S)

for all (τ, x, P, S) ∈ N+
τ × Rn × P × S, every solution of system (3.2.5) is

the solution of inequality (3.2.6).

3.3 Liapunov’s Matrix-Valued Functions

The properties of the stability of discrete-time systems under nonclassical

structural perturbations can be determined in accordance with the defini-

tions from Sections 1.2 and 2.2.

The solution of the problem concerning the stability of a large scale

discrete-time system under nonclassical structural perturbations is based

on the natural extension of the theory of the Liapunov direct method on

the basis of the matrix-valued function.

Therefore, along with system (3.2.5) we consider the matrix-valued func-

tion

(3.3.1) U(τ, x(τ)) = [vij(τ, x(τ))], i, j = 1, 2, . . . , m,
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Here T (τ, x(τ), P, S) = g(τ, x(τ)) + S(τ)h(τ, x(τ), p), T m : N+
τ × Rn ×

Rm×q × S → Rn, T M : N+
τ × Rn × Rm×q × S → Rn, τ ∈ N+

τ .

By definition of the set P for all (τ, x, P, S) ∈ N+
τ × Rn × P × S the

ineqiality

T m(τ, x(τ), P1, S) ≤ T M (τ, x(τ), P2 , S).

is fulfilled.

The vector-function χ(τ) determined on N+
τ0

= [τ0, +∞)∩N+
τ is called

the solution of inequality (3.2.6), if

T m(τ, χ(τ), P1, S) ≤ χ(τ + 1) ≤ T M (τ, χ(τ), P2, S)

for all τ ∈ N+
τ .

Since

T m(τ, x(τ), P1, S) ≤ T (τ, x(τ), P, S) ≤ T M (τ, x(τ), P2, S)

for all (τ, x, P, S) ∈ N+
τ × Rn × P × S, every solution of system (3.2.5) is

the solution of inequality (3.2.6).

3.3 Liapunov’s Matrix-Valued Functions

The properties of the stability of discrete-time systems under nonclassical

structural perturbations can be determined in accordance with the defini-

tions from Sections 1.2 and 2.2.

The solution of the problem concerning the stability of a large scale

discrete-time system under nonclassical structural perturbations is based

on the natural extension of the theory of the Liapunov direct method on

the basis of the matrix-valued function.

Therefore, along with system (3.2.5) we consider the matrix-valued func-

tion

(3.3.1) U(τ, x(τ)) = [vij(τ, x(τ))], i, j = 1, 2, . . . , m,3.3 LIAPUNOV’S MATRIX-VALUED FUNCTIONS 93

which we use to construct the function of class SL (see Section 1.2)

(3.3.2) v(τ, x(τ), ψ) = ψTU(τ, x(τ))ψ,

where ψ = (ψ1, ψ2, . . . , ψm)T, ψi �= 0, i = 1, 2, . . . , m.

We note that if ψ = J = (1, 1, . . . , 1)T ∈ Rm, the function (3.3.2) be-

comes

(3.3.3) v(τ, x(τ)) =

m∑

i,j=1

vij(τ, x(τ)).

For the first differences of the matrix-valued function (3.3.1) and scalar

function (3.3.2) along the solutions of system (3.2.5) we introduce the no-

tation

∆U(τ, x(τ)) = [∆vij(τ, x(τ))], i, j = 1, 2, . . . , m,(3.3.4)

∆v(τ, x(τ)) = ψT∆U(τ, x(τ))ψ,(3.3.5)

where the first differences of the functions vij(τ, x(τ)) relative to (τ, x(τ)) ∈

N+
τ ×N are determined in accordance with Section 1.3.

Definition 3.3.1 The matrix-valued function U : N+
τ × Rn → Rm×m

is called

(1) Liapunov matrix function (LMF) of the S(ψ) type if

(a) the MF U(τ, x(τ)) is positive definite and decreases on N+
τ ×N ;

(b) the MF ∆U(τ, x(τ)) is nonpositive on N+
τ ×N , for any (P, S) ∈

P × S and ∆U(τ, 0) = 0 for all τ ∈ N+
τ ;

(2) an LMF of the AS(ψ) type if

(a) the MF U(τ, x(τ)) is positive definite and decreases on N+
τ ×N ;

(b) the MF ∆U(τ, x(τ)) is positive definite on N+ ×N , for any

(P, S) ∈ P × S and ∆U(τ, 0) = 0 for all τ ∈ N+
τ ;

(3) an LMF of the NS(ψ) type if

(a) the MF U(τ, x(τ)) is positive and bounded in the domain

v(τ, x(τ), ψ) > 0;

(b) the MF ∆U(τ, x(τ)) for all τ ∈ N+
τ is positive definite in the

domain v(τ, x(τ), ψ) > 0 for at least one pair (P, S) ∈ P × S

and ∆U(τ, 0) = 0 for all τ ∈ N+
τ .

Theorems on the stability of discrete-time systems on the basis of the

matrix-valued function (3.3.1) and its first difference (3.3.4) – (3.3.5) are

generalized in the following form.
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Theorem 3.3.1 For the state x(τ) = 0 of system (3.2.5) to be stable

(uniformly) on P×S it is sufficient that matrix-valued function U : N+
τ ×

N → Rm×m of the S(ψ) type to exist for any natural m.

Proof When the conditions of Theorem 3.3.1 are satisfied, so are the

inequalities

v(τ, x(τ), ψ) > 0 and ∆v(τ, x(τ), ψ) ≤ 0

for x ∈ Bη = {x ∈ Rn : �x� < η} and for (P, S) ∈ P × S.

Suppose that ε ∈ (0, η) is given. We denote l = min {v(τ, x(τ), ψ) :

�x� = ε}. The quantity l is positive, as the minimum of a positive function

on a compact set, that function being continuous in discrete time. Suppose

that G = {x ∈ Rn : v(τ, x(τ), ψ) < l/2} and G0 is a bound subset of G,

containing x = 0. Clearly, the sets G and G0 are open. If x0 ∈ G0, then

∆v(τ, x0, ψ) ≤ 0 for any (P, S) ∈ P × S

and

v(τ + 1, x(τ + 1), ψ) ≤ v(τ, x0, ψ) ≤
l

2

and, therefore, x0 ∈ G. Since v(τ, x(τ), ψ) is a continuous function, there

exists a δ > 0 such that Bδ ⊂ G0. Therefore, if x0 ∈ Bδ, then x0 ∈ G

and x(τ ; t0, x0) ∈ G0 ⊂ Bε, for any (P, S) ∈ P ×S. The theorem has thus

been proved.

Theorem 3.3.2 For the state x(τ) = 0 of system (3.2.5) to be asymp-

totically stable (uniformly) on P × S it is sufficient that a matrix-valued

function U : N+
τ ×N → Rs×s of the AS(ψ) type to exist for any natural m.

Proof Since all the conditions of Theorem 3.3.1 are satisfied, the state

x(τ) = 0 is stable for any (P, S) ∈ P × S. From the fact that the matrix-

valued function U(τ, x(τ)) is a function of class AS(ψ) it follows that

there exist functions χk ∈ K for every k = 1, 2, . . . , m, and matrices

G(P, S) ∈ P × S (λmax(G) < 0) such that

∆v(τ, x(τ), ψ) ≤ χT(�x(τ)�)Gχ(�x(τ)�),

or

∆v(τ, x(τ), ψ) ≤ −λmin(G)χT(�x(τ)�)χ(�x(τ)�),
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Theorem 3.3.1 For the state x(τ) = 0 of system (3.2.5) to be stable

(uniformly) on P×S it is sufficient that matrix-valued function U : N+
τ ×

N → Rm×m of the S(ψ) type to exist for any natural m.

Proof When the conditions of Theorem 3.3.1 are satisfied, so are the

inequalities

v(τ, x(τ), ψ) > 0 and ∆v(τ, x(τ), ψ) ≤ 0

for x ∈ Bη = {x ∈ Rn : �x� < η} and for (P, S) ∈ P × S.

Suppose that ε ∈ (0, η) is given. We denote l = min {v(τ, x(τ), ψ) :

�x� = ε}. The quantity l is positive, as the minimum of a positive function

on a compact set, that function being continuous in discrete time. Suppose

that G = {x ∈ Rn : v(τ, x(τ), ψ) < l/2} and G0 is a bound subset of G,

containing x = 0. Clearly, the sets G and G0 are open. If x0 ∈ G0, then

∆v(τ, x0, ψ) ≤ 0 for any (P, S) ∈ P × S

and

v(τ + 1, x(τ + 1), ψ) ≤ v(τ, x0, ψ) ≤
l

2

and, therefore, x0 ∈ G. Since v(τ, x(τ), ψ) is a continuous function, there

exists a δ > 0 such that Bδ ⊂ G0. Therefore, if x0 ∈ Bδ, then x0 ∈ G

and x(τ ; t0, x0) ∈ G0 ⊂ Bε, for any (P, S) ∈ P ×S. The theorem has thus

been proved.

Theorem 3.3.2 For the state x(τ) = 0 of system (3.2.5) to be asymp-

totically stable (uniformly) on P × S it is sufficient that a matrix-valued

function U : N+
τ ×N → Rs×s of the AS(ψ) type to exist for any natural m.

Proof Since all the conditions of Theorem 3.3.1 are satisfied, the state

x(τ) = 0 is stable for any (P, S) ∈ P × S. From the fact that the matrix-

valued function U(τ, x(τ)) is a function of class AS(ψ) it follows that

there exist functions χk ∈ K for every k = 1, 2, . . . , m, and matrices

G(P, S) ∈ P × S (λmax(G) < 0) such that

∆v(τ, x(τ), ψ) ≤ χT(�x(τ)�)Gχ(�x(τ)�),

or

∆v(τ, x(τ), ψ) ≤ −λmin(G)χT(�x(τ)�)χ(�x(τ)�),3.3 LIAPUNOV’S MATRIX-VALUED FUNCTIONS 95

for all (P, S) ∈ P×S, where χ(�x(τ)�) = (χ1(�x(τ)�), . . . , χm(�x(τ)�))T.

Since χk ∈ K, there exists a function Φ ∈ K such that

Φ(�x(τ)�) ≥ χT(�x(τ)�)χ(�x(τ)�)

and, therefore,

∆v(τ, x(τ), ψ) ≤ −λmax(G)Φ(�x(τ)�), x(τ) = 0,

for all x(τ) ∈ Bε and all (P, S) ∈ P × S. Therefore, the equilibrium state

x(τ) = 0 is uniformly asymptotically stable on P × S.

Theorem 3.3.3 For the state x(τ) = 0 of system (3.2.5) to be unstable

on P×S it is sufficient for a matrix-valued function U : N+
τ ×N → Rm×m

of the NS(ψ) type to exist for any natural m.

Proof Suppose that a matrix-valued function of the NS(ψ) type exists

for system (3.2.5). We shall prove that then the zero solution of system

(3.2.5) is unstable. We conduct the proof by contradiction. Suppose that

the state x(τ) = 0 of system (3.2.5) is stable. We choose the quantity

ε > 0 such that for the function

∆v(τ, x(τ), ψ) = ψT∆U(τ, x(τ))ψ

with x ∈ Bε = {x ∈ Rn : �x� < ε} \ {0} in the domain v(τ, x(τ), ψ) > 0

the inequality

(3.3.6) ∆v(τ, x(τ), ψ) ≥ αT(�x(τ)�)Hα(�x(τ)�),

is satisfied; here αT(�x(τ)�) = (α1(�x(τ)�), . . . , αm(�x(τ)�)) and H(P, S) ≥

H , H is m × m matrix and λmin(H) ≥ 0 for at least one pair (P, S) ∈

P × S. Here αk ∈ K for every k = 1, 2, . . . , m.

Since the functions αk ∈ K, there exists a function κ ∈ K:

κ(�x(τ)�) ≤ αT(�x(τ)�)α(�x(τ)�)

such that

(3.3.7) ∆v(τ, x(τ), ψ) ≥ λmin(H)κ(�x(τ)�),

in the domain v(τ, x(τ), ψ) > 0.
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According to the assumption that the state x(τ) = 0 of system (3.2.5)

is stable on P × S for any ε > 0 we can prove that δ = δ(ε) > 0 so that

x0 ∈ Bδ = {x ∈ Rn : �x� < δ}, then x(τ ; t0, x0) ∈ Bε for all τ ∈ N+
τ and

all (P, S) ∈ P × S. For a matrix-valued function of the NS(ψ) type there

exists a x0 ∈ Bδ such that v(τ, x0, ψ) > 0. Then x(τ ; t0, x0) is bounded

and remains in Bε for all τ ∈ N+
τ , then x(τ ; t0, x0) tends to the state

(x = 0) ∈ {x ∈ Rn : ∆v(τ, x(τ), ψ) = 0} ∪ Bε. It thus follows that

v(τ, x(τ ; t0, x0), ψ) → v(t0, 0, ψ) = 0, for (ψ �= 0).

On the other hand, according to (3.3.7)

∆v(τ, x(τ), ψ) ≥ 0

and

v(τ, x(τ), ψ) ≥ 0.

Therefore,

0 < v(t0, x0, ψ) ≤ · · · ≤ v(τ − 1, x(τ − 1), ψ) ≤ v(τ, x(τ), ψ).

The contradiction that has been obtained shows that the statement of

Theorem 3.3.3 holds, as was to be proved.

3.4 Tests for Stability Analysis

The Problem DA is a natural generalization of the Problem CA for the class

of the multidimensional discrete-time systems.

3.4.1 The Problem DA Assume that the time-discrete system D is

obtained in result of decomposition of the isolated subsystems (3.2.3) and

the corresponding interacting subsystems (3.2.2). It is required to obtain

stability conditions of different types for the state x = 0 of system (3.2.5)

for the known dynamical properties of subsystems (3.2.3) and qualitative

properties of the interconnection functions between the subsystems.

Let us introduce some assumptions about the components vij of the

matrix-valued function U(τ, x(τ)) and dynamical properties of the subsys-

tem Di. 3.4 TESTS FOR STABILITY ANALYSIS 97

Assumption 3.4.1 There exist

(1) neighborhoods Ni ⊆ Rni , i = 1, 2, . . . , m, of equilibrium states

xi(τ) = 0 invariant in discrete time;

(2) functions ϕik : Ni → R+, i = 1, 2, . . . , m, k = 1, 2, ϕik ∈ K(KR);

(3) constants αij , αij , i, j = 1, 2, . . . , m, and a matrix-valued function

U(τ, x(τ)) with the elements

vii = vii(τ, xi(τ)), vij = vij(τ, xi(τ), xj(τ)), i �= j,

vij = vji, vii(τ, 0) = vij(τ, 0, 0) = 0,

satisfying the estimates

(a) αiiϕ
2

i1(�xi(τ)�) ≤ vii(τ, xi(τ)) ≤ αiiϕ
2

i2(�xi(τ)�) for all

(τ, xi(τ)) ∈ N+
τ ×Ni, i = 1, 2, . . . , m;

(b) αijϕi1(�xi(τ)�)ϕj1(�xj(τ)�) ≤ vij(τ, xi(τ), xj(τ)) ≤

αijϕi2(�xi(τ)�)ϕj2(�xj(τ)�) for all (τ, xi(τ), xj(τ)) ∈ N+
τ ×

Ni ×Nj , and for all i �= j.

Here, vii(τ, xi(τ)) correspond to subsystem (3.2.3), and vij(τ, xi(τ), xj(τ))

take into account the relations hi(τ, x(τ), pi) between the equations in

(3.2.4).

Proposition 3.4.1 Under the conditions of Assumption 3.4.1, function

(3.3.2) satisfies the following estimate:

(3.4.1) uT

1
HTAHu1 ≤ v(τ, x(τ), ψ) ≤ uT

2
HTBHu2

for all (τ, xi(τ), xj(τ)) ∈ N+
τ ×Ni ×Nj , i, j = 1, 2, . . . , m, where

uT

k = (ϕ1k(�x1(τ)�), ϕ2k(�x2(τ)�), . . . , ϕmk(�xm(τ)�)), k = 1, 2,

H = diag (ψ1, ψ2, . . . , ψm), A = [αij ], αij = αji,

B = [αij ], αij = αji, i, j = 1, 2, . . . , m,

ψT = (ψ1, ψ2, . . . , ψm).
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Assumption 3.4.1 There exist

(1) neighborhoods Ni ⊆ Rni , i = 1, 2, . . . , m, of equilibrium states

xi(τ) = 0 invariant in discrete time;

(2) functions ϕik : Ni → R+, i = 1, 2, . . . , m, k = 1, 2, ϕik ∈ K(KR);

(3) constants αij , αij , i, j = 1, 2, . . . , m, and a matrix-valued function

U(τ, x(τ)) with the elements

vii = vii(τ, xi(τ)), vij = vij(τ, xi(τ), xj(τ)), i �= j,

vij = vji, vii(τ, 0) = vij(τ, 0, 0) = 0,

satisfying the estimates

(a) αiiϕ
2

i1(�xi(τ)�) ≤ vii(τ, xi(τ)) ≤ αiiϕ
2

i2(�xi(τ)�) for all

(τ, xi(τ)) ∈ N+
τ ×Ni, i = 1, 2, . . . , m;

(b) αijϕi1(�xi(τ)�)ϕj1(�xj(τ)�) ≤ vij(τ, xi(τ), xj(τ)) ≤

αijϕi2(�xi(τ)�)ϕj2(�xj(τ)�) for all (τ, xi(τ), xj(τ)) ∈ N+
τ ×

Ni ×Nj , and for all i �= j.

Here, vii(τ, xi(τ)) correspond to subsystem (3.2.3), and vij(τ, xi(τ), xj(τ))

take into account the relations hi(τ, x(τ), pi) between the equations in

(3.2.4).

Proposition 3.4.1 Under the conditions of Assumption 3.4.1, function

(3.3.2) satisfies the following estimate:

(3.4.1) uT

1
HTAHu1 ≤ v(τ, x(τ), ψ) ≤ uT

2
HTBHu2

for all (τ, xi(τ), xj(τ)) ∈ N+
τ ×Ni ×Nj , i, j = 1, 2, . . . , m, where

uT

k = (ϕ1k(�x1(τ)�), ϕ2k(�x2(τ)�), . . . , ϕmk(�xm(τ)�)), k = 1, 2,

H = diag (ψ1, ψ2, . . . , ψm), A = [αij ], αij = αji,

B = [αij ], αij = αji, i, j = 1, 2, . . . , m,

ψT = (ψ1, ψ2, . . . , ψm).

Download free eBooks at bookboon.com



Stability Theory of Large-Scale  
Dynamical Systems

99 

Discrete-Time Large-Scale Systems

3.4 TESTS FOR STABILITY ANALYSIS 97

Assumption 3.4.1 There exist

(1) neighborhoods Ni ⊆ Rni , i = 1, 2, . . . , m, of equilibrium states

xi(τ) = 0 invariant in discrete time;

(2) functions ϕik : Ni → R+, i = 1, 2, . . . , m, k = 1, 2, ϕik ∈ K(KR);

(3) constants αij , αij , i, j = 1, 2, . . . , m, and a matrix-valued function

U(τ, x(τ)) with the elements

vii = vii(τ, xi(τ)), vij = vij(τ, xi(τ), xj(τ)), i �= j,

vij = vji, vii(τ, 0) = vij(τ, 0, 0) = 0,

satisfying the estimates

(a) αiiϕ
2

i1(�xi(τ)�) ≤ vii(τ, xi(τ)) ≤ αiiϕ
2

i2(�xi(τ)�) for all

(τ, xi(τ)) ∈ N+
τ ×Ni, i = 1, 2, . . . , m;

(b) αijϕi1(�xi(τ)�)ϕj1(�xj(τ)�) ≤ vij(τ, xi(τ), xj(τ)) ≤

αijϕi2(�xi(τ)�)ϕj2(�xj(τ)�) for all (τ, xi(τ), xj(τ)) ∈ N+
τ ×

Ni ×Nj , and for all i �= j.

Here, vii(τ, xi(τ)) correspond to subsystem (3.2.3), and vij(τ, xi(τ), xj(τ))

take into account the relations hi(τ, x(τ), pi) between the equations in

(3.2.4).

Proposition 3.4.1 Under the conditions of Assumption 3.4.1, function

(3.3.2) satisfies the following estimate:

(3.4.1) uT

1
HTAHu1 ≤ v(τ, x(τ), ψ) ≤ uT

2
HTBHu2

for all (τ, xi(τ), xj(τ)) ∈ N+
τ ×Ni ×Nj , i, j = 1, 2, . . . , m, where

uT

k = (ϕ1k(�x1(τ)�), ϕ2k(�x2(τ)�), . . . , ϕmk(�xm(τ)�)), k = 1, 2,

H = diag (ψ1, ψ2, . . . , ψm), A = [αij ], αij = αji,

B = [αij ], αij = αji, i, j = 1, 2, . . . , m,

ψT = (ψ1, ψ2, . . . , ψm).
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Assumption 3.4.2 There exist

(1) neighborhoods N ⊆ Rni of the states xi(τ) = 0, i = 1, 2, . . . , m,

invariant in discrete time;

(2) functions ϕi : N → R+, i = 1, 2, . . . , m, ϕi ∈ K(KR) and vij ,

i, j = 1, 2, . . . , m, defined in Assumption 3.4.1 and such that

(a) the functions vij(τ, x(τ)) are defined either on N+
τ ×Ni0 or

N+
τ × Rni ;

(b) the functions vij(τ, xi(τ), xj(τ)) are defined either on N+
τ ×

Ni0 ×Nj0 or N+
τ × Rni × Rnj, for all i �= j, Ni0 = {xi(τ) :

xi(τ) ∈ Ni, xi(τ) �= 0};

(3) constants α1i, α2i(P, S), αij(P, S) (i �= j), i, j = 1, 2, . . . , m, such

that the following inequalities are satisfied by virtue of multidimen-

sional discrete systems (3.2.5) and subsystems (3.2.5):

(a) ψ2

i {vii(τ, x
i
i(τ + 1)) − vii(τ, x

i
i(τ))} ≤ α1iϕ

2

i (�xi(τ)�) for all

xi(τ) ∈ Ni0, i = 1, 2, . . . , m;

(b)

m∑

i=1

ψ2

i {vii(τ, xi(τ + 1)) − vii(τ, x
i
i(τ + 1)) + vii(τ, x

i
i(τ))

− vii(τ, xi(τ))} + 2

m∑

i=1

m∑

j=1

ψiψj{vij(τ, xi(τ + 1), xj(τ + 1))

− vij(τ, xi(τ), xj(τ))} ≤

m∑

i=1

α2i(P, S)ϕ2

i (�xi(τ)�)

+ 2

m∑

i=1

m∑

j=1

αij(P, S)ϕi(�xi(τ)�)ϕj(�xj(τ)�),

for all (τ, xi, xj) ∈ N+

τ ×Ni0 ×Nj0 for all (P, S) ∈ P × S.

Remark 3.4.1 Here, xi
i(·) means that the difference is taken with regard

for subsystems (3.2.5)

Proposition 3.4.2 If all conditions of Assumption 3.4.2. are satisfied,

the following estimate holds:

(3.4.2) v(τ, x(τ + 1), ψ) − v(τ, x(τ), ψ) ≤ uTC(P, S)u
3.4 TESTS FOR STABILITY ANALYSIS 99

for all (τ, x) ∈ N+
τ ×Ni0, and for all (P, S) ∈ P × S, where

uT = (ϕ1(�x1�), ϕ2(�x2�), . . . , ϕmk(�xm�)),

C(P, S) = [Cij(P, S)], i, j = 1, 2, . . . , m,

Cij(P, S) = αij(P, S), for all i �= j,

Cii(P, S) = α1i + α2i(P, S), i = 1, 2, . . . , m.

Theorem 3.4.1 Suppose that the multidimensional discrete system

(3.2.5) is such that all conditions of Assumptions 3.4.1 and 3.4.2 are satis-

fied and, in addition,

(1) the matrix A is positive definite;

(2) there exists a negative semi-definite matrix G ∈ Rm×m such that

the matrix C(P, S) satisfies the estimate

1

2
(C(P, S) + CT(P, S)) ≤ G for all (P, S) ∈ P × S.

Then the equilibrium state x(τ) = 0 of system (3.2.5) is uniformly stable

on P × S.

Proof If the conditions of Assumption 3.4.1, Proposition 3.4.1, and con-

dition (1) of Theorem 3.4.1 are satisfied, then function (3.3.2) is posi-

tive definite on N+
τ × Ni0. The conditions of Assumption 3.4.2, Propo-

sition 3.4.2, and condition (2) of Theorem 3.4.1 imply that v(τ, x(τ), ψ) ≥

v(τ, x(τ + 1), ψ) for any (P, S) ∈ P × S. In this case, for every pair

(P, S) ∈ P × S, the conditions which are sufficient for the stability of the

zero solution of the multidimensional discrete system (3.2.5) on P ×S are

satisfied (see Section 1.3).

Theorem 3.4.2 Let the multidimensional discrete system (3.2.5) be

such that the conditions of Assumptions 3.4.1 and 3.4.2 are satisfied and,

in addition,

(1) the matrices A and B are positive definite;

(2) there exists a negative definite matrix G1 ∈ Rm×m such that the

matrix C(P, S) satisfies the estimate

1

2
(C(P, S) + CT(P, S)) ≤ G1 for all (P, S) ∈ P × S.
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for all (τ, x) ∈ N+
τ ×Ni0, and for all (P, S) ∈ P × S, where

uT = (ϕ1(�x1�), ϕ2(�x2�), . . . , ϕmk(�xm�)),

C(P, S) = [Cij(P, S)], i, j = 1, 2, . . . , m,

Cij(P, S) = αij(P, S), for all i �= j,

Cii(P, S) = α1i + α2i(P, S), i = 1, 2, . . . , m.

Theorem 3.4.1 Suppose that the multidimensional discrete system

(3.2.5) is such that all conditions of Assumptions 3.4.1 and 3.4.2 are satis-

fied and, in addition,

(1) the matrix A is positive definite;

(2) there exists a negative semi-definite matrix G ∈ Rm×m such that

the matrix C(P, S) satisfies the estimate

1

2
(C(P, S) + CT(P, S)) ≤ G for all (P, S) ∈ P × S.

Then the equilibrium state x(τ) = 0 of system (3.2.5) is uniformly stable

on P × S.

Proof If the conditions of Assumption 3.4.1, Proposition 3.4.1, and con-

dition (1) of Theorem 3.4.1 are satisfied, then function (3.3.2) is posi-

tive definite on N+
τ × Ni0. The conditions of Assumption 3.4.2, Propo-

sition 3.4.2, and condition (2) of Theorem 3.4.1 imply that v(τ, x(τ), ψ) ≥

v(τ, x(τ + 1), ψ) for any (P, S) ∈ P × S. In this case, for every pair

(P, S) ∈ P × S, the conditions which are sufficient for the stability of the

zero solution of the multidimensional discrete system (3.2.5) on P ×S are

satisfied (see Section 1.3).

Theorem 3.4.2 Let the multidimensional discrete system (3.2.5) be

such that the conditions of Assumptions 3.4.1 and 3.4.2 are satisfied and,

in addition,

(1) the matrices A and B are positive definite;

(2) there exists a negative definite matrix G1 ∈ Rm×m such that the

matrix C(P, S) satisfies the estimate

1

2
(C(P, S) + CT(P, S)) ≤ G1 for all (P, S) ∈ P × S.

100 3. DISCRETE-TIME LARGE-SCALE SYSTEMS

Then the equilibrium state x(τ) = 0 of system (3.2.5) is uniformly asymp-

totically stable on P × S.

The proof of Theorem 3.4.2 is similar to that of Theorem 3.4.1.

Example 3.4.1 Consider a linear large scale discrete-time system decom-

posed into two subsystems

(3.4.3) xi(τ + 1) = Aiixi(τ) + Aijsijxj(τ), i �= j, i, j = 1, 2,

where Aij are constant matrices of the corresponding order,

S = {S : S = diag {S1, S2}, Si = [sijJi], 0 ≤ sij ≤ 1, i �= j, i, j = 1, 2},

Ji = diag (1, 1) ∈ Rni , xi ∈ Rni , i = 1, 2, and x = (xT

1
, xT

2
)T ∈ Rn.

For system (3.4.3) we construct a matrix-valued function U(x) with the

elements

(3.4.4) v11 = xT

1
B1x1, v22 = xT

2
B2x2, v12 = v21 = xT

1
B3x2,

where B1 and B2 are symmetric positive definite matrices, and B3 is a

constant matrix.

It is easy to verify that functions (3.4.4) satisfy the following estimates:

λm(Bi)�xi�
2
≤ νii(xi(τ)) ≤ λM (Bi)�xi�

2, i = 1, 2,

−λ
1/2

M (B3B
T

3
)�x1� �x2� ≤ v12(x1(τ), x2(τ)) ≤ λ

1/2

M (B3B
T

3
)�x1� �x2�,

where λm(Bi) are, respectively, the minimum and maximum eigenvalues of

the matrices Bi, i = 1, 2, and λ
1/2

M (B3B
T
3
) is the norm of the matrix B3.

In this case, the matrices A and B from estimate (3.4.1) have the form

A =

(

λm(B1) −λ
1/2

M (B3B
T
3 )

−λ
1/2

M (B3B
T
3
) λm(B2)

)

,

B =

(

λM (B1) λ
1/2

M (B3B
T
3 )

λ
1/2

M (B3B
T
3
) λM (B2)

)

.

In order that these matrices be positive definite, it is sufficient that the

condition

(3.4.5) λm(B1)λm(B2) > λ
1/2

M (B3B
T

3
)
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Then the equilibrium state x(τ) = 0 of system (3.2.5) is uniformly asymp-

totically stable on P × S.

The proof of Theorem 3.4.2 is similar to that of Theorem 3.4.1.

Example 3.4.1 Consider a linear large scale discrete-time system decom-

posed into two subsystems

(3.4.3) xi(τ + 1) = Aiixi(τ) + Aijsijxj(τ), i �= j, i, j = 1, 2,

where Aij are constant matrices of the corresponding order,

S = {S : S = diag {S1, S2}, Si = [sijJi], 0 ≤ sij ≤ 1, i �= j, i, j = 1, 2},

Ji = diag (1, 1) ∈ Rni , xi ∈ Rni , i = 1, 2, and x = (xT

1
, xT

2
)T ∈ Rn.

For system (3.4.3) we construct a matrix-valued function U(x) with the

elements

(3.4.4) v11 = xT

1
B1x1, v22 = xT

2
B2x2, v12 = v21 = xT

1
B3x2,

where B1 and B2 are symmetric positive definite matrices, and B3 is a

constant matrix.

It is easy to verify that functions (3.4.4) satisfy the following estimates:

λm(Bi)�xi�
2
≤ νii(xi(τ)) ≤ λM (Bi)�xi�

2, i = 1, 2,

−λ
1/2

M (B3B
T

3
)�x1� �x2� ≤ v12(x1(τ), x2(τ)) ≤ λ

1/2

M (B3B
T

3
)�x1� �x2�,

where λm(Bi) are, respectively, the minimum and maximum eigenvalues of

the matrices Bi, i = 1, 2, and λ
1/2

M (B3B
T
3
) is the norm of the matrix B3.

In this case, the matrices A and B from estimate (3.4.1) have the form

A =

(

λm(B1) −λ
1/2

M (B3B
T
3 )

−λ
1/2

M (B3B
T
3
) λm(B2)

)

,

B =

(

λM (B1) λ
1/2

M (B3B
T
3 )

λ
1/2

M (B3B
T
3
) λM (B2)

)

.

In order that these matrices be positive definite, it is sufficient that the

condition

(3.4.5) λm(B1)λm(B2) > λ
1/2

M (B3B
T

3
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be satisfied. Since the matrices B1 and B2 are positive definite, we have

λM (Bi) > λm(Bi) > 0, i = 1, 2.

Let ψT = (1, 1). Then for the matrix-valued function U(x) indicated

above, the elements of the matrix C(S) have the form

C11(S) = λM (C1) + λM (C3(S)),

C22(S) = λM (C2) + λM (C4(S)),

C12(S) = λ
1/2

M (C5(S)CT

5 (S)),

where

C1 = AT

11B1A11 − B1, C2 = AT

22B2A22 − B2,

C3(S) = (A21s21)
TB2A21s21 + 2AT

11
B3A21s21 − B1,

C4(S) = (A12s12)
TB1A12s12 + 2(A12s12)

TB3A22 − B2,

C5(S) = AT

11B3A22 + (A21s21)
TBT

3A12s12 − B3.

Thus, if inequality (3.4.5) is satisfied and there exists a negative semi-

definite matrix G such that
1

2
(C(S) + CT(S)) ≤ G for all S ∈ S, then all

conditions of Theorem 3.4.1 (3.4.2) are satisfied and the zero solution of the

large scale discrete-time system (3.4.3) is stable (asymptotically stable).

3.4.2 The Problem DB In this section we propose the solution of the

problem of nonlinear dynamics of discrete-time systems.

Problem DB Assume that the discrete-time system D is obtained in re-

sult of composition of the interconnected subsystems (3.2.2). It is required

to determine stability conditions of different types for the equilibrium state

x = 0 of system (3.2.5) in terms of the dynamical properties of the intercon-

nected subsystems (3.2.4) without additional information on the dynamical

properties of the isolated subsystems (3.2.3).

Assumption 3.4.3 Assume that

(1) conditions (1) and (2) of Assumption 3.4.2 are satisfied;

(2) there exist constants ρii(P, S) and ρij(P, S), i = 1, 2, . . . , m, j =

2, 3, . . . , m, i < j, such that, by virtue of the multidimensional

Download free eBooks at bookboon.com
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be satisfied. Since the matrices B1 and B2 are positive definite, we have

λM (Bi) > λm(Bi) > 0, i = 1, 2.

Let ψT = (1, 1). Then for the matrix-valued function U(x) indicated

above, the elements of the matrix C(S) have the form

C11(S) = λM (C1) + λM (C3(S)),

C22(S) = λM (C2) + λM (C4(S)),

C12(S) = λ
1/2

M (C5(S)CT

5 (S)),

where

C1 = AT

11B1A11 − B1, C2 = AT

22B2A22 − B2,

C3(S) = (A21s21)
TB2A21s21 + 2AT

11
B3A21s21 − B1,

C4(S) = (A12s12)
TB1A12s12 + 2(A12s12)

TB3A22 − B2,

C5(S) = AT

11B3A22 + (A21s21)
TBT

3A12s12 − B3.

Thus, if inequality (3.4.5) is satisfied and there exists a negative semi-

definite matrix G such that
1

2
(C(S) + CT(S)) ≤ G for all S ∈ S, then all

conditions of Theorem 3.4.1 (3.4.2) are satisfied and the zero solution of the

large scale discrete-time system (3.4.3) is stable (asymptotically stable).

3.4.2 The Problem DB In this section we propose the solution of the

problem of nonlinear dynamics of discrete-time systems.

Problem DB Assume that the discrete-time system D is obtained in re-

sult of composition of the interconnected subsystems (3.2.2). It is required

to determine stability conditions of different types for the equilibrium state

x = 0 of system (3.2.5) in terms of the dynamical properties of the intercon-

nected subsystems (3.2.4) without additional information on the dynamical

properties of the isolated subsystems (3.2.3).

Assumption 3.4.3 Assume that

(1) conditions (1) and (2) of Assumption 3.4.2 are satisfied;

(2) there exist constants ρii(P, S) and ρij(P, S), i = 1, 2, . . . , m, j =

2, 3, . . . , m, i < j, such that, by virtue of the multidimensional
102 3. DISCRETE-TIME LARGE-SCALE SYSTEMS

discrete system (3.2.5), the following inequality holds:

m∑

i=1

ψ2

i {νii(τ, xi(τ + 1)) − νii(τ, xi(τ))}

+ 2

m∑

i=1

m∑

j=2

j>i

ψiψj{νij(τ, xi(τ + 1), xj(τ + 1)) − νij(τ, xi(τ), xj(τ + 1))}

≤

m∑

i=1

ρii(P, S)ϕ2

i (�xi(τ)�) + 2
m∑

i=1

m∑

j=2

j>i

ρij(P, S)ϕi(�xi(τ)�)ϕj(�xj(τ)�)

for all (τ, xi, xj) ∈ N+

τ ×Ni0 ×Nj0, for all (P, S) ∈ P × S.

Proposition 3.4.3 If the conditions of Assumption 3.4.3 are satisfied,

then the first difference of the function v(τ, x(τ)) satisfies the following

estimate:

(3.4.6)
v(τ, x(τ + 1), ψ) − v(τ, x(τ), ψ) ≤ uTG(P, S)u

for all (τ, x) ∈ N+

τ ×N0, and for all (P, S) ∈ P × S,

where

uT = (ϕ1(�x1�), ϕ2(�x2�), . . . , ϕm(�xm(τ)�)),

C(P, S) = [ρij(P, S)], i, j = 1, 2, . . . , m, ρij(P, S) = ρji(P, S).

Theorem 3.4.3 Let the multidimensional discrete system (3.2.5) be

such that the conditions of Assumptions 3.4.1 and 3.4.3 are satisfied and,

in addition,

(1) the matrix A is positive definite;

(2) there exists a negative semi-definite matrix G̃ ∈ Rm×m such that

the matrix C(P, S) satisfies the estimate
1

2
(C(P, S)+CT(S)) ≤ G̃

for all (P, S) ∈ P × S.

Then the equilibrium state x(τ) = 0 of the multidimensional discrete sys-

tem (3.2.5) is uniformly stable on P × S.

The proof of Theorem 3.4.3 is similar to that of Theorem 3.4.1.
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discrete system (3.2.5), the following inequality holds:

m∑

i=1

ψ2

i {νii(τ, xi(τ + 1)) − νii(τ, xi(τ))}

+ 2

m∑

i=1

m∑

j=2

j>i

ψiψj{νij(τ, xi(τ + 1), xj(τ + 1)) − νij(τ, xi(τ), xj(τ + 1))}

≤

m∑

i=1

ρii(P, S)ϕ2

i (�xi(τ)�) + 2
m∑

i=1

m∑

j=2

j>i

ρij(P, S)ϕi(�xi(τ)�)ϕj(�xj(τ)�)

for all (τ, xi, xj) ∈ N+

τ ×Ni0 ×Nj0, for all (P, S) ∈ P × S.

Proposition 3.4.3 If the conditions of Assumption 3.4.3 are satisfied,

then the first difference of the function v(τ, x(τ)) satisfies the following

estimate:

(3.4.6)
v(τ, x(τ + 1), ψ) − v(τ, x(τ), ψ) ≤ uTG(P, S)u

for all (τ, x) ∈ N+

τ ×N0, and for all (P, S) ∈ P × S,

where

uT = (ϕ1(�x1�), ϕ2(�x2�), . . . , ϕm(�xm(τ)�)),

C(P, S) = [ρij(P, S)], i, j = 1, 2, . . . , m, ρij(P, S) = ρji(P, S).

Theorem 3.4.3 Let the multidimensional discrete system (3.2.5) be

such that the conditions of Assumptions 3.4.1 and 3.4.3 are satisfied and,

in addition,

(1) the matrix A is positive definite;

(2) there exists a negative semi-definite matrix G̃ ∈ Rm×m such that

the matrix C(P, S) satisfies the estimate
1

2
(C(P, S)+CT(S)) ≤ G̃

for all (P, S) ∈ P × S.

Then the equilibrium state x(τ) = 0 of the multidimensional discrete sys-

tem (3.2.5) is uniformly stable on P × S.

The proof of Theorem 3.4.3 is similar to that of Theorem 3.4.1.3.4 TESTS FOR STABILITY ANALYSIS 103

Theorem 3.4.4 Let the multidimensional discrete system (3.2.5) be

such that the conditions of Assumptions 3.4.1 and 3.4.3 are satisfied and,

in addition,

(1) the matrices A and B are positive definite;

(2) there exists a negative definite matrix G̃1 ∈ Rm×m such that the

matrix C(P, S) satisfies the estimate
1

2
(C(P, S) + CT(P, S)) ≤ G̃1

for all (P, S) ∈ P × S.

Then the equilibrium state x(τ) = 0 of the multidimensional discrete sys-

tem (3.2.5) is uniformly asymptotically stable on P × S.

The proof of Theorem 3.4.4 is similar to that of Theorem 3.4.2.

Example 3.4.2 Consider the linear multidimensional discrete system

(3.4.3). Assume that, for system (3.4.3), the matrix function with ele-

ments (3.4.4) is constructed and ψT = (1, 1). Then the elements of the

matrix C(S) have the form

ρ11(S) = λm(C1(S)), ρ22(S) = λM (C2(S)),

ρ11(S) = λ
1/2

M (C3(S)CT

3
(S)),

where

C1(S) = AT

11
B1A11 + (A21s21)

TB2A21s21 + 2AT

11
B3A21s21 − 2B1,

C2(S) = AT

22
B2A22 + (A12s12)

TB1A12s12 + 2(A12s12)
TB3A22 − 2B2,

C3(S) = AT

11B3A22 + (A21s21)
TBT

3A12s12 − B3.

Thus, if, for system (3.4.3), the matrix function with elements (3.4.4)

is constructed, inequality (3.4.5) is satisfied, and, in addition, there exists

a negative semi-definite (negative definite) matrix G̃ such that
1

2
(C(S) +

CT(S)) ≤ G̃ for all S ∈ S, then the conditions of Theorem 3.4.3 (3.4.4)

are satisfied and the zero solution of the multidimensional discrete system

(3.4.3) is stable (asymptotically stable) on P × S.

Example 3.4.3 Consider a discrete system of the fourth order which

consists of two subsystems of the second order described by the following

systems of equations

(3.4.7) xi(τ + 1) = −0.1xi + 0.2xj + 0.5si1(τ)xi + 0.3si2(τ)xj , i = 1, 2,
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where xi = (xi1, xi2)
T ∈ R2, sij(τ) ∈ [0, 1], i, j = 1, 2, for all τ ∈ N+

τ ,

and the structure matrix Si(τ) has the form

Si(τ) =

(
1 0 si1(τ) 0 si2(τ) 0

0 1 0 si1(τ) 0 si2(τ)

)

, i = 1, 2.

The structure set of system (3.4.7) is determined as follows

S =

{

S(τ) : S(τ) =

(
S1(τ) 0

0 S1(τ)

)

, Si(τ) = (J2, si1(τ)J2, si2(τ)J2),

sij(τ) ∈ [0, 1] for all τ ∈ N+

τ , i, j = 1, 2

}

.

For system (3.4.7), we construct a matrix function U(x) with the elements

vii(xi) = x2

i , i = 1, 2, v12(x1, x2) = 0.5 , x1x2,

which satisfy the estimates

vii(xi) ≥ �xi�
2, i = 1, 2.

The matrices

A =

(
1 −0.5

−0.5 1

)

and B =

(
1 0.5

0.5 1

)

are positive definite.

Let ψT = (1, 1). Then for the matrix-valued function U(x) introduced

above, the elements of the matrix C(S) have the form

ρ11(S) = 0.03 + 0.09s21 + 0.15s11s21 + 0.25s2

11
+ 0.09s2

21
− 1 ≤ −0.39,

ρ22(S) = 0.03 + 0.09s12 + 0.15s12s22 + 0.09s2

12
+ 0.25s2

22
− 1 ≤ −0.39,

ρ12(S) = 0.01 + 0.05s11 + 0.03s12 + 0.03s21 + 0.05s22 + 0.15s11s12

+ 0.25s11s22 + 0.09s12s22 + 0.15s21s22 − 0.5 ≤ 0.31.

It is easy to verify that the matrix

1

2
(C(S) + CT(S)) ≤ G̃1 =

(
−0.39 0.31

0.31 −0.39

)
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where xi = (xi1, xi2)
T ∈ R2, sij(τ) ∈ [0, 1], i, j = 1, 2, for all τ ∈ N+

τ ,

and the structure matrix Si(τ) has the form

Si(τ) =

(
1 0 si1(τ) 0 si2(τ) 0

0 1 0 si1(τ) 0 si2(τ)

)

, i = 1, 2.

The structure set of system (3.4.7) is determined as follows

S =

{

S(τ) : S(τ) =

(
S1(τ) 0

0 S1(τ)

)

, Si(τ) = (J2, si1(τ)J2, si2(τ)J2),

sij(τ) ∈ [0, 1] for all τ ∈ N+

τ , i, j = 1, 2

}

.

For system (3.4.7), we construct a matrix function U(x) with the elements

vii(xi) = x2

i , i = 1, 2, v12(x1, x2) = 0.5 , x1x2,

which satisfy the estimates

vii(xi) ≥ �xi�
2, i = 1, 2.

The matrices

A =

(
1 −0.5

−0.5 1

)

and B =

(
1 0.5

0.5 1

)

are positive definite.

Let ψT = (1, 1). Then for the matrix-valued function U(x) introduced

above, the elements of the matrix C(S) have the form

ρ11(S) = 0.03 + 0.09s21 + 0.15s11s21 + 0.25s2

11
+ 0.09s2

21
− 1 ≤ −0.39,

ρ22(S) = 0.03 + 0.09s12 + 0.15s12s22 + 0.09s2

12
+ 0.25s2

22
− 1 ≤ −0.39,

ρ12(S) = 0.01 + 0.05s11 + 0.03s12 + 0.03s21 + 0.05s22 + 0.15s11s12

+ 0.25s11s22 + 0.09s12s22 + 0.15s21s22 − 0.5 ≤ 0.31.

It is easy to verify that the matrix

1

2
(C(S) + CT(S)) ≤ G̃1 =

(
−0.39 0.31

0.31 −0.39

)
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is negative definite.

Since the conditions of Theorem 3.4.4 are satisfied, the zero solution of

system (3.4.7) is asymptotically stable on S.

In conclusion, note that the construction of a scalar Liapunov function

for the multidimensional discrete system (3.2.5) is an important and dif-

ficult problem in the theory of discrete systems. The application of the

matrix-valued function U(τ, x(τ)) to the construction of the scalar func-

tion v(τ, x(τ), ψ) simplifies the problem to a certain extent due to weakened

requirements on the components vij , i, j = 1, 2, . . . , m. This, in turn, en-

ables one to more adequately take into account the correlation between the

independent subsystems (3.2.3).

We emphasize that the suggested method for the analysis of the stability

of the multidimensional discrete system (3.2.5) is distinguished by its sim-

plicity and generality, and all established sufficient conditions of stability

and asymptotic stability are represented in terms of the property of special

matrices to have a fixed sign.

3.5 Certain Trends of Generalizations and Applications

In this section we presents the results of estimating the robust stability

bounds for discrete-time system in terms of three approaches based on

scalar, vector and hierarchical Liapunov functions. It is shown that the

hierarchical Liapunov function allows one to obtain the most wide bounds

for the uncertain matrix in the investigation of discrete system.

We consider an uncertain discrete-time system

(3.5.1) x(τ + 1) = Ax(τ) + f(x(τ), α),

where x ∈ Rn, τ ∈ Tτ = {t0 + k, k = 0, 1, 2, . . .}, t0 ∈ R, A is a constant

n × n matrix, f : Rn × S → Rn, S ⊆ Rd is a compact set. Under specific

conditions (we don’t cite them here) dynamics of the system (3.5.1) is

topologically equivalent to dynamics of the system

(3.5.2) x(τ + 1) = (A + E)x(τ),

where A is the same matrix, as in system (3.5.1), E is an uncertain n × n

matrix, about which it is known that it lies in some compact set S1 ⊂ Rn×n.

Further we will investigate the system (3.5.2).
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Our purpose is to compare the results of estimating the robust bounds of

discrete system obtained in terms of three approaches involving scalar, vec-

tor and hierarchical Liapunov function. In the section it is shown that the

hierarchical Liapunov function provides more wide bounds for estimation

of the uncertain matrix.

3.5.1 Scalar approach We assume that for the matrix A the condition

|σi(A)| < 1 is realized for all i = 1, 2, . . . , n. In this case the Liapunov

equation

(3.5.3) ATPA − P = −G

has a unique solution P ∈ Rn×n for arbitrary symmetric and positive

definite matrix G ∈ Rn×n. In this case the matrix P is symmetric and

positive definite. According to the results of Sezer and Siljak [1], we apply

the function

(3.5.4) v(x) = (xTPx)1/2.

in robustness analysis of the system (3.5.2). Let us denote by σm(P ) and

σM (P ) the maximum and minimum eigenvalues of the matrix P .

Following Sezer and Siljak [1] we have the following.

Theorem 3.5.1 Let the nominal system

(3.5.5) x(τ + 1) = Ax(τ)

be asymptotically stable. If

(3.5.6) �E� < µ(G),

where

µ(G) =
σm(G)

σ
1/2

M (P − G)σ
1/2

M (P ) + σM (P )
,

then the uncertain system (3.5.2) is asymptotically stable.

Here �E� = sup
�x�≤1

�Ex�, �x� = (xTx)1/2 is the Euclidean norm of

vector x. 3.5 GENERALIZATIONS AND APPLICATIONS 107

It is known (see Sezer and Šiljak [1]), that µ(G) takes the largest value,

if G = I . The expression (3.5.6) is a robust bound for the system (3.5.2),

obtained in the framework of scalar approach.

3.5.2 Vector approach We decompose system (3.5.2) into two intercon-

nected subsystems

(3.5.7)

Ŝi : xi(τ + 1) = (Ai + Ei)xi(τ) + (Bj + Uj)xj(τ), i, j = 1, 2, i �= j.

Here xi ∈ Rni, Ai and Bi are submatrices of the known matrix

(3.5.8) A =

(
A1 B1

B2 A2

)

,

Ei and Ui are submatrices of the uncertain matrix

(3.5.9) E =

(
E1 U1

U2 E2

)

,

where B1, U1 ∈ Rn1×n2 , B2, U2 ∈ Rn2×n1 , Ai, Ei ∈ Rni×ni , i = 1, 2.

Assumption 3.5.1 We assume that:

(1) the nominal subsystems

(3.5.10) xi(τ + 1) = Aixi(τ)

are asymptotically stable, i.e. there exist unique symmetric and

positive definite matrices Pi ∈ Rni×ni, which satisfy the Liapunov

matrix equations

(3.5.11) AT

i PiAi − Pi = −Gi, i = 1, 2,

where Gi are arbitrary symmetric and positive definite matrices;

(2) there exists a constant γ ∈ (0, 1) such that

(3.5.12) �B1� �B2� < γ2µ1µ2

where µi = (σ
1/2

M (Pi − Ii)σ
1/2

M (Pi)+σM (Pi))
−1, Pi are solutions of

the Liapunov matrix equations (3.5.11) for the matrices Gi = Ini
,

Ini
are ni × ni identity matrices, i = 1, 2.
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It is known (see Sezer and Šiljak [1]), that µ(G) takes the largest value,

if G = I . The expression (3.5.6) is a robust bound for the system (3.5.2),

obtained in the framework of scalar approach.

3.5.2 Vector approach We decompose system (3.5.2) into two intercon-

nected subsystems

(3.5.7)

Ŝi : xi(τ + 1) = (Ai + Ei)xi(τ) + (Bj + Uj)xj(τ), i, j = 1, 2, i �= j.

Here xi ∈ Rni, Ai and Bi are submatrices of the known matrix

(3.5.8) A =

(
A1 B1

B2 A2

)

,

Ei and Ui are submatrices of the uncertain matrix

(3.5.9) E =

(
E1 U1

U2 E2

)

,

where B1, U1 ∈ Rn1×n2 , B2, U2 ∈ Rn2×n1 , Ai, Ei ∈ Rni×ni , i = 1, 2.

Assumption 3.5.1 We assume that:

(1) the nominal subsystems

(3.5.10) xi(τ + 1) = Aixi(τ)

are asymptotically stable, i.e. there exist unique symmetric and

positive definite matrices Pi ∈ Rni×ni, which satisfy the Liapunov

matrix equations

(3.5.11) AT

i PiAi − Pi = −Gi, i = 1, 2,

where Gi are arbitrary symmetric and positive definite matrices;

(2) there exists a constant γ ∈ (0, 1) such that

(3.5.12) �B1� �B2� < γ2µ1µ2

where µi = (σ
1/2

M (Pi − Ii)σ
1/2

M (Pi)+σM (Pi))
−1, Pi are solutions of

the Liapunov matrix equations (3.5.11) for the matrices Gi = Ini
,

Ini
are ni × ni identity matrices, i = 1, 2.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://s.bookboon.com/Gaiteye


Stability Theory of Large-Scale  
Dynamical Systems

109 

Discrete-Time Large-Scale Systems
108 3. DISCRETE-TIME LARGE-SCALE SYSTEMS

We define the constants

a = σ
1/2

M (P1)σ
1/2

M (P2), b = σ
1/2

M (P1)σ
1/2

M (P2) (�B1� + �B2�) ,

µi = (σ
1/2

M (Pi − Ii)σ
1/2

M (Pi) + σM (Pi))
−1, i = 1, 2,

αi = σ
1/2

M (Pi)µi = (σ
1/2

M (Pi − Ii) + σ
1/2

M (Pi))
−1, i = 1, 2,

c = γ2α1α2 − σ
1/2

M (P1)σ
1/2

M (P2)�B1� �B2�,

ε =
1

2a
((b2 + 4ac)1/2

− b),

where Pi are solutions of the Liapunov matrix equations (3.5.11) for the

matrices Gi = Ini
, i = 1, 2.

Theorem 3.5.2 Assume that for the uncertain system (3.5.2) the de-

composition (3.5.7) – (3.5.9) takes place and all conditions of Assumption

3.1 are satisfied. If the submatrices Ei and Ui satisfy the inequalities

(3.5.13) �Ei� ≤ (1 − γ)µi, �Ui� < ε, i = 1, 2,

then the equilibrium x = 0 of (3.5.2) is asymptotically stable.

Proof For the nominal subsystems (3.5.10) by (3.5.11) we construct the

norm-like functions

(3.5.14) vi(xi) = (xT

i Pixi)
1/2, i = 1, 2,

and the scalar function

(3.5.15) v(x) = d1v1(x1) + d2v2(x2),

where d1 and d2 are some positive constants.

For the first differences ∆vi(xi) of the functions (3.5.14) along the so-

lutions of (3.5.7) we have the estimates:

∆vi(xi)
∣
∣
Ŝi

= vi(Aixi) − vi(xi) + vi((Ai + Ei)xi) − vi(Aixi)

+ vi((Ai + Ei)xi + (Bi + Ui)xj) − vi((Ai + Ei)xi)

≤ (xT

i AT

i PiAixi)
1/2

− (xT

i Pixi)
1/2 + σ

1/2

M (Pi)�Eixi�

+ σ
1/2

M (Pi)�(Bi + Ui)xj� ≤
xT

i AT

i PiAixi − xT

i Pixi

(xT

i AT

i PiAixi)1/2 + (xT

i Pixi)1/2

+ σ
1/2

M (Pi)�Ei� �xi� + σ
1/2

M (Pi)(�Bi� + �Ui�)�xj�

≤ −(αi − σ
1/2

M (Pi)�Ei�)�xi� + σ
1/2

M (Pi) (�Bi� + �Ui�) �xj�,3.5 GENERALIZATIONS AND APPLICATIONS 109

where i, j = 1, 2, i �= j.

Here we use the known inequality (see Sezer and Siljak [1])

(pTPp)1/2
− (qTPq)1/2

≤ σ
1/2

M (P )�p − q�

for all p, q ∈ Rn, P ∈ Rn×n is a symmetric and positive definite matrix.

From here we arrive at the following inequality

(3.5.16) ∆v(x)
∣
∣
(Ŝ1,Ŝ2)

≤ d1∆v1(x1)
∣
∣
Ŝ1

+d2∆v2(x2)
∣
∣
Ŝ2

≤ −d̃TWz,

where d̃ = (d1, d2)
T, z = (�x1�, �x2�)

T, W = (wij) is 2 × 2 matrix with

the elements

wij =

{

αi − σ
1/2

M (Pi) �Ei� if i = j,

−σ
1/2

M (Pi)(�Bi� + �Ui�) if i �= j.

As all conditions of Theorem 3.5.2 are satisfied, it is not difficult to verify

that the matrix W is the M-matrix (see Siljak [4]). Really

w11w22 − w12w21 = [α1 − σ
1/2

M (P1)�E1�][α2 − σ
1/2

M (P2)�E2�]

− σ
1/2

M (P1)σ
1/2

M (P2)(�B1� + �U1�)(�B2� + �U2�)

>
[

α1 − σ
1/2

M (P1)(1 − γ)µ1

] [

α2 − σ
1/2

M (P2)(1 − γ)µ2

]

− σ
1/2

M (P1)σ
1/2

M (P2)(�B1� + ε)(�B2� + ε) = γ2α1α2

− σ
1/2

M (P1)σ
1/2

M (P2)(�B1� + ε)(�B2� + ε) = −σ
1/2

M (P1)σ
1/2

M (P2)ε
2

− σ
1/2

M (P1)σ
1/2

M (P2)(�B1� + �B2�)ε + γ2α1α2

− σ
1/2

M (P1)σ
1/2

M (P2)�B1� �B2� = −aε2
− bε + c.

By condition (2) of Assumption 3.5.1

c = γ2α1α2 − σ
1/2

M (P1)σ
1/2

M (P2)�B1� �B2�

= σ
1/2

M (P1)σ
1/2

M (P2)
[
γ2µ1µ2 − �B1� �B2�

]
> 0

and therefore −aε2 − bε + c = 0, and w11w22 − w12w21 > 0.

It is clear that the function (3.5.15) is positive definite and its first dif-

ference (3.5.16) is negative definite. These conditions are sufficient for the
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where i, j = 1, 2, i �= j.

Here we use the known inequality (see Sezer and Siljak [1])

(pTPp)1/2
− (qTPq)1/2

≤ σ
1/2

M (P )�p − q�

for all p, q ∈ Rn, P ∈ Rn×n is a symmetric and positive definite matrix.

From here we arrive at the following inequality

(3.5.16) ∆v(x)
∣
∣
(Ŝ1,Ŝ2)

≤ d1∆v1(x1)
∣
∣
Ŝ1

+d2∆v2(x2)
∣
∣
Ŝ2

≤ −d̃TWz,

where d̃ = (d1, d2)
T, z = (�x1�, �x2�)

T, W = (wij) is 2 × 2 matrix with

the elements

wij =

{

αi − σ
1/2

M (Pi) �Ei� if i = j,

−σ
1/2

M (Pi)(�Bi� + �Ui�) if i �= j.

As all conditions of Theorem 3.5.2 are satisfied, it is not difficult to verify

that the matrix W is the M-matrix (see Siljak [4]). Really

w11w22 − w12w21 = [α1 − σ
1/2

M (P1)�E1�][α2 − σ
1/2

M (P2)�E2�]

− σ
1/2

M (P1)σ
1/2

M (P2)(�B1� + �U1�)(�B2� + �U2�)

>
[

α1 − σ
1/2

M (P1)(1 − γ)µ1

] [

α2 − σ
1/2

M (P2)(1 − γ)µ2

]

− σ
1/2

M (P1)σ
1/2

M (P2)(�B1� + ε)(�B2� + ε) = γ2α1α2

− σ
1/2

M (P1)σ
1/2

M (P2)(�B1� + ε)(�B2� + ε) = −σ
1/2

M (P1)σ
1/2

M (P2)ε
2

− σ
1/2

M (P1)σ
1/2

M (P2)(�B1� + �B2�)ε + γ2α1α2

− σ
1/2

M (P1)σ
1/2

M (P2)�B1� �B2� = −aε2
− bε + c.

By condition (2) of Assumption 3.5.1

c = γ2α1α2 − σ
1/2

M (P1)σ
1/2

M (P2)�B1� �B2�

= σ
1/2

M (P1)σ
1/2

M (P2)
[
γ2µ1µ2 − �B1� �B2�

]
> 0

and therefore −aε2 − bε + c = 0, and w11w22 − w12w21 > 0.

It is clear that the function (3.5.15) is positive definite and its first dif-

ference (3.5.16) is negative definite. These conditions are sufficient for the
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asymptotic stability of the equilibrium x = 0 of (3.5..2). The proof of

Theorem 3.5.2 is complete.

Thus the inequalities (3.5.13) are the robust bounds for the system

(3.5.2), obtained in terms of the vector approach.

3.5.3 Hierarchical approach As is known (see Ikeda and Siljak [1]),

the essence of this method is as follows: starting from the constructing an

auxiliary Liapunov function, we take into account a hierarchical structure

of the system (3.5.2) or realize a multilevel decomposition of the initial

system. Further the second approach is applied precisely.

We decompose each subsystems (3.5.7) into two interconnected compo-

nents

(3.5.17)
C̃ij : xij(τ + 1) = (Aij + Eij)xij(τ) + (Bij + Uij)xik(τ),

i, j, k = 1, 2, j �= k,

where xij ∈ Rnij, Rni = Rni1 × Rni2, Aij , Eij ∈ Rnij×nij, Bi1, Ui1 ∈

Rni1×ni2, Bi2, Ui2 ∈ Rni2×ni1,

Ai =

(
Ai1 Bi1

Bi2 Ai2

)

, Ei =

(
Ei1 Ui1

Ui2 Ei2

)

.

Assume that the matrices Bi and Ui have a block structure:

(3.5.18) Bi =

(

M
(i)
11

M
(i)
12

M
(i)
12

M
(i)
22

)

, Ui =

(

F
(i)
11

F
(i)
12

F
(i)
12

F
(i)
22

)

,

where M
(i)

jk , F
(i)

jk ∈ Rnij×nlk, i, j, k, l = 1, 2, i �= l.

We extract from (3.5.17) the independent components

(3.5.19) Cij : xij(τ + 1) = (Aij + Eij)xij(τ), i, j = 1, 2,

with the same designations of variables as in system (3.5.17).

In order to state the robust bounds we require the following assumptions.

Assumption 3.5.2 The nominal components

(3.5.20) xij(τ + 1) = Aijxij(τ), i, j = 1, 2,
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asymptotic stability of the equilibrium x = 0 of (3.5..2). The proof of

Theorem 3.5.2 is complete.

Thus the inequalities (3.5.13) are the robust bounds for the system

(3.5.2), obtained in terms of the vector approach.

3.5.3 Hierarchical approach As is known (see Ikeda and Siljak [1]),

the essence of this method is as follows: starting from the constructing an

auxiliary Liapunov function, we take into account a hierarchical structure

of the system (3.5.2) or realize a multilevel decomposition of the initial

system. Further the second approach is applied precisely.

We decompose each subsystems (3.5.7) into two interconnected compo-

nents

(3.5.17)
C̃ij : xij(τ + 1) = (Aij + Eij)xij(τ) + (Bij + Uij)xik(τ),

i, j, k = 1, 2, j �= k,

where xij ∈ Rnij, Rni = Rni1 × Rni2, Aij , Eij ∈ Rnij×nij, Bi1, Ui1 ∈

Rni1×ni2, Bi2, Ui2 ∈ Rni2×ni1,

Ai =

(
Ai1 Bi1

Bi2 Ai2

)

, Ei =

(
Ei1 Ui1

Ui2 Ei2

)

.

Assume that the matrices Bi and Ui have a block structure:

(3.5.18) Bi =

(

M
(i)
11

M
(i)
12

M
(i)
12

M
(i)
22

)

, Ui =

(

F
(i)
11

F
(i)
12

F
(i)
12

F
(i)
22

)

,

where M
(i)

jk , F
(i)

jk ∈ Rnij×nlk, i, j, k, l = 1, 2, i �= l.

We extract from (3.5.17) the independent components

(3.5.19) Cij : xij(τ + 1) = (Aij + Eij)xij(τ), i, j = 1, 2,

with the same designations of variables as in system (3.5.17).

In order to state the robust bounds we require the following assumptions.

Assumption 3.5.2 The nominal components

(3.5.20) xij(τ + 1) = Aijxij(τ), i, j = 1, 2,3.5 GENERALIZATIONS AND APPLICATIONS 111

are asymptotically stable, i.e. there exist unique symmetric and positive

definite matrices Pij , which satisfy the Liapunov matrix equations

(3.5.21) AT

ijPijAij − Pij = −Gij , i, j = 1, 2,

where Gij are arbitrary symmetric and positive definite matrices.

Let Pij be solutions of the Liapunov matrix equations (3.5.21) for the

identity matrices G(ij) = Iij . We define the constants

αij = σ
1/2

M (Pij)µij = (σ
1/2

M (Pij − Iij) + σ
1/2

M (Pij))
−1,

µij = (σ
1/2

M (Pij − Iij)σ
1/2

M (Pij) + σM (Pij))
−1,

εi =
1

2ai

((b2

i + 4aici)
1/2

− bi),

ai = σ
1/2

M (Pi1)σ
1/2

M (Pi2),

bi = σ
1/2

M (Pi1)σ
1/2

M (Pi2)(�Bi1� + �Bi2�),

ci = γ2

i αi1αi2 − σ
1/2

M (Pi1)σ
1/2

M (Pi2)�Bi1� �Bi2�, i, j = 1, 2.

Assumption 3.5.3 There exist constants γi ∈ (0, 1) such that

(3.5.22) �Bi1� �Bi2� < γ2

i µi1µi2, i = 1, 2.

Let us construct an auxiliary function on the base of the functions

(3.5.23) vij(xij) = (xT

ijPijxij)
1/2,

by formula

vi(xi) = di1vi1(xi1) + di2vi2(xi2), i = 1, 2,

where dij are some positive constants. We introduce 2 × 2 matrices Wi =

(w
(i)

jk ) with the elements

w
(i)

jk =

{
γiαij if j = k,

−σ
1/2

M (Pij)(�Bij� + εi) if j �= k.

Here 0 < εi < εi.

Further we need the following proposition.
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are asymptotically stable, i.e. there exist unique symmetric and positive

definite matrices Pij , which satisfy the Liapunov matrix equations

(3.5.21) AT

ijPijAij − Pij = −Gij , i, j = 1, 2,

where Gij are arbitrary symmetric and positive definite matrices.

Let Pij be solutions of the Liapunov matrix equations (3.5.21) for the

identity matrices G(ij) = Iij . We define the constants

αij = σ
1/2

M (Pij)µij = (σ
1/2

M (Pij − Iij) + σ
1/2

M (Pij))
−1,

µij = (σ
1/2

M (Pij − Iij)σ
1/2

M (Pij) + σM (Pij))
−1,

εi =
1

2ai

((b2

i + 4aici)
1/2

− bi),

ai = σ
1/2

M (Pi1)σ
1/2

M (Pi2),

bi = σ
1/2

M (Pi1)σ
1/2

M (Pi2)(�Bi1� + �Bi2�),

ci = γ2

i αi1αi2 − σ
1/2

M (Pi1)σ
1/2

M (Pi2)�Bi1� �Bi2�, i, j = 1, 2.

Assumption 3.5.3 There exist constants γi ∈ (0, 1) such that

(3.5.22) �Bi1� �Bi2� < γ2

i µi1µi2, i = 1, 2.

Let us construct an auxiliary function on the base of the functions

(3.5.23) vij(xij) = (xT

ijPijxij)
1/2,

by formula

vi(xi) = di1vi1(xi1) + di2vi2(xi2), i = 1, 2,

where dij are some positive constants. We introduce 2 × 2 matrices Wi =

(w
(i)

jk ) with the elements

w
(i)

jk =

{
γiαij if j = k,

−σ
1/2

M (Pij)(�Bij� + εi) if j �= k.

Here 0 < εi < εi.

Further we need the following proposition.112 3. DISCRETE-TIME LARGE-SCALE SYSTEMS

Proposition 3.5.1 We assume that

(1) discrete system (3.5.2) is decomposed on the first level to the sys-

tem (3.5.7) and on the second level to the systems (3.5.17);

(2) all conditions of Assumptions 3.5.2 and 3.5.3 are satisfied;

(3) for the submatrices Eij , Uij of the matrices Ei, i = 1, 2, the esti-

mates

�Eij� ≤ (1 − γi)µij , �Uij� ≤ εi, i, j = 1, 2.

are realized.

Then there exist vectors d̂1, d̂2 ∈ R2 with positive components such that the

first differences ∆vi(xi)
∣
∣
Cij

for the functions vi(xi) satisfy the estimates

(3.5.24) ∆vi(xi)
∣
∣
Cij

≤ −d̂T

i Wizi, i = 1, 2

and the matrices Wi are the M-matrices.

Here d̂i = (di1, di2)
T, zi = (�xi1�, �xi2�)

T.

The proof of Proposition 3.5.1 is analogous to that of Theorem 3.5.1.

Under the hypotheses of Proposition 3.5.1 the matrices Wi are the

M-matrices and, according to Siljak [4], the vectors d̂T

i Wi = (di1w
(i)
11

+

di2w
(i)
21

, di1w
(i)
12

+ di2w
(i)
22

) have positive components.

Let us denote

(3.5.25)

πi = min{di1w
(i)
11

+ di2w
(i)
21

; di1w
(i)
12

+ di2w
(i)
22
}, i = 1, 2,

m =
1

2

(

π1π2

(d11σ
1/2

M (P11) + d12σ
1/2

M (P12)) (d21σ
1/2

M (P21) + d22σ
1/2

M (P22))

)1/2

and give a method of optimal choice of the constants di1, di2, i = 1, 2.

Proposition 3.5.2 Let the matrices W1 and W2 be the M-matrices and

w
(i)
12

, w
(i)
21

< 0, then

(3.5.26)

sup
d∈D

m(d) = m(d∗
1
, 1, d∗

2
, 1)

=
1

2

(

w
(1)

11
w

(1)

22
− w

(1)

12
w

(1)

21

σ
1/2

M (P11)(w
(1)

22
− w

(1)

21
) + σ

1/2

M (P12)(w
(1)

11
− w

(1)

12
)

×
w

(2)

11
w

(2)

22
− w

(2)

12
w

(2)

21

σ
1/2

M (P21)(w
(2)

22
− w

(2)

21
) + σ

1/2

M (P22)(w
(2)

11
− w

(2)

12
)

)1/2

,
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Proposition 3.5.1 We assume that

(1) discrete system (3.5.2) is decomposed on the first level to the sys-

tem (3.5.7) and on the second level to the systems (3.5.17);

(2) all conditions of Assumptions 3.5.2 and 3.5.3 are satisfied;

(3) for the submatrices Eij , Uij of the matrices Ei, i = 1, 2, the esti-

mates

�Eij� ≤ (1 − γi)µij , �Uij� ≤ εi, i, j = 1, 2.

are realized.

Then there exist vectors d̂1, d̂2 ∈ R2 with positive components such that the

first differences ∆vi(xi)
∣
∣
Cij

for the functions vi(xi) satisfy the estimates

(3.5.24) ∆vi(xi)
∣
∣
Cij

≤ −d̂T

i Wizi, i = 1, 2

and the matrices Wi are the M-matrices.

Here d̂i = (di1, di2)
T, zi = (�xi1�, �xi2�)

T.

The proof of Proposition 3.5.1 is analogous to that of Theorem 3.5.1.

Under the hypotheses of Proposition 3.5.1 the matrices Wi are the

M-matrices and, according to Siljak [4], the vectors d̂T

i Wi = (di1w
(i)
11

+

di2w
(i)
21

, di1w
(i)
12

+ di2w
(i)
22

) have positive components.

Let us denote

(3.5.25)

πi = min{di1w
(i)
11

+ di2w
(i)
21

; di1w
(i)
12

+ di2w
(i)
22
}, i = 1, 2,

m =
1

2

(

π1π2

(d11σ
1/2

M (P11) + d12σ
1/2

M (P12)) (d21σ
1/2

M (P21) + d22σ
1/2

M (P22))

)1/2

and give a method of optimal choice of the constants di1, di2, i = 1, 2.

Proposition 3.5.2 Let the matrices W1 and W2 be the M-matrices and

w
(i)
12

, w
(i)
21

< 0, then

(3.5.26)

sup
d∈D

m(d) = m(d∗
1
, 1, d∗

2
, 1)

=
1

2

(

w
(1)

11
w

(1)

22
− w

(1)

12
w

(1)

21

σ
1/2

M (P11)(w
(1)

22
− w

(1)

21
) + σ

1/2

M (P12)(w
(1)

11
− w

(1)

12
)

×
w

(2)

11
w

(2)

22
− w

(2)

12
w

(2)

21

σ
1/2

M (P21)(w
(2)

22
− w

(2)

21
) + σ

1/2

M (P22)(w
(2)

11
− w

(2)

12
)

)1/2

,
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where

D =

�

d = (d11, d12, d21, d22)
T
∈ R4 : −

w
(1)

21

w
(1)

11

<
d11

d12

< −
w

(1)

22

w
(1)

12

,

−
w

(2)

21

w
(2)

11

<
d21

d22

< −
w

(2)

22

w
(2)

12

�

,

d∗
1

=
w

(1)

22
− w

(1)

21

w
(1)

11
− w

(1)

12

, d∗
2

=
w

(2)

22
− w

(2)

21

w
(2)

11
− w

(2)

12

.

Proof As the matrices W1 and W2 are the M-matrices, then w
(i)
11

, w
(i)
22

>

0, w
(i)
12

, w
(i)
21

< 0 and consequently,

−
w

(i)
22

w
(i)
12

> −
w

(i)
21

w
(i)
11

> 0.

On computing of the constant πi and m we can set d12 = d22 = 1, d11 = d1,

d21 = d2 and

di ∈ Di =

�

di ∈ R : −
w

(i)
21

w
(i)
11

< di < −
w

(i)
22

w
(i)
12

�

, i = 1, 2.

Let us denote

(3.5.27) mi(di) =
πi

diσ
1

2

M (Pi1) + σ
1

2

M (Pi2)
, i = 1, 2,

and note that

(3.5.28) sup
d∈D

m(d) =
1

2

�
sup

d1∈D1

m1(d1) sup
d2∈D2

m2(d2)
�
.

By (3.5.25) for the function mi(di) we get the expressions

mi(di) =







diw
(i)
11

+ w
(i)
21

diσ
1/2

M (Pi1) + σ
1/2

M (Pi2)
, if −

w
(i)
21

w
(i)
11

< di ≤ d∗i ,

diw
(i)
12

+ w
(i)
22

diσ
1/2

M (Pi1) + σ
1/2

M (Pi2)
, if d∗i ≤ di < −

w
(i)
22

w
(i)
21

.
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For the first derivatives m′

i(di) we have

(3.5.29)

m′

i(di) =







w
(i)
11

σ
1/2

M (Pi2) − w
(i)
21

σ
1/2

M (Pi1)
�
diσ

1/2

M (Pi1) + σ
1/2

M (Pi2)
�2

, if −
w

(i)
21

w
(i)
11

< di < d∗i ,

w
(i)
12

σ
1/2

M (Pi2) − w
(i)
22

σ
1/2

M (Pi1)
�
diσ

1/2

M (Pi1) + σ
1/2

M (Pi2)
�2

, if d∗i < di < −
w

(i)
22

w
(i)
21

,

therefore m′

i(di) > 0 for −
w

(i)
21

w
(i)
11

< di < d∗i and m′

i(di) < 0 for d∗i < di <

−
w

(i)
22

w
(i)
21

. From here it follows that

sup
di∈Di

mi(di) = mi(d
∗

i ) =
w

(i)
11

w
(i)
22

− w
(i)
12

w
(i)
21

σ
1/2

M (Pi1)(w
(i)
22

− w
(i)
21

) + σ
1/2

M (Pi2)(w
(i)
11

− w
(i)
12

)
.

Substituting by the values of mi(d
∗

i ) into (3.5.28), we get the identity

(3.5.26). Proposition 3.5.2 is proved.

Assumption 3.5.4 Let for the submatrices M
(i)

jk of the matrices Bi

the inequalities

m = max �M
(i)

jk � < m

be realized for all i, j, k = 1, 2 .

The following proposition is basic in the method of hierarchical Liapunov

functions in the robust stability problem of the system (3.5.2).

Theorem 3.5.3 We assume that for the uncertain system (3.5.2) the

two-level decomposition (3.5.7), (3.5.17) is realized and all conditions of

Assumptions 3.5.2 – 3.5.4 are satisfied. If the inequalities

�Eij� ≤ (1 − γi)µij , �Uij� ≤ εi, �F
(i)

jk � < m − m

are fulfilled for all i, j, k = 1, 2, then the equilibrium x = 0 of the sys-

tem (3.5.2) is asymptotically stable.

Proof Under the hypotheses of Proposition 3.5.1 there exist constants

dij > 0 for which d̂T

i Wizi > 0. In view of designations (3.5.25), we get

from estimate (3.5.24)

∆vi(xi)
�
�
Si
≤ −πi

�
�xi1�

2 + �xi2�
2
�1/2

= −πi�xi�, i = 1, 2.
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For the first derivatives m′

i(di) we have

(3.5.29)

m′

i(di) =







w
(i)
11

σ
1/2

M (Pi2) − w
(i)
21

σ
1/2

M (Pi1)
�
diσ

1/2

M (Pi1) + σ
1/2

M (Pi2)
�2

, if −
w

(i)
21

w
(i)
11

< di < d∗i ,

w
(i)
12

σ
1/2

M (Pi2) − w
(i)
22

σ
1/2

M (Pi1)
�
diσ

1/2

M (Pi1) + σ
1/2

M (Pi2)
�2

, if d∗i < di < −
w

(i)
22

w
(i)
21

,

therefore m′

i(di) > 0 for −
w

(i)
21

w
(i)
11

< di < d∗i and m′

i(di) < 0 for d∗i < di <

−
w

(i)
22

w
(i)
21

. From here it follows that

sup
di∈Di

mi(di) = mi(d
∗

i ) =
w

(i)
11

w
(i)
22

− w
(i)
12

w
(i)
21

σ
1/2

M (Pi1)(w
(i)
22

− w
(i)
21

) + σ
1/2

M (Pi2)(w
(i)
11

− w
(i)
12

)
.

Substituting by the values of mi(d
∗

i ) into (3.5.28), we get the identity

(3.5.26). Proposition 3.5.2 is proved.

Assumption 3.5.4 Let for the submatrices M
(i)

jk of the matrices Bi

the inequalities

m = max �M
(i)

jk � < m

be realized for all i, j, k = 1, 2 .

The following proposition is basic in the method of hierarchical Liapunov

functions in the robust stability problem of the system (3.5.2).

Theorem 3.5.3 We assume that for the uncertain system (3.5.2) the

two-level decomposition (3.5.7), (3.5.17) is realized and all conditions of

Assumptions 3.5.2 – 3.5.4 are satisfied. If the inequalities

�Eij� ≤ (1 − γi)µij , �Uij� ≤ εi, �F
(i)

jk � < m − m

are fulfilled for all i, j, k = 1, 2, then the equilibrium x = 0 of the sys-

tem (3.5.2) is asymptotically stable.

Proof Under the hypotheses of Proposition 3.5.1 there exist constants

dij > 0 for which d̂T

i Wizi > 0. In view of designations (3.5.25), we get

from estimate (3.5.24)

∆vi(xi)
�
�
Si
≤ −πi

�
�xi1�

2 + �xi2�
2
�1/2
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Since for i �= k the estimates

∆vi1(xi1)
�
�
�Si

≤ ∆vi1(xi1)
�
�
Si

+ σ
1/2

M (Pi1)(2m + �F
(i)
11

� + �F
(i)
12

�)�xk�,

∆vi2(xi2)
�
�
�Si

≤ ∆vi2(xi2)
�
�
Si

+ σ
1/2

M (Pi2)(2m + �F
(i)
21

� + �F
(i)
22

�)�xk�,

are true, then

(3.5.30)

∆vi(xi)
�
�
�Si

= di1∆vi1(xi1)
�
�
Si

+ di2∆vi2(xi2)
�
�
�Si

≤ −πi�xi� +
�
di1σ

1/2

M (Pi1)
�
2m + �F

(i)
11

� + �F
(i)
12

�
�

+ di2σ
1/2

M (Pi2)
�
2m + �F

(i)
21

� + �F
(i)
22

�
��
�xk�.

For the function

v(x) = d1v1(x1) + d2v2(x2)

in view of estimates (3.5.30) we get

(3.5.31) ∆v(x)
�
�
S

= d1∆v1(x1)
�
�
�S1

+ d2∆v2(x2)
�
�
�S2

≤ −d̂TWz,

where d̂ = (d1, d2)
T, z = (�x1�, �x2�)

T and W is a 2× 2 - matrix with the

elements

wjk =







πj for j = k,

−dj1σ
1/2

M (Pj1)(2m + �F
(j)
11

�) + �F
(j)
12

�)

− dj2σ
1/2

M (Pj2)(2m + �F
(j)
21

�) + �F
(j)
22

�) for j �= k.

Under the hypotheses of Theorem 3.5.3 the matrix W in the estimate

(3.5.31) is the M-matrix. Thus the matrices W1, W2, W are the M-matrices

and it is sufficient for asymptotic stability of the system (3.5.2).

3.5.4 Discussion and some examples The hierarchical approach in

robust stability problem permits a more complete allowance for the dynamic

characteristics of the nominal system on each hierarchical level and thus a

more exact definition of robust bounds for the system (3.5.2). We illustrate

efficiency of the approach proposed in the Section by a simple example.

Let us assume that in the system (3.5.2) the matrix A has the form

(3.5.32) A =






0.5 0.01 0.03 0
0.01 0.125 0 0.03
0.03 0 0.25 0.005
0 0.03 0.005 0.125




 .
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3.5.4.1 Scalar approach Let us compute the matrices and constants oc-

curring in the framework of the scalar approach (see Theorem 3.5.1):

P =






1.336149 0.008512 0.032104 0.000737
0.008512 1.017019 0.000708 0.007761
0.032104 0.000708 1.068495 0.002057
0.000737 0.007761 0.002057 1.016891




 ;

σ(P ) ≈ 1.340176; σM (P − I) ≈ 0.340176; µ ≈ 0.496185.

Here I is a 4 × 4 - unit matrix. From here the robust bound for the sys-

tem (3.5.2) with the matrix (3.5.32) is determined by the inequality

(3.5.33) �E� < 0.496185

for all matrices E ∈ S.

3.5.4.2 Vector approach According to this approach we decompose the

matrix (3.5.32) and denote

A1 =

�
0.5 0.01
0.01 0.125

�

, A2 =

�
0.25 0.005
0.005 0.125

�

,

B1 = B2 =

�
0.03 0
0 0.03

�

.

The uncertain matrix E is represented in the form (3.5.9). The matrices

and constants occurring in the framework of vector approach are:

P1 ≈

�
1.333581 0.008469
0.008469 1.016029

�

, P2 ≈

�
1.066699 0.002031,

0.002031 1.015902

�

,

σM (P1) ≈ 1.333807, σM (P2) ≈ 1.066780,

µ1 ≈ 0.449733, µ2 ≈ 0.749800.

Hence we have the estimates of submatrices norms in the form

(3.5.34) �E1� ≤ 0.499733(1− γ), �E2� ≤ 0.749800(1− γ), γ ∈ (0, 1).

Let γ = 0.25. Besides ε ≈ 0.012303. Finally, for the matrix E represented

in the form (3.5.9), we get the estimates:

(3.5.35)

�E1� ≤ 0.374800, �E2� ≤ 0.562350, �Ui� < 0.012303, i = 1, 2.3.5 GENERALIZATIONS AND APPLICATIONS 117

For example the matrix

Ẽ = diag {0.37, 0.37, 0.56, 0.56}

satisfies the inequalities (3.5.35). But �Ẽ� = 0.56, and consequently, the

norm of uncertain matrix Ẽ does not satisfy the inequality (3.5.33).

3.5.4.3 Hierarchical approach According to the proposed algorithm we

accomplish the two-level decomposition of system (3.5.2) with the ma-

trix (3.5.32) and as a result we get:

A11 = 0.5, A12 = 0.125, A21 = 0.25, A22 = 0.125.

Let

γ1 = 0.5, γ2 = 0.125.

Numerical values of the corresponding constants are:

σM (P11) ≈ 1.333333, σM (P12) ≈ 1.015873, µ11 = 0.5, µ12 = 0.875,

σM (P21) ≈ 1.066666, σM (P22) ≈ 1.015873, µ21 = 0.75, µ22 = 0.875,

ε1 ≈ 0.320718, ε2 ≈ 0.096261.

We shall set ε1 = 0.05, and ε2 = 0.006. In this case for the matrices W1

and W2 we get the expressions

W1 ≈

(
0.288675 −0.069282
−0.060474 0.440958

)

, W2 ≈

(
0.096824 −0.011360

−0.011086 0.110239

)

.

The matrices W1 and W2 are the M-matrices as their non-diagonal ele-

ments are negative and their principal minors are positive.

The constant m is computed by the formula (3.5.26): m ≈ 0.038392.

Thus, the following restrictions are imposed on submatrices of E:

(3.5.36)
�E11� ≤ 0.25, �E12� ≤ 0.4375, �E21� ≤ 0.65625, �E22� ≤ 0.765625,

�U1j� ≤ 0.05, �U2j� ≤ 0.006, �F
(i)

jk � < 0.008392.

For example the matrix

E = diag {0.25, 0.43, 0.65, 0.76}.

Download free eBooks at bookboon.com



Stability Theory of Large-Scale  
Dynamical Systems

117 

Discrete-Time Large-Scale Systems

3.5 GENERALIZATIONS AND APPLICATIONS 117

For example the matrix

Ẽ = diag {0.37, 0.37, 0.56, 0.56}

satisfies the inequalities (3.5.35). But �Ẽ� = 0.56, and consequently, the

norm of uncertain matrix Ẽ does not satisfy the inequality (3.5.33).

3.5.4.3 Hierarchical approach According to the proposed algorithm we

accomplish the two-level decomposition of system (3.5.2) with the ma-

trix (3.5.32) and as a result we get:

A11 = 0.5, A12 = 0.125, A21 = 0.25, A22 = 0.125.

Let

γ1 = 0.5, γ2 = 0.125.

Numerical values of the corresponding constants are:

σM (P11) ≈ 1.333333, σM (P12) ≈ 1.015873, µ11 = 0.5, µ12 = 0.875,

σM (P21) ≈ 1.066666, σM (P22) ≈ 1.015873, µ21 = 0.75, µ22 = 0.875,

ε1 ≈ 0.320718, ε2 ≈ 0.096261.

We shall set ε1 = 0.05, and ε2 = 0.006. In this case for the matrices W1

and W2 we get the expressions

W1 ≈

(
0.288675 −0.069282
−0.060474 0.440958

)

, W2 ≈

(
0.096824 −0.011360

−0.011086 0.110239

)

.

The matrices W1 and W2 are the M-matrices as their non-diagonal ele-

ments are negative and their principal minors are positive.

The constant m is computed by the formula (3.5.26): m ≈ 0.038392.

Thus, the following restrictions are imposed on submatrices of E:

(3.5.36)
�E11� ≤ 0.25, �E12� ≤ 0.4375, �E21� ≤ 0.65625, �E22� ≤ 0.765625,

�U1j� ≤ 0.05, �U2j� ≤ 0.006, �F
(i)

jk � < 0.008392.

For example the matrix

E = diag {0.25, 0.43, 0.65, 0.76}.
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satisfies the inequalities (3.5.36). Since �E� = 0.76, the matrix E does

not satisfy condition (3.5.33). Moreover � diag {0.65, 0.76}� = 0.76 > 0.75

and it means that for the matrix E conditions (3.5.34) are not satisfied for

any γ ∈ (0, 1).

So, the general conclusion from this example is: the hierarchical Lia-

punov function allows a more complete use of the potential possibilities of

Liapunov direct method in robustness analysis of discrete system (3.5.2).

3.6 Notes and References

Section 3.1 Qualitative theory of discrete systems under nonclassical structural

perturbations is of a considerable interest with regard to a number of applied

problems of nonlinear dynamics. In the framework of the method of matrix-

valued Liapunov functions for the class of dynamical systems some results have

been obtained recently. Some of them are presented in this Section.

In a series of monographs (see, for example, Bromberg [1], La-Salle [1],

Tsypkin [1], Furasov [1], Lakshmikantham, Leela, et al. [1, 2], Michel, et al. [1],

Hahn [1], etc.) discussed are the various methods of application of the Liapunov

direct method for the qualitative analysis of motions of discrete-time systems

without structural perturbations.

Section 3.2 The large scale discrete-time system with structural perturbations

is composed according to the approach presented in Chapter 2. As in the contin-

uous case this allows the application of the generalized Liapunov direct method

based on matrix-valued function in the construction of the corresponding stability

conditions.

Section 3.3 In this section the matrix-valued function is applied within the

framework of the scalar approach. The section is based on the results by Mar-

tynyuk [12].

Section 3.4 The main results of this section are due to Martynyuk and Mi-

ladzhanov [1], and Martynyuk, Miladzhanov, and Muminov [1].

Section 3.5 This section is based on the results by Lukyanova and Martynyuk [1].

The comparative analysis of the obtained results is carried out using some results

by Sezer and Šiljak [1].
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IMPULSIVE LARGE-SCALE SYSTEMS

4.1 Introduction

It is well-known that the Liapunov direct method is of great importance for

the stability analysis of solutions of continuous nonlinear differential and

discrete-time equations (see Chapters 2 – 3). This fruitful technique has

been developed during the twentieth century in two main directions. First,

the working out of constructive techniques of Liapunov function construc-

tions and second, the expansion of this method for the systems of equations

other than ordinary differential equations. One of classes of such systems

are impulsive systems.

Therefore our aim in this Chapter is to develop the Liapunov direct

matrix-valued functions method for the impulsive systems under nonclassi-

cal structural perturbations and to establish a new sufficient conditions for

the presence of various dynamical properties of solutions to the equations

under consideration.

Chapter 4 is arranged as follows.

Section 4.2 deals with description of impulsive system under nonclassical

structural perturbations.

In Section 4.3 the problem on stability of impulsive system under non-

classical structural perturbations is stated.

In Section 4.4 proposed are algorithms for determing the property of

having a fixed sign of matrix-valued functions and their decrease (increase)

estimations on the trajectories of system under consideration.

In Section 4.5 various sufficient conditions are established for stability,

asymptotic stability and instability of large scale impulsive system under

nonclassical structural perturbations. Here an example of forth order sys-

tem with structural perturbations is presented illustrating the proposed

technique.

Typeset by AMS-TEX
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In Section 4.6 the obtained results are discussed as well as the possibilities

of the proposed generalization of the Liapunov direct method and some

trends of applications.

4.2 Nonclassical Structural Perturbations in Impulsive Systems

We consider an impulsive system under noclassical structural perturbations

obtained as a result of composition of complex nonlinear ordinary differen-

tial equations with impulsive perturbations.

In this section we study the class of impulsive systems I with subsystems

Ii whose description is based on the following assumptions.

H1. The evolution of system I and its subsystems Ii, i = 1, 2, . . . , m, is

described by the impulsive systems of equations whose order is not changed

on the general interval of existence of solutions to system I.

H2. Impulsive effect on system I (subsystems Ii) occurs at the moments

τk ∈ C1(Ω, (0,∞)), Ω ⊆ R, k = 1, 2, . . . , for which τk(x) < τk+1(x) for

all k and τk(x) → ∞ uniformly on x ∈ Ω (τ∗

k ∈ C(Ωi, (0,∞)), Ωi ⊆

Rni , τ∗

k (xi) < τ∗

k+1
(xi) for all k and τ∗

k (xi) → ∞ uniformly on xi ∈ Ωi,

n1 + · · · + nm = n).

H3. The matrix P = (pT
1 , p

T
2 , . . . , p

T
m)T ∈ Rm×q describes the internal

and/or external parametric effects on system I. The set of all admissible

matrices for system I is designated as before by P = {P : P1 ≤ P (t) ≤ P2},

for all t ∈ T .

H4. The family of functions F described in Assumption H3 from Section

2.2 is determined.

H5. The evolution of the interacting subsystems Ii in system I is deter-

mined by the equations

(4.2.1)

dxi

dt
= fi(t, x, pi) for t �= τk(xi),

∆xi(t) = Iik(xi) + I∗ik(x) for t = τk(xi), k = 1, 2, . . . ,

where xi ∈ Ωi, fi ∈ Fi, Fi = {f1

i , . . . , fN
i }, Iik : Rni → Rni, I∗ik : Rn →

Rni, ∆xi(t) = xi(t
+) − xi(t

−).
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In Section 4.6 the obtained results are discussed as well as the possibilities

of the proposed generalization of the Liapunov direct method and some

trends of applications.

4.2 Nonclassical Structural Perturbations in Impulsive Systems

We consider an impulsive system under noclassical structural perturbations

obtained as a result of composition of complex nonlinear ordinary differen-

tial equations with impulsive perturbations.

In this section we study the class of impulsive systems I with subsystems

Ii whose description is based on the following assumptions.

H1. The evolution of system I and its subsystems Ii, i = 1, 2, . . . , m, is

described by the impulsive systems of equations whose order is not changed

on the general interval of existence of solutions to system I.

H2. Impulsive effect on system I (subsystems Ii) occurs at the moments

τk ∈ C1(Ω, (0,∞)), Ω ⊆ R, k = 1, 2, . . . , for which τk(x) < τk+1(x) for

all k and τk(x) → ∞ uniformly on x ∈ Ω (τ∗

k ∈ C(Ωi, (0,∞)), Ωi ⊆

Rni , τ∗

k (xi) < τ∗

k+1
(xi) for all k and τ∗

k (xi) → ∞ uniformly on xi ∈ Ωi,

n1 + · · · + nm = n).

H3. The matrix P = (pT
1 , p

T
2 , . . . , p

T
m)T ∈ Rm×q describes the internal

and/or external parametric effects on system I. The set of all admissible

matrices for system I is designated as before by P = {P : P1 ≤ P (t) ≤ P2},

for all t ∈ T .

H4. The family of functions F described in Assumption H3 from Section

2.2 is determined.

H5. The evolution of the interacting subsystems Ii in system I is deter-

mined by the equations

(4.2.1)

dxi

dt
= fi(t, x, pi) for t �= τk(xi),

∆xi(t) = Iik(xi) + I∗ik(x) for t = τk(xi), k = 1, 2, . . . ,

where xi ∈ Ωi, fi ∈ Fi, Fi = {f1

i , . . . , fN
i }, Iik : Rni → Rni, I∗ik : Rn →

Rni, ∆xi(t) = xi(t
+) − xi(t

−).
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H6. The evolution of the i-th isolated subsystem in system I is described

by the equations

(4.2.2)

dxi

dt
= wi(t, x) for t �= τk(x),

∆xi(t) = Iik(xi) for t = τk(xi), k = 1, 2, . . . ,

where wi : T × Rni → Rni, Iik : Rni → Rni , k = 1, 2, . . . . Here the

functions wi(t, xi) are determined from the correlations

wi(t, xi) = fi(t, x
i, 0), i = 1, 2, . . . , m,

where xi = (0, . . . , 0, xT
i , 0, . . . , 0)T∈ Rn.

In view of the designations of Section 2.2 the impulsive system I with

structural and parametric perturbations is represented as

(4.2.3)

dxi

dt
= wi(t, x) + Si(t)ri(t, x, pi) for t �= τk(x),

∆xi(t) = Iik(x) + I∗ik(x) for t = τk(x),

k = 1, 2, . . . , i = 1, 2, . . . , m,

or in the vector form

(4.2.4)

dx

dt
= w(t, x) + S(t)r(t, x, P ), t �= τk(x),

∆x = Ik(x), t = τk(x), k = 1, 2, . . . .

The matrix

(4.2.5) S(t) = diag (S1(t), S2(t), . . . , Sk(t)) ∈ S

describing all structural variations of the system (4.2.4) is called a structural

matrix of impulsive system (4.2.4).

We assume that w(t, 0) = 0, Ik(0) = 0 for all k = 1, 2, . . . and

r(t, 0, P ) = 0 if and only if x = 0 for all t ∈ T0. It is clear that x = 0 is

an equilibrium.

Further we designate

T0 × D(ρ) = [t0,∞) × {x ∈ Rn : �x� ≤ ρ < ρ0}, ρ0 = const > 0.
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The functions τi(x) and a number ρ satisfy the condition which excludes

the beating of the solutions of system (4.2.4) on the surfaces

(Sk) : t = (τk(x)), k = 1, 2, . . . .

Throughout this chapter, we will assume that for each (t0, x0) ∈ T0 ×

D(ρ), there exists at least one solution of (4.2.4) for all (P, S) ∈ P × S

which satisfies the initial condition x(t0) = x0.

4.3 Definitions of Stability

The possibility of beating of the solutions of the equations on the surfaces

(Sk) : t = (τk(x)), k = 1, 2, . . . , causes an essential difficulty when large

scale impulsive system (4.2.4) is investigated. Moreover, in the general case

there is no continuous dependence of the solutions of large scale impulsive

system (4.2.4) on the initial conditions which would be uniform on finite

interval. This fact requires the notion of stability in the sense of Liapunov of

the solutions of large scale impulsive system (4.2.4) be corrected. Therefore,

the notion of stability of solutions of large scale impulsive system (4.2.4) is

adopted in the form formulated according to general properties of impulsive

systems solution and it is assumed that the beating of the solutions on

surfaces (Sk) : t = (τk(x)), k = 1, 2, . . . , is absent. In view of the results

from Chapter 2 we introduce the following notions.

Definition 4.3.1 The zero solution x = 0 of the system (4.2.4) is

(a) stable on P × S if and only if it is stable in the sense of Liapunov

for each pair of (P, S) ∈ P × S;

(b) asymptotically stable on P × S if and only if it is asymptotically

stable in the sense of Liapunov for each pair of (P, S) ∈ P × S;

(c) unstable on P × S if and only if there exists at least one pair of

(P, S) ∈ P × S for which the state x = 0 is unstable.

Remark 4.3.1 The definitions of the above mentioned types of stability

for the given pair (P, S) are the same as for the systems without impulsive

perturbations.

Download free eBooks at bookboon.com



Stability Theory of Large-Scale  
Dynamical Systems

122 

Impulsive Large-Scale Systems

122 4. IMPULSIVE LARGE-SCALE SYSTEMS

The functions τi(x) and a number ρ satisfy the condition which excludes

the beating of the solutions of system (4.2.4) on the surfaces

(Sk) : t = (τk(x)), k = 1, 2, . . . .

Throughout this chapter, we will assume that for each (t0, x0) ∈ T0 ×

D(ρ), there exists at least one solution of (4.2.4) for all (P, S) ∈ P × S

which satisfies the initial condition x(t0) = x0.

4.3 Definitions of Stability

The possibility of beating of the solutions of the equations on the surfaces

(Sk) : t = (τk(x)), k = 1, 2, . . . , causes an essential difficulty when large

scale impulsive system (4.2.4) is investigated. Moreover, in the general case

there is no continuous dependence of the solutions of large scale impulsive

system (4.2.4) on the initial conditions which would be uniform on finite

interval. This fact requires the notion of stability in the sense of Liapunov of

the solutions of large scale impulsive system (4.2.4) be corrected. Therefore,

the notion of stability of solutions of large scale impulsive system (4.2.4) is

adopted in the form formulated according to general properties of impulsive

systems solution and it is assumed that the beating of the solutions on

surfaces (Sk) : t = (τk(x)), k = 1, 2, . . . , is absent. In view of the results

from Chapter 2 we introduce the following notions.

Definition 4.3.1 The zero solution x = 0 of the system (4.2.4) is

(a) stable on P × S if and only if it is stable in the sense of Liapunov

for each pair of (P, S) ∈ P × S;

(b) asymptotically stable on P × S if and only if it is asymptotically

stable in the sense of Liapunov for each pair of (P, S) ∈ P × S;

(c) unstable on P × S if and only if there exists at least one pair of

(P, S) ∈ P × S for which the state x = 0 is unstable.

Remark 4.3.1 The definitions of the above mentioned types of stability

for the given pair (P, S) are the same as for the systems without impulsive

perturbations.
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4.4 Tests for Stability and Instability Analysis

Problem IA. Assume that the evolution of the system I with impul-

sive perturbations is obtained in result of composition of evolutions of the

isolated subsystems (4.2.2). It is required to establish sufficient conditions

for various types of stability (instability) of the equilibrium state x = 0 of

system (4.2.4) under certain dynamical properties of the isolated subsys-

tems (4.2.2).

4.4.1 Auxiliary estimations for matrix-valued functions Before

going over to the stability (instability) conditions for the state x = 0 of sys-

tem (4.2.4) we shall establish some useful estimates for the auxiliary scalar

pseudo-quadratic function constructed in terms of matrix-valued function.

These estimates are some development of those presented in Chapter 2 for

continuous systems.

Assumption 4.4.1 Assume that there exist:

(1) open connected time invariant neighborhoods

Njx = {xj ∈ Rnj : �xj� < hj0} ⊆ Rnj

of the states xj = 0, j = 1, 2, . . . , m, hj0 = const > 0;

(2) functions ϕj1, ψj1 : Njx → R+, ϕj1, ψj1 ∈ K;

(3) constants aji, bji, j, i = 1, 2, . . . , m, and a matrix-valued function

U(t, x) = [vji(t, ·)] with the elements

vjj = vjj(t, xj), vji = vij = vji(t, xj , xi)

for all j �= i, vjj(t, 0) = vji(t, 0, 0) = 0, j, i = 1, 2, . . . , m, defined

and continuously differentiable in the domain T0 × D(ρ0), where

ρ0 = min hj0, j = 1, 2, . . . , m, and satisfying the estimates

(a) ajjϕ
2

j1(�xj�) ≤ vjj(t, xj) ≤ bjjψ
2

j1(�xj�) for all (t, xj) ∈ T0 ×Njx,

j = 1, 2, . . . , m;

(b) ajiϕj1(�xj�)ϕi1(�xi�) ≤ vji(t, xj , xi) ≤ bjiψj1(�xj�)ψi1(�xi�) for

all (t, xj , xi) ∈ T0 ×Njx ×Nix, j, i = 1, 2, . . . , m, j �= i.

As before we shall introduce the scalar function

(4.4.1) v(t, x, η) = ηTU(t, x)η, η ∈ Rm
+

, η > 0,
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4.4 Tests for Stability and Instability Analysis

Problem IA. Assume that the evolution of the system I with impul-

sive perturbations is obtained in result of composition of evolutions of the

isolated subsystems (4.2.2). It is required to establish sufficient conditions

for various types of stability (instability) of the equilibrium state x = 0 of

system (4.2.4) under certain dynamical properties of the isolated subsys-

tems (4.2.2).

4.4.1 Auxiliary estimations for matrix-valued functions Before

going over to the stability (instability) conditions for the state x = 0 of sys-

tem (4.2.4) we shall establish some useful estimates for the auxiliary scalar

pseudo-quadratic function constructed in terms of matrix-valued function.

These estimates are some development of those presented in Chapter 2 for

continuous systems.

Assumption 4.4.1 Assume that there exist:

(1) open connected time invariant neighborhoods

Njx = {xj ∈ Rnj : �xj� < hj0} ⊆ Rnj

of the states xj = 0, j = 1, 2, . . . , m, hj0 = const > 0;

(2) functions ϕj1, ψj1 : Njx → R+, ϕj1, ψj1 ∈ K;

(3) constants aji, bji, j, i = 1, 2, . . . , m, and a matrix-valued function

U(t, x) = [vji(t, ·)] with the elements

vjj = vjj(t, xj), vji = vij = vji(t, xj , xi)

for all j �= i, vjj(t, 0) = vji(t, 0, 0) = 0, j, i = 1, 2, . . . , m, defined

and continuously differentiable in the domain T0 × D(ρ0), where

ρ0 = min hj0, j = 1, 2, . . . , m, and satisfying the estimates

(a) ajjϕ
2

j1(�xj�) ≤ vjj(t, xj) ≤ bjjψ
2

j1(�xj�) for all (t, xj) ∈ T0 ×Njx,

j = 1, 2, . . . , m;

(b) ajiϕj1(�xj�)ϕi1(�xi�) ≤ vji(t, xj , xi) ≤ bjiψj1(�xj�)ψi1(�xi�) for

all (t, xj , xi) ∈ T0 ×Njx ×Nix, j, i = 1, 2, . . . , m, j �= i.

As before we shall introduce the scalar function

(4.4.1) v(t, x, η) = ηTU(t, x)η, η ∈ Rm
+

, η > 0,124 4. IMPULSIVE LARGE-SCALE SYSTEMS

and its total derivative

(4.4.2) Dv(t, x, η) = ηTDU(t, x)η,

where

DU(t, x) = [Dvji(t, ·)], j, i = 1, 2, . . . , m,

due to the system (4.2.4). For the details see Section 1.4.

Proposition 4.4.1 If all conditions of Assumption 4.4.1 are satisfied,

then for the function (4.4.1)

(4.4.3) uT

1
HTAHu1 ≤ v(t, x, η) ≤ uT

2
HTBHu2, for all (t, x) ∈ T0×Nx,

where

uT

1
= (ϕ11(�x1�), ϕ21(�x2�), . . . , ϕm1(�xm�)),

uT

2 = (ψ11(�x1�), ψ21(�x2�), . . . , ψm1(�xm�)),

H = diag [η1, η2, . . . , ηm ], A = [aji], B = [bji],

aji = aij , bji = bij , j, i = 1, 2, . . . , m,

Nx ⊆ N1x × N2x × . . . × Nmx is an open connected neighborhood of the

state x = 0, such that

Nx = x ∈ Rn : �x� < ρ0, ρ0 = min
j

hj0.

The proof of Proposition 4.4.1 is similar to that of Lemma 1 in Mar-

tynyuk and Miladzhanov [1].

Assumption 4.4.2 Assume that there exist

(1) open connected time invariant neighborhoods Njx ⊆ Rnj of the

states xj = 0, j = 1, 2, . . . , m, and open connected neighborhood

Nx ⊆ N1x ×N2x × . . . ×Nmx of the state x = 0;

(2) the functions vji, j, i = 1, 2, . . . , m, mentioned in Assumption 4.4.1

and the functions ϕj , j = 1, 2, . . . , m, ϕm, ϕM such that on the

domain T0 × D(ρ0) the conditions

ϕj(0) = ϕm(0) = ϕM (0) = 0
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and its total derivative

(4.4.2) Dv(t, x, η) = ηTDU(t, x)η,

where

DU(t, x) = [Dvji(t, ·)], j, i = 1, 2, . . . , m,

due to the system (4.2.4). For the details see Section 1.4.

Proposition 4.4.1 If all conditions of Assumption 4.4.1 are satisfied,

then for the function (4.4.1)

(4.4.3) uT

1
HTAHu1 ≤ v(t, x, η) ≤ uT

2
HTBHu2, for all (t, x) ∈ T0×Nx,

where

uT

1
= (ϕ11(�x1�), ϕ21(�x2�), . . . , ϕm1(�xm�)),

uT

2 = (ψ11(�x1�), ψ21(�x2�), . . . , ψm1(�xm�)),

H = diag [η1, η2, . . . , ηm ], A = [aji], B = [bji],

aji = aij , bji = bij , j, i = 1, 2, . . . , m,

Nx ⊆ N1x × N2x × . . . × Nmx is an open connected neighborhood of the

state x = 0, such that

Nx = x ∈ Rn : �x� < ρ0, ρ0 = min
j

hj0.

The proof of Proposition 4.4.1 is similar to that of Lemma 1 in Mar-

tynyuk and Miladzhanov [1].

Assumption 4.4.2 Assume that there exist

(1) open connected time invariant neighborhoods Njx ⊆ Rnj of the

states xj = 0, j = 1, 2, . . . , m, and open connected neighborhood

Nx ⊆ N1x ×N2x × . . . ×Nmx of the state x = 0;

(2) the functions vji, j, i = 1, 2, . . . , m, mentioned in Assumption 4.4.1

and the functions ϕj , j = 1, 2, . . . , m, ϕm, ϕM such that on the

domain T0 × D(ρ0) the conditions

ϕj(0) = ϕm(0) = ϕM (0) = 04.4 STABILITY AND INSTABILITY ANALYSIS 125

and

0 < ϕm(v(t, x, η)) ≤

m∑

j=1

ϕ2

j(vjj(t, xj)) ≤ ϕM (v(t, x, η))

are satisfied;

(3) constants ρ
(1)

j , ρ
(2)

j (P, S), ρji(P, S), j �= i = 1, 2, . . . , m, and

(a) η2
j Dtvjj + (Dxj

vjj)
Tfj(t, x

j) ≤ ρ
(1)

j ϕ2
j (vjj(t, xj)) for all (t, xj) ∈

T0 ×Njx0, j = 1, 2, . . . , m;

(b)

m∑

j=1

η2

j (Dxj
vjj)

TSj(t)rj(t, x, Pj)

+ 2

m∑

j=1

m∑

i=2
i>j

ηjηi{Dtvji + (Dxj
vji)

T[fj(t, x
j) + Sj(t)rj(t, x, Pj)]

+ (Dxi
vji)

T[fi(t, x
i) + Si(t)ri(t, x, Pi)]}

≤

m∑

j=1

ρ
(2)

j (P, S)ϕ2

j (vjj(t, xj))

+ 2

m∑

j=1

m∑

i=2
i>j

ρji(P, S)ϕj(vjj(t, xj))ϕi(vii(t, xi))

for all (t,xj , xi, P, S) ∈ T0 ×Njx0
×Nix0

× P × S, j �= i, j = 1, 2, . . . , m.

For the above relations

Njx0 = {xj ∈ Rnj : xj ∈ Njx, xj �= 0},

and

t �= τk(x), k = 1, 2, . . . .

Proposition 4.4.2 If all conditions of Assumption 4.4.2 are satisfied,

then for expression (4.4.2)

(4.4.4)
Dv(t, x, η) ≤ uTG(P, S)u, t �= τk(x),

for all (t, x, P, S) ∈ T0 ×Nx0 × P × S
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and

0 < ϕm(v(t, x, η)) ≤

m∑

j=1

ϕ2

j(vjj(t, xj)) ≤ ϕM (v(t, x, η))

are satisfied;

(3) constants ρ
(1)

j , ρ
(2)

j (P, S), ρji(P, S), j �= i = 1, 2, . . . , m, and

(a) η2
j Dtvjj + (Dxj

vjj)
Tfj(t, x

j) ≤ ρ
(1)

j ϕ2
j (vjj(t, xj)) for all (t, xj) ∈

T0 ×Njx0, j = 1, 2, . . . , m;

(b)

m∑

j=1

η2

j (Dxj
vjj)

TSj(t)rj(t, x, Pj)

+ 2

m∑

j=1

m∑

i=2
i>j

ηjηi{Dtvji + (Dxj
vji)

T[fj(t, x
j) + Sj(t)rj(t, x, Pj)]

+ (Dxi
vji)

T[fi(t, x
i) + Si(t)ri(t, x, Pi)]}

≤

m∑

j=1

ρ
(2)

j (P, S)ϕ2

j (vjj(t, xj))

+ 2

m∑

j=1

m∑

i=2
i>j

ρji(P, S)ϕj(vjj(t, xj))ϕi(vii(t, xi))

for all (t,xj , xi, P, S) ∈ T0 ×Njx0
×Nix0

× P × S, j �= i, j = 1, 2, . . . , m.

For the above relations

Njx0 = {xj ∈ Rnj : xj ∈ Njx, xj �= 0},

and

t �= τk(x), k = 1, 2, . . . .

Proposition 4.4.2 If all conditions of Assumption 4.4.2 are satisfied,

then for expression (4.4.2)

(4.4.4)
Dv(t, x, η) ≤ uTG(P, S)u, t �= τk(x),

for all (t, x, P, S) ∈ T0 ×Nx0 × P × S
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where

uT = (ϕ1(v11(t, x1)), ϕ2(v22(t, x2)), . . . ϕm(vmm(t, xm))),

G(P, S) = [σji(P, S)], j, i = 1, 2, . . . , m,

σjj(P, S) = ρ
(1)

j + ρ
(2)

j (P, S), j = 1, 2, . . . , m,

σji(P, S) = ρji(P, S), j �= i, j, i = 1, 2, . . . , m.

Proposition 4.4.2 is proved in a similar manner as Lemma 2 in Martynyuk

and Miladzhanov [1].

Corollary 4.4.1 Let all conditions of Assumption 4.4.2 be satisfied. If

there exists a constant matrix Q such that for the matrix G(P, S) the

inequality

(4.4.5)
1

2

(
G(P, S) + GT(P, S)

)
≤ Q, for all (P, S) ∈ P × S

holds component-wise and

(1) λM (Q) < 0;

(2) λM (Q) < 0.

Then the estimates

Dv(t, x, η) ≤ λM (Q)ϕm(v(t, x, η)), for all (t, x) ∈ T0 ×Nx0;

(4.4.6)

Dv(t, x, η) ≤ λM (Q)ϕM (v(t, x, η)), for all (t, x) ∈ T0 ×Nx0;

(4.4.7)

are satisfied respectively.

Proof Let all conditions of Assumption 4.4.2 be satisfied and there exist

a constant matrix Q satisfying the inequality (4.4.5). In this connection

Proposition 4.4.2 yields

Dv(t, x, η) ≤ uTG(P, S)u ≤ uTQu ≤ λM (Q)�u�2

= λM (Q)
s∑

j=1

ϕ2

j (Ujj(t, xj) ≤

{
λM (Q)ϕm(v(t, x, η)) if λM (Q) < 0

λM (Q)ϕM (v(t, x, η)) if λM (Q) > 0.
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Assumption 4.4.3 Assume that there exist

(1) the functions uji, j, i = 1, 2, . . . , m, mentioned in Assumption 4.4.1

and functions ψj , j = 1, 2, . . . , m, ψm, ψM , ψj(0) = ψm(0) =

ψM (0) = 0, such that on the domain T0 × D(ρ0)

(4.4.8)
0 < ψm(v(τk(x), x)) ≤

m∑

j=1

ψ2

j (vjj(τk(xj), xj)) ≤ ψM (v(τk(x), x)),

i = 1, 2, . . . ;

(2) constants α
(1)

j , α
(2)

j , αjl (j �= l), j, l = 1, 2, . . . , m, and

(a) η2

j {vjj(τk(xj), xj + Jij(x
j)) − vjj(τk, (xj), xj)}

≤ α
(1)

j ψ
(2)

j (vjj(τk, (xj), xj)) for all xj ∈ Njl, j = 1, 2, . . . , m;

(b)

m∑

j=1

η2

j {vjj(τk(x), xj + Jkj(x)) − vjj(τk(xj), xj + Jkj(x
j))}

+ vjj(τk(xj), xj) − vjj(τk(x), xj)

+ 2

m∑

j=1

m∑

l=2
l>j

ηjηl{vjl(τk(x), xj + Jkj(x), xl + Jkl(x))

− vjl(τk(x), xj , xl)} ≤

m∑

j=1

α
(2)

j ψ
(2)

j (vjj(τk(xj), xj))

+ 2

m∑

j=1

m∑

l=2
l>j

αjlψj(vjj(τk(xj), xj))ψl(vll(τk(xl), xl))

for all (xj , xl) ∈ Njx ×Nlx, k = 1, 2, . . .

Proposition 4.4.3 If all conditions of Assumption 4.4.3 are satisfied,

then

(4.4.9) v(τk(x), x + Jk(x)) − v(τk(x), x) ≤ uT

kCuk,

where

uT

k = (ψ1(v11(τk(x1), x1)), . . . , ψm(vmm(τk(xm), xm))), k = 1, 2, . . . ,

C = [cji ], j, i = 1, 2, . . . , m, cji = cij ,

cjj = α
(1)

j + α
(2)

j , cji = αji, j �= i, j, i = 1, 2, . . . , m.
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Assumption 4.4.3 Assume that there exist

(1) the functions uji, j, i = 1, 2, . . . , m, mentioned in Assumption 4.4.1

and functions ψj , j = 1, 2, . . . , m, ψm, ψM , ψj(0) = ψm(0) =

ψM (0) = 0, such that on the domain T0 × D(ρ0)

(4.4.8)
0 < ψm(v(τk(x), x)) ≤

m∑

j=1

ψ2

j (vjj(τk(xj), xj)) ≤ ψM (v(τk(x), x)),

i = 1, 2, . . . ;

(2) constants α
(1)

j , α
(2)

j , αjl (j �= l), j, l = 1, 2, . . . , m, and

(a) η2

j {vjj(τk(xj), xj + Jij(x
j)) − vjj(τk, (xj), xj)}

≤ α
(1)

j ψ
(2)

j (vjj(τk, (xj), xj)) for all xj ∈ Njl, j = 1, 2, . . . , m;

(b)

m∑

j=1

η2

j {vjj(τk(x), xj + Jkj(x)) − vjj(τk(xj), xj + Jkj(x
j))}

+ vjj(τk(xj), xj) − vjj(τk(x), xj)

+ 2

m∑

j=1

m∑

l=2
l>j

ηjηl{vjl(τk(x), xj + Jkj(x), xl + Jkl(x))

− vjl(τk(x), xj , xl)} ≤

m∑

j=1

α
(2)

j ψ
(2)

j (vjj(τk(xj), xj))

+ 2

m∑

j=1

m∑

l=2
l>j

αjlψj(vjj(τk(xj), xj))ψl(vll(τk(xl), xl))

for all (xj , xl) ∈ Njx ×Nlx, k = 1, 2, . . .

Proposition 4.4.3 If all conditions of Assumption 4.4.3 are satisfied,

then

(4.4.9) v(τk(x), x + Jk(x)) − v(τk(x), x) ≤ uT

kCuk,

where

uT

k = (ψ1(v11(τk(x1), x1)), . . . , ψm(vmm(τk(xm), xm))), k = 1, 2, . . . ,

C = [cji ], j, i = 1, 2, . . . , m, cji = cij ,

cjj = α
(1)

j + α
(2)

j , cji = αji, j �= i, j, i = 1, 2, . . . , m.
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Proof Under all conditions of Assumption 4.4.3 we have

v(τk(x), x + Jk(x)) − v(τk(x), x) = ηT[v(τk(x), x + Jk(x)) − v(τk(x), x)]η

=
m∑

j=1

η2

j {vjj(τk(x), xj + Jkj(x)) − vjj(τk(x), xj)}

+ 2
m∑

j=1

m∑

l=2
l>j

ηjηl{vjl(τk(x), xj + Jkj(x)), xl + Jkl(x)) − vjl(τk(x), xj , xl)}

=

m∑

j=1

η2

j {vjj(τk(xj), xj + Jkj(x
j)) − vjj(τk(xj), xj)}

+

m∑

j=1

η2

j {vjj(τk(x), xj + Jkj(x)) − vjj(τk(xj), xj)}

+

m∑

j=1

η2

j {vjj(τk(x), xj + Jkj(x))

+ 2

m∑

j=1

m∑

l=2
l>j

ηjηl{vjl(τk(x), xj + Jkj(x)), xl + Jkl(x)) − vjl(τk(x), xj , xl)}

≤

m∑

j=1

α
(1)

j ψ
(2)

j (vjj(τk(xj), xj)) +

m∑

j=1

α
(2)

j ψ
(2)

j (vjj(τk(xj), xj)

+ 2

m∑

j=1

m∑

l=2
l>j

αjlψj(vjj(τk(xj), xj))ψl(vll(τk(xl), xl))

=

m∑

j,l=1

cljψj(vjj(τk(xj), xj))ψl(vll(τk(xl), xl)) = uT

kCuk, k = 1, 2, . . . .

Corollary 4.4.2 If all conditions of Assumption 4.4.3 are satisfied and

(1) λM (C) < 0;

(2) λM (C) > 0,4.4 STABILITY AND INSTABILITY ANALYSIS 129

then for all x ∈ Nx0

v(τk(x), xj + Jkj(x)) − v(τk(x), x) ≤ λM (C)ψm(v(τk(x), x));

(4.4.10)

v(τk(x), xj + Jkj(x)) − v(τk(x), x) ≤ λM (C)ψM (v(τk(x), x))

(4.4.11)

respectively. Here λM (C) is a maximal eigenvalue of the matrix C.

Corollary 4.4.2 is proved in the same way as Corollary 4.4.1.

Assumption 4.4.4 Assume that there exist

(1) the functions uji, j, i = 1, 2, . . . , m, mentioned in Assumption 4.4.1

and the functions ψj , j = 1, 2, . . . , m, ψm, ψM mentioned in As-

sumption 4.4.3;

(2) constants β
(1)

j , β
(2)

j , βji, j �= i, j, i = 1, 2, . . . , m, and for all k =

1, 2, . . .

(a) η2

j vjj(τk(xj), xj + Jkj(x
j)) ≤ β

(1)

j ψ2

j (vjj(τk(xj), xj))

for all xj ∈ Nji, j = 1, 2, . . . , m;

(b)

m∑

j=1

η2

j {vjj(τk(x), xj + Jkj(x)) − vjj(τk(xj), xj + Jkj(x
j))}

+ 2

m∑

j=1

m∑

k=2

ηjηlvjl(τk(x), xj + Jkj(x), xl + Jkl(x))

≤

m∑

j=1

β
(2)

j ψ2

j (vjj(τk(xj), xj))

+ 2

m∑

j=1

m∑

l=2
l>j

βjlψj(vjj(τk(xj), xj))ψl(vll(τk(xl), xl))

for all (xj , xl) ∈ Njx ×Nlx.

Proposition 4.4.4 If all conditions of Assumption 4.4.4 are satisfied,

then

(4.4.12) v(τk(x), x + Jk(x)) ≤ uT

kC∗uk, k = 1, 2, . . . for all x ∈ Nx,
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then for all x ∈ Nx0

v(τk(x), xj + Jkj(x)) − v(τk(x), x) ≤ λM (C)ψm(v(τk(x), x));

(4.4.10)

v(τk(x), xj + Jkj(x)) − v(τk(x), x) ≤ λM (C)ψM (v(τk(x), x))

(4.4.11)

respectively. Here λM (C) is a maximal eigenvalue of the matrix C.

Corollary 4.4.2 is proved in the same way as Corollary 4.4.1.

Assumption 4.4.4 Assume that there exist

(1) the functions uji, j, i = 1, 2, . . . , m, mentioned in Assumption 4.4.1

and the functions ψj , j = 1, 2, . . . , m, ψm, ψM mentioned in As-

sumption 4.4.3;

(2) constants β
(1)

j , β
(2)

j , βji, j �= i, j, i = 1, 2, . . . , m, and for all k =

1, 2, . . .

(a) η2

j vjj(τk(xj), xj + Jkj(x
j)) ≤ β

(1)

j ψ2

j (vjj(τk(xj), xj))

for all xj ∈ Nji, j = 1, 2, . . . , m;

(b)

m∑

j=1

η2

j {vjj(τk(x), xj + Jkj(x)) − vjj(τk(xj), xj + Jkj(x
j))}

+ 2

m∑

j=1

m∑

k=2

ηjηlvjl(τk(x), xj + Jkj(x), xl + Jkl(x))

≤

m∑

j=1

β
(2)

j ψ2

j (vjj(τk(xj), xj))

+ 2

m∑

j=1

m∑

l=2
l>j

βjlψj(vjj(τk(xj), xj))ψl(vll(τk(xl), xl))

for all (xj , xl) ∈ Njx ×Nlx.

Proposition 4.4.4 If all conditions of Assumption 4.4.4 are satisfied,

then

(4.4.12) v(τk(x), x + Jk(x)) ≤ uT

kC∗uk, k = 1, 2, . . . for all x ∈ Nx,130 4. IMPULSIVE LARGE-SCALE SYSTEMS

where

C∗ = [c∗ji], j, i = 1, 2, . . . , m, c∗ji = c∗ij ,

c∗jj = β
(1)

j + β
(2)

j , c∗ji = βij for all j �= i, j, i = 1, 2, . . . , m.

The proof of Proposition 4.4.4 is similar to that of Proposition 4.4.3.

Corollary 4.4.3 If all conditions of Assumption 4.4.4 are satisfied and

(1) λM (C∗) < 0;

(2) λM (C∗) > 0,

then for all k = 1, 2, . . . and for all x ∈ Nx0

v(τk(x), x + Jk(x)) ≤ λM (C∗)ψm(v(τk(x), x)),(4.4.13)

v(τk(x), x + Jk(x)) ≤ λM (C∗)ψM (v(τk(x), x))(4.4.14)

respectively.

Here λM (C∗) is a maximal eigenvalue of the matrix C∗.

Corollary 4.4.3 is proved in the same way as Corollary 4.4.1.

Assumption 4.4.5 Assume that the conditions (1) and (2) of Assump-

tion 4.4.2 are satisfied and in the inequalities of condition (3) of Assumption

4.4.2 the inequality sign “≤” is reversed “≥”.

Proposition 4.4.5 If conditions of Assumption 4.4.5 are satisfied, then

for expression (4.4.2):

(4.4.15) Dv(t, x, η) ≥ uTG(P, S)u t �= τk(x), k = 1, 2, . . . ,

where u and G(P, S) are defined as in Proposition 4.4.2.

Proof Let conditions of Assumption 4.4.5 be satisfied, then (4.4.15)

yields:

Dv(t, x, η) = ηTDU(t, x)η =

m∑

j=1

η
(2)

j Dvjj(t, xj) + 2

m∑

j=1

m∑

l=2
l>j

ηjηlDvjl(t, xj , xl)
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where

C∗ = [c∗ji], j, i = 1, 2, . . . , m, c∗ji = c∗ij ,

c∗jj = β
(1)

j + β
(2)

j , c∗ji = βij for all j �= i, j, i = 1, 2, . . . , m.

The proof of Proposition 4.4.4 is similar to that of Proposition 4.4.3.

Corollary 4.4.3 If all conditions of Assumption 4.4.4 are satisfied and

(1) λM (C∗) < 0;

(2) λM (C∗) > 0,

then for all k = 1, 2, . . . and for all x ∈ Nx0

v(τk(x), x + Jk(x)) ≤ λM (C∗)ψm(v(τk(x), x)),(4.4.13)

v(τk(x), x + Jk(x)) ≤ λM (C∗)ψM (v(τk(x), x))(4.4.14)

respectively.

Here λM (C∗) is a maximal eigenvalue of the matrix C∗.

Corollary 4.4.3 is proved in the same way as Corollary 4.4.1.

Assumption 4.4.5 Assume that the conditions (1) and (2) of Assump-

tion 4.4.2 are satisfied and in the inequalities of condition (3) of Assumption

4.4.2 the inequality sign “≤” is reversed “≥”.

Proposition 4.4.5 If conditions of Assumption 4.4.5 are satisfied, then

for expression (4.4.2):

(4.4.15) Dv(t, x, η) ≥ uTG(P, S)u t �= τk(x), k = 1, 2, . . . ,

where u and G(P, S) are defined as in Proposition 4.4.2.

Proof Let conditions of Assumption 4.4.5 be satisfied, then (4.4.15)

yields:

Dv(t, x, η) = ηTDU(t, x)η =

m∑

j=1

η
(2)

j Dvjj(t, xj) + 2

m∑

j=1

m∑

l=2
l>j

ηjηlDvjl(t, xj , xl)
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=

m∑

j=1

η
(2)

j {Dtvjj + (Dxj
vjj)

Tfj(t, x
j) + (Dxj

vjj)
TSj(t)rj(t, x, Pj)}

+ 2

m∑

j=1

m∑

l=2
l>j

ηjηl{Dtvjl + (Dxj
vjl)

T(fj(t, x
j) + Sj(t)rj(t, x, pj))

+ (Dxl
vjl)

T(fl(t, x
l) + Sl(t)rl(t, x, pl))}

≥

m∑

j=1

(ρ
(1)

j + ρ
(2)

j (P, S))ϕ2

j (vjj(t, xj))

+ 2

m∑

j=1

m∑

l=2
l>j

ρjl(P, S)ϕj(vjj(t, xj))ϕl(vll(t, xl)) = uTG(P, S)u

for all t �= τk(x), k = 1, 2, . . . .

Corollary 4.4.4 Let all conditions of Assumption 4.4.5 be satisfied. If

there exists a constant matrix L such that for the matrix G(P, S) the

inequality

(4.4.16) G(P, S) ≥ L for all (P, S) ∈ P × S

holds component-wise, and

(1) λm(L) < 0;

(2) λM (L) > 0,

then the estimates from below

Dv(t, x, η) ≥ λm(L)ϕM (v(t, x, η)),(4.4.17)

Dv(t, x, η) ≥ λm(L)ϕm(v(t, x, η))(4.4.18)

for all (t, x) ∈ T0 ×Nx0

hold true respectively.

Here λm(L) is a minimal eigenvalue of the matrix L.

The proof is similar to that of Corollary 4.4.1.

Assumption 4.4.6 Assume that the condition (1) of Assumption 4.4.3

is satisfied and in condition (2) the inequality sign “ ≤” is reversed “ ≥”.132 4. IMPULSIVE LARGE-SCALE SYSTEMS

Proposition 4.4.6 If all conditions of Assumption 4.4.6 are satisfied

for all k = 1, 2, . . . , then

(4.4.19)
v(τk(x), x + Jk(x)) − v(τk(x), x) ≥ uT

kCuk, k = 1, 2, . . . ,

for all x ∈ Nx0,

where uk and L are the same as in Proposition 4.4.3.

The proof is similar to that of Proposition 4.4.3.

Corollary 4.4.5 If in the inequalities (4.4.19) λm(C) > 0, then for all

k = 1, 2, . . .

(4.4.20)
v(τk(x), x + Jk(x)) − v(τk(x), x) ≥ λm(C)ψmv(τk(x), x),

for all x ∈ Nx0, k = 1, 2, . . . .

Assumption 4.4.7 Assume that the condition (1) of Assumption 4.4.4

is satisfied and in condition (2) of Assumption 4.4.4 the inequality sign “

≤” is reversed “ ≥”.

Proposition 4.4.7 If all conditions of Assumption 4.4.7 are satisfied,

then for all k = 1, 2, . . .

(4.4.21) v(τk(x), x + Jk(x)) ≥ uT

kC∗uk, for all x ∈ Nx0,

where uk and C∗ are the same as in Proposition 4.4.4.

The proof is similar to that of Proposition 4.4.3.

Corollary 4.4.5 If in the inequality (4.4.21) λm(C∗) > 0, then for all

k = 1, 2, . . .

(4.4.22)
v(τk(x), x + Jk(x)) ≥ λm(C∗)ψmv(τk(x), x),

for all x ∈ Nx0, k = 1, 2, . . . .

Assumption 4.4.8 Let

Πj = {(t, xj) ∈ T0 × Rnj : ujj(t, xj) > 0}

be the positiveness domains for the functions

ujj(t, xj), j = 1, 2, . . . , m,

and for every t ≥ t0 they have non-zero open intersection with the plane

t = const adjoining to the origin, and in this domain the functions Uji,

j, i = 1, 2, . . . , m, are bounded.
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Proposition 4.4.6 If all conditions of Assumption 4.4.6 are satisfied

for all k = 1, 2, . . . , then

(4.4.19)
v(τk(x), x + Jk(x)) − v(τk(x), x) ≥ uT

kCuk, k = 1, 2, . . . ,

for all x ∈ Nx0,

where uk and L are the same as in Proposition 4.4.3.

The proof is similar to that of Proposition 4.4.3.

Corollary 4.4.5 If in the inequalities (4.4.19) λm(C) > 0, then for all

k = 1, 2, . . .

(4.4.20)
v(τk(x), x + Jk(x)) − v(τk(x), x) ≥ λm(C)ψmv(τk(x), x),

for all x ∈ Nx0, k = 1, 2, . . . .

Assumption 4.4.7 Assume that the condition (1) of Assumption 4.4.4

is satisfied and in condition (2) of Assumption 4.4.4 the inequality sign “

≤” is reversed “ ≥”.

Proposition 4.4.7 If all conditions of Assumption 4.4.7 are satisfied,

then for all k = 1, 2, . . .

(4.4.21) v(τk(x), x + Jk(x)) ≥ uT

kC∗uk, for all x ∈ Nx0,

where uk and C∗ are the same as in Proposition 4.4.4.

The proof is similar to that of Proposition 4.4.3.

Corollary 4.4.5 If in the inequality (4.4.21) λm(C∗) > 0, then for all

k = 1, 2, . . .

(4.4.22)
v(τk(x), x + Jk(x)) ≥ λm(C∗)ψmv(τk(x), x),

for all x ∈ Nx0, k = 1, 2, . . . .

Assumption 4.4.8 Let

Πj = {(t, xj) ∈ T0 × Rnj : ujj(t, xj) > 0}

be the positiveness domains for the functions

ujj(t, xj), j = 1, 2, . . . , m,

and for every t ≥ t0 they have non-zero open intersection with the plane

t = const adjoining to the origin, and in this domain the functions Uji,

j, i = 1, 2, . . . , m, are bounded.4.4 STABILITY AND INSTABILITY ANALYSIS 133

Proposition 4.4.8 If all conditions of Assumptions 4.4.1 and 4.4.8 are

satisfied and the matrix A in the estimate (4.4.3) is positive definite, i.e.

λm(HTAH) > 0, then

(a) the domain Π = {(t, x) ∈ T0 ×D(ρ) : v(t, x, η) > 0} of positiveness

of function v(t, x, η) for any t ∈ T0 has non-zero open intersection

with the plane t = const adjoining to the origin;

(b) on the domain Π the function v(t, x, η) is bounded.

Proof If the conditions of Assumption 4.4.1 are satisfied together with

the condition λm(HTAH) > 0, then the positiveness domain of the func-

tion v(t, x, η) is

Π̃ = {(t, x) ∈ T0 × D(ρ) : x �= 0}

which has an open intersection with the plane t = const for each t ∈ T0.

Moreover, the positiveness of the functions ujj(t, xj), j = 1, 2, . . . , m, is

a necessary condition for the positiveness of function v(t, x, η), therefore

Π̃ ⊆
⋂m

j=1
Πj for every j = 1, 2, . . . , m by the condition of Assumption

4.4.8 has non-zero open intersection with the plane t = const adjoining to

the origin. This proves the assertion (a) of Proposition 4.4.8.

The boundedness of functions uji, j, i = 1, 2, . . . , m, implies that the

matrix U(t, x) is bounded, but then the function v(t, x, η) constructed by

formula (4.4.1) will be bounded as well.

4.4.2 Tests for stability and instability The results presented in

Section 4.4.1 enable us to formulate the following theorems on stability

and asymptotic stability of the zero solution of large scale impulsive sys-

tem (4.2.4).

Theorem 4.4.1 Let large scale impulsive system (4.2.4) be such that

(1) in the domain T0 × D(ρ) all conditions of Hypotheses 1, 2 and 3

are satisfied;

(2) the matrix A is positive definite (i.e. λm(HTAH) > 0);

(3) there exists a negative semi-definite or equal to zero matrix Q such

that for the matrix G(P, S) the estimate

1

2
(G(P, S) + GT(P, S)) ≤ Q

for all (P, S) ∈ P × S, t �= τk(x), k = 1, 2, . . . ,
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Proposition 4.4.8 If all conditions of Assumptions 4.4.1 and 4.4.8 are

satisfied and the matrix A in the estimate (4.4.3) is positive definite, i.e.

λm(HTAH) > 0, then

(a) the domain Π = {(t, x) ∈ T0 ×D(ρ) : v(t, x, η) > 0} of positiveness

of function v(t, x, η) for any t ∈ T0 has non-zero open intersection

with the plane t = const adjoining to the origin;

(b) on the domain Π the function v(t, x, η) is bounded.

Proof If the conditions of Assumption 4.4.1 are satisfied together with

the condition λm(HTAH) > 0, then the positiveness domain of the func-

tion v(t, x, η) is

Π̃ = {(t, x) ∈ T0 × D(ρ) : x �= 0}

which has an open intersection with the plane t = const for each t ∈ T0.

Moreover, the positiveness of the functions ujj(t, xj), j = 1, 2, . . . , m, is

a necessary condition for the positiveness of function v(t, x, η), therefore

Π̃ ⊆
⋂m

j=1
Πj for every j = 1, 2, . . . , m by the condition of Assumption

4.4.8 has non-zero open intersection with the plane t = const adjoining to

the origin. This proves the assertion (a) of Proposition 4.4.8.

The boundedness of functions uji, j, i = 1, 2, . . . , m, implies that the

matrix U(t, x) is bounded, but then the function v(t, x, η) constructed by

formula (4.4.1) will be bounded as well.

4.4.2 Tests for stability and instability The results presented in

Section 4.4.1 enable us to formulate the following theorems on stability

and asymptotic stability of the zero solution of large scale impulsive sys-

tem (4.2.4).

Theorem 4.4.1 Let large scale impulsive system (4.2.4) be such that

(1) in the domain T0 × D(ρ) all conditions of Hypotheses 1, 2 and 3

are satisfied;

(2) the matrix A is positive definite (i.e. λm(HTAH) > 0);

(3) there exists a negative semi-definite or equal to zero matrix Q such

that for the matrix G(P, S) the estimate

1

2
(G(P, S) + GT(P, S)) ≤ Q

for all (P, S) ∈ P × S, t �= τk(x), k = 1, 2, . . . ,
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is satisfied element-wise;

(4) the matrix C is negative semi-definite or equal to zero (i.e.

λM (C) ≤ 0).

Then the zero solution of large-scale impulsive system (4.2.4) is stable

on P × S.

If condition (4) is modified as follows

(5) the matrix C is negative definite (i.e. λM (C) < 0),

then the zero solution of large scale impulsive system (4.2.4) is asymptoti-

cally stable on P × S.

Proof Under the conditions of Assumptions 4.4.1, Proposition 4.4.1 and

condition (1) of Theorem 4.4.1 the function v(t, x, η) (see (4.4.1)) is pos-

itive definite. The conditions of Assumption 4.4.2, Proposition 4.4.2 and

condition (3) of Theorem 4.4.1 imply

Dv(t, x, η) ≤ 0 for all (P, S) ∈ P × S, t �= τk(x), k = 1, 2, . . .

and the conditions of Assumption 4.4.3, Proposition 4.4.3 and condition (4)

of Theorem 4.4.1 yield

v(τk(x), x + Jk(x)) ≤ v(τk(x), x), t = τk(x), k = 1, 2, . . . .

In this connection for each pair (P, S) ∈ P × S the conditions being suf-

ficient for the stability of the zero solution of large scale impulsive system

(4.2.4) are satisfied on P × S.

If instead of condition (4) of Theorem 4.4.1 the condition (4.2.4) of the

Theorem is satisfied, then Proposition 3 and Corollary 4.4.2 yield

v(τk(x), x + Jk(x)) − v(τk(x), x) ≤ λM (C)ψM (v(τk(x), x)), k = 1, 2, . . .

and therefore the conditions being sufficient for asymptotic stability are

satisfied for every (P, S) ∈ P × S. Hence, the zero solution of large scale

impulsive system (4.2.4) is asymptotically stable on P × S.

Theorem 4.4.2 Let large scale impulsive system (4.2.4) be such that

(1) on the domain T0 × D(ρ) Hypotheses 1, 2 and 4 are satisfied;

(2) the matrix A is positive definite (i.e. λm(HTAH) > 0);
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is satisfied element-wise;

(4) the matrix C is negative semi-definite or equal to zero (i.e.

λM (C) ≤ 0).

Then the zero solution of large-scale impulsive system (4.2.4) is stable

on P × S.

If condition (4) is modified as follows

(5) the matrix C is negative definite (i.e. λM (C) < 0),

then the zero solution of large scale impulsive system (4.2.4) is asymptoti-

cally stable on P × S.

Proof Under the conditions of Assumptions 4.4.1, Proposition 4.4.1 and

condition (1) of Theorem 4.4.1 the function v(t, x, η) (see (4.4.1)) is pos-

itive definite. The conditions of Assumption 4.4.2, Proposition 4.4.2 and

condition (3) of Theorem 4.4.1 imply

Dv(t, x, η) ≤ 0 for all (P, S) ∈ P × S, t �= τk(x), k = 1, 2, . . .

and the conditions of Assumption 4.4.3, Proposition 4.4.3 and condition (4)

of Theorem 4.4.1 yield

v(τk(x), x + Jk(x)) ≤ v(τk(x), x), t = τk(x), k = 1, 2, . . . .

In this connection for each pair (P, S) ∈ P × S the conditions being suf-

ficient for the stability of the zero solution of large scale impulsive system

(4.2.4) are satisfied on P × S.

If instead of condition (4) of Theorem 4.4.1 the condition (4.2.4) of the

Theorem is satisfied, then Proposition 3 and Corollary 4.4.2 yield

v(τk(x), x + Jk(x)) − v(τk(x), x) ≤ λM (C)ψM (v(τk(x), x)), k = 1, 2, . . .

and therefore the conditions being sufficient for asymptotic stability are

satisfied for every (P, S) ∈ P × S. Hence, the zero solution of large scale

impulsive system (4.2.4) is asymptotically stable on P × S.

Theorem 4.4.2 Let large scale impulsive system (4.2.4) be such that

(1) on the domain T0 × D(ρ) Hypotheses 1, 2 and 4 are satisfied;

(2) the matrix A is positive definite (i.e. λm(HTAH) > 0);
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(3) there exists a negative definite matrix Q̃ ∈ Rm×m such that the

estimate

1

2

(
G(P, S) + GT(P, S)

)
≤ Q̃ for all (P, S) ∈ P × S

is satisfied;

(4) λM (C∗) > 0

(5) the functions τk(x), k = 1, 2, . . . , satisfy the inequality

sup
k

(

min
x∈D(ρ)

τk+1(x) − max
x∈D(ρ)

τk(x)
)

= θ > 0,

where ρ < ρ0.

If there exists a constant α0 > 0 such that for every α ∈ (0, α0 ] the

functions ϕm(y) and ψM (y) satisfy the inequality

(4.4.23) −
1

λM (Q̃)

λM (C∗

)ψM (α)∫

α

dy

ϕm(y)
≤ θ,

then the zero solution of large scale impulsive system (4.2.4) is stable on

P × S.

If instead of inequality (4.4.23) for some γ > 0 the inequality

(4.4.24) −
1

λM (Q̃)

λM (C∗

)ψM (α)∫

α

dy

ϕm(y)
≤ θ − γ

is satisfied, then the zero solution of large scale impulsive system (4.2.4) is

asymptotically stable on P × S.

The proof of Theorem 4.4.2 is similar to that of Theorem 4.4.1.

Theorem 4.4.3 Let large scale impulsive system (4.2.4) be such that

(1) on the domain T0 ×D(ρ) Assumptions 4.4.1, 4.4.2 and 4.4.4 hold;

(2) the matrix A is positive definite (i.e. λm(HTAH) > 0);

(3) there exists a matrix Q̃ ∈ Rm×m for which

(a)
1

2
(G(P, S) + GT(P, S)) ≤ Q̃ for all (P, S) ∈ P × S;

(b) λM (Q̃) > 0;
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(3) there exists a negative definite matrix Q̃ ∈ Rm×m such that the

estimate

1

2

(
G(P, S) + GT(P, S)

)
≤ Q̃ for all (P, S) ∈ P × S

is satisfied;

(4) λM (C∗) > 0

(5) the functions τk(x), k = 1, 2, . . . , satisfy the inequality

sup
k

(

min
x∈D(ρ)

τk+1(x) − max
x∈D(ρ)

τk(x)
)

= θ > 0,

where ρ < ρ0.

If there exists a constant α0 > 0 such that for every α ∈ (0, α0 ] the

functions ϕm(y) and ψM (y) satisfy the inequality

(4.4.23) −
1

λM (Q̃)

λM (C∗

)ψM (α)∫

α

dy

ϕm(y)
≤ θ,

then the zero solution of large scale impulsive system (4.2.4) is stable on

P × S.

If instead of inequality (4.4.23) for some γ > 0 the inequality

(4.4.24) −
1

λM (Q̃)

λM (C∗

)ψM (α)∫

α

dy

ϕm(y)
≤ θ − γ

is satisfied, then the zero solution of large scale impulsive system (4.2.4) is

asymptotically stable on P × S.

The proof of Theorem 4.4.2 is similar to that of Theorem 4.4.1.

Theorem 4.4.3 Let large scale impulsive system (4.2.4) be such that

(1) on the domain T0 ×D(ρ) Assumptions 4.4.1, 4.4.2 and 4.4.4 hold;

(2) the matrix A is positive definite (i.e. λm(HTAH) > 0);

(3) there exists a matrix Q̃ ∈ Rm×m for which

(a)
1

2
(G(P, S) + GT(P, S)) ≤ Q̃ for all (P, S) ∈ P × S;

(b) λM (Q̃) > 0;136 4. IMPULSIVE LARGE-SCALE SYSTEMS

(4) λM (C∗) > 0;

(5) the functions τk(x), k = 1, 2, . . . , satisfy for some θ1 > 0 the

inequality

max
x∈D(ρ)

τk(x) − min
x∈D(ρ)

τk−1(x) ≤ θ1, ρ ≤ ρ0;

(6) there exists a constant α0 such that for every α ∈ (0, α0 ] the func-

tions ϕm(y) and ψM (y) satisfy the inequality

(4.4.25)
1

λM (Q̃)

α∫

λM (C∗)ψM (α)

dy

ϕm(y)
≥ θ1 + γ.

Then the zero solution of large scale impulsive system(4.2.4) is asymp-

totically stable on P × S.

The proof of Theorem 4.4.3 is similar to that of Theorem 4.4.1.

Assume that large scale impulsive system (4.2.4) is decomposed into m

interconnected impulsive subsystems (4.2.4), (4.2.5).

Theorem 4.4.4 Let large scale impulsive system (4.2.4), (4.2.5) be

such that

(1) Assumptions 4.4.1, 4.4.5, 4.4.6 and 4.4.8 are satisfied on the do-

main Π;

(2) the matrix A is positive definite (i.e. λm(HTAH) > 0);

(3) there exists a positive semi-definite or equal to zero matrix L ∈

Rm×m for which

1

2
(G(P, S) + GT(P, S)) ≥ L for all (P, S) ∈ P × S;

(4) the matrix C is positive definite (i.e. λm(C) > 0).

Then the zero solution of large scale impulsive system (4.2.4), (4.2.5) is

unstable on P × S.

Proof Under the conditions of Assumptions 4.4.1 and 4.4.8, Propositions

4.4.1, 4.4.8 and condition (2) of Theorem 4.4.4 the function v(t, x, η) is

positive definite and possesses properties (a) and (b) (see Proposition 4.4.8).
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Assumption 4.4.5, Proposition 4.4.5 and condition (3) of Theorem 4.4.4

imply that for every pair (P, S) ∈ P × S the inequality

Dv(t, x, η) ≥ 0, t �= τk(x), k = 1, 2, . . . ,

is satisfied.

Under the conditions of Assumption 4.4.6, Proposition 4.4.6, Corollary

4.4.5 and condition (4) of Theorem 4.4.4 one has

v(τk(x), x + Jk(x)) − v(τk(x), x) ≥ λm(C)ψm(v(τk(x), x)), k = 1, 2, . . . .

Moreover, for every pair (P, S) ∈ P × S all hypotheses of Theorem 1.4.7

are satisfied with function ψ(y) = λm(C)ψm(y) i.e. the zero solution of the

system (4.2.4), (4.2.5) is unstable on P × S.

Theorem 4.4.5 Let large scale impulsive system (4.2.4), (4.2.5) be

such that

(1) Assumption 4.4.1, 4.4.5, 4.4.7 and 4.4.8 hold in the domain Π;

(2) the matrix A is positive definite (i.e. λm(HTAH) > 0);

(3) there exists a matrix L̃ ∈ Rm×m
such that

(a)
1

2
(G(P, S) + GT(P, S)) ≥ L̃ for all (P, S) ∈ P × S;

(b) λm(L̃) < 0;

(4) the matrix C∗
is positive definite (i.e. λm(C∗) > 0);

(5) for some constant θ1 > 0 the functions τk(x) satisfy the inequali-

ties

max
x∈D(ρ)

τk(x) − min
x∈D(ρ)

τk−1(x) ≤ θ1, ρ < ρ0 for all k = 1, 2, . . . ;

(6) there exists a constant α0 such that for every α ∈ (0, α0 ] the func-

tions ϕM (y) and ψm(y) satisfy the inequality

(4.4.26) −
1

λm(L̃)

λm(C∗

)ψm(α)∫

α

dy

ϕM (y)
≥ θ1 + γ.
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Assumption 4.4.5, Proposition 4.4.5 and condition (3) of Theorem 4.4.4

imply that for every pair (P, S) ∈ P × S the inequality

Dv(t, x, η) ≥ 0, t �= τk(x), k = 1, 2, . . . ,

is satisfied.

Under the conditions of Assumption 4.4.6, Proposition 4.4.6, Corollary

4.4.5 and condition (4) of Theorem 4.4.4 one has

v(τk(x), x + Jk(x)) − v(τk(x), x) ≥ λm(C)ψm(v(τk(x), x)), k = 1, 2, . . . .

Moreover, for every pair (P, S) ∈ P × S all hypotheses of Theorem 1.4.7

are satisfied with function ψ(y) = λm(C)ψm(y) i.e. the zero solution of the

system (4.2.4), (4.2.5) is unstable on P × S.

Theorem 4.4.5 Let large scale impulsive system (4.2.4), (4.2.5) be

such that

(1) Assumption 4.4.1, 4.4.5, 4.4.7 and 4.4.8 hold in the domain Π;

(2) the matrix A is positive definite (i.e. λm(HTAH) > 0);

(3) there exists a matrix L̃ ∈ Rm×m
such that

(a)
1

2
(G(P, S) + GT(P, S)) ≥ L̃ for all (P, S) ∈ P × S;

(b) λm(L̃) < 0;

(4) the matrix C∗
is positive definite (i.e. λm(C∗) > 0);

(5) for some constant θ1 > 0 the functions τk(x) satisfy the inequali-

ties

max
x∈D(ρ)

τk(x) − min
x∈D(ρ)

τk−1(x) ≤ θ1, ρ < ρ0 for all k = 1, 2, . . . ;

(6) there exists a constant α0 such that for every α ∈ (0, α0 ] the func-

tions ϕM (y) and ψm(y) satisfy the inequality

(4.4.26) −
1

λm(L̃)

λm(C∗

)ψm(α)∫

α

dy

ϕM (y)
≥ θ1 + γ.

138 4. IMPULSIVE LARGE-SCALE SYSTEMS

Then the zero solution of large scale impulsive system (4.2.4), (4.2.5) is

unstable on P × S.

Theorem 4.4.5 is proved in the same way as Theorem 4.4.4. Besides, for

each pair (P, S) ∈ P×S all conditions of Theorem 1.4.6 with the functions

ϕ(y) = −λm(L̃)ϕM (y) and ψ(y) = λm(C∗)ψM (y).

are satisfied.

Theorem 4.4.6 Let large scale impulsive system (4.2.4), (4.2.5) be

such that

(1) Assumption 4.4.1, 4.4.5, 4.4.7 and 4.4.8 hold in the domain Π;

(2) the matrix A is positive definite (i.e. λm(HTAH) > 0);

(3) there exists a positive definite matrix L∗ ∈ Rm×m for which

1

2
(G(P, S) + GT(P, S)) ≥ L∗

for all (P, S) ∈ P × S;

(4) λm(C∗) > 0;

(5) for some constant θ > 0 the functions τk(x) satisfy the inequality

sup
k

(

min
x∈D(ρ)

τk−1(x) − max
x∈D(ρ)

τk(x)
)

= θ > 0, ρ < ρ0;

(6) for a constant γ > 0 the functions ϕm(y) and ψm(y) satisfy the

inequality

−
1

λm(L∗)

α∫

λm(C∗)ψm(α)

dy

ϕm(y)
≤ θ − γ.

Then the zero solution of large scale impulsive system (4.2.4), (4.2.5) is

unstable on P × S.

This Theorem is proved in the same way as Theorem 4.4.4. We note

that all hypotheses on instability of Theorem 1.4.6 are satisfied with the

functions

ϕ(y) = λm(L∗)ϕm(y) and ψ(y) = λm(C∗)ψm(y),

provided all conditions of Theorem 4.4.6 hold.
4.4 STABILITY AND INSTABILITY ANALYSIS 139

Example 4.4.1 Consider an impulsive fourth order system consisting of

two subsystems of the second order which are described by the systems of

equations

(4.4.27)

dxj

dt
= − x3

j + 0, 5x3

i + 0, 25Sj1x
3

j + 0, 3Sj2(t)x
3

i ,

t �= τk(x1, x2),

∆xj = − xj + σxi, t = τk(x1, x2),

j, i = 1, 2; j �= i,

where xj = (xj1, xj2)
T ∈ R2, j = 1, 2.

In this example P = {0} and the structural matrices Sj(t) are of the

form

Sj(t) =

(
1 0 Sj1(t) 0 Sj2(t) 0

0 1 0 Sj1(t) 0 Sj2(t)

)

, j = 1, 2,

S(t) = diag {S1(t), S2(t)}.

The structural set of the system (4.4.27) is defined as

S =

{

S(t) : S(t) =

(
S1(t) 0

0 S2(t)

)

, Sj(t) = (I2, sj1I2, sj2(t)I2),

sji(t) ∈ [0, 1] for all t ∈ R, sji(τk(x)) = 0, j, i = 1, 2, k = 1, 2, . . .

}

.

For the system (4.4.27) we construct the matrix function U(x) with the

elements

vjj(xj) = x2

j , j = 1, 2; v12(x1, x2) = 0, 5x1x2,

satisfying the estimates

vjj(xj) ≥ �xj�
2, j = 1, 2,

v12(x1, x2) = v21(x1, x2) ≥ −0, 5�x1� �x2�.

The matrix

A =

(
1 −0, 5

−0, 5 1

)
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Example 4.4.1 Consider an impulsive fourth order system consisting of

two subsystems of the second order which are described by the systems of

equations

(4.4.27)

dxj

dt
= − x3

j + 0, 5x3

i + 0, 25Sj1x
3

j + 0, 3Sj2(t)x
3

i ,

t �= τk(x1, x2),

∆xj = − xj + σxi, t = τk(x1, x2),

j, i = 1, 2; j �= i,

where xj = (xj1, xj2)
T ∈ R2, j = 1, 2.

In this example P = {0} and the structural matrices Sj(t) are of the

form

Sj(t) =

(
1 0 Sj1(t) 0 Sj2(t) 0

0 1 0 Sj1(t) 0 Sj2(t)

)

, j = 1, 2,

S(t) = diag {S1(t), S2(t)}.

The structural set of the system (4.4.27) is defined as

S =

{

S(t) : S(t) =

(
S1(t) 0

0 S2(t)

)

, Sj(t) = (I2, sj1I2, sj2(t)I2),

sji(t) ∈ [0, 1] for all t ∈ R, sji(τk(x)) = 0, j, i = 1, 2, k = 1, 2, . . .

}

.

For the system (4.4.27) we construct the matrix function U(x) with the

elements

vjj(xj) = x2

j , j = 1, 2; v12(x1, x2) = 0, 5x1x2,

satisfying the estimates

vjj(xj) ≥ �xj�
2, j = 1, 2,

v12(x1, x2) = v21(x1, x2) ≥ −0, 5�x1� �x2�.

The matrix

A =

(
1 −0, 5

−0, 5 1

)
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is positive definite.

Let ηT = (1, 1), then for the above-mentioned matrix-valued function

U(x), the elements of matrix G(S) (see (4.4.4)) and matrix C (see (4.4.9))

have the form

σ11(s) = −1, 5 + 0, 5s11(t) + 0, 6s22(t) ≤ −0, 4;

σ22(s) = −1, 5 + 0, 6s12(t) + 0, 5s21(t) ≤ −0, 4;

σ12(s) = 0, 05(s11(t) + s21(t)) + 0, 15(s12(t) + s21(t)) ≤ 0, 4,

C =






σ2 − 1
|σ2 − 1|

2
|σ2 − 1|

2
σ2 − 1






It is easy to verify that the matrix Q

G(S) ≤ Q =

�
−0, 4 0, 4
0, 4 −0, 4

�

is negative semi-definite, and the matrix C for σ = ±1 is equal to zero,

and for |σ| < 1 it is negative definite (i.e. λm(C) < 0).

Since all conditions of Theorem 4.4.1 are satisfied, the zero solution of

the impulsive systems (4.4.27) under nonclassical structural perturbations

for σ = ±1 is stable on S and for |σ| < 1 is asymptotically stable on S.

4.5 Linear Systems Analysis

We consider the linear large scale impulsive system decomposed into m

subsystems

(4.5.1)

dxi

dt
= Aixi +

m�

j=1

SijAijxj , t �= τk(x),

∆xi = Jkixi +

m�

j=1

j �=i

Jkijxj , t = τk(x),

i = 1, 2, . . . , m, k = 1, 2, . . . ,
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is positive definite.

Let ηT = (1, 1), then for the above-mentioned matrix-valued function

U(x), the elements of matrix G(S) (see (4.4.4)) and matrix C (see (4.4.9))

have the form

σ11(s) = −1, 5 + 0, 5s11(t) + 0, 6s22(t) ≤ −0, 4;

σ22(s) = −1, 5 + 0, 6s12(t) + 0, 5s21(t) ≤ −0, 4;

σ12(s) = 0, 05(s11(t) + s21(t)) + 0, 15(s12(t) + s21(t)) ≤ 0, 4,

C =






σ2 − 1
|σ2 − 1|

2
|σ2 − 1|

2
σ2 − 1






It is easy to verify that the matrix Q

G(S) ≤ Q =

�
−0, 4 0, 4
0, 4 −0, 4

�

is negative semi-definite, and the matrix C for σ = ±1 is equal to zero,

and for |σ| < 1 it is negative definite (i.e. λm(C) < 0).

Since all conditions of Theorem 4.4.1 are satisfied, the zero solution of

the impulsive systems (4.4.27) under nonclassical structural perturbations

for σ = ±1 is stable on S and for |σ| < 1 is asymptotically stable on S.

4.5 Linear Systems Analysis

We consider the linear large scale impulsive system decomposed into m

subsystems

(4.5.1)

dxi

dt
= Aixi +

m�

j=1

SijAijxj , t �= τk(x),

∆xi = Jkixi +

m�

j=1

j �=i

Jkijxj , t = τk(x),

i = 1, 2, . . . , m, k = 1, 2, . . . ,
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where xi ∈ Rni,
m∑

i=1

ni = n, x = (xT
1
, xT

2
, . . . , xT

m)T∈ Rn, Ai, Jki, Aij , Jkij

are constant matrices of the correspondent dimensions, the set S and ma-

trices S, Si, Sij are defined in Appendix 1, the values τk(x), k = 1, 2, . . .

are ordered by τk(x) < τk+1(τ) and such that τk(x) → +∞ as k → +∞.

We shall assume, for simplicity, that the system (4.5.1) satisfies all re-

quired conditions so that all solutions x(t) = x(t, t0, x0) of (4.5.1) exist for

all t ≥ t0.

For the system (4.5.1) we construct a matrix-valued function

(4.5.2) U(x) = [vij(xi, xj)], i, j = 1, 2, . . . , m

with the elements

(4.5.3) vii(xi) = xT

i Biixi, i = 1, 2, . . . , m

and

(4.5.4) vij(xi, xj) = xT

i Bijxj , i �= j, i, j = 1, 2, . . . , m.

Here Bii are constant positive definite matrices, and Bij are constant ma-

trices.

We introduce the following assumption.

Assumption 4.5.1 Assume that there exist

(1) the matrix-valued function (4.5.2) with the elements (4.5.3) and

(4.5.4);

(2) the constants aji, bji, i, j = 1, 2, . . . , m, satisfying the estimates

(a) aii�xi�
2 ≤ Uii(xi) ≤ bii�xi�

2 for all xi ∈ Nix, i = 1, 2, . . . , m,

(b) aji�xj� �xi� ≤ Uij(xi, xj) ≤ bji�xj� �xi� for all (xi, xj) ∈ Nix×

Njx, i �= j, i, j = 1, 2, . . . , m.

Proposition 4.5.1 If all conditions of Assumption 4.5.1 are satisfied,

then the function

(4.5.5) v(x, η) = ηTU(x)η, η ∈ Rm
+

, η > 0

satisfies the bilateral inequality

(4.5.6)
uTHTAHu ≤ v(x, η) ≤ uTHTBHu

for all x ∈ Nx = N1x ×N2x × . . . ×Nmx.
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where xi ∈ Rni,
m∑

i=1

ni = n, x = (xT
1
, xT

2
, . . . , xT

m)T∈ Rn, Ai, Jki, Aij , Jkij

are constant matrices of the correspondent dimensions, the set S and ma-

trices S, Si, Sij are defined in Appendix 1, the values τk(x), k = 1, 2, . . .

are ordered by τk(x) < τk+1(τ) and such that τk(x) → +∞ as k → +∞.

We shall assume, for simplicity, that the system (4.5.1) satisfies all re-

quired conditions so that all solutions x(t) = x(t, t0, x0) of (4.5.1) exist for

all t ≥ t0.

For the system (4.5.1) we construct a matrix-valued function

(4.5.2) U(x) = [vij(xi, xj)], i, j = 1, 2, . . . , m

with the elements

(4.5.3) vii(xi) = xT

i Biixi, i = 1, 2, . . . , m

and

(4.5.4) vij(xi, xj) = xT

i Bijxj , i �= j, i, j = 1, 2, . . . , m.

Here Bii are constant positive definite matrices, and Bij are constant ma-

trices.

We introduce the following assumption.

Assumption 4.5.1 Assume that there exist

(1) the matrix-valued function (4.5.2) with the elements (4.5.3) and

(4.5.4);

(2) the constants aji, bji, i, j = 1, 2, . . . , m, satisfying the estimates

(a) aii�xi�
2 ≤ Uii(xi) ≤ bii�xi�

2 for all xi ∈ Nix, i = 1, 2, . . . , m,

(b) aji�xj� �xi� ≤ Uij(xi, xj) ≤ bji�xj� �xi� for all (xi, xj) ∈ Nix×

Njx, i �= j, i, j = 1, 2, . . . , m.

Proposition 4.5.1 If all conditions of Assumption 4.5.1 are satisfied,

then the function

(4.5.5) v(x, η) = ηTU(x)η, η ∈ Rm
+

, η > 0

satisfies the bilateral inequality

(4.5.6)
uTHTAHu ≤ v(x, η) ≤ uTHTBHu

for all x ∈ Nx = N1x ×N2x × . . . ×Nmx.
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Here

uT = (�x1�, �x2�, . . . , �xm�), A = [aij ],

B = [bij ], H = diag [η1, η2, . . . , ηm].

The proof of Proposition 4.5.1 is similar to that of Proposition 4.4.1 (see

and cf. Djordjevic [1]).

Together with the function (4.5.5) its total derivative

(4.5.7) Dv(x, η) = ηTDU(x)η

along the solutions x(t, t0, x0) of the system (4.5.1) is constructed

Assumption 4.5.2 Assume that there exist

(1) the matrix-valued function (4.5.2) with the elements (4.5.3) and

(4.5.4);

(2) the constants ρ̃
(1)

j (S), ρ̃
(2)

j (S), ρ̃ij(S), i �= j, i, j = 1, 2, . . . , m,

and

(a) η2

j {(Dxj
Ujj(xj))

TAjxj} ≤ ρ̃
(1)

j �xj�
2 for all xj ∈ Njx0,

j = 1, 2, . . . , m;

(b)

m∑

j=1

η2

j (Dxj
Ujj(xj))

T

m∑

i=1
i�=j

SijAijxi

+ 2

m∑

j=1

m∑

i=j+1

ηjηi

{

(Dxj
Uji(xj , xi))

T

(

Ajxj +

m∑

k=1
k �=j

SkjAkjxk

)

+

(

Dxj
Uji(xj , xi))

T(Aixi +

m∑

k=1
k �=i

SikAikxk

)}

≤

m∑

j=1

ρ̃
(2)

j (S)�xj�
2 + 2

m∑

j=1

m∑

i=j+1

ρ̃ji(S)�xj� �xi�

for all (xi, xj) ∈ Njx0 ×Nix0 × S, (i �= j), i, j = 1, 2, . . . , m.
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Here

uT = (�x1�, �x2�, . . . , �xm�), A = [aij ],

B = [bij ], H = diag [η1, η2, . . . , ηm].

The proof of Proposition 4.5.1 is similar to that of Proposition 4.4.1 (see

and cf. Djordjevic [1]).

Together with the function (4.5.5) its total derivative

(4.5.7) Dv(x, η) = ηTDU(x)η

along the solutions x(t, t0, x0) of the system (4.5.1) is constructed

Assumption 4.5.2 Assume that there exist

(1) the matrix-valued function (4.5.2) with the elements (4.5.3) and

(4.5.4);

(2) the constants ρ̃
(1)

j (S), ρ̃
(2)

j (S), ρ̃ij(S), i �= j, i, j = 1, 2, . . . , m,

and

(a) η2

j {(Dxj
Ujj(xj))

TAjxj} ≤ ρ̃
(1)

j �xj�
2 for all xj ∈ Njx0,

j = 1, 2, . . . , m;

(b)

m∑

j=1

η2

j (Dxj
Ujj(xj))

T

m∑

i=1
i�=j

SijAijxi

+ 2

m∑

j=1

m∑

i=j+1

ηjηi

{

(Dxj
Uji(xj , xi))

T

(

Ajxj +

m∑

k=1
k �=j

SkjAkjxk

)

+

(

Dxj
Uji(xj , xi))

T(Aixi +

m∑

k=1
k �=i

SikAikxk

)}

≤

m∑

j=1

ρ̃
(2)

j (S)�xj�
2 + 2

m∑

j=1

m∑

i=j+1

ρ̃ji(S)�xj� �xi�

for all (xi, xj) ∈ Njx0 ×Nix0 × S, (i �= j), i, j = 1, 2, . . . , m.4.5 LINEAR SYSTEMS 143

Proposition 4.5.2 If all conditions of Assumption 4.5.2 are satisfied,

then for expression (4.5.7) we get

(4.5.8) Dv(x, η) ≤ uTG(S)u, for all x ∈ Nx0 × S,

where

uT = (�x1�, �x2�, . . . , �xm�),

G(S) = [σ̄ji(S)], i, j = 1, 2, . . . , m,

σ̄ji(S) = σ̄ij(S),

σ̄jj(S) = ρ̃
(1)

j + ρ̃
(2)

j (S),

σ̄ji(S) = ρ̃ji(S), j �= i, i, j = 1, 2, . . . , m.

The proof of Proposition 4.5.2 is similar to that of Proposition 4.5.1.

It can be easily verified that for t �= τk(x), k = 1, 2, . . . , the estimate

(4.5.9) Dv(x, η) ≤ λM (G(S))�u�2, for all x ∈ Nx0, for all S ∈ S

is true. Here λM (·) is the maximal eigenvalues of (·). If ηT = (1, 1, . . . , 1) ∈

Rm
+

then from (4.5.6) we get

(4.5.10) λm(A)�u�2
≤ v(x, η) ≤ λM (B)�u�2

and for λm(A) > 0 we get

(4.5.11) λ−1

M (B)v(x, η) ≤ �u�2
≤ λ−1

m (A)v(x, η).

Therefore, the estimate (4.5.9) can be represented as

Dv(x, η) ≤

{

λM (G(S))λ−1
m (A)v(x, η) for λM (G(S)) > 0;

λM (G(S))λ−1

M (B)v(x, η) for λM (G(S)) < 0.
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Proposition 4.5.3 If for the system (4.5.1) the condition (1) of As-

sumption 4.5.1 is satisfied, then for the function (4.5.5) when t = τk(x),

k = 1, 2, . . . , the inequalities

(4.5.12) v(x + Jk(x), η) − v(x, η) ≤ uT

k Cuk;

and

(4.5.13) v(x + Jk(x), η) ≤ uT

k C
∗

uk,

are satisfied, where

uT

k = (�x1(τk(x))�, �x2(τk(x))�, . . . , �xm(τk(x))�),

Jk(x) = Jkixi +

m∑

j=1

j �=i

Jkijxj ,

C = [c̄ij ], c̄ij = c̄ji, i, j = 1, 2, . . . , m,

C
∗

= [c̄∗ij ], c̄∗ij = c̄∗ji, i, j = 1, 2, . . . , m,

c̄ii = λM (Cii), c̄ij = λ
1/2

M (CijC
T

ij), i �= j, i, j = 1, 2, . . . , m,

λ
1/2

M (·) is a norm of matrix (·),

c̄∗ii = λM (C∗

ii), c̄∗ij = λ
1/2

M (C∗

ijC
∗T
ij ), i �= j, i, j = 1, 2, . . . , m;

and

Cii = JT

kiBii + BiiJki + JT

kiBiiJki +
m∑

j=1

j �=i

JT

kijBjjJkji

+

m∑

j=1

j �=i

(BijJkji + JT

kjiBij) +

m∑

j=1

j �=i

(JT

kiBijJkji + JT

kjiBijJki)

+

m∑

l=1
l�=i

m∑

j=1

j �=i

(JT

kliBljJkji + JT

kjiBljJkli), i = 1, 2, . . . , m;

Cij = BiiJkij + JT

kijBii + JT

kiBiiJkij + JT

kijBii + Jki

+

m∑

l=1
l�=i,j

(JT

kliBllJklj + JT

kliBllJkli) + BijJkj + JT

kiBij + JT

kiBijJkj
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Proposition 4.5.3 If for the system (4.5.1) the condition (1) of As-

sumption 4.5.1 is satisfied, then for the function (4.5.5) when t = τk(x),

k = 1, 2, . . . , the inequalities

(4.5.12) v(x + Jk(x), η) − v(x, η) ≤ uT

k Cuk;

and
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k C
∗

uk,

are satisfied, where

uT

k = (�x1(τk(x))�, �x2(τk(x))�, . . . , �xm(τk(x))�),

Jk(x) = Jkixi +

m∑

j=1

j �=i

Jkijxj ,

C = [c̄ij ], c̄ij = c̄ji, i, j = 1, 2, . . . , m,

C
∗

= [c̄∗ij ], c̄∗ij = c̄∗ji, i, j = 1, 2, . . . , m,

c̄ii = λM (Cii), c̄ij = λ
1/2

M (CijC
T

ij), i �= j, i, j = 1, 2, . . . , m,

λ
1/2

M (·) is a norm of matrix (·),

c̄∗ii = λM (C∗

ii), c̄∗ij = λ
1/2

M (C∗

ijC
∗T
ij ), i �= j, i, j = 1, 2, . . . , m;

and

Cii = JT

kiBii + BiiJki + JT

kiBiiJki +
m∑

j=1

j �=i

JT

kijBjjJkji

+

m∑

j=1

j �=i

(BijJkji + JT

kjiBij) +

m∑

j=1

j �=i

(JT

kiBijJkji + JT

kjiBijJki)

+

m∑

l=1
l�=i

m∑

j=1

j �=i

(JT

kliBljJkji + JT

kjiBljJkli), i = 1, 2, . . . , m;

Cij = BiiJkij + JT

kijBii + JT

kiBiiJkij + JT

kijBii + Jki

+

m∑

l=1
l�=i,j

(JT

kliBllJklj + JT

kliBllJkli) + BijJkj + JT

kiBij + JT

kiBijJkj
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+

m∑

l=1
l�=i,j

(BilJklj + JT

kliBlj + JT

kiBilJklj + JT

kliBljJkj)

+

m∑

l=1

m∑

l=1
l�=r

JT

kliBlrJkrj , i �= j, i, j = 1, 2, . . . , m;

C∗

ii = Bii + Cii, C∗

ij = Bij + Cij , i �= j, i, j = 1, 2, . . . , m.

Proof First we consider the inequality (4.5.12). For all t = τk(x), k =

1, 2, . . . , for the function (4.5.5) and the system (4.5.1), we have

v(x + Jk(x), η) − v(x, η) =

m∑

i=1

Uii

(

xi + Jkixi +

m∑

j=1

j �=i

Jkijxj

)

+ 2

m∑

i=1

m∑

j=1

j>i

Uij

(

xi + Jkixi +

m∑

l=1
l�=i

Jkilxl, xj + Jkjxj +

m∑

l=1
l�=i

Jkjlxl

)

−

m∑

i=1

Uii(xi) − 2

m∑

i=1

m∑

j=1

j>i

Uij(xi, xj)

=

m∑

i=1

(

xi + Jkixi +

m∑

j=1

j �=i

Jkijxj

)T

Bii

(

xi + Jkixi +

m∑

j=1

j �=i

Jkijxj

)

+ 2

m∑

i=1

m∑

j=1

j>i

(

xi + Jkixi +

m∑

l=1
l�=i

Jkilxl

)T

Bij

(

xj + Jkjxj +

m∑

l=1
l�=j

Jkjlxl

)

−

m∑

i=1

xT

i Biixi − 2
m∑

i=1

m∑

j=1

j>i

xT

i Bijxj

=

m∑

i=1

xT

i

(

BiiJki + JT

kiBii + JT

kiBiiJki +

m∑

j=1

j �=i

JT

kjiBiiJkji

)

xi

+ 2

m∑

i=1

m∑

j=1

xT

i

(

BiiJkij + JT

kijBii + JT

kiBiiJkij + JT

kijBiiJki
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+

m∑

l=1
l�=i,j

(
JT

kliBllJklj + JT

kljBllJkli

)
)

xj +

m∑

i=1

xT

i

{
m∑

j=1

j �=i

(
Bij + Jkij + JT

kjiBij

)

+

m∑

j=1

j �=i

(
JT

kiBijJkji + JT

kjiBijJki

)
+

m∑

l=1
l�=i

m∑

j=1

j �=i

(
JT

kliBljJkji + JT

kjiBljJkli

)

}

xi

+ 2
m∑

i=1

m∑

j=1

j>i

xT

i

{

BijJkj + JT

kiBij + JT

kiBijJkj

+

m∑

l=1
l�=i,j

(
BilJklj + JT

kliBlj + JT

kiBilJklj + JT

kliBljJkj

)
+

m∑

l=1

m∑

r=1
l�=r

JT

liBlrJrj

}

xj

=

m∑

i=1

xT

i Ciixi + 2

m∑

i=1

m∑

j=1

j>i

xT

i Cijxj

≤

m∑

i=1

λM (Cii)�xi�
2 + 2

m∑

i=1

m∑

j=1

j>i

λ
1/2

M (CijC
T

ij)�xi��xj� = uT

kCuk,

k = 1, 2, . . . .

Inequality (4.5.13) is proved in the same way.

Corollary 4.5.1 If all conditions of Proposition 4.5.3 are satisfied, then

for the function (4.5.5) for t = τk(x), k = 1, 2, . . . , the following estimates

hold true

(4.5.14) v(x + Jk(x), η) − v(x, η) ≤ ∆v(x, η)

where

∆ =

{
λM (C)λ−1

M (B) for λM (C) < 0;

λM (C)λ−1
m (A) for λM (C) > 0;

and

(4.5.15) v(x + Jk(x), η) ≤ ∆∗v(x, η),

where

∆∗ =

{

λM (C
∗

)λ−1

M (B) for λM (C
∗

) < 0,

λM (C
∗

)λ−1
m (A) for λM (C

∗

) > 0.

The assertions (4.5.14) and (4.5.15) follow from Proposition 4.5.3 and

the inequality (4.5.11). 4.5 LINEAR SYSTEMS 147

Proposition 4.5.4 If t �= τk(x), k = 1, 2, . . . , then for the total deriva-

tive (4.5.7) of the function (4.5.5) the estimate

(4.5.16)

Dv(x, η) ≥ uTG(S)u for all (x �= 0) ∈ Rn
and for all S ∈ S

is true, where

G(S) = [σij(S)], σij = σji, i, j = 1, 2, . . . , m,

σii = ρ
1i

+ ρ
2i

(S), i = 1, 2, . . . , m, S ∈ S

σij =
1

2
(ρ

1ij
(S) + ρ

1ji
(S) + ρ

2ij
(S) + ρ

2ji
(S) + ρ

3ij
(S) + ρ

3ji
(S)),

i, j = 1, 2, . . . , m, i �= j.

ρ
1i

and ρ
2i

(S) are minimal eigenvalues of the matrices

Qi = η2

i (BiiAi + AT

i Bii), i = 1, 2, . . . , m;

Pi =

i−1∑

j=1

ηiηj(B
T

jiSijAji + (SjiAji)
TBji)

+
m∑

j=i+1

ηiηj(BijSji + (SjiAji)
TBij), i �= j = 1, 2, . . . , m,

the vector uT is defined as in Proposition 4.5.4, and ρ
rij

, r = 1, 2, 3; i, j =

1, 2, . . . , m, are computed.

The proof of Proposition 4.5.4 is similar to that of Proposition 4.5.2.

Let ηT = (1, 1, . . . , 1) ∈ Rm
+

. Then in view of (4.5.16) and (4.5.11) the

inequality

(4.5.17) Dv(x, η) ≥ λm(G(S))�u�2, for all S ∈ S

can be rewritten in the form

Dv(x, η) ≥

{

λm(G(S))λ−1
m (A)v(x, η) for λm(G(S)) < 0

λm(G(S))λ−1

M (B)v(x, η) for λm(G(S)) > 0.
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Proposition 4.5.4 If t �= τk(x), k = 1, 2, . . . , then for the total deriva-

tive (4.5.7) of the function (4.5.5) the estimate

(4.5.16)

Dv(x, η) ≥ uTG(S)u for all (x �= 0) ∈ Rn
and for all S ∈ S

is true, where

G(S) = [σij(S)], σij = σji, i, j = 1, 2, . . . , m,

σii = ρ
1i

+ ρ
2i

(S), i = 1, 2, . . . , m, S ∈ S

σij =
1

2
(ρ

1ij
(S) + ρ

1ji
(S) + ρ

2ij
(S) + ρ

2ji
(S) + ρ

3ij
(S) + ρ

3ji
(S)),

i, j = 1, 2, . . . , m, i �= j.

ρ
1i

and ρ
2i

(S) are minimal eigenvalues of the matrices

Qi = η2

i (BiiAi + AT

i Bii), i = 1, 2, . . . , m;

Pi =

i−1∑

j=1

ηiηj(B
T

jiSijAji + (SjiAji)
TBji)

+
m∑

j=i+1

ηiηj(BijSji + (SjiAji)
TBij), i �= j = 1, 2, . . . , m,

the vector uT is defined as in Proposition 4.5.4, and ρ
rij

, r = 1, 2, 3; i, j =

1, 2, . . . , m, are computed.

The proof of Proposition 4.5.4 is similar to that of Proposition 4.5.2.

Let ηT = (1, 1, . . . , 1) ∈ Rm
+

. Then in view of (4.5.16) and (4.5.11) the

inequality

(4.5.17) Dv(x, η) ≥ λm(G(S))�u�2, for all S ∈ S

can be rewritten in the form

Dv(x, η) ≥

{

λm(G(S))λ−1
m (A)v(x, η) for λm(G(S)) < 0

λm(G(S))λ−1

M (B)v(x, η) for λm(G(S)) > 0.
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Proposition 4.5.5 Let t = τk(x), k = 1, 2, . . . , then for the function

(4.5.5) and the system (4.5.1)

(a) v(x + Jk(x), η) − v(x, η) ≥ uT

kCuk, k = 1, 2, . . .

and

(b) v(x + Jk(x), η) ≥ uT

kC∗uk, k = 1, 2, . . . ,

where

C = [cij ], cij = cji, i, j = 1, 2, . . . , m,

C∗ = [c∗ij ], c∗ij = c∗ji, i, j = 1, 2, . . . , m,

cii = λm(Cii), cij = −c̄ij , i �= j, i, j = 1, 2, . . . , m;

c∗ii = λm(C∗

ii), c∗ij = −c̄∗ij , i �= j, i, j = 1, 2, . . . , m;

and uT, Jk(x), cij , c∗ij, cii, c∗ii are defined as in Proposition 4.5.3.

Proof The proof of this Proposition is similar to that of Proposi-

tion 4.5.3.

Corollary 4.5.1 If all conditions of Proposition 4.5.5 are satisfied, then

for the function (4.5.5) and the system (4.5.1) for t = τk(x), k = 1, 2, . . .

(a) v(x + Jk(x), η) − v(x, η) ≥ ∆V (x, η), where

∆ =

{
λm(C)λ−1

m (A) for λm(C) < 0,

λm(C)λ−1

M (B) for λm(C) > 0;

and

(b) V (x + Jk(x), η) ≥ ∆∗V (x, η), where

∆∗ =

{
λm(C∗)λ−1

m (A) for λm(C∗) < 0,

λm(C∗)λ−1

M (B) for λm(C∗) > 0.

Proof The proof follows from Proposition 4.5.5 and (4.5.11).
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Theorem 4.5.1 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) is constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a matrix Q such that for the matrix G(S) the estimate

1

2
(G(S) + G

T

(S)) ≤ Q for all S ∈ S

is satisfied component-wise;

(3) the matrix Q is negative semi-definite or equal to zero, i.e. the in-

equality λm(Q) ≤ 0 holds.

Then the zero solution of the system (4.5.1) is stable in the whole on S.

If instead of the condition (3) the following condition is satisfied

(4) the matrix C in (4.5.12) is negative definite, i.e. λM (C) < 0,

then the zero solution of the system (4.5.1) is asymptotically stable in the

whole on S.

The proof of Theorem 4.5.1 is similar to that of Theorem 4.4.1.

Theorem 4.5.2 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) is constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a negative definite matrix Q− ∈ Rm×m such that

1

2
(G(S) + G

T

(S)) ≤ Q−
for all S ∈ S;

(3) λM (C
∗

) > 0;

(4) the functions τk(x), k = 1, 2, . . . , satisfy the inequality

τk+1(x) − τk(x) = θ, θ > 0.

If

(4.5.18) −
λM (B)

λM (Q−)
ln

λM (C
∗

)

λm(A)
≤ θ,

then the zero solution of the system (4.5.1) is stable in the whole on S.

If instead of (4.5.18) the condition

(4.5.19) −
λM (B)

λM (Q−)
ln

λM (C
∗

)

λm(A)
≤ θ − γ

holds for some γ > 0, then the zero solution of the system (4.5.1) is asymp-

totically stable in whole on S.

Proof The assertion of Theorem 4.5.2 follows from Theorem 4.4.2.
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Theorem 4.5.1 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) is constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a matrix Q such that for the matrix G(S) the estimate

1

2
(G(S) + G

T

(S)) ≤ Q for all S ∈ S

is satisfied component-wise;

(3) the matrix Q is negative semi-definite or equal to zero, i.e. the in-

equality λm(Q) ≤ 0 holds.

Then the zero solution of the system (4.5.1) is stable in the whole on S.

If instead of the condition (3) the following condition is satisfied

(4) the matrix C in (4.5.12) is negative definite, i.e. λM (C) < 0,

then the zero solution of the system (4.5.1) is asymptotically stable in the

whole on S.

The proof of Theorem 4.5.1 is similar to that of Theorem 4.4.1.

Theorem 4.5.2 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) is constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a negative definite matrix Q− ∈ Rm×m such that

1

2
(G(S) + G

T

(S)) ≤ Q−
for all S ∈ S;

(3) λM (C
∗

) > 0;

(4) the functions τk(x), k = 1, 2, . . . , satisfy the inequality

τk+1(x) − τk(x) = θ, θ > 0.

If

(4.5.18) −
λM (B)

λM (Q−)
ln

λM (C
∗

)

λm(A)
≤ θ,

then the zero solution of the system (4.5.1) is stable in the whole on S.

If instead of (4.5.18) the condition

(4.5.19) −
λM (B)

λM (Q−)
ln

λM (C
∗

)

λm(A)
≤ θ − γ

holds for some γ > 0, then the zero solution of the system (4.5.1) is asymp-

totically stable in whole on S.

Proof The assertion of Theorem 4.5.2 follows from Theorem 4.4.2.150 4. IMPULSIVE LARGE-SCALE SYSTEMS

Theorem 4.5.3 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) is constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a matrix Q+ ∈ Rm×m for which

(a) G(S) ≤ Q+ for all S ∈ S

(b) λM (Q+) > 0;

(3) λM (C
∗

) > 0;

(4) the functions τk(x) satisfy for some θ1 > 0 and for all k = 1, 2, . . .

the inequality

τk(x) − τk−1(x) ≤ θ1.

If in addition the condition

(4.5.20)
λm(A)

λM (Q+)
ln

λm(A)

λM (C̄∗)
≥ θ1

is satisfied, then the zero solution of the system (4.5.1) is stable in the whole

on S.

If instead of (4.5.20) the inequality

λm(A)

λM (Q+)
ln

λm(A)

λM (C̄∗)
≥ θ1 + γ

holds for some γ > 0, then the zero solution of the system (4.5.1) is asymp-

totically stable in the whole on S.

Proof The assertion of this theorem follows from Theorem 4.4.3.

Theorem 4.5.4 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) is constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a positive semi-definite or equal to zero matrix Q such

that for the matrix G(S) the estimate

1

2

(
G(S) + GT(S)

)
≥ Q for all S ∈ S

is fulfilled element-wise;

(3) the matrix C is positive definite, i.e. λm(C) > 0.

Then the zero solution of the system (4.5.1) is unstable on S.

Proof The proof of the theorem is similar to that of Theorem 4.4.4.
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Theorem 4.5.3 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) is constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a matrix Q+ ∈ Rm×m for which

(a) G(S) ≤ Q+ for all S ∈ S

(b) λM (Q+) > 0;

(3) λM (C
∗

) > 0;

(4) the functions τk(x) satisfy for some θ1 > 0 and for all k = 1, 2, . . .

the inequality

τk(x) − τk−1(x) ≤ θ1.

If in addition the condition

(4.5.20)
λm(A)

λM (Q+)
ln

λm(A)

λM (C̄∗)
≥ θ1

is satisfied, then the zero solution of the system (4.5.1) is stable in the whole

on S.

If instead of (4.5.20) the inequality

λm(A)

λM (Q+)
ln

λm(A)

λM (C̄∗)
≥ θ1 + γ

holds for some γ > 0, then the zero solution of the system (4.5.1) is asymp-

totically stable in the whole on S.

Proof The assertion of this theorem follows from Theorem 4.4.3.

Theorem 4.5.4 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) is constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a positive semi-definite or equal to zero matrix Q such

that for the matrix G(S) the estimate

1

2

(
G(S) + GT(S)

)
≥ Q for all S ∈ S

is fulfilled element-wise;

(3) the matrix C is positive definite, i.e. λm(C) > 0.

Then the zero solution of the system (4.5.1) is unstable on S.

Proof The proof of the theorem is similar to that of Theorem 4.4.4.
4.5 LINEAR SYSTEMS 151

Theorem 4.5.5 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) is constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a matrix Q−
∈ Rm×m

such that

(a)
1

2
(G(S) + GT(S)) ≥ Q−

for all S ∈ S;

(b) λm(Q−) < 0;

(3) the matrix C∗
is positive definite, i.e. λm(C∗) > 0;

(4) for some constant θ1 > 0 the values τk(x), k = 1, 2, . . . , satisfy

the inequality

τk(x) − τk−1(x) ≤ θ1, for all k = 1, 2, . . . .

If for some γ > 0 the inequality

−
λm(A)

λM (Q−)
ln

λm(C̄∗)

λM (B)
≥ θ1 + γ

holds, then the zero solution of the system (4.5.1) is unstable on S.

Proof The validity of this theorem follows from Theorem 4.4.5.

Theorem 4.5.6 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) be constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a matrix Q+
∈ Rs×s such that

(a)
1

2

(
G(S) + GT(S)

)
≥ Q+

for all S ∈ S

(b) λm(Q+) > 0;

(3) λm(C∗) > 0 i.e. the matrix C∗
is positive definite;

(4) for some constant θ > 0 the values τk(x), k = 1, 2, . . . , satisfy the

correlation

τk+1(x) − τk(x) = θ > 0.

If for some γ > 0

λM (B)

λm(Q+)
ln

λM (B)

λm(C̄∗)
≤ θ − γ,

then the zero solution of the system (4.5.1) is unstable on S.

Proof The proof of this theorem is similar to the proof of Theorem 4.4.6.
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Theorem 4.5.5 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) is constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a matrix Q−
∈ Rm×m

such that

(a)
1

2
(G(S) + GT(S)) ≥ Q−

for all S ∈ S;

(b) λm(Q−) < 0;

(3) the matrix C∗
is positive definite, i.e. λm(C∗) > 0;

(4) for some constant θ1 > 0 the values τk(x), k = 1, 2, . . . , satisfy

the inequality

τk(x) − τk−1(x) ≤ θ1, for all k = 1, 2, . . . .

If for some γ > 0 the inequality

−
λm(A)

λM (Q−)
ln

λm(C̄∗)

λM (B)
≥ θ1 + γ

holds, then the zero solution of the system (4.5.1) is unstable on S.

Proof The validity of this theorem follows from Theorem 4.4.5.

Theorem 4.5.6 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) be constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a matrix Q+
∈ Rs×s such that

(a)
1

2

(
G(S) + GT(S)

)
≥ Q+

for all S ∈ S

(b) λm(Q+) > 0;

(3) λm(C∗) > 0 i.e. the matrix C∗
is positive definite;

(4) for some constant θ > 0 the values τk(x), k = 1, 2, . . . , satisfy the

correlation

τk+1(x) − τk(x) = θ > 0.

If for some γ > 0

λM (B)

λm(Q+)
ln

λM (B)

λm(C̄∗)
≤ θ − γ,

then the zero solution of the system (4.5.1) is unstable on S.

Proof The proof of this theorem is similar to the proof of Theorem 4.4.6.152 4. IMPULSIVE LARGE-SCALE SYSTEMS

Example 4.5.1 Let the system (4.5.1) be a fourth order system decom-

posed into two subsystems of the second order which are defined by the

matrices:

(4.5.21)

A1 =

(
−1 −1

1 −1

)

, A2 =

(
−2 1
−1 −2

)

, A12 = A21 = I2;

Jki = diag {−1,−1}, i = 1, 2; Jk12 = Jk21 = 10−1I2,

S = {S : S = diag {S1, S2}, Si = [Si1, Si2 ],

Sii = I2, Sij = sijI2, 0 ≤ sij ≤ 1, i �= j, i, j = 1, 2},

where I2 = diag {1, 1}.

For this example the elements (4.5.3) and (4.5.4) of the matrix-valued

function (4.5.2) are constructed in the form

vii(xi) = xT

i I2xi, i = 1, 2;

v12(x1, x2) = v21(x1, x2) = xT

1
10−1I2x2.

It is clear that they satisfy the estimates

�xi�
2
≤ vii(xi) for all xi ∈ Rni , i = 1, 2,

−0.1�x1� �x2� ≤ v12(x1, x2) ≤ 0.1�x1� �x2�.

For ηT = (1, 1) ∈ R2
+

the matrices

A =

(
1 −0.1

−0.1 1

)

, B =

(
1 0.1

0.1 1

)

are positive definite, i.e.

λm(A) = 0.9 and λM (B) = 1.1.

For this choice of the elements of the matrix-valued function U(x) we have

σ̄11(S) = − 2 + 0.2s21 ≤ −1.8;

σ̄22(S) = − 4 + 0.2s12 ≤ −3.8;

σ̄12(S) =
1

2

(
s12 + s21 +

√

(−0.2 + s21)2 + 0.01

+
√

(−0.1 + s12)2 + 0.01 + 0.432
)
≤ 2.1,

cii = − 0.968, i = 1, 2; c12 = 0.099.

4.5 LINEAR SYSTEMS 151

Theorem 4.5.5 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) is constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a matrix Q−
∈ Rm×m

such that

(a)
1

2
(G(S) + GT(S)) ≥ Q−

for all S ∈ S;

(b) λm(Q−) < 0;

(3) the matrix C∗
is positive definite, i.e. λm(C∗) > 0;

(4) for some constant θ1 > 0 the values τk(x), k = 1, 2, . . . , satisfy

the inequality

τk(x) − τk−1(x) ≤ θ1, for all k = 1, 2, . . . .

If for some γ > 0 the inequality

−
λm(A)

λM (Q−)
ln

λm(C̄∗)

λM (B)
≥ θ1 + γ

holds, then the zero solution of the system (4.5.1) is unstable on S.

Proof The validity of this theorem follows from Theorem 4.4.5.

Theorem 4.5.6 Let the system (4.5.1) be such that the matrix-valued

function (4.5.2) be constructed with the elements (4.5.3) and (4.5.4) and

(1) the matrix A in (4.5.6) is positive definite, i.e. λm(A) > 0;

(2) there exists a matrix Q+
∈ Rs×s such that

(a)
1

2

(
G(S) + GT(S)

)
≥ Q+

for all S ∈ S

(b) λm(Q+) > 0;

(3) λm(C∗) > 0 i.e. the matrix C∗
is positive definite;

(4) for some constant θ > 0 the values τk(x), k = 1, 2, . . . , satisfy the

correlation

τk+1(x) − τk(x) = θ > 0.

If for some γ > 0

λM (B)

λm(Q+)
ln

λM (B)

λm(C̄∗)
≤ θ − γ,

then the zero solution of the system (4.5.1) is unstable on S.

Proof The proof of this theorem is similar to the proof of Theorem 4.4.6.
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Example 4.5.1 Let the system (4.5.1) be a fourth order system decom-

posed into two subsystems of the second order which are defined by the

matrices:

(4.5.21)

A1 =

(
−1 −1

1 −1

)

, A2 =

(
−2 1
−1 −2

)

, A12 = A21 = I2;

Jki = diag {−1,−1}, i = 1, 2; Jk12 = Jk21 = 10−1I2,

S = {S : S = diag {S1, S2}, Si = [Si1, Si2 ],

Sii = I2, Sij = sijI2, 0 ≤ sij ≤ 1, i �= j, i, j = 1, 2},

where I2 = diag {1, 1}.

For this example the elements (4.5.3) and (4.5.4) of the matrix-valued

function (4.5.2) are constructed in the form

vii(xi) = xT

i I2xi, i = 1, 2;

v12(x1, x2) = v21(x1, x2) = xT

1
10−1I2x2.

It is clear that they satisfy the estimates

�xi�
2
≤ vii(xi) for all xi ∈ Rni , i = 1, 2,

−0.1�x1� �x2� ≤ v12(x1, x2) ≤ 0.1�x1� �x2�.

For ηT = (1, 1) ∈ R2
+

the matrices

A =

(
1 −0.1

−0.1 1

)

, B =

(
1 0.1

0.1 1

)

are positive definite, i.e.

λm(A) = 0.9 and λM (B) = 1.1.

For this choice of the elements of the matrix-valued function U(x) we have

σ̄11(S) = − 2 + 0.2s21 ≤ −1.8;

σ̄22(S) = − 4 + 0.2s12 ≤ −3.8;

σ̄12(S) =
1

2

(
s12 + s21 +

√

(−0.2 + s21)2 + 0.01

+
√

(−0.1 + s12)2 + 0.01 + 0.432
)
≤ 2.1,

cii = − 0.968, i = 1, 2; c12 = 0.099.4.6 GENERALIZATIONS AND APPLICATIONS 153

The matrices

G(S) ≤ Q =

(
−1.8 2.1

2.1 −3.8

)

and

C =

(
−0.968 0.099

0.099 −0.968

)

are negative definite which is confirmed by the estimate

λM (Q) = −0.474 < 0; λM (C) = −0.867 < 0.

Thus, all conditions of Theorem 4.5.1 are satisfied and the zero solution

of the system (4.5.1) with matrices (4.5.21) is structurally asymptotically

stable in the whole on S.

4.6 Certain Trends of Generalizations and Applications

This section deals with two problems. In the first problem we establish

conditions under which the stability of solutions with respect to two mea-

sures in the continuous system under nonclassical structural perturbations

implies the same type of stability of solutions to the impulsive system under

nonclassical structural perturbations. In the second problem we establish

sufficient stability conditions for the system of Lurie-Postnikov type in the

presence of impulsive and nonclassical structural perturbations.

4.6.1 Stability with respect to two measures Together with the

impulsive system

(4.6.1)

dx

dt
= Q(t, x, P, S), t �= τk(x),

∆x = Ik(x), t = τk(x),

x(t+
0
) = x0,

we shall consider a continuous system under nonclassical structural pertur-

bations

(4.6.2)

dy

dt
= Q̃(t, y, P, S),

y(t0) = x0.

Assume that for the systems (4.6.1) and (4.6.2) all conditions formulated

for these classes of systems in Sections 4.2 and 2.2 respectively are satisfied.

Further we shall need the comparison functions defined below (see, Lak-

shmikantham, et al. [1]).
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Definition 4.6.1 A function:

(a) η belongs to the class PC if η : R+→ R+ is continuous on (τk−1, τk],

and lim
t→τ

+

k

η(t) = η(τ+

k );

(b) ζ belongs to the class PCK if ζ : R+ → R+, ζ(·, u) ∈ PC for each

u ∈ R+, and ζ(t, ·) ∈ K for each t ∈ R+;

(c) ρ belongs to the class M if ρ : R+ × Rn → R+, ρ(·, x) ∈ PC for

each x ∈ Rn and ρ(t, ·) ∈ C(R+ × Rn, R+) for each t ∈ R+ and

inf
x∈Rn

ρ(t, x) = 0.

The definitions of (ρ0, ρ)-stability of the impulsive system (4.6.1) are

formulated in view of Definition 1.4.2 and the definition of stability with

respect to two measures from Section 2.6.1.

Let U : R+ × Rn → Rm×m, m > 1, be a matrix-valued function. We

consider the function

(4.6.3) v(t, y, η) = ηTU(t, y)η, η ∈ Rm
+ .

Further the functions of the class SL0 are applied (see Definition 1.4.3)

which were constructed in terms of matrix-valued functions U(t, x).

For the function (4.6.3) for (s, x) ∈ G0, G0 =
∞⋃

k=1

G0k, Gk0 = {(t, x) ∈

R+ × Rn : τk−1(x) < t < τk(x)}, t0 ≤ s ≤ t, we define the expression

(4.6.4) D+v(s, y(t, s, x), η) = ηTD+U(s, y(t, s, x))η.

Here

D+U(s, y(t, s, x))

= lim sup {[U(s + ϑ, y(t, s + ϑ, x + ϑQ(s, x, P, S)))

− U(s, y(t, s, x))] ϑ−1, ϑ → 0+
},

where y(t, s, x) is a solution of the continuous system (4.6.2) such that

y(s, s, x) = x. If Q̃(t, y, P, S) = 0 then

y(t, s, x) = x,

y(t, s + ϑ, x + ϑQ(s, x, P, S)) ≡ x + ϑQ(s, x, P, S),
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The matrices

G(S) ≤ Q =

(
−1.8 2.1

2.1 −3.8

)

and

C =

(
−0.968 0.099

0.099 −0.968

)

are negative definite which is confirmed by the estimate

λM (Q) = −0.474 < 0; λM (C) = −0.867 < 0.

Thus, all conditions of Theorem 4.5.1 are satisfied and the zero solution

of the system (4.5.1) with matrices (4.5.21) is structurally asymptotically

stable in the whole on S.

4.6 Certain Trends of Generalizations and Applications

This section deals with two problems. In the first problem we establish

conditions under which the stability of solutions with respect to two mea-

sures in the continuous system under nonclassical structural perturbations

implies the same type of stability of solutions to the impulsive system under

nonclassical structural perturbations. In the second problem we establish

sufficient stability conditions for the system of Lurie-Postnikov type in the

presence of impulsive and nonclassical structural perturbations.

4.6.1 Stability with respect to two measures Together with the

impulsive system

(4.6.1)

dx

dt
= Q(t, x, P, S), t �= τk(x),

∆x = Ik(x), t = τk(x),

x(t+
0
) = x0,

we shall consider a continuous system under nonclassical structural pertur-

bations

(4.6.2)

dy

dt
= Q̃(t, y, P, S),

y(t0) = x0.

Assume that for the systems (4.6.1) and (4.6.2) all conditions formulated

for these classes of systems in Sections 4.2 and 2.2 respectively are satisfied.

Further we shall need the comparison functions defined below (see, Lak-

shmikantham, et al. [1]).
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Definition 4.6.1 A function:

(a) η belongs to the class PC if η : R+→ R+ is continuous on (τk−1, τk],

and lim
t→τ

+

k

η(t) = η(τ+

k );

(b) ζ belongs to the class PCK if ζ : R+ → R+, ζ(·, u) ∈ PC for each

u ∈ R+, and ζ(t, ·) ∈ K for each t ∈ R+;

(c) ρ belongs to the class M if ρ : R+ × Rn → R+, ρ(·, x) ∈ PC for

each x ∈ Rn and ρ(t, ·) ∈ C(R+ × Rn, R+) for each t ∈ R+ and

inf
x∈Rn

ρ(t, x) = 0.

The definitions of (ρ0, ρ)-stability of the impulsive system (4.6.1) are

formulated in view of Definition 1.4.2 and the definition of stability with

respect to two measures from Section 2.6.1.

Let U : R+ × Rn → Rm×m, m > 1, be a matrix-valued function. We

consider the function

(4.6.3) v(t, y, η) = ηTU(t, y)η, η ∈ Rm
+ .

Further the functions of the class SL0 are applied (see Definition 1.4.3)

which were constructed in terms of matrix-valued functions U(t, x).

For the function (4.6.3) for (s, x) ∈ G0, G0 =
∞⋃

k=1

G0k, Gk0 = {(t, x) ∈

R+ × Rn : τk−1(x) < t < τk(x)}, t0 ≤ s ≤ t, we define the expression

(4.6.4) D+v(s, y(t, s, x), η) = ηTD+U(s, y(t, s, x))η.

Here

D+U(s, y(t, s, x))

= lim sup {[U(s + ϑ, y(t, s + ϑ, x + ϑQ(s, x, P, S)))

− U(s, y(t, s, x))] ϑ−1, ϑ → 0+
},

where y(t, s, x) is a solution of the continuous system (4.6.2) such that

y(s, s, x) = x. If Q̃(t, y, P, S) = 0 then

y(t, s, x) = x,

y(t, s + ϑ, x + ϑQ(s, x, P, S)) ≡ x + ϑQ(s, x, P, S),
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and the expression (4.6.4) becomes

(4.6.5) D+v(s, x, η) = ηTD+U(s, x)η,

where

D+U(s, x)

= lim sup {[U(s + ϑ, x + ϑQ(s, x, P, S)) − U(s, x)] ϑ−1, ϑ → 0+
}.

In the expressions (4.6.4) and (4.6.5) the total derivative of the function

(4.6.3) is computed element-wise.

Further we designate

S(ρ, σ) = {(t, x) ∈ (τk−1, τk ] × Rn : ρ(t, x) < σ, σ = const > 0},

k = 1, 2, . . . .

We give some sufficient conditions for preserving the (ρ0, ρ)-stability of

impulsive system if corresponding system without impulsive perturbation

is stable with respect to two measures.

Theorem 4.6.1 Assume that for systems (4.6.1) and (4.6.2) the fol-

lowing conditions hold:

(1) the measures ρ0, ρ∗, and ρ are in M , and function U(t, x, η) ∈ SL0;

(2) the measure ρ∗ is continuous with respect to the measure ρ and

ρ∗(t, x) is continuous and nondecreasing in t;

(3) the function v(t, x, η) is weakly ρ∗-decreasing and for some σ > 0

the function v(t, x, η) is ρ-positive definite on the set S(ρ, σ);

(4) there exist comparison functions ui of class K and m × m–matrix

B = B(P, S) such that for any (P, S) ∈ P × S the estimate

(4.6.6) D+v(s, y(t, s, x), η) ≤ uT(�y�)B(P, S)u(�y�)

holds for any t > t0, provided that s ∈ [t0, t) for all (s, x) ∈

S(ρ, σ) ∩ G0;

(5) there exists a constant σ0 ∈ (0, σ) such that ρ(τ+

k , x + Ik(x)) < σ

as soon as ρ(τk, x) < σ0;

(6) for all (τk, x) ∈ Sk ∩ S(ρ, σ)

v(τ+

k , y(t, τ+

k , x + Ik(x)), η) ≤ v(τk, y(t, τk, x), η), k = 1, 2, . . . ;

(7) there exists a constant m×m–matrix B such that B(P, S) ≤ B for

all (P, S) ∈ P × S and the matrix B∗ =
1

2
(B + B

T

) is negative

semi-definite.
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Then (ρ0, ρ
∗)–stability (asymptotic (ρ0, ρ

∗)–stability) of system (4.6.2)

on P ×S implies (ρ0, ρ)–stability (asymptotic (ρ0, ρ)–stability) of the im-

pulsive system (4.6.1) on P × S.

Proof The condition (3) of Theorem 4.6.1 implies that there exist the

function a ∈ K such that

(4.6.7) a(ρ(t, x)) ≤ v(t, x, η) for all (t, x) ∈ S(ρ, σ)

and the function b ∈ CK such that

(4.6.8) v(t, x, η) ≤ b(t, ρ∗(t, x))

for all (t, x) ∈ S(ρ∗, δ0) for some value δ0 > 0.

Further by condition (2) of Theorem 4.6.1 there exist a constant δ1 > 0

and a comparison function ψ of class CK such that

(4.6.9) ρ(t, x) ≤ ψ(t, ρ∗(t, x)) for all (t, x) ∈ S(ρ∗, δ1),

where the constant δ1 satisfies the condition

(4.6.10) ψ(t0, δ1) < σ.

Let ε ∈ (0, σ) and t0 ∈ R+. For the given function b of class CK we

take a constant ∆ = ∆(t0, ε) < min (σ, δ0, δ1) so that the condition u < ∆

yields the estimate

(4.6.11) b(t0, u) < a(ε).

Further we assume that the system (4.6.2) is (ρ0, ρ
∗) – stable on P × S.

Moreover, given ∆, there exists δ = δ(t0, ∆) > 0 (δ < ∆) such that the

condition ρ0(t0, x0) < δ implies

(4.6.12) ρ∗(t, y(t; t0, x0)) < ∆, t ≥ t0,

for all (P, S) ∈ P ×S, where y(t; t0, x0) is a solution of system (4.6.2) for

any values of (P, S) ∈ P × S.

Let x(t) = x(t; t0, x0) be a solution of the impulsive system (4.6.1) with

the initial conditions (t0, x0) such that ρ0(t0, x0) < δ.4.6 GENERALIZATIONS AND APPLICATIONS 157

The conditions (4) and (7) of Theorem 4.6.1 imply

(4.6.13) D+v(s, y(t; s, x), η) ≤ λM (B∗)uTu ≤ 0

for any t > t0, provided that s ∈ [t0, t) and (s, x) ∈ S(ρ, σ) ∩ G0. Here

λM (·) is the maximal eigenvalue of the matrix B∗, λM (B∗) ≤ 0, and

uT = (u
1/2

1
(�y�), . . . , u1/2

m (�y�)).

Then the conditions (4.6.7) – (4.6.13) yield

(4.6.14) a(ρ(t0, x0)) ≤ v(t0, x0, η) ≤ b(t0, ρ
∗(t0, x0)) < a(ε).

Hence we find that ρ(t0, x0) < ε.

Let us show that ρ(t, x(t)) < ε for all (P, S) ∈ P ×S and for all t ≥ t0.

If this is not true, then there exists a value t∗> t0 such that ρ(t∗, x(t∗)) ≥ ε

for at least one pair (P, S) ∈ P ×S. In the case when t∗ < τ1(x) the proof

of the assertion made is not associated with the presence of the impulsive

perturbations of the system (4.6.1) and is carried out in a standard manner

(see, e.g. Lakshmikantham, Leela, et al. [1]). Therefore, this case is omitted

here. Assume that t∗ ∈ (τk, τk+1] for some k, and moreover, for at least

one pair (P, S) ∈ P × S

(4.6.15) ρ(t∗, x(t∗)) ≥ ε and ρ(t, x(t)) < ε

if t ∈ [τ0, τk].

According to the choice of ε ∈ (0, σ) and by estimates (4.6.15) we have

ρ(τk, x(τk)) < ε < σ.

The condition (5) of Theorem 4.6.1 implies

(4.6.16) ρ(τ+

k , x(τ+

k )) = ρ(τ+

k , xk + Ik(xk)) < δ,

where xk = x(τk). Therefore, there exists a value t̃ ∈ (τk, t∗] such that

(4.6.17) ε ≤ ρ( t̃, x( t̃ )) < σ, ρ(t, x(t)) < σ

for all t ∈ [t0, t̃ ) and for all (P, S) ∈ P × S.
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The conditions (4) and (7) of Theorem 4.6.1 imply

(4.6.13) D+v(s, y(t; s, x), η) ≤ λM (B∗)uTu ≤ 0

for any t > t0, provided that s ∈ [t0, t) and (s, x) ∈ S(ρ, σ) ∩ G0. Here

λM (·) is the maximal eigenvalue of the matrix B∗, λM (B∗) ≤ 0, and

uT = (u
1/2

1
(�y�), . . . , u1/2

m (�y�)).

Then the conditions (4.6.7) – (4.6.13) yield

(4.6.14) a(ρ(t0, x0)) ≤ v(t0, x0, η) ≤ b(t0, ρ
∗(t0, x0)) < a(ε).

Hence we find that ρ(t0, x0) < ε.

Let us show that ρ(t, x(t)) < ε for all (P, S) ∈ P ×S and for all t ≥ t0.

If this is not true, then there exists a value t∗> t0 such that ρ(t∗, x(t∗)) ≥ ε

for at least one pair (P, S) ∈ P ×S. In the case when t∗ < τ1(x) the proof

of the assertion made is not associated with the presence of the impulsive

perturbations of the system (4.6.1) and is carried out in a standard manner

(see, e.g. Lakshmikantham, Leela, et al. [1]). Therefore, this case is omitted

here. Assume that t∗ ∈ (τk, τk+1] for some k, and moreover, for at least

one pair (P, S) ∈ P × S

(4.6.15) ρ(t∗, x(t∗)) ≥ ε and ρ(t, x(t)) < ε

if t ∈ [τ0, τk].

According to the choice of ε ∈ (0, σ) and by estimates (4.6.15) we have

ρ(τk, x(τk)) < ε < σ.

The condition (5) of Theorem 4.6.1 implies

(4.6.16) ρ(τ+

k , x(τ+

k )) = ρ(τ+

k , xk + Ik(xk)) < δ,

where xk = x(τk). Therefore, there exists a value t̃ ∈ (τk, t∗] such that

(4.6.17) ε ≤ ρ( t̃, x( t̃ )) < σ, ρ(t, x(t)) < σ

for all t ∈ [t0, t̃ ) and for all (P, S) ∈ P × S.
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Designate m(s) = v(s, y( t̃; s, x(s)), η) for s ∈ [t0, t̃ ] where y(t; s, x(s))

is any solution of system 4.6.2) for all (P, S) ∈ P × S. Inequality (4.6.13)

implies that D+m(s) ≤ 0 for t0 ≤ s < t̃, for all (s, x(s)) ∈ G0 and for all

(P, S) ∈ P × S. Hence we find that m(s) ≤ m(t+
0
), t0 ≤ s < t1, where

t1 = τ1(x(t1)). If (s, x(s)) ∈ G01 and s → t1, then m(t1) ≤ m(t+
0
). Note

that m(t+
1
) = v(t+

1
, y( t̃; t+

1
, x(t1) + I1(x(t1))), η). The condition (6) of

Theorem 4.6.1 implies that m(t+
1
) ≤ m(t1) ≤ m(t+

0
).

Thus, for the values s ∈ (τk, t̃ ) we get the estimate m(s) ≤ m(τ+

k ) ≤

m(t+
0
). If (s, x(s)) ∈ G0,k+1 and s → t̃+, then m( t̃ ) ≤ m(t+

0
). The fact

that the measure ρ∗ is nondecreasing in t and the conditions (4.6.11) and

(4.6.12) yield

(4.6.18)

v( t̃, x( t̃ ),η) = v( t̃, y( t̃; t, x( t̃ )), η) = lim
s→t̃

v(s, y( t̃; s, x(s)), η)

≤ v(t+
0
, y( t̃; t0, x0), η) ≤ b(t0, ρ

∗(t0, y( t̃; t0, x0)))

≤ b( t̃, ρ∗( t̃, y( t̃; t0, x0))) < a(ε).

On the other hand, by conditions (4.6.7) and (4.6.17) we have the in-

equalities

v( t̃, x( t̃), η) ≥ a(ρ( t̃, x( t̃ ))) = a(ε),

which contradict the inequality (4.6.18). Therefore the assertion is true

that ρ(t, x(t)) < ε for all (P, S) ∈ P × S and for all t ≥ t0.

This proves (ρ0, ρ)–stability of solutions of system (4.6.1) on P × S.

Now we shall prove that under conditions of Theorem 4.6.1 the solutions

of system (4.6.1) possess the property of (ρ0, ρ)–attraction on P × S. As-

sume that system (4.6.2) is asymptotically (ρ0, ρ
∗)–stable on P ×S. Then

for any t0 ∈ R+ there exists δ∗ = δ∗(t0) > 0 such that the condition

ρ0(t0, x0) < δ∗ implies lim
t→∞

ρ∗(t, y(t; t0, x0)) = 0 for all (P, S) ∈ P × S.

The fact that system (4.6.1) is (ρ0, ρ)–stable implies that for any t0 ∈

R+ and σ0 ∈ (0, σ) there exists δ∗
0

= δ(t0, σ0) > 0, δ∗
0

< δ∗, such that the

condition ρ0(t0, x0) < δ∗
0

implies that ρ(t, x(t)) < σ0 for all t ≥ t0, where

x(t) is a solution of system (4.6.1) for (P, S) ∈ P × S.

As noted above, the conditions (4) and (7) of Theorem 4.6.1 yield

D+v(t, y(t; s, x(s)), η) ≤ 0, s ∈ [t0, t),

for all (s, x(s)) ∈ G0 and for all (P, S) ∈ P × S.4.6 GENERALIZATIONS AND APPLICATIONS 159

The arguments similar to the above ones lead to the estimate

0 ≤ v(t, x(t), η) ≤ v(t0, y(t; t0, x0), η),

which is true for all t ≥ t0.

For the sufficiently large t ≥ t0

v(t0, y(t; t0, x0), η) ≤ b(t0, ρ
∗(t0, y(t; t0, x0))) ≤ b(t0, ρ

∗(t, y(t; t0, x0))).

Hence it follows that

lim
t→∞

v(t, x(t), η) = 0

for all (P, S) ∈ P × S. Since the function v is ρ–positive definite,

lim
t→∞

ρ(t, x(t)) = 0 for all (P, S) ∈ P × S.

This proves the asymptotic (ρ0, ρ)–stability of solutions to system (4.6.1)

for all (P, S) ∈ P × S.

Actually, when the function (4.6.3) constructed in terms of the matrix-

valued function U(t, y) is applied, the condition (6) of Theorem 4.6.1 be-

comes

(6∗) v(τ+

k , y(t; τ+

k , x + Ik(x)), η) − v(τk, y(t; τk, x), η)

≤ −ψT(vk(τk, y(t; τk, x), η))Ckψ(vk(τk, y(t; τk, x), η)),

where λk(Ck) ≥ 0,
∞∑

k=1

λk(Ck) = ∞, ψ ∈ C(R+, Rm
+ ), ψ(0) = 0, ψ(s) > 0

for s > 0, λk(Ck) are the maximal eigenvalues of some matrices Ck, k =

1, 2, . . . . Then Theorem 4.6.1 is developed as follows.

Theorem 4.6.2 Assume that conditions (1) – (5) and (7) of Theorem

4.6.1 and condition (6*) are satisfied. Then (ρ0, ρ
∗)–stability of system

(4.6.2) implies asymptotic (ρ0, ρ)–stability of system (4.6.1).

The proof of this theorem is similar to that of Theorem 4.6.1.

Note, that for the impulsive system under nonclassical structural pertur-

bations it is reasonable to consider the set of measures discussed in Section

2.6.1.
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The arguments similar to the above ones lead to the estimate

0 ≤ v(t, x(t), η) ≤ v(t0, y(t; t0, x0), η),

which is true for all t ≥ t0.

For the sufficiently large t ≥ t0

v(t0, y(t; t0, x0), η) ≤ b(t0, ρ
∗(t0, y(t; t0, x0))) ≤ b(t0, ρ

∗(t, y(t; t0, x0))).

Hence it follows that

lim
t→∞

v(t, x(t), η) = 0

for all (P, S) ∈ P × S. Since the function v is ρ–positive definite,

lim
t→∞

ρ(t, x(t)) = 0 for all (P, S) ∈ P × S.

This proves the asymptotic (ρ0, ρ)–stability of solutions to system (4.6.1)

for all (P, S) ∈ P × S.

Actually, when the function (4.6.3) constructed in terms of the matrix-

valued function U(t, y) is applied, the condition (6) of Theorem 4.6.1 be-

comes

(6∗) v(τ+

k , y(t; τ+

k , x + Ik(x)), η) − v(τk, y(t; τk, x), η)

≤ −ψT(vk(τk, y(t; τk, x), η))Ckψ(vk(τk, y(t; τk, x), η)),

where λk(Ck) ≥ 0,
∞∑

k=1

λk(Ck) = ∞, ψ ∈ C(R+, Rm
+ ), ψ(0) = 0, ψ(s) > 0

for s > 0, λk(Ck) are the maximal eigenvalues of some matrices Ck, k =

1, 2, . . . . Then Theorem 4.6.1 is developed as follows.

Theorem 4.6.2 Assume that conditions (1) – (5) and (7) of Theorem

4.6.1 and condition (6*) are satisfied. Then (ρ0, ρ
∗)–stability of system

(4.6.2) implies asymptotic (ρ0, ρ)–stability of system (4.6.1).

The proof of this theorem is similar to that of Theorem 4.6.1.

Note, that for the impulsive system under nonclassical structural pertur-

bations it is reasonable to consider the set of measures discussed in Section

2.6.1.160 4. IMPULSIVE LARGE-SCALE SYSTEMS

4.6.2 Stability of Lur’e-Postnikov impulsive systems We con-

sider the large scale impulsive system

(4.6.20)

dxi

dt
=

m∑

ℓ=1

S
(1)

iℓ Aiℓxℓ +
m∑

ℓ=1

S
(2)

iℓ qiℓfiℓ(σiℓ),

σiℓ = cT

iℓx, i = 1, 2, . . . , m, t �= τk(x), k = 1, 2, . . .

∆xi =

m∑

ℓ=1

Jkiℓxℓ +

m∑

ℓ=1

biℓgiℓ(σ
∗

iℓ),

σ∗

iℓ = cT

iℓx(τk(x)), i = 1, 2, . . . , m, t = τk(x), k = 1, 2, . . .

where

σ−1

iℓ fiℓ(σiℓ) ∈ [0, Kiℓ ] ⊆ R+,

(σ∗

iℓ)
−1giℓ(σ

∗

iℓ) ∈ [0, K̃iℓ ] ⊆ R+,

Aiℓ, Jkiℓ are constant matrices, xi ∈ Rni, n1 + n2 + . . . + nm = n, giℓ, biℓ

are constant vectors and Kiℓ, K̃iℓ are positive constants, all of the ap-

propriate dimensions. The matrices S
(1)

iℓ , S
(2)

iℓ and the structural set S

are described in Section 1.5. The independent subsystems corresponding

to system (4.2.4) are obtained by replacing x in (4.2.4) with xi, where

xi = (0, . . . , 0, xT

i , 0, . . . , 0)T∈ Rni :

(4.6.21)

dxi

dt
= Aiixi + qiifii(σ̃ii), t �= τk(xi)

∆xi = Jkiixi + biigii(σ̃
∗

ii), t = τk(xi),

where

σ̃ii = cT

iixi, σ̃∗

ii = c̃T

ii xi(τk(xi)), i = 1, 2, . . . , m.

In order to simplify system (4.6.20) we introduce the designations

fi(x
i) = Aiixi + qiifii(σ̃ii), σ̃ii = cT

iixi,

Fi(x, S) =
m∑

ℓ=1
ℓ �=i

S
(1)

iℓ Aiℓxℓ +
m∑

ℓ=1
ℓ �=i

S
(2)

iℓ qiℓfiℓ(σiℓ) + S
(2)

ii qii[fii(σii) − fii(σ̃ii)],

σiℓ = cT

iℓxi,
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4.6.2 Stability of Lur’e-Postnikov impulsive systems We con-

sider the large scale impulsive system

(4.6.20)

dxi

dt
=

m∑

ℓ=1

S
(1)

iℓ Aiℓxℓ +
m∑

ℓ=1

S
(2)

iℓ qiℓfiℓ(σiℓ),

σiℓ = cT

iℓx, i = 1, 2, . . . , m, t �= τk(x), k = 1, 2, . . .

∆xi =

m∑

ℓ=1

Jkiℓxℓ +

m∑

ℓ=1

biℓgiℓ(σ
∗

iℓ),

σ∗

iℓ = cT

iℓx(τk(x)), i = 1, 2, . . . , m, t = τk(x), k = 1, 2, . . .

where

σ−1

iℓ fiℓ(σiℓ) ∈ [0, Kiℓ ] ⊆ R+,

(σ∗

iℓ)
−1giℓ(σ

∗

iℓ) ∈ [0, K̃iℓ ] ⊆ R+,

Aiℓ, Jkiℓ are constant matrices, xi ∈ Rni, n1 + n2 + . . . + nm = n, giℓ, biℓ

are constant vectors and Kiℓ, K̃iℓ are positive constants, all of the ap-

propriate dimensions. The matrices S
(1)

iℓ , S
(2)

iℓ and the structural set S

are described in Section 1.5. The independent subsystems corresponding

to system (4.2.4) are obtained by replacing x in (4.2.4) with xi, where

xi = (0, . . . , 0, xT

i , 0, . . . , 0)T∈ Rni :

(4.6.21)

dxi

dt
= Aiixi + qiifii(σ̃ii), t �= τk(xi)

∆xi = Jkiixi + biigii(σ̃
∗

ii), t = τk(xi),

where

σ̃ii = cT

iixi, σ̃∗

ii = c̃T

ii xi(τk(xi)), i = 1, 2, . . . , m.

In order to simplify system (4.6.20) we introduce the designations

fi(x
i) = Aiixi + qiifii(σ̃ii), σ̃ii = cT

iixi,

Fi(x, S) =
m∑

ℓ=1
ℓ �=i

S
(1)

iℓ Aiℓxℓ +
m∑

ℓ=1
ℓ �=i

S
(2)

iℓ qiℓfiℓ(σiℓ) + S
(2)

ii qii[fii(σii) − fii(σ̃ii)],

σiℓ = cT

iℓxi,
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gi(x
i) = Jkiixi + biigii(σ̃

∗

ii),

Gi(x) =

m∑

ℓ=1
ℓ �=i

Jkiℓxℓ +

m∑

ℓ=1
ℓ �=i

biℓgiℓ(σ
∗

iℓ) + bii[gii(σ̃
∗

ii) − gii(σ̃
∗

ii)],

Then system (4.2.4) becomes

(4.6.22)

dxi

dt
= fi(x

i) + Fi(x, S), t �= τk(x),

S ∈ S, i = 1, 2, . . . , m, k = 1, 2, . . . ,

∆xi = gi(x
i) + Gi(x), t = τk(x),

k = 1, 2, . . . , i = 1, 2, . . . , m.

Together with system (4.6.21) and subsystems (4.6.22) we consider the

matrix-valued function

(4.6.23) U(x) = [uij(xi, xj)], uij = uji, i, j = 1, 2, . . . , m,

the elements of which are determined as

(4.6.24) uij(xi, xj) = xT

i Pijxj , i, j = 1, 2, . . . , m,

where xi ∈ Rni, xj ∈ Rnj, Pii are symmetric, positive definite matrices,

and Pij are constant matrices for all i, j = 1, 2, . . . , m.

It is known that the functions (4.2.4) satisfy the estimates

(4.6.25)

(a) λm(Pii)�xi�
2
≤ uii(xi) ≤ λM (Pii)�xi�

2,

for all xi ∈ Rni, i = 1, 2, . . . , m;

(b) − λ
1/2

M (PijP
T

ij)�xi� �xj� ≤ uij(xi, xj) ≤ λ
1/2

M (PijP
T

ij)�xi� �xj�

for all xi ∈ Rni, xj ∈ Rnj, for all (i �= j) = 1, 2, . . .m,

where λm(Pii) are the minimal and λM (Pii) are the maximal eigenvalues

of the matrices Pii, and λ
1/2

M (PijP
T

ij) is the norm of the matrices Pij .

Using the matrix-valued function (4.6.23) and the constant vector η =

(1, 1, . . . , 1) ∈ Rm
+ we construct the function

(4.6.26) v(x, η) = ηTU(x)η

and consider its total derivative

(4.6.27) Dv(x, η) = ηTDU(x)η,

where

DU(x) = [Duij(xi, xj)], i, j = 1, 2, . . . , m,

along the solutions of system (4.2.4).
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gi(x
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∗

ii),
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Jkiℓxℓ +

m∑

ℓ=1
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biℓgiℓ(σ
∗

iℓ) + bii[gii(σ̃
∗

ii) − gii(σ̃
∗

ii)],

Then system (4.2.4) becomes

(4.6.22)

dxi

dt
= fi(x

i) + Fi(x, S), t �= τk(x),

S ∈ S, i = 1, 2, . . . , m, k = 1, 2, . . . ,

∆xi = gi(x
i) + Gi(x), t = τk(x),

k = 1, 2, . . . , i = 1, 2, . . . , m.

Together with system (4.6.21) and subsystems (4.6.22) we consider the

matrix-valued function

(4.6.23) U(x) = [uij(xi, xj)], uij = uji, i, j = 1, 2, . . . , m,

the elements of which are determined as

(4.6.24) uij(xi, xj) = xT

i Pijxj , i, j = 1, 2, . . . , m,

where xi ∈ Rni, xj ∈ Rnj, Pii are symmetric, positive definite matrices,

and Pij are constant matrices for all i, j = 1, 2, . . . , m.

It is known that the functions (4.2.4) satisfy the estimates

(4.6.25)

(a) λm(Pii)�xi�
2
≤ uii(xi) ≤ λM (Pii)�xi�

2,

for all xi ∈ Rni, i = 1, 2, . . . , m;
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T
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1/2

M (PijP
T
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where λm(Pii) are the minimal and λM (Pii) are the maximal eigenvalues

of the matrices Pii, and λ
1/2

M (PijP
T

ij) is the norm of the matrices Pij .

Using the matrix-valued function (4.6.23) and the constant vector η =

(1, 1, . . . , 1) ∈ Rm
+ we construct the function

(4.6.26) v(x, η) = ηTU(x)η

and consider its total derivative

(4.6.27) Dv(x, η) = ηTDU(x)η,

where

DU(x) = [Duij(xi, xj)], i, j = 1, 2, . . . , m,

along the solutions of system (4.2.4).162 4. IMPULSIVE LARGE-SCALE SYSTEMS

Proposition 4.6.1 If the estimates (4.6.25) are satisfied, then for the

function (4.6.26) the two-sided inequality

(4.6.28) uTAu ≤ v(x, η) ≤ uTBu for all x ∈ Rn

holds true, where

uT = (�x1�, �x2�, . . . , �xm�),

A = [αij ], B = αij , i, j = 1, 2, . . . , m,

αii = λm(Pii), αii = λM (Pii)

αij = αji = −αij = −αji = −λ
1/2

M (PijP
T

ij).

Proof The proof of Proposition 4.6.1 follows from Djordjević [1] (see

also Martynyuk and Stavroulakis [1]).

Corollary 4.6.5 If inequality (4.6.28) is satisfied, then

(4.6.29)
λm(A)�u�2

≤ v(x, η) ≤ λM (B)�u�2

for all x ∈ Rn, η = (1, 1, . . . , 1) ∈ Rm
+ ,

and for

(4.6.30)
λm(A) > 0, λM (B) > 0,

λ−1

M (B)v(x, η) ≤ �u�2
≤ λ−1

m (A)v(x, η).

Proposition 4.6.2 If for system (4.6.20) the matrix-valued function

(4.6.23) is constructed with the elements (4.6.24), then for the derivatives of

function (4.6.26) along the solutions of (4.6.20) for t �= τk(x), k = 1, 2, . . . ,

the estimates

(a) (Dxiuii)
Tfi(x

i) ≤ ρ
(1)

i �xi�
2

for all xi ∈ Rni, i = 1, 2, . . . , m;

(b)

m∑

i=1

(Dxiuii)
TFi(x, S) + 2

m∑

i=1

m∑

j=2

j>i

{

(Dxiuij)
T

× (fi(x
i) + Fi(x, S)) + (Dxjuij)

T(fi(x
i) + Fj(x, S))

}

≤

m∑

i=1

ρ
(2)

i (S)�xi�
2 + 2

m∑

i=1

m∑

j=2

j>i

ρij(S)�xi� �xj�
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Proposition 4.6.1 If the estimates (4.6.25) are satisfied, then for the

function (4.6.26) the two-sided inequality

(4.6.28) uTAu ≤ v(x, η) ≤ uTBu for all x ∈ Rn

holds true, where

uT = (�x1�, �x2�, . . . , �xm�),

A = [αij ], B = αij , i, j = 1, 2, . . . , m,

αii = λm(Pii), αii = λM (Pii)

αij = αji = −αij = −αji = −λ
1/2

M (PijP
T

ij).

Proof The proof of Proposition 4.6.1 follows from Djordjević [1] (see

also Martynyuk and Stavroulakis [1]).

Corollary 4.6.5 If inequality (4.6.28) is satisfied, then

(4.6.29)
λm(A)�u�2

≤ v(x, η) ≤ λM (B)�u�2

for all x ∈ Rn, η = (1, 1, . . . , 1) ∈ Rm
+ ,

and for

(4.6.30)
λm(A) > 0, λM (B) > 0,

λ−1

M (B)v(x, η) ≤ �u�2
≤ λ−1

m (A)v(x, η).

Proposition 4.6.2 If for system (4.6.20) the matrix-valued function

(4.6.23) is constructed with the elements (4.6.24), then for the derivatives of

function (4.6.26) along the solutions of (4.6.20) for t �= τk(x), k = 1, 2, . . . ,

the estimates

(a) (Dxiuii)
Tfi(x

i) ≤ ρ
(1)

i �xi�
2

for all xi ∈ Rni, i = 1, 2, . . . , m;

(b)

m∑

i=1

(Dxiuii)
TFi(x, S) + 2

m∑

i=1

m∑

j=2

j>i

{

(Dxiuij)
T

× (fi(x
i) + Fi(x, S)) + (Dxjuij)

T(fi(x
i) + Fj(x, S))

}

≤

m∑

i=1

ρ
(2)

i (S)�xi�
2 + 2

m∑

i=1

m∑

j=2

j>i

ρij(S)�xi� �xj�
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for all (xi, xj) ∈ Rni × Rnj, for all S ∈ S,

are satisfied, where ρ
(1)

i and ρ
(2)

i (S), i = 1, 2, . . . , m, are maximal eigen-

values of the matrices

PiiAii + AT

iiPii + Piiqiik
∗

ii(c
i
ii)

T+ (qiik
∗

ii(c
i
ii)

T)TPii;

i−1∑

ℓ=1

{[(

S
(1)

ℓi Aℓi

)T

+
(

S
(2)

ℓi qℓik
∗

ℓi(c
i
ℓi)

T

)T
]

Pℓi

+ PT

ℓi

[

S
(1)

ℓi Aℓi + S
(2)

ℓi qℓik
∗

ℓi(c
i
ℓi)

T

]}

+

m∑

ℓ=i+1

{

Piℓ

[

S
(1)

ℓi Aℓi + S
(2)

ℓi qℓik
∗

ℓi(c
i
ℓi)

T

]

+

[(

S
(1)

ℓi Aℓi

)T

+
(

S
(2)

ℓi qℓik
∗

ℓi(c
i
ℓi)

T

)T
]

PT

iℓ

}

+

m∑

j=2

j>i

{

PijS
(2)

ji qjik
∗∗

ji (ci
ji)

T+
(

S
(2)

ji qjik
∗∗

ji (ci
ji)

T

)T

Pij

}

respectively, ρij(S), i < j, i = 1, 2, . . . , m, j = 2, . . . , m, are the norms

of the matrices

j−1
∑

ℓ=1

[(

S
(1)

ℓi Aℓi

)T

+
(

S
(2)

ℓi qℓik
∗

ℓi(c
i
ℓi)

T

)T
]

Pℓj

+

m∑

ℓ=j+1

[(

S
(1)

ℓi Aℓi

)T

+
(

S
(2)

ℓi qℓik
∗

ℓi(c
i
ℓi)

T

)T
]

Pℓj

+

j−1∑

ℓ=1

PT

ℓi

[

S
(1)

ℓj Aℓj + S
(2)

ℓj qℓjk
∗

ℓj(c
j
ℓj)

T

]

+

m∑

ℓ=i+1

Piℓ

[

S
(1)

ℓj Aℓj + S
(2)

ℓj qℓjk
∗

ℓj(c
j
ℓj)

T

]

+
1

2

{

Pii

(

S
(1)

ij Aij

)

+
(

S
(1)

ij Aij

)T

Pii + Pii

(

S
(2)

ij qijk
∗

ij(c
j
ij)

T

)

+
(

S
(2)

ij qijk
∗

ij(c
j
ij)

T

)

Pii + Pii

(

qiik
∗

ii(c
j
ii)

T

)

+
(

qiik
∗

ij(c
j
ii)

T

)T

Pii

}
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+
1

2

{

Pji

(

S
(1)

ji Aji

)

+
(

S
(1)

ji Aji

)T

Pji + Pjj

(

S
(2)

ji qjik
∗

ji(c
i
ji)

T

)

+
(

S
(2)

ji qjik
∗

ji(c
i
ji)

T

)T

Pjj + Pjj

(
qjjk

∗

jj(c
i
jj)

T
)

+
(
qjjk

∗

jj(c
i
jj)

T
)T

Pjj

}

, i = 1, 2, . . . , m, j = 1, 2, . . . , m,

respectively.

Here

k∗

ij =

{

kij for σij

(

S
(2)

ij qij

)T

Pijxj > 0, i, j = 1, 2, . . . , m,

0 in other cases;

k∗∗

ij =

{
kij for σiiq

T
iiPiixi > 0, i = 1, 2, . . . , m,

−kij for σiiq
T

iiPiixi < 0, i = 1, 2, . . . , m.

The proof is carried out in the same way as that of Proposition 4.6.1.

Proposition 4.6.3 If all conditions of Proposition 4.6.2 are satisfied,

then for (4.6.27)

(4.6.31) Dv(x, η) ≤ uTΘu, for all (x, S) ∈ Rn
× S

where

Θ = [θij ], i, j = 1, 2, . . . , m, θii = ρ
(1)

i + ρ
(2)

i (S∗),

θij = θji = ρij(S
∗), S∗

∈ S, i �= j, i, j = 1, 2, . . . , m,

is the constant matrix such that

ρ
(2)

i (S) ≤ ρ
(2)

i (S∗)

and

ρij(S) < ρij(S
∗).

The proof of this Proposition is similar to that of Lemma 3 in Martynyuk

and Stavroulakis [ 1 ] (see also Miladzhanov [3]).

Corollary 4.6.6 If inequalities (4.6.29) and (4.6.30) are satisfied, then

for (4.6.31)

(4.6.32) Dv(x, η) ≤

{
λm(Θ)λ−1

M (B)v(x, η) for λM (Θ) < 0,

λm(Θ)λ−1
m (A)v(x, η) for λM (Θ) > 0.

The proof follows from Proposition 4.6.5 and Corollary 4.6.5.
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+
1

2

{

Pji

(

S
(1)

ji Aji

)

+
(

S
(1)

ji Aji

)T

Pji + Pjj

(

S
(2)

ji qjik
∗

ji(c
i
ji)

T

)

+
(

S
(2)

ji qjik
∗

ji(c
i
ji)

T

)T

Pjj + Pjj

(
qjjk

∗

jj(c
i
jj)

T
)

+
(
qjjk

∗

jj(c
i
jj)

T
)T

Pjj

}

, i = 1, 2, . . . , m, j = 1, 2, . . . , m,

respectively.

Here

k∗

ij =

{

kij for σij

(

S
(2)

ij qij

)T

Pijxj > 0, i, j = 1, 2, . . . , m,

0 in other cases;

k∗∗

ij =

{
kij for σiiq

T
iiPiixi > 0, i = 1, 2, . . . , m,

−kij for σiiq
T

iiPiixi < 0, i = 1, 2, . . . , m.

The proof is carried out in the same way as that of Proposition 4.6.1.

Proposition 4.6.3 If all conditions of Proposition 4.6.2 are satisfied,

then for (4.6.27)

(4.6.31) Dv(x, η) ≤ uTΘu, for all (x, S) ∈ Rn
× S

where

Θ = [θij ], i, j = 1, 2, . . . , m, θii = ρ
(1)

i + ρ
(2)

i (S∗),

θij = θji = ρij(S
∗), S∗

∈ S, i �= j, i, j = 1, 2, . . . , m,

is the constant matrix such that

ρ
(2)

i (S) ≤ ρ
(2)

i (S∗)

and

ρij(S) < ρij(S
∗).

The proof of this Proposition is similar to that of Lemma 3 in Martynyuk

and Stavroulakis [ 1 ] (see also Miladzhanov [3]).

Corollary 4.6.6 If inequalities (4.6.29) and (4.6.30) are satisfied, then

for (4.6.31)

(4.6.32) Dv(x, η) ≤

{
λm(Θ)λ−1

M (B)v(x, η) for λM (Θ) < 0,

λm(Θ)λ−1
m (A)v(x, η) for λM (Θ) > 0.

The proof follows from Proposition 4.6.5 and Corollary 4.6.5.
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Proposition 4.6.4 For the function (4.6.26) for t = τk(x), k = 1, 2,

. . . , due to system (4.6.20) the estimates

v(x + J∗

k (x), η) − v(x, η) ≤ uT

kΛuk,(4.6.33)

v(x + J∗

k (x), η) ≤ uT

kΛ∗uk,(4.6.34)

hold true, where

uT

k = (�x1(τk(x))�, �x2(τk(x))�, . . . , �xm(τk(x))�);

J∗

k (x) =

m∑

ℓ=1

Jkiℓxℓ +

m∑

ℓ=1

biℓgiℓ(σ
1

iℓ);

Λ = [ωij ], ωij = ωji, i, j = 1, 2, . . . , m;

Λ∗ = [ξij ], ξij = ξji, i, j = 1, 2, . . . , m;

ωii = λM (Ωii), ωij = λ
1/2

M (ΩijΩ
T

ij), i �= j, i, j = 1, 2, . . . , m;

ξii = λM (Ψii), ξij = λ
1/2

M (ΨijΨ
T

ij), i �= j, i, j = 1, 2, . . . , m;

Ωii = PiiJkii + JT

kiiPii +

m∑

j=1

JT

kjiPjjJkji + Pii

( m∑

ℓ=1

biℓk̃
∗

iℓ(c̃
i
iℓ)

T

)

+

( m∑

ℓ=1

biℓk̃
∗

iℓ(c̃
i
iℓ)

T

)T

Pii +

m∑

j=1

{

JkjiPjj

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
j
jℓ)

T

)

+

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
j
jℓ)

T

)T

PjjJkji

}

+

m∑

j=1

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
j
jℓ)

T

)T

Pjj

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
j
jℓ)

T

)

+

m∑

j=1

{

PijJkji + JT

kjiPij + Pij

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
i
jℓ)

T

)

+

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
i
jℓ)

T

)T

Pij +

m∑

ℓ=1

(

JT

kℓiPℓjJkji + JT

kjiPℓjJkℓi

)

+ JT

kjiPij

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
i
jℓ)

T

)

+

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
i
jℓ)

T

)T

PijJkji
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+

( m∑

ℓ=1

biℓk̃
∗

iℓ(c̃
i
iℓ)

T

)T

Pij

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
i
jℓ)

T

)

+

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
i
jℓ)

T

)T

Pij

( m∑

ℓ=1

biℓk̃
∗

iℓ(c̃
i
iℓ)

T

)}

, i = 1, 2, . . . , m;

Ωij = PiiJkij + JT

kjiPjj + Pii

( m∑

ℓ=1

biℓk̃
∗

iℓ(c̃
i
iℓ)

T

)

+

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
j
jℓ)

T

)T

Pjj +

m∑

ℓ=1

(JT

kℓiPℓℓJkℓj + JT

kℓjPℓℓJkℓi)

+

m∑

r=1

{

JT

kriPrr

( m∑

ℓ=1

brℓk̃
∗

rℓ(c̃
r
rℓ)

T

)

+

( m∑

ℓ=1

brℓk̃
∗

rℓ(c̃
r
rℓ)

T

)T

PrrJkri

}

+

( m∑

ℓ=1

(PiℓJkℓj + JT

kℓjBℓj)

)

+ Pij

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
j
jℓ)

T

)

+

( m∑

ℓ=1

biℓk̃
∗

iℓ(c̃
i
iℓ)

T

)T

Pii +

( m∑

ℓ=1

biℓk̃
∗

iℓ(c̃
j
iℓ)

T

)

+

( m∑

ℓ=1

biℓk̃
∗

iℓ(c̃
i
iℓ)

T

)

Pij +

m∑

ℓ=1

m∑

r=1
r �=ℓ

JT

kℓjPℓrJ
T

krj

+

m∑

r=1
r �=i,j

{

JT

krjPrj

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
j
jℓ)

T

)T

+

( m∑

ℓ=1

biℓk̃
∗

iℓ(c̃
i
iℓ)

T

)T

PirJkrj

}

+

( m∑

ℓ=1

biℓk̃
∗

iℓ(c̃
i
iℓ)

T

)T

Pij

( m∑

ℓ=1

bjℓk̃
∗

jℓ(c̃
j
jℓ)

T

)

, i �= j, i, j = 1, 2, . . . , m;

Ψii = Pii + Ωii, Ψij = Pij + Ωij , i �= j = 1, 2, . . . , m.

Here

k̃∗

ij =

{
k̃ij if the corresponding multiplier is positive;

0 in other cases.

The proof is similar to that of Lemma 4 in Martynyuk and Stavrou-

lakis [1].
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Corollary 4.6.7 Under all conditions of Proposition 4.6.4 for function

(4.6.26) when t = τk(x), k = 1, 2, . . . , the estimates

(4.6.40) v(x + Jk(x), η) − v(x, η) ≤ γv(x, η),

where

γ =

{
λM (Λ)λ−1

M (B) for λM (Λ) < 0,

λM (Λ)λ−1
m (A) for λM (Λ) > 0,

and

(4.6.41) v(x + Jk(x), η) ≤ γ∗v(x, η),

where

γ∗ =

{
λM (Λ∗)λ−1

M (B) for λM (Λ∗) < 0,

λM (Λ∗)λ−1
m (A) for λM (Λ∗) > 0,

hold true.

The proof follows from Proposition 4.6.4 and Corollary 4.6.6.

For system (4.6.1), the following stability problem is formulated. It is

necessary to formulate conditions related to the coefficients which appear

in the system and also to introduce structural perturbation, such that the

trivial solution of system (4.6.1) is asymptotically stable in the whole on S

for an arbitrary function f of the class under consideration.

We shall introduce the following notions.

Definition 4.6.2 The zero solution x = 0 of (4.6.1) is absolutely stable

under nonclassical structural perturbation (i.e. absolutely stable on S) if it

is absolutely stable for each S ∈ S in the sense of Lur’e-Postnikov [1].

The above Propositions and Corollaries allow us to establish sufficient

conditions for absolute stability of the zero solution of system (4.6.1) on S.

Theorem 4.6.4 Let system (4.6.1) be such that the matrix-valued func-

tion (4.6.23) is constructed with the elements (4.6.24) and

(1) the matrix A in (4.6.28) is positive definite, i.e. λm(A) > 0;

(2) the matrix Θ in (4.6.32) is negative semi-definite or equals to zero,

i.e. λM (Θ) ≤ 0;

(3) the matrix Λ in (4.6.33) is negative definite.
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Corollary 4.6.7 Under all conditions of Proposition 4.6.4 for function

(4.6.26) when t = τk(x), k = 1, 2, . . . , the estimates

(4.6.40) v(x + Jk(x), η) − v(x, η) ≤ γv(x, η),

where

γ =

{
λM (Λ)λ−1

M (B) for λM (Λ) < 0,

λM (Λ)λ−1
m (A) for λM (Λ) > 0,

and

(4.6.41) v(x + Jk(x), η) ≤ γ∗v(x, η),

where

γ∗ =

{
λM (Λ∗)λ−1

M (B) for λM (Λ∗) < 0,

λM (Λ∗)λ−1
m (A) for λM (Λ∗) > 0,

hold true.

The proof follows from Proposition 4.6.4 and Corollary 4.6.6.

For system (4.6.1), the following stability problem is formulated. It is

necessary to formulate conditions related to the coefficients which appear

in the system and also to introduce structural perturbation, such that the

trivial solution of system (4.6.1) is asymptotically stable in the whole on S

for an arbitrary function f of the class under consideration.

We shall introduce the following notions.

Definition 4.6.2 The zero solution x = 0 of (4.6.1) is absolutely stable

under nonclassical structural perturbation (i.e. absolutely stable on S) if it

is absolutely stable for each S ∈ S in the sense of Lur’e-Postnikov [1].

The above Propositions and Corollaries allow us to establish sufficient

conditions for absolute stability of the zero solution of system (4.6.1) on S.

Theorem 4.6.4 Let system (4.6.1) be such that the matrix-valued func-

tion (4.6.23) is constructed with the elements (4.6.24) and

(1) the matrix A in (4.6.28) is positive definite, i.e. λm(A) > 0;

(2) the matrix Θ in (4.6.32) is negative semi-definite or equals to zero,

i.e. λM (Θ) ≤ 0;

(3) the matrix Λ in (4.6.33) is negative definite.
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Then the zero solution of system (4.6.1) is absolutely stable on S.

Proof Under all conditions of Theorem 4.6.4

(a) the function v(x, η) is positive definite;

(b) for the function v(x, η) and t �= τk(x), k = 1, 2, . . . , we have

Dv(x, η) ≤ 0 for all S ∈ S, and x ∈ Rn;

(c) for the function v(x, η) and t = τk(x), k = 1, 2, . . . , we have

v(x + Jk(x), η) − v(x, η) ≤ λM (Λ)λ−1

M (B)v(x, η) for all x ∈ Rn.

By Theorem 1.4.4 from Chapter 1 for (a) – (c) the zero solution of system

(4.6.1) is asymptotically stable in the whole on S. Since here Nix = Rni,

i = 1, 2, . . . , m, and Nx = N1x × . . . ×Nmx = Rn.

Theorem 4.6.5 Let system (4.6.1) be such that the matrix-valued func-

tion (4.6.23) is constructed with the elements (4.6.24) and

(1) the matrix A in (4.6.28) is positive definite, i.e. λm(A) > 0;

(2) the matrix Θ in (4.6.31) is negative definite, i.e. λM (Θ) < 0;

(3) the matrix Λ∗ in (4.6.34) is positive definite, i.e. λM (Λ∗) > 0;

(4) the function τk(x), k = 1, 2, . . . , satisfies the inequality

sup
k

(

min
x∈Rn

τk+1(x) − max
x∈Rn

τk(x)

)

= θ > 0.

If for some γ > 0 the inequality

−
λM (B)

λM (Θ)
ln

λM (Λ∗)

λm(A)
≤ θ − γ,

is satisfied, then the zero solution of system (4.6.1) is absolutely stable on S.

The proof follows from Propositions 4.6.1 – 4.6.2 and Theorem 1.4.5.

Theorem 4.6.6 Let system (4.6.1) be such that the matrix-valued func-

tion (4.6.23) is constructed with the elements (4.6.24) and

(1) the matrix A in (4.6.28) is positive definite, i.e. λm(A) > 0;

(2) the matrix Θ in (4.6.31) is positive definite, i.e. λM (Θ) > 0;

(3) the matrix Λ∗ in (4.6.34) is positive definite, i.e. λM (Λ∗) > 0;

(4) the functions τk(x), k = 1, 2, . . . , for some θ1 > 0 satisfy the in-

equality

max
x∈Rn

τk(x) − min
x∈Rn

τk−1(x) ≤ θ1, k = 1, 2, . . . .4.6 GENERALIZATIONS AND APPLICATIONS 169

If for some γ > 0 the inequality

λm(A)

λM (Θ)
ln

λm(A)

λm(Λ∗)
≥ θ1 + γ,

is satisfied, then the zero solution of system (4.6.1) is absolutely stable on S.

Proof The statement of Theorem 4.6.6 follows from Propositions 4.6.1 –

4.6.2 and Theorem 3 in Martynyuk and Stavroulakis [1] (see also Mi-

ladzhanov [1]).

Example 4.6.1 Let system (4.6.1) be a fourth-order system of the Lur’e-

Postnikov type decomposed into two subsystems determined by the follow-

ing vectors and matrices:

(4.6.42)

Aii =

(
−4 1

1 −4

)

, i = 1, 2,

A12 = A21 =

(
1 0
0 1

)

, qiℓ =

(
1
1

)

,

cr
iℓ =

(
1
0

)

, kiℓ = 1, i, ℓ, r = 1, 2;

Jkii = diag {−1, 1}, Jk12 = Jk21 = diag {0.1, 0.1},

biℓ =

(
0.1
0.1

)

, c̃ r
iℓ =

(
0.1
0

)

, k̃iℓ = 1, i, ℓ, r = 1, 2;

S
(r)

ii = diag {1, 1}, S
(r)

ij = s
(r)

ij diag {1, 1},

0 ≤ s
(r)

ij ≤ 1, i, j, r = 1, 2, i �= j.

For this example, the elements of the matrix-valued function (4.6.23) are

taken in the form

uii(xi) = xT

i I2 xi, i = 1, 2;

u12(x1, x2) = u21(x1, x2) = xT

1
0, 1 I2x2,

where I2 = diag {1, 1}.

Let also ηT = (1, 1) ∈ R2
+. It is easy to verify that the matrices

A =

(
1 −0.1

−0.1 1

)

, B =

(
1 0.1

0.1 1

)
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If for some γ > 0 the inequality

λm(A)

λM (Θ)
ln

λm(A)

λm(Λ∗)
≥ θ1 + γ,

is satisfied, then the zero solution of system (4.6.1) is absolutely stable on S.

Proof The statement of Theorem 4.6.6 follows from Propositions 4.6.1 –

4.6.2 and Theorem 3 in Martynyuk and Stavroulakis [1] (see also Mi-

ladzhanov [1]).

Example 4.6.1 Let system (4.6.1) be a fourth-order system of the Lur’e-

Postnikov type decomposed into two subsystems determined by the follow-

ing vectors and matrices:

(4.6.42)

Aii =

(
−4 1

1 −4

)

, i = 1, 2,

A12 = A21 =

(
1 0
0 1

)

, qiℓ =

(
1
1

)

,

cr
iℓ =

(
1
0

)

, kiℓ = 1, i, ℓ, r = 1, 2;

Jkii = diag {−1, 1}, Jk12 = Jk21 = diag {0.1, 0.1},

biℓ =

(
0.1
0.1

)

, c̃ r
iℓ =

(
0.1
0

)

, k̃iℓ = 1, i, ℓ, r = 1, 2;

S
(r)

ii = diag {1, 1}, S
(r)

ij = s
(r)

ij diag {1, 1},

0 ≤ s
(r)

ij ≤ 1, i, j, r = 1, 2, i �= j.

For this example, the elements of the matrix-valued function (4.6.23) are

taken in the form

uii(xi) = xT

i I2 xi, i = 1, 2;

u12(x1, x2) = u21(x1, x2) = xT

1
0, 1 I2x2,

where I2 = diag {1, 1}.

Let also ηT = (1, 1) ∈ R2
+. It is easy to verify that the matrices

A =

(
1 −0.1

−0.1 1

)

, B =

(
1 0.1

0.1 1

)
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are positive definite because

λm(A) = 0.9 and λM (B) = 1.1.

For such a choice of the matrix-valued function (4.6.23), we have

Θ =

(
3.75 3.35
3.35 −3.75

)

, Λ =

(
−0.917 0.502
0.502 −0.917

)

,

It is easy to check that matrices Θ and Λ are negative definite. Therefore,

all conditions of Theorem 4.6.1 are satisfied and the zero solution of system

(4.6.1) specified by vectors and matrices (4.6.42) is absolutely stable on S.

4.7 Notes and References

Section 4.1 The methods of qualitative analysis of nonlinear systems discussed in

Chapters 1 – 3 have several analogues for the impulsive systems. Thus yet Krylov

and Bogolyubov [1] paid attention to the possibility to apply the methods of

nonlinear mechanics in the investigation of systems with impulsive perturbations.

Some monographs and textbooks which contain the development of the theory of

impulsive systems without structural perturbations have been mentioned in Notes

and References to Chapter 1. Though many problems of nonlinear dynamics of

systems under impulsive and nonclassical structural perturbations remain still

open.

Section 4.2 Dynamics of the impulsive systems for the given model of nonclassi-

cal structural perturbations was first studied by Miladzhanov [3, 6]. These inves-

tigations were further developed and refined by Martynyuk and Miladzhanov [6]

(see also Martynyuk and Stavroulakis [1 – 3]).

Section 4.3 The definitions of stability of impulsive systems under nonclassical

structural perturbations take into account some peculiarities of the systems of

this class which have been discussed in Section 1.4.

Sections 4.4 – 4.5 These sections are based on the results by Martynyuk and

Miladzhanov [6], Martynyuk and Stavroulakis [1– 3] and Miladzhanov [3, 6]. In

the investigation of linear impulsive systems some results are used which were

obtained in Chapter 2 for linear continuous systems under nonclassical structural

perturbations.
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are positive definite because

λm(A) = 0.9 and λM (B) = 1.1.

For such a choice of the matrix-valued function (4.6.23), we have

Θ =

(
3.75 3.35
3.35 −3.75

)

, Λ =

(
−0.917 0.502
0.502 −0.917

)

,

It is easy to check that matrices Θ and Λ are negative definite. Therefore,

all conditions of Theorem 4.6.1 are satisfied and the zero solution of system

(4.6.1) specified by vectors and matrices (4.6.42) is absolutely stable on S.

4.7 Notes and References

Section 4.1 The methods of qualitative analysis of nonlinear systems discussed in

Chapters 1 – 3 have several analogues for the impulsive systems. Thus yet Krylov

and Bogolyubov [1] paid attention to the possibility to apply the methods of

nonlinear mechanics in the investigation of systems with impulsive perturbations.

Some monographs and textbooks which contain the development of the theory of

impulsive systems without structural perturbations have been mentioned in Notes

and References to Chapter 1. Though many problems of nonlinear dynamics of

systems under impulsive and nonclassical structural perturbations remain still

open.

Section 4.2 Dynamics of the impulsive systems for the given model of nonclassi-

cal structural perturbations was first studied by Miladzhanov [3, 6]. These inves-

tigations were further developed and refined by Martynyuk and Miladzhanov [6]

(see also Martynyuk and Stavroulakis [1 – 3]).

Section 4.3 The definitions of stability of impulsive systems under nonclassical

structural perturbations take into account some peculiarities of the systems of

this class which have been discussed in Section 1.4.

Sections 4.4 – 4.5 These sections are based on the results by Martynyuk and

Miladzhanov [6], Martynyuk and Stavroulakis [1– 3] and Miladzhanov [3, 6]. In

the investigation of linear impulsive systems some results are used which were

obtained in Chapter 2 for linear continuous systems under nonclassical structural

perturbations. 4.7 NOTES AND REFERENCES 171

Section 4.6 The evolution analysis of the impulsive system with respect to two

or more different measures (see Leela [1], Lakshmikantham and Liu [1], Mar-

tynyuk [11], etc.) is a possible direction of generalization of the method of

matrix-valued Liapunov functions for the system with impulsive and nonclassical

structural perturbations. The results of Section 4.6.1 are new (see Martynyuk

and Chernetskaya [1], and cf. Kou, et al. [1]). In Section 4.6.2 we use general

results of this Chapter and the results by Martynyuk and Miladzhanov [6], and

Martynyuk and Stavroulakis [1].
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5

SINGULARLY PERTURBED LARGE-SCALE SYSTEMS

5.1 Introduction

In this chapter we propose some development of the direct Liapunov

method for the given class of systems of equations in terms of auxiliary

matrix valued functions. This allows us to weaken the requirements to

the dynamical properties of the individual subsystems and to extend the

variation limits for the small parameters µi for senior derivatives of the

systems of perturbed motion equations.

The chapter is arranged as follows.

Section 5.2 sets out the method of composition of large–scale system on

the basic of individual subsystems for the given model of connectedness.

Sections 5.3 – 5.4 contain the results of development of a new method of

stability and/or instability analysis of large–scale system under nonclassical

structural perturbations.

In section 5.5. similar problems are discussed for linear singularly per-

turbed systems for uniform and nonuniform time scaling.

In final Section 5.6 two problems of practical importance are consid-

ered. One of the problems relates to absolute stability under nonclassical

structural perturbations and the other deals with gyroscopic stabilization

of orbital apparatus.
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5.2 Nonclassical Structural Perturbations in Singularly

Perturbed Systems

The real systems in which the fast and slow variables can potentially exist

are modeled by means of the systems of equations with small parameter

at senior variable (singularly perturbed systems). The class of systems

of equations under consideration (furtheron designated as F ) is described

basing on the hypotheses below (cf. Grujić et al. [1]).

H1. System F consists of q subsystems of ordinary differential equations

with structural perturbations and r subsystems with structural perturba-

tions and small parameters at senior derivatives. The order of fast and

slow components of the system remains unchanged during all the period of

system F functionning.

H2. Dynamics of the i-th interconnected subsystem Fi in system F is

described by the equations

(5.2.1)

dxi

dt
= fi(t, x, y, Pi, Si),

µi

dyi

dt
= gi(t, x, y, M, Pq+i, Sq+i),

where xi ∈ Rni , yi ∈ Rmi , fi and gi are continuous vector–functions of

the corresponding dimensions, µi are small positive parameters, µi ∈ (0, 1]

and M = diag {µ1, . . . , µn}.

H3. Dynamics of the i-th isolated subsystem F̂i in system F is described

by the equations

(5.2.2)

dxi

dt
= fi(t, x

i, yi, Pi, Si),

µi

dyi

dt
= gi(t, x

i, yi, M, Pq+i, Sq+i),

where xi = (0, 0, . . . , 0, xT

i , 0, 0, . . . , 0)T ∈ Rn, n = n1 + n2 + · · · + nq,

xi ∈ Rni, yi = (0, 0, . . . , 0, yT

i , 0, 0, . . . , 0)T ∈ Rm, m = m1 +m2 + · · ·+mr,

yi ∈ Rmi .

In the case when q = r, the equations

(5.2.3)

dxi

dt
= fi(t, x

i, yi, Pi, Si),

0 = gi(t, x
i, yi, 0, Pq+i, Sq+i)
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5.2 Nonclassical Structural Perturbations in Singularly

Perturbed Systems

The real systems in which the fast and slow variables can potentially exist

are modeled by means of the systems of equations with small parameter

at senior variable (singularly perturbed systems). The class of systems

of equations under consideration (furtheron designated as F ) is described

basing on the hypotheses below (cf. Grujić et al. [1]).

H1. System F consists of q subsystems of ordinary differential equations

with structural perturbations and r subsystems with structural perturba-

tions and small parameters at senior derivatives. The order of fast and

slow components of the system remains unchanged during all the period of

system F functionning.

H2. Dynamics of the i-th interconnected subsystem Fi in system F is

described by the equations

(5.2.1)

dxi

dt
= fi(t, x, y, Pi, Si),

µi

dyi

dt
= gi(t, x, y, M, Pq+i, Sq+i),

where xi ∈ Rni , yi ∈ Rmi , fi and gi are continuous vector–functions of

the corresponding dimensions, µi are small positive parameters, µi ∈ (0, 1]

and M = diag {µ1, . . . , µn}.

H3. Dynamics of the i-th isolated subsystem F̂i in system F is described

by the equations

(5.2.2)

dxi

dt
= fi(t, x

i, yi, Pi, Si),

µi

dyi

dt
= gi(t, x

i, yi, M, Pq+i, Sq+i),

where xi = (0, 0, . . . , 0, xT

i , 0, 0, . . . , 0)T ∈ Rn, n = n1 + n2 + · · · + nq,

xi ∈ Rni, yi = (0, 0, . . . , 0, yT

i , 0, 0, . . . , 0)T ∈ Rm, m = m1 +m2 + · · ·+mr,

yi ∈ Rmi .

In the case when q = r, the equations

(5.2.3)

dxi

dt
= fi(t, x

i, yi, Pi, Si),

0 = gi(t, x
i, yi, 0, Pq+i, Sq+i)5.2 A MODEL OF NONCLASSICAL PERTURBATIONS 175

describe the dynamics of the i -th isolated subsystem F̂i0 of system F , and

the equations

(5.2.4)
dyi

dti
= gi(α, bi, yi, 0, Pq+i, Sq+i)

characterize the boundary layer of the fast subsystem F̂ti
of system F .

Here α ∈ R, bi = (0, . . . , 0, bT
i , 0, . . . , 0)T ∈ Rn, bi ∈ Rni, ti = t−t0

µi
,

i = 1, 2, . . . , r.

H4. Dynamics of the whole system F is described by the equations

(5.2.5)

dxi

dt
= fi(t, x, y, Pi, Si), i = 1, 2, . . . , q,

µi

dyi

dt
= gi(t, x, y, M, Pq+i, Sq+i), i = 1, 2, . . . , r,

where xi ∈ Rni,
q∑

i=1

ni = n, yi ∈ Rmi,
r∑

i=1

mi = m, q + r = s, the

parametric perturbations Pi, i = 1, 2, . . . , q, and the structural matrices

Si, i = 1, 2, . . . , s, are determined in the same way as in Section 2.2. Here

µi ∈ (0, 1] and the set of all admissible values of M is designated as

M = {M | : 0 < M ≤ I}, I = diag {1, 1, . . . , 1} ∈ Rr×r,

Moreover

Mm = {M : 0 < µi < µim, ∀ i ∈ [1, r]},

where µim is an admissible upper value of µi.

If in the system of equations (5.2.5) all µi (formally) form a zero set,

then the equations

(5.2.6)

dxi

dt
= fi(t, x, y, Pi, Si), i = 1, 2, . . . , q,

0 = gi(t, x, y, 0, Pq+i, Sq+i), i = 1, 2, . . . , r,

describe the dynamics of the interconnected degenerated subsystem F0 of

system F , and the equations

(5.2.7)
dyi

dti
= τigi(α, b, y, 0, Pq+i, Sq+i), i = 1, 2, . . . , r,
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describe the dynamics of the i -th isolated subsystem F̂i0 of system F , and

the equations

(5.2.4)
dyi

dti
= gi(α, bi, yi, 0, Pq+i, Sq+i)

characterize the boundary layer of the fast subsystem F̂ti
of system F .

Here α ∈ R, bi = (0, . . . , 0, bT
i , 0, . . . , 0)T ∈ Rn, bi ∈ Rni, ti = t−t0

µi
,

i = 1, 2, . . . , r.

H4. Dynamics of the whole system F is described by the equations

(5.2.5)

dxi

dt
= fi(t, x, y, Pi, Si), i = 1, 2, . . . , q,

µi

dyi

dt
= gi(t, x, y, M, Pq+i, Sq+i), i = 1, 2, . . . , r,

where xi ∈ Rni,
q∑

i=1

ni = n, yi ∈ Rmi,
r∑

i=1

mi = m, q + r = s, the

parametric perturbations Pi, i = 1, 2, . . . , q, and the structural matrices

Si, i = 1, 2, . . . , s, are determined in the same way as in Section 2.2. Here

µi ∈ (0, 1] and the set of all admissible values of M is designated as

M = {M | : 0 < M ≤ I}, I = diag {1, 1, . . . , 1} ∈ Rr×r,

Moreover

Mm = {M : 0 < µi < µim, ∀ i ∈ [1, r]},

where µim is an admissible upper value of µi.

If in the system of equations (5.2.5) all µi (formally) form a zero set,

then the equations

(5.2.6)

dxi

dt
= fi(t, x, y, Pi, Si), i = 1, 2, . . . , q,

0 = gi(t, x, y, 0, Pq+i, Sq+i), i = 1, 2, . . . , r,

describe the dynamics of the interconnected degenerated subsystem F0 of

system F , and the equations

(5.2.7)
dyi

dti
= τigi(α, b, y, 0, Pq+i, Sq+i), i = 1, 2, . . . , r,
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characterize the behaviour of the interconnected fast subsystem Ft (the

boundary layer of system F ).

If the small parameters µi are not mutually connected, then the system

F has r essentially independent time scales ti:

(5.2.8) ti =
t − t0

µi

, i = 1, 2, . . . , r.

In this case the time scaling is nonuniform.

The time scales ti can be interconnected through the values τi:

(5.2.9)
ti

t1
= τi, i = 1, 2, . . . , r,

which are variable within certain limits

(5.2.10) τi ∈ [τ i, τu], i = 1, 2, . . . , r,

where 0 < τ i ≤ τ i < ∞, ∀ i ∈ [1, r].

In the case (5.2.9) and (5.2.10) the time scaling is uniform and

(5.2.11) τi =
µ1

µi

, i = 1, 2, . . . , r.

Obviously, in this case τ
1

= τ1 = τ1 = 1.

Everywhere below it is assumed that the correlations

0 = gi(t, x, y, 0, Pq+i, Sq+i), ∀ (t, x, y) ∈ R ×Nx ×Ny,

are satisfied for each pair (P, S) ∈ P × S iff y = 0 and

0 = gi(t, x
i, yi, 0, Pq+i, Sq+i), ∀ (t, xi, yi) ∈ R ×Nx ×Ny,

are satisfied for each pair (P, S) ∈ P × S iff yi = 0.

Therefore systems (5.2.6) and (5.2.3) are equivalent to the system

dxi

dt
= fi(t, x

i, 0, Pi, Si),(5.2.12)

dxi

dt
= fi(t, x, 0, Pi, Si), i = 1, 2, . . . , q,(5.2.13)

respectively.
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characterize the behaviour of the interconnected fast subsystem Ft (the

boundary layer of system F ).

If the small parameters µi are not mutually connected, then the system

F has r essentially independent time scales ti:

(5.2.8) ti =
t − t0

µi

, i = 1, 2, . . . , r.

In this case the time scaling is nonuniform.

The time scales ti can be interconnected through the values τi:

(5.2.9)
ti

t1
= τi, i = 1, 2, . . . , r,

which are variable within certain limits

(5.2.10) τi ∈ [τ i, τu], i = 1, 2, . . . , r,

where 0 < τ i ≤ τ i < ∞, ∀ i ∈ [1, r].

In the case (5.2.9) and (5.2.10) the time scaling is uniform and

(5.2.11) τi =
µ1

µi

, i = 1, 2, . . . , r.

Obviously, in this case τ
1

= τ1 = τ1 = 1.

Everywhere below it is assumed that the correlations

0 = gi(t, x, y, 0, Pq+i, Sq+i), ∀ (t, x, y) ∈ R ×Nx ×Ny,

are satisfied for each pair (P, S) ∈ P × S iff y = 0 and

0 = gi(t, x
i, yi, 0, Pq+i, Sq+i), ∀ (t, xi, yi) ∈ R ×Nx ×Ny,

are satisfied for each pair (P, S) ∈ P × S iff yi = 0.

Therefore systems (5.2.6) and (5.2.3) are equivalent to the system

dxi

dt
= fi(t, x

i, 0, Pi, Si),(5.2.12)

dxi

dt
= fi(t, x, 0, Pi, Si), i = 1, 2, . . . , q,(5.2.13)

respectively.
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5.3 Tests for Stability Analysis

In the qualitative analysis for the given class of large scale systems the

question whether different time scales ti are interconnected is of importance.

General purpose of our investigation is to obtain conditions under which

stability of zero solution of the initial system is implied by stability of

some independent degenerated subsystems and stability of the independent

subsystems describing boundary layer with allowance for the qualitative

properties of interconnections between the subsystems.

5.3.1 Non-uniform time scaling Assume that the correlation q = r is

satisfied. Then system (5.2.5) is represented as

(5.3.1)

dxi

dt
= fi(t, x

i, 0, Pi, Si) + f∗

i + f∗∗

i , i = 1, 2, . . . , q,

µi

dyi

dt
= gi(α, bi, yi, Pq+i, Sq+i) + g∗i + g∗∗i , i = 1, 2, . . . , q,

where

f∗

i = fi(t, x
i, yi, Pi, Si) − fi(t, x

i, 0, Pi, Si),

g∗i = gi(t, x
i, yi, M i, Pq+i, Sq+i) − gi(α, bi, yi, 0, Pq+i, Sq+i),

f∗∗

i = fi(t, x, y, Pi, Si) − fi(t, x
i, yi, Pi, Si),

g∗∗i = gi(t, x, y, M, Pq+i, Sq+i) − gi(t, x
i, yi, M i, Pq+i, Sq+i).

Here the functions f∗

i and g∗i describe the connections between equations of

the i-th independent singularly perturbed subsystem (Fi) of the system F ,

and the functions f∗∗

i and g∗∗i describe all the rest connections in system F .

In view of results from Martynyuk and Miladzhanov [1 – 5] we introduce

some assumptions.

Assumption 5.3.1 There exist

(1) open connected neighborhoods Nix ⊆ Rni, Niy ⊆ Rmi of the states

xi = 0 and yi = 0 respectively;

(2) functions ϕik, ψik of Hahn class K (KR), k = 1, 2, i ∈ [1, q],

constants αij , αij , αi, q+j , αi, q+j , αq+i, q+j , αq+i, q+j , i, j =

1, 2, . . . , q, and the matrix–function

(5.3.2) U(t, x, y, M) =

(
U11(t, x) U12(t, x, y, M)

UT
12

(t, x, y, M) U22(t, y, M)

)
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5.3 Tests for Stability Analysis

In the qualitative analysis for the given class of large scale systems the

question whether different time scales ti are interconnected is of importance.

General purpose of our investigation is to obtain conditions under which

stability of zero solution of the initial system is implied by stability of

some independent degenerated subsystems and stability of the independent

subsystems describing boundary layer with allowance for the qualitative

properties of interconnections between the subsystems.

5.3.1 Non-uniform time scaling Assume that the correlation q = r is

satisfied. Then system (5.2.5) is represented as

(5.3.1)

dxi

dt
= fi(t, x

i, 0, Pi, Si) + f∗

i + f∗∗

i , i = 1, 2, . . . , q,

µi

dyi

dt
= gi(α, bi, yi, Pq+i, Sq+i) + g∗i + g∗∗i , i = 1, 2, . . . , q,

where

f∗

i = fi(t, x
i, yi, Pi, Si) − fi(t, x

i, 0, Pi, Si),

g∗i = gi(t, x
i, yi, M i, Pq+i, Sq+i) − gi(α, bi, yi, 0, Pq+i, Sq+i),

f∗∗

i = fi(t, x, y, Pi, Si) − fi(t, x
i, yi, Pi, Si),

g∗∗i = gi(t, x, y, M, Pq+i, Sq+i) − gi(t, x
i, yi, M i, Pq+i, Sq+i).

Here the functions f∗

i and g∗i describe the connections between equations of

the i-th independent singularly perturbed subsystem (Fi) of the system F ,

and the functions f∗∗

i and g∗∗i describe all the rest connections in system F .

In view of results from Martynyuk and Miladzhanov [1 – 5] we introduce

some assumptions.

Assumption 5.3.1 There exist

(1) open connected neighborhoods Nix ⊆ Rni, Niy ⊆ Rmi of the states

xi = 0 and yi = 0 respectively;

(2) functions ϕik, ψik of Hahn class K (KR), k = 1, 2, i ∈ [1, q],

constants αij , αij , αi, q+j , αi, q+j , αq+i, q+j , αq+i, q+j , i, j =

1, 2, . . . , q, and the matrix–function

(5.3.2) U(t, x, y, M) =

(
U11(t, x) U12(t, x, y, M)

UT
12

(t, x, y, M) U22(t, y, M)

)
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where

U11(t, x) = [vij(t, ·)], vii = vii(t, xi),

vij = vji = vij(t, xi, xj), i, j = 1, 2, . . . , q;

U22(t, y, M) = [v∗q+i,q+j(t, ·)], v∗q+i,q+i = µivq+i,q+i(t, yi),

v∗q+i,q+j = v∗q+j,q+i = µiµjvq+i,q+j(t, yi, yj), i, j = 1, 2, . . . , q;

U12(t, x, y, M) = [µjvi,q+j(t, xi, yj)], i, j = 1, 2, . . . , q, 2q = s,

such that

(a) αijϕi1(xi)ϕj1(xj) ≤ vij(t, ·) ≤ αijϕi2(xi)ϕj2(xj),

∀ (t, xi, xj) ∈ R ×Nix ×Njx, i, j = 1, 2, . . . , q, j ≥ i;

(b) αq+i,q+jψi1(yi)ψj1(yj) ≤ vq+i,q+j(t, ·) ≤ αq+i,q+jψi2(yi)ψj2(yj),

∀ (t, yi, yj) ∈ R ×Niy ×Njy , i, j = 1, 2, . . . , q, j ≥ i;

(c) αi,q+jϕi1(xi)ψj1(yj) ≤ vi,q+j(t, ·) ≤ αi,q+jϕi2(xi)ψj2(yj),

∀ (t, xi, yj) ∈ R ×Nix ×Njy, i, j = 1, 2, . . . , q.

By means of the matrix–function (5.3.2) and the constant vector η ∈ Rs
+

we introduce the function

(5.3.3) v(t, x, y, M) = ηTU(t, x, y, M)η

and consider the expressions of the upper right Dini derivative

(5.3.4)
D+v(t, x, y, M) = ηTD+U(t, x, y, M)η,

D+U(t, x, y, M)
def
= [D+vrk(t, . . . )], r, k = 1, 2, . . . , s.

For the function (5.3.3) the following assertion holds true.

Proposition 5.3.1 Under conditions of Assumption 5.3.1 for function

(5.3.3) the bilateral estimate

uT

1 A(M)u1 ≤ v(t, x, y, M) ≤ uT

2 B(M)u2,

∀ (t, x, y, M) ∈ R ×Nx ×Ny ×M,

is satisfied, where

Nx ⊆ N1x ×N2x × . . . ×Nqx, Ny ⊆ N1y ×N2y × . . . ×Nqy ,
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uT

k = (ϕ1k(x1), . . . , ϕqk(xq), ψ1k(y1), . . . ψqk(yq)), k = 1, 2,

A(M) = HTA1(M)H, B(M) = HTA2(M)H,

H = diag {η1, η2, . . . , ηs}, s = 2q,

A1(M) =

(
A11 A12(M)

AT
12(M) A22(M)

)

, A2(M) =

(
A11 A12(M)

A
T

12(M) A22(M)

)

,

A11 = [αij ], αij = αji, A11 = [αij ], αij = αji,

A12(M) = [µjαi,q+j ], A12(M) = [µjαi,q+j ],

A22(M) = [µ∗

ijαq+i,q+j ] αq+i,q+j = αq+j,q+i,

A22(M) = [µ∗

ij ]αq+i,q+j , αq+i,q+j = αq+j,q+i,

µ∗

ij =

{
µi for i = j,

µiµj for i �= j,
i, j = 1, 2, . . . , q.

Proof Let all conditions of Assumption 5.3.2 be satisfied. Then for

function (5.3.3) we have

v(t, x, y, M) =

q
∑

i=1

η2

i vii(t, xi) + 2

q
∑

i=1

q
∑

j=2

ηiηjvij(t, xi, xj)

+

q
∑

i=1

η2

q+iµivq+i,q+i(t, yi) + 2

q
∑

i=1

q
∑

j=2

j>i

ηq+iηq+jµiµjvq+i,q+j

+ 2

q
∑

i=1

q
∑

j=1

ηiηq+jµjvi,q+j(t, xi, yj) ≥

q
∑

i=1

η2

i αiiϕ
2

i1

+ 2

q∑

i=1

q∑

j=2

j>i

ηiηjαijϕi1(xi)ϕj1(xj) +

q∑

i=1

η2

q+iµiαq+i,q+jψ
2

i1(yi)

+ 2

q
∑

i=1

q
∑

j=2

j>i

ηq+iηq+jµiµjαq+i,q+jψi1(yi)ψj1(yj)

+ 2

q
∑

i=1

q
∑

j=1

ηiηq+jµjαi,q+jϕi1(xi)ψj1(yj)
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uT

k = (ϕ1k(x1), . . . , ϕqk(xq), ψ1k(y1), . . . ψqk(yq)), k = 1, 2,

A(M) = HTA1(M)H, B(M) = HTA2(M)H,

H = diag {η1, η2, . . . , ηs}, s = 2q,

A1(M) =

(
A11 A12(M)

AT
12(M) A22(M)

)

, A2(M) =

(
A11 A12(M)

A
T

12(M) A22(M)

)

,

A11 = [αij ], αij = αji, A11 = [αij ], αij = αji,

A12(M) = [µjαi,q+j ], A12(M) = [µjαi,q+j ],

A22(M) = [µ∗

ijαq+i,q+j ] αq+i,q+j = αq+j,q+i,

A22(M) = [µ∗

ij ]αq+i,q+j , αq+i,q+j = αq+j,q+i,

µ∗

ij =

{
µi for i = j,

µiµj for i �= j,
i, j = 1, 2, . . . , q.

Proof Let all conditions of Assumption 5.3.2 be satisfied. Then for

function (5.3.3) we have

v(t, x, y, M) =

q
∑

i=1

η2

i vii(t, xi) + 2

q
∑

i=1

q
∑

j=2

ηiηjvij(t, xi, xj)

+

q
∑

i=1

η2

q+iµivq+i,q+i(t, yi) + 2

q
∑

i=1

q
∑

j=2

j>i

ηq+iηq+jµiµjvq+i,q+j

+ 2

q
∑

i=1

q
∑

j=1

ηiηq+jµjvi,q+j(t, xi, yj) ≥

q
∑

i=1

η2

i αiiϕ
2

i1

+ 2

q∑

i=1

q∑

j=2

j>i

ηiηjαijϕi1(xi)ϕj1(xj) +

q∑

i=1

η2

q+iµiαq+i,q+jψ
2

i1(yi)

+ 2

q
∑

i=1

q
∑

j=2

j>i

ηq+iηq+jµiµjαq+i,q+jψi1(yi)ψj1(yj)

+ 2

q
∑

i=1

q
∑

j=1

ηiηq+jµjαi,q+jϕi1(xi)ψj1(yj)
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= (ϕ11(x1), . . . , ϕq1(xq), ψ11(y1), . . . , ψq1(yq))
T diag {η1, . . . , η2q}

×

(
A11 A12(M)

AT
12(M) A22(M)

)

diag {η1, η2, . . . , η2q}

× (ϕ11(x1), . . . , ϕq1(xq), ψ11(y1), . . . , ψq1(yq)) = uT

1A(M)u1.

The upper estimate is proved in the same manner.

Assumption 5.3.2 There exist

(1) functions ϕi, ψi of class K (KR), i = 1, 2, . . . , q;

(2) functions vij , vi,q+j , vq+i,q+j , i, j = 1, 2, . . . , q satisfying the condi-

tions mentioned in Assumption 5.3.1, and

(a) functions vij(t, xi, xj) are continuous on (R × Nix0
× Njx0

)

or on (R × Rni × Rnj );

(b) functions vi,q+j(t, xi, yj) are continuous on (R×Nix0
×Njy0

)

or on (R × Rni × Rmj );

(c) functions vq+i,q+j(t, yi, yj) are continuous on (R × Niy0
×

Njy0
) or on (R × Rmi × Rmj );

(3) real numbers ραi(P, S), ρβij(P, S), α = 1, 2, . . . , 13, β = 1, 2, . . . , 8,

i, j = 1, 2 . . . , q, and the following conditions are satisfied

(a) η2

i D+

t vii + η2

i (D+
xi

vii)
Tfi(t, x

i, 0, Pi, Si) ≤ ρ1i(P, S)ϕ2

i (xi),

∀ (t, xi, P, S) ∈ R ×Nix0
× P × S, i = 1, 2, . . . , q;

(b) η2

q+iµiD
+

t vq+i,q+i+η2

q+i(D
+
yi

vq+i,q+i)
Tgi(α, bi, yi, 0, Pq+i, Sq+i)

≤ ρ2i(P, S)ψ2

i (yi), ∀ (t, yi, M, P, S) ∈ R×Niy0
×M×P ×S,

i = 1, 2, . . . , q;

(c) η2

i (D+
xi

vii)
Tf∗

i + η2

q+i(D
+
yi

vq+i,q+i)
Tg∗i + 2ηiηq+i{µiD

+

t vi,q+i

+ µi(D
+
xi

vi,q+i)
Tfi(t, x

i, yi, Pi, Si)

+ (D+
yi

vi,q+i)
Tgi(t, x

i, yi, M i, Pq+i, Sq+i)}

≤ (ρ3i(P, S) + µiρ4i(P, S))ϕ2

i (xi) + (ρ5i(P, S)

+µiρ6i(P, S))ψ2

i (yi)+2(ρ7i(P, S)+µiρ8i(P, S))ϕi(xi)ψi(yi),

∀ (t, xi, yi, M, P, S) ∈ R ×Nix0
×Niy0

×M×P × S,

i = 1, 2, . . . , q;

(d)

q
∑

i=1

η2

i (D+

xi
vii)

Tf∗∗

i +

q
∑

i=1

η2

q+i(D
+

yi
vq+i,q+i)

Tg∗∗i
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+

q
∑

i=1

2ηiηq+i

{

µi(D
+

xi
vi,q+i)

Tf∗∗

i + (D+

yi
vi,q+i)

Tg∗∗i

}

+

q∑

i=1

q∑

j=2

j>i

ηiηj

{

D+

t vij + (D+

xi
vij)

Tfi(t, x, y, Pi, Si)

+ (D+
xj

vij)
Tfj(t, x, y, Pj , Sj)

}

+ 2

q
∑

i=1

q
∑

j=2

j>i

ηq+iηq+j

{

µiµjD
+

t vq+i,q+j

+ µj(D
+
yi

vq+i,q+j)
Tgi(t, x, y, M, Pq+i, Sq+i)

+ µi(D
+
yj

vq+i,q+j)
Tgj(t, x, y, M, Pq+j , Sq+j)

}

+ 2

q
∑

i=1

q
∑

j=1

j �=i

ηiηq+j

{

µjD
+

t vi,q+j + µj(D
+

xi
vi,q+j)

T

× fi(t, x, y, Pi, Si) + (D+
yj

vi,q+j)
Tgj(t, x, y, M, Pq+j , Sq+j)

}

≤

q
∑

i=1

{

(ρ9i(P, S) + µiρ10i(P, S))ϕ2

i (xi)

+

(

ρ11i(P, S) + µiρ12i(P, S) + µi

( q
∑

j=2

j>i

µj

)

ρ13i

)

ψ2

i (yi)

}

+ 2

q
∑

i=1

q
∑

j=2

j>i

{

(ρ1,i,j(P, S) + µiρ2,i,j(P, S))ϕi(xi)ϕj(xj)

+ (ρ3,i,j(P, S) + µiρ4,i,j(P, S)

+ µiµjρ5,i,j(P, S))ψi(yi)ψj(yj)
}

+ 2

q
∑

i=1

∑

j=1

j �=i

(ρ6,i,j(P, S)

+ µiρ7,i,j(P, S) + µiµjρ8,i,j(P, S))ϕi(xi)ψj(yj),

∀ (t, x, y, M, P, S) ∈ R ×Nx0
×Ny0

×N ×P × S, where

Nix0
= {xi : xi ∈ Nix, xi �= 0}, Niy0

= {yi : yi ∈ Niy, yi �= 0},

i = 1, 2, . . . , q, 2q = s.182 5. SINGULARLY PERTURBED SYSTEMS

Proposition 5.3.2 Under conditions of Assumption 5.3.2 the estimate

D+v(t, x, y, M) ≤ uTG(M, P, S)u,

∀ (t, x, y, M, P, S) ∈ R ×Nx0
×Ny0

×M×P × S,

is true, where

uT = (ϕ1(1), . . . , ϕq(xq), ψ1(y1), . . . , ψq(yq)),

G(M, P, S) = [σij(M, P, S)], σij = σji, i, j = 1, 2, . . . , s,

σii(M, P, S) = ρ1i(P, S) + ρ3i(P, S) + ρ9i(P, S) + µi(ρ4i(P, S)

+ ρ10i(P, S)), i = 1, 2, . . . , q;

σq+i,q+i(M, P, S) = ρ2i(P, S) + ρ5i(P, S) + ρ11i(P, S)

+ µi

(

ρ6i(P, S) + ρ12i(P, S) +

( q
∑

j=2

j>i

µj

)

ρ13i(P, S)

)

,

i = 1, 2, . . . , q;

σi,q+i(M, P, S) = ρ7i(P, S) + µiρ8i(P, S), i = 1, 2, . . . , q;

σij(M, P, S) = ρ1ij(P, S) + µiρ2ij , i = 1, 2, . . . , q, j = 2, 3, . . . , q, j > i;

σq+i,q+j(M, P, S) = ρ3ij(P, S) + µiρ4ij(P, S) + µiµjρ5ij(P, S),

i = 1, 2, . . . , q, j = 2, 3, . . . , q, j > i;

σi,q+j(M, P, S) = ρ6ij(P, S) + µiρ7ij(P, S) + µiµjρ8ij(P, S),

i, j = 1, 2, . . . , q, i �= j.

Proof Let all conditions of Assumption 5.3.2 be satisfied. Then for the

expression (5.3.4) we have

D+v(t,x, y, M) =

q
∑

i=1

{

η2

i D+

t vii + (D+

xi
vii)

Tfi(t, x
i, 0, Pi, Si)

+ η2

q+iµiD
+

t vq+i,q+i + η2

q+i(D
+

yi
vq+i,q+i)

Tgi(α, bi, yi, 0, Pq+i, Sq+i)

+ η2

i (D+

xi
vii)

Tf∗

i + η2

q+i(D
+

yi
vq+i,q+i)

Tg∗i + 2ηiηq+i

(
µiD

+

t vi,q+i

+ µi(D
+

xi
vi,q+i)

Tfi(t, x
i, yi, Pi, Si)
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Proposition 5.3.2 Under conditions of Assumption 5.3.2 the estimate

D+v(t, x, y, M) ≤ uTG(M, P, S)u,

∀ (t, x, y, M, P, S) ∈ R ×Nx0
×Ny0

×M×P × S,

is true, where

uT = (ϕ1(1), . . . , ϕq(xq), ψ1(y1), . . . , ψq(yq)),

G(M, P, S) = [σij(M, P, S)], σij = σji, i, j = 1, 2, . . . , s,

σii(M, P, S) = ρ1i(P, S) + ρ3i(P, S) + ρ9i(P, S) + µi(ρ4i(P, S)

+ ρ10i(P, S)), i = 1, 2, . . . , q;

σq+i,q+i(M, P, S) = ρ2i(P, S) + ρ5i(P, S) + ρ11i(P, S)

+ µi

(

ρ6i(P, S) + ρ12i(P, S) +

( q
∑

j=2

j>i

µj

)

ρ13i(P, S)

)

,

i = 1, 2, . . . , q;

σi,q+i(M, P, S) = ρ7i(P, S) + µiρ8i(P, S), i = 1, 2, . . . , q;

σij(M, P, S) = ρ1ij(P, S) + µiρ2ij , i = 1, 2, . . . , q, j = 2, 3, . . . , q, j > i;

σq+i,q+j(M, P, S) = ρ3ij(P, S) + µiρ4ij(P, S) + µiµjρ5ij(P, S),

i = 1, 2, . . . , q, j = 2, 3, . . . , q, j > i;

σi,q+j(M, P, S) = ρ6ij(P, S) + µiρ7ij(P, S) + µiµjρ8ij(P, S),

i, j = 1, 2, . . . , q, i �= j.

Proof Let all conditions of Assumption 5.3.2 be satisfied. Then for the

expression (5.3.4) we have

D+v(t,x, y, M) =

q
∑

i=1

{

η2

i D+

t vii + (D+

xi
vii)

Tfi(t, x
i, 0, Pi, Si)

+ η2

q+iµiD
+

t vq+i,q+i + η2

q+i(D
+

yi
vq+i,q+i)

Tgi(α, bi, yi, 0, Pq+i, Sq+i)

+ η2

i (D+

xi
vii)

Tf∗

i + η2

q+i(D
+

yi
vq+i,q+i)

Tg∗i + 2ηiηq+i

(
µiD

+

t vi,q+i

+ µi(D
+

xi
vi,q+i)

Tfi(t, x
i, yi, Pi, Si)5.3 STABILITY ANALYSIS 183

+ (D+

yi
vi,q+i)

Tgi(t, x
i, yi, M i, Pq+i, Sq+i)

)

+ η2

i (D+

xi
vii)

Tf∗∗

i + η2

q+i(D
+

yi
vq+i,q+i)

Tg∗∗i

+ 2ηiηq+i

(
µi(D

+

xi
vi,q+i)

Tf∗∗

i + (D+

yi
vi,q+i)

Tg∗∗i

)}

+ 2

q
∑

i=1

q
∑

j=2

j>i

{

ηiηj

(

D+

t vij + (D+

xi
vij)

Tfi(t, x, y, Pi, Si)

+ (D+

xj
vij)

Tfj(t, x, y, Pj , Sj)
)

+ ηq+iηq+j

(

µiµjD
+

t vq+i,q+j

+ µj(D
+

yj
vq+i,q+j)

Tgi(t, x, y, M, Pq+i, Sq+i)

+ µi(D
+

yj
vq+i,q+j)

Tgj(t, x, y, M, Pq+j , Sq+j)
)}

+ 2

q
∑

i=1

q
∑

j=1

j �=i

ηiηq+j

{

µjD
+

t vi,q+j + µj(D
+

xi
vi,q+j)

Tfi(t, x, y, Pi, Si)

+ (D+

yj
vi,q+j)

Tgj(t, x, y, M, Pq+j , Sq+j)
}

≤

q
∑

i=1

{

ρ1i(P, S) + ρ3i(P, S) + ρ9i(P, S) + µi(ρ4i(P, S)

+ ρ10i(P, S)
}

ϕ2

i (xi) +

q∑

i=1

{

ρ2i(P, S) + ρ5i(P, S) + ρ11,i(P, S)

+ µi

(

ρ6i(P, S) + ρ12(P, S) +

( q
∑

j=2

j>i

µj

)

ρ13,i(P, S)

)}

ψ2

i (yi)

+

q
∑

i=1

{ρ7i(P, S) + µiρ8i(P, S)}ϕi(xi)ψi(yi)

+ 2

q∑

i=1

q∑

j=2

j>i

{ρ1ij(P, S) + µiρ2ij(P, S)}ϕi(xi)ϕj(xj)

+ 2

q
∑

i=1

q
∑

j=2

j>i

{ρ3ij(P, S) + µiρ4ij(P, S) + µiµjρ5ij(P, S)}ψi(yi)ψj(yj)
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+ (D+

yi
vi,q+i)

Tgi(t, x
i, yi, M i, Pq+i, Sq+i)

)

+ η2

i (D+

xi
vii)

Tf∗∗

i + η2

q+i(D
+

yi
vq+i,q+i)

Tg∗∗i

+ 2ηiηq+i

(
µi(D

+

xi
vi,q+i)

Tf∗∗

i + (D+

yi
vi,q+i)

Tg∗∗i

)}

+ 2

q
∑

i=1

q
∑

j=2

j>i

{

ηiηj

(

D+

t vij + (D+

xi
vij)

Tfi(t, x, y, Pi, Si)

+ (D+

xj
vij)

Tfj(t, x, y, Pj , Sj)
)

+ ηq+iηq+j

(

µiµjD
+

t vq+i,q+j

+ µj(D
+

yj
vq+i,q+j)

Tgi(t, x, y, M, Pq+i, Sq+i)

+ µi(D
+

yj
vq+i,q+j)

Tgj(t, x, y, M, Pq+j , Sq+j)
)}

+ 2

q
∑

i=1

q
∑

j=1

j �=i

ηiηq+j

{

µjD
+

t vi,q+j + µj(D
+

xi
vi,q+j)

Tfi(t, x, y, Pi, Si)

+ (D+

yj
vi,q+j)

Tgj(t, x, y, M, Pq+j , Sq+j)
}

≤

q
∑

i=1

{

ρ1i(P, S) + ρ3i(P, S) + ρ9i(P, S) + µi(ρ4i(P, S)

+ ρ10i(P, S)
}

ϕ2

i (xi) +

q∑

i=1

{

ρ2i(P, S) + ρ5i(P, S) + ρ11,i(P, S)

+ µi

(

ρ6i(P, S) + ρ12(P, S) +

( q
∑

j=2

j>i

µj

)

ρ13,i(P, S)

)}

ψ2

i (yi)

+

q
∑

i=1

{ρ7i(P, S) + µiρ8i(P, S)}ϕi(xi)ψi(yi)

+ 2

q∑

i=1

q∑

j=2

j>i

{ρ1ij(P, S) + µiρ2ij(P, S)}ϕi(xi)ϕj(xj)

+ 2

q
∑

i=1

q
∑

j=2

j>i

{ρ3ij(P, S) + µiρ4ij(P, S) + µiµjρ5ij(P, S)}ψi(yi)ψj(yj)
184 5. SINGULARLY PERTURBED SYSTEMS

+ 2

q
∑

i=1

q
∑

j=1

j �=i

{ρ6ij(P, S) + µiρ7ij(P, S) + µiµjρ8ij(P, S)}ϕi(xi)ψj(yj)

= uTG(M, P, S)u.

Theorem 5.3.1 Let the perturbed motion equations (5.2.5) be such that

all conditions of Assumptions 5.3.1 and 5.3.2 are satisfied and

(a) matrix A(M) is positive definite for any µi ∈ (0, µ̃i1) and for

µi → 0, i = 1, 2, . . . , q;

(b) there exists a matrix G(M) which is negative definite for any µi ∈

(0, µ̃i2) and for µi → 0, i = 1, 2, . . . , q, such that for the matrix

G(M, P, S) determined in Proposition 5.3.2 the estimate

G(M, P, S) ≤ G(M), ∀ (M, P, S) ∈ M×P × S.

is satisfied.

Then the equilibrium state (xT, yT)T = 0 of system F is uniformly

asymptotically stable for any µi ∈ (0, µ̃i) and for µi → 0 on P × S,

where µ̃i = min {1, µ̃i1, µ̃i2}.

If, moreover, Ni1 ×Niy = Rni+mi, the functions ϕik, ψik, ϕi, ψi are of

class KR, then the equilibrium state (xT, yT)T = 0 of system F is uniformly

asymptotically stable in the whole for any µi ∈ (0, µ̃i) and for µi → 0 on

P × S.

Proof Under conditions of Assumption 5.3.1, Proposition 5.3.1 and con-

dition (a) of Theorem 5.3.1 the function v(t, x, y, M) is positive definite for

any µi ∈ (0, µ̃i1) and for µi → 0 it is decreasing on Nix × Niy. Con-

ditions of Assumption 5.3.2, Proposition 5.3.2 and condition (b) of Theo-

rem 5.3.1 imply that the expression D+v(t, x, y, M) is negative definite for

any µi ∈ (0, µ̃i2) and for µi → 0 for each (P, S) ∈ P × S.

These conditions are sufficient for uniform asymptotic stability of the

equilibrium state of system (5.2.5) for any µi ∈ (0, µ̃i) and for µi → 0

on M̃ × P × S since all conditions of Theorem 7 from Chapter 1 of the

monograph by Grujić, et al. [1] are satisfied.

In the case when Nix × Niy = Rni+mi , the function v(t, x, y, M) is

positive definite, decreasing and radially unbounded. This fact together

with the other conditions of the theorem prove the second statement.
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+ 2

q
∑

i=1

q
∑

j=1

j �=i

{ρ6ij(P, S) + µiρ7ij(P, S) + µiµjρ8ij(P, S)}ϕi(xi)ψj(yj)

= uTG(M, P, S)u.

Theorem 5.3.1 Let the perturbed motion equations (5.2.5) be such that

all conditions of Assumptions 5.3.1 and 5.3.2 are satisfied and

(a) matrix A(M) is positive definite for any µi ∈ (0, µ̃i1) and for

µi → 0, i = 1, 2, . . . , q;

(b) there exists a matrix G(M) which is negative definite for any µi ∈

(0, µ̃i2) and for µi → 0, i = 1, 2, . . . , q, such that for the matrix

G(M, P, S) determined in Proposition 5.3.2 the estimate

G(M, P, S) ≤ G(M), ∀ (M, P, S) ∈ M×P × S.

is satisfied.

Then the equilibrium state (xT, yT)T = 0 of system F is uniformly

asymptotically stable for any µi ∈ (0, µ̃i) and for µi → 0 on P × S,

where µ̃i = min {1, µ̃i1, µ̃i2}.

If, moreover, Ni1 ×Niy = Rni+mi, the functions ϕik, ψik, ϕi, ψi are of

class KR, then the equilibrium state (xT, yT)T = 0 of system F is uniformly

asymptotically stable in the whole for any µi ∈ (0, µ̃i) and for µi → 0 on

P × S.

Proof Under conditions of Assumption 5.3.1, Proposition 5.3.1 and con-

dition (a) of Theorem 5.3.1 the function v(t, x, y, M) is positive definite for

any µi ∈ (0, µ̃i1) and for µi → 0 it is decreasing on Nix × Niy. Con-

ditions of Assumption 5.3.2, Proposition 5.3.2 and condition (b) of Theo-

rem 5.3.1 imply that the expression D+v(t, x, y, M) is negative definite for

any µi ∈ (0, µ̃i2) and for µi → 0 for each (P, S) ∈ P × S.

These conditions are sufficient for uniform asymptotic stability of the

equilibrium state of system (5.2.5) for any µi ∈ (0, µ̃i) and for µi → 0

on M̃ × P × S since all conditions of Theorem 7 from Chapter 1 of the

monograph by Grujić, et al. [1] are satisfied.

In the case when Nix × Niy = Rni+mi , the function v(t, x, y, M) is

positive definite, decreasing and radially unbounded. This fact together

with the other conditions of the theorem prove the second statement.
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Remark 5.3.1 From the condition of matrix A(M) positive definiteness

and matrix G(M) negative definiteness the values µ̃i1 and µ̃i2 are deter-

mined respectively, since µ̃i = min {1, µ̃i1, µ̃i2} is the lower estimate of

the upper bound of the admissible µi so that M̃ = {M : 0 < µi < µ̃i,

i = 1, 2, . . . , q}.

Example 5.3.1 Consider nonlinear and nonstationary 8-th order system

consisting of two interconnected 4-th order subsystems described by the

equations

(5.3.5)

dxi

dt
= (1 + sin2 t)(−x3

i + 0.1 y3

i ) + 0.2si1(t)y
3

j cos2 t,

µi

dyi

dt
= (1 + sin2 t)(−y3

i + 0.1 µix
3

i ) + 0.2s2+i,1(t)x
3

j cos2 t,

i, j = 1, 2, i �= j,

where xi = (xi1, xi2)
T ∈ R2, yi = (yi1, yi2)

T ∈ R2, M = diag {µ1, µ2},

M = {M : 0 < µi ≤ 1, i = 1, 2}, sij(t) ∈ [0, 1], i = 1, 2, 3, 4, j = 1, 2

and

Si =

(
1 0 si1(t) 0

0 1 0 si1(t)

)

, i = 1, 2, 3, 4.

For system (5.3.5) the elements of the matrix–function (5.3.2) are taken

as follows

vii(xi) = x2

i , v2+i,2+i(yi) = µiy
2

i , vij = v2+i,2+j = vi,2+j = 0

vi,2+i(xi, yi) = 0.1 µixiyi, i, j = 1, 2, i �= j.

Let ηT = (1, 1, 1, 1). Then the matrix

A(M) =

(
A11 A12(M)

A12(M) A22(M)

)

,

where

A11 = diag (1, 1), A22(M) = diag (µ1, µ2),

A12(M) = diag (−0.1 µ1, −0.1 µ2),

is positive definite for any µi ∈ (0, 1] and for µi → 0, i = 1, 2.
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Remark 5.3.1 From the condition of matrix A(M) positive definiteness

and matrix G(M) negative definiteness the values µ̃i1 and µ̃i2 are deter-

mined respectively, since µ̃i = min {1, µ̃i1, µ̃i2} is the lower estimate of

the upper bound of the admissible µi so that M̃ = {M : 0 < µi < µ̃i,

i = 1, 2, . . . , q}.

Example 5.3.1 Consider nonlinear and nonstationary 8-th order system

consisting of two interconnected 4-th order subsystems described by the

equations

(5.3.5)

dxi

dt
= (1 + sin2 t)(−x3

i + 0.1 y3

i ) + 0.2si1(t)y
3

j cos2 t,

µi

dyi

dt
= (1 + sin2 t)(−y3

i + 0.1 µix
3

i ) + 0.2s2+i,1(t)x
3

j cos2 t,

i, j = 1, 2, i �= j,

where xi = (xi1, xi2)
T ∈ R2, yi = (yi1, yi2)

T ∈ R2, M = diag {µ1, µ2},

M = {M : 0 < µi ≤ 1, i = 1, 2}, sij(t) ∈ [0, 1], i = 1, 2, 3, 4, j = 1, 2

and

Si =

(
1 0 si1(t) 0

0 1 0 si1(t)

)

, i = 1, 2, 3, 4.

For system (5.3.5) the elements of the matrix–function (5.3.2) are taken

as follows

vii(xi) = x2

i , v2+i,2+i(yi) = µiy
2

i , vij = v2+i,2+j = vi,2+j = 0

vi,2+i(xi, yi) = 0.1 µixiyi, i, j = 1, 2, i �= j.

Let ηT = (1, 1, 1, 1). Then the matrix

A(M) =

(
A11 A12(M)

A12(M) A22(M)

)

,

where

A11 = diag (1, 1), A22(M) = diag (µ1, µ2),

A12(M) = diag (−0.1 µ1, −0.1 µ2),

is positive definite for any µi ∈ (0, 1] and for µi → 0, i = 1, 2.186 5. SINGULARLY PERTURBED SYSTEMS

The elements of the matrix G(M) are of the form

σii(M) = −2 + 0.26 µi, i = 1, 2;

σ2+i,2+i(M) = −1.8 + 0.06 µi, i = 1, 2;

σi,2+i(M) = 0, i = 1, 2; σij(M) = σ2+i,2+j(M) = 0.01µi,

σi,2+j(M) = 0.2(1 + µi), i, j = 1, 2, i �= j.

Moreover, the matrix G(M) is negative definite for any µi ∈ (0, 1] and

for µi → 0, i = 1, 2. Therefore, by Theorem 5.3.1 the equilibrium state

(xT, yT)T = 0 ∈ R8 of system (5.3.5) is uniformly asymptotically stable in

the whole on M×S, , where x = (xT
1
, xT

2
)T ∈ R4, y = (yT

1
, yT

2
)T ∈ R4,

S =

{

S : S = diag (S1, S2, S3, S4),

(
1 0 0 0
0 1 0 0

)

≤ Si ≤

(
1 0 1 0
0 1 0 1

)

, i = 1, 2, 3, 4

}

.

5.3.2 Uniform time scaling In the case of uniform time scaling the

system (5.2.5) is represented as

(5.3.6)

dxi

dt
= fi(t, x, 0, Pi, Si) + f∗

i , i = 1, 2, . . . , q,

µ1

dyi

dt
= τigi(α, b, y, 0, Pq+i, Sq+i) + τig

∗

i , i = 1, 2, . . . , r,

where

f∗

i = fi(t, x, y, Pi, Si) − fi(t, x, 0, Pi, Si),

g∗i = gi(t, x, y, M, Pq+i, Sq+i) − gi(α, b, y, 0, Pq+i, Sq+i),

and

τi ∈ [τ i, τ i], 0 < τ i < τ i < +∞, τ
1

= τ1 = τ1 = 1.

To study system (5.3.6) we make some assumptions.
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The elements of the matrix G(M) are of the form

σii(M) = −2 + 0.26 µi, i = 1, 2;

σ2+i,2+i(M) = −1.8 + 0.06 µi, i = 1, 2;

σi,2+i(M) = 0, i = 1, 2; σij(M) = σ2+i,2+j(M) = 0.01µi,

σi,2+j(M) = 0.2(1 + µi), i, j = 1, 2, i �= j.

Moreover, the matrix G(M) is negative definite for any µi ∈ (0, 1] and

for µi → 0, i = 1, 2. Therefore, by Theorem 5.3.1 the equilibrium state

(xT, yT)T = 0 ∈ R8 of system (5.3.5) is uniformly asymptotically stable in

the whole on M×S, , where x = (xT
1
, xT

2
)T ∈ R4, y = (yT

1
, yT

2
)T ∈ R4,

S =

{

S : S = diag (S1, S2, S3, S4),

(
1 0 0 0
0 1 0 0

)

≤ Si ≤

(
1 0 1 0
0 1 0 1

)

, i = 1, 2, 3, 4

}

.

5.3.2 Uniform time scaling In the case of uniform time scaling the

system (5.2.5) is represented as

(5.3.6)

dxi

dt
= fi(t, x, 0, Pi, Si) + f∗

i , i = 1, 2, . . . , q,

µ1

dyi

dt
= τigi(α, b, y, 0, Pq+i, Sq+i) + τig

∗

i , i = 1, 2, . . . , r,

where

f∗

i = fi(t, x, y, Pi, Si) − fi(t, x, 0, Pi, Si),

g∗i = gi(t, x, y, M, Pq+i, Sq+i) − gi(α, b, y, 0, Pq+i, Sq+i),

and

τi ∈ [τ i, τ i], 0 < τ i < τ i < +∞, τ
1

= τ1 = τ1 = 1.

To study system (5.3.6) we make some assumptions.
5.3 STABILITY ANALYSIS 187

Assumption 5.3.3 There exist

(1) open connected neighborhoods Nix ⊆ Rni and Njy ⊆ Rmj of the

states xi = 0 and yj = 0 respectively;

(2) functions ϕik : Nix → R+, ψjk : Njy → R+, i = 1, 2, . . . , q, j =

1, 2, . . . , r, q + r = s, k = 1, 2, ϕik, ψjk are of class K (KR);

(3) constants αip, αip, αq+j,q+l, αq+j,q+l, αi,q+j , αi,q+j , i, p =

1, 2, . . . , q, j, l = 1, 2, . . . , r, q + r = s, and matrix–function

(5.3.7) U(t, x, y, µ1) =

(
U11(t, x) µ1U12(t, x, y)

µ1U
T
12

(t, x, y) µ1U22(t, y)

)

,

where

U11(t,x) = [vip(t, xi, xp)], vip = vpi, i, p = 1, 2, . . . , q;

U22(t, y) = [vq+i,q+l(t, yj , yl)], vq+j,q+l = vq+l,q+j , j, l = 1, 2, . . . , r;

U12(t, x, y) = [vi,q+j(t, xi, yj)], i = 1, 2, . . . , q, j = 1, 2, . . . , r,

whose elements satisfy the estimates

(a) αipϕi1(xi)ϕp1(xp) ≤ vip(t, xi, xp) ≤ αipϕi2(xi)ϕp2(xp),

∀ (t, xi, xp) ∈ R ×Nix ×Npx, i, p = 1, 2, . . . , q, i ≤ p;

(b) αq+j,q+lψj1(yj)ψl1(yl) ≤ vq+i,q+l(t, yj , yl) ≤ αq+j,q+lψj2(yj)

×ψl2(yl), ∀ (t, yj, yl) ∈ R ×Njy ×Nly, (j ≤ l) ∈ [1, r];

(c) αi,q+jϕi1(xi)ψj1(yj) ≤ vi,q+j(t, xi, yj) ≤ αi,q+jϕi2(xi)ψj2(yj)

∀ (t, xi, yj) ∈ R×Nix×Njy, i = 1, 2, . . . , q, j = 1, 2, . . . , r, q+r = s.

Matrix–function (5.3.7) and constant vector η ∈ Rs
+ allow us to con-

struct an auxiliary function

(5.3.8) v(t, x, y, µ1) = ηTU(t, x, y, µ1)η.

Alongside function (5.3.8) we consider the expression of the upper right

Dini derivative

(5.3.9) D+v(t, x, y, µ1) = ηTD+U(t, x, y, µ1)η,

where

D+U(t, x, y, µ1)
def
=

(
D+U11(t, x) µ1D

+U12(t, x, y)

µ1D
+UT

12(t, x, y) µ1D
+U22(t, y)

)

,

D+U11 = [D+vip(t, ·)], D+U12 = [D+vij(t, ·)],

D+U22 = [D+vjl(t, ·)], i, p = 1, 2, . . . , q; j, l = 1, 2, . . . , r; q + r = s.
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Assumption 5.3.3 There exist

(1) open connected neighborhoods Nix ⊆ Rni and Njy ⊆ Rmj of the

states xi = 0 and yj = 0 respectively;

(2) functions ϕik : Nix → R+, ψjk : Njy → R+, i = 1, 2, . . . , q, j =

1, 2, . . . , r, q + r = s, k = 1, 2, ϕik, ψjk are of class K (KR);

(3) constants αip, αip, αq+j,q+l, αq+j,q+l, αi,q+j , αi,q+j , i, p =

1, 2, . . . , q, j, l = 1, 2, . . . , r, q + r = s, and matrix–function

(5.3.7) U(t, x, y, µ1) =

(
U11(t, x) µ1U12(t, x, y)

µ1U
T
12

(t, x, y) µ1U22(t, y)

)

,

where

U11(t,x) = [vip(t, xi, xp)], vip = vpi, i, p = 1, 2, . . . , q;

U22(t, y) = [vq+i,q+l(t, yj , yl)], vq+j,q+l = vq+l,q+j , j, l = 1, 2, . . . , r;

U12(t, x, y) = [vi,q+j(t, xi, yj)], i = 1, 2, . . . , q, j = 1, 2, . . . , r,

whose elements satisfy the estimates

(a) αipϕi1(xi)ϕp1(xp) ≤ vip(t, xi, xp) ≤ αipϕi2(xi)ϕp2(xp),

∀ (t, xi, xp) ∈ R ×Nix ×Npx, i, p = 1, 2, . . . , q, i ≤ p;

(b) αq+j,q+lψj1(yj)ψl1(yl) ≤ vq+i,q+l(t, yj , yl) ≤ αq+j,q+lψj2(yj)

×ψl2(yl), ∀ (t, yj, yl) ∈ R ×Njy ×Nly, (j ≤ l) ∈ [1, r];

(c) αi,q+jϕi1(xi)ψj1(yj) ≤ vi,q+j(t, xi, yj) ≤ αi,q+jϕi2(xi)ψj2(yj)

∀ (t, xi, yj) ∈ R×Nix×Njy, i = 1, 2, . . . , q, j = 1, 2, . . . , r, q+r = s.

Matrix–function (5.3.7) and constant vector η ∈ Rs
+ allow us to con-

struct an auxiliary function

(5.3.8) v(t, x, y, µ1) = ηTU(t, x, y, µ1)η.

Alongside function (5.3.8) we consider the expression of the upper right

Dini derivative

(5.3.9) D+v(t, x, y, µ1) = ηTD+U(t, x, y, µ1)η,

where

D+U(t, x, y, µ1)
def
=

(
D+U11(t, x) µ1D

+U12(t, x, y)

µ1D
+UT

12(t, x, y) µ1D
+U22(t, y)

)

,

D+U11 = [D+vip(t, ·)], D+U12 = [D+vij(t, ·)],

D+U22 = [D+vjl(t, ·)], i, p = 1, 2, . . . , q; j, l = 1, 2, . . . , r; q + r = s.188 5. SINGULARLY PERTURBED SYSTEMS

Proposition 5.3.3 Under conditions of Assumption 5.3.3 the function

(5.3.8) satisfies the bilateral estimate

uT

1
A(µ1)u1 ≤ v(t, x, y, µ1) ≤ uT

2
B(µ1)u2,

∀ (t, x, y, µ1) ∈ R ×Nx ×Ny ×M,

where

uT

1 = (ϕ11(x1), . . . , ϕq1(xq), ψ11(y1), . . . , ψr1(yr)),

uT

2 = (ϕ12(x1), . . . , ϕq2(xq), ψ12(y1), . . . , ψr2(yr)),

A(µ1) = HTA1(µ1)H, B(µ1) = HTA2(µ1)H, H = diag {η1, . . . , ηs},

A1(µ1) =

(
A11 µ1A12

µ1A
T
12 µ1A22

)

, A2(µ1) =

(
A11 µ1A12

µ1A
T

12 µ1A22

)

,

A11 = [αip], αip = αpi, A11 = [αip], αip = αpi,

A22 = [αq+j,q+l], αq+j,q+l = αq+l,q+j ,

A22 = [αq+j,q+l], αq+j,q+l = αq+l,q+j ,

A12 = [αi,q+j ], A12 = [αi,q+j ],

i, p = 1, 2, . . . , q, j, l = 1, 2, . . . , r, q + r = s.

The proof of Proposition 5.3.3 is similar to that of Proposition 5.3.1.

Proposition 5.3.4 If in Proposition 5.3.3 the matrices A11 and A22

are positive definite, then the function (5.3.8) is positive definite for any

µ1 ∈ (0, µ∗

1) and for µ1 → 0, where

µ∗

1
= min

{

1,
λm(A∗

11
)λm(A∗

22
)

λM (A∗

12
A∗T

12
)

}

,

A∗

11
= HT

1
A11H1, A∗

22
= HT

2
A22H2, A∗

12
= H1A12H2,

H1 = diag {η1, η2, . . . , ηq}, H2 = diag {ηq+1, ηq+2, . . . , ηs}.

Proposition 5.3.4 is proved by the immediate testing.
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Assumption 5.3.4 There exist

(1) open connected neighborhoods Nix ⊆ Rni and Njy ⊆ Rmj of the

states x + i = 0 and yj = 0 respectively;

(2) functions ϕi, ψj of class K (KR), i = 1, 2, . . . , q, j = 1, 2, . . . , r;

(3) functions vip = vpi, vq+j,q+l = vq+l,q+j , vi,q+j , i, p = 1, 2, . . . , r,

j, l = 1, 2, . . . , r, which satisfy the conditions of Assumption 5.3.3,

and

(a) vip(t, xi, xp) ∈ C on (R×Nix0×Npx0) or on (R×Rni ×Rnp);

(b) vq+i,q+l(t, yj , yl) ∈ C on (R×Njy0×Nly0) or on (R×Rmj ×

Rml);

(c) vi,q+j(t, xi, yj) ∈ C on (R ×Nix0 ×Njy0) or on (R × Rni ×

Rmj );

(4) real numbers ραi(P, S), ραip(P, S), ρα,q+j(P, S), ρα,q+j,q+l(P, S),

ρβ,,i,q+j(P, S), α = 1, 2, 3, β = 1, 2, i, p = 1, 2, . . . , q, j, l =

1, 2, . . . , r, q + r = s and

(a) η2

i D+

t vii + η2

i (D+
xi

vii)
Tfi(t, x, 0, Pi, Si) ≤ ρ1i(P, S)ϕ2

i (xi)

+

q
∑

p=1

p�=i

ρ1ip(P, S)ϕi(xi)ϕp(xp),

∀ (t, xi, P, S) ∈ R ×Nix0 × P × S, i = 1, 2, . . . , q;

(b) η2

q+jµ1D
+

t vq+j,q+j

+ η2
q+jτj(D

+
yj

vq+j,q+j)
Tgj(α, ,

¯
y, 0, Pq+j, Sq+j)

≤ ρ1,q+j(P, S)ψ2

j (yj) +

r∑

l=1
l�=j

ρ1,q+j,q+l(P, S)ψj(yj)ψl(yl),

∀ (t, yj , µj , P, S) ∈ R ×Njy0 ×M×P × S, j = 1, 2, . . . , r;

(c)

q
∑

i=1

η2

i (D+

xi
vii)

Tf∗

i +

r∑

j=1

η2

q+jτj(D
+

yj
vq+j,q+j)

Tg∗j

+ 2

q
∑

i=1

q
∑

p=2

p>i

ηiηp

{

D+

t vip + (D+

xi
vip)

Tfi(t, x, y, Pi, Si)

+ (D+
xp

vip)
Tfp(t, x, y, Pp, Sp)

}
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Assumption 5.3.4 There exist

(1) open connected neighborhoods Nix ⊆ Rni and Njy ⊆ Rmj of the

states x + i = 0 and yj = 0 respectively;

(2) functions ϕi, ψj of class K (KR), i = 1, 2, . . . , q, j = 1, 2, . . . , r;

(3) functions vip = vpi, vq+j,q+l = vq+l,q+j , vi,q+j , i, p = 1, 2, . . . , r,

j, l = 1, 2, . . . , r, which satisfy the conditions of Assumption 5.3.3,

and

(a) vip(t, xi, xp) ∈ C on (R×Nix0×Npx0) or on (R×Rni ×Rnp);

(b) vq+i,q+l(t, yj , yl) ∈ C on (R×Njy0×Nly0) or on (R×Rmj ×

Rml);

(c) vi,q+j(t, xi, yj) ∈ C on (R ×Nix0 ×Njy0) or on (R × Rni ×

Rmj );

(4) real numbers ραi(P, S), ραip(P, S), ρα,q+j(P, S), ρα,q+j,q+l(P, S),

ρβ,,i,q+j(P, S), α = 1, 2, 3, β = 1, 2, i, p = 1, 2, . . . , q, j, l =

1, 2, . . . , r, q + r = s and

(a) η2

i D+

t vii + η2

i (D+
xi

vii)
Tfi(t, x, 0, Pi, Si) ≤ ρ1i(P, S)ϕ2

i (xi)

+

q
∑

p=1

p�=i

ρ1ip(P, S)ϕi(xi)ϕp(xp),

∀ (t, xi, P, S) ∈ R ×Nix0 × P × S, i = 1, 2, . . . , q;

(b) η2

q+jµ1D
+

t vq+j,q+j

+ η2
q+jτj(D

+
yj

vq+j,q+j)
Tgj(α, ,

¯
y, 0, Pq+j, Sq+j)

≤ ρ1,q+j(P, S)ψ2

j (yj) +

r∑

l=1
l�=j

ρ1,q+j,q+l(P, S)ψj(yj)ψl(yl),

∀ (t, yj , µj , P, S) ∈ R ×Njy0 ×M×P × S, j = 1, 2, . . . , r;

(c)

q
∑

i=1

η2

i (D+

xi
vii)

Tf∗

i +

r∑

j=1

η2

q+jτj(D
+

yj
vq+j,q+j)

Tg∗j

+ 2

q
∑

i=1

q
∑

p=2

p>i

ηiηp

{

D+

t vip + (D+

xi
vip)

Tfi(t, x, y, Pi, Si)

+ (D+
xp

vip)
Tfp(t, x, y, Pp, Sp)

}
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+ 2

r∑

j=1

r∑

l=2
l>j

ηq+jηq+l

{

µ1D
+

t vq+j,q+l

+ τj(D
+
yj

vq+j,q+l)
Tgj(t, x, y, M, Pq+j , Sq+j)

+ τl(D
+
yl

vq+j,q+l)
Tgl(t, x, y, M, Pq+l, Sq+l)

}

+2

q
∑

i=1

r∑

j=1

ηiηq+j

{

µiD
+

t vv,q+j+µ1(dxvi,q+j)
Tfi(t, x, y, Pi, Si)

+ τj(D
+
yj

vi,q+j)
Tgj(t, x, y, M, Pq+j , Sq+j)

}

≤

q∑

i=1

(ρ2i(P, S) + µ1ρ3i(P, S))ϕ2

i (xi)

+

r∑

j=1

(ρ2,q+i(P, S) + µ1ρ3,q+j(P, S))ψ2

j (yj)

+ 2

q
∑

i=1

q
∑

p=2

p>i

(ρ2ip(P, S) + µ1ρ3ip(P, S))ϕi(xi)ϕp(xp)

+2

r∑

j=1

r∑

l=2
l>j

(ρ2,q+j,q+l(P, S) + µ1ρ3,q+j,q+l(P, S))ψj(yj)ψl(yl)

+

q
∑

i=1

r∑

j=1

(ρ1,i,q+j(P, S) + µ1ρ2,i,q+j(P, S))ϕi(xi)ψj(yj),

∀ (t, xi, yj , M, P, S) ∈ R ×Nix0
×Njy0

×M×P × S.

Proposition 5.3.5 Under all conditions of Assumption 5.3.4 for the

expression (5.3.9) the estimate

D+v(t, x, y, µ1) ≤ uTCu + µ1u
TGu,

∀ (t, x, y, µ1, P, S) ∈ R ×Nx0
×Ny0

×M×P × S, ∀ τj ∈ [τ j , τ j ],

holds, where

uT = (ϕ1(x1), . . . , ϕq(xq), ψ1(y1), . . . , ψr(yr)),

C[cij ], cij = cji, G = [σij ], σijσji, i, j ∈ [1, s],

cip = ρ1ip(P , S) + ρ2ip(P , S), σip = ρ3ip(P , S), i, p ∈ [1, q], p > i,

cq+j,q+j = ρ1,q+j(P , S) + ρ2,q+j(P , S),
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σq+j,q+j = ρ3,q+j(P , S), j = 1, 2, . . . , r,

cq+j,q+l = ρ1,q+j,q+l(P , S) + ρ2,q+j,q+l(P , S),

σq+j,q+l = ρ3,q+j,q+l(P , S), j, l = 1, 2, . . . , r, j > l,

ci,q+j = ρ1,i,q+j(P , S), σi,q+j = ρ2,i,q+j(P , S),

i = 1, 2, . . . , q, j = 0. r, q + r = s.

Here P , S ∈ S are constant matrices such that

ραi(P, S) ≤ ραi(P , S), ραip(P, S) ≤ ραip(P , S),

ρα,q+j(P, S) ≤ ρα,q+j(P , S), ρα,q+j,q+l(P, S) ≤ ρα,qj ,q+l(P , S),

ρβ,i,q+i(P, S) ≤ ρβ,i,q+i(P , S), α = 1, 2, 3, β = 1, 2,

i, p = 1, 2, . . . , q, j, l = 1, 2, . . . , r, q + r = s.

Proof of Proposition 5.3.5 is similar to that of Proposition 5.3.2.

Proposition 5.3.6 If in Proposition 5.3.5 the matrix C is negative-

definite and λM (G) > 0 , then the expression D+v(t, x, y, µ1) defined by

(5.3.9) is negative-definite for any µ1 ∈ (0, µ∗∗

1
) and for µ1 → 0 where

µ∗∗

1 = min

{

1, −
λM (C)

λM (G)

}

.

The proof of Proposition 5.3.6 follows from the analysis of the inequality

D+v(t, x, y, µ1) ≤ uTCu + µ1u
TGu ≤ (λM (C) + µ1λM (G))�u�2.

Remark 5.3.2 If in Proposition 5.3.6 λM (G) ≤ 0 , then expression

(5.3.9) is negative definite for any µ1 ∈ (0, 1] and for µ1 → 0.

Theorem 5.3.2 Let the perturbed motion equations (5.3.6) be such that

all conditions of Assumptions 5.3.3 and 5.3.4 are satisfied and

(1) matrices A11 and A22 are positive definite;

(2) matrix C is negative definite;

(3) µ1 ∈ (0, µ̃1), µi = µ1τ
−1

i , τi ∈ [τ i, τ i], i ∈ [1, r] where µ̃1 =

min{µ∗

1
, µ∗∗

1
}.
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Then the equilibrium state (xT, yT)T = 0 of system (5.3.6) is uniformly

asymptotically stable on M̃ × P × S.

If all conditions of the theorem are satisfied for Nix×Njy = Rni+mj and

functions ϕi, ψj are of class KR, then the equilibrium state (xT, yT)T = 0

of system (5.3.6) is uniformly asymptotically stable in the whole on M̃ ×

P × S, where M̃ = {M : 0 < µ1 < µ̃1, µi = µ1τ
−1

i , τi ∈ [τ i, τ i], i =

1, 2, . . . , r}.

Proof Under conditions of Assumption 5.3.3, Proposition 5.3.3 and con-

ditions (1) and (3) of Theorem 5.3.2 the function v(t, x, y, µ1) is positive

definite on M̃ and decreasing on Nx×Ny. Conditions of Assumption 5.3.4,

Proposition 5.3.5 and conditions (2) and (3) of Theorem 5.3.2 imply that

the expression D+v(t, x, y, µ1) is negative definite on M̃ × P × S.

These conditions are sufficient for uniform asymptotic stability of the

equilibrium state (xT, yT)T = 0 of system (5.3.6) on M̃ × P × S.

In the case when Nix × Njy = Rni+mj the function v(t, x, y, µ1) is

positive definite, decreasing and radially unbounded. This fact together

with the other conditions of Theorem 5.3.2 prove its second assertion.

Example 5.3.2 Consider nonstationary 4-th order system consisting of

two interconnected 2-nd order subsystems

(5.3.10)

dxi

dt
=

1

1 + cos2 t

{

−
1 − sin 2t

2
xi + 0.02 Si1yi + 0.03 Si2yj

}

,

µi

dyi

dt
=

1

1 + cos2 t

{

−
4 − µj sin 2t

2
yi

+ 0.01µi(Sq+i,1xi + Sq+i,2xj)

}

,

i, j = 1, 2; i �= j,

where t, xi, yi ∈ R, M = {M : 0 < µi < 1, i = 1, 2}, M = diag {µ1, µ2},

τ
2

= 1

2
, τ2 = 1, so that τ2 ∈ [1

2
, 1], Sij = Sij(t) ∈ [0, 1], i, j = 1, 2.

The elements of the matrix–function (5.3.10) are taken as follows

vii(t, xi) = (1 + cos2 t)x2

i , i = 1, 2,

v2+i,2+i(t, yi) = (1 + cos2 t)y2

i , i = 1, 2,

vip(t, xi, xp)v2+j,2+l(t, yj , yl) = 0, i, j, p, l = 1, 2,

vi,2+j(t, xi, yj) = 0.1(1 + cos2 t)xiyj, i, j = 1, 2.
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Then the equilibrium state (xT, yT)T = 0 of system (5.3.6) is uniformly

asymptotically stable on M̃ × P × S.

If all conditions of the theorem are satisfied for Nix×Njy = Rni+mj and

functions ϕi, ψj are of class KR, then the equilibrium state (xT, yT)T = 0

of system (5.3.6) is uniformly asymptotically stable in the whole on M̃ ×

P × S, where M̃ = {M : 0 < µ1 < µ̃1, µi = µ1τ
−1

i , τi ∈ [τ i, τ i], i =

1, 2, . . . , r}.

Proof Under conditions of Assumption 5.3.3, Proposition 5.3.3 and con-

ditions (1) and (3) of Theorem 5.3.2 the function v(t, x, y, µ1) is positive

definite on M̃ and decreasing on Nx×Ny. Conditions of Assumption 5.3.4,

Proposition 5.3.5 and conditions (2) and (3) of Theorem 5.3.2 imply that

the expression D+v(t, x, y, µ1) is negative definite on M̃ × P × S.

These conditions are sufficient for uniform asymptotic stability of the

equilibrium state (xT, yT)T = 0 of system (5.3.6) on M̃ × P × S.

In the case when Nix × Njy = Rni+mj the function v(t, x, y, µ1) is

positive definite, decreasing and radially unbounded. This fact together

with the other conditions of Theorem 5.3.2 prove its second assertion.

Example 5.3.2 Consider nonstationary 4-th order system consisting of

two interconnected 2-nd order subsystems

(5.3.10)

dxi

dt
=

1

1 + cos2 t

{

−
1 − sin 2t

2
xi + 0.02 Si1yi + 0.03 Si2yj

}

,

µi

dyi

dt
=

1

1 + cos2 t

{

−
4 − µj sin 2t

2
yi

+ 0.01µi(Sq+i,1xi + Sq+i,2xj)

}

,

i, j = 1, 2; i �= j,

where t, xi, yi ∈ R, M = {M : 0 < µi < 1, i = 1, 2}, M = diag {µ1, µ2},

τ
2

= 1

2
, τ2 = 1, so that τ2 ∈ [1

2
, 1], Sij = Sij(t) ∈ [0, 1], i, j = 1, 2.

The elements of the matrix–function (5.3.10) are taken as follows

vii(t, xi) = (1 + cos2 t)x2

i , i = 1, 2,

v2+i,2+i(t, yi) = (1 + cos2 t)y2

i , i = 1, 2,

vip(t, xi, xp)v2+j,2+l(t, yj , yl) = 0, i, j, p, l = 1, 2,

vi,2+j(t, xi, yj) = 0.1(1 + cos2 t)xiyj, i, j = 1, 2.
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Let ηT = (1, 1, 1, 1), . Then the matrices A11 = A22 = diag {1, 1} are

positive definite and the matrix

A(µ1) =

(
A11 µ1A12

µ1A
T
12 µ1A22

)

, where A12 =

(
−0.2 −0.2
−0.2 −0.2

)

,

is also positive definite for any µ1 ∈ (0, 1] and for µ1 → 0, , since µ∗

1 =

min{1, 2.5} = 1.

For such choice of the elements of matrix–function (5.3.7) we have

ρ1i = −1, i = 1, 2; ρ13 = −4; ρ14 = −1; ρ2j = 0, j = 1, 2, 3, 4;

ρ31(S) = 0.01(S31 + S42); ρ32(S) = 0.01(S32 + S42);

ρ33(S) = 0.002S11 + 0.003S22; ρ34(S) = 0.003S12 + 0.002S21;

ρ212(S) = 0; ρ312(S) = 0.01(S31 + S32 + S41 + S42);

ρ234(S) = 0; ρ334(S) = 0.002(S11 + S21) + 0.003(S12 + S22);

ρ113(S) = 0.2 + 0.04S11; ρ213(S) = 0.05 + 0.2S31;

ρ114(S) = 0.1 + 0.06S12; ρ214(S) = 0.05 + 0.1S42;

ρ123(S) = 0.2 + 0.06S22; ρ223(S) = 0.05 + 0.1S32;

ρ124(S) = 0.1 + 0.04S21; ρ224(S) = 0.05 + 0.1S41.

The matrices C and G consist of the elements

c11 = c22 = c44 = −1, c33 = −4, c12 = 0, c34 = 0,

c13 = 0.24, c14 = 0.16, c23 = 0.26, c24 = 0.14;

σ11 = 0.02, σ22 = 0.02, σ33 = 0.005, σ44 = 0.005,

σ12 = 0.04, σ34 = 0.01, σ13 = 0.25, σ14 = 0.15,

σ23 = 0.15, σ24 = 0.15.

Besides, the matrix C is negative definite and

µ∗∗

1 = min {1, 2, 1, . . . } = 1.

So, all conditions of Theorem 5.3.2 are satisfied, µ̃1 = min {µ∗

1
, µ∗∗

1
} = 1,

and therefore the equilibrium state of system (5.3.10) is uniformly asymp-

totically stable in the whole on M×S.
194 5. SINGULARLY PERTURBED SYSTEMS

5.4 Tests for Instability Analysis

5.4.1 Non-uniform time scaling Instability of solutions is considered

in two cases. First, we shall consider the case of nonuniform time scaling.

To this end we need the following assumptions and estimates.

Assumption 5.4.1 The inequalities of Assumption 5.3.2 hold true

when the inequality sign is reversed, i.e. ”≤” becomes ”≥”.

Proposition 5.4.1 Under conditions of Assumption 5.4.1 for the ex-

pression (5.3.9) the estimate

D+v(t, x, y, M) ≥ uTG(M, P, S)u,

∀ (t, x, y, M, P, S) ∈ R ×Nx0
×Ny0

×M×P × S,

holds true, where uT and G(M, P, S) are defined in the same way as in

Proposition 5.3.5.

The proof is similar to that of Proposition 5.3.5.

Theorem 5.4.1 Let the perturbed motion equations (5.2.5) be such that

all conditions of Assumptions 5.3.1 and 5.4.1 are satisfied and

(a) matrices A(M) and B(M) are positive definite for any µi ∈ (0, µ∗

i )

and for µi → 0, i = 1, 2, . . . , q, where µ∗

i = min {µi1, µi2};

(b) there exists a matrix G(M) which is positive definite for any µi ∈

(0, µi3) and for µi → 0, i = 1, 2, . . . , q, such that for the matrix

G(M, P, S) defined by Proposition 5.3.7 the extimate

G(M, P, S) ≥ G(M), ∀ (M, P, S) ∈ M×P × S.

is satisfied.

Then the equilibrium state (xT, yT)T = 0 of system (5.2.5) is unstable

for any µi ∈ (0, µi) and for µi → 0 on P × S, where

µi = min {1, µ∗

i , µi3}.

Proof We construct the scalar function v(t, x, y, M) in the same way as

in Section 5.3.1. Under the conditions of Assumption 5.3.1 and by condition
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5.4 Tests for Instability Analysis

5.4.1 Non-uniform time scaling Instability of solutions is considered

in two cases. First, we shall consider the case of nonuniform time scaling.

To this end we need the following assumptions and estimates.

Assumption 5.4.1 The inequalities of Assumption 5.3.2 hold true

when the inequality sign is reversed, i.e. ”≤” becomes ”≥”.

Proposition 5.4.1 Under conditions of Assumption 5.4.1 for the ex-

pression (5.3.9) the estimate

D+v(t, x, y, M) ≥ uTG(M, P, S)u,

∀ (t, x, y, M, P, S) ∈ R ×Nx0
×Ny0

×M×P × S,

holds true, where uT and G(M, P, S) are defined in the same way as in

Proposition 5.3.5.

The proof is similar to that of Proposition 5.3.5.

Theorem 5.4.1 Let the perturbed motion equations (5.2.5) be such that

all conditions of Assumptions 5.3.1 and 5.4.1 are satisfied and

(a) matrices A(M) and B(M) are positive definite for any µi ∈ (0, µ∗

i )

and for µi → 0, i = 1, 2, . . . , q, where µ∗

i = min {µi1, µi2};

(b) there exists a matrix G(M) which is positive definite for any µi ∈

(0, µi3) and for µi → 0, i = 1, 2, . . . , q, such that for the matrix

G(M, P, S) defined by Proposition 5.3.7 the extimate

G(M, P, S) ≥ G(M), ∀ (M, P, S) ∈ M×P × S.

is satisfied.

Then the equilibrium state (xT, yT)T = 0 of system (5.2.5) is unstable

for any µi ∈ (0, µi) and for µi → 0 on P × S, where

µi = min {1, µ∗

i , µi3}.

Proof We construct the scalar function v(t, x, y, M) in the same way as

in Section 5.3.1. Under the conditions of Assumption 5.3.1 and by condition
IT INSTABILITY ANALYSIS, 195

(a) of Theorem 5.3.3 the function v(t, x, y, M) is positive definite for any

µi ∈ (0, µ∗

i ) and for µi → 0, i = 1, 2, . . . , q, and admits infinitely small

upper limits on Nx × Ny. The conditions of Assumption 5.3.5, Proposi-

tion 5.3.7 and condition (b) of Theorem 5.3.3 imply that the expression

D+v(t, x, y, M) is a function being positive definite for any µi ∈ (0, µi3)

and for µi → 0, for every (P, S) ∈ P × S. These conditions are known

to be sufficient for instability of the equilibrium state of system (5.2.5) for

any µi ∈ (0, µi) and for µi → 0 on M×P × S.

Remark 5.4.1 By the condition of positive definiteness of the matrices

A(M), B(M) and G(M) the values µi1, µi2 and µi3 are determined re-

spectively, since µi = min {1, µi1, µi2, µi3} is the lower estimate of the

upper boundary of the admissible µi, so that M = {M : 0 < µi < µi, i =

1, 2, . . . , q}.

5.4.2 Uniform time scaling

Assumption 5.4.2 The inequalities of Assumption 5.3.4 hold when

the inequality sign is reversed, i.e. ”≤” becomes ”≥”.

Proposition 5.4.2 Under all conditions of Assumption 5.3.6 for the

expression (5.3.9) the estimate

D+v(t, x, y, µ1) ≥ uTCu + µ1u
TGu,

∀ (t, x, y, µ1, P, S) ∈ R ×Nx0
×Ny0

×M×P × S, ∀ τi ∈ [τ i, τ i],

takes place, where uT, C, and G are determined as in Proposition 5.3.5.

The proof is similar to that of Proposition 5.3.2.

Proposition 5.4.3 If in Proposition 5.4.2 the matrix C is positive de-

finite and λm(G) < 0, , then the expression D+v(t, x, y, µ1) is positive

definite for any µ1 ∈ (0, µ∗∗

1 ) and for µ1 → 0, where

µ∗∗

1
= min {1, −λm(C)λ−1

m (G)}.

The proof follows from the analysis of the inequality

D+v(t, x, y, µ1) ≥ uTCu + µ1u
TGu ≥ (λm(C) + µ1λm(G))�u�2.

Remark 5.4.1 If in Proposition 5.3.9 λm(G) ≥ 0, then the expression

D+v(t, x, y, µ1) is positive definite for any µ1 ∈ (0, 1] and for µ1 → 0.
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(a) of Theorem 5.3.3 the function v(t, x, y, M) is positive definite for any

µi ∈ (0, µ∗

i ) and for µi → 0, i = 1, 2, . . . , q, and admits infinitely small

upper limits on Nx × Ny. The conditions of Assumption 5.3.5, Proposi-

tion 5.3.7 and condition (b) of Theorem 5.3.3 imply that the expression

D+v(t, x, y, M) is a function being positive definite for any µi ∈ (0, µi3)

and for µi → 0, for every (P, S) ∈ P × S. These conditions are known

to be sufficient for instability of the equilibrium state of system (5.2.5) for

any µi ∈ (0, µi) and for µi → 0 on M×P × S.

Remark 5.4.1 By the condition of positive definiteness of the matrices

A(M), B(M) and G(M) the values µi1, µi2 and µi3 are determined re-

spectively, since µi = min {1, µi1, µi2, µi3} is the lower estimate of the

upper boundary of the admissible µi, so that M = {M : 0 < µi < µi, i =

1, 2, . . . , q}.

5.4.2 Uniform time scaling

Assumption 5.4.2 The inequalities of Assumption 5.3.4 hold when

the inequality sign is reversed, i.e. ”≤” becomes ”≥”.

Proposition 5.4.2 Under all conditions of Assumption 5.3.6 for the

expression (5.3.9) the estimate

D+v(t, x, y, µ1) ≥ uTCu + µ1u
TGu,

∀ (t, x, y, µ1, P, S) ∈ R ×Nx0
×Ny0

×M×P × S, ∀ τi ∈ [τ i, τ i],

takes place, where uT, C, and G are determined as in Proposition 5.3.5.

The proof is similar to that of Proposition 5.3.2.

Proposition 5.4.3 If in Proposition 5.4.2 the matrix C is positive de-

finite and λm(G) < 0, , then the expression D+v(t, x, y, µ1) is positive

definite for any µ1 ∈ (0, µ∗∗

1 ) and for µ1 → 0, where

µ∗∗

1
= min {1, −λm(C)λ−1

m (G)}.

The proof follows from the analysis of the inequality

D+v(t, x, y, µ1) ≥ uTCu + µ1u
TGu ≥ (λm(C) + µ1λm(G))�u�2.

Remark 5.4.1 If in Proposition 5.3.9 λm(G) ≥ 0, then the expression

D+v(t, x, y, µ1) is positive definite for any µ1 ∈ (0, 1] and for µ1 → 0.
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Theorem 5.4.2 Let the perturbed motion equations (5.2.5) be such that

all conditions of Assumptions 5.4.2 and 5.4.3 are satisfied and

(1) matrices A11, A22, Ā11, Ā22 and C are positive definite;

(2) µ1 ∈ (0, µ1), µi = µ1τ
−1

i , τi ∈ [τ i, τ i], i ∈ [1, r], where

µ1 = min {µ∗

1
, µ∗∗

1
, λM (Ā∗

11
)λM (Ā∗

22
)λ−1

M (Ā∗

12
Ā∗T

12
)},

Ā∗

11
= HT

1
Ā11H, Ā∗

22
= HT

2
Ā22H2, Ā∗

12
= H1Ā12H2,

H1 = diag {η1, η2, . . . , ηq}, H2 = diag {ηq+1, ηq+2, . . . , ηs}.

Then the equilibrium state (xT, yT)T = 0 of system (5.2.5) is unstable on

M×P × S, where M = {M : 0 < µ1 < µ1, µi = µ1τ
−1

i , i = 1, 2, . . . , q}.

The proof is similar to that of Theorem 5.2.2

5.5 Linear Systems

5.5.1 Non-uniform time scaling Consider the linear singularly per-

turbed system

(5.5.1)

dxi

dt
= Aixi +

q
�

l=1

(S1

ilAilxl + S2

ilA
′

ilyl), i = 1, 2, . . . , q,

µi

dyi

dt
= Biyi +

q
�

l=1

(µiS
1

q+i,lBilxl + S2

q+i,lB
′

ilyl), i = 1, 2, . . . , q,

where Ai, Si, Ail, A′

il, Bil and B′

il are constant matrices, all matrices and

vectors are of the corresponding order, and S1

il, S2

il, S1

q+i,l and S2

q+i,l are

diagonal matrices, µi ∈ (0, 1], ∀ i = 1, 2, . . . , q. Let

Si =








S1

i1 S1

i2 . . . S1

i,i−1
0 S1

i,i+1
. . . S1

iq

S2
i1 S2

i2 . . . S2
i,i−1

J S2
i,i+1

. . . S2
iq

S1

q+i,1 S1

q+i,2 . . . S1

q+i,i−1
J S1

q+i,i+1
. . . S1

q+i,q

S2

q+i,1 S2

q+i,2 . . . S2

q+i,i−1
J S2

q+i,i+1
. . . S2

q+i,q








,

i = 1, 2, . . . , q, S = diag {S1, S2, . . . , Sq}.
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Theorem 5.4.2 Let the perturbed motion equations (5.2.5) be such that

all conditions of Assumptions 5.4.2 and 5.4.3 are satisfied and

(1) matrices A11, A22, Ā11, Ā22 and C are positive definite;

(2) µ1 ∈ (0, µ1), µi = µ1τ
−1

i , τi ∈ [τ i, τ i], i ∈ [1, r], where

µ1 = min {µ∗

1
, µ∗∗

1
, λM (Ā∗

11
)λM (Ā∗

22
)λ−1

M (Ā∗

12
Ā∗T

12
)},

Ā∗

11
= HT

1
Ā11H, Ā∗

22
= HT

2
Ā22H2, Ā∗

12
= H1Ā12H2,

H1 = diag {η1, η2, . . . , ηq}, H2 = diag {ηq+1, ηq+2, . . . , ηs}.

Then the equilibrium state (xT, yT)T = 0 of system (5.2.5) is unstable on

M×P × S, where M = {M : 0 < µ1 < µ1, µi = µ1τ
−1

i , i = 1, 2, . . . , q}.

The proof is similar to that of Theorem 5.2.2

5.5 Linear Systems

5.5.1 Non-uniform time scaling Consider the linear singularly per-

turbed system

(5.5.1)

dxi

dt
= Aixi +

q
�

l=1

(S1

ilAilxl + S2

ilA
′

ilyl), i = 1, 2, . . . , q,

µi

dyi

dt
= Biyi +

q
�

l=1

(µiS
1

q+i,lBilxl + S2

q+i,lB
′

ilyl), i = 1, 2, . . . , q,

where Ai, Si, Ail, A′

il, Bil and B′

il are constant matrices, all matrices and

vectors are of the corresponding order, and S1

il, S2

il, S1

q+i,l and S2

q+i,l are

diagonal matrices, µi ∈ (0, 1], ∀ i = 1, 2, . . . , q. Let

Si =








S1

i1 S1

i2 . . . S1

i,i−1
0 S1

i,i+1
. . . S1

iq

S2
i1 S2

i2 . . . S2
i,i−1

J S2
i,i+1

. . . S2
iq

S1

q+i,1 S1

q+i,2 . . . S1

q+i,i−1
J S1

q+i,i+1
. . . S1

q+i,q

S2

q+i,1 S2

q+i,2 . . . S2

q+i,i−1
J S2

q+i,i+1
. . . S2

q+i,q








,

i = 1, 2, . . . , q, S = diag {S1, S2, . . . , Sq}.
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The structural set is defined as

S = {S : 0 ≤ Sk
jl ≤ J, S1

ii = S2

q+i,i = 0, S2

ii = S1

q+i,i = J,

i, l = 1, 2, . . . , q, j = 1, 2, . . . , 2q, k = 1, 2},

where J is an identity matrix of the corresponding dimensions.

The independent singularly perturbed subsystems corresponding to sys-

tem (5.4.1) are obtained by substitution by xi and yi for x and y

(5.5.2)

dxi

dt
= Aixi + A′

iiyi, ∀ i = 1, 2, . . . , q,

µi

dyi

dt
= Biyi + µiBiixi, ∀ i = 1, 2, . . . , q.

Construct matrix U(t, x) for system (5.5.1) with elements

(5.5.3)

vij(xi, xj) = vji(xi, xj) = xT

i Pijxj , i, j = 1, 2, . . . , q;

vi,q+j(xi, yj) = xT

i Pi,q+jyj, i, j = 1, 2, . . . , q, 2q = s;

vq+i,q+j(yi, yj) = vq+j,q+i(yi, yj) = yT

i Pq+i,q+jyj , i, j = 1, 2, . . . , q,

where Pii, Pq+i,q+j (i �= j), Pi,q+j are constant matrices.

For functions (5.5.3) the following estimates are satisfied

(a) λm(Pii)�xi�
2
≤ vii(xi) ≤ λM (Pii)�xi�

2, ∀xi ∈ Nix0
, i ∈ [1, q];

(b) λm(Pq+i,q+i)�yi�
2
≤ vq+i.q+i(yi) ≤ λM (Pq+i,q+i)�yi�

2,

∀ yi ∈ Niy0
, ∀ i = 1, 2, . . . , q;

(c) − l,
1/2

M (PijP
T

ij )�xi� �xj� ≤ vij(xi, xj) ≤ λ
1/2

M (PijP
T

ij )�xi� �xj�,

∀ (xi, xj) ∈ Nix0
×Njx0

, ∀ i, j = 1, 2, . . . , q, i �= j;

(5.4.4)

(d) − λ
1/2

M (Pq+i,q+j)P
T

q+i,q+j�yi� �yj� ≤ vq+i,q+j(yi, yj) ≤

λ
1/2

M (Pq+i,q+j)P
T

q+i,q+j�yi� �yj�, ∀ (yi, yj) ∈ Niy0
×Njy0

,

∀ i, j = 1, 2, . . . , q, i �= j;

(e) − λ
1/2

M (Pi,q+jP
T

i,q+j)�xi� �yj� ≤ vi,q+j(xi, yj) ≤

λ
1/2

M (Pi,q+jP
T

i,q+j)�xi� �yj�, ∀ (xi, yj) ∈ Nix0
×Njy0

,

i, j = 1, 2, . . . , q,
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The structural set is defined as

S = {S : 0 ≤ Sk
jl ≤ J, S1

ii = S2

q+i,i = 0, S2

ii = S1

q+i,i = J,

i, l = 1, 2, . . . , q, j = 1, 2, . . . , 2q, k = 1, 2},

where J is an identity matrix of the corresponding dimensions.

The independent singularly perturbed subsystems corresponding to sys-

tem (5.4.1) are obtained by substitution by xi and yi for x and y

(5.5.2)

dxi

dt
= Aixi + A′

iiyi, ∀ i = 1, 2, . . . , q,

µi

dyi

dt
= Biyi + µiBiixi, ∀ i = 1, 2, . . . , q.

Construct matrix U(t, x) for system (5.5.1) with elements

(5.5.3)

vij(xi, xj) = vji(xi, xj) = xT

i Pijxj , i, j = 1, 2, . . . , q;

vi,q+j(xi, yj) = xT

i Pi,q+jyj, i, j = 1, 2, . . . , q, 2q = s;

vq+i,q+j(yi, yj) = vq+j,q+i(yi, yj) = yT

i Pq+i,q+jyj , i, j = 1, 2, . . . , q,

where Pii, Pq+i,q+j (i �= j), Pi,q+j are constant matrices.

For functions (5.5.3) the following estimates are satisfied

(a) λm(Pii)�xi�
2
≤ vii(xi) ≤ λM (Pii)�xi�

2, ∀xi ∈ Nix0
, i ∈ [1, q];

(b) λm(Pq+i,q+i)�yi�
2
≤ vq+i.q+i(yi) ≤ λM (Pq+i,q+i)�yi�

2,

∀ yi ∈ Niy0
, ∀ i = 1, 2, . . . , q;

(c) − l,
1/2

M (PijP
T

ij )�xi� �xj� ≤ vij(xi, xj) ≤ λ
1/2

M (PijP
T

ij )�xi� �xj�,

∀ (xi, xj) ∈ Nix0
×Njx0

, ∀ i, j = 1, 2, . . . , q, i �= j;

(5.4.4)

(d) − λ
1/2

M (Pq+i,q+j)P
T

q+i,q+j�yi� �yj� ≤ vq+i,q+j(yi, yj) ≤

λ
1/2

M (Pq+i,q+j)P
T

q+i,q+j�yi� �yj�, ∀ (yi, yj) ∈ Niy0
×Njy0

,

∀ i, j = 1, 2, . . . , q, i �= j;

(e) − λ
1/2

M (Pi,q+jP
T

i,q+j)�xi� �yj� ≤ vi,q+j(xi, yj) ≤

λ
1/2

M (Pi,q+jP
T

i,q+j)�xi� �yj�, ∀ (xi, yj) ∈ Nix0
×Njy0

,

i, j = 1, 2, . . . , q,
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where λm(Pii) and λm(Pq+i,q+i) are minimal eigenvalues, λM (Pii) and

λM (Pq+i,q+i) are maximal eigenvalues of matrices Pii and Pq+i,q+i respec-

tively; λ
1/2

M (PijP
T

ij ), λ
1/2

M (Pq+i,q+jP
T

q+i,q+j) and λ
1/2

M (Pi,q+jP
T

i,q+j) are

norms of matrices Pij , Pq+i,q+j and Pi,q+j respectively.

When estimates (5.5.4) are satisfied for function (5.3.3) with elements

(5.5.3) the bilateral inequality

uTA(M)u ≤ v(x, y, M) ≤ uTB(M)u.

takes place.

Here matrices A(M) and B(M) are defined as in Proposition 5.3.1,

uT = (�x1�, �x2�, . . . , �xq�, �y1�, �y2�, . . . , �yq�),

αii = λm(Pii), αq+i,q+i = λm(Pq+i,q+i), αij = −λ
1/2

M (PijP
T

ij ),

αq+i,q+j = −λ
1/2

M (Pq+i,q+jP
T

q+i,q+j), αi,q+j = −λ
1/2

M (Pi,q+jP
T

i,q+j),

αii = λM (Pii), αq+i,q+i = λM (Pq+i,q+i), αij = −αij ,

αq+i,q+j = −αq+i,q+j , αi,q+j = −αi,q+j , ∀ i, j = 1, 2, . . . , q.

Let ηT = (1, 1, . . . , 1) ∈ Rs
+
, , then the expression of total derivative of

function (5.3.3) with elements (5.5.3) is

(5.5.5) DV (x, y, M) = zTC(S)z + zTG(M, S)z, ∀ (x, y) ∈ Rq
× Rq,

where

z = (xT

1
, xT

2
, . . . , xT

q , yT

1
, yT

2
, . . . , yT

q )T;

C(S) = [cij(S)], i, j = 1, 2, . . . , s;

G(M, S) = [σij(M, S)], i, j = 1, 2, . . . , s; s = 2q.

The elements of the matrix C(S) are

cii(S) = PiAi + AT

i Pii +
i−1∑

l=1

(
PT

li (S1

liAli)) + (S1

liAli)
TPli

)

+

q
∑

l=1

(
Pil(S

1

liAli) + (S1

liAli)
TPT

il

)
, i = 1, 2, . . . , q;
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cq+i,q+i(S) = Pq+i,q+iBi + BT

i Pq+i,q+i +

i−1∑

l=1

(
PT

q+l,q+i(S
2

q+l,iB
′

li)

+ (S2

q+l,iB
′

li)
TPq+l,q+i

)
+

q
∑

l=i

(
Pq+i,q+l(S

2

q+l,iB
′

li)

+ (S2

q+l,iB
′

li)
TPT

q+i,q+l

)
, i = 1, 2, . . . , q;

cij(S) = cji(S) = PijAj + AT

i Pij +
i−1∑

l=1

(
PT

li (S1

ljAlj)

+ (S1

ljAlj)
TPlj

)
+

j−1
∑

l=i

(
Pil(S

1

ljAlj) + (S1

liAli)
TPlj

)

+

q
∑

l=j

(
Pil(S

1

ljAlj) + (S1

liAli)
TPT

jl

)
, i, j = 1, 2, . . . , q, j > i;

cq+i,q+j(S) = cq+j,q+i(S) = 0, i, j = 1, 2, . . . , q, j > i;

ci,q+j(S) = Pi,q+jBj +

i−1∑

l=1

PT

li (S2

ljA
′

lj) +

q∑

l=i

Pil(S
2

ljA
′

lj)

+

q
∑

l=1

Pi,q+l(S
2

q+l,jB
′

lj), i, j = 1, 2, . . . , q.

The elements of the matrix G(M, S) are

σii(M, S) = µiσ
∗

ii(S), i = 1, 2, . . . , q;

σ∗

ii(S) =

q
∑

l=1

(
Pi,q+l(S

1

q+l,iBli) + (S1

q+l,iBli)
TPT

i,q+l

)
, i = 1, 2, . . . , q;

σq+i,q+i(M, S) = µiσ
∗

q+i,q+i(S), i = 1, 2, . . . , q;

σ∗

q+i,q+i(S) =

q
∑

l=1

(
(S2

liA
′

li)
TPl,q+i + PT

l,q+i(S
2

liA
′

li)
)
, i = 1, 2, . . . , q;

σij(M, S) = σji(M, S) = µjσ
∗

ij(S), i, j = 1, 2, . . . , q, j > i;

σ∗

ij(S) =

q
∑

l=1

(
Pi,q+l(S

1

q+l,jBlj) + (S1

q+l,jBlj)
TPi,q+l

)
, j > i = 1, 2, . . . , q;

σq+i,q+j(M, S) = σq+j,q+i(M, S) = µiσ
∗

q+i,q+j(S) + µjσ
∗∗

q+i,q+j(S),

i, j = 1, 2, . . . , q, j > i;
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cq+i,q+i(S) = Pq+i,q+iBi + BT

i Pq+i,q+i +

i−1∑

l=1

(
PT

q+l,q+i(S
2

q+l,iB
′

li)

+ (S2

q+l,iB
′

li)
TPq+l,q+i

)
+

q
∑

l=i

(
Pq+i,q+l(S

2

q+l,iB
′

li)

+ (S2

q+l,iB
′

li)
TPT

q+i,q+l

)
, i = 1, 2, . . . , q;

cij(S) = cji(S) = PijAj + AT

i Pij +
i−1∑

l=1

(
PT

li (S1

ljAlj)

+ (S1

ljAlj)
TPlj

)
+

j−1
∑

l=i

(
Pil(S

1

ljAlj) + (S1

liAli)
TPlj

)

+

q
∑

l=j

(
Pil(S

1

ljAlj) + (S1

liAli)
TPT

jl

)
, i, j = 1, 2, . . . , q, j > i;

cq+i,q+j(S) = cq+j,q+i(S) = 0, i, j = 1, 2, . . . , q, j > i;

ci,q+j(S) = Pi,q+jBj +

i−1∑

l=1

PT

li (S2

ljA
′

lj) +

q∑

l=i

Pil(S
2

ljA
′

lj)

+

q
∑

l=1

Pi,q+l(S
2

q+l,jB
′

lj), i, j = 1, 2, . . . , q.

The elements of the matrix G(M, S) are

σii(M, S) = µiσ
∗

ii(S), i = 1, 2, . . . , q;

σ∗

ii(S) =

q
∑

l=1

(
Pi,q+l(S

1

q+l,iBli) + (S1

q+l,iBli)
TPT

i,q+l

)
, i = 1, 2, . . . , q;

σq+i,q+i(M, S) = µiσ
∗

q+i,q+i(S), i = 1, 2, . . . , q;

σ∗

q+i,q+i(S) =

q
∑

l=1

(
(S2

liA
′

li)
TPl,q+i + PT

l,q+i(S
2

liA
′

li)
)
, i = 1, 2, . . . , q;

σij(M, S) = σji(M, S) = µjσ
∗

ij(S), i, j = 1, 2, . . . , q, j > i;

σ∗

ij(S) =

q
∑

l=1

(
Pi,q+l(S

1

q+l,jBlj) + (S1

q+l,jBlj)
TPi,q+l

)
, j > i = 1, 2, . . . , q;

σq+i,q+j(M, S) = σq+j,q+i(M, S) = µiσ
∗

q+i,q+j(S) + µjσ
∗∗

q+i,q+j(S),

i, j = 1, 2, . . . , q, j > i;
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cq+i,q+i(S) = Pq+i,q+iBi + BT

i Pq+i,q+i +

i−1∑

l=1

(
PT

q+l,q+i(S
2

q+l,iB
′

li)

+ (S2

q+l,iB
′

li)
TPq+l,q+i

)
+

q
∑

l=i

(
Pq+i,q+l(S

2

q+l,iB
′

li)

+ (S2

q+l,iB
′

li)
TPT

q+i,q+l

)
, i = 1, 2, . . . , q;

cij(S) = cji(S) = PijAj + AT

i Pij +
i−1∑

l=1

(
PT

li (S1

ljAlj)

+ (S1

ljAlj)
TPlj

)
+

j−1
∑

l=i

(
Pil(S

1

ljAlj) + (S1

liAli)
TPlj

)

+

q
∑

l=j

(
Pil(S

1

ljAlj) + (S1

liAli)
TPT

jl

)
, i, j = 1, 2, . . . , q, j > i;

cq+i,q+j(S) = cq+j,q+i(S) = 0, i, j = 1, 2, . . . , q, j > i;

ci,q+j(S) = Pi,q+jBj +

i−1∑

l=1

PT

li (S2

ljA
′

lj) +

q∑

l=i

Pil(S
2

ljA
′

lj)

+

q
∑

l=1

Pi,q+l(S
2

q+l,jB
′

lj), i, j = 1, 2, . . . , q.

The elements of the matrix G(M, S) are

σii(M, S) = µiσ
∗

ii(S), i = 1, 2, . . . , q;

σ∗

ii(S) =

q
∑

l=1

(
Pi,q+l(S

1

q+l,iBli) + (S1

q+l,iBli)
TPT

i,q+l

)
, i = 1, 2, . . . , q;

σq+i,q+i(M, S) = µiσ
∗

q+i,q+i(S), i = 1, 2, . . . , q;

σ∗

q+i,q+i(S) =

q
∑

l=1

(
(S2

liA
′

li)
TPl,q+i + PT

l,q+i(S
2

liA
′

li)
)
, i = 1, 2, . . . , q;

σij(M, S) = σji(M, S) = µjσ
∗

ij(S), i, j = 1, 2, . . . , q, j > i;

σ∗

ij(S) =

q
∑

l=1

(
Pi,q+l(S

1

q+l,jBlj) + (S1

q+l,jBlj)
TPi,q+l

)
, j > i = 1, 2, . . . , q;

σq+i,q+j(M, S) = σq+j,q+i(M, S) = µiσ
∗

q+i,q+j(S) + µjσ
∗∗

q+i,q+j(S),

i, j = 1, 2, . . . , q, j > i;
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σ∗

q+i,q+j(S) = Pq+i,q+jBj +

i−1∑

l=1

PT

q+l,q+i(S
2

q+l,jb
′

lj)

+

q
∑

l=i

Pq+i,q+l(S
2

q+l,jB
′

lj), i, j = 1, 2, . . . , q, j > i;

σ∗∗

q+i,q+j(S) = BT

i Pq+i,q+j +

j−1
∑

l=1

(S2

q+l,iB
′

li)
TPq+l,q+j

+

q
∑

l=j

(S2

q+l,iB
′

li)
TPT

q+j,q+l +

q
∑

l=1

(
(S2

liA
′

li)
TPl,q+j

+ PT

l,q+j(S
2

liA
′

l;i)
)
, j > i = 1, 2, . . . , q;

σi,q+j(M, S) = µjσ
∗

i,q+j(S) + µiµjσ
∗∗

i,q+j(S), i, j = 1, 2, . . . , q;

σ∗

i,q+j(S) = AT

i Pi,q+j +

q
∑

l=1

(S1

liAli)
TPl,q+j , i, j = 1, 2, . . . , q;

σ∗∗

i,q+j(S) =

i−1∑

l=1

PT

q+l,q+i(S
1

q+l,jBlj) +

q
∑

l=i

Pq+i,q+l(S
1

q+l,jBlj),

i, j = 1, 2, . . . , q.

We designate the upper boundary of expression (5.5.5) by DVM (x, y, M)

and find the estimate

(5.5.6) DVM (x, y, M) ≤ uTG(M)u,

where

uT = (�x1�, �x2�, . . . , �xq�, �y1�, �y2�, . . . , �yq�),

G(M) = [cij + σij(M)], i, j = 1, 2, . . . , s, s = 2q.

The elements of the matrix G(M) are

cii = λM (cii(S
∗)), cq+i,q+i = λM (cq+i,q+i(S

∗)), i = 1, 2, . . . , q;

cij = λ
1/2

M (cij(S
∗)cT

ij(S
∗)) = cji, i, j = 1, 2, . . . , q, j > i;

cq+i,q+j = cq+j,q+i = 0, i, j = 1, 2, . . . , q, j > i;LINEAR SYSTEMS 201

ci,q+j = λ
1/2

M (ci,q+j(S
∗)cT

i,q+j(∗S
∗)), i, j = 1, 2, . . . , q;

σii(M) = µiλM (σ∗

ii(S
∗)), i = 1, 2, . . . , q;

σq+i,q+i(M) = µiλM (σ∗

q+i,q+i(S
∗)), i = 1, 2, . . . , q;

σij(M) = σji(M) = µjλ
1/2

M (σ∗

ij(S
∗)σ∗T

ij (S∗)), j > i = 1, 2, . . . , q;

σq+i,q+j(M) = σq+j,q+i(M) = µiλ
1/2

M (σ∗

q+i,q+j(S
∗)σ∗T

q+i,q+j(S
∗))

+µjλ
1/2

M (σ∗∗

q+i,q+j(S
∗)σ∗∗T

q+i,q+j(S
∗)), i, j = 1, 2, . . . , q, j > i;

σi,q+j(M) = µjλ
1/2

M (σ∗

i,q+j(S
∗)σ∗T

i,q+j(S
∗))

+ µiµjλ
1/2

M (σ∗∗

i,q+j(S
∗)σ∗∗T

i,qj
(S∗)), i, j = 1, 2, . . . , q.

Here S∗ ∈ S is a constant matrix such that

cij(S) ≤ cij(S
∗), σ∗

ij(S) ≤ σ∗

ij(s
∗), i, j = 1, 2, . . . , s,

σ∗∗

i,q=j(S) ≤ σ∗∗

i,q+j(S
∗∗), σ∗∗

q+i,q+j(S) ≤ σ∗∗

q+i,q+j(S
∗), i, j = 1, 2, . . . , q.

Theorem 5.5.1 Let the equations of linear singularly perturbed large-

scale system (5.5.1) be such that for this system it is possible to con-

struct matrix-function (5.3.2) with elements (5.5.3) which satisfies esti-

mates (5.5.4) and for the expression (5.5.5) estimate (5.5.6) holds true

and

(1) matrix A(M) is positive definite for any µi ∈ (0, µ̃i1) and for µi →

0, i = 1, 2, . . . , q;

(2) matrix G(M) is negative definite for any µi ∈ (0, µ̃i2) and for

µi → 0, i = 1, 2, . . . , q.

Then the equilibrium state (xT, yT)T = 0 of system (5.5.1) is structurally

uniformly asymptotically stable in the whole for any µi ∈ (0, µ̃i) and for

µi → 0 on S, where µ̃i = min {1, µ̃i1, µ̃i2}.

Here µ̃i1 and µ̃i2 are determined by conditions of matrix A(M) positive

definiteness and matrix G(M) negative definiteness respectively.

This theorem is proved in the same manner as Theorem 5.4.1.

Example 5.5.1 Let system (5.5.1) be the 12-th order system n = m = 6

decomposed into three q = r = 3 interconnected singularly perturbed
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ci,q+j = λ
1/2

M (ci,q+j(S
∗)cT

i,q+j(∗S
∗)), i, j = 1, 2, . . . , q;

σii(M) = µiλM (σ∗

ii(S
∗)), i = 1, 2, . . . , q;

σq+i,q+i(M) = µiλM (σ∗

q+i,q+i(S
∗)), i = 1, 2, . . . , q;

σij(M) = σji(M) = µjλ
1/2

M (σ∗

ij(S
∗)σ∗T

ij (S∗)), j > i = 1, 2, . . . , q;

σq+i,q+j(M) = σq+j,q+i(M) = µiλ
1/2

M (σ∗

q+i,q+j(S
∗)σ∗T

q+i,q+j(S
∗))

+µjλ
1/2

M (σ∗∗

q+i,q+j(S
∗)σ∗∗T

q+i,q+j(S
∗)), i, j = 1, 2, . . . , q, j > i;

σi,q+j(M) = µjλ
1/2

M (σ∗

i,q+j(S
∗)σ∗T

i,q+j(S
∗))

+ µiµjλ
1/2

M (σ∗∗

i,q+j(S
∗)σ∗∗T

i,qj
(S∗)), i, j = 1, 2, . . . , q.

Here S∗ ∈ S is a constant matrix such that

cij(S) ≤ cij(S
∗), σ∗

ij(S) ≤ σ∗

ij(s
∗), i, j = 1, 2, . . . , s,

σ∗∗

i,q=j(S) ≤ σ∗∗

i,q+j(S
∗∗), σ∗∗

q+i,q+j(S) ≤ σ∗∗

q+i,q+j(S
∗), i, j = 1, 2, . . . , q.

Theorem 5.5.1 Let the equations of linear singularly perturbed large-

scale system (5.5.1) be such that for this system it is possible to con-

struct matrix-function (5.3.2) with elements (5.5.3) which satisfies esti-

mates (5.5.4) and for the expression (5.5.5) estimate (5.5.6) holds true

and

(1) matrix A(M) is positive definite for any µi ∈ (0, µ̃i1) and for µi →

0, i = 1, 2, . . . , q;

(2) matrix G(M) is negative definite for any µi ∈ (0, µ̃i2) and for

µi → 0, i = 1, 2, . . . , q.

Then the equilibrium state (xT, yT)T = 0 of system (5.5.1) is structurally

uniformly asymptotically stable in the whole for any µi ∈ (0, µ̃i) and for

µi → 0 on S, where µ̃i = min {1, µ̃i1, µ̃i2}.

Here µ̃i1 and µ̃i2 are determined by conditions of matrix A(M) positive

definiteness and matrix G(M) negative definiteness respectively.

This theorem is proved in the same manner as Theorem 5.4.1.

Example 5.5.1 Let system (5.5.1) be the 12-th order system n = m = 6

decomposed into three q = r = 3 interconnected singularly perturbed
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subsystems determined by the matrices

(5.5.7)

A1 =

�
0.1 0
0 0.1

�

, A2 =

�
−4 0

0 −4

�

, A3 =

�
−3 0

0 −3

�

,

A12 =

�
3 0
0 3

�

, A21 =

�
−3 0

0 −3

�

,

A13 = A31 = A23 = A32 = 10−1J,

A′

ij = 10−1J, i, j = 1, 2, 3;

Bi =

�
−2 0

0 −2

�

; Bij = 10−1J, B′

ij = 0, i, j = 1, 2, 3;

Sk
jl = diag {sjlk, sk

jl}, k = 1, 2, l = 1, 2, 3, j = 1, 2, 3, 4, 5, 6;

0 ≤ sk
jl ≤ 1, s1

ii = s3+i,i = 0, s2

ii = s1

3+i,i = 1, s1

21 = 1, i = 1, 2, 3.

In the matrix-function (5.3.2) the elements are taken as follows

(5.5.8)

vii(xi) = xT

i Jxi, vij(xi, xj) = xT

i 10−1Jxj ,

v3+i,3+i(yi) = yT

i 2Jyi, v3+i,3+j(yi, yj) = 0, i, j = 1, 2, 3, i �= j;

vi,3+j(xi, yj) = xT

i 10−1Jyj, i, j = 1, 2, 3; j = diag {1, 1, 1}.

It is easy to see that for these elements

(5.5.9)

vii(xi) ≥ �xi�
2, i = 1, 2, 3;

vij(xi, xj) ≥ −0.1 �xi� �xj�, i, j = 1, 2, 3, i �= j;

v3+i,3+i(yi) ≥ 2�yi�
2, i = 1, 2, 3;

vi,3+j(xi, yj) ≥ −0.1 �xi� �yj�, i, j = 1, 2, 3.

Let ηT = (1, 1, 1, 1, 1, 1), then the matrix A(M) becomes

A(M) =

�
A11 −A12(M)

−AT
12(M) A22(M)

�

,

where

A11





1 −0.1 −0.1
−0.1 1 −0.1
−0.1 −0.1 1



 , A12(M) = 0.1





µ1 µ1 µ3

µ1 µ1 µ3

µ1 µ1 µ3



 ,

A22(M) = diag {2µ1, 2µ2, 2µ3},
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subsystems determined by the matrices

(5.5.7)

A1 =

�
0.1 0
0 0.1

�

, A2 =

�
−4 0

0 −4

�

, A3 =

�
−3 0

0 −3

�

,

A12 =

�
3 0
0 3

�

, A21 =

�
−3 0

0 −3

�

,

A13 = A31 = A23 = A32 = 10−1J,

A′

ij = 10−1J, i, j = 1, 2, 3;

Bi =

�
−2 0

0 −2

�

; Bij = 10−1J, B′

ij = 0, i, j = 1, 2, 3;

Sk
jl = diag {sjlk, sk

jl}, k = 1, 2, l = 1, 2, 3, j = 1, 2, 3, 4, 5, 6;

0 ≤ sk
jl ≤ 1, s1

ii = s3+i,i = 0, s2

ii = s1

3+i,i = 1, s1

21 = 1, i = 1, 2, 3.

In the matrix-function (5.3.2) the elements are taken as follows

(5.5.8)

vii(xi) = xT

i Jxi, vij(xi, xj) = xT

i 10−1Jxj ,

v3+i,3+i(yi) = yT

i 2Jyi, v3+i,3+j(yi, yj) = 0, i, j = 1, 2, 3, i �= j;

vi,3+j(xi, yj) = xT

i 10−1Jyj, i, j = 1, 2, 3; j = diag {1, 1, 1}.

It is easy to see that for these elements

(5.5.9)

vii(xi) ≥ �xi�
2, i = 1, 2, 3;

vij(xi, xj) ≥ −0.1 �xi� �xj�, i, j = 1, 2, 3, i �= j;

v3+i,3+i(yi) ≥ 2�yi�
2, i = 1, 2, 3;

vi,3+j(xi, yj) ≥ −0.1 �xi� �yj�, i, j = 1, 2, 3.

Let ηT = (1, 1, 1, 1, 1, 1), then the matrix A(M) becomes

A(M) =

�
A11 −A12(M)

−AT
12(M) A22(M)

�

,

where

A11





1 −0.1 −0.1
−0.1 1 −0.1
−0.1 −0.1 1



 , A12(M) = 0.1





µ1 µ1 µ3

µ1 µ1 µ3

µ1 µ1 µ3



 ,

A22(M) = diag {2µ1, 2µ2, 2µ3},
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and is positive definite for any µi ∈ (0, 1] and for µi → 0, i = 1, 2, 3.

For such choice of the elements of matrix-function (5.3.2) the elements

of the matrix G(M) are defined as

c11 = −0.38; c22 = −7.38; c33 = −5.96; c12 = c21 = 0.17;

c13 = c31 = 0.08; c23 = c32 = 0.19; c3+i,3+i = −8, i = 1, 2, 3;

c3+i,3+j = c3+j,3+i = 0, i, j = 1, 2, 3, i �= j;

σii(M) = σ3+i,3+i(M) = 0.6 · 10−1µi, i = 1, 2, 3;

σ3+i,3+j(M) = σ3+j,3+i(M) = 0.1µi + 0.04µj, i, j = 1, 2, 3, i �= j;

σij(M) = σji(M) = 0.6 · 10−1µj , i, j = 1, 2, 3, i �= j;

ci,3+j = 0.8 · 10−1, i, j = 1, 2, 3;

σi,3+j(M) = 0.18µj + 0.1µiµj , i = 1, 2, j = 1, 2, 3;

σ2,3+j(M) = 0.9 · 10−1µj + 0.1µ2µj , j = 1, 2, 3.

Moreover, the matrix G(M) is negative definite for any µi ∈ (0, 1) and

for µi → 0, i = 1, 2, 3.

By Theorem 5.4.1 the equilibrium state (xT, yT)T = 0 ∈ R12 of the

system determined in this example, is uniformly asymptotically stable in

the whole on M×S, where M = {µi : 0 < µi ≤ 1, i = 1, 2, 3}.

Remark 5.5.2 In this example the independent degenerate subsystem

dx1

dt
=

(
0.1 0
0 0.1

)

x1

is unstable and the independent singularly perturbed subsystem

dx1

dt
=

(
0.1 0
0 0.1

)

x1 +

(
0.1 0
0 0.1

)

y1,

µ1

dy1

dt
=

(
−2 0
0 −2

)

y1 + µ1

(
0.1 0
0 0.1

)

x1

is not stable for any µ1 ∈ (0, 1].
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and is positive definite for any µi ∈ (0, 1] and for µi → 0, i = 1, 2, 3.

For such choice of the elements of matrix-function (5.3.2) the elements

of the matrix G(M) are defined as

c11 = −0.38; c22 = −7.38; c33 = −5.96; c12 = c21 = 0.17;

c13 = c31 = 0.08; c23 = c32 = 0.19; c3+i,3+i = −8, i = 1, 2, 3;

c3+i,3+j = c3+j,3+i = 0, i, j = 1, 2, 3, i �= j;

σii(M) = σ3+i,3+i(M) = 0.6 · 10−1µi, i = 1, 2, 3;

σ3+i,3+j(M) = σ3+j,3+i(M) = 0.1µi + 0.04µj, i, j = 1, 2, 3, i �= j;

σij(M) = σji(M) = 0.6 · 10−1µj , i, j = 1, 2, 3, i �= j;

ci,3+j = 0.8 · 10−1, i, j = 1, 2, 3;

σi,3+j(M) = 0.18µj + 0.1µiµj , i = 1, 2, j = 1, 2, 3;

σ2,3+j(M) = 0.9 · 10−1µj + 0.1µ2µj , j = 1, 2, 3.

Moreover, the matrix G(M) is negative definite for any µi ∈ (0, 1) and

for µi → 0, i = 1, 2, 3.

By Theorem 5.4.1 the equilibrium state (xT, yT)T = 0 ∈ R12 of the

system determined in this example, is uniformly asymptotically stable in

the whole on M×S, where M = {µi : 0 < µi ≤ 1, i = 1, 2, 3}.

Remark 5.5.2 In this example the independent degenerate subsystem

dx1

dt
=

(
0.1 0
0 0.1

)

x1

is unstable and the independent singularly perturbed subsystem

dx1

dt
=

(
0.1 0
0 0.1

)

x1 +

(
0.1 0
0 0.1

)

y1,

µ1

dy1

dt
=

(
−2 0
0 −2

)

y1 + µ1

(
0.1 0
0 0.1

)

x1

is not stable for any µ1 ∈ (0, 1].
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5.5.2 Uniform time scaling In the case of uniform time scaling system

(5.5.1) is of the form

(5.5.10)

dxi

dt
= Aixi +

q
∑

α=1

S1

iαAiαxα +

r∑

β=1

S2

iβA′

iβyβ, i = 1, 2, . . . , q,

µ1

dyj

dt
= τjBjyj + µ + 1

q
∑

α=1

S1

q+j,αBjαxα

+ τj

r∑

β=1

S2

q+j,βB′

jβyβ , j = 1, 2, . . . , r,

where Ai, Bj ,Aiα, A′

iβ , Bjα and B′

jβ are constant matrices. All matrices

and vectors are of the corresponding order, and S1

iα, S2

iβ , S1

q+j,α, S2

q+j,β ∈ S

are the diagonal matrices, S is determined in the same way as Section 5.2,

µ1 ∈ (0, 1], q + r = s, τj ∈ [τ j , τ j ].

Assume that τ j and τ j , j = 1, 2, . . . , r, are given.

We construct matrix-function (5.3.2) for system (5.5.10) with the ele-

ments

(5.5.11)

vip(xi, xp) = vpi(xi, xp) = xT

i Pipxp, i, p = 1, 2, . . . , q;

vq+j,q+l(yj , yl) = vq+l,q+j(yj , yl) = yT

j Pq+j,q+lyl,

vi,q+j(xi, yj) = xT

i Pi,q+jyj , i = 1, 2, . . . , q,

j = 1, 2, . . . , r, q + r = s,

where Pii, Pq+j,q+j are symmetric positive definite matrices; Pip, i �= p,

Pq+j,q+l, j �= l, Pi,q+j are constant matrices.

For function (5.5.11) the following estimates are satisfied

(a) λm(Pii)�xi�
2
≤ vii(xi) ≤ λM (Pii)�xi�

2, ∀xi ∈ Nix0
,

i = 1, 2, . . . , q;

(b) λm(Pq+j,q+j)�yj�
2
≤ vq+j,q+j(yj) ≤ λM (Pq+j,q+j)�yj�

2,

∀ yj ∈ Njy0
, j = 1, 2, . . . , r;

(c) − λ
1/2

M (PipP
T

ip)�xi �xp� ≤ vip(xi, xp) ≤ λ
1/2

M (PipP
T

ip)�xi �xp�,

∀ (xi, xp) ∈ Nix0
×Npx0

, i, p = 1, 2, . . . , q, i �= p;

(5.5.12)
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5.5.2 Uniform time scaling In the case of uniform time scaling system

(5.5.1) is of the form

(5.5.10)

dxi

dt
= Aixi +

q
∑

α=1

S1

iαAiαxα +

r∑

β=1

S2

iβA′

iβyβ, i = 1, 2, . . . , q,

µ1

dyj

dt
= τjBjyj + µ + 1

q
∑

α=1

S1

q+j,αBjαxα

+ τj

r∑

β=1

S2

q+j,βB′

jβyβ , j = 1, 2, . . . , r,

where Ai, Bj ,Aiα, A′

iβ , Bjα and B′

jβ are constant matrices. All matrices

and vectors are of the corresponding order, and S1

iα, S2

iβ , S1

q+j,α, S2

q+j,β ∈ S

are the diagonal matrices, S is determined in the same way as Section 5.2,

µ1 ∈ (0, 1], q + r = s, τj ∈ [τ j , τ j ].

Assume that τ j and τ j , j = 1, 2, . . . , r, are given.

We construct matrix-function (5.3.2) for system (5.5.10) with the ele-

ments

(5.5.11)

vip(xi, xp) = vpi(xi, xp) = xT

i Pipxp, i, p = 1, 2, . . . , q;

vq+j,q+l(yj , yl) = vq+l,q+j(yj , yl) = yT

j Pq+j,q+lyl,

vi,q+j(xi, yj) = xT

i Pi,q+jyj , i = 1, 2, . . . , q,

j = 1, 2, . . . , r, q + r = s,

where Pii, Pq+j,q+j are symmetric positive definite matrices; Pip, i �= p,

Pq+j,q+l, j �= l, Pi,q+j are constant matrices.

For function (5.5.11) the following estimates are satisfied

(a) λm(Pii)�xi�
2
≤ vii(xi) ≤ λM (Pii)�xi�

2, ∀xi ∈ Nix0
,

i = 1, 2, . . . , q;

(b) λm(Pq+j,q+j)�yj�
2
≤ vq+j,q+j(yj) ≤ λM (Pq+j,q+j)�yj�

2,

∀ yj ∈ Njy0
, j = 1, 2, . . . , r;

(c) − λ
1/2

M (PipP
T

ip)�xi �xp� ≤ vip(xi, xp) ≤ λ
1/2

M (PipP
T

ip)�xi �xp�,

∀ (xi, xp) ∈ Nix0
×Npx0

, i, p = 1, 2, . . . , q, i �= p;

(5.5.12)
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(d) − λ
1/2

M (Pq+j,q+lP
T

q+j,q+l)�yj� �yl� ≤ vq+j,q+l(yj , yl) ≤

λ
1/2

M (Pq+j,q+lP
T

q+j,q+l)�yj� �yl�, ∀ (yj , yl) ∈ Njy0
×Nly0

,

j, l = 1, 2, . . . , r, j �= l;

(e) − λ
1/2

M (Pi,q+jP
T

i,q+j)�xi� �yj� ≤ vi,q+j(xi, yj) ≤

λ
1/2

M (Pi,q+jP
T

i,q+j)�xi� �yj�, ∀ (xi, yj) ∈ Nix0
×Njy0

,

i = 1, 2, . . . , q, j = 1, 2, . . . , r, q + r = s,

where λm(·) are the minimal eigenvalues, λM (·) are the maximal eigen-

values, and λ
1/2

M (·, ·) is the matrix norm.

If estimates (5.5.12) are satisfied for function (5.3.2) with elements

(5.5.11) the bilateral estimate

uTA(µ1)u ≤ v(x, y, µ1) ≤ uTB(µ1)u,

∀ (xi, yj , µ1) ∈ Nix0
×Njy0

×M,

holds, where uT = (�x1�, �x2�, . . . , �xq�, �y1�, �y2�, . . . , �yr�), the ma-

trices A(µ1) and B(µ1) are defined as in Proposition 5.3.3 with the ele-

ments

αii = λm(Pii); αip = αpi = −λ
1/2

M (PipP
T

ip), i �= p = 1, 2, . . . , q;

αii = λM (Pii); αip = αpi = λ
1/2

M (PipP
T

ip), i �= p = 1, 2, . . . , q;

αq+j,q+j = λm(Pq+j,q+j);

αq+j,q+l = αq+l,q+j = −λ
1/2

M (Pq+j,q+lP
T

q+j,q+l), j, l = 1, 2, . . . , r, j �= l;

αq+j,q+j = λM (Pq+j,q+j);

αq+j,q+l = αq+l,q+j = λ
1/2

M (Pq+j,q+lP
T

q+j,q+l), j, l = 1, 2, . . . , r, j �= l;

αi,q+j = −λ
1/2

M (Pi,q+jP
T

i,q+j), αi,q+j = −αi,q+j , i ∈ [1, q], j ∈ [1, r].

It is easy to verify that if the matrices A∗

11 and A∗

22 are positive definite,

then the function V (x, y, µ1) is positive definite for any µ1 ∈ (0, µ∗

1
) and

for µ1 → 0, where µ∗

1
is defined as in Proposition 5.3.4.

Let ηT = (1, 1, . . . , 1) ∈ Rs. We designate the upper boundary of the

total derivative of function (5.3.8) with elements (5.5.11) by DVM (x, y, µ1),

and find

(5.5.13) −DVM (x, y, µ1) ≤ uTCu + µ11uTGu,
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(d) − λ
1/2

M (Pq+j,q+lP
T

q+j,q+l)�yj� �yl� ≤ vq+j,q+l(yj , yl) ≤

λ
1/2

M (Pq+j,q+lP
T

q+j,q+l)�yj� �yl�, ∀ (yj , yl) ∈ Njy0
×Nly0

,

j, l = 1, 2, . . . , r, j �= l;

(e) − λ
1/2

M (Pi,q+jP
T

i,q+j)�xi� �yj� ≤ vi,q+j(xi, yj) ≤

λ
1/2

M (Pi,q+jP
T

i,q+j)�xi� �yj�, ∀ (xi, yj) ∈ Nix0
×Njy0

,

i = 1, 2, . . . , q, j = 1, 2, . . . , r, q + r = s,

where λm(·) are the minimal eigenvalues, λM (·) are the maximal eigen-

values, and λ
1/2

M (·, ·) is the matrix norm.

If estimates (5.5.12) are satisfied for function (5.3.2) with elements

(5.5.11) the bilateral estimate

uTA(µ1)u ≤ v(x, y, µ1) ≤ uTB(µ1)u,

∀ (xi, yj , µ1) ∈ Nix0
×Njy0

×M,

holds, where uT = (�x1�, �x2�, . . . , �xq�, �y1�, �y2�, . . . , �yr�), the ma-

trices A(µ1) and B(µ1) are defined as in Proposition 5.3.3 with the ele-

ments

αii = λm(Pii); αip = αpi = −λ
1/2

M (PipP
T

ip), i �= p = 1, 2, . . . , q;

αii = λM (Pii); αip = αpi = λ
1/2

M (PipP
T

ip), i �= p = 1, 2, . . . , q;

αq+j,q+j = λm(Pq+j,q+j);

αq+j,q+l = αq+l,q+j = −λ
1/2

M (Pq+j,q+lP
T

q+j,q+l), j, l = 1, 2, . . . , r, j �= l;

αq+j,q+j = λM (Pq+j,q+j);

αq+j,q+l = αq+l,q+j = λ
1/2

M (Pq+j,q+lP
T

q+j,q+l), j, l = 1, 2, . . . , r, j �= l;

αi,q+j = −λ
1/2

M (Pi,q+jP
T

i,q+j), αi,q+j = −αi,q+j , i ∈ [1, q], j ∈ [1, r].

It is easy to verify that if the matrices A∗

11 and A∗

22 are positive definite,

then the function V (x, y, µ1) is positive definite for any µ1 ∈ (0, µ∗

1
) and

for µ1 → 0, where µ∗

1
is defined as in Proposition 5.3.4.

Let ηT = (1, 1, . . . , 1) ∈ Rs. We designate the upper boundary of the

total derivative of function (5.3.8) with elements (5.5.11) by DVM (x, y, µ1),

and find

(5.5.13) −DVM (x, y, µ1) ≤ uTCu + µ11uTGu,206 5. SINGULARLY PERTURBED SYSTEMS

where C = [cij ], cij = cji, i, j = 1, 2, . . . , s; G = [σij ], σij = σji, i, j =

1, 2, . . . , s, the matrices with elements

cii = ρ1i(S) + ρ2i(S), σii = ρ3i(S), i = 1, 2, . . . , q;

cip = ρ1ip(S) + ρ2ip(S), σip = ρ3ip(S), i, p = 1, 2, . . . , q, p > i;

cq+j,q+j = ρ1,q+j(S) + ρ2,q+j(S), σq+j,q+j = ρ3,q+j(S), j = 1, 2, . . . , r;

cq+j,q+l = ρ1,q+j,q+l(S) + ρ2,q+j,q+l(S), σq+j,q+l = ρ3,q+j,q+l(S),

j, l = 1, 2, . . . , r, l > j;

ci,q+j = ρ1,i,q+j(S), σi,q+j = ρ2,i,q+j(S),

i = 1, 2, . . . , q, j = 1, 2, . . . , r, q + r = s;

ρ1i(S) = λM (C1

ii(S)), ρ1ip(S) = λ
1/2

M (C1

ip(S)C1T

ip (S)),

ρ2i(S) = λM (C2

ii(S)), ρ2ip(S) = λ
1/2

M (C2

ip(S)C2T

ip (S)),

ρ3i(S) = λM (σii(S)), ρ3ip(S) = λ
1/2

M (σip(S)σT

ip(S)),

i, p = 1, 2, . . . , q, p > i;

ρ1,q+j(τ
∗

j , S) = λM (C1

q+j,q+j(τ
∗

j , S)),

ρ1,q+j,q+l(τ
∗

j , S) = λ
1/2

M (C1

q+j,q+l(τ
∗

j , S)C1T

q+j,q+l(τ
∗

j , S)),

ρ2,q+j(τ
∗

j , S) = λM (C2

q+j,q+j(τ
∗

j , S)),

ρ2,q+j,q+l(τ
∗

j , S) = λ
1/2

M (C2

q+j,q+l(τ
∗

j , S)C2T

q+j,q+l(τ
∗

j , S)),

ρ3,q+j(S) = λM (σq+j,q+j(S)),

ρ3,q+j,q+l(S) = λ
1/2

M (σq+j,q+l(S)σT

q+j,q+l(S)), j, l = 1, 2, . . . , r, l > j;

ρ1ij(τ
∗

j , S) = λ
1/2

M (ci,q+j(τ
∗

j , S)cT

i,q+j(τ
∗

j , S)),

ρ2ij(S) = λ
1/2

M (σi,q+j(S)σT

i,q+j(S)),

i = 1, 2, . . . , q, j = 1, 2, . . . , r, q + r = s;

c1

ii(A) = PiiAii + AT

iiPii,

c2

ii(S) =

i−1∑

α=1

(
PT

αi(S
1

αiAαi) + (S1

αiAαi)
TPαi

)
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where C = [cij ], cij = cji, i, j = 1, 2, . . . , s; G = [σij ], σij = σji, i, j =

1, 2, . . . , s, the matrices with elements

cii = ρ1i(S) + ρ2i(S), σii = ρ3i(S), i = 1, 2, . . . , q;

cip = ρ1ip(S) + ρ2ip(S), σip = ρ3ip(S), i, p = 1, 2, . . . , q, p > i;

cq+j,q+j = ρ1,q+j(S) + ρ2,q+j(S), σq+j,q+j = ρ3,q+j(S), j = 1, 2, . . . , r;

cq+j,q+l = ρ1,q+j,q+l(S) + ρ2,q+j,q+l(S), σq+j,q+l = ρ3,q+j,q+l(S),

j, l = 1, 2, . . . , r, l > j;

ci,q+j = ρ1,i,q+j(S), σi,q+j = ρ2,i,q+j(S),

i = 1, 2, . . . , q, j = 1, 2, . . . , r, q + r = s;

ρ1i(S) = λM (C1

ii(S)), ρ1ip(S) = λ
1/2

M (C1

ip(S)C1T

ip (S)),

ρ2i(S) = λM (C2

ii(S)), ρ2ip(S) = λ
1/2

M (C2

ip(S)C2T

ip (S)),

ρ3i(S) = λM (σii(S)), ρ3ip(S) = λ
1/2

M (σip(S)σT

ip(S)),

i, p = 1, 2, . . . , q, p > i;

ρ1,q+j(τ
∗

j , S) = λM (C1

q+j,q+j(τ
∗

j , S)),

ρ1,q+j,q+l(τ
∗

j , S) = λ
1/2

M (C1

q+j,q+l(τ
∗

j , S)C1T

q+j,q+l(τ
∗

j , S)),

ρ2,q+j(τ
∗

j , S) = λM (C2

q+j,q+j(τ
∗

j , S)),

ρ2,q+j,q+l(τ
∗

j , S) = λ
1/2

M (C2

q+j,q+l(τ
∗

j , S)C2T

q+j,q+l(τ
∗

j , S)),

ρ3,q+j(S) = λM (σq+j,q+j(S)),

ρ3,q+j,q+l(S) = λ
1/2

M (σq+j,q+l(S)σT

q+j,q+l(S)), j, l = 1, 2, . . . , r, l > j;

ρ1ij(τ
∗

j , S) = λ
1/2

M (ci,q+j(τ
∗

j , S)cT

i,q+j(τ
∗

j , S)),

ρ2ij(S) = λ
1/2

M (σi,q+j(S)σT

i,q+j(S)),

i = 1, 2, . . . , q, j = 1, 2, . . . , r, q + r = s;

c1

ii(A) = PiiAii + AT

iiPii,

c2

ii(S) =

i−1∑

α=1

(
PT

αi(S
1

αiAαi) + (S1

αiAαi)
TPαi

)
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+

q
∑

α=i

(
Piα(S1

αiAαi) + (S1

αiAαi)
TPT

iα

)
;

σii(S) =
r∑

β=1

(
Pi,q+β(S1

q+β,iBβi) + (S1

q+β,iBβi)
TPT

i,q+β

)
, i = 1, 2, . . . , q;

c1

ip(S) =

q∑

α=1

(
PT

ii (S1

αpAαp) + (S1

αpAαp)
TPii

)
,

c2

ip(S) = PipAp + AT

p Pip +
i−1∑

α=1

(
PT

αi(S
1

αpAαp) + (S1

αpAαp)
TPαi

)

+

p−1
∑

α=i+1

(
Piα(S1

αpAalp) + (S1

αpAalp)
TPiα

)

+

q
∑

α=p+1

(
Piα(S1

αpAαp) + (S1

αpAαp)
TPT

iα

)
,

σip(S) =

r∑

β=1

(
Pi,q+β(S1

q+β,pBβp) + (S1

q+β,pBβp)
TPi,q+β

)
,

i, p = 1, 2, . . . , q, p > i;

c1

q+j,q+j(τ
∗

j , S) = Pq+j,q+jτjBj + τjB
T

j Pq+j,q+j ,

c2

q+j,q+j(τj , S) =

j−1
∑

β=1

(
PT

q+β,q+jτj(S
2

q+β,jB
′

βj) + τj(S
2

q+β,jB
′

βj)
TPq+β,q+j

)

+

r∑

β=j

(
Pq+j,q+βτj(S

2

q+β,jB
′

βj) + τj(S
2

q+β,jB
′

βj)
TPT

q+j,q+β

)
,

σq+j,q+j(S) =

q
∑

α=1

(
(S2

αjA
′

αj)
TPα,q+j + PT

α,q+j(S
2

αjA
′

αj)
)
, j = 1, 2, . . . , r;

c1

q+j,q+l(τl, S) =

r∑

β=1

PT

q+j,q+jτl(S
2

q+β,lB
′

βl),

c2

q+j,q+l(τj , S) = Pq+j,q+lτlBl + τjB
T

j Pq+j,q+l
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+

q
∑

α=i

(
Piα(S1

αiAαi) + (S1

αiAαi)
TPT

iα

)
;

σii(S) =
r∑

β=1

(
Pi,q+β(S1

q+β,iBβi) + (S1

q+β,iBβi)
TPT

i,q+β

)
, i = 1, 2, . . . , q;

c1

ip(S) =

q∑

α=1

(
PT

ii (S1

αpAαp) + (S1

αpAαp)
TPii

)
,

c2

ip(S) = PipAp + AT

p Pip +
i−1∑

α=1

(
PT

αi(S
1

αpAαp) + (S1

αpAαp)
TPαi

)

+

p−1
∑

α=i+1

(
Piα(S1

αpAalp) + (S1

αpAalp)
TPiα

)

+

q
∑

α=p+1

(
Piα(S1

αpAαp) + (S1

αpAαp)
TPT

iα

)
,

σip(S) =

r∑

β=1

(
Pi,q+β(S1

q+β,pBβp) + (S1

q+β,pBβp)
TPi,q+β

)
,

i, p = 1, 2, . . . , q, p > i;

c1

q+j,q+j(τ
∗

j , S) = Pq+j,q+jτjBj + τjB
T

j Pq+j,q+j ,

c2

q+j,q+j(τj , S) =

j−1
∑

β=1

(
PT

q+β,q+jτj(S
2

q+β,jB
′

βj) + τj(S
2

q+β,jB
′

βj)
TPq+β,q+j

)

+

r∑

β=j

(
Pq+j,q+βτj(S

2

q+β,jB
′

βj) + τj(S
2

q+β,jB
′

βj)
TPT

q+j,q+β

)
,

σq+j,q+j(S) =

q
∑

α=1

(
(S2

αjA
′

αj)
TPα,q+j + PT

α,q+j(S
2

αjA
′

αj)
)
, j = 1, 2, . . . , r;

c1

q+j,q+l(τl, S) =

r∑

β=1

PT

q+j,q+jτl(S
2

q+β,lB
′

βl),

c2

q+j,q+l(τj , S) = Pq+j,q+lτlBl + τjB
T

j Pq+j,q+l
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+

j−1
∑

β=1

(
PT

q+β,q+jτl(S
2

q+β,lB
′

βl) + τj(S
22q+β,jB

′

βj)
TPq+β,q+l

)

+
l−1∑

β=j+1

(
Pq+j,q+βτl(S

2

q+β,lB
′

βl) + τj(S
2

q+β,jB
′

βj)
TPq+β,q+l

)

+
r∑

β=l+1

(
Pq+j,q+βτl(S

2

q+β,lB
′

βl) + τj(S
2

q+β,jB
′

βj)
TPq+l,q+β

)
,

σq+j,q+l(S) =

q
∑

α=1

(
(S2

αjA
′

αj)
TPα,q+l + PT

α,q+l(S
2

αjA
′

αj)
)
,

j, l = 1, 2, . . . , r, l > j;

ci,q+j(τj , S) = Pi,q+j +

i−1∑

α=1

PT

αi(S
2

αjA
′

αj)

+

q
∑

α=i

Piα(S2

αjA
′

αj) +

r∑

β=1

Pi,q+β(S2

q+β,jB
′

βj)τj ,

σi,q+j(S) = AT

i Pi,q+j +

q
∑

α=1

(S1

αiAαi)Pα,q+j

+

j−1∑

β=1

PT

q+β,q+i(S
1

q+β,jBβj) +

q∑

β=j

Pq+i,q+β(S1

q+β,jBβj),

i = 1, 2, . . . , q, j = 1, 2, . . . , 2, q + r = s.

Here S ∈ S is a constant matrix such that

ck
ip(S) ≤ ck

ip(S), ∀S ∈ S, i, p = 0.q, p ≥ i, k = 1, 2;

ck
q+j,q+l(τj , S) ≤ ck

q+j,q+l(τ
∗

j , S), ∀S ∈ S, l ≥ j = 1, 2, . . . , r, k = 1, 2;

σij(S) ≤ σij(S), ∀S ∈ S, i, j = 1, 2, . . . , s, s = q + r;

ci,q+j(τj , S) ≤ ci,q+j(τ
∗

j , S), ∀S ∈ S, i = 1, 2, . . . , q, j = 1, 2, . . . , r.

The value τ∗

j is defined as

τ∗

j =

{
τ j , if the correponding factors are negative,

τ j , if the correponding factors are positive.UNIFORM TIME SCALING 209

Note that if the matrix C is negative definite, i.e. λM (C) < 0 and

λM (G) > 0, then the function DVM (x, y, µ1) is negative definite for any

µ1 ∈ (0, µ∗∗

1 ) and for µ1 → 0, where µ∗∗

1 = min {1,−λM (C)/λM (G)}.

If λM (C) < 0 and λM (G) < 0, then µ∗∗

1
= 1.

Theorem 5.5.2 Let linear singularly perturbed large-scale system

(5.5.10) be such that for this system it is possible to construct the matrix-

function (5.3.2) with elements (5.5.11) satisfying estimates (5.5.12) and

for function DVM (x, y, µ1) estimate (5.5.13) is fulfilled. Also

(1) matrices A∗

11
and A∗

22
are positive definite;

(2) matrix C is negative-definite;

(3) µ1 ∈ (0, µ̃1), µi = µ1τ
−1

i , i = 1, 2, . . . , r, where

τi ∈ [τ i, τ i], µ̃1 = min {1, µ∗

1
, µ∗∗

1
}.

Then the equilibrium state (xT, yT)T = 0 of system (5.5.10) is uniformly

asymptotically stable in the whole on M̃ × S, where

M̃ = {M : 0 < µ1 < µ̃1, µi = µ1τ
−1

i , i = 1, 2, . . . , r}.

The proof of this theorem follows from Theorem 5.3.1.

Example 5.5.3 Let system (5.5.10) be the 8-th order system n = m = 4,

decomposed into two interconnected singularly perturbed subsystems q =

r = 2 defined by the matrices

Ai =

(
−2 1

1 −2

)

, Aiα = A′

iβ = 10−2J ;

Bi =

(
−4 1

1 −4

)

, Bjα = B′

jβ = 0.5 · 10−2J ;

J = diag {1, 1}, τ
2

= 0.5, τ2 = 1, µ2 = µ1τ
−1

2
.

In the matrix-function (5.3.2) the elements vij(·) are taken as:

vii(xi) = xT

i Jxi; v2+i,2+i(yi) = yT

i Jyi, i = 1, 2;

v12(x1, x2) = xT

1
· 10−1Jx2; v34(y1, y2) = yT

1
· 10−1y2,

vi,2+j(xi, yj) = xT

i · 10−1Jyj, i, j = 1, 2, J = diag {1, 1}.
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Note that if the matrix C is negative definite, i.e. λM (C) < 0 and

λM (G) > 0, then the function DVM (x, y, µ1) is negative definite for any

µ1 ∈ (0, µ∗∗

1 ) and for µ1 → 0, where µ∗∗

1 = min {1,−λM (C)/λM (G)}.

If λM (C) < 0 and λM (G) < 0, then µ∗∗
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= 1.

Theorem 5.5.2 Let linear singularly perturbed large-scale system

(5.5.10) be such that for this system it is possible to construct the matrix-

function (5.3.2) with elements (5.5.11) satisfying estimates (5.5.12) and

for function DVM (x, y, µ1) estimate (5.5.13) is fulfilled. Also

(1) matrices A∗
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are positive definite;
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(3) µ1 ∈ (0, µ̃1), µi = µ1τ
−1

i , i = 1, 2, . . . , r, where

τi ∈ [τ i, τ i], µ̃1 = min {1, µ∗

1
, µ∗∗

1
}.

Then the equilibrium state (xT, yT)T = 0 of system (5.5.10) is uniformly

asymptotically stable in the whole on M̃ × S, where

M̃ = {M : 0 < µ1 < µ̃1, µi = µ1τ
−1

i , i = 1, 2, . . . , r}.

The proof of this theorem follows from Theorem 5.3.1.

Example 5.5.3 Let system (5.5.10) be the 8-th order system n = m = 4,

decomposed into two interconnected singularly perturbed subsystems q =

r = 2 defined by the matrices

Ai =

(
−2 1

1 −2

)

, Aiα = A′

iβ = 10−2J ;

Bi =

(
−4 1

1 −4

)

, Bjα = B′

jβ = 0.5 · 10−2J ;

J = diag {1, 1}, τ
2

= 0.5, τ2 = 1, µ2 = µ1τ
−1

2
.

In the matrix-function (5.3.2) the elements vij(·) are taken as:

vii(xi) = xT

i Jxi; v2+i,2+i(yi) = yT

i Jyi, i = 1, 2;

v12(x1, x2) = xT

1
· 10−1Jx2; v34(y1, y2) = yT

1
· 10−1y2,

vi,2+j(xi, yj) = xT

i · 10−1Jyj, i, j = 1, 2, J = diag {1, 1}.
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Note that if the matrix C is negative definite, i.e. λM (C) < 0 and

λM (G) > 0, then the function DVM (x, y, µ1) is negative definite for any

µ1 ∈ (0, µ∗∗

1 ) and for µ1 → 0, where µ∗∗

1 = min {1,−λM (C)/λM (G)}.

If λM (C) < 0 and λM (G) < 0, then µ∗∗

1
= 1.

Theorem 5.5.2 Let linear singularly perturbed large-scale system

(5.5.10) be such that for this system it is possible to construct the matrix-

function (5.3.2) with elements (5.5.11) satisfying estimates (5.5.12) and

for function DVM (x, y, µ1) estimate (5.5.13) is fulfilled. Also

(1) matrices A∗

11
and A∗

22
are positive definite;

(2) matrix C is negative-definite;

(3) µ1 ∈ (0, µ̃1), µi = µ1τ
−1

i , i = 1, 2, . . . , r, where

τi ∈ [τ i, τ i], µ̃1 = min {1, µ∗

1
, µ∗∗

1
}.

Then the equilibrium state (xT, yT)T = 0 of system (5.5.10) is uniformly

asymptotically stable in the whole on M̃ × S, where

M̃ = {M : 0 < µ1 < µ̃1, µi = µ1τ
−1

i , i = 1, 2, . . . , r}.

The proof of this theorem follows from Theorem 5.3.1.

Example 5.5.3 Let system (5.5.10) be the 8-th order system n = m = 4,

decomposed into two interconnected singularly perturbed subsystems q =

r = 2 defined by the matrices

Ai =

(
−2 1

1 −2

)

, Aiα = A′

iβ = 10−2J ;

Bi =

(
−4 1

1 −4

)

, Bjα = B′

jβ = 0.5 · 10−2J ;

J = diag {1, 1}, τ
2

= 0.5, τ2 = 1, µ2 = µ1τ
−1

2
.

In the matrix-function (5.3.2) the elements vij(·) are taken as:

vii(xi) = xT

i Jxi; v2+i,2+i(yi) = yT

i Jyi, i = 1, 2;

v12(x1, x2) = xT

1
· 10−1Jx2; v34(y1, y2) = yT

1
· 10−1y2,

vi,2+j(xi, yj) = xT

i · 10−1Jyj, i, j = 1, 2, J = diag {1, 1}.210 5. SINGULARLY PERTURBED SYSTEMS

Obviously, for these elements the following estimates are true

vii(xi) ≥ �xi�
2, i = 1, 2; v12(x1, x2) ≥ −0.1�x1� �x2�;

v2+i,2+i(yi) ≥ �yi�
2, i = 1, 2; v34(y1, y2) ≥ −0.1�y1� �y2�;

vi,2+j(xi, yj) ≥ −0.1�xi� �yj�, i, j = 1, 2.

Let ηT = (1, 1, 1, 1), , then the matrix

A(µ1) =

(
A11 µ1A12

µ1A
T
12

µ1A22

)

,

where

A11 = A22 =

(
1 −0.1

−0.1 1

)

, A12 =

(
−0.1 −0.1
−0.1 −0.1

)

,

is positive definite for any µi ∈ (0, 1] and for µ1 → 0.

For such choice of the elements of matrix (5.3.2) the elements of the

matrices C and G are specified as

cii = −1.996, i = 1, 2; c12 = 0.6674; c2+i,2+i = −2.996, i = 1, 2;

c34 = 0.6474; c1j = 0, 2874; c2j = 0.2888, j = 1, 2;

and

σii = 0; σ12 = 0.002, i = 1, 2; σ2+i,2+i = σ34 = 0.004, i = 1, 2;

σi3 = 0.312438, σi4 = 0.311178, i = 1, 2.

For the elements of the matrices C and G specified in such way we have

λM (C) = −1.018975; λM (G) = 0.8819733

and

µ∗∗

1 = min

{

1, −
λM (C)

λM (G)

}

= min {1; 1.1553354} = 1.

Thus, by Theorem 5.5.2 the equilibrium state (xT, yT)T = 0 ∈ R8 of the

system defined in Example 5.5.3 is uniformly asymptotically stable in the

whole on M×S8.
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5.6 Certain Trends of Generalizations and Applications

In this section general results of this Chapter are applied in two cases. In

Subsection 5.6.1 we present the results of stability analysis for singularly

perturbed large scale Lur’e-Postnikov systems under nonclassical structural

perturbations. A numerical example of the 12-th order system decomposed

into three interconnected singularly perturbed subsystems is considered as

illustration. In Subsection 5.6.2 we establish the conditions of a spacecraft

motion stabilization by means of three gyroframes. Here the possibility of

application of the matrix-valued function is shown and the obtained result

is compared with those obtained in terms of the vector Liapunov function.

5.6.1 Lur’e-Postnikov systems

5.6.1.1 Non-uniform time scaling Consider a singularly perturbed large-

scale system (see Grujic et al.[1])

(5.6.1)

dxi

dt
= Aixi +

q
∑

l=1

S
(1)

il Ailyl + qi1fi1(σi1),

σi1 = cT

i1x + cT

i2y, ∀ i = 1, 2, . . . , q,

µi

dyi

dt
=

q
∑

l=1

µiS
(1)

q+i,lBilxl + Biyi + qi2l−2(σi2) + qi3fi3(σi3),

σi2 = µic
T

i3xi + cT

i4yi,

σi3 =

q∑

l=1
l�=i

(

µic
T

i5S
(2)

q+i,lxl + cT

l6S
(3)

q+i,lyl

)

,

i = 1, 2, . . . , q,

where

σ−1

ij fij(σij) ∈ [0, kij ] ⊂ R+, i = 1, 2, . . . , q, j = 1, 2, 3,

all matrices and vectors are of the appropriate order, and S
(1)

il , S
(1)

q+i,l,
212 5. SINGULARLY PERTURBED SYSTEMS

S
(2)

q+i,l, S
(3)

q+i,l are the diagonal matrices. Let

Si =










S
(1)

i1 S
(1)

i2 . . . S
(1)

i,i−1
I S

(1)

i,i+1
. . . S

(1)

iq

S
(1)

q+i,1 S
(1)

q+i,2 . . . S
(1)

q+i,i−1
0 S

(1)

q+i,i+1
. . . S

(1)

q+i,q

S
(2)

q+i,1 S
(2)

q+i,2 . . . S
(2)

q+i,i−1
0 S

(2)

q+i,i+1
. . . S

(2)

q+i,q

S
(3)

q+i,1 S
(3)

q+i,2 . . . S
(3)

q+i,i−1
0 S

(3)

q+i,i+1
. . . S

(3)

q+i,q










,

S = diag {S1, S2, . . . , Sq}.

The structural set is determined as

S = {S : 0 ≤ S
(k)

jl ≤ I, S
(1)

ii = S
(1)

q+i,i = I, S
(2)

q+i,i = S
(3)

q+i,i = 0,

i, j = 1, 2, . . . , q, j = 1, 2, . . . , 2q, k = 1, 2, 3},

where I is an identity matrix of the appropriate dimensions.

The independent singularly perturbed subsystems corresponding to sys-

tem (5.6.1) are obtained as a result of substitution by xi and yi for x and y:

(5.6.2)

dxi

dt
= Aixi + Aiiyi + qi1fi1(�σi1),

�σi1 = cT

i1x
i + cT

i2y
i, ∀ i = 1, 2, . . . , q,

µi

dyi

dt
= µiBiixi + Biyi + qi2fi2(σi2),

∀ i = 1, 2, . . . , q, 2q = s,

where xi = (0T, . . . , 0T, xT
i , 0T, . . . , 0T)T ∈ Rn, xi ∈ Rni, n1+n2+· · ·+nq =

n, yi = (0T, . . . , 0T, yT

i , 0T, . . . , 0T)T ∈ Rm, yi ∈ Rmi, m1 +m2 + · · ·+mq =

m.

We introduce the designations

fi0 = Aixi + qi1fi1(�σ
0

i1), �σ0

i1 = cT

i1x
i,

gi0 = Biyi + qi2fi2(σ
0

i2), σ0

i2 = cT

i2y
i,

f∗

i = Aiiyi + qi1[fi1(�σi1) − fi1(�σ
0

i1)],

g∗i = µiBiixi + qi2[fi2(σi2) − fi2(σ
0

i2)],

f∗∗

i =

q
�

l=1
l�=i

S
(1)

il Ailyl + qi1[fi1(σi1) − fi1(�σi1)],
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S
(2)

q+i,l, S
(3)

q+i,l are the diagonal matrices. Let
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i1 S
(1)

i2 . . . S
(1)
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I S

(1)
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. . . S

(1)

iq

S
(1)

q+i,1 S
(1)

q+i,2 . . . S
(1)

q+i,i−1
0 S

(1)

q+i,i+1
. . . S

(1)

q+i,q

S
(2)

q+i,1 S
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q+i,2 . . . S
(2)

q+i,i−1
0 S

(2)

q+i,i+1
. . . S

(2)

q+i,q

S
(3)

q+i,1 S
(3)

q+i,2 . . . S
(3)

q+i,i−1
0 S

(3)

q+i,i+1
. . . S

(3)

q+i,q










,

S = diag {S1, S2, . . . , Sq}.

The structural set is determined as

S = {S : 0 ≤ S
(k)

jl ≤ I, S
(1)

ii = S
(1)

q+i,i = I, S
(2)

q+i,i = S
(3)

q+i,i = 0,

i, j = 1, 2, . . . , q, j = 1, 2, . . . , 2q, k = 1, 2, 3},

where I is an identity matrix of the appropriate dimensions.

The independent singularly perturbed subsystems corresponding to sys-

tem (5.6.1) are obtained as a result of substitution by xi and yi for x and y:

(5.6.2)

dxi

dt
= Aixi + Aiiyi + qi1fi1(�σi1),

�σi1 = cT

i1x
i + cT

i2y
i, ∀ i = 1, 2, . . . , q,

µi

dyi

dt
= µiBiixi + Biyi + qi2fi2(σi2),

∀ i = 1, 2, . . . , q, 2q = s,

where xi = (0T, . . . , 0T, xT
i , 0T, . . . , 0T)T ∈ Rn, xi ∈ Rni, n1+n2+· · ·+nq =

n, yi = (0T, . . . , 0T, yT

i , 0T, . . . , 0T)T ∈ Rm, yi ∈ Rmi, m1 +m2 + · · ·+mq =

m.

We introduce the designations

fi0 = Aixi + qi1fi1(�σ
0

i1), �σ0

i1 = cT

i1x
i,

gi0 = Biyi + qi2fi2(σ
0

i2), σ0

i2 = cT

i2y
i,

f∗

i = Aiiyi + qi1[fi1(�σi1) − fi1(�σ
0

i1)],

g∗i = µiBiixi + qi2[fi2(σi2) − fi2(σ
0

i2)],

f∗∗

i =

q
�

l=1
l�=i

S
(1)

il Ailyl + qi1[fi1(σi1) − fi1(�σi1)],

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

... BrowserTexting

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

Go to 

BrowserTexting.com

and start texting from 
your computer!

FREE
 30 days trial!

http://www.browsertexting.com/


Stability Theory of Large-Scale  
Dynamical Systems

202 

Singularly Perturbed Large-Scale Systems

5.6 GENERALIZATIONS AND APPLICATIONS 213

g∗∗i =

q
∑

l=1
l�=i

µiS
(1)

q+i,lBilxl + qi3fi3(σi3),

∀ i = 1, 2, . . . , q, 2q = s.

The system (5.6.1) becomes

(5.6.3)

dxi

dt
= fi0 + f∗

i + f∗∗

i , i = 1, 2, . . . , q,

dyi

dt
= gi0 + g∗i + g∗∗i , i = 1, 2, . . . , q.

Here the vector-functions fi0 and gi0 correspond to the independent degen-

erated subsystem

(5.6.4)
dxi

dt
= Aixi + qi1fi1(σ̃

0

i1), σ̃0

i1 = cT

i1x
i,

and subsystem describing the boundary layer

(5.6.5) µi

dyi

dt
= Biyi + qi2fi2(σ

0

i2), σ0

i2 = cT

i2yi.

The vector-functions fi0 + f∗

i and gi0 + g∗i correspond to the independent

singularly perturbed subsystems (5.6.2).

Alongside system (5.6.1) and subsystems (5.6.2), (5.6.4), (5.6.5) we shall

consider the matrix-function (5.3.2) with the elements (5.5.3) satisfying

estimates (5.5.4). As is known, for function (5.3.3) the inequality

(5.6.6) uTA(M)u ≤ V (x, y, M) ≤ uTB(M)u.

is valid. Besides, the matrices A(M), B(M) and vector u are determined

as in Proposition 5.3.1.

Proposition 5.6.1 If for system (5.6.1) the matrix-function (5.3.2)

with elements (5.5.3) is constructed, then for the Dini derivatives of func-

tions (5.5.3)

(a) η2

j (D+

xi
vii)

Tfi0 ≤ ρ1i�xi�
2, ∀xi ∈ Nix0, ∀ i ∈ [1, q ];

(b) η2

q+i(D
+

yi
vq+i,q+i)

Tgi0 ≤ ρ2i�yi�
2, ∀ yi ∈ Niy0, ∀ i ∈ [1, q ];214 5. SINGULARLY PERTURBED SYSTEMS

(c) η2

i (D+

xi
vii)

Tf∗

i + η2

q+i(D
+

yi
vq+i,q+i)

Tg∗i

+ 2ηiηq+i

{
µi(D

+

xi
vi,q+i)

T(fi0 + f∗

i ) + (D+

yi
vi,q+i)

T(gi0 + g∗i )
}

≤ (ρ3i + µiρ4i)�xi�
2 + (ρ5i + µiρ6i)�yi�

2

+ 2(ρ7i + µiρ8i)�xi� �yi�, ∀ (x, y, M) ∈ Nix0 ×Niy0 ×M,

i = 1, 2, . . . , q;

(d)

q
∑

i=1

η2

i (D+

xi
vii)

Tf∗∗

i +

q
∑

i=1

η2

q+i(D
+

yi
vq+i,q+i)

Tg∗∗i

+ 2

q
∑

i=1

ηiηq+i

{
µi(D

+

xi
vi,q+i)

Tf∗∗

i + (D+

yi
vi,q+i)

Tg∗∗i

}

+ 2

q
∑

i=1

q
∑

j=2

j>i

ηiηj

{
(D+

xi
vij)

T(fi0 + f∗

i + f∗∗

i )

+ (D+

xj
vij)

T(fj0 + f∗

j + f∗∗

j )
}

+ 2

q∑

i=1

q∑

j=2

j>i

ηq+iηq+j

{
µj(D

+

yi
vq+i,q+j)

T(gi0 + g∗i + g∗∗i )

+ µi(D
+

yj
vq+i,q+j)

T(gi0 + g∗i + g∗∗i )
}

+ 2

q
∑

i=1

q
∑

j=1

(j �=i)

ηiηq+j

{
µj(D

+

xi
vi,q+j)

T(fi0 + f∗

i + f∗∗

i )

+ (D+

yj
vi,q+j)

T(gi0 + g∗i + g∗∗i )

≤

q∑

i=1

{
(ρ9i(s) + µiρ10i(s))�xi�

2 + ρ11i(s)�yi�
2
}

+ 2

q
∑

i=1

q
∑

j=2

j>i

{
(ρ1ij(s) + µiρ2ij(s))�xi� �xj�

+ (ρ3ij(s) + µiρ4ij(s) + µjρ5ij(s))�yi� �y)j�
}

+ 2

q
∑

i=1

q
∑

j=1

(
ρ6ij(s) + µiρ7ij(s) + µiµjρ8ij(s)

)
�xi� �yj�,
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(c) η2

i (D+

xi
vii)

Tf∗

i + η2

q+i(D
+

yi
vq+i,q+i)

Tg∗i

+ 2ηiηq+i

{
µi(D

+

xi
vi,q+i)

T(fi0 + f∗

i ) + (D+

yi
vi,q+i)

T(gi0 + g∗i )
}

≤ (ρ3i + µiρ4i)�xi�
2 + (ρ5i + µiρ6i)�yi�

2

+ 2(ρ7i + µiρ8i)�xi� �yi�, ∀ (x, y, M) ∈ Nix0 ×Niy0 ×M,

i = 1, 2, . . . , q;

(d)

q
∑

i=1

η2

i (D+

xi
vii)

Tf∗∗

i +

q
∑

i=1

η2

q+i(D
+

yi
vq+i,q+i)

Tg∗∗i

+ 2

q
∑

i=1

ηiηq+i

{
µi(D

+

xi
vi,q+i)

Tf∗∗

i + (D+

yi
vi,q+i)

Tg∗∗i

}

+ 2

q
∑

i=1

q
∑

j=2

j>i

ηiηj

{
(D+

xi
vij)

T(fi0 + f∗

i + f∗∗

i )

+ (D+

xj
vij)

T(fj0 + f∗

j + f∗∗

j )
}

+ 2

q∑

i=1

q∑

j=2

j>i

ηq+iηq+j

{
µj(D

+

yi
vq+i,q+j)

T(gi0 + g∗i + g∗∗i )

+ µi(D
+

yj
vq+i,q+j)

T(gi0 + g∗i + g∗∗i )
}

+ 2

q
∑

i=1

q
∑

j=1

(j �=i)

ηiηq+j

{
µj(D

+

xi
vi,q+j)

T(fi0 + f∗

i + f∗∗

i )

+ (D+

yj
vi,q+j)

T(gi0 + g∗i + g∗∗i )

≤

q∑

i=1

{
(ρ9i(s) + µiρ10i(s))�xi�

2 + ρ11i(s)�yi�
2
}

+ 2

q
∑

i=1

q
∑

j=2

j>i

{
(ρ1ij(s) + µiρ2ij(s))�xi� �xj�

+ (ρ3ij(s) + µiρ4ij(s) + µjρ5ij(s))�yi� �y)j�
}

+ 2

q
∑

i=1

q
∑

j=1

(
ρ6ij(s) + µiρ7ij(s) + µiµjρ8ij(s)

)
�xi� �yj�,
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∀ (xi, yi, M, S) ∈ Nix0
×Niy0

×M×S,

where ραi, α = 1, 2, . . . , 6, i = 1, 2, . . . , q, ρβi(s), β = 9, 10, 11, i =

1, 2, . . . , q, are maximal eigenvalues of the matrices

η2

i [PiiAi + AT

i Pii + Piik
∗

i1qi1(c
i
i1)

T + (k∗

i1qi1(c
i
i1)

T)TPii];

η2

q+i[Pq+i,q+iBi + BT

i Pq+i,q+i + Pq+i,q+ik
∗

i2qi2(c
i
i2)

T

+ (k∗

i2qi2(c
i
i2)

T)TPq+i,q+i];

η2

i [Piik
∗

i1qi1(c
i
i1)

T + (k∗

i1qi1(c
i
i1)

T)TPii];

1

2
ηiηq+i(Pi,q+iBii + BT

iiP
T

i,q+i + Pi,q+ik
∗

i2qi2c
T

i3 + (k∗

i2qi2c
T

i3)
TPT

i,qi
);

η2

q+i[Pq+i,q+ik
∗

i2qi2c
T

i4 + (k∗

i2qi2c
T

i4)
TPq+i,q+i];

1

2
ηiηq+i(Pi,q+iAii + AT

iiP
T

i,q+i + Pi,q+ik
∗

i1qi1(c
i
i2)

T + (k∗

i1qi1(c
i
i2)

T)TPi,q+i);

η2

i [Piik
∗

i1qi1(c
i
i1)

T + (k∗

i1qi1(c
i
i1)

T)TPii]

+

q∑

j=2

j>i

ηiηj{(k
∗

j1qj1(c
i
j1)

T)TPji + PT

jik
∗

j1qj1(c
i
j1)

T
};

ηiηq+i[Pi,q+ik
∗

i3qi3c
T

i5S
(2)

q+i,i + (k∗

i3qi3c
T

i5S
(2)

q+i,i)
TPT

i,q+i];

ηiηq+i[P
T

i,q+ik
∗

i1qi1(c
i
i2)

T + (k∗

i1qi1(c
i
i2)

T)TPi,q+i

+ PT

q+i,q+ik
∗

i3qi3c
T

i6S
(3)

q+i,i + (k∗

i3qi3c
T

i6S
(3)

q+i,i)
TPq+i,q+i]

respectively, and ρ7i, ρ8i, ρkij(S), k = 1, 2, . . . , 8, i, j = 1, 2, . . . , q, are

norms of the matrices

η2

i Pii(Aii + kqi1(ci
i2)

T) + ηiηq+iPi,q+i(Bi + k∗

i2qi2c
T

i4);

η2

q+i(B
T

ii + (k∗

i2qi2c
T

i3)
T)Pq+i,q+i + ηiηq+i(Ai + (k∗

i1qi1(c
i
i1)

T)T)Pi,q+i;

η2

i Piik
∗

i1qi1(c
j
i1)

T + ηiηj(PijAj + AT

i Pij)

+

i−1∑

l=1

ηlηj{P
T

li k∗

l1ql1(c
j
l1)

T + (k∗

l1ql1(c
j
l1)

T)TPlj}
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∀ (xi, yi, M, S) ∈ Nix0
×Niy0

×M×S,

where ραi, α = 1, 2, . . . , 6, i = 1, 2, . . . , q, ρβi(s), β = 9, 10, 11, i =

1, 2, . . . , q, are maximal eigenvalues of the matrices

η2

i [PiiAi + AT

i Pii + Piik
∗

i1qi1(c
i
i1)

T + (k∗

i1qi1(c
i
i1)

T)TPii];

η2

q+i[Pq+i,q+iBi + BT

i Pq+i,q+i + Pq+i,q+ik
∗

i2qi2(c
i
i2)

T

+ (k∗

i2qi2(c
i
i2)

T)TPq+i,q+i];

η2

i [Piik
∗

i1qi1(c
i
i1)

T + (k∗

i1qi1(c
i
i1)

T)TPii];

1

2
ηiηq+i(Pi,q+iBii + BT

iiP
T

i,q+i + Pi,q+ik
∗

i2qi2c
T

i3 + (k∗

i2qi2c
T

i3)
TPT

i,qi
);

η2

q+i[Pq+i,q+ik
∗

i2qi2c
T

i4 + (k∗

i2qi2c
T

i4)
TPq+i,q+i];

1

2
ηiηq+i(Pi,q+iAii + AT

iiP
T

i,q+i + Pi,q+ik
∗

i1qi1(c
i
i2)

T + (k∗

i1qi1(c
i
i2)

T)TPi,q+i);

η2

i [Piik
∗

i1qi1(c
i
i1)

T + (k∗

i1qi1(c
i
i1)

T)TPii]

+

q∑

j=2

j>i

ηiηj{(k
∗

j1qj1(c
i
j1)

T)TPji + PT

jik
∗

j1qj1(c
i
j1)

T
};

ηiηq+i[Pi,q+ik
∗

i3qi3c
T

i5S
(2)

q+i,i + (k∗

i3qi3c
T

i5S
(2)

q+i,i)
TPT

i,q+i];

ηiηq+i[P
T

i,q+ik
∗

i1qi1(c
i
i2)

T + (k∗

i1qi1(c
i
i2)

T)TPi,q+i

+ PT

q+i,q+ik
∗

i3qi3c
T

i6S
(3)

q+i,i + (k∗

i3qi3c
T

i6S
(3)

q+i,i)
TPq+i,q+i]

respectively, and ρ7i, ρ8i, ρkij(S), k = 1, 2, . . . , 8, i, j = 1, 2, . . . , q, are

norms of the matrices

η2

i Pii(Aii + kqi1(ci
i2)

T) + ηiηq+iPi,q+i(Bi + k∗

i2qi2c
T

i4);

η2

q+i(B
T

ii + (k∗

i2qi2c
T

i3)
T)Pq+i,q+i + ηiηq+i(Ai + (k∗

i1qi1(c
i
i1)

T)T)Pi,q+i;

η2

i Piik
∗

i1qi1(c
j
i1)

T + ηiηj(PijAj + AT

i Pij)

+

i−1∑

l=1

ηlηj{P
T

li k∗

l1ql1(c
j
l1)

T + (k∗

l1ql1(c
j
l1)

T)TPlj}
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+

j−1
∑

l=i

{ηiηlPilk
∗

l1ql1(c
j
l1)

T + ηlηj(k
∗

l1ql1(c
j
l1)

T)TPlj}

+

q
∑

l=j

{ηiηlPilk
∗

l1ql1(c
j
l1)

T + ηjηl(k
∗

l1ql1(c
j
l1)

T)TPT

jl};

ηiηq+iPi,q+i(S
(1)

q+i,jBij + k∗

i3qi3c
T

j5S
(2)

q+i,j)

+

q
∑

l=1
l�=i

ηiηq+lPi,q+l(S
(1)

q+l,jBlj + k∗

l3ql3c
T

j5S
(2)

q+l,j);

PT

i,q+ik
∗

i1qi1(c
j
i2)

T + ηiηq+i(k
∗

i1qi1(c
j
i2)

T)TPi,q+i;

ηq+iηq+jPq+i,q+j(Bj + kj2qj2c
T

j4) + ηiηq+iP
T

i,q+i(S
(1)

ij Aij)

+

i−1∑

l=1

ηq+lηq+iPq+l,q+i(k
∗

l3ql3c
T

j6S
(3)

q+l,j)

+

q∑

l=i

ηq+iηq+lPq+i,q+l(k
∗

l3ql3c
T

j6S
(3)

q+l,j);

ηq+iηq+j(B
T

i + (k∗

i2qi2c
T

i4)
T)Pq+i,q+j +

i−1∑

l=1

ηlηiP
T

li S
(1)

lj Alj

+

q
∑

l=i

ηiηjPilS
(1)

lj Alj +

q
∑

l=1

ηiηq+lP
T

i,q+l(k
∗

i1qi1(c
l
j2)

T)

+

i−1∑

l=1

ηq+iηq+lP
T

q+l,q+i(k
∗

l3ql3c
T

i6S
(3)

q+l,j)

+

q∑

l=i

ηq+iηq+lPq+i,q+l(k
∗

l3ql3c
T

j6S
(3)

q+l,j);

η2

i Pii(S
(1)

ij Aij + k∗

i1qi1(c
j
i2)

T) + ηiηq+i(k
∗

i1qi1(c
j
i1)

T)TPi,q+i

+ ηiηq+jPi,q+j(Bj + k∗

j2qj2c
T

i4)

+

i−1∑

l=1

ηlηiP
T

li (S
(1)

jl Alj + k∗

l1ql1(c
j
l2)

T)
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+

j−1
∑

l=i

{ηiηlPilk
∗

l1ql1(c
j
l1)

T + ηlηj(k
∗

l1ql1(c
j
l1)

T)TPlj}

+

q
∑

l=j

{ηiηlPilk
∗

l1ql1(c
j
l1)

T + ηjηl(k
∗

l1ql1(c
j
l1)

T)TPT

jl};

ηiηq+iPi,q+i(S
(1)

q+i,jBij + k∗

i3qi3c
T

j5S
(2)

q+i,j)

+

q
∑

l=1
l�=i

ηiηq+lPi,q+l(S
(1)

q+l,jBlj + k∗

l3ql3c
T

j5S
(2)

q+l,j);

PT

i,q+ik
∗

i1qi1(c
j
i2)

T + ηiηq+i(k
∗

i1qi1(c
j
i2)

T)TPi,q+i;

ηq+iηq+jPq+i,q+j(Bj + kj2qj2c
T

j4) + ηiηq+iP
T

i,q+i(S
(1)

ij Aij)

+

i−1∑

l=1

ηq+lηq+iPq+l,q+i(k
∗

l3ql3c
T

j6S
(3)

q+l,j)

+

q∑

l=i

ηq+iηq+lPq+i,q+l(k
∗

l3ql3c
T

j6S
(3)

q+l,j);

ηq+iηq+j(B
T

i + (k∗

i2qi2c
T

i4)
T)Pq+i,q+j +

i−1∑

l=1

ηlηiP
T

li S
(1)

lj Alj

+

q
∑

l=i

ηiηjPilS
(1)

lj Alj +

q
∑

l=1

ηiηq+lP
T

i,q+l(k
∗

i1qi1(c
l
j2)

T)

+

i−1∑

l=1

ηq+iηq+lP
T

q+l,q+i(k
∗

l3ql3c
T

i6S
(3)

q+l,j)

+

q∑

l=i

ηq+iηq+lPq+i,q+l(k
∗

l3ql3c
T

j6S
(3)

q+l,j);

η2

i Pii(S
(1)

ij Aij + k∗

i1qi1(c
j
i2)

T) + ηiηq+i(k
∗

i1qi1(c
j
i1)

T)TPi,q+i

+ ηiηq+jPi,q+j(Bj + k∗

j2qj2c
T

i4)

+

i−1∑

l=1

ηlηiP
T

li (S
(1)

jl Alj + k∗

l1ql1(c
j
l2)

T)
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+

q
∑

l=i+1

ηiηlPil(S
(1)

lj Alj + k∗

l1ql1(c
j
l2)

T)

+

q∑

l=1

ηjηq+lPj,q+l(k
∗

l3ql3c
T

l6S
(3)

q+l,i);

η2

q+jP
T

q+j,q+j(S
(1)

q+j,iBji + k∗

j3qj3c
T

j5S
(2)

q+j,i) + ηiηq+jA
T

i Pi,q+j

+

q∑

l=1

ηlηq+j(k
∗

l1ql1(c
j
l1)

T)TPl,q+j ;

i−1∑

l=1

ηq+lηq+iP
T

q+l,q+i(S
(1)

q+l,jBlj + k∗

l3ql3cj5S
(2)

q+l,j)

+

q
∑

l=i

ηq+iηq+lP
T

q+i,q+l(S
(1)

q+l,jBlj + k∗

l3ql3cj5S
(2)

q+l,j)

+ ηq+iηq+j [(k
∗

i2qi2c
T

i3)
TPq+i,q+j + Pq+i,q+j(k

∗

i2qi2c
T

i3)]

respectively. Here i �= j, k∗

ij and k∗

ii are determined in the same way as

kir in Section 2.4, ck
ij ∈ Rnk is the k–th component of the vector cij.

The proof of Proposition 5.6.1 follows from direct computations.

Proposition 5.6.2 Let all conditions of Proposition 5.6.1 be satisfied.

Then for the total derivative of function (5.3.3) with elements (5.5.3)

(5.6.7)
DV (x, y, M) ≤ uTG̃(M)u

∀ (x, y, M, S) ∈ Nx0
×Ny0

×M×S,

where

uT = (�x1�, �x2�, . . . , �xq�, �y1�, �y2�, . . . , �yq�),

G̃(M) = [c̃ij + σ̃ij(M)], i, j = 1, 2, . . . , s, s = 2q.

The elements of the matrix G̃(M) are

c̃ii = ρ1i + ρ3i + ρ9i(S
∗); c̃ij = c̃ji = ρ1ij(S

∗), i �= j;

c̃q+i,q+i = ρ2i + ρ5i + ρ11,i(S
∗);
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+

q
∑

l=i+1

ηiηlPil(S
(1)

lj Alj + k∗

l1ql1(c
j
l2)

T)

+

q∑

l=1

ηjηq+lPj,q+l(k
∗

l3ql3c
T

l6S
(3)

q+l,i);

η2

q+jP
T

q+j,q+j(S
(1)

q+j,iBji + k∗

j3qj3c
T

j5S
(2)

q+j,i) + ηiηq+jA
T

i Pi,q+j

+

q∑

l=1

ηlηq+j(k
∗

l1ql1(c
j
l1)

T)TPl,q+j ;

i−1∑

l=1

ηq+lηq+iP
T

q+l,q+i(S
(1)

q+l,jBlj + k∗

l3ql3cj5S
(2)

q+l,j)

+

q
∑

l=i

ηq+iηq+lP
T

q+i,q+l(S
(1)

q+l,jBlj + k∗

l3ql3cj5S
(2)

q+l,j)

+ ηq+iηq+j [(k
∗

i2qi2c
T

i3)
TPq+i,q+j + Pq+i,q+j(k

∗

i2qi2c
T

i3)]

respectively. Here i �= j, k∗

ij and k∗

ii are determined in the same way as

kir in Section 2.4, ck
ij ∈ Rnk is the k–th component of the vector cij.

The proof of Proposition 5.6.1 follows from direct computations.

Proposition 5.6.2 Let all conditions of Proposition 5.6.1 be satisfied.

Then for the total derivative of function (5.3.3) with elements (5.5.3)

(5.6.7)
DV (x, y, M) ≤ uTG̃(M)u

∀ (x, y, M, S) ∈ Nx0
×Ny0

×M×S,

where

uT = (�x1�, �x2�, . . . , �xq�, �y1�, �y2�, . . . , �yq�),

G̃(M) = [c̃ij + σ̃ij(M)], i, j = 1, 2, . . . , s, s = 2q.

The elements of the matrix G̃(M) are

c̃ii = ρ1i + ρ3i + ρ9i(S
∗); c̃ij = c̃ji = ρ1ij(S

∗), i �= j;

c̃q+i,q+i = ρ2i + ρ5i + ρ11,i(S
∗);
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c̃q+i,q+j = c̃q+j,q+i = ρ3ij(S
∗), i �= j;

c̃i,q+i = ρ7i; c̃i,q+j = ρ6ij(S
∗), i �= j = 1, 2, . . . , q;

σ̃ij(M) = µi(ρ4i + ρ10i(S
∗)); σ̃q+i,q+i(M) = µiρ6i;

σ̃ij(M) = σ̃ji(M) = µiρ2ij(S
∗), i �= j;

σ̃q+i,q+j(M) = µiρ4ij(S
∗) + µjρ5ij(S

∗), i �= j;

σ̃i,q+i(M) = µiρ8i;

σ̃i,q+j(M) = µiρ7ij(S
∗) + µiµjρ8ij(S

∗), i �= j = 1, 2, . . . , q;

S∗ ∈ S is a constant matrix such that

ρki(S) ≤ ρki(S
∗), ρrij(S) ≤ ρrij(S

∗), k = 9, 10, 11, 12,

r = 1, 2, . . . , 9, i, j = 1, 2, . . . , q, i �= j.

The proof of Proposition 5.6.2 is similar to that of Proposition 5.3.2.

Theorem 5.6.1 Let the equations of singularly perturbed Lur’e sys-

tem (5.6.1) be such that the matrix (5.3.2) is constructed with the elements

(5.5.3) satisfying estimates (5.5.4) and for the total Dini derivative of func-

tion (5.3.3) the estimate (5.6.7) is satisfied and

(1) matrix A(M) is positive definite for any µi ∈ (0, µ̃i1) and for µi →

0, i = 1, 2, . . . , q;

(2) matrix G̃(M) is negative definite for any µi ∈ (0, µ̃∗

i2) and for

µi → 0, i = 1, 2, . . . , q.

Then the equilibrium state (xT, yT)T = 0 of system (5.6.1) is uniformly

asymptotically stable for any µi ∈ (0, µ̃∗

i ) and for µi → 0 on S, where

µ∗

i = min {1, µ̃i1, µ̃∗

i2}.

If, moreover, Nix = Rni , Niy = Rmi , , then the equilibrium state

(xT, yT)T = 0 of system (5.6.1) is uniformly asymptotically stable in the

whole for any µi ∈ (0, µ̃∗

i ) and for µi → 0 on S.

In these relations µ̃i1 and µ̃i2 are determined by the conditions of matrix

A(M) positive definiteness and matrix G̃(M) negative definiteness respec-

tively.

This theorem is proved by the same method as Theorem 5.3.1.
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5.6.1.2 Uniform time scaling In the case of uniform time scaling system

(5.6.1) is (see Grujić et al. [1])

(5.6.8)

dxi

dt
= Aixi +

r∑

α=1

S
(1)

iα Aiαyα + qi1fi1(σi1),

σi1 = ĉT

i1x + ĉT

i2y, ∀ i = 1, 2, . . . , q;

µi

dyi

dt
=

q
∑

β=1

S
(1)

q+iBiβxβ + τiBiyi

+ τiqi2fi2(σi2) + τiqi3fi3(σi3),

σi2 = µiĉ
T

i3 + ĉT

i4yi,

σi3 =

q
∑

β=1

µiĉ
T

β5S
(2)

q+i,βxβ +

r∑

α=1

ĉT

α6S
(3)

q+i,αyα

∀ i = 1, 2, . . . , r, q + r = s,

where

σ−1

ij fij(σij) ∈ [0, kij ] ⊂ R+,

{
i = 1, 2, . . . , q when j = 1,

i = 1, 2, . . . , r when j = 2, 3.

The structural matrices S
(1)

ij , S
(2)

ij , S
(3)

ij , and S, and the set S are deter-

mined as in Section 5.5.1, τi ∈ [τ i, τ i], , the numbers τ i and τ i are given.

For the analysis of asymptotic stability of large scale system of Lur’e

type (5.6.8) we construct matrix-function (5.3.7) with elements (5.5.11)

satisfying estimates (5.5.12). For function (5.5.13) the bilateral estimate

(5.6.9)
uTA(µ1)u ≤ V (x, y, µ1) ≤ uTB(µ1)u,

∀ (xi, yj , µ1) ∈ Nix0
×Njy0

×M, ∀ τi ∈ [τ i, τ i],

is true, where u, A(µ1) and B(µ1) are determined as in Section 5.3.2.

Assume that ηT = (1, 1, . . . , 1, 1) ∈ Rs
+, s = q + r.

Proposition 5.6.3 If for system (5.6.8) the matrix function (5.3.7)

with the elements (5.6.9) is constructed, then for the total derivative of

function (5.3.8) by virtue of system (5.6.8)

(5.6.10)
DV (x, y, µ1) ≤ uTC∗u + µ1u

TG∗u,

∀ (x, y, µ1, S) ∈ Nx0
×Ny0

×M×S,
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5.6.1.2 Uniform time scaling In the case of uniform time scaling system

(5.6.1) is (see Grujić et al. [1])

(5.6.8)

dxi

dt
= Aixi +

r∑

α=1

S
(1)

iα Aiαyα + qi1fi1(σi1),

σi1 = ĉT

i1x + ĉT

i2y, ∀ i = 1, 2, . . . , q;

µi

dyi

dt
=

q
∑

β=1

S
(1)

q+iBiβxβ + τiBiyi

+ τiqi2fi2(σi2) + τiqi3fi3(σi3),

σi2 = µiĉ
T

i3 + ĉT

i4yi,

σi3 =

q
∑

β=1

µiĉ
T

β5S
(2)

q+i,βxβ +

r∑

α=1

ĉT

α6S
(3)

q+i,αyα

∀ i = 1, 2, . . . , r, q + r = s,

where

σ−1

ij fij(σij) ∈ [0, kij ] ⊂ R+,

{
i = 1, 2, . . . , q when j = 1,

i = 1, 2, . . . , r when j = 2, 3.

The structural matrices S
(1)

ij , S
(2)

ij , S
(3)

ij , and S, and the set S are deter-

mined as in Section 5.5.1, τi ∈ [τ i, τ i], , the numbers τ i and τ i are given.

For the analysis of asymptotic stability of large scale system of Lur’e

type (5.6.8) we construct matrix-function (5.3.7) with elements (5.5.11)

satisfying estimates (5.5.12). For function (5.5.13) the bilateral estimate

(5.6.9)
uTA(µ1)u ≤ V (x, y, µ1) ≤ uTB(µ1)u,

∀ (xi, yj , µ1) ∈ Nix0
×Njy0

×M, ∀ τi ∈ [τ i, τ i],

is true, where u, A(µ1) and B(µ1) are determined as in Section 5.3.2.

Assume that ηT = (1, 1, . . . , 1, 1) ∈ Rs
+, s = q + r.

Proposition 5.6.3 If for system (5.6.8) the matrix function (5.3.7)

with the elements (5.6.9) is constructed, then for the total derivative of

function (5.3.8) by virtue of system (5.6.8)

(5.6.10)
DV (x, y, µ1) ≤ uTC∗u + µ1u

TG∗u,

∀ (x, y, µ1, S) ∈ Nx0
×Ny0

×M×S,
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where

uT = (‖x1‖, ‖x2‖, . . . , ‖xq‖, ‖y1, ‖y2‖, . . . , ‖yr‖);

C∗ = [c∗ij ], c∗ij = c∗ji, i, j = 1, 2, . . . , s;

G∗ = [σ∗

ij ], σ∗

ij = σ∗

ji, i, j = 1, 2, . . . , s;

c∗ii = λM (cii),

cii =PiiAi + AT

i Pii + Piiqi1k
∗

i1(ĉ
i
i1)

T + (qi1k
∗

i1(ĉ
i
i1)

T)TPii

+ 2

q
∑

p=2

p>i

(P qp1k
∗

p1(c
p
p1

)T(qp1k
∗

p1(c
p
p1

)T)TPT

ip,

i = 1, 2, . . . , q;

c∗q+j,q+j = λM (Cq+j,q+j(τ
∗

j , S)),

Cq+j,q+j(τ
∗

j ,S) = Pq+j,q+jτ
∗

j Bj + τ∗

j BT

j Pq+j,q+j + Pq+j,q+jτ
∗

j qj2k
∗

j2(ĉj4)
T

+ (τ∗

j qj2k
∗

j2(ĉj4)
T)TPq+j,q+j + Pq+j,q+jτ

∗

j qj3k
∗

j3(ĉj6)
TS

(3)

q+j,j

+ (τ∗

j qj3k
∗

j3(ĉj6)
TS

(3)

q+j,j)
TPq+j,q+j

+

r∑

l=2
l>j

{

Pq+j,q+lτ
∗

l ql3k
∗

l3(ĉj6)
TS

(3)

q+l,j

+ (τ∗

l ql3k
∗

l3(ĉj6)
TS

(3)

q+l,j)
TPT

q+j,q+l

+ (τ∗

j qj3k
∗

j3(ĉl6)
TS

(3)

q+j,l)
TPq+j,q+l

+ PT

q+j,q+lτ
∗

j qj3k
∗

j3(ĉl6)
TS

(3)

q+j,l

}

, j = 1, 2, . . . , r;

c∗ip = λ
1/2

M (CT

ip Cip),

Cip =Piiqi1k
∗

i1(ĉ
p
i1)

T + (qp1
k∗

p1
(ĉ i

p1
)T)TPpp + AT

i Pip + PipAp

+

i∑

β=1

PT

βpqβ1k
∗

β1(ĉ
p
β1

)T +

q
∑

β=i+1

β �=p

(qβ1k
∗

β1(ĉ
p
β1

)T)TPβp

+

p
∑

β=1

β �=i

Piβqβ1k
∗

β1(ĉ
i
β1)

T +

q
∑

β=p+1

(qβ1k
∗

β1(ĉ
i
β1)

T)TPT

iβ ,
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i, p = 1, 2, . . . , q, p > i;

c∗q+j,q+l = λ
1/2

M (CT

q+j,q+l(τ
∗

j , S)Cq+j,q+l(τ
∗

j , S)),

Cq+j,q+l(τ
∗

j , S) =Pq+j,q+lτ
∗

j qj3k
∗

j3(ĉl6)
TS

(3)

q+j,l

+ (τ∗

l ql3k
∗

l3(ĉj6)
TS

(3)

q+l,j)
TPq+l,q+j

+ Pq+j,q+lτ
∗

l Bl + τ∗

j BT

j Pq+j,q+l

+ Pq+j,q+lτ
∗

l ql2k
∗

l2(ĉl4)
T + (τ∗

j qj2k
∗

j2(ĉj4)
T)TPq+j,q+l

+

j
∑

α=1

PT

q+α,q+lτ
∗

αqα3
k∗

α3
(ĉj6)

TS
(3)

q+α,j

+

r∑

α=j+1

α�=l

(τ∗

αqα3k
∗

α3(ĉj6)
TS

(3)

q+α,j)
TPq+α,q+l

+
l∑

α=1
α�=j

Pq+j,q+ατ∗

αqα3
k∗

α3
(ĉl6)

TS
(3)

q+α,l

+

r∑

α=l+1

(τ∗

αqα3
k∗

α3
(ĉl6)

TS
(3)

q+α,l)
TPq+j,q+α,

j, l = 1, 2, . . . , r, l > j;

c∗i,q+j = λ
1/2

M (CT

i,q+j(τ
∗

j , S)Ci,q+j(τ
∗

j , S),

Ci,q+j(τ
∗

j , S) =PiiS
(1)

ij Aij + Piiqi1k
∗

i1(ĉ
j
i2)

T

+

q
∑

p=2

p>i

{
PipS

(1)

pj Apj + Pipqp1k
∗

p1(ĉ
j
p2

)T
}

+ Pi,q+jτ
∗

j Bj + Pi,q+jτ
∗

j qj2k
∗

j2(ĉj4)
T

+

r∑

α=1

Pi,q+ατ∗

αqα3k
∗

α3(ĉj6)
TS

(3)

q+α,j ,

i = 1, 2, . . . , q, j = 1, 2, . . . , r, q + r = s;

σ∗

ii = λM (σii(S)),222 5. SINGULARLY PERTURBED SYSTEMS

σii(S) =Pi,q+iqi2k
∗

i2(ĉi3)
T + (qi2k

∗

i2(ĉi3)
T)TPi,q+i

+
r∑

j=1

{
Pi,q+iqj3k

∗

j3(ĉi5)
TS

(2)

q+j,i + (qj3k
∗

j3(ĉj5)
TS

(2)

q+j,i)
TPT

i,q+j

}
,

i = 1, 2, . . . , q;

σ∗

q+j,q+j = λM (σq+j,q+j(S)),

σq+j,q+j(S) =

q
∑

i=1

{

(S
(1)

ij Aij)
TPi,q+j + Pi,q+jS

(1)

ij Aij

+ (qi1k
∗

i1(ĉ
j
i2)

T)TPi,q+j + PT

i,q+jqi1k
∗

i1(ĉ
j
i2)

T

}

,

j = 1, 2, . . . , r;

σ∗

ip = λ
1/2

M (σT

ip(S)σip(S)),

σip(S) =Pi,q+pqp2
k∗

p2
(ĉp3

)T + (qi2k
∗

i2(ĉi3)
T)TPp,q+i

+

r∑

j=1

{

Pi,q+jqj3k
∗

j3(ĉp5)
TS

(2)

q+j,p + (qj3k
∗

j3(ĉi5)
TS

(2)

q+j,i)
TPp,q+j

}

,

i, p = 1, 2, . . . , q, p > i;

σ∗

q+j,q+l = λ
1/2

M (σT

q+j,q+l(S)σq+j,q+l(S)),

σq+j,q+l(S) =

q∑

i=1

{(

S
(1)

ij Aij

)T

Pi,q+l + PT

i,q+j

(

S
(1)

il Ail

)T

+ (qi1k
∗

i1(ĉ
j
i2)

T)TPi,q+l + PT

i,q+jqi1k
∗

i1(ĉ
l
i2)

T

}

,

j, l = 1, 2, . . . , r, l > j;

σ∗

i,q+j = λ
1/2

M (σT

i,q+j(S)σi,q+j(S)),

σi,q+j(S) =
(
S

(1)

q+j,iBji

)T
Pq+j,q+j +

(
qj3k

∗

j3(ĉi5)
TS

(2)

q+j,i

)T
Pq+j,q+j

+

r∑

l=2
l>j

{(
S

(1)

q+l,iBli

)T
PT

q+j,q+l +
(
S

(1)

q+l,iBli

)T
Pq+j,q+l

+
(
ql3k

∗

l3(ĉi5)
TS

(2)

q+l,i

)T
PT

q+j,q+l +
(
ql3k

∗

l3(ĉi5)
TS

(2)

q+l,i

)T
Pq+j,q+l
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σii(S) =Pi,q+iqi2k
∗

i2(ĉi3)
T + (qi2k

∗

i2(ĉi3)
T)TPi,q+i

+
r∑

j=1

{
Pi,q+iqj3k

∗

j3(ĉi5)
TS

(2)

q+j,i + (qj3k
∗

j3(ĉj5)
TS

(2)

q+j,i)
TPT

i,q+j

}
,

i = 1, 2, . . . , q;

σ∗

q+j,q+j = λM (σq+j,q+j(S)),

σq+j,q+j(S) =

q
∑

i=1

{

(S
(1)

ij Aij)
TPi,q+j + Pi,q+jS

(1)

ij Aij

+ (qi1k
∗

i1(ĉ
j
i2)

T)TPi,q+j + PT

i,q+jqi1k
∗

i1(ĉ
j
i2)

T

}

,

j = 1, 2, . . . , r;

σ∗

ip = λ
1/2

M (σT

ip(S)σip(S)),

σip(S) =Pi,q+pqp2
k∗

p2
(ĉp3

)T + (qi2k
∗

i2(ĉi3)
T)TPp,q+i

+

r∑

j=1

{

Pi,q+jqj3k
∗

j3(ĉp5)
TS

(2)

q+j,p + (qj3k
∗

j3(ĉi5)
TS

(2)

q+j,i)
TPp,q+j

}

,

i, p = 1, 2, . . . , q, p > i;

σ∗

q+j,q+l = λ
1/2

M (σT

q+j,q+l(S)σq+j,q+l(S)),

σq+j,q+l(S) =

q∑

i=1

{(

S
(1)

ij Aij

)T

Pi,q+l + PT

i,q+j

(

S
(1)

il Ail

)T

+ (qi1k
∗

i1(ĉ
j
i2)

T)TPi,q+l + PT

i,q+jqi1k
∗

i1(ĉ
l
i2)

T

}

,

j, l = 1, 2, . . . , r, l > j;

σ∗

i,q+j = λ
1/2

M (σT

i,q+j(S)σi,q+j(S)),

σi,q+j(S) =
(
S

(1)

q+j,iBji

)T
Pq+j,q+j +

(
qj3k

∗

j3(ĉi5)
TS

(2)

q+j,i

)T
Pq+j,q+j

+

r∑

l=2
l>j

{(
S

(1)

q+l,iBli

)T
PT

q+j,q+l +
(
S

(1)

q+l,iBli

)T
Pq+j,q+l

+
(
ql3k

∗

l3(ĉi5)
TS

(2)

q+l,i

)T
PT

q+j,q+l +
(
ql3k

∗

l3(ĉi5)
TS

(2)

q+l,i

)T
Pq+j,q+l
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+ δ∗ql2k
∗

l2(ĉl3)
TPT

q+j,q+l + δ∗
(
ql2k

∗

l2(ĉl3)
T
)T

Pq+j,q+l

}

+ AT

i Pi,q+j +

q
∑

β=1

(
qβ1k

∗

β1(ĉ
i
be1)

T
)T

Pβ,q+j ,

i = 1, 2, . . . , q, j = 1, 2, . . . , r, q + r = s;

δ∗ =

{
1 for l = i,

0 for l �= i.

Here k∗

ij , i �= j, and k∗

ii are determined as in Section 5.6.1.2 of this

Chapter, τj is determined as in Section 5.2.2, ck
ij is the k–th component of

vector cij , S ∈ S is a constant matrix such that

Cq+j,q+l(τ
∗

j , S) ≤ Cq+j,q+l(τ
∗

j , S), ∀S ∈ S, j, l = 1, 2, . . . , r;

Ci,q+j(τ
∗

j , S) ≤ Ci,q+j(τ
∗

j , S), ∀S ∈ S, i = 1, 2, . . . , q, j = 1, 2, . . . , r;

σij(S) ≤ σij(S), ∀S ∈ S, i, j = 1, 2, . . . , s = q + r.

Proposition 5.6.3 is proved by the immediate calculation of total deriva-

tives of functions (5.6.9) by virtue of system (5.6.8) with their subsequent

estimation from above.

Corollary 5.6.1 If in Proposition 5.6.3 the matrix C∗ is negative definite,

i.e. λM (C∗) < 0 and

(a) λM (G) > 0

or

(b) λM (G) ≥ 0,

then the function DV (x, y, µ1) is negative definite

(a) for any µ1 ∈ (0, µ̂1) and for µ1 → 0, where

µ̂1 = min {1, −λM (C∗)/λM (G)},

or

(b) for any µ1 ∈ (0, 1] and for µ1 → 0 respectively.224 5. SINGULARLY PERTURBED SYSTEMS

Theorem 5.6.2 Let the equations of singularly perturbed LSS of Lur’e

type (5.6.8) be such that for the system the matrix-function (5.3.7) is con-

structed with the elements (5.6.9) satisfying estimates (5.6.10) and for the

total derivative of function (5.3.3) by virtue of system (5.6.8) the correla-

tion (5.6.12) is satisfied and

(1) matrices A∗

11
and A∗

22
are positive definite;

(2) matrix C∗ is negative definite;

(3) µ1 ∈ (0, µ̃1), µi = τ−1

i µ1, i = 1, 2, . . . , r, τi ∈ [τ i, τ i], µ1 =

min {1, µ∗

1
, µ̂1}.

Then the equilibrium state (xT, yT)T = 0 of system (5.6.8) is uniformly

asymptotically stable on M̃ × S, , where

M̃ = {M : 0 < µ1 < µ̃1}, µi = τ−1

i µ1, i = 1, 2, . . . , r.

If all conditions of Theorem 5.6.2 are satisfied for Nix ×Njy = Rni×nj ,

then the equilibrium state (xT, yT)T = 0 of system (5.6.8) is uniformly

asymptotically stable in the whole on M̃ × S.

Proof The assertion of this theorem follows from Theorem 5.3.2.

Remark 5.6.1 If λM (G) ≤ 0, then assertion of Theorem 5.6.2 remains

valid for µ̃1 = min {1, µ∗

1
}.

Example 5.6.1 Let system (5.6.1) be the 12-th order system (n = m =

6) of Lur’e type decomposed into three interconnected singularly perturbed

subsystems (q = r = 3) determined by the vectors and matrices (see [Grujic

et al. [1])

Ai =

(
0 1

−1 −2

)

Aii = J, Aij = γJ, i �= j, γ =
1

2000
,

qi1 =

(
0

0.1

)

, ci
i1 =

(
−0.01

0

)

, ci
i2 =

(
1
1

)

,

c
j
i1 =

(
γ

0

)

, c
j
i2 =

(
0
γ

)

, i �= j, ki1 = 2,

Bi =

(
−4 1

1 −4

)

, Bii = 10−3J, Bij = γJ, i �= j,

qi2 =

(
1
1

)

, qi3 =

(
0
1

)

, ci3 =

(
10−3

0

)

, ci4 =

(
1
0

)

,
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Theorem 5.6.2 Let the equations of singularly perturbed LSS of Lur’e

type (5.6.8) be such that for the system the matrix-function (5.3.7) is con-

structed with the elements (5.6.9) satisfying estimates (5.6.10) and for the

total derivative of function (5.3.3) by virtue of system (5.6.8) the correla-

tion (5.6.12) is satisfied and

(1) matrices A∗

11
and A∗

22
are positive definite;

(2) matrix C∗ is negative definite;

(3) µ1 ∈ (0, µ̃1), µi = τ−1

i µ1, i = 1, 2, . . . , r, τi ∈ [τ i, τ i], µ1 =

min {1, µ∗

1
, µ̂1}.

Then the equilibrium state (xT, yT)T = 0 of system (5.6.8) is uniformly

asymptotically stable on M̃ × S, , where

M̃ = {M : 0 < µ1 < µ̃1}, µi = τ−1

i µ1, i = 1, 2, . . . , r.

If all conditions of Theorem 5.6.2 are satisfied for Nix ×Njy = Rni×nj ,

then the equilibrium state (xT, yT)T = 0 of system (5.6.8) is uniformly

asymptotically stable in the whole on M̃ × S.

Proof The assertion of this theorem follows from Theorem 5.3.2.

Remark 5.6.1 If λM (G) ≤ 0, then assertion of Theorem 5.6.2 remains

valid for µ̃1 = min {1, µ∗

1
}.

Example 5.6.1 Let system (5.6.1) be the 12-th order system (n = m =

6) of Lur’e type decomposed into three interconnected singularly perturbed

subsystems (q = r = 3) determined by the vectors and matrices (see [Grujic

et al. [1])

Ai =

(
0 1

−1 −2

)

Aii = J, Aij = γJ, i �= j, γ =
1

2000
,

qi1 =

(
0

0.1

)

, ci
i1 =

(
−0.01

0

)

, ci
i2 =

(
1
1

)

,

c
j
i1 =

(
γ

0

)

, c
j
i2 =

(
0
γ

)

, i �= j, ki1 = 2,

Bi =

(
−4 1

1 −4

)

, Bii = 10−3J, Bij = γJ, i �= j,

qi2 =

(
1
1

)

, qi3 =

(
0
1

)

, ci3 =

(
10−3

0

)

, ci4 =

(
1
0

)

,
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cj5 =

�
0
γ

�

, cj6 =

�
γ

0

�

, ki2 = ki3 = 1.

The elements of the matrix function (5.3.2) are taken as

vii(xi) = xT

i

�
0.3 0.1
0.1 0.3

�

xi; v3+j,3+j(yj, µj) = µjy
T

j

�
2 0
0 2

�

yj ;

i, j = 1, 2, 3;

vip(xi, xp) = xT

i

�
0.01 0
0 0.01

�

xp, i, p = 1, 2, 3, p > i;

v3+j,3+l(yj , yl, M) = µiµjy
T

j

�
0.01 0
0 0.01

�

yl, j, l = 1, 2, 3, l > j;

vi,q+j(xi, yj , µj) = µjx
T

i

�
0.01 0
0 0.01

�

yj , i, j = 1, 2, 3.

For the constructed functions

vii(xi) ≥ 0.2 �xi�
2, i = 1, 2, 3;

v3+j,3+j(yj , µj) ≥ 3µj �yj�
2, j = 1, 2, 3;

vip(xi, xp) = vpi(xi, xp) ≥ −0.01 �xi� �xp�, i, p = 1, 2, 3, p > i;

v3+j,3+l(yj , yl, M) = v3+l,3+j(yj , yl, M) ≥ −0.01µjµl �yj� �yl�,

j, l = 1, 2, 3, l > j;

vi,3+j(xi, yj , µj) ≥ −0.01µj �xi� �yj�, i, j = 1, 2, 3.

The matrix

A1(M) =

�
A11 A12(M)

AT
12

(M) A22(M)

�

,

where

A11 =





0.2 −0.01 −0.01

−0.01 0.2 −0.01

−0.01 −0.01 0.2



 ,

A12(M) =





−0.01µ1 −0.01µ2 −0.01µ3

−0.01µ1 −0.01µ2 −0.01µ3

−0.01µ1 −0.01µ2 −0.01µ3



 ,
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cj5 =

�
0
γ

�

, cj6 =

�
γ

0

�

, ki2 = ki3 = 1.

The elements of the matrix function (5.3.2) are taken as

vii(xi) = xT

i

�
0.3 0.1
0.1 0.3

�

xi; v3+j,3+j(yj, µj) = µjy
T

j

�
2 0
0 2

�

yj ;

i, j = 1, 2, 3;

vip(xi, xp) = xT

i

�
0.01 0
0 0.01

�

xp, i, p = 1, 2, 3, p > i;

v3+j,3+l(yj , yl, M) = µiµjy
T

j

�
0.01 0
0 0.01

�

yl, j, l = 1, 2, 3, l > j;

vi,q+j(xi, yj , µj) = µjx
T

i

�
0.01 0
0 0.01

�

yj , i, j = 1, 2, 3.

For the constructed functions

vii(xi) ≥ 0.2 �xi�
2, i = 1, 2, 3;

v3+j,3+j(yj , µj) ≥ 3µj �yj�
2, j = 1, 2, 3;

vip(xi, xp) = vpi(xi, xp) ≥ −0.01 �xi� �xp�, i, p = 1, 2, 3, p > i;

v3+j,3+l(yj , yl, M) = v3+l,3+j(yj , yl, M) ≥ −0.01µjµl �yj� �yl�,

j, l = 1, 2, 3, l > j;

vi,3+j(xi, yj , µj) ≥ −0.01µj �xi� �yj�, i, j = 1, 2, 3.

The matrix

A1(M) =

�
A11 A12(M)

AT
12

(M) A22(M)

�

,

where

A11 =





0.2 −0.01 −0.01

−0.01 0.2 −0.01

−0.01 −0.01 0.2



 ,

A12(M) =





−0.01µ1 −0.01µ2 −0.01µ3

−0.01µ1 −0.01µ2 −0.01µ3

−0.01µ1 −0.01µ2 −0.01µ3



 ,
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A22(M) =





2µ1 −0.01µ1µ2 −0.01µ1µ3

−0.01µ1µ2 2µ2 −0.01µ2µ3

−0.01µ1µ3 −0.01µ2µ3 2µ3



 ,

is positive definite for µj ∈ (0, 1] and for µj → 0, j = 1, 2, 3.

For such choice of the elements of matrix-function (5.3.2) we have

ρ1i =

�
−0.15383688 for k∗

i1 = 2,

−0.15278641 for k∗

i1 = 0,

ρ2i =

�
−8.917237 for k∗

i2 = 1,

−12 for k∗

i2 = 0,

ρ3i =

�
0.00171 for k∗

i1 = 2,

0 for k∗

i1 = 0,

ρ4i =

�
2.309017 · 10−5 for k∗

i2 = 1,

10−5 for k∗

i2 = 0,

ρ5i =

�
3.2360679 for k∗

i2 = 1,

0 for k∗

i2 = 0,

ρ6i =

�
1.4828427 · 10−2 for k∗

i1 = 2,

10−2 for k∗

i1 = 0,

ρ7i =







0.46264281 for k∗

i1 = 2, k∗

i2 = 1,

0.38015581 for k∗

i1 = 0, k∗

i2 = 1,

0.45199337 for k∗

i1 = 2, k∗

i2 = 0,

0.37 for k∗

i1 = k∗

i2 = 0,

ρ8i =







0.02407149 for k∗

i1 = 2, k∗

i2 = 1,

0.02279776 for k∗

i1 = 2, k∗

i2 = 0,

0.02408377 for k∗

i1 = 0, k∗

i2 = 1,

0.02280625 for k∗

i1 = k∗

i2 = 0,

ρ91 =

�
0.02497321 for k∗

11
= 2,

0 for k∗

11
= 0,

ρ92 =

�
0.0149 for k∗

21 = 2,

0 for k∗

21
= 0,
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A22(M) =





2µ1 −0.01µ1µ2 −0.01µ1µ3

−0.01µ1µ2 2µ2 −0.01µ2µ3

−0.01µ1µ3 −0.01µ2µ3 2µ3



 ,

is positive definite for µj ∈ (0, 1] and for µj → 0, j = 1, 2, 3.

For such choice of the elements of matrix-function (5.3.2) we have

ρ1i =

�
−0.15383688 for k∗

i1 = 2,

−0.15278641 for k∗

i1 = 0,

ρ2i =

�
−8.917237 for k∗

i2 = 1,

−12 for k∗

i2 = 0,

ρ3i =

�
0.00171 for k∗

i1 = 2,

0 for k∗

i1 = 0,

ρ4i =

�
2.309017 · 10−5 for k∗

i2 = 1,

10−5 for k∗

i2 = 0,

ρ5i =

�
3.2360679 for k∗

i2 = 1,

0 for k∗

i2 = 0,

ρ6i =

�
1.4828427 · 10−2 for k∗

i1 = 2,

10−2 for k∗

i1 = 0,

ρ7i =







0.46264281 for k∗

i1 = 2, k∗

i2 = 1,

0.38015581 for k∗

i1 = 0, k∗

i2 = 1,

0.45199337 for k∗

i1 = 2, k∗

i2 = 0,

0.37 for k∗

i1 = k∗

i2 = 0,

ρ8i =







0.02407149 for k∗

i1 = 2, k∗

i2 = 1,

0.02279776 for k∗

i1 = 2, k∗

i2 = 0,

0.02408377 for k∗

i1 = 0, k∗

i2 = 1,

0.02280625 for k∗

i1 = k∗

i2 = 0,

ρ91 =

�
0.02497321 for k∗

11
= 2,

0 for k∗

11
= 0,

ρ92 =

�
0.0149 for k∗

21 = 2,

0 for k∗

21
= 0,5.6 GENERALIZATIONS AND APPLICATIONS 227

ρ93 =

�
0.00828427 for k∗

31
= 2,

0 for k∗

31 = 0,

ρ10,i(S
∗) =

�
4 · 10−5 for k∗

i3 = 1,

0 for k∗

i3 = 0,

ρ11,i(S
∗) =







4.8626044 · 10−3 for k∗

i1 = 2, k∗

i3 = 1,

3.2360679 · 10−3 for k∗

i1 = 2, k∗

i3 = 0,

4 · 10−5 for k∗

i1 = 0, k∗

i3 = 1,

0 for k∗

i1 = k∗

i3 = 0,

ρ1ij(S
∗) =

�
0.020000022 for k∗

i1 = 2,

0 for k∗

i1 = 0,

ρ2ij(S
∗) =

�
3 · 10−5 for k∗

i3 = 1,

1.5 · 10−5 for k∗

i3 = 0,

ρ3ij(S
∗) =

�
10−6 for k∗

i1 = 2,

0 for k∗

i1 = 0,

ρ4ij(S
∗) =







0.05121 for k∗

i2 = k∗

i3 = 1,

0.0499996 for k∗

i2 = 0, k∗

i3 = 1,

0.051161 for k∗

i2 = 1, k∗

i3 = 0,

0.049949 for k∗

i2 = k∗

i3 = 0,

ρ5ij(S
∗) =







0.064213 for k∗

i1 = k∗

i2 = k∗

i3 = 1,

0.0614868 for k∗

i1 = 0, k∗

i2 = k∗

i3 = 1,

0.050653 for k∗

i1 = 2, k∗

i2 = 0, k∗

i3 = 1,

0.06158 for k∗

i1 = 2, k∗

i2 = 1, k∗

i3 = 0,

0.050612 for k∗

i1 = k∗

i2 = 0, k∗

i3 = 1,

0.0611818 for k∗

i1 = 0, k∗

i2 = 1, k∗

i3 = 0,

0.050414 for k∗

i1 = 2, k∗

i2 = k∗

i3 = 0,

0.050015 for k∗

i1 = k∗

i2 = k∗

i3 = 0,
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ρ93 =

�
0.00828427 for k∗

31
= 2,

0 for k∗

31 = 0,

ρ10,i(S
∗) =

�
4 · 10−5 for k∗

i3 = 1,

0 for k∗

i3 = 0,

ρ11,i(S
∗) =







4.8626044 · 10−3 for k∗

i1 = 2, k∗

i3 = 1,

3.2360679 · 10−3 for k∗

i1 = 2, k∗

i3 = 0,

4 · 10−5 for k∗

i1 = 0, k∗

i3 = 1,

0 for k∗

i1 = k∗

i3 = 0,

ρ1ij(S
∗) =

�
0.020000022 for k∗

i1 = 2,

0 for k∗

i1 = 0,

ρ2ij(S
∗) =

�
3 · 10−5 for k∗

i3 = 1,

1.5 · 10−5 for k∗

i3 = 0,

ρ3ij(S
∗) =

�
10−6 for k∗

i1 = 2,

0 for k∗

i1 = 0,

ρ4ij(S
∗) =







0.05121 for k∗

i2 = k∗

i3 = 1,

0.0499996 for k∗

i2 = 0, k∗

i3 = 1,

0.051161 for k∗

i2 = 1, k∗

i3 = 0,

0.049949 for k∗

i2 = k∗

i3 = 0,

ρ5ij(S
∗) =







0.064213 for k∗

i1 = k∗

i2 = k∗

i3 = 1,

0.0614868 for k∗

i1 = 0, k∗

i2 = k∗

i3 = 1,

0.050653 for k∗

i1 = 2, k∗

i2 = 0, k∗

i3 = 1,

0.06158 for k∗

i1 = 2, k∗

i2 = 1, k∗

i3 = 0,

0.050612 for k∗

i1 = k∗

i2 = 0, k∗

i3 = 1,

0.0611818 for k∗

i1 = 0, k∗

i2 = 1, k∗

i3 = 0,

0.050414 for k∗

i1 = 2, k∗

i2 = k∗

i3 = 0,

0.050015 for k∗

i1 = k∗

i2 = k∗
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ρ6ij(S
∗) =







0.04989 for k∗

i1 = k∗

i2 = k∗

i3 = 0,

0.04995 for k∗

i1 = 2, k∗

i2 = k∗

i3 = 0,

0.049960962 for k∗

i1 = 0, k∗

i2 = 1, k∗

i3 = 0,

0.049891 for k∗

i1 = k∗

i2 = 0, k∗

i3 = 1,

0.04998 for k∗

i1 = 2, k∗

i2 = 1, k∗

i3 = 0,

0.04997 for k∗

i1 = 2, k∗

i2 = 0, k∗

i3 = 1,

0.049965 for k∗

i1 = 0, k∗

i2 = k∗

i3 = 1,

0.04999 for k∗

i1 = 2, k∗

i2 = k∗

i3 = 1,

ρ7ij(S
∗) =







0.021251 for k∗

i1 = 2, k∗

i3 = 1,

0.020212 for k∗

i1 = 0, k∗

i3 = 1,

0.023521 for k∗

i1 = 2, k∗

i3 = 0,

0.023454 for k∗

i1 = k∗

i3 = 0,

ρ8ij(S
∗) =







0.0018061 for k∗

i2 = k∗

i3 = 1,

0.001798 for k∗

i2 = 0, k∗

i3 = 1,

0.001124 for k∗

i2 = 1, k∗

i3 = 0,

0.0011 for k∗

i2 = k∗

i3 = 0.

Let η = (1, 1, 1, 1, 1, 1), then the elements of the matrix �G(M) are de-

termined as

�cii = −0.1261032, i = 1, 2, 3; �cij = �cji = 1012, i, j = 1, 2, 3, i �= j;

�c3+i,3+i = −5.676308, i = 1, 2, 3;

�c3+i,3+j = �c3+j,3+i = 10−6, i, j = 1, 2, 3, i �= j;

�ci,3+i = 0.4626428, i = 1, 2, 3; �ci,q+j = 0.04999, i, j = 1, 2, 3, i �= j;

�σii = 6.309017 · 10−5µi, i = 1, 2, 3;

�σij = �σji = 3 · 10−5µi, i, j = 1, 2, 3, i �= j;

�σ3+i,3+i = 0.0148284µi, i = 1, 2, 3;

�σ3+i,3+j = �σ3+j,3+i = 0.051161µi + 0.064213µj, i, j = 1, 2, 3, i �= j;

�σi,q+i = 0.02408377µi, i = 1, 2, 3;

�σi,q+j = 0.023521µi + 0.0018061µiµj , i, j = 1, 2, 3, i �= j.
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For such definition of the elements the matrix G̃(M) is negative definite

for µj ∈ (0, 1] and for µj → 0, j = 1, 2, 3.

By Theorem 5.6.2 the equilibrium state (xT, yT)T = 0 ∈ R12 of the

system specified in this example, is absolutely stable on [0, K] × M̂ × S,

where

K = diag {2, 1, 1, 2, 1, 1, 2, 1, 1},

M̂ = {M : M = diag {µ1, µ2, µ3}, µj ∈ (0, 1], ∀ j = 1, 2, 3}.

Remark 5.6.3 In monograph by Grujic et al.[1] it was shown that the

equilibrium state (xT, yT)T = 0 ∈ R12 of system (5.6.1) is absolutely stable

under nonclassical structural perturbations for µj ∈ (0, 0.447], j = 1, 2, 3.

The application of the matrix-valued function extends the domain of the

admissible values of the parameters µj , j = 1, 2, 3, for which stability under

nonclassical structural perturbations occurs.

5.6.2 Stabilization of an orbital apparatus The objective of the

present study is to apply the method of Liapunov’s matrix functions to

derive new stability conditions for a spacecraft (SC), which is oriented in

inertial space by a control system with executive devices in the form of

three gyroscopic frames.

5.6.2.1 Mathematical model of the system It is assumed that a spacecraft

represents a solid with principal central moments of inertia J1, J2 and J3,

the precession axes of the gyroscopic frames are directed along the principal

axes of the spacecraft, the elements of the gyrostabilizer (GS) are perfectly

rigid, and the gyroscopes of each pair are identical and have constant speeds

of self-rotation. Let γi be the airborne angles determining the orientation of

the spacecraft, pi be the projections of the angular velocity of the spacecraft

onto the body axes, αi be the precession angle, A′

i be the moment of inertia

of each gyroshroud (with a rotor) about the axis of self-rotation, B′

i be the

moment of inertia of each gyroscope about the precession axis, C′

i be the

equatorial moment of inertia of each gyroshroud (with the rotor), and H ′

i be

the intrinsic moment of momentum of the gyroscopes of the gyroframe Γi.

Assuming that A′

i = C′

i, we obtain for the SC–GS system the system of

equations of motion (for the details see Abdullin et al. [1] and the references
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For such definition of the elements the matrix G̃(M) is negative definite

for µj ∈ (0, 1] and for µj → 0, j = 1, 2, 3.

By Theorem 5.6.2 the equilibrium state (xT, yT)T = 0 ∈ R12 of the

system specified in this example, is absolutely stable on [0, K] × M̂ × S,

where

K = diag {2, 1, 1, 2, 1, 1, 2, 1, 1},

M̂ = {M : M = diag {µ1, µ2, µ3}, µj ∈ (0, 1], ∀ j = 1, 2, 3}.

Remark 5.6.3 In monograph by Grujic et al.[1] it was shown that the

equilibrium state (xT, yT)T = 0 ∈ R12 of system (5.6.1) is absolutely stable

under nonclassical structural perturbations for µj ∈ (0, 0.447], j = 1, 2, 3.

The application of the matrix-valued function extends the domain of the

admissible values of the parameters µj , j = 1, 2, 3, for which stability under

nonclassical structural perturbations occurs.

5.6.2 Stabilization of an orbital apparatus The objective of the

present study is to apply the method of Liapunov’s matrix functions to

derive new stability conditions for a spacecraft (SC), which is oriented in

inertial space by a control system with executive devices in the form of

three gyroscopic frames.

5.6.2.1 Mathematical model of the system It is assumed that a spacecraft

represents a solid with principal central moments of inertia J1, J2 and J3,

the precession axes of the gyroscopic frames are directed along the principal

axes of the spacecraft, the elements of the gyrostabilizer (GS) are perfectly

rigid, and the gyroscopes of each pair are identical and have constant speeds

of self-rotation. Let γi be the airborne angles determining the orientation of

the spacecraft, pi be the projections of the angular velocity of the spacecraft

onto the body axes, αi be the precession angle, A′

i be the moment of inertia

of each gyroshroud (with a rotor) about the axis of self-rotation, B′

i be the

moment of inertia of each gyroscope about the precession axis, C′

i be the

equatorial moment of inertia of each gyroshroud (with the rotor), and H ′

i be

the intrinsic moment of momentum of the gyroscopes of the gyroframe Γi.

Assuming that A′

i = C′

i, we obtain for the SC–GS system the system of

equations of motion (for the details see Abdullin et al. [1] and the references
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For such definition of the elements the matrix G̃(M) is negative definite

for µj ∈ (0, 1] and for µj → 0, j = 1, 2, 3.

By Theorem 5.6.2 the equilibrium state (xT, yT)T = 0 ∈ R12 of the

system specified in this example, is absolutely stable on [0, K] × M̂ × S,

where

K = diag {2, 1, 1, 2, 1, 1, 2, 1, 1},

M̂ = {M : M = diag {µ1, µ2, µ3}, µj ∈ (0, 1], ∀ j = 1, 2, 3}.

Remark 5.6.3 In monograph by Grujic et al.[1] it was shown that the

equilibrium state (xT, yT)T = 0 ∈ R12 of system (5.6.1) is absolutely stable

under nonclassical structural perturbations for µj ∈ (0, 0.447], j = 1, 2, 3.

The application of the matrix-valued function extends the domain of the

admissible values of the parameters µj , j = 1, 2, 3, for which stability under

nonclassical structural perturbations occurs.

5.6.2 Stabilization of an orbital apparatus The objective of the

present study is to apply the method of Liapunov’s matrix functions to

derive new stability conditions for a spacecraft (SC), which is oriented in

inertial space by a control system with executive devices in the form of

three gyroscopic frames.

5.6.2.1 Mathematical model of the system It is assumed that a spacecraft

represents a solid with principal central moments of inertia J1, J2 and J3,

the precession axes of the gyroscopic frames are directed along the principal

axes of the spacecraft, the elements of the gyrostabilizer (GS) are perfectly

rigid, and the gyroscopes of each pair are identical and have constant speeds

of self-rotation. Let γi be the airborne angles determining the orientation of

the spacecraft, pi be the projections of the angular velocity of the spacecraft

onto the body axes, αi be the precession angle, A′

i be the moment of inertia

of each gyroshroud (with a rotor) about the axis of self-rotation, B′

i be the

moment of inertia of each gyroscope about the precession axis, C′

i be the

equatorial moment of inertia of each gyroshroud (with the rotor), and H ′

i be

the intrinsic moment of momentum of the gyroscopes of the gyroframe Γi.

Assuming that A′

i = C′

i, we obtain for the SC–GS system the system of

equations of motion (for the details see Abdullin et al. [1] and the references
230 5. SINGULARLY PERTURBED SYSTEMS

therein)

(5.6.11)

I1ṗ1 + (I3 − I2)p2p3 + H1α̇1 cosα1 + H3p2 sin α3

− H2p3 sin α2 = M1 + Mp1 (123);

Biα̈1 − Hipi cosαi + biα̇i = Myi + Mαi, i = 1, 2, 3,

γ̇1 = (p1 cos γ3 − p2 sin γ3)/ cos γ2,

γ̇2 = p1 sin γ3 + p2 cos γ3,

γ̇3 = p3 + (p2 sinγ3 − p1 cos γ3) cos γ2.

Here, the symbol (123) designates cyclic permutation of indices,

I1 = J1 + B2 + A1 + A3 (123),

Bi = 2B′

i, Ai = 2A′

i, Hi = 2H ′

i,

and Mi is the projection of the disturbing moment acting on the spacecraft

on the axis Oxi, Mπ is the moment created by the gyroscope unloading

system, bi is the coefficient of viscous friction in the precession axis, Myi is

the control moment created by the torque sensor (TS), and Mαi is the

disturbing moment along the precession axis.

The above assumptions are not exactly realized in real structures, and

this leads to the occurence in system (5.6.11) of additional inertial, gyro-

scopic, and other moments as disturbing factors. It is assumed that their

action is reduced in some way to moments that enter the expressions for

Mi and Mαi as addends and can be estimated satisfactorily. Apart from

the mentioned moments, Mi also includes moments of external forces, re-

active moments, and moments due to the debalance of GS rotors, and Mαi

includes moments of dry friction, moments of dynamic debalance of rotors,

and other moments in the TS [1].

The necessity of allowing for GS unloading arises when a prescribed

orientation of a spacecraft should be maintained for a long time. It is

accepted that unloading is relized by the law

Mπ(αi(t)) =

{
0, for t ∈ [tk, τk);

−M0
π sign αi(τk), for t ∈ [τk, tk+1), |αi(τk)| = α0

i ,

where α0

i is the precession angle at which unloading starts, τk are the start-

up times (k = 0, 1, 2, . . . ), and tk = τk−1 + Tπ (k ≥ 1) are the unloading

Download free eBooks at bookboon.com



Stability Theory of Large-Scale  
Dynamical Systems

218 

Singularly Perturbed Large-Scale Systems

5.6 GENERALIZATIONS AND APPLICATIONS 231

cutoff times, and the constants Tπ and M0
π are selected so that |αi(tk+1)|

is sufficiently small.

The control moment Myi is formed based on information obtained from

angle sensors (AS) γi and angular-velocity sensors (AVS) pi and α̇i. A con-

trol in the form

Myi = fi(αi)(K1iγi + K2ipi) − K3iα̇i

for ideal TS, AS, and AVS is considered qualitative.

Using the actual characteristics of the sensors, we can determine Myi

from the equations

TiṀyi + Myi = Fi(σi),

σi = fi(αi)(F1i(γi) + F2i(pi)) − F3i(α̇i),

where Ti is the time constant of the control circuit of the gyroframes Γi

and fi(αi) = secαi or fi(αi) ≡ 1; Fi(σi) and Fji(xi) are the nonlinear

characteristics of the TS, AS, and AVS, which vary in time, are ambiguous

and in the domain

(5.6.12)

|γi| ≤ γ∗

i <
π

2
, |pi| ≤ p∗i ,

|α̇i| ≤ q∗i = α∗

i , |αi| ≤ α∗

i ≤
π

2
,

satisfy the conditions

|Fji(xj) − kjixj | ≤ x0

ji,

min (σ∗

i , σi − σ0

i ) ≤ Fi(σi) ≤ max (−σ∗

i , σi + σ0

i ).

The values of x0
ji (x0

1i = γ0
i , x0

2i = p0
i , x0

3i = α̇0
i = q0

i ) are determined

by the dead zones, the noise of both the most sensitive elements and sig-

nal amplifiers, quantization, and other nonlinearities of the characteristics.

The value of σ0

i is determined by the TS hysteresis, the dead zone, and

other nonlinearities of the static characteristics of both the sensor itself

and amplifiers, noise in the amplifiers, errors and quantization in computa-

tional devices, etc. The quantity σ∗

i addresses the saturation of the TS or

amplifying devices.

230 5. SINGULARLY PERTURBED SYSTEMS

therein)

(5.6.11)

I1ṗ1 + (I3 − I2)p2p3 + H1α̇1 cosα1 + H3p2 sin α3

− H2p3 sin α2 = M1 + Mp1 (123);

Biα̈1 − Hipi cosαi + biα̇i = Myi + Mαi, i = 1, 2, 3,

γ̇1 = (p1 cos γ3 − p2 sin γ3)/ cos γ2,

γ̇2 = p1 sin γ3 + p2 cos γ3,

γ̇3 = p3 + (p2 sinγ3 − p1 cos γ3) cos γ2.

Here, the symbol (123) designates cyclic permutation of indices,

I1 = J1 + B2 + A1 + A3 (123),

Bi = 2B′

i, Ai = 2A′

i, Hi = 2H ′

i,

and Mi is the projection of the disturbing moment acting on the spacecraft

on the axis Oxi, Mπ is the moment created by the gyroscope unloading

system, bi is the coefficient of viscous friction in the precession axis, Myi is

the control moment created by the torque sensor (TS), and Mαi is the

disturbing moment along the precession axis.

The above assumptions are not exactly realized in real structures, and

this leads to the occurence in system (5.6.11) of additional inertial, gyro-

scopic, and other moments as disturbing factors. It is assumed that their

action is reduced in some way to moments that enter the expressions for

Mi and Mαi as addends and can be estimated satisfactorily. Apart from

the mentioned moments, Mi also includes moments of external forces, re-

active moments, and moments due to the debalance of GS rotors, and Mαi

includes moments of dry friction, moments of dynamic debalance of rotors,

and other moments in the TS [1].

The necessity of allowing for GS unloading arises when a prescribed

orientation of a spacecraft should be maintained for a long time. It is

accepted that unloading is relized by the law

Mπ(αi(t)) =

{
0, for t ∈ [tk, τk);

−M0
π sign αi(τk), for t ∈ [τk, tk+1), |αi(τk)| = α0

i ,

where α0

i is the precession angle at which unloading starts, τk are the start-

up times (k = 0, 1, 2, . . . ), and tk = τk−1 + Tπ (k ≥ 1) are the unloading

232 5. SINGULARLY PERTURBED SYSTEMS

In the monograph by Abdullin et al. [1], the following notation was

introduced

x1i = γi, x2i = pi, x3i = qi = α̇i, x4i = Myi/Bi = ui;

αi = Hi/Ii; aij = Hj/Ii, (i �= j);

∆a1 = (I3 − I2)/I1 (123);

ψ1 = a13p2 sinα3 − a12p3 sin α2 + ∆a1p2p3 (123);

θ1 = [p1(cos γ3 − cos γ2) − p2 sinγ3]/ cosγ2;

θ2 = p2(cos γ3 − 1) + p1 sin γ3;

θ3 = (p2 sin γ3 − p1 cos γ3) cos γ2;

mi = Mi/Ii; mπ = Mπ/Ii; mαi
= Mαi/Bi; nji = kji/(BiTi);

gi = Hi/Bi; hi = bi/Bi; di = 1/Ti; νi = σi/(BiTi);

ϕi(νi) = Fi(BiTiνi)/(BiTi) − νi;

ri = νi − fi(αi)(n1iγi + n2ipi) + n3igi.

In these designations, system (5.6.11) is reduced to the form (see Abdullin

et al. [1])

(5.6.13)

ẋ1i = x2i + θi,

ẋ2i = −aix3i cosαi + mi + mπ − ψi,

ẋ3i = −hix3i + gix2i cosαi + x4i + mαi,

ẋ4i = −dix4i + fi(αi)(n1ix1i + n2ix2i) − n3ix3i + ri + ϕiνi,

α̇ = x3i, i = 1, 2, 3.

Let us further introduce notations corresponding to the method of study

developed in Martynyuk and Miladzhanov [4, 5]

xj = (xj1, xj2, xj3)
T, j = 1, 2, 3, 4; α = (α1, α2, α3)

T;

µi = cos γi, i = 1, 2, 3; µk = cosαk−3, k = 4, 5, 6;

m = (m1, m2, m3)
T; mα = (mα1, mα2, mα3)

T; mp = (mp1, mp2, mp3)
T;

A = diag (a1, a2, a3); G = diag (g1, g2, g3); H = diag (h1, h2, h3);
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In the monograph by Abdullin et al. [1], the following notation was

introduced

x1i = γi, x2i = pi, x3i = qi = α̇i, x4i = Myi/Bi = ui;

αi = Hi/Ii; aij = Hj/Ii, (i �= j);

∆a1 = (I3 − I2)/I1 (123);

ψ1 = a13p2 sinα3 − a12p3 sin α2 + ∆a1p2p3 (123);

θ1 = [p1(cos γ3 − cos γ2) − p2 sinγ3]/ cosγ2;

θ2 = p2(cos γ3 − 1) + p1 sin γ3;

θ3 = (p2 sin γ3 − p1 cos γ3) cos γ2;

mi = Mi/Ii; mπ = Mπ/Ii; mαi
= Mαi/Bi; nji = kji/(BiTi);

gi = Hi/Bi; hi = bi/Bi; di = 1/Ti; νi = σi/(BiTi);

ϕi(νi) = Fi(BiTiνi)/(BiTi) − νi;

ri = νi − fi(αi)(n1iγi + n2ipi) + n3igi.

In these designations, system (5.6.11) is reduced to the form (see Abdullin

et al. [1])

(5.6.13)

ẋ1i = x2i + θi,

ẋ2i = −aix3i cosαi + mi + mπ − ψi,

ẋ3i = −hix3i + gix2i cosαi + x4i + mαi,

ẋ4i = −dix4i + fi(αi)(n1ix1i + n2ix2i) − n3ix3i + ri + ϕiνi,

α̇ = x3i, i = 1, 2, 3.

Let us further introduce notations corresponding to the method of study

developed in Martynyuk and Miladzhanov [4, 5]

xj = (xj1, xj2, xj3)
T, j = 1, 2, 3, 4; α = (α1, α2, α3)

T;

µi = cos γi, i = 1, 2, 3; µk = cosαk−3, k = 4, 5, 6;

m = (m1, m2, m3)
T; mα = (mα1, mα2, mα3)

T; mp = (mp1, mp2, mp3)
T;

A = diag (a1, a2, a3); G = diag (g1, g2, g3); H = diag (h1, h2, h3);
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D = diag (d1, d2, d3); Ni = diag (ni1, ni2, ni3), i = 1, 2, 3;

M = diag (µ4, µ5, µ6), r = (r1 + ϕ1(ν1), r2 + ϕ2(ν2), r3 + ϕ3(ν3))
T;

S1 =





µ3 −µ′

3
0

−µ2µ
′

3 µ2µ
′

3 0

−µ2
2
µ′

3
µ2

2
µ′

3
µ2



 , µ′

3 =
�

1 − µ2
3
;

S2 =





0 a13µ
′

5 ∆a1p2 − a12µ
′

6

∆a2p3 − a23µ
′

6
0 a21µ

′

4

a32µ
′

5
∆a3p1 − a31µ

′

4
0



 ,

µ′

k =
�

1 − µ2

k; k = 4, 5, 6.

We transform system (5.6.13) into the form

(5.6.14)

µ2ẋ1 = S1x2,

ẋ2 = −S2x2 − MAx3 + m + mp,

ẋ3 = −Hx3 + MGx2 + x4 + mα,

Mẋ4 = −MDx4 + N1x1 + N2x2 − MN3x3 + Mr,

α̇ = x3.

Here, the matrices S1 and S2 and constants µj , j = 1, . . . , 6 satisfy the

following conditions in domain (5.6.12)

S1 ≤ S1 ≤ S1, S2 ≤ S2 ≤ S2, µj ∈ (0, 1],

where

S
1

=





0 −1 0
−1 0 0
−1 0 0



 , S1 =





1 0 0
0 1 0
0 1 1



 ,

S
2

=





0 0 ∆a1p
∗

2 − a12

∆a2p
∗

3
− a23 0 0

0 ∆a3p
∗

1
− a31 0



 ,

S2 =





0 a13 ∆a1p
∗

2

∆a2p
∗

3 0 a21

a32 ∆a3p
∗

1
0



 .
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5.6.2.2 Construction of Liapunov’s matrix function Let us construct a

two-index system of functions for system (5.6.14)

(5.6.15)
U(x1, x2, x3, x4, α, µ2, M) = [ϑij(·)],

ϑij = ϑji, i, j = 1, 2, . . . , 5,

with the elements

(5.6.16)

ϑ11(x1, µ2) = µ2x
T

1 B11x1, ϑ12(x1, x2, µ2) = µ2x
T

1 B12x2,

ϑ13 = 0; ϑ14(x1, x4, µ2, M) = µ2x
T

1
B14(Mx4), ϑ15 = 0,

ϑ22(x2) = xT

2
B22x2, ϑ23(x2, x3) = xT

2
B23x3,

ϑ24(x2, x4, M) = xT

2 B24(Mx4), ϑ25(x2, α) = xT

2 B25α,

ϑ33(x3) = xT

3
B33x3, ϑ34(x3, x4, M) = xT

3
B34(Mx4),

ϑ35(x3, α) = xT

3 B35α, ϑ44(x4, M) = (Mx4)
TB44x4,

ϑ45 = 0, ϑ55(α) = αTB55α.

Here, Bii, i = 1, 2, 3, 4, 5, are symmetric, positive-definite matrices and

B12, B14, B23, B24, B25, B34, and B35 are constant matrices.

The following estimates hold for functions (5.6.16)

µ2λm(B11)�x1�
2
≤ ϑ11(x1, µ) ≤ µ2λM (B11)�x1�

2;

λm(B22)�x2�
2
≤ ϑ22(x2, µ) ≤ λM (B22)�x2�

2;

λm(B33)�x3�
2
≤ ϑ33(x3, µ) ≤ λM (B33)�x3�

2;

µλm(B44)�x4�
2
≤ ϑ44(x4, M) ≤ µλM (B44)�x4�

2;

−µ2λ
1/2

M (B12B
T

12
)�x1� �x2� ≤ ϑ12(x1, x2, µ2)

≤ µ2λ
1/2

M (B12B
T

12)�x1� �x2�;

−µ2µλ
1/2

M (B14B
T

14
)�x1� �x4� ≤ ϑ14(x1, x4, µ2, M)

≤ µ2µλ
1/2

M (B14B
T

14
)�x1� �x4�;

−λ
1/2

M (B23B
T

23)�x2� �x3� ≤ ϑ23(x2, x3) ≤ λ
1/2

M (B23B
T

23)�x2� �x3�;

−µ2λ
1/2

M (B12B
T

12
)�x1� �x2� ≤ ϑ12(x1, x2, µ2) ≤(5.6.17)
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5.6.2.2 Construction of Liapunov’s matrix function Let us construct a

two-index system of functions for system (5.6.14)

(5.6.15)
U(x1, x2, x3, x4, α, µ2, M) = [ϑij(·)],

ϑij = ϑji, i, j = 1, 2, . . . , 5,

with the elements

(5.6.16)

ϑ11(x1, µ2) = µ2x
T

1 B11x1, ϑ12(x1, x2, µ2) = µ2x
T

1 B12x2,

ϑ13 = 0; ϑ14(x1, x4, µ2, M) = µ2x
T

1
B14(Mx4), ϑ15 = 0,

ϑ22(x2) = xT

2
B22x2, ϑ23(x2, x3) = xT

2
B23x3,

ϑ24(x2, x4, M) = xT

2 B24(Mx4), ϑ25(x2, α) = xT

2 B25α,

ϑ33(x3) = xT

3
B33x3, ϑ34(x3, x4, M) = xT

3
B34(Mx4),

ϑ35(x3, α) = xT

3 B35α, ϑ44(x4, M) = (Mx4)
TB44x4,

ϑ45 = 0, ϑ55(α) = αTB55α.

Here, Bii, i = 1, 2, 3, 4, 5, are symmetric, positive-definite matrices and

B12, B14, B23, B24, B25, B34, and B35 are constant matrices.

The following estimates hold for functions (5.6.16)

µ2λm(B11)�x1�
2
≤ ϑ11(x1, µ) ≤ µ2λM (B11)�x1�

2;

λm(B22)�x2�
2
≤ ϑ22(x2, µ) ≤ λM (B22)�x2�

2;

λm(B33)�x3�
2
≤ ϑ33(x3, µ) ≤ λM (B33)�x3�

2;

µλm(B44)�x4�
2
≤ ϑ44(x4, M) ≤ µλM (B44)�x4�

2;

−µ2λ
1/2

M (B12B
T

12
)�x1� �x2� ≤ ϑ12(x1, x2, µ2)

≤ µ2λ
1/2

M (B12B
T

12)�x1� �x2�;

−µ2µλ
1/2

M (B14B
T

14
)�x1� �x4� ≤ ϑ14(x1, x4, µ2, M)

≤ µ2µλ
1/2

M (B14B
T

14
)�x1� �x4�;

−λ
1/2

M (B23B
T

23)�x2� �x3� ≤ ϑ23(x2, x3) ≤ λ
1/2

M (B23B
T

23)�x2� �x3�;

−µ2λ
1/2

M (B12B
T

12
)�x1� �x2� ≤ ϑ12(x1, x2, µ2) ≤(5.6.17) 5.6 GENERALIZATIONS AND APPLICATIONS 235

≤ µ2λ
1/2

M (B12B
T

12
)�x1� �x2�;

−µ2λ
1/2

M (B24B
T

24)�x2� �x4� ≤ ϑ24(x2, x4, M) ≤

≤ µ2λ
1/2

M (B24B
T

24
)�x2� �x4�;

−λ
1/2

M (B25B
T

25
)�x2� �α� ≤ ϑ25(x2, α) ≤ λ

1/2

M (B25B
T

25
)�x2� �α�;

−µλ
1/2

M (B34B
T

34)�x3� �x4� ≤ ϑ34(x3, x4, M) ≤

≤ µλ
1/2

M (B34B
T

34
)�x3� �x4�;

−λ
1/2

M (B35B
T

35
)�x3� �α� ≤ ϑ35(x3, α) ≤ λ

1/2

M (B35B
T

35
)�x3� �α�;

−λ1/2

m (B55B
T

55)�α�
2
≤ ϑ55(α) ≤ λ

1/2

M (B55B
T

55)�α�
2,

where µ = min {µ4, µ5, µ6}, µ = max {µ4, µ5, µ6}, λm(Bii) are the mini-

mum eigenvalues, λM (Bii) are the maximum eigenvalues of the matrices

Bii, i = 1, 2, 3, 4, 5, and λ
1/2

M (BijB
T

ij) are the norms of the matrices Bij

for i < j .

Uzing matrix-valued function (5.6.15) and the constant vector η =

(1, 1, 1, 1, 1)T, we introduce the function

(5.6.18) Θ(x1, x2, x3, x4, α, µ2, M) = ηTU(x1, x2, x3, x4, α, µ2, M)η.

It is easy to verify that if the elements of matrix function (5.6.15) satisfy

estimates (5.6.17), then function (5.6.18) satisfies the two-sided estimate

uTBu ≤ Θ(x1, x2, x3, x4, α, µ2, M)T ≤ uTBu,

where

u = (�x1�, �x2�, �x3�, �x4�, �α�)
T,

B = [bij ]
5

i,j=1, bij = bji, B = [bij ]
5

i,j=1, bij = bji,

b11 = µ2λm(B11), b22 = λm(B22), b33 = λm(B33), b44 = µλm(B44),

b
55

= λm(B55), b11 = µ2λM (B11), b22 = λM (B22), b33 = λM (B33),

b44 = µλM (B44), b55 = λM (B55), b12 = −b12 = µ2λ
1/2

M (B12B
T

12),

b13 = b
13

= 0, b14 = −b
14

= µ2µλ
1/2

M (B14B
T

14
),
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≤ µ2λ
1/2

M (B12B
T

12
)�x1� �x2�;

−µ2λ
1/2

M (B24B
T

24)�x2� �x4� ≤ ϑ24(x2, x4, M) ≤

≤ µ2λ
1/2

M (B24B
T

24
)�x2� �x4�;

−λ
1/2

M (B25B
T

25
)�x2� �α� ≤ ϑ25(x2, α) ≤ λ

1/2

M (B25B
T

25
)�x2� �α�;

−µλ
1/2

M (B34B
T

34)�x3� �x4� ≤ ϑ34(x3, x4, M) ≤

≤ µλ
1/2

M (B34B
T

34
)�x3� �x4�;

−λ
1/2

M (B35B
T

35
)�x3� �α� ≤ ϑ35(x3, α) ≤ λ

1/2

M (B35B
T

35
)�x3� �α�;

−λ1/2

m (B55B
T

55)�α�
2
≤ ϑ55(α) ≤ λ

1/2

M (B55B
T

55)�α�
2,

where µ = min {µ4, µ5, µ6}, µ = max {µ4, µ5, µ6}, λm(Bii) are the mini-

mum eigenvalues, λM (Bii) are the maximum eigenvalues of the matrices

Bii, i = 1, 2, 3, 4, 5, and λ
1/2

M (BijB
T

ij) are the norms of the matrices Bij

for i < j .

Uzing matrix-valued function (5.6.15) and the constant vector η =

(1, 1, 1, 1, 1)T, we introduce the function

(5.6.18) Θ(x1, x2, x3, x4, α, µ2, M) = ηTU(x1, x2, x3, x4, α, µ2, M)η.

It is easy to verify that if the elements of matrix function (5.6.15) satisfy

estimates (5.6.17), then function (5.6.18) satisfies the two-sided estimate

uTBu ≤ Θ(x1, x2, x3, x4, α, µ2, M)T ≤ uTBu,

where

u = (�x1�, �x2�, �x3�, �x4�, �α�)
T,

B = [bij ]
5

i,j=1, bij = bji, B = [bij ]
5

i,j=1, bij = bji,

b11 = µ2λm(B11), b22 = λm(B22), b33 = λm(B33), b44 = µλm(B44),

b
55

= λm(B55), b11 = µ2λM (B11), b22 = λM (B22), b33 = λM (B33),

b44 = µλM (B44), b55 = λM (B55), b12 = −b12 = µ2λ
1/2

M (B12B
T

12),

b13 = b
13

= 0, b14 = −b
14

= µ2µλ
1/2

M (B14B
T

14
),236 5. SINGULARLY PERTURBED SYSTEMS

b15 = b
15

= 0, b23 = −b
23

= λ
1/2

M (B23B
T

23
),

b24 = b
24

= µλ
1/2

M (B24B
T

24
), b25 = b

25
= λ

1/2

M (B25B
T

25
),

b34 = b
34

= µλ
1/2

M (B34B
T

34
), b35 = b

35
= λ

1/2

M (B35B
T

35
),

b45 = b
45

= 0.

5.6.2.3 Test for stability analysis Further, we obtain an upper estimate of

the total derivative of function (5.6.18) along the solution of system (5.6.14)

in the form

d

dt
Θ(x1, x2, x3, x4, α, µ2, M) =

5∑

i=1

dϑii

dt
+ 2

5∑

i=1

5∑

j=2

dϑij

dt
≤

4∑

i=1

xT

i Kiixi

+ 2

4∑

i=1

4∑

j=2

xT

i Kijxj +

4∑

i=1

xT

i K ′

i1α +

4∑

i=1

xT

i K ′

i2(m + mp) +

4∑

i=1

xT

i K ′

i3mα

+

4∑

i=1

xT

i K ′

i4r + mT

αB35α + (m + mp)
TB25α,

where

K11 = µ∗

2(B14N1 + (B14N1)
T);

K22 = − S̃T

2 B22 − B22S̃2 + B12 + BT

12 + B23M
∗G + (B23M

∗G)T

+ B24N2 + (B24N2)
T;

K33 = − HTB33 − B33H − (M∗A)TB23 − B23M
∗A

− B34M
∗N3 − (B34M

∗N3)
T;

K44 = −(M∗D)TB44M
∗D + B34M

∗ + (B34M
∗)T;

K12 = B11S̃1 + µ∗

2B12S̃2 + µ∗

2B14N2;

K13 = −µ∗B12M
∗A − µ∗

2
B14N3 + NT

1
B34;

K14 = NT

1
B44 − µ∗

2
B14M

∗D + NT

1
BT

24
;

K23 = − B22M
∗A + (M∗G)TB33 − S̃T

2
B23 − B23H

− B24M
∗N3 + NT

2
B34 + B25;
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b15 = b
15

= 0, b23 = −b
23

= λ
1/2

M (B23B
T

23
),

b24 = b
24

= µλ
1/2

M (B24B
T

24
), b25 = b

25
= λ

1/2

M (B25B
T

25
),

b34 = b
34

= µλ
1/2

M (B34B
T

34
), b35 = b

35
= λ

1/2

M (B35B
T

35
),

b45 = b
45

= 0.

5.6.2.3 Test for stability analysis Further, we obtain an upper estimate of

the total derivative of function (5.6.18) along the solution of system (5.6.14)

in the form

d

dt
Θ(x1, x2, x3, x4, α, µ2, M) =

5∑

i=1

dϑii

dt
+ 2

5∑

i=1

5∑

j=2

dϑij

dt
≤

4∑

i=1

xT

i Kiixi

+ 2

4∑

i=1

4∑

j=2

xT

i Kijxj +

4∑

i=1

xT

i K ′

i1α +

4∑

i=1

xT

i K ′

i2(m + mp) +

4∑

i=1

xT

i K ′

i3mα

+

4∑

i=1

xT

i K ′

i4r + mT

αB35α + (m + mp)
TB25α,

where

K11 = µ∗

2(B14N1 + (B14N1)
T);

K22 = − S̃T

2 B22 − B22S̃2 + B12 + BT

12 + B23M
∗G + (B23M

∗G)T

+ B24N2 + (B24N2)
T;

K33 = − HTB33 − B33H − (M∗A)TB23 − B23M
∗A

− B34M
∗N3 − (B34M

∗N3)
T;

K44 = −(M∗D)TB44M
∗D + B34M

∗ + (B34M
∗)T;

K12 = B11S̃1 + µ∗

2B12S̃2 + µ∗

2B14N2;

K13 = −µ∗B12M
∗A − µ∗

2
B14N3 + NT

1
B34;

K14 = NT

1
B44 − µ∗

2
B14M

∗D + NT

1
BT

24
;

K23 = − B22M
∗A + (M∗G)TB33 − S̃T

2
B23 − B23H

− B24M
∗N3 + NT

2
B34 + B25;
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K24 =B33 + NT

2 B44 + B23 − B24M
∗D + µ∗

2
�ST

1 B14

− �S2B24M
∗ + (M∗G)TB34;

K34 = −(M∗N3)
TB44 − (M∗A)TB24 − B34M

∗D − HTB34M
∗;

K ′

11 = 0; K ′

21 = 2(�ST

2 B25 + (M∗G)TB35);

K ′

31
= 2(B55 − (M∗A)TB25 − HTB35); K ′

41
= 2B35;

K ′

12 = 2µ∗

2B22; K ′

22 = 2B22; K ′

23 = 2B23; K ′

42 = 2M∗BT

24;

K ′

13 = 0; K ′

23 = 2B23; K ′

33 = 2B33; K ′

43 = 2M∗BT

34;

K ′

14 = 2µ2B14M
∗; K ′

24 = 2B24M
∗; K ′

34 = 2B34M
∗; K ′

44 = 2B44M
∗;

µ∗

2 =

�
cos γ∗

2 if the corresponding factors are negative,

1 if the corresponding factors are positive,

M∗ = diag (µ∗

4
, µ∗

5
, µ∗

6
),

µ∗

k =

�
cos α∗

k−3
if the corresponding factors are negative,

1 if the corresponding factors are positive,

k = 4, 5, 6;

�S1 =





µ∗

3
−µ∗′

3
0

−µ∗

2µ
∗′

3 µ∗

2µ
∗

3 0

−(µ∗

2
)2µ∗

3
(µ∗

2
)2µ∗′

3
µ∗

2



 , µ∗′

3 =
�

1 − (µ∗

3
)2;

�S2 =





0 a13µ
∗′

6 ∆a1p2 − a12µ
∗′

5

∆a2p3 − a23µ
∗′

6
0 a21µ

∗′

3

a32µ
∗′

5 ∆a3p1 − a31µ
∗′

4 0



 ,

µ∗′

k =
�

1 − (µ∗

k)2; k = 4, 5, 6;

pi =

�
−p∗i if the corresponding factors are negative,

p∗i if the corresponding factors are positive.
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After simple transformations, we find the estimate

(5.6.19)
d

dt
Θ(x1,x2, x3, x4, α, µ2, M) ≤ wTKw + β1�α�w

+ β2�m + mp�w + β3�mα�w + β4�r�w

+ λ
1/2

M (B35B
T

35)�mα� �α� + λ
1/2

M (B25B
T

25)�m + mp� �α�,

where

w = (�x1�, �x2�, �x3�, �x4�)
T,

K = [ρij ]
4

i,j=1, ρij = ρji,

ρii = λM (Kii), ρij = λM (KijK
T

ij), i, j = 1, 2, 3, 4, i �= j,

βj = (β1j , β2j , β3j , β4j)
T, j = 1, 2, 3, 4,

βij is the norm of the matrices K ′

ij .

Assume that �mα� ≤ mα, �m + mp� ≤ m + mp, and �r� ≤ r; then

estimate (5.6.19) takes the following form in domain (5.6.12)

(5.6.20)
d

dt
Θ(x1, x2, x3, x4, α, µ2, M) ≤ λM�w�

2 + l�w� + f,

where

l = �β1� �α
∗
� + �β2�(m + mp) + �β3�mα + �β4�r,

f = λ
1/2

M (B35B
T

35
)�mα� �α� + λ

1/2

M (B25B
T

25
)�m + mp� �α

∗
�.

From (5.6.20), it follows that the expression
d

dt
Θ(x1, x2, x3, x4, α, µ2, M)

is negative definite if and only if the following conditions are satisfied

λM (K) < 0,

�w� >
l +

√
l2 + 4fλM (K)

−2λM (K)
.(5.6.21)

However, the inequality below holds in domain (5.6.12)

(5.6.22) �w� ≤

{ 3∑

i=1

[
(γ∗

i )2 + (p∗i )
2 + (q∗i )2 + (U∗

i )2
]
}1/2

,

where U∗

i > |Ui|, i = 1, 2, 3.
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Theorem 5.6.3 Let LMF (5.6.15) with elements (5.6.16) be construc-

ted for system (5.6.14) and, for this system, condition (5.6.22) be satisfied

in domain (5.6.12). If λm(B) > 0, λM (K) < 0, and the vector w =

(‖x1‖, ‖x2‖, ‖x3‖, ‖x4‖)
T

satisfies inequality (5.6.21), then the motion of

system (5.6.14) is asymptotically stable.

Proof From the condition λm(B) > 0, it follows that scalar function

(5.6.18) is positive-definite in the sense of Liapunov. If the condition

λM (K) < 0 and inequality (5.6.21) are satisfied, then the total derivative

of function (5.6.18) will be negative definite by virtue of system (5.6.14). As

is known, these conditions are sufficient for the motion of system (5.6.14)

to be asymptotically stable.

5.6.2.4 Conclusion remarks The stability conditions for a spacecraft for-

mulated in Theorem 5.6.3 are consistent with the conditions of the Lia-

punov’s like Theorem on asymptotic stability of motion. Namely, in this

theorem, auxiliary function (5.6.18) constructed on the basis of matrix-

valued function (5.6.15) is applied, and the conditions of its definite nega-

tivity are established.

Thus, the method of matrix-valued functions allows us to take into ac-

count all features of the system under consideration and the cross links

between subsystems and does not require constructing a comparison sys-

tem, which happens when Liapunov’s vector function is used (see Abdullin

et al. [1], p. 227).

Note that the application of comparison systems to analysis of motion

stability is inevitably associated with a certain type of its quasimonotonicity

(otherwise, the appropriate comparison theorems are not applicable). It

is well known that the quasimonotonicity of a system is not a necessary

condition of the stability of its trivial solution. Also, it is well known that

the property of quasimonotonicity is not associated with the essence of a

stability problem but is due to the key feature of the comparison method

used.

The method of Liapunov’s matrix functions for the system (5.6.14) al-

lows us to keep all the advantages of Liapunov’s direct method without

introducing into it side conditions that are not characteristic of this flexible

method.
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(5.6.18) is positive-definite in the sense of Liapunov. If the condition

λM (K) < 0 and inequality (5.6.21) are satisfied, then the total derivative

of function (5.6.18) will be negative definite by virtue of system (5.6.14). As

is known, these conditions are sufficient for the motion of system (5.6.14)
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Note that the application of comparison systems to analysis of motion

stability is inevitably associated with a certain type of its quasimonotonicity

(otherwise, the appropriate comparison theorems are not applicable). It

is well known that the quasimonotonicity of a system is not a necessary

condition of the stability of its trivial solution. Also, it is well known that

the property of quasimonotonicity is not associated with the essence of a

stability problem but is due to the key feature of the comparison method

used.

The method of Liapunov’s matrix functions for the system (5.6.14) al-

lows us to keep all the advantages of Liapunov’s direct method without

introducing into it side conditions that are not characteristic of this flexible

method.
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5.7 Notes and References

Section 5.1 The results of stability analysis of solutions for the given class of

systems in terms of vector functions are presented in Grujić et al. [1]. In this

chapter we use some results from the above monograph and set out the results

of development of a new method of qualitative analysis of singularly perturbed

systems dynamics in terms of auxiliary matrix-valued functions. In the frame-

work of this approach we succeed in reducing the requirement to the individual

subsystems of system F and extending the boundaries of the admissible upper

values of small parameters as compared to those obtained or/and applied in terms

of the vector Liapunov function.

Section 5.2 In this section we use the same models of singularly perturbed

system under nonclassical structural perturbations as in Grujić et al. [1], but

in the mathematical composition of large scale system for the given model of

connectedness.

Sections 5.3 – 5.4 These two sections are based on the results by Martynyuk and

Miladzhanov [4, 5, 9], and Miladzhanov [4, 5].

Section 5.5 Some results of this section are presented by Martynyuk and Mi-

ladzhanov [9].

Section 5.6 Subsection 5.6.1 is based on the papers by Martynyuk and Mi-

ladzhanov [9, 10]. Also some estimates from Section 5.5 are used.

Section 5.6.2 is based on the paper by Martynyuk and Miladzhanov [8]. Be-

sides, we employ some results by Voronov and Matrosov (Eds.) [1] who applied

the vector Liapunov function in the solution of the problem.
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[1] Stability Theory of Dynamical Systems. Berlin: Springer-Verlag, 2002.

Birkhoff, G. G.

[1] Dynamical Systems. Moscow-Leningrad: GITTL, 1941. [Russian].

Blaquiere, A.

[1] Differential games with piecewise continuous trajectories. In: Lecture Notes in

Control and Information Sciences. New York: Springer-Verlag, 1977, 34 – 69.

Borne, P., Dambrine, M., Perruquetti, W., Richard, J.P.

[1] Vector Lyapunov functions: Time-varing, ordinary and functional differential

equations. In: Advances in Stability Theory at the End of XXth Century

(Ed.: A.A. Martynyuk), London: Taylor and Francis, 2002, 89 –112.

Bowen, R. and Ruelle, D.

[1] The ergodic theory of axiom A flows. Invent. Math. 79 (1975) 181 – 202.

Bromberg, B. V.

[1] Matrix Methods in the Theory of Relay and Pulse Control. Moscow: Nauka,

1967. [Russian]

Bronowski, J.

[1] New concepts in the evolution of complexity. Syntheses 21 (1970) 228–246.

Carrier, G. F.

[1] Singular Perturbation Theory and Geophysics. SIAM Rev. 12 (1970) 175 – 193.

Cesari, L.

[1] Asymptotic Behaviour and Stability Problems in Ordinary Differential Equa-

tions. 2nd edn. Berlin: Springer-Verlag, 1963.

Chang, K. W. and Howes, F. A.

[1] Nonlinear Singular Perturbation Phenomena: Theory and Application. New

York: Springer-Verlag, 1984.

Chen, Ye. H.

[1] Optimal design of robust control for uncertain systems: a fuzzy approach. Non-

linear Dynamics and Systems Theory 1(2) (2001) 133 –143.
REFERENCES 243

Chetaev, N. G.

[1] On stability of rough systems. Prikl. Mat. Mekh. 24 (1960) 20-22. [Russian]

[2] it Stability of Motion. Moscow: Nauka, 1990. [Russian]

Conley, C. C. and Zehnder, E. C. L.

[1] Morse type index theory for flows and periodic solutions for Hamiltonian equa-

tions. Comm. Pure Appl. Math. 37 (1984) 207 – 253.

Coppel, W. A.

[1] Stability and Asymptotic Behaviour of Differential Equations. Boston: Heath,

1965.

Corless, M. and Leitmann, G.

[1] Deterministic Control of Uncertain System via a Constructive use of Lyapunov

Stability Theory. Berlin: Springer-Verlag, 1989.

Cronin, J.

[1] Recurrent solutions of some autonomous equations. J. Differential Equations 3

(1976) 595 – 600.

De Baggis, H.

[1] Dynamical sytems with stable structure. In: Contributions to the theory of non-

linear oscillations. Vol. 2. Princeton: Princeton University Press, 1952 (Ann.

of Math. Studies, No 29).

Diamond, P.

[1] Discrete Liapunov function with V > 0. J. Austral. Math. Soc. 20B (1978)

280 – 284.

Dishliev, A. B. and Bainov, D. D.

[1] Conditions for absence of the phenomenon ”beating” for systems of impulsive

differential equations. Bull. Math. Acad. Sinica 13 (1985) 237 – 256.

Djordjević, M. Z.
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