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Preface

Preface

The present book is used for lecture courses Computational heat and mass
transfer, Mathematical models of turbulence and Design of special cloth given
by the authors at the University of Rostock, Germany and Don State Tech-
nical University, Russia. Each of lecture courses contains about 14 lectures.
The lecture course Compuational heat and mass transfer was written pro-
ceeding from the idea to present the complex material as easy as possible.
We considered derivation of numerical methods, particularly of the finite vol-
ume method, in details up to final expressions which can be programmed.
Turbulence is a big and a very complicated topic which is difficult to cover
within 14 lectures. We selected the material combining the main physi-
cal concepts of the turbulence with basic mathematical models necessary to
solve practical engineering problems. The course Design of special cloth uses
the material of two parts of this book partially. The material for the third
part was gathered from research projects done by the authors of this book
within some industrial projects and research works supported by different
foundations. We express our gratitude to Andreas Gross, Gunnar Jacobi
and Stefan Knochenhauer who carried out CFD calculations for the third
part of this book.
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Main equations of the Computational 
Heat and Mass Transfer

Chapter 1

Main equations of the
Computational Heat and Mass
Transfer

1.1 Fluid mechanics equations

1.1.1 Continuity equation

We consider the case of uniform density distribution � D const . The con-
tinuity equation has the following physical meaning: The amount of liquid
flowing into the volume U with the surface S is equal to the amount of liquid
flowing out. Mathematically it can be expressed in form:

Z

S

EuEnds D 0 (1.1)

Expressing the scalar product EuEn through components

Z

S

�
ux cos.nx/ C uy cos.ny/ C uz cos.nz/

�
ds D 0:

and using the Gauss theorem we get

Z

U

�
@ux

@x
C

@uy

@y
C

@uz

@z

�
dU D 0

Since the integration volume U is arbitrary, the integral is zero only if
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@y
C

@uz

@z
D 0 (1.2)

In the tensor form the continuity equation reads:

@ui

@xi

D 0 (1.3)

1.1.2 Classification of forces acting in a fluid

The inner forces acting in a fluid are subdivided into the body forces and
surface forces (Fig. 1.1).

Figure 1.1: Body and surface forces acting on the liquid element.

1.1.2.1 Body forces

Let � Ef be a total body force acting on the volume �U . Let us introduce
the strength of the body force as limit of the ratio of the force to the volume:

EF D lim
�U !0

� Ef

��U
(1.4)

18
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@ux

@x
C

@uy

@y
C

@uz

@z
D 0 (1.2)

In the tensor form the continuity equation reads:

@ui

@xi

D 0 (1.3)

1.1.2 Classification of forces acting in a fluid

The inner forces acting in a fluid are subdivided into the body forces and
surface forces (Fig. 1.1).

Figure 1.1: Body and surface forces acting on the liquid element.

1.1.2.1 Body forces

Let � Ef be a total body force acting on the volume �U . Let us introduce
the strength of the body force as limit of the ratio of the force to the volume:

EF D lim
�U !0

� Ef

��U
(1.4)

18which has the unit kgm

s2

m3

kg
1

m3 D ms�2. Typical body forces are gravitational,
electrostatic or electromagnetic forces. For instance, we have the following
relations for the gravitational forces:

� Ef D �g�U Ek (1.5)

where � Ef is the gravitational force acting on a particle with volume �U . The
strength of the gravitational force is equal to the gravitational acceleration:

EF D lim
�U !0

.�
�g�U Ek

��U
/ D �g Ek (1.6)

The body forces are acting at each point of fluid in the whole domain.

1.1.2.2 Surface forces

The surface forces are acting at each point at the boundary of the fluid
element. Usually they are shear and normal stresses. The strength of surface
forces is determined as

Epn D lim
�S!0

� EPn

�S
(1.7)

with the unit kgm

s2

1
m2 D

kg

ms2 . A substantial feature of the surface force is the
dependence of Epn on the orientation of the surface �S .
The surface forces are very important because they act on the body from

the side of liquid and determine the forces ER arising on bodies moving in the
fluid:

ER D

Z

S

EpndS

EM D

Z

S

.Er � Epn/dS

(1.8)

1.1.2.3 Properties of surface forces

Let us consider a liquid element in form of the tetrahedron (Fig. 1.2).
Its motion is described by the 2nd law of Newton:

��U
d Eu

dt
D ��U EF C Epn�S � Epx�Sx � Epy�Sy � Epz�Sz (1.9)

19
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Figure 1.2: Forces acting on the liquid element.

Dividing r.h.s and l.h.s. by the surface of inclined face �S results in:

�
�U

�S

�
d Eu

dt
� EF

�
D Epn � Epx

�Sx

�S
� Epy

�Sy

�S
� Epz

�Sz

�S
(1.10)

Let us find the limit of (1.10) at �S ! 0:

lim
�S!0

�U

�S
D 0; lim

�S!0

�Sx

�S
D cos.nx/; (1.11)

lim
�S!0

�Sy

�S
D cos.ny/; lim

�S!0

�Sz

�S
D cos.nz/ (1.12)

Substitution of (1.11) and (1.12) into (1.10) results in the following relation
between Epn and Epx, Epy , Epz:

Epn D Epx cos.nx/ C Epy cos.ny/ C Epz cos.nz/ (1.13)

Let us write the surface forces through components:

Epx D Eipxx C Ej �xy C Ek�xz

Epy D Ei�yx C Ej pyy C Ek�yz

Epz D Ei�zx C Ej �zy C Ekpzz

20
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Heat and Mass TransferFigure 1.2: Forces acting on the liquid element.
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Substitution of (1.11) and (1.12) into (1.10) results in the following relation
between Epn and Epx, Epy , Epz:

Epn D Epx cos.nx/ C Epy cos.ny/ C Epz cos.nz/ (1.13)

Let us write the surface forces through components:

Epx D Eipxx C Ej �xy C Ek�xz

Epy D Ei�yx C Ej pyy C Ek�yz

Epz D Ei�zx C Ej �zy C Ekpzz
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Here �ij are shear stress (for instance �12 D �xy), whereas pi i are normal
stress (for instance p11 D pxx). From moment equations (see Fig. 1.3) one
can obtain the symmetry condition for shear stresses: �zya � �yza D 0 )

�zy D �yz and generally:

�ij D �j i (1.14)

Figure 1.3: Stresses acting on the liquid cube with sizes a.

The stress matrix is symmetric and contains 6 unknown elements:

0
@

pxx �xy �xz

�xy pyy �yz

�xz �yz pzz

1
A (1.15)

1.1.3 Navier Stokes Equations

Applying the Newton second law to the small fluid element dU with the
surface dS and using the body and surface forces we get:

Z

U

d Eu

dt
�dU D

Z

U

EF �dU C

Z

S

EpndS (1.16)

The property of the surface force can be rewritten with the Gauss theorem
in the following form:

21
Z

S

EpndS D

Z

S

�
Epx cos.nx/ C Epy cos.ny/ C Epz cos.nz/

�
dS

D

Z

U

�
@ Epx

@x
C

@ Epy

@y
C

@ Epz

@z

�
dU

The second law (1.16) takes the form:

Z

U

d Eu

dt
�dU D

Z

U

EF �dU C

Z

U

�
@ Epx

@x
C

@ Epy

@y
C

@ Epz

@z

�
dU

Z

U

�
d Eu

dt
� � � EF �

�
@ Epx

@x
C

@ Epy

@y
C

@ Epz

@z

��
dU D 0

Since the volume dU is arbitrary, the l.h.s. in the last formulae is zero only
if:

d Eu

dt
D EF C

1

�

�
@ Epx

@x
C

@ Epy

@y
C

@ Epz

@z

�
(1.17)

The stresses in (1.17) are not known. They can be found from the generalized
Newton hypothesis

0
@

pxx �xy �xz

�xy pyy �yz

�xz �yz pzz

1
A D �

0
@

p 0 0

0 p 0

0 0 p

1
AC 2�Sij (1.18)

where p is the pressure,

S11 D Sxx D
@ux

@x
I S12 D Sxy D

1

2

�
@ux

@y
C

@uy

@x

�
I S13 D Sxz D

1

2

�
@ux

@z
C

@uz

@x

�

S21 D S12; S22 D Syy D
@uy

@y
; S23 D Syz D

1

2

�
@uy

@z
C

@uz

@y

�

S31 D S13; S32 D S23; S33 D Szz D
@uz

@z

The liquids obeying (1.18) are referred to as the Newtonian liquids.
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if:

d Eu

dt
D EF C

1
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�
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@z

�
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The stresses in (1.17) are not known. They can be found from the generalized
Newton hypothesis
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A D �
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where p is the pressure,
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�
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The liquids obeying (1.18) are referred to as the Newtonian liquids.
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The normal stresses can be expressed through the pressure p:

pxx D �p C 2�
@ux

@x
; pyy D �p C 2�

@uy

@y
; pzz D �p C 2�

@uz

@z

The sum of three normal stresses doesn’t depend on the choice of the coor-
dinate system and is equal to the pressure taken with sign minus:

pxx C pyy C pzz

3
D �p (1.19)

The last expression is the definition of the pressure in the viscous flow: The
pressure is the sum of three normal stresses taken with the sign minus. Sub-
stitution of the Newton hypothesis (1.18) into (1.17) gives (using the first
equation as a sample):

�
dux

dt
D �Fx C

@

@x

�
� p C 2�

@ux

@x

�
C

@

@y

�
�

�
@uy

@x
C

@ux

@y

��

C
@

@z

�
�

�
@ux

@z
C

@uz

@x

��
D

D �Fx �
@p

@x
C �

�
@2ux

@x2
C

@2ux

@y2
C

@2ux

@z2

�
C

C �
@

@x

�
@ux

@x
C

@uy

@y
C

@uz

@z

�

The last term in the last formula is zero because of the continuity equation.
Doing similar transformation with resting two equations in y and z direc-
tions, one can obtain the following equation, referred to as the Navier-Stokes
equation:

d Eu

dt
D EF �

1

�
rp C ��Eu (1.20)

The full or material substantial derivative of the velocity vector d Eu
dt

is the
acceleration of the fluid particle. It consists of two parts: local acceleration
and convective acceleration:

d Eu

dt
D

@Eu

@t„ƒ‚…
local acceleration

C ux

@Eu

@x
C uy

@Eu

@y
C uz

@Eu

@z„ ƒ‚ …
convective acceleration
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The normal stresses can be expressed through the pressure p:
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@uy
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; pzz D �p C 2�

@uz

@z

The sum of three normal stresses doesn’t depend on the choice of the coor-
dinate system and is equal to the pressure taken with sign minus:

pxx C pyy C pzz

3
D �p (1.19)

The last expression is the definition of the pressure in the viscous flow: The
pressure is the sum of three normal stresses taken with the sign minus. Sub-
stitution of the Newton hypothesis (1.18) into (1.17) gives (using the first
equation as a sample):

�
dux

dt
D �Fx C

@

@x

�
� p C 2�

@ux

@x

�
C

@

@y

�
�

�
@uy

@x
C

@ux

@y

��

C
@

@z

�
�

�
@ux
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@uz

@x

��
D

D �Fx �
@p

@x
C �

�
@2ux

@x2
C

@2ux

@y2
C

@2ux

@z2

�
C

C �
@
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�
@ux
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C

@uy

@y
C

@uz

@z

�

The last term in the last formula is zero because of the continuity equation.
Doing similar transformation with resting two equations in y and z direc-
tions, one can obtain the following equation, referred to as the Navier-Stokes
equation:

d Eu

dt
D EF �

1

�
rp C ��Eu (1.20)

The full or material substantial derivative of the velocity vector d Eu
dt

is the
acceleration of the fluid particle. It consists of two parts: local acceleration
and convective acceleration:

d Eu

dt
D

@Eu

@t„ƒ‚…
local acceleration

C ux

@Eu

@x
C uy

@Eu

@y
C uz

@Eu

@z„ ƒ‚ …
convective acceleration
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The normal stresses can be expressed through the pressure p:

pxx D �p C 2�
@ux

@x
; pyy D �p C 2�

@uy

@y
; pzz D �p C 2�

@uz

@z

The sum of three normal stresses doesn’t depend on the choice of the coor-
dinate system and is equal to the pressure taken with sign minus:

pxx C pyy C pzz

3
D �p (1.19)

The last expression is the definition of the pressure in the viscous flow: The
pressure is the sum of three normal stresses taken with the sign minus. Sub-
stitution of the Newton hypothesis (1.18) into (1.17) gives (using the first
equation as a sample):

�
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The last term in the last formula is zero because of the continuity equation.
Doing similar transformation with resting two equations in y and z direc-
tions, one can obtain the following equation, referred to as the Navier-Stokes
equation:

d Eu

dt
D EF �

1

�
rp C ��Eu (1.20)

The full or material substantial derivative of the velocity vector d Eu
dt

is the
acceleration of the fluid particle. It consists of two parts: local acceleration
and convective acceleration:

d Eu

dt
D

@Eu

@t„ƒ‚…
local acceleration

C ux

@Eu

@x
C uy

@Eu

@y
C uz

@Eu

@z„ ƒ‚ …
convective acceleration

23The local acceleration is due to the change of the velocity in time. The
convective acceleration is due to particle motion in a nonuniform velocity
field. The Navier-Stokes Equation in tensor form is:

@ui

@t
C uj

@ui

@xj

D Fi �
1

�

@p

@xi

C �
@

@xj

�
@

@xj

ui

�
(1.21)

Using the continuity equation (1.3) the convective term can be written in the
conservative form:

uj

@ui

@xj

D
@

@xj

�
uiuj

�
(1.22)

Finally, the Navier Stokes in the tensor form is:

@ui

@t
C

@

@xj

.uiuj / D Fi �
1

�

@p

@xi

C �
@

@xj

�
@

@xj

ui

�
(1.23)

The Navier Stokes equation together with the continuity equation (1.3) is
the closed system of partial differential equations. Four unknowns velocity
components ux; uy; uz and pressure p are found from four equations. The
equation due to presence of the term @

@xj
.uiuj / is nonlinear.

The boundary conditions are enforced for velocity components and pressure
at the boundary of the computational domain. The no slip condition ux D

uy D uz D 0 is enforced at the solid body boundary. The boundary condition
for the pressure at the body surface can directly be derived from the Navier
Stokes equation. For instance, if y D 0 corresponds to the wall, the Navier
Stokes Equation takes the form at the boundary:

@p

@x
D �Fx C �

@2ux

@y2

@p

@y
D �Fy C �

@2uy

@y2

@p

@z
D �Fz C �

@2uz

@y2

Very often the last term in the last formulae is neglected because second
spatial derivatives of the velocity are not known at the wall boundary.
Till now, the existence of the solution of Navier Stokes has been not proven by
mathematicians. Also, it is not clear whether the solution is smooth or allows
singularity. The Clay Mathematics Institute has called the Navier–Stokes
existence and smoothness problems one of the seven most important open
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The local acceleration is due to the change of the velocity in time. The
convective acceleration is due to particle motion in a nonuniform velocity
field. The Navier-Stokes Equation in tensor form is:

@ui

@t
C uj

@ui

@xj

D Fi �
1

�

@p

@xi

C �
@

@xj

�
@

@xj

ui

�
(1.21)

Using the continuity equation (1.3) the convective term can be written in the
conservative form:

uj

@ui

@xj

D
@

@xj

�
uiuj

�
(1.22)

Finally, the Navier Stokes in the tensor form is:

@ui

@t
C

@

@xj

.uiuj / D Fi �
1

�

@p

@xi

C �
@

@xj

�
@

@xj

ui

�
(1.23)

The Navier Stokes equation together with the continuity equation (1.3) is
the closed system of partial differential equations. Four unknowns velocity
components ux; uy; uz and pressure p are found from four equations. The
equation due to presence of the term @

@xj
.uiuj / is nonlinear.

The boundary conditions are enforced for velocity components and pressure
at the boundary of the computational domain. The no slip condition ux D

uy D uz D 0 is enforced at the solid body boundary. The boundary condition
for the pressure at the body surface can directly be derived from the Navier
Stokes equation. For instance, if y D 0 corresponds to the wall, the Navier
Stokes Equation takes the form at the boundary:
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@x
D �Fx C �

@2ux

@y2

@p

@y
D �Fy C �

@2uy

@y2

@p
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D �Fz C �

@2uz
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Very often the last term in the last formulae is neglected because second
spatial derivatives of the velocity are not known at the wall boundary.
Till now, the existence of the solution of Navier Stokes has been not proven by
mathematicians. Also, it is not clear whether the solution is smooth or allows
singularity. The Clay Mathematics Institute has called the Navier–Stokes
existence and smoothness problems one of the seven most important open

24

problems in mathematics and has offered one million dollar prize for its
solution.

1.2 Heat conduction equation

Let q.x; t / be the heat flux vector, U is the volume of fluid or solid body, S is
its surface and n is the unit normal vector to S . Flux of the inner energy
into the volume U at any point x 2 U is

�q.x; t / � n.x/ (1.24)

Integrating (1.24) over the surface S we obtain:

�

Z

S

q � ndS (1.25)

and using the Gauss theorem

Z

S

q.x; t / � n.x/dS D

Z

U

r � q.x; t /dU (1.26)

From the other side the change of the inner energy in the volume U is equal
to
R

U
�cp

@
@t

T .x; t /dU , where T is the temperature, cp is the specific heat
capacity and � is the density. Equating this change to (1.26) we get:

Z

U

�cp

@

@t
T .x; t /dU D �

Z

U

r � q.x; t /dU C

Z

U

f .x; t /dU (1.27)

Here f is the heat sources within the volume U .
Fourier has proposed the following relation between the local heat flux and
temperature difference, known as the Fourier law:

q.x; t / D ��rT .x; t / (1.28)

where � is the heat conduction coefficient.
Substitution of the Fourier law (1.28) into the inner energy balance equa-
tion (1.27) results in

Z

!

�
�cp

@

@t
T .x; t / � r � .�rT .x; t //

�
dU D

Z

U

f .x; t /dU (1.29)

Since the volume U is arbitrary, (1.29) is reduced to

25

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

26 

Main equations of the Computational 
Heat and Mass Transfer

�cp

@

@t
T .x; t / � r � .�rT .x; t // D f .x; t / (1.30)

The equation (1.30) is the heat conduction equation. The heat conduction
coefficient for anisotropic materials is the tensor

� D

0
@

�11 �12 �13

�12 �22 �23

�13 �23 �33

1
A (1.31)

The following boundary conditions are applied for the heat conduction equa-
tion (1.30):

� Neumann condition:

rT .x; t / � n.x/ D F1.x; t /; x 2 S (1.32)

� Dirichlet condition:

T .x; t / D F2.x; t /; x 2 S (1.33)
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Chapter 2

Finite difference method

2.1 One dimensional case

Let us consider the finite difference method for the one dimensional case.
Let '.x/ is the function defined in the range Œ0; a� along the x axis. The
section Œ0; a� is subdivided in a set of points xi . For the homogeneous distri-
bution xi D .i � 1/�I i D 1; N , � D a=.N � 1/ (see Fig. 2.1).

Figure 2.1: One dimensional case.

Let us approximate the derivative @'

@x
1. The Taylor series of the function '

at points xi�1 and xiC1 are:

'i�1 D 'i � �x

�
@'

@x

�

i

C
1

2
�x2

�
@2'

@x2

�

i

� ::: (2.1)

1 We use the partial derivative although the function depends only on one variable
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'iC1 D 'i C �x
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C ::: (2.2)

Expressing the derivative

�
@'

@x

�

i

from (2.1) we get the Backward Difference

Scheme (BDS):

�
@'
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�

i

D
1

�x

�
'i � 'i�1

�
C O

�
�x

�
(2.3)

Expressing the derivative

�
@'

@x

�

i

from (2.2) we get the Forward Difference

Scheme (FDS):

�
@'

@x

�

i

D
1

�x

�
'iC1 � 'i

�
C O

�
�x

�
(2.4)

Accuracy of both schemes is of the first order. Subtracting (2.1) from (2.2)
we get the Central Difference Scheme (CDS)

�
@'

@x

�

i

D
1

2�x

�
'iC1 � 'i�1

�
C O

�
�x2

�
(2.5)

which is of the second order accuracy.

For the approximation of derivatives ui

�
@'

@x

�

i

where ui is the flow velocity

one uses the Upwind Difference Scheme (UDS):

�
@'

@x

�

i

D

(
BDS, if u > 0

FDS, if u < 0
(2.6)

The accuracy of BDS, FDS and CDS can be improved using the polynomial
representation of the function '.x/. For instance, consider the approximation

'.x/ D ax2
C bx C c

within the section Œxi�1; xiC1�.
Without loss of generality we assume xi�1 D 0. The coefficient c can be
obtained from the condition:

'.0/ D 'i�1 D c

Other two coefficients a and b are determined from the conditions:

'i D a�x2
C b�x C 'i�1
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'iC1 D a4�x2

C b2�x C 'i�1

a D
'iC1 � 2'i C 'i�1

2�x2

b D
�'iC1 C 4'i � 3'i�1

2�x

The first derivative using CDS is then

�
@'

@x

�

i

D 2a� C b D
'iC1 � 'i�1

2�x

the second derivative:

�
@2'

@x2

�

i

D 2a D
'iC1 � 2'i C 'i�1

�x2

If the polynomial of the 3rd order '.x/ D ax3 C bx2 C cx C d is applied, we
get:

�
@'

@x

�

i

D
1

6�x

�
2'iC1 C 3'i � 6'i�1 C 'i�2

�
C O

�
�x3

�
(2.7)

for the Backward Difference Scheme,

�
@'

@x

�

i

D
1

6�x

�
� 'iC2 C 6'iC1 � 3'i � 2'i�1

�
C O

�
�x3

�
(2.8)

for the Forward Difference Scheme and

�
@'

@x

�

i

D
1

12�x

�
� 'iC2 C 8'iC1 � 8'i�1 C 'i�2

�
C O

�
�x4

�
(2.9)

for the Central Difference Scheme. As seen the accuracy order is sufficiently
improved by consideration of more adjacent points.
The second derivatives are:

�
@2'

@x2

�

i

D
1

�x2

�
'iC1 � 2'i C 'i�1

�
C O

�
�x2

�
(2.10)

for the polynomial of the second order and

�
@2'

@x2

�

i

D
1

12�x2

�
� 'iC2 C 16'iC1 � 30'i C 16'i�1 � 'i�2

�
C O

�
�x4

�

(2.11)
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'iC1 D a4�x2
C b2�x C 'i�1

a D
'iC1 � 2'i C 'i�1

2�x2

b D
�'iC1 C 4'i � 3'i�1

2�x

The first derivative using CDS is then

�
@'

@x

�

i

D 2a� C b D
'iC1 � 'i�1

2�x

the second derivative:

�
@2'

@x2

�

i

D 2a D
'iC1 � 2'i C 'i�1

�x2

If the polynomial of the 3rd order '.x/ D ax3 C bx2 C cx C d is applied, we
get:

�
@'

@x

�

i

D
1

6�x

�
2'iC1 C 3'i � 6'i�1 C 'i�2

�
C O

�
�x3

�
(2.7)

for the Backward Difference Scheme,

�
@'

@x

�

i

D
1

6�x

�
� 'iC2 C 6'iC1 � 3'i � 2'i�1

�
C O

�
�x3

�
(2.8)

for the Forward Difference Scheme and

�
@'

@x

�

i

D
1

12�x

�
� 'iC2 C 8'iC1 � 8'i�1 C 'i�2

�
C O

�
�x4

�
(2.9)

for the Central Difference Scheme. As seen the accuracy order is sufficiently
improved by consideration of more adjacent points.
The second derivatives are:

�
@2'

@x2

�

i

D
1

�x2

�
'iC1 � 2'i C 'i�1

�
C O

�
�x2

�
(2.10)

for the polynomial of the second order and

�
@2'

@x2

�

i

D
1

12�x2

�
� 'iC2 C 16'iC1 � 30'i C 16'i�1 � 'i�2

�
C O

�
�x4

�

(2.11)

29

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.fuqua.duke.edu/globalmba

BUSINESS HAPPENS HERE.BUSINESS HAPPENS

http://s.bookboon.com/fuqua


Lectures on computational fluid dynamics

30 

Finite dierence method

for the polynomial of the fourth order. The formula (2.10) can also be ob-
tained using consequently CDS

�
@2'

@x2

�

i

D
1

�x

�
@'

@x iC1=2
�

@'

@x i�1=2

�
(2.12)

where i C1=2 and i �1=2 are intermediate points (see Fig. 2.1). Using again
the CDS for the derivatives at intermediate points:

�
@'

@x

�

iC1=2

D
'iC1 � 'i

�x
(2.13)

�
@'

@x

�

i�1=2

D
'i � 'i�1

�x
(2.14)

we obtain (2.10).

2.2 Two dimensional case

In the two dimensional case the function ' is the function of two variables ' D

'.x; y/. A sample of non-uniform grid is given in Fig. (2.2). In next chapters
we will consider different grids and principles of their generation. In this
chapter we consider uniform two dimensional grids .xi ; yj / with equal spacing
in both x and y directions.

Figure 2.2: A sample of non uniform grid around the profile.

The function ' at a point .xi ; yj / is 'ij . The CDS approximation of the
derivative on x at this point is:

30
�

@'

@x

�

ij

D
'iC1j � 'i�1j

2�x

whereas on y is:

�
@'

@y

�

ij

D
'ij C1 � 'ij �1

2�y

2.3 Time derivatives. Explicit versus implicit

Let the unsteady partial differential equation is written in the form:

@g

@t
D G.g; t/ (2.15)

The solution is known at the time instant n. The task is to find the solution
at n C 1 time instant. Using forward difference scheme we get:

gnC1
D gn

C G.g; t/�t (2.16)

Taking the r.h.s. of (2.15) from the n � th time slice we obtain:

gnC1
D gn

C G.gn; t /�t (2.17)

The scheme (2.17) is the so called explicit scheme (simple Euler approach).
Taking the r.h.s. of (2.15) from the n C 1 � th time slice we obtain:

gnC1
D gn

C G.gnC1; t /�t (2.18)

The scheme (2.18) is the implicit scheme. The r.h.s. side of (2.18) depends on
the solution gnC1. With the other words, the solution at the time slice nC1,
gnC1 can not be expressed explicitly through the solutions known the from
previous time slices 1; 2; ::; n for nonlinear dependence G.g; t/.
Mix between explicit and implicit schemes is called the Crank-Nicolson Scheme:

gnC1
D gn

C
1

2
.G.gn; t / C G.gnC1; t //�t

2.4 Exercises

1. Using the CDS find the derivative
�

@

@x

�
� .x/

@'

@x

��

i

D ::: (2.19)
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The solution is known at the time instant n. The task is to find the solution
at n C 1 time instant. Using forward difference scheme we get:

gnC1
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Taking the r.h.s. of (2.15) from the n � th time slice we obtain:
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The scheme (2.17) is the so called explicit scheme (simple Euler approach).
Taking the r.h.s. of (2.15) from the n C 1 � th time slice we obtain:
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C G.gnC1; t /�t (2.18)

The scheme (2.18) is the implicit scheme. The r.h.s. side of (2.18) depends on
the solution gnC1. With the other words, the solution at the time slice nC1,
gnC1 can not be expressed explicitly through the solutions known the from
previous time slices 1; 2; ::; n for nonlinear dependence G.g; t/.
Mix between explicit and implicit schemes is called the Crank-Nicolson Scheme:

gnC1
D gn

C
1

2
.G.gn; t / C G.gnC1; t //�t

2.4 Exercises

1. Using the CDS find the derivative
�

@

@x

�
� .x/

@'

@x

��

i

D ::: (2.19)
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2. Using the CDS approximate the mixed derivative

@2'

@x@y ij

D
@

@x

�
@'

@y

�

ij

(2.20)

3. Write the program on the language C to solve the following partial
differential equation:

@'

@x
C ˛

@2'

@x2
D f .x/

with the following boundary conditions:

@'

@x
.x D 0/ D C1

'.x D 0/ D C2

Use the central difference scheme.

4. Write the program on the language C to solve the following partial
differential equation:

˛
@'

@t
C

@2'

@x2
D f .x; t/

with the following boundary conditions:

@'

@x
.x D 0/ D C1

'.x D 0/ D C2

and initial condition '.x; 0/ D F.x/.

Use the explicit method and the central difference scheme for spatial
derivatives.
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2. Using the CDS approximate the mixed derivative

@2'

@x@y ij

D
@

@x

�
@'

@y

�

ij

(2.20)

3. Write the program on the language C to solve the following partial
differential equation:

@'

@x
C ˛

@2'

@x2
D f .x/

with the following boundary conditions:

@'

@x
.x D 0/ D C1

'.x D 0/ D C2

Use the central difference scheme.

4. Write the program on the language C to solve the following partial
differential equation:

˛
@'

@t
C

@2'

@x2
D f .x; t/

with the following boundary conditions:

@'

@x
.x D 0/ D C1

'.x D 0/ D C2

and initial condition '.x; 0/ D F.x/.

Use the explicit method and the central difference scheme for spatial
derivatives.
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Chapter 3

Stability and artificial viscosity
of numerical methods

3.1 Artificial viscosity

Let us consider the generic linear equation:

@�

@t
C u

@�

@x
D 0

The numerical upwind scheme (UDS) is:

�
nC1
i

��n
i

�t
D

8̂
<
:̂

�
u��n

i
�u��n

i�1

�x
u > 0

�
u��n

iC1
�u��n

i

�x
u < 0

We consider only the case u > 0:

�nC1
i � �n

i

�t
D �

u � �n
i � u � �n

i�1

�x
u > 0 (3.1)

Taylor expansions of the function �.x; t/ in time and space gives

�nC1
i D �n

i C
@�

@t

ˇ̌
ˇ̌
n

i

�t C
@2�

@t2

�t2

2

ˇ̌
ˇ̌
n

i

C ::: (3.2)

�n
i D �n

i�1 C
@�

@x

ˇ̌
ˇ̌
n

i�1

�x C
@2�

@x2

ˇ̌
ˇ̌
n

i�1

�x2

2
C ::: (3.3)
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Substitution of (3.2) and (3.3) into (3.1) results in

@�

@t

ˇ̌
ˇ̌
n

i

C
@2�

@t2

ˇ̌
ˇ̌
n

i

�t

2
D

D �
u

�x

�
C

@�

@x

ˇ̌
ˇ̌
n

i�1

�x C
@2�

@x2

ˇ̌
ˇ̌
n

i�1

�x2

2

�
(3.4)

The derivatives at i � 1 � th point can be expressed through these at i � th

point:

@�

@x

ˇ̌
ˇ̌
n

i�1

D
@�

@x

ˇ̌
ˇ̌
n

i

�
@2�

@x2
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ˇ̌
n

i

�x C
@3�

@x3
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ˇ̌
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i

�x2

2
� :::;
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ˇ̌
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i�1
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ˇ̌
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n

i

�
@3�
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ˇ̌
n

i

�x � :::

(3.5)

The expressions (3.5) are then used in (3.4)
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(3.6)

Finally we have:
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@t

ˇ̌
ˇ̌
n

i

C
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n
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D
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ˇ̌
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i

�
@2�

@x2

ˇ̌
ˇ̌
n

i

�x2

2
C :::

�
(3.7)

Let us consider the left hand side of the equation (3.7).
Differentiating @�

@t
D �u @�

@x
on time results in

@2�

@t2
D �u

@

@x

�
@�

@t

�
D Cu2 @2�

@x2
(3.8)
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Substitution of (3.2) and (3.3) into (3.1) results in
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The expressions (3.5) are then used in (3.4)
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Finally we have:
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Let us consider the left hand side of the equation (3.7).
Differentiating @�

@t
D �u @�

@x
on time results in

@2�

@t2
D �u

@
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�
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Using the last result the equation (3.7) is rewritten in form:

@�

@t

ˇ̌
ˇ̌
n

i

D �
u

�x
� �x

@�

@x

ˇ̌
ˇ̌
n

i

C
@2�

@x2

ˇ̌
ˇ̌
n

i

�x2

2

u

�x
� u2 @2�

@x2

ˇ̌
ˇ̌
n

i

�t

2
C ::: (3.10)

Finally we have

@�

@t
D �u @�

@x
C

 
u��x

2

�
1 �

u��t
�x

�
@2�

@x2

!
C :::

Compare now with the original equation:
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!

describes the error of numerical approximation of derivatives in the original

equation (3.1). It looks like the term describing the physical diffusion � @2�

@x2 ,
where � is the diffusion coefficient. Therefore, the error term can be in-
terpreted as the numerical or artificial diffusion with the diffusion coeffi-
cient u��x

2
.1 �

u��t
�x

/ caused by errors of equation approximation. The pres-
ence of the artificial diffusion is a serious drawback of numerical methods. It
could be minimised by increase of the resolution �x ! 0.

3.2 Stability. Courant Friedrich Levy crite-

rion (CFL)

Let us consider the partial differential equation:

@�

@t
C u
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@x
D 0 (3.11)
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which is approximated using explicit method and upwind differential scheme
at u > 0:

�nC1
i � �n

i

�t
D �u

�n
i � �n

i�1

�x
(3.12)

It follows from (3.12):

�nC1
i � �n

i D �
u � �t

�x
.�n

i � �n
i�1/

�nC1
i D �n

i .1 �
u � �t

�x
/ C

u � �t

�x
�n

i�1

Let us introduce the Courant Friedrich Levy parameter c D
u��t
�x

:

�nC1
i D �n

i .1 � c/ C c�n
i�1 (3.13)

We consider the zero initial condition. At the time instant n we introduce
the perturbation " at the point i . The development of the perturbation is
considered below in time and in x direction:

� time instant n:

�n
i D "

� time instant n C 1:

�nC1
i D �n

i .1 � c/ C c � �n
i�1 D ".1 � c/

�nC1
iC1 D �n

iC1.1 � c/ C c � �n
i D c � "

� time instant n C 2:

�nC2
i D �nC1

i .1 � c/ C c � �nC1
i�1 D ".1 � c/2

D ".1 � c/2

�nC2
iC1 D �nC1

iC1 .1 � c/ C c � �nC1
i D c � ".1 � c/ C c � ".1 � c/ D 2c � ".1 � c/

�nC2
iC2 D �nC1

iC2 .1 � c/ C c � �nC1
iC1 D c2

� "

� time instant n C 3:

�nC3
i D �nC2

i .1 � c/ C c � �nC2
i�1 D ".1 � c/3

�nC3
iC1 D �nC2

iC1 .1 � c/ C c � �nC2
i D 2c � ".1 � c/2

C c � ".1 � c/2

�nC3
iC2 D �nC2

iC2 .1 � c/ C c � �nC2
iC1 D c2

� ".1 � c/ C c2.2"/.1 � c/

�nC3
iC3 D �nC2

iC3 .1 � c/ C c � �nC2
iC2 D c3

� "

36
� time instant n C N :

.�nCN
iCN / D cN

� "

::::::::::::::::::

As follows from the last formula,the perturbation decays if

c < 1 (3.14)

The condition (3.14) is the Courant Friedrich Levy criterion of the stability
of explicit numerical schemes. If the velocity is changed within the compu-
tational domain, the maximum velocity umax is taken instead of u in for-
mula (3.14). Physically the condition umax�t

�x
< 1 means that the maximum

displacement of the fluid particle within the time step Œt; t C �t� does not
exceed the cell size �x. The CFL parameter c can be reduced by decrease
of �t (not by increase of �x!).

3.3 Exercise

The field of the velocity component ux is given as ux;ij D exp.�..i�x �

0:5/2 C .j�y � 0:5/2/.
Calculate uy;ij from continuity equation (1.3) and the �t satisfying the CFL
criterion.
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Chapter 4

Simple explicit time advance
scheme for solution of the
Navier Stokes Equation

4.1 Theory

The unsteady term of the Navier Stokes Equation

@ui

@t
D �

@uiuj

@xj

�
1

�

@p

@xi

C �
@

@xj

@ui

@xj

(4.1)

is written in explicit form:

unC1
i D un

i C �t

�
�

ıun
i un

j

ıxj

�
1

�

ıpn

@xi

C �
ı

ıxj

ıun
i

ıxj

�
(4.2)

where ı
ıxj

is the approximation of the derivative @
@xj

. Let us apply the diver-

gence operator ı
ıxi

:

ıunC1
i

ıxi

D
ıun

i

ıxi

C �t
ı

ıxi

�
�

ıun
i un

j

ıxj

�
1

�

ıpn

@xi

C �
ı

ıxj

ıun
i

ıxj

�
(4.3)

Let un
i is the divergence free field, i.e.

ıun
i

ıxi
D 0. The task is to find the

velocity field at the time moment n C 1 which is also divergence free

ıunC1
i

ıxi

D 0 (4.4)

Substituting (4.4) into (4.3) one obtains:
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�
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i un
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ıxj

�
1

�

ıpn
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ı

ıxj

ıun
i

ıxj

�
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Expressing (4.5) with respect to the pressure results in the Poisson equation:

ı2pn

@x2
i

D �

"
�

ı2un
i un

j

ıxj ıxi

C �
ı2

ıxiıxj

ıun
i

ıxj

#
(4.6)

The algorithm for time-advancing is as follows:

i) The solution at time n is known and divergence free.

ii) Calculation of the r.h.s. of (4.6) �
h
�

ı2un
i

un
j

ıxj ıxi
C � ı2

ıxi ıxj

ıun
i

ıxj

i

iii) Calculation of the pressure pn from the Poisson equation (4.6)

iv) Calculation of the velocity unC1
i . This is divergence free.

v) Go to the step ii).

In the following sections we consider the algorithm in details for the two
dimensional case.

4.2 Mixed schemes

The high accuracy of the CDS schemes is their advantage. The disadvantage
of CDS schemes is their instability resulting in oscillating solutions. On the
contrary, the upwind difference schemes UDS possess a low accuracy and high
stability. The idea to use the combination of CDS and UDS to strengthen
their advantages and diminish their disadvantages. Let us consider a simple
transport equation for the quantity ':

@'

@t
C u

@'

@x
D 0 (4.7)

with u > 0. A simple explicit, forward time, central difference scheme for
this equation may be written as

'nC1
i D 'n

i � c.Œ'n
i C

1

2
.'n

iC1 � 'n
i /
 � Œ'n

i�1 C
1

2
.'n

i � 'n
i�1/
/ D

D 'n
i � c.Œ'n

i � 'n
i�1
 C

1

2
Œ'n

iC1 � 'n
i 
 �

1

2
Œ'n

i � 'n
i�1
/ (4.8)
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with u > 0. A simple explicit, forward time, central difference scheme for
this equation may be written as
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40where c D
u�t
�x

is the CFL parameter. The term cŒ'n
i � 'n

i�1� is the diffusive

1st order upwind contribution. The term c.1
2
Œ'n

iC1 �'n
i �� 1

2
Œ'n

i �'n
i�1�/ is the

anti-diffusive component. With TVD (total variation diminishing) schemes
the anti-diffusive component is limited in order to avoid instabilities and
maintain boundness 0 < ' < 1:

'nC1
i D 'n

i � c.Œ'n
i � 'n

i�1� C
1

2
Œ'n

iC1 � 'n
i �� n

east �
1

2
Œ'n

i � 'n
i�1�� n

west/ (4.9)

where � are limiters. Limiters functions for TVD schemes are given in ta-
ble 4.1.

Table 4.1: Limiters function for TVD schemes

Scheme �

central 1
upwind 0
Roe minimod � D max.0; min.r; 1//

Roe superbee � D max.0; min.2r; 1/; min.r; 2//

Van Leer � D
rCmod.r/

1Cmod.r/

Branley and Jones � D max.0; min.2r; 1//

Here r D .@'

@x
/n
west=.@'

@x
/n
east , .@'

@x
/n
east D

'n
iC1

�'n
i

xiC1�xi
. The mixed upwind and cen-

tral difference scheme are used in Sec. 4.4 for approximation of the convective
terms with the limiter (4.14).

4.3 Staggered grid

The grids are subdivided into collocated and staggered ones. On collo-
cated grids the unknown quantities are stored at centres of cells (points P in
Fig. 4.1). The equations are also satisfied at cell centres. For the simplicity,
we considered the case �x and �y are constant in the whole computational
domain. Use of collocated grids meets the problem of decoupling between
the velocity and pressure fields. Let us consider the Poisson equation (4.6)
with the r.h.s.

@Tx

@x
C

@Ty

@y
D

@Hx

@x
C

@Hy

@y
C

@Dx

@x
C

@Dy

@y

where
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where c D
u�t
�x

is the CFL parameter. The term cŒ'n
i � 'n

i�1� is the diffusive

1st order upwind contribution. The term c.1
2
Œ'n

iC1 �'n
i �� 1

2
Œ'n

i �'n
i�1�/ is the

anti-diffusive component. With TVD (total variation diminishing) schemes
the anti-diffusive component is limited in order to avoid instabilities and
maintain boundness 0 < ' < 1:

'nC1
i D 'n

i � c.Œ'n
i � 'n

i�1� C
1

2
Œ'n

iC1 � 'n
i �� n

east �
1

2
Œ'n

i � 'n
i�1�� n

west/ (4.9)

where � are limiters. Limiters functions for TVD schemes are given in ta-
ble 4.1.

Table 4.1: Limiters function for TVD schemes

Scheme �

central 1
upwind 0
Roe minimod � D max.0; min.r; 1//

Roe superbee � D max.0; min.2r; 1/; min.r; 2//

Van Leer � D
rCmod.r/

1Cmod.r/

Branley and Jones � D max.0; min.2r; 1//

Here r D .@'

@x
/n
west=.@'

@x
/n
east , .@'

@x
/n
east D

'n
iC1

�'n
i

xiC1�xi
. The mixed upwind and cen-

tral difference scheme are used in Sec. 4.4 for approximation of the convective
terms with the limiter (4.14).

4.3 Staggered grid

The grids are subdivided into collocated and staggered ones. On collo-
cated grids the unknown quantities are stored at centres of cells (points P in
Fig. 4.1). The equations are also satisfied at cell centres. For the simplicity,
we considered the case �x and �y are constant in the whole computational
domain. Use of collocated grids meets the problem of decoupling between
the velocity and pressure fields. Let us consider the Poisson equation (4.6)
with the r.h.s.
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� �

@uxuy

@y

Hy D �
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� �

@uyuy
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(4.10)

Application of the central difference scheme to the Poisson equation results
in
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@x
/E � .@pn

@x
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/N � .@pn
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2�x

C
T n

y;N � T n
y;S

2�y
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pn
EE�pn

P

2�x
�

pn
P �pn

W W

2�x

2�x

C

pn
NN �pn

P

2�y
�

pn
P �pn

SS

2�y

2�y

D
T n

x;E � T n
x;W

2�x

C
T n

y;N � T n
y;S

2�y

D QH
P

The last equation is expressed in the matrix form:

A
p
P pn

P C

X
l

A
p

l
pn

l D �QH
P (4.11)

where

l D EE; W W; NN; SS , A
p
EE D A

p
W W D �

1
.2�x/2 , A

p
NN D A

p
SS D �

1
.2�y/2

and A
p
P D �

P
l A

p

l

This equation (4.11) has involves nodes which are 2� apart (see also [3])!
It is a discretized Poisson equation on a grid twice as coarse as the basic
one but the equations split into four unconnected systems, one with i and j

both even, one with i even and j odd, one with i odd and j even, and
one with both odd. Each of these systems gives a different solution. For
a flow with a uniform pressure field, the checkerboard pressure distribution
shown in Fig. 4.2 satisfies these equations and could be produced. However,
the pressure gradient is not affected and the velocity field may be smooth.
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Application of the central difference scheme to the Poisson equation results
in
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The last equation is expressed in the matrix form:
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where

l D EE; W W; NN; SS , A
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1
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NN D A
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1
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and A
p
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P
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l

This equation (4.11) has involves nodes which are 2� apart (see also [3])!
It is a discretized Poisson equation on a grid twice as coarse as the basic
one but the equations split into four unconnected systems, one with i and j

both even, one with i even and j odd, one with i odd and j even, and
one with both odd. Each of these systems gives a different solution. For
a flow with a uniform pressure field, the checkerboard pressure distribution
shown in Fig. 4.2 satisfies these equations and could be produced. However,
the pressure gradient is not affected and the velocity field may be smooth.

42

Figure 4.1: Sample of the collocated grid.

Figure 4.2: Checkerboard pressure solution on the collocated grid.

Figure 4.3: Grid points of staggered grid.
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Figure 4.1: Sample of the collocated grid.

Figure 4.2: Checkerboard pressure solution on the collocated grid.

Figure 4.3: Grid points of staggered grid.

43
There is also the possibility that one may not be able to obtain a converged
steady-state solution.

A possible solution of the problem is the application of the staggered grids
(Fig. 4.3). The Poisson equation is satisfied at cell centres designated by
crosses. The ux velocities are stored at points staggered by �x=2 in x-
direction (filled circles). At these points the first Navier- Stokes equation is
satisfied:

@ux

@t
D �

@uxuj

@xj

�
1

�

@p

@x
C �

@

@xj

@ux

@xj

(4.12)

The uy velocities are stored at points staggered by �y=2 in y-direction (cir-
cles). At these points the second Navier-Stokes equation is satisfied:

@uy

@t
D �

@uyuj

@xj

�
1

�

@p

@y
C �

@

@xj

@uy

@xj

(4.13)

The staggered grid is utilized below.

4.4 Approximation of �
ıun

i un
j

ıxj

The approximation of the convective term is a very critical point. For faster
flows or larger time steps, the discretization shall be closer to an upwinding
approach [4]. Following to [4] we implement a smooth transition between
centered differencing and upwinding using a parameter � 2 Œ0; 1�. It is defined
as

� D min.1:2 � �t � max.jux.i; j /j; juy.i; j /j/; 1/ (4.14)

The value of gamma is the maximum fraction of a cells which information can
travel in one time step, multiplied by 1:2, and capped by 1. The factor of 1:2

is taken from the experience that often times tending a bit more towards
upwinding can be advantageous for accuracy [5].

� D 0 corresponds to the central difference scheme (CDS) whereas � D 1

results in the upwind difference scheme (UDS).
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There is also the possibility that one may not be able to obtain a converged
steady-state solution.

A possible solution of the problem is the application of the staggered grids
(Fig. 4.3). The Poisson equation is satisfied at cell centres designated by
crosses. The ux velocities are stored at points staggered by �x=2 in x-
direction (filled circles). At these points the first Navier- Stokes equation is
satisfied:
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D �

@uxuj

@xj

�
1

�

@p

@x
C �

@

@xj

@ux

@xj

(4.12)

The uy velocities are stored at points staggered by �y=2 in y-direction (cir-
cles). At these points the second Navier-Stokes equation is satisfied:
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@uyuj

@xj

�
1

�
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@

@xj

@uy

@xj

(4.13)

The staggered grid is utilized below.

4.4 Approximation of �
ıun

i un
j

ıxj

The approximation of the convective term is a very critical point. For faster
flows or larger time steps, the discretization shall be closer to an upwinding
approach [4]. Following to [4] we implement a smooth transition between
centered differencing and upwinding using a parameter � 2 Œ0; 1�. It is defined
as

� D min.1:2 � �t � max.jux.i; j /j; juy.i; j /j/; 1/ (4.14)

The value of gamma is the maximum fraction of a cells which information can
travel in one time step, multiplied by 1:2, and capped by 1. The factor of 1:2

is taken from the experience that often times tending a bit more towards
upwinding can be advantageous for accuracy [5].

� D 0 corresponds to the central difference scheme (CDS) whereas � D 1

results in the upwind difference scheme (UDS).

444.4.1 Approximation of �
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4.5 Approximation of ı
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The second derivative is calculated using the Central Difference Scheme
(CDS):
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The derivatives at the point (i,j) of the pressure storage (designated as X in
Fig. 4.3) are calculated using CDS
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4.7 Solution of the Poisson equation (4.6)

The numerical solution of the Poisson equation is discussed in [3].

4.8 Update the velocity field

The velocity field is updated according to formula
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4.9 Boundary conditions for the velocities

At this stage, the boundary conditions (BC) for the velocity field should be
taken into account. The nodes at which the BC are enforced are shown by
grey symbols in Fig. 4.3. Enforcement of the BC is easy, if the ”grey” point
lies exactly at the boundary of the computational domain. If not, two cases
should be considered. If the Neumann condition is enforced @u

@n
D C , the

velocity component outside of the boundary u.0/ is calculated through the
interior quantity u.1/ from

u.1/ � u.0/

�n

D C

If the Dirichlet condition u D C is enforced and the point 0 is outside of the
computational domain, the value u.0/ is calculated from the extrapolation
procedure:

u.0/ C u.1/

2
D C

4.10 Calculation of the vorticity

The calculation of vorticity !z D
@ux

@y
�

@uy

@x
is performed as follows:

ux.i � 1=2; j C 1=2/ D
1

4
.ux.i; j / C ux.i; j C 1/ C ux.i � 1; j / C ux.i � 1; j C 1//;

ux.i � 1=2; j � 1=2/ D
1

4
.ux.i; j / C ux.i � 1; j / C ux.i; j � 1/ C ux.i � 1; j � 1//;

uy.i C 1=2; j � 1=2/ D
1

4
.uy.i; j / C uy.i C 1; j / C uy.i; j � 1/ C uy.i C 1; j � 1//;

uy.i � 1=2; j � 1=2/ D
1

4
.uy.i; j / C uy.i � 1; j / C uy.i; j � 1/ C uy.i � 1; j � 1//;

!z.i; j / D
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Chapter 5

Splitting schemes for solution
of multidimensional problems

5.1 Splitting in spatial directions. Alternat-

ing direction implicit (ADI) approach

Let us consider the two dimensional unsteady heat conduction equation:

@�

@t
D �

�
@2�

@x2
C

@2�

@y2

�
(5.1)

We use implicit scheme proposed by Crank and Nicolson and CDS for spatial
derivatives:

�nC1 � �n

�t
D

�

2

��
@2�n

@x2
C

@2�n

@y2

�
C

�
@2�nC1

@x2
C

@2�nC1

@y2

��
(5.2)

�
@2�n

@x2

�

i;j

D
�n

iC1;j � 2�n
i;j C �n

i�1;j

.�x/2
(5.3)

�
@2�n

@y2

�

i;j

D
�n

i;j C1 � 2�n
i;j C �n

i;j �1

.�y/2
(5.4)

In what follows we use the designations for derivative approximations:

ı2

ıx2
�n

D
�n

iC1;j � 2�n
i;j C �n

i�1;j

.�x/2
(5.5)

ı2

ıy2
�n

D
�n

i;j C1 � 2�n
i;j C �n

i;j �1

.�y/2
(5.6)
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49Using these designations we get from the original heat conduction equation:

�
1 �

��t

2

ı2

ıx2

��
1 �

��t

2

ı2

ıy2

�
�nC1

D

�
1 C

��t

2

ı2

ıx2

��
1 C

��t

2

ı2

ıy2

�
�n

C

C
.��t/2

4

ı2

ıx2

�
ı2

ıy2

�
�nC1

� �n

��

(5.7)

The last term is neglected since .�nC1 � �n/.�t/2 �
@�

@t
.�t/3.

Numerical solution is performed in two following steps:

� Step 1: Solution of one dimensional problem in x-direction:

�
1 �

��t

2

ı2

ıx2

�
��

D

�
1 C

��t

2

ı2

ıy2

�
�n (5.8)

The numerical solution of (5.8) �� is then substituted as the guess
solution for the next step:

� Step 2: Solution of one dimensional problem in y-direction

�
1 �

��t

2

ı2

ıy2

�
�nC1

D

�
1 C

��t

2

ı2

ıx2

�
�� (5.9)

It can be shown that the resulting method is of the second order of accuracy
and unconditionally stable.

5.2 Splitting according to physical processes.

Fractional step methods

Within the fractional step method the original equation is split according
to physical processes. Splitting according to physical processes is used for
unsteady problems. The general idea is illustrated for the transport equation:

@u

@t
D C u C Du C P (5.10)

Here

C is the convection operator,
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It can be shown that the resulting method is of the second order of accuracy
and unconditionally stable.

5.2 Splitting according to physical processes.

Fractional step methods

Within the fractional step method the original equation is split according
to physical processes. Splitting according to physical processes is used for
unsteady problems. The general idea is illustrated for the transport equation:

@u

@t
D C u C Du C P (5.10)

Here

C is the convection operator,
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D is the diffusion operator,

P is the pressure source operator.

Simple explicit Euler method can be written as

unC1
D un

C .C u C Du C P /�t (5.11)

The overall numerical solution is considered as the consequence of numerical
solutions of the following partial problems:

u�
D un

C .C un/�t (*) Convection step

u��
D u�

C .Du�/�t (**) Diffusion step

unC1
D u��

C .P /�t (***) Pressure step

(5.12)

solving sequentially. The sense of this splitting is that the numerical solution
of partial problems (*)-(***) is simpler and more stable than that of the
whole problem. The disadvantage of this procedure is that it is applicable to
only unsteady problem formulation. Another disadvantage is the low order
of accuracy with respect to time derivative approximation. The order of time
derivative approximations can be derived using the sample with two physical
processes described by operators L1 and L2:

@u

@t
D L1.u/ C L2.u/ (5.13)

The splitting of (5.10) results in two steps procedure:

@u�

@t
D L1.u�/; u�

jtDtn
D un

@unC1

@t
D L2.unC1/; unC1

jtDtn
D u�

(5.14)

where

u�
D un

C �tL1.un/ C O.�t2/;

unC1
D u�

C �tL2.u�/ C O.�t2/ D

D un
C �tL1.un/ C �tL2.un

C �tL1.un// C O.�t2/ D

D un
C �t.L1.un/ C L2.un// C O.�t2/:

(5.15)

The accuracy of the final solution unC1 is of the first order in time.
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51
Very often the diffusion step is treated implicitly. This is done to diminish
the time step restriction for the diffusion process. Otherwise, the stability
requires �t to be proportional to the spacial discretization squared, if a pure
explicit scheme is applied. The semi implicit scheme for the two dimensional
Navier Stokes equation reads:

� Convection step is treated explicitly:

u�
x � un

x

�t
D �

ıun
xun

x

ıx
�

ıun
xun

y

ıy
(5.16)

u�
y � un

y

�t
D �

ıun
yun

x

ıx
�

ıun
yun

y

ıy
(5.17)

� The solutions u�
x;y are used then for the diffusion process which is

treated implicitly:

u��
x � u�

x

�t
D �

�
ı2u��

x

ıx2
C

ı2u��
x

ıy2

�
(5.18)

u��
y � u�

y

�t
D �

�
ı2u��

y

ıx2
C

ı2u��
y

ıy2

�
(5.19)

� The solutions u��
x;y are used then for the next process which is treated

explicitly:
unC1

x � u��
x

�t
D �

ıpnC1

ıx
(5.20)

unC1
y � u��

y

�t
D �

ıpnC1

ıy
(5.21)

where the pressure pnC1 should be pre computed from the continuity
equation demanding the velocity at n C 1 time slice is divergency free:

ıunC1
x

ıx
C

ıunC1
y

ıy
D 0 (5.22)

Applying the operator r to the equations (5.20) and (5.21) we get the Poisson
equation for the pressure:

ı2pnC1

ıx2
C

ı2pnC1

ıy2
D

1

�t

�
ıu��

x

ıx
C

ıu��
y

ıy

�
(5.23)
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Very often the diffusion step is treated implicitly. This is done to diminish
the time step restriction for the diffusion process. Otherwise, the stability
requires �t to be proportional to the spacial discretization squared, if a pure
explicit scheme is applied. The semi implicit scheme for the two dimensional
Navier Stokes equation reads:

� Convection step is treated explicitly:

u�
x � un

x

�t
D �

ıun
xun

x

ıx
�

ıun
xun

y

ıy
(5.16)
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y

�t
D �

ıun
yun

x

ıx
�

ıun
yun

y

ıy
(5.17)

� The solutions u�
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y

�t
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where the pressure pnC1 should be pre computed from the continuity
equation demanding the velocity at n C 1 time slice is divergency free:

ıunC1
x

ıx
C

ıunC1
y

ıy
D 0 (5.22)

Applying the operator r to the equations (5.20) and (5.21) we get the Poisson
equation for the pressure:

ı2pnC1

ıx2
C

ı2pnC1

ıy2
D

1

�t

�
ıu��

x

ıx
C

ıu��
y

ıy

�
(5.23)

525.3 Increase of the accuracy of time deriva-

tives approximation using the Lax-Wendroff

scheme

Let us consider the general transport equation:

@u

@t
C

@F.u/

@x
D 0 (5.24)

We introduce the following designations:

A D
@F

@u

ut t D �Fxt D �Ftx; Ft D Fuut D �FuFx � �AFx (5.25)

Substitution of these results into the time Taylor series gives the Lax-Wendroff
scheme which is of the second order in time:

u.t C �/ D u.t/ C �ut.t/ C
�2

2
ut t.t/ C O.�3/

D u.t/ � �Fx.t/ C
�2

2
.A.t/Fx.t//x C O.�3/

(5.26)

A difficulty arising in the LW approach is the computation of the operator A.
One can easy derive that the Lax Wendroff scheme results in the solution of
the equation:

unC1 � un

�
C

@F n

@x
D

�

2

@

@x

�
An @F n

@x

�

53

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

54 

Splitting schemes for solution of 
multidimensional  problems
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A difficulty arising in the LW approach is the computation of the operator A.
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Chapter 6

Finite Volume Method

6.1 Transformation of the Navier-Stokes Equa-

tions in the Finite Volume Method

The Navier Stokes equation

@ui

@t
C

@.uiuj /

@xj

D Fi �
1

�

@p

@xi

C �
@

@xj

�
@

@xj

ui

�
(6.1)

is fulfilled within each mesh element (finite volume U) in the integral sense.
For that it is integrated over the volume U :

Z

U

�
@ui

@t
C

@.uiuj /

@xj

�
dU D

Z

U

�
Fi �

1

�

@p

@xi

C �
@

@xj

�
@

@xj

ui

��
dU (6.2)

Application of the Gauss theorem results in

@

@t

Z

U

uidU C

Z

S

ui EuEndS D

Z

U

FidU �
1

�

Z

S

pEei EndS C�

Z

S

gradui EndS (6.3)

The same procedure applied to the continuity equation gives

Z

S

EuEndS D 0 (6.4)
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Figure 6.1: Staggered arrangement of finite volumes.

6.2 Sample

Let us consider the two dimensional transport equation without the diffusion
term

8̂
<̂
ˆ̂:

@ui

@t
C

@uiuj

@xj

D �
@p

@xi

@uj

@xj

D 0

(6.5)

In the integral form this equation reads

@

@t

Z

U

uidU C

Z

S

ui EuEndS D �

Z

S

pEei EndS (6.6)

We use the staggered grid (Fig. 13.2). The pressure is stored at the volume
centers. The ux velocity is stored at the centers of vertical faces, whereas
the velocity uy component at centers of horizontal faces. The x- equation
is satisfied for volumes displaced in x-direction, whereas the y-equation for
these displaced in y-direction.
Below we consider approximations of different terms:

6.2.1 Pressure and unsteady terms

Source (pressure) term for x-equation:
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centers. The ux velocity is stored at the centers of vertical faces, whereas
the velocity uy component at centers of horizontal faces. The x- equation
is satisfied for volumes displaced in x-direction, whereas the y-equation for
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Source (pressure) term for x-equation:
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6.2 Sample

Let us consider the two dimensional transport equation without the diffusion
term
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In the integral form this equation reads
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We use the staggered grid (Fig. 13.2). The pressure is stored at the volume
centers. The ux velocity is stored at the centers of vertical faces, whereas
the velocity uy component at centers of horizontal faces. The x- equation
is satisfied for volumes displaced in x-direction, whereas the y-equation for
these displaced in y-direction.
Below we consider approximations of different terms:

6.2.1 Pressure and unsteady terms

Source (pressure) term for x-equation:

56Q
p
1 D �

Z

S

pEe1EndS � �

�
peSe � pwSw

�
D �

�
piC1j � pij

�
� (6.7)

Unsteady term for x-equation:

@

@t

Z

U

uxdU D �2
unC1

xij � un
xij

�t
(6.8)

Pressure term for y-equation:

Q
p
2 D �

Z

S

pEe2EndS � �

�
pnSn � psSs

�
D �

�
pij C1 � pij

�
� (6.9)

Unsteady term for y-equation:

@

@t

Z

U

uydU D �2
unC1

yij � un
yij

�t
(6.10)

6.2.2 Convection term of the x-equation

The integrand in convection term ui EuEn is represented in the table 6.1.

Table 6.1: EnEu and ui at different sides. x-equation

side EnEu ui

east uxe uxe

west �uxw uxw

north uyn uxn

south �uys uxs

The necessary velocities are approximated as shown in the table 6.2.
Herewith the convection term has the form presented in the table 6.3.

6.2.3 Convection term of the y-equation

The integrand in convection term ui EuEn is represented in the table 6.4.
The necessary velocities are approximated as shown in the table 6.5.
Herewith the convection term has the form presented in the table 6.6.
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Q
p
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�
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�
� (6.7)
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@
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Z
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xij
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Z
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�
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Table 6.2: Velocities at different sides. x-equation

velocity approximation
uxe uxe D

1
2
.uxij C uxiC1j /

uxw uxw D
1
2
.uxij C uxi�1j /

uxn uxn D
1
2
.uxij C uxij C1/

uxs uxs D
1
2
.uxij C uxij �1/

uyn uyn D
1
2
.uyij C uyiC1j /

uys uys D
1
2
.uyij �1 C uyiC1j �1/

Table 6.3: Convection flux. x-equation

side flux

east �
4

.uxij C uxiC1j /2

west �
�
4

.uxij C uxi�1j /2

north �
4

.uxij C uxij C1/.uyij C uyiC1j /

south �
�
4

.uxij C uxij �1/.uyiC1j �1 C uyij �1/

Table 6.4: EnEu and ui at different sides. y-equation

side EnEu ui

east uxe uye

west �uxw uyw

north uyn uyn

south �uys uys

Table 6.5: Velocities at different sides. y-equation

velocity approximation
uxe uxe D

1
2
.uxij C uxij C1/

uxw uxw D
1
2
.uxi�1j C uxi�1j C1/

uyn uyn D
1
2
.uyij C uyij C1/

uys uys D
1
2
.uyij C uyij �1/

uye uye D
1
2
.uyij C uyiC1j /

uyw uyw D
1
2
.uyij C uyi�1j /

6.2.4 X-equation approximation

�2
unC1

xij � un
xij

�t
C
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Table 6.6: Convection flux. y-equation

side flux

east �
4

.uxij C uxij C1/.uyij C uyiC1j /

west �
�
4

.uxi�1j C uxi�1j C1/.uyij C uyi�1j /

north �
4

.uyij C uyij C1/2

south �
�
4

.uyij C uyij �1/2

�

4
.uxij C uxiC1j /2

�
�

4
.uxij C uxi�1j /2

C

�

4
.uxij C uxij C1/.uyij C uyiC1j / �

�

4
.uxij C uxij �1/.uyij �1 C uyiC1j �1/

C

�
piC1j � pij

�
� D 0

6.2.5 Y-equation approximation

�2
unC1

yij � un
yij

�t
C

�

4
.uxij C uxij C1/.uyij C uyiC1j / �

�

4
.uxi�1j C uxi�1j C1/.uyij C uyi�1j /C

�

4
.uyij C uyij C1/2

�
�

4
.uyij C uyij �1/2

C

C

�
pij C1 � pij

�
� D 0

6.3 Explicit scheme

The next task is to specify the upper index in X and Y equations. If the
index is n we get fully explicit scheme which is similar to that derived above
for finite difference method

�2
unC1

xij � un
xij

�t
C

�

4
.un

xij C un
xiC1j /2

�
�

4
.un

xij C un
xi�1j /2

C

�

4
.un

xij C un
xij C1/.un

yij C un
yiC1j / �

�

4
.un

xij C un
xij �1/.un

yij �1 C un
yiC1j �1/

59C

�
pn

iC1j � pn
ij

�
� D 0 (6.11)

�2
unC1

yij � un
yij

�t
C

�

4
.un

yij C un
yiC1j /.un

xij C un
xij C1/ �

�

4
.un

yij C un
yi�1j /.un

xi�1j C un
xi�1j C1/C

�

4
.un

yij C un
yij C1/2

�
�

4
.un

yij C un
yij �1/2

C

C

�
pn

ij C1 � pn
ij

�
� D 0 (6.12)

The Poisson equation for pressure is derived in the same manner as above
for finite difference method. For that the equations (6.11) is differentiated
on x, whereas the equation (6.12) is differentiated on y. Then both results
are summed under assumptions that both unC1

ij and un
ij are divergence free:

ıunC1
xij

ıx
C

ıunC1
yij

ıy
D 0;

ıun
xij

ıx
C

ıun
yij

ıy
D 0

This equation is coupled with equations (6.11) and (6.12). The explicit
scheme has advantage that the solution at the time instant n C 1 is ex-
plicitly expressed through the solution at time instant n. The solution of
linear algebraic equations which is the most laborious numerical procedure
is necessary only for the solution of the Poisson equation. The momentum
equations (6.11) and (6.12) are solved explicitly. Velocities unC1

xij and unC1
yij

are computed then from simple algebraic formula (6.11) and (6.12). The big
disadvantage of the explicit method is the limitation forced by the Courant
Friedrich Levy criterion. The time step �t should be very small to secure the
numerical stability. This disadvantage can be overcome within the implicit
schemes.

6.4 Implicit scheme

If the index is n C 1 we get implicit scheme

�2
unC1

xij � un
xij

�t
C

�

4
.unC1

xij C unC1
xiC1j /2

�
�

4
.unC1

xij C unC1
xi�1j /2

C
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C

�
pn

iC1j � pn
ij

�
� D 0 (6.11)

�2
unC1

yij � un
yij

�t
C

�

4
.un

yij C un
yiC1j /.un

xij C un
xij C1/ �

�

4
.un

yij C un
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�

4
.un

yij C un
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�
�

4
.un
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C

C

�
pn
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ij

�
� D 0 (6.12)
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�t
C

�

4
.unC1

xij C unC1
xiC1j /2

�
�

4
.unC1

xij C unC1
xi�1j /2

C
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C

�
pn

iC1j � pn
ij

�
� D 0 (6.11)
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yij

�t
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�

4
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yij C un
yiC1j /.un

xij C un
xij C1/ �
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4
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yij C un
yi�1j /.un

xi�1j C un
xi�1j C1/C

�

4
.un

yij C un
yij C1/2

�
�

4
.un

yij C un
yij �1/2

C

C

�
pn

ij C1 � pn
ij

�
� D 0 (6.12)

The Poisson equation for pressure is derived in the same manner as above
for finite difference method. For that the equations (6.11) is differentiated
on x, whereas the equation (6.12) is differentiated on y. Then both results
are summed under assumptions that both unC1

ij and un
ij are divergence free:

ıunC1
xij

ıx
C

ıunC1
yij

ıy
D 0;

ıun
xij

ıx
C

ıun
yij

ıy
D 0

This equation is coupled with equations (6.11) and (6.12). The explicit
scheme has advantage that the solution at the time instant n C 1 is ex-
plicitly expressed through the solution at time instant n. The solution of
linear algebraic equations which is the most laborious numerical procedure
is necessary only for the solution of the Poisson equation. The momentum
equations (6.11) and (6.12) are solved explicitly. Velocities unC1

xij and unC1
yij

are computed then from simple algebraic formula (6.11) and (6.12). The big
disadvantage of the explicit method is the limitation forced by the Courant
Friedrich Levy criterion. The time step �t should be very small to secure the
numerical stability. This disadvantage can be overcome within the implicit
schemes.

6.4 Implicit scheme

If the index is n C 1 we get implicit scheme
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�
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iC1j � pnC1
ij

�
� D 0 (6.13)
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4
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xi�1j C1/C

�

4
.unC1

yij C unC1
yij C1/2

�
�

4
.unC1

yij C unC1
yij �1/2

C

C

�
pnC1

ij C1 � pnC1
ij

�
� D 0 (6.14)

The Poisson equation for pressure is derived in the same manner as above
for finite difference method. For that the equations (6.13) is differentiated
on x, whereas the equation (6.14) is differentiated on y. Then both results
are summed under assumptions that both unC1

ij and un
ij are divergence free:

ıunC1
xij

ıx
C

ıunC1
yij

ıy
D 0;

ıun
xij

ıx
C

ıun
yij

ıy
D 0

The resulting Poisson equation can not be solved because both the r.h.s.
(velocities) and the l.h.s (pressure) depend on n C 1. The term on r.h.s.
cannot be computed until the computation of velocity field at time n C 1

is completed and vice versa. Other problem is that the equations (6.13)
and (6.14) are non linear.

6.5 Iterative procedure for implicit scheme

To solve the nonlinear system and the whole system of equations we use the
iterative procedure. Let m be an iteration number. The nonlinear term is
represented in form:

@uiuj

@xj

D
@u

.m/
i u

.m�1/
j

@xj

(6.15)

The velocity uj is taken from the previous iteration .m�1/. The system (6.11)
and (6.12) is rewritten in the form
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The Poisson equation for pressure is derived in the same manner as above
for finite difference method. For that the equations (6.13) is differentiated
on x, whereas the equation (6.14) is differentiated on y. Then both results
are summed under assumptions that both unC1

ij and un
ij are divergence free:

ıunC1
xij

ıx
C

ıunC1
yij

ıy
D 0;

ıun
xij

ıx
C

ıun
yij

ıy
D 0

The resulting Poisson equation can not be solved because both the r.h.s.
(velocities) and the l.h.s (pressure) depend on n C 1. The term on r.h.s.
cannot be computed until the computation of velocity field at time n C 1

is completed and vice versa. Other problem is that the equations (6.13)
and (6.14) are non linear.

6.5 Iterative procedure for implicit scheme

To solve the nonlinear system and the whole system of equations we use the
iterative procedure. Let m be an iteration number. The nonlinear term is
represented in form:

@uiuj

@xj

D
@u

.m/
i u

.m�1/
j

@xj

(6.15)

The velocity uj is taken from the previous iteration .m�1/. The system (6.11)
and (6.12) is rewritten in the form
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ij
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where
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Dividing the equations (6.16) by qxij and (6.17) by qyij we obtain

axi�1j u
.m/
xi�1j C u

.m/
xij C axiC1j u

.m/
xiC1j C axij �1u

.m/
xij �1 C axij C1u

.m/
xij C1C (6.18)
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�
p

.m/
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ij

�
�=qxij D Rxij

ayi�1j u
.m/
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.m/
yij C1C (6.19)

C

�
p

.m/
ij C1 � p

.m/
ij

�
�=qyij D Ryij

where ax;ykl D qx;ykl=qx;yij and Rx;ykl D rx;ykl=qx;yij . In what follows we
use the operator form of equations (6.18) and (6.19):

u D Au C Bp C C (6.20)
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Dividing the equations (6.16) by qxij and (6.17) by qyij we obtain

axi�1j u
.m/
xi�1j C u

.m/
xij C axiC1j u

.m/
xiC1j C axij �1u

.m/
xij �1 C axij C1u

.m/
xij C1C (6.18)

C

�
p

.m/
iC1j � p

.m/
ij

�
�=qxij D Rxij

ayi�1j u
.m/
yi�1j C u

.m/
yij C ayiC1j u

.m/
yiC1j C ayij �1u

.m/
yij �1 C ayij C1u

.m/
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�
p

.m/
ij C1 � p

.m/
ij

�
�=qyij D Ryij

where ax;ykl D qx;ykl=qx;yij and Rx;ykl D rx;ykl=qx;yij . In what follows we
use the operator form of equations (6.18) and (6.19):

u D Au C Bp C C (6.20)

636.6 Pressure correction method

The velocity field satisfying the equation (6.20) is the solution of the lin-
earized Navier Stokes equation. It doesn’t fulfill the continuity equation.
The iterative solution satisfying the whole system of equations is computed
using the pressure correction method.

The iterative scheme consists of following steps. First, the intermediate so-
lution is calculated with pressure taken from the previous iteration:

u�
D Au�

C Bp.m�1/
C C (6.21)

The velocity and pressure corrections

u.m/
D u�

C u0; p.m/
D p.m�1/

C p0 (6.22)

are computed within next steps. Substitution of (6.22) into (6.20) gives

.u�
C u0/ D A.u�

C u0/ C B.p.m�1/
C p0/ C C (6.23)

Since u� satisfies the equation (6.21) the equation for the velocity correction
reads

u0
D Au0

C Bp0 (6.24)

The velocity at the iteration .m/ is

u.m/
D u�

C Au0
C Bp0 (6.25)

It should satisfy the continuity equation

ru.mC1/
D 0 (6.26)

what results in

ru�
D �rBp0

� rAu0 (6.27)

6.7 SIMPLE method

A very popular pressure correction method is the SIMPLE method. The main
assumption of this method is neglect of the term rAu0 in (6.27) and (6.24):

rBp0
D �ru� (6.28)
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6.6 Pressure correction method

The velocity field satisfying the equation (6.20) is the solution of the lin-
earized Navier Stokes equation. It doesn’t fulfill the continuity equation.
The iterative solution satisfying the whole system of equations is computed
using the pressure correction method.

The iterative scheme consists of following steps. First, the intermediate so-
lution is calculated with pressure taken from the previous iteration:
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C Bp.m�1/
C C (6.21)

The velocity and pressure corrections
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C u0; p.m/
D p.m�1/

C p0 (6.22)

are computed within next steps. Substitution of (6.22) into (6.20) gives

.u�
C u0/ D A.u�

C u0/ C B.p.m�1/
C p0/ C C (6.23)

Since u� satisfies the equation (6.21) the equation for the velocity correction
reads

u0
D Au0

C Bp0 (6.24)

The velocity at the iteration .m/ is

u.m/
D u�

C Au0
C Bp0 (6.25)

It should satisfy the continuity equation

ru.mC1/
D 0 (6.26)

what results in

ru�
D �rBp0

� rAu0 (6.27)

6.7 SIMPLE method

A very popular pressure correction method is the SIMPLE method. The main
assumption of this method is neglect of the term rAu0 in (6.27) and (6.24):

rBp0
D �ru� (6.28)
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Figure 6.2: SIMPLE algorithm.

The equation (6.28) is the Poisson equation for the pressure correction p0.

The solution algorithm is summarized in Fig. 6.2. Let the solution is known
at time slice n, the solution at the next time instant n C 1 is seeking. In the
first iteration all quantities are taken from the previous time instant

u
.mD1/
x;yij D un

x;yij ; p
.mD1/
ij D pn

ij

At each time instant the inner loop iterations are performed until residuals
are getting smaller than some threshold

maxju
.m/
x;yij � u

.m�1/
x;yij j < "u; maxjp

m.m/
ij � p

.m�1/
ij j < "p

As soon as the inner loop iterations are converged the solution at time in-
stant n C 1 is equaling to the solution from the last iteration and the next
time instant is computed. The structure of the inner loop is shown in Fig. 6.2.

6.7.1 Pressure correction equation

Let us consider the pressure correction equation (6.28) in details.This equa-
tion is solved for the control volume shown in Fig. 6.3. The divergency
operator rf D

@fx

@x
C

@fy

@y
is represented within Finite Volume Method as

follows

65

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

66 

Finite Volume Method

Figure 6.2: SIMPLE algorithm.

The equation (6.28) is the Poisson equation for the pressure correction p0.

The solution algorithm is summarized in Fig. 6.2. Let the solution is known
at time slice n, the solution at the next time instant n C 1 is seeking. In the
first iteration all quantities are taken from the previous time instant

u
.mD1/
x;yij D un

x;yij ; p
.mD1/
ij D pn

ij

At each time instant the inner loop iterations are performed until residuals
are getting smaller than some threshold

maxju
.m/
x;yij � u

.m�1/
x;yij j < "u; maxjp

m.m/
ij � p

.m�1/
ij j < "p

As soon as the inner loop iterations are converged the solution at time in-
stant n C 1 is equaling to the solution from the last iteration and the next
time instant is computed. The structure of the inner loop is shown in Fig. 6.2.

6.7.1 Pressure correction equation

Let us consider the pressure correction equation (6.28) in details.This equa-
tion is solved for the control volume shown in Fig. 6.3. The divergency
operator rf D

@fx

@x
C

@fy

@y
is represented within Finite Volume Method as

follows
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Z

U

rfdU D

Z

U

.
@fx

@x
C

@fy

@y
/dU D

Z

S

fndS D .fxe�fxwCfyn�fys/� (6.29)

Therefore, the right hand side of the equation (6.28) takes the form

Z

U

ru�dU D

Z

S

u�ndS D .u�
xij � u�

xi�1j C u�
yij � u�

yij �1/� (6.30)

As follows from (6.18) and (6.19) the operator Bp0 has the following values
at faces of the control volume

.Bp0/xij D

�
p0

iC1j � p0
ij

�
�=qxij ; .Bp0/xi�1j D

�
p0

ij � p0
i�1j

�
�=qxi�1j

.Bp0/yij D

�
p0

ij C1 � p0
ij

�
�=qyij ; .Bp0/yij �1 D

�
p0

ij � p0
ij �1

�
�=qyij �1:

(6.31)
Substitution of (6.30) and (6.31) into (6.28) results in

�
p0

iC1j � p0
ij

�
=qxij �

�
p0

ij � p0
i�1j

�
=qxi�1j C

�
p0

ij C1 � p0
ij

�
=qyij

�

�
p0

ij � p0
ij �1

�
=qyij �1 D �.u�

xij � u�
xi�1j C u�

yij � u�
yij �1/ (6.32)

or

ˇiC1j p0
iC1j C ˇij p0

ij C ˇi�1j p0
i�1j C ˇij C1p0

ij C1 C ˇij �1p0
ij �1 D cij (6.33)

where

cij D �.u�
xij �u�

xi�1j Cu�
yij �u�

yij �1/; ˇij D �

�
1

qxij

C
1

qxi�1j

C
1

qyij

C
1

qyij �1

�
;

ˇiC1j D
1

qxij

; ˇi�1j D
1

qxi�1j

; ˇij C1 D
1

qyij

; ˇij �1 D
1

qyij �1

:
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Z

U

ru�dU D

Z

S

u�ndS D .u�
xij � u�

xi�1j C u�
yij � u�

yij �1/� (6.30)

As follows from (6.18) and (6.19) the operator Bp0 has the following values
at faces of the control volume

.Bp0/xij D

�
p0

iC1j � p0
ij

�
�=qxij ; .Bp0/xi�1j D

�
p0

ij � p0
i�1j

�
�=qxi�1j

.Bp0/yij D

�
p0

ij C1 � p0
ij

�
�=qyij ; .Bp0/yij �1 D

�
p0

ij � p0
ij �1

�
�=qyij �1:

(6.31)
Substitution of (6.30) and (6.31) into (6.28) results in

�
p0

iC1j � p0
ij

�
=qxij �

�
p0

ij � p0
i�1j

�
=qxi�1j C

�
p0

ij C1 � p0
ij

�
=qyij

�

�
p0

ij � p0
ij �1

�
=qyij �1 D �.u�

xij � u�
xi�1j C u�

yij � u�
yij �1/ (6.32)

or

ˇiC1j p0
iC1j C ˇij p0

ij C ˇi�1j p0
i�1j C ˇij C1p0

ij C1 C ˇij �1p0
ij �1 D cij (6.33)

where

cij D �.u�
xij �u�

xi�1j Cu�
yij �u�

yij �1/; ˇij D �

�
1

qxij

C
1

qxi�1j

C
1

qyij

C
1

qyij �1

�
;

ˇiC1j D
1

qxij

; ˇi�1j D
1

qxi�1j

; ˇij C1 D
1

qyij

; ˇij �1 D
1

qyij �1

:

666.7.2 Summary of the SIMPLE algorithm

We introduce one dimensional numbering instead of two dimensional one
according to the rule

˛ D .i � 1/Ny C j

Let the solution at the time instant n be known. The task is to find the
solution at the time n C 1. At each time instant the guess solution is taken
from the previous time instant:

u.1/
x;y˛ D un

x;y˛; p.1/
˛ D pn

˛

The solution is found within the next substeps:

i) Calculation of the auxiliary velocity u�
x;y˛ from two independent sys-

tems of linear algebraic equations:

ax˛�Ny
u�

x˛�Ny
C u�

x˛ C ax˛CNy
u�

x˛CNy
C ax˛�1u�

x˛�1 C ax˛C1u�
x˛C1C

C

�
p

.m�1/
˛CNy

� p.m�1/
˛

�
�=qx˛ D Rx˛

ay˛�Ny
u�

y˛�Ny
C u�

y˛ C ay˛CNy
u�

y˛CNy
C ay˛�1u�

y˛�1 C ay˛C1u�
y˛C1C

C

�
p

.m�1/
˛C1 � p.m�1/

˛

�
�=qy˛ D Ry˛

ii) Calculation of the pressure correction p0
˛ from the system of linear

algebraic equations:

ˇ˛CNy
p0

˛CNy
C ˇ˛p0

˛ C ˇ˛�Ny
p0

˛�Ny
C ˇ˛C1p0

˛C1 C ˇ˛�1p0
˛�1 D c˛

iii) Calculation of the velocity correction u0
x;y˛:

u0
x˛ D �

�
p0

˛CNy
� p0

˛

�
�=qx˛

u0
y˛ D �

�
p0

˛C1 � p0
˛

�
�=qy˛

iv) Correction of the velocity and pressure:

u.m/
x;y˛ D u�

x;y˛ C u0
x;y˛; p.m/

˛ D p.m�1/
˛ C p0

˛
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6.7.2 Summary of the SIMPLE algorithm
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from the previous time instant:
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�
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.m�1/
˛C1 � p.m�1/

˛

�
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ii) Calculation of the pressure correction p0
˛ from the system of linear

algebraic equations:

ˇ˛CNy
p0

˛CNy
C ˇ˛p0

˛ C ˇ˛�Ny
p0

˛�Ny
C ˇ˛C1p0

˛C1 C ˇ˛�1p0
˛�1 D c˛

iii) Calculation of the velocity correction u0
x;y˛:

u0
x˛ D �

�
p0

˛CNy
� p0

˛

�
�=qx˛

u0
y˛ D �

�
p0

˛C1 � p0
˛

�
�=qy˛

iv) Correction of the velocity and pressure:

u.m/
x;y˛ D u�

x;y˛ C u0
x;y˛; p.m/

˛ D p.m�1/
˛ C p0

˛
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Figure 6.3: Control volume used for the pressure correction equation.

v) Check the difference between two iterations:

maxju.m/
x;y˛ � u.m�1/

x;y˛ j < "u; maxjp.m/
˛ � p.m�1/

˛ j < "p

If these conditions are not fulfilled then

u.m�1/
x;y˛ D u.m/

x;y˛; p.m�1/
˛ D p.m/

˛

and go to the step i). Otherwise the calculation at the time moment
n C 1 is completed

unC1
x;y˛ D u.m/

x;y˛; pnC1
˛ D p.m/

˛

and one proceeds to the next time instant n C 2.
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Chapter 7

Overview of pressure correction
methods

7.1 SIMPLE algorithm

The linearized Navier Stokes equation written in operator form is

u D Au C Bp C C (7.1)

Within the SIMPLE algorithm the solution is seeking at each time step in
form of the loop:

� Calculation of the auxiliary velocity

u�
D Au�

C Bp.m�1/
C C (7.2)

� Calculation of the pressure correction

rBp0
D �ru� (7.3)

� Calculation of the velocity correction

u0
D Bp0 (7.4)

� Correction

u.m/
D u�

C u0; p.m/
D p.m�1/

C p0 (7.5)
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697.2 PISO algorithm

In the SIMPLE algorithm we neglected the term rAu0 (see 6.25). In PISO
algorithm this term is taken into account. Actually the term rAu0 can not
be calculated before the velocity correction is computed. Therefore, the term
is taken into account in an iterative way.

7.2.1 First iteration

The term Au0 is neglected, i.e. Au0 D 0. The pressure correction is found
from the Poisson equation

rBp0
D �ru� (7.6)

The velocity correction is then

u0
D Bp0 (7.7)

7.2.2 Second iteration

The pressure correction within the second iteration is found from the Poisson
equation

rBp00
D �rAu0 (7.8)

The velocity correction within the second iteration is then

u00
D Au0

C Bp00 (7.9)

7.2.3 Correction

Corrected velocities and pressure are

u.m/
D u�

C u0
C u00; p.m/

D p.m�1/
C p0

C p00 (7.10)

Using formula derived above

rBp0
D �ru�; u0

D Bp0; u00
D Au0

C Bp00; rBp00
D �rAu0

it is easy to prove that the velocity u.m/ satisfies the continuity equation.
Now we prove the equation u.m/ D Au.m/ C Bp.m/ C C :

u�
C u0

C u00
D A.u�

C u0
C u00/ C B.p.m�1/

C p0
C p00/ C C (7.11)
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7.2 PISO algorithm
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70Since

u�
D Au�

C Bp.m�1/
C C; u0

D Bp0; u00
D Au0

C Bp00

the equation (7.11) is not satisfied. The residual is Au00. The residual can be
reduced within next iterations. However, usually, PISO algorithm uses only
two iterations.

7.2.4 Summary

The PISO algorithm can be summarized as follows:

� Calculation of the auxiliary velocity

u�
D Au�

C Bp.m�1/
C C (7.12)

� Calculation of the pressure correction p0:

rBp0
D �ru� (7.13)

� Calculation of the velocity correction u0

u0
D Bp0 (7.14)

� Calculation of the pressure correction p00:

rBp00
D �rAu0 (7.15)

� Calculation of the velocity correction u00

u00
D Au0

C Bp00 (7.16)

� Correction

u.m/
D u�

C u0
C u00; p.m/

D p.m�1/
C p0

C p00 (7.17)

Both algorithms PISO and SIMPLE are widely used in CFD codes.
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C p00 (7.17)

Both algorithms PISO and SIMPLE are widely used in CFD codes.
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7.3 SIMPLEC algorithm

Another way to hold the term rAu0 (see 6.25) is implemented in the SIM-
PLEC algorithm. The velocity correction at ˛ � th control volume u0

˛ can
be calculated using the interpolation over N adjacent control volumes:

NX
ˇD1

Aˇ u0
ˇ � u0

˛

NX
ˇD1

Aˇ (7.18)

where ˇ is the number of adjacent control volumes around the control volume
with the number ˛.

u0
˛ �

PN
ˇD1 Aˇ u0

ˇPN
ˇD1 Aˇ

(7.19)

The equation for the velocity correction is

u0
D Au0

C Bp0 (7.20)

or

u0
˛ D

NX
ˇD1

Aˇ u0
ˇ C Bp0 (7.21)

Substitution of (7.19) into (7.21) yields

u0
˛ D u0

˛

NX
ˇD1

Aˇ C Bp0 (7.22)

and

u0
˛ D

Bp0

1 �
PN

ˇD1 Aˇ

(7.23)

The pressure correction equation

rBp0
D �ru�

� rAu0

takes the form

rBp0
D �ru�

� rA
Bp0

1 �
PN

ˇD1 Aˇ

or
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�
B C A

B

1 �
PN

ˇD1 Aˇ

�
p0

D �ru� (7.24)

The computational steps are the same as these in SIMPLE algorithm with
only difference that the equation (7.24) is solved instead of (7.3).
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Chapter 8

Computational grids

8.1 Grid types

The computational grids are subdivided into:

� structured grids (see Fig. 8.1a),

� block structured grids (see Fig. 8.1b),

� unstructured grids (see Fig. 8.1c).

Disadvantage of the structured grid is shown in Fig. 8.2. Refinement of the
grid close to the wall results in the refinement in areas where this refinement is
not necessary. This disadvantage can be overcome by use of block-structured
(Fig. 8.1b) and unstructured grid (Fig. 8.1c).

Figure 8.1: Samples of a) structured grid for an airfoil, b) block structured
grid for cylinder in channel and c) unstructured grid for an airfoil.

The quality of the grid has a strong impact on the accuracy of numerical
prediction. The change of the cell topology within the computational domain
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Figure 8.2: Illustration of structured grid disadvantage.

should be smooth especially at the border between different grid blocks. The
grid resolution should be high especially in areas of boundary layers and close
to the free surface. For this sake the special refinement is used in these areas.
To increase the accuracy of the computations in boundary layers one uses
special grid boundary layers close to walls.

8.2 Overset or Chimera grids

For complicated objects one uses overset or Chimera grids. The idea of
chimera or overset grids is to generate the grids separately around each geo-
metrical entity in the computational domain. After that the grids are com-
bined together in such a way that they overlap each other where they meet.
The crucial operation is an accurate transfer of quantities between the dif-
ferent grids at the overlapping region. The most important advantage of the
overset or Chimera grid is the possibility to generate high quality structured
particular grids separately for different body elements completely indepen-
dent of each other, without having to take care of the interface between
grids.

8.3 Morphing grids

Very efficient way of CFD body simulation is the use of moving or morphing
grids [6]. The idea is the computational grid is moved in accordance with the
displacement of the body by using an analytical weighted regridding which
is a type of extrapolation of rigid transformation. The possible problem of
morphing grid is poor quality caused by its motion. Consequently if the
mesh surrounding the body is allowed to deform the elements around the
body deform. This can quickly lead to poor quality elements if care is not
taken. An alternative method is to replicate the motion of the body with the
fluid domain split into an inner and outer region. The outer domain remains
fixed in space while the inner domain containing the body moves laterally to
replicate the motion. The mesh in the inner sub domain remains locked in
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position relative to the lateral motion of the body. This prevents deformation
of the detailed mesh around the body. The outer mesh is deformed due to
the motion of the inner region.

If moving grids are used the Navier Stokes should be transformed to take the

velocity of grid faces EUg into account,

@Eu

@t
C

n�
Eu � EUg

�
r

o
Eu D Ef �

1

�
rp C ��Eu (8.1)

Thomas and Lombard have shown that the function EUg can not be arbi-
trary rather than they have to be found from the Geometric Conservation
Law

@

@t

Z

U

dU �

Z

S

EUg EndS D 0 (8.2)

Where U and S are respectively volume and surface of cells. The equa-
tion (8.2) is derived from the condition that the computation of the control
volumes or of the grid velocities must be performed in a such a way that
the resulting numerical scheme preserves the state of the uniform flow, in-
dependently of the deformation of the grid. The equation (8.2) is satisfied
automatically if the control volumes don’t change their shape. The Geomet-
ric conservation law (8.2) should solve coupled with other fluid flow equations
using the same discretizations schemes.

More detailed information about grid generation can be found in [3], [7]
and [8].
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Part II

Mathematical modelling of
turbulent flows
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Chapter 9

Physics of turbulence

9.1 Definition of the turbulence

Flow motions are subdivided into laminar flows and turbulent ones. The
word ” Laminar” in Greek means layer. The fluid particles move orderly
in layers without intense lateral mixing. The disruption between layers is
absent. On the contrary the turbulent flow is very chaotic with strong eddies
and intense mixing across the flow.
Turbulent motion is the three dimensional unsteady flow motion with

� chaotical trajectories of fluid particles,

� fluctuations of the velocity and

� strong mixing

arisen at large Re numbers due to unstable vortex dynamics.

9.2 Vortex dynamics

The vortex dynamics is the key to understand what happens in the turbulent
flow.

9.2.1 Vorticity transport equation

The vector calculus relation reads:

1

2
r.A � A/ D A � .r � A/ C .Ar/A (9.1)
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81Taking u D A we get:

1

2
r.u � u/ D u � ! C .ur/u (9.2)

where ! D r � u is the vorticity.
Application of the curl operator to (9.2) results in

r � ..ur/u/ D �r � .u � !/ D �u.r!/ C !.ru/ � .!r/u C .ur/! (9.3)

Here we used the identity r � .1
2
r.u � u// D 0.

Both vectors u and ! satisfy the continuity equation, i.e. r! D 0 and
ru D 0:

r � ..ur/u/ D �.!r/u C .ur/! (9.4)

Let us apply the curl operator to the Navier Stokes equation

r � .
@u

@t
C .ur/u/ D r � .�

1

�
rp C ��u/ (9.5)

@!

@t
C r � ..ur/u/ D ��.r � u/ D ��! (9.6)

Substituting (9.4) into (9.6) results in

@!

@t
C .ur/! D .!r/u C ��! (9.7)

D!

Dt
D .!r/u C ��! (9.8)

The equation (9.8) is the vorticity transport equation.

9.2.2 Vorticity and vortices

The vortices are main players in turbulent flows. Here we would like to
emphasize the difference between the vorticity and vortices. The vorticity
is the curl of the velocity ! D r � u. The vorticity is usually not zero in
viscous flows especially in areas close to the walls. Speaking about vortices
we bear in mind the concentrated structures of the vorticity field ! D r �u.
The difference between the vorticity and vortices is illustrated in Fig. 9.1.
The boundary layer is the flow area with strong but smoothly distributed
vorticity (Fig. 9.1a). Due to instabilities, that will be discussed later, the
concentrated vortex structures arise in the smooth vorticity field (Fig. 9.1b).
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A famous sample of concentrated vortex structures is the tornado (Fig. 9.2).

The vorticity is solenoidal:

r! D r.r � u/ D 0 (9.9)

The consequence of the condition (9.9) is:

� All vortex lines, defined as the lines which are tangential to the vorticity
vector ! � d l D 0, are closed in the three dimensional case (Fig. 9.3).

The velocity induced by vorticity ! occupied the volume U are calculated
from the Biot-Savart law:

u.x; t / D
1

4�

Z

U

! � .x � r/

jx � rj3
dU (9.10)

The velocities induced by two dimensional and three dimensional vortex
structures are shown in Fig. 9.4. An important fact is the appearance of
self induced velocities on curvilinear three dimensional vortex structures.
They are responsible for leapfrog vortex ring motion (http://www.lemos.uni-
rostock.de/galerie/). The self induced velocities is the reason for convective
instability of three dimensional vortex structures.

Figure 9.1: Vorticity and vortices.

9.2.3 Vortex amplification as an important mechanism
of the turbulence generation

As mentioned above the vortices are main players during the laminar- tur-
bulent transition. The vorticity can be essentially intensified (amplified) due
to action of neighboring vortices or even due to self induction.
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Figure 9.2: Tornado.

Figure 9.3: Vortices in two-dimensional and three dimensional cases.

The reason for that can be explained by analysis of the vorticity transport
equation

D!

Dt
D .!r/u C ��! (9.11)

The r.h.s. of (9.11) contains two terms. The first term .!r/u is responsible
for the rotation of the vorticity vector ! and enlargement or reduction of its
magnitude j!j. The second diffusion term results in spreading of the vortic-
ity in the space. The term .!r/u is responsible for the amplification of the
vorticity.

The effect of the amplification can easily be understood if we consider the
vortex with vector aligned along the x-axis !x > 0. If such a vortex is in the
fluid stretching area @ux

@x
> 0, the term !x

@ux

@x
> 0 is positive. As a result,

D!x

Dt
> 0 is positive, what leads to the increase of the vorticity !x. As shown

analytically by Novikov [9] for a simple model problem, the vortex strength
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84

Figure 9.4: Velocities induced by vortices. Three dimensional curvilinear
vortices induce self induced velocities.

of vortons structures can increase exponentially up to the infinity without
viscosity effects. The vorticity growth caused by inviscid amplification term
is counterbalanced by the diffusion term. Two terms on r.h.s. of (9.11) com-
pete with each other. In the inviscid fluid the circulation of the vortex core
is constant � D

R
S

!xdS D const . Increase of !x results in the decrease of
the cross section S . The vortex becomes thinner. The diffusion acts against
and makes the vortex thicker. In some flow regions the amplification can be
stronger that diffusion. The thin vortex losses the stability and is folded.

As shown by Chorin [10] and [11] the folding is necessary mechanism pre-
venting the exponential growth of vorticity. If the amplification is too strong,
the vorticity goes to infinity and the energy is not kept constant. Chorin [10]
notes that ”as the vortices stretch, their cross-section decreases and the en-
ergy associated with them would increase unless they arranged themselves in
such a way that their velocity canceled. The foldings achieves such cancela-
tion”. This could be easily explained using a simple sample. If we have just
one straight infinite vortex it induces the velocity in the plane perpendicular
to its axis. If this vortex is tangled the vortex pieces with different vorticity
direction are approaching close each to other canceling their induction (see
Fig. 9.5).
Chorin [11] explicitly specifies typical scales of folding: ” the inertial range 1

properties are due to the appearance of folded vortex tubes, which behave on
large scales as self-avoiding walks, and on small scales contain a large num-

1 this term will be introduced in the next chapter
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Figure 9.4: Velocities induced by vortices. Three dimensional curvilinear
vortices induce self induced velocities.

of vortons structures can increase exponentially up to the infinity without
viscosity effects. The vorticity growth caused by inviscid amplification term
is counterbalanced by the diffusion term. Two terms on r.h.s. of (9.11) com-
pete with each other. In the inviscid fluid the circulation of the vortex core
is constant � D

R
S

!xdS D const . Increase of !x results in the decrease of
the cross section S . The vortex becomes thinner. The diffusion acts against
and makes the vortex thicker. In some flow regions the amplification can be
stronger that diffusion. The thin vortex losses the stability and is folded.

As shown by Chorin [10] and [11] the folding is necessary mechanism pre-
venting the exponential growth of vorticity. If the amplification is too strong,
the vorticity goes to infinity and the energy is not kept constant. Chorin [10]
notes that ”as the vortices stretch, their cross-section decreases and the en-
ergy associated with them would increase unless they arranged themselves in
such a way that their velocity canceled. The foldings achieves such cancela-
tion”. This could be easily explained using a simple sample. If we have just
one straight infinite vortex it induces the velocity in the plane perpendicular
to its axis. If this vortex is tangled the vortex pieces with different vorticity
direction are approaching close each to other canceling their induction (see
Fig. 9.5).
Chorin [11] explicitly specifies typical scales of folding: ” the inertial range 1

properties are due to the appearance of folded vortex tubes, which behave on
large scales as self-avoiding walks, and on small scales contain a large num-

1 this term will be introduced in the next chapter
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Figure 9.5: Illustration of the vortex folding.

ber of folds (=hairpins) that are needed to satisfy the constraint of energy
conservation”.

Summarizing all effects mentioned above one can imagine the following sce-
nario (see Fig. 9.6). Let the vorticity at a certain point of the flow grows.
In the real physical process folding prevents the growth of the kinetic energy
and increases the canceling effect of viscosity. Then the vortex structures
breaks down into small structures due to reconnection mechanism described
in the next subsection.

Figure 9.6: Scenario of vortex amplification.

9.2.4 Vortex reconnection

Let us consider the vortex ring (see Fig. 9.7). Due to convective instability
or influence of neighboring vortices the vortex ring is deformed. Due to self
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or influence of neighboring vortices the vortex ring is deformed. Due to self
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Figure 9.7: Scenario of vortex reconnection.

induction two opposite sides of the ring are merged. As soon as two elements
with opposite vorticity sign are approaching each to other, they start to
cancel each other by mutual diffusion. The vortices disappear in the area of
the contact. Two small vortices are created from one big vortex. Each small
vortex ring breaks then down into smaller vortices and so on. The energy
of small vortices is equal to the energy of the big vortex with a small loss
caused by the dissipation. This fact is formulated in the sentence, which is
common in the turbulence theory: The energy is transferred from large scale
vortices to small scales vortices. The reconnection process can be observed
on macroscales. The decay, break up of tip vortices behind the airplane
proceeds according to the same scenario (see Fig. 9.8). The reconnection
process is, perhaps, the main mechanism of vortex cascade in the turbulent
flows, i.e. transformation of big vortices into small ones. The reconnection
can also lead to enlargement of small vortices if two rings approach each to
other as shown in Fig. 9.7 (see red circle). In this case the energy of small
vortices turns into the energy of the big vortex. This process is referred to
as the energy back scattering. Statistically, the direct energy flux sufficiently
surpasses the backward one.

9.2.5 Richardson poem (1922)

The vortex turbulence cascade means that large eddies break down to form
small eddies as turbulence cascades from large scales to small ones. This idea
was formulated in the famous poem by Richardson (1922):

Big whorls have little whorls,
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Figure 9.7: Scenario of vortex reconnection.
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Figure 9.8: Sample of the vortex reconnection of tip vortices behind an air-
plane.

Which feed on their velocity;

And little whorls have lessor whorls,

And so on to viscosity (in the molecular sense).

9.2.6 Summary

Vortex arise in the fluid due to viscosity effects. They experience instability
and amplification. Diffusion counteracts the amplification. If the Reynolds
number is large, the vortex structures are strong and concentrated. The
amplification can dominate at some fluid region over the diffusion. The
vortex instability is not damped by viscosity. The flow becomes stochastic
due to mutual interaction of unstable vortices. The big vortices break down
into small ones by means of vortex reconnection. The vortex instability
process is identified as the turbulence.

9.3 Experimental observations

Different regimes of the fluid motion were revealed very early, perhaps, in
antique times. Much later, Leonardo da Vinci recognized two states of the
fluid motion and introduced the term ”la turbolenza”. Arkady Tsinober
in his book ”An informal introduction to turbulence” [1] presented most
outstanding results in turbulence research in chronological order (Fig. 9.9).
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Figure 9.9: Most outstanding results in turbulence research according to [1].

9.3.1 Laminar - turbulent transition in pipe. Experi-
ment of Reynolds

Quantitative study of turbulence was started by Osborne Reynolds (1842-
1912) who performed in 1883 very famous experiment shown in Fig. 9.10.
The water flows from the vessel A to the pipe B. The ink injected into the
pipe B with the local flow velocity is not mixed in transversal direction and
keeps its identity if the flow velocity is small (Fig. 9.10, right). The flow
under such a condition is laminar. As soon as the flow velocity increases due
to water level raise in the vessel A, the ink jet loses the stability and is mixed
with surrounding water (Fig. 9.10, right). The flow becomes turbulent. Ink
jet development at different flow velocities in the circular pipe is shown in
Fig. 9.11.

The great merit of Reynolds lies in the fact, that he in contrast to his pre-
decessors quantified the laminar turbulent transition. He showed that the
transition in pipes occurs if the Reynolds number Re D UbD=� exceeds the
threshold around � 2400. Here Ub is the bulk velocity in pipe determined as
the ratio of the flow rate to the pipe cross section, i.e. Ub D Q=.�D2=4/, D is
the pipe diameter and � is the kinematic viscosity coefficient (� � 10�6m2s�1

for water and � � 10�6m2s�1 for air). Later, it was shown that the transition
strongly depends on the perturbations presented in the flow. The experimen-
tal setup of Reynolds has been preserved at the University of Manchester in

89

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

88 

Physics of turbulence

Figure 9.10: Sketch of the Reynolds experiment.

Figure 9.11: Development of instability during the laminar- turbulent tran-
sition in the circular pipe (taken from [1]).

UK. The experiments done nowadays shown that the laminar- turbulent tran-
sition Reynolds number is less than that documented originally by Reynolds.
The reason is, presumably, the building vibration and noise caused by traffic
which was not in time of Reynolds. If the perturbations are eliminated the
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transition can be delayed up to Re � 40000:::50000.

9.3.2 Laminar - turbulent transition and turbulence in
jets

The jet flows experiences also laminar turbulent transition shown in Fig. 9.12.
Obviously, the flow can be fully or only partially turbulent. Close to the noz-
zle the flow is laminar. The instability is developed downstream. The shear
flow at the jet boundary is the area of rapid velocity change from the jet
velocity to zero outside of the jet. The shear flow experiences the so called
Kelvin Helmholtz instability (Fig. 9.13) resulting in formation of concen-
trated vortices which are approximately circular. It happens close to jet
nozzle at x=D < 1 (see Fig. 9.14), where x is the distance from the nozzle
and D is the nozzle diameter.

The Kelvin Helmholtz vortices experience then the pairing (see Fig. 9.14).
One vortex overtakes the neighbor vortex creating a pair. This process
has an inviscid convective nature and can be explained thinking back to
the famous leapfrog motion of two vortex rings. In the inviscid flow the
leapfrog motion is running as long as the convective instability destroys
the vortices. One vortex runs the next down, its radius decreases whereas
the speed increases. The radius of the next vortex increases, the speed
decreases. The first ring moves through the second one. The process is
then repeated. The movie illustrating this process can be downloaded from
http://www.lemos.uni-rostock.de/en/gallery/.

The paired vortices experience the azimuthal instability and takes the crude
ring form. Later they are destroyed downstream in the region 1 < x=D < 6.
In far field at large x=D the vortex structures look like a tree with branches
oriented against the main flow direction (see Fig. 9.15).

Figure 9.12: Development of instability in the jet (taken from [1]).

91

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

89 

Physics of turbulencetransition can be delayed up to Re � 40000:::50000.

9.3.2 Laminar - turbulent transition and turbulence in
jets

The jet flows experiences also laminar turbulent transition shown in Fig. 9.12.
Obviously, the flow can be fully or only partially turbulent. Close to the noz-
zle the flow is laminar. The instability is developed downstream. The shear
flow at the jet boundary is the area of rapid velocity change from the jet
velocity to zero outside of the jet. The shear flow experiences the so called
Kelvin Helmholtz instability (Fig. 9.13) resulting in formation of concen-
trated vortices which are approximately circular. It happens close to jet
nozzle at x=D < 1 (see Fig. 9.14), where x is the distance from the nozzle
and D is the nozzle diameter.

The Kelvin Helmholtz vortices experience then the pairing (see Fig. 9.14).
One vortex overtakes the neighbor vortex creating a pair. This process
has an inviscid convective nature and can be explained thinking back to
the famous leapfrog motion of two vortex rings. In the inviscid flow the
leapfrog motion is running as long as the convective instability destroys
the vortices. One vortex runs the next down, its radius decreases whereas
the speed increases. The radius of the next vortex increases, the speed
decreases. The first ring moves through the second one. The process is
then repeated. The movie illustrating this process can be downloaded from
http://www.lemos.uni-rostock.de/en/gallery/.

The paired vortices experience the azimuthal instability and takes the crude
ring form. Later they are destroyed downstream in the region 1 < x=D < 6.
In far field at large x=D the vortex structures look like a tree with branches
oriented against the main flow direction (see Fig. 9.15).

Figure 9.12: Development of instability in the jet (taken from [1]).

91

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/IE


Lectures on computational fluid dynamics

90 

Physics of turbulence

transition can be delayed up to Re � 40000:::50000.

9.3.2 Laminar - turbulent transition and turbulence in
jets

The jet flows experiences also laminar turbulent transition shown in Fig. 9.12.
Obviously, the flow can be fully or only partially turbulent. Close to the noz-
zle the flow is laminar. The instability is developed downstream. The shear
flow at the jet boundary is the area of rapid velocity change from the jet
velocity to zero outside of the jet. The shear flow experiences the so called
Kelvin Helmholtz instability (Fig. 9.13) resulting in formation of concen-
trated vortices which are approximately circular. It happens close to jet
nozzle at x=D < 1 (see Fig. 9.14), where x is the distance from the nozzle
and D is the nozzle diameter.

The Kelvin Helmholtz vortices experience then the pairing (see Fig. 9.14).
One vortex overtakes the neighbor vortex creating a pair. This process
has an inviscid convective nature and can be explained thinking back to
the famous leapfrog motion of two vortex rings. In the inviscid flow the
leapfrog motion is running as long as the convective instability destroys
the vortices. One vortex runs the next down, its radius decreases whereas
the speed increases. The radius of the next vortex increases, the speed
decreases. The first ring moves through the second one. The process is
then repeated. The movie illustrating this process can be downloaded from
http://www.lemos.uni-rostock.de/en/gallery/.

The paired vortices experience the azimuthal instability and takes the crude
ring form. Later they are destroyed downstream in the region 1 < x=D < 6.
In far field at large x=D the vortex structures look like a tree with branches
oriented against the main flow direction (see Fig. 9.15).

Figure 9.12: Development of instability in the jet (taken from [1]).

91

Figure 9.13: Development of instability in the free jet.

Figure 9.14: Development of instability in the free jet.

Creation of vortex rings is the reason for the jet noise. The noise produced,
for instance, by jet propulsors of airplanes is the action of these vortices.
The vortices play a significant positive role in jet mixers widely used in food
industry, chemical engineering, etc. That is why, one of the most perspective
way to reduce the noise or to increase mixing is the manipulation of vor-
tices arising behind the jet nozzle. To increase the mixing it is necessary to
strengthen the Kelvin Helmholtz vortices. To decrease the noise the vortices
should be broken down into small ones. Fig. 9.16 shows the effect of the
acoustic impact on jet. The original vortices (lower picture) are split into
small ones (upper picture).

High resolution laser diagnostics methods LIF and PIV allow to get a deep
inside into the structure of the turbulent flow. Fig. 9.17 shows the structure
of the confined jet mixer flow displayed by Planar Laser Induced Fluores-
cence (PLIF) Method. The macrostructure obtained with low resolution is
shown in the upper Figure. A small window with sizes 2:08mm � 2:72mm
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Figure 9.15: Vortex structures in a free jet in a far field.

Figure 9.16: Vortex structures in a free jet with acoustic impact.

was selected for high resolution PLIF measurements. The vortex microstruc-
tures are presented in the lower Figure. A very important observation is the
presence of fine vortex structures. A gallery of such vortices obtained at dif-
ferent distances x=D, where D is the diameter of the closing pipe, is given in
Fig. 9.18. The smallest vortices are the so called Kolmogorov vortices which
are considered in the next chapter.
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Figure 9.17: Vortex structures in a confined jet mixer flow.

9.3.3 Laminar - turbulent transition in wall bounded
flows

The boundary layer on a plate is the thin layer of rapid change of the velocity
from zero to 99:5% of the incident flow. A possible scenario of the laminar
turbulent transition in the boundary layer on a flat plate is shown in Fig. 9.19

First, the transversal vortices are generated in the boundary layer due to
the so called Tollmien- Schlichting instability [12]. They experience the sec-
ondary instability and form downstream the lambda structures. The latter
interact each with other and experience the tertiary instability. They loss
original regular form and become stochastic. An important feature of the
turbulent boundary layer is the presence of streaks (strips) of the low ve-
locity fluid regions (see Fig. 9.20). They arise due to induction of lambda
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Figure 9.18: Fine vortex structures in a confined jet mixer flow. PLIF mea-
surements by Valery Zhdanov (LTT Rostock). Spatial resolution is 31�m.

structures schematically shown in Fig. 9.21.

9.3.4 Distribution of the averaged velocity in the tur-
bulent boundary layer

A remarkable feature of the turbulent boundary flow is the presence of three
typical velocity distribution regions. The instantaneous velocity distributions
can be quite different (see Fig. 9.24). However, the averaged velocity has
typical distribution close to the wall regardless of the flow type.
Let us introduce the following designations:

� y is the distance from the wall,

� �w is the stress at the wall,

� u� D

q
�w

�
is the friction velocity,

� yC D
u� y

�
is the dimensionless wall distance.

The stress in wall turbulence flow can be considered as the sum of the laminar
and turbulent stresses:

� D �l C �t (9.12)
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Figure 9.18: Fine vortex structures in a confined jet mixer flow. PLIF mea-
surements by Valery Zhdanov (LTT Rostock). Spatial resolution is 31�m.

structures schematically shown in Fig. 9.21.

9.3.4 Distribution of the averaged velocity in the tur-
bulent boundary layer

A remarkable feature of the turbulent boundary flow is the presence of three
typical velocity distribution regions. The instantaneous velocity distributions
can be quite different (see Fig. 9.24). However, the averaged velocity has
typical distribution close to the wall regardless of the flow type.
Let us introduce the following designations:

� y is the distance from the wall,

� �w is the stress at the wall,

� u� D

q
�w

�
is the friction velocity,

� yC D
u� y

�
is the dimensionless wall distance.

The stress in wall turbulence flow can be considered as the sum of the laminar
and turbulent stresses:

� D �l C �t (9.12)
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Figure 9.19: Scenario of laminar turbulent transition in the boundary layer
on a flat plate.

Figure 9.20: Streaks visualized by hydrogen bubbles in the boundary layer
on a flat plate.

Close to the wall the turbulent fluctuations are weak. The laminar stress
�l dominates over the turbulent one �t , i.e. � � �l . We consider the thin
boundary layer, i.e. the stress is approximately equal to the wall stress �w :

� � �w (9.13)

Applying the Newton hypothesis (1.18) to the two dimensional wall bounded
flow, one gets from (9.13)

�w D ��
dux

dy
(9.14)

or

ux

u�

D yC
C C (9.15)

From the condition at the wall ux D 0 the unknown constant C is zero, i.e.
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Figure 9.21: Conceptual model of the organization of the turbulence close to
the wall proposed by Adrian et al. (2000).

Figure 9.22: Vertical distribution of the velocity ux at three different time
instants in boundary layer.

ux

u�

D yC (9.16)

Close to the wall the velocity increases linearly ux � y. This law confirmed
in measurements is valid in the range 0 < yC < 5. This region is reffered to
as the viscous sublayer.
Far from the wall the laminar stresses are smaller than the turbulent ones
� � �t . The turbulent stress �t can be found from the Prandtl mixing length
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model. The instantaneous velocities are presented as the sum of averaged u

and fluctuation u
0

parts:

ux D ux C u
0

x; uy D u
0

y; uy D 0 (9.17)

The averaged velocities are defined as

ux D lim
T !1

TZ

0

ux.t/dt (9.18)

The turbulent stress �12 D �xy according to the definition is

�12 D �u
0

xu
0

y (9.19)

Figure 9.23: Illustration of the Prandtl derivation.

Prandtl proposed in 1925 a very simple algebraic relation for u
0

xu
0

y using
ideas from the kinetic gas theory developed by Boltzmann. Let us consider
the fluid particle at the distance y from the wall. Let the particle velocity
be equal to the averaged velocity at y: ux. Due to some perturbations the
particle jumps from the position y to the position y C lx and attains the fluid
layer with the averaged velocity ux C

dux

dy
lx. Since the particle has velocity

ux, the velocity at the point y C dy is changed. Obviously, this change is
�

dux

dy
lx, or:

q
u

02
x D

dux

dy
lx (9.20)
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model. The instantaneous velocities are presented as the sum of averaged u

and fluctuation u
0

parts:

ux D ux C u
0

x; uy D u
0

y; uy D 0 (9.17)

The averaged velocities are defined as

ux D lim
T !1

TZ

0

ux.t/dt (9.18)

The turbulent stress �12 D �xy according to the definition is

�12 D �u
0

xu
0

y (9.19)

Figure 9.23: Illustration of the Prandtl derivation.

Prandtl proposed in 1925 a very simple algebraic relation for u
0

xu
0

y using
ideas from the kinetic gas theory developed by Boltzmann. Let us consider
the fluid particle at the distance y from the wall. Let the particle velocity
be equal to the averaged velocity at y: ux. Due to some perturbations the
particle jumps from the position y to the position y C lx and attains the fluid
layer with the averaged velocity ux C

dux

dy
lx. Since the particle has velocity

ux, the velocity at the point y C dy is changed. Obviously, this change is
�

dux

dy
lx, or:

q
u

02
x D

dux

dy
lx (9.20)

98Root square of the averaged squared pulsation in vertical direction is written
in a similar form: q

u
02
y D

dux

dy
ly (9.21)

Introducing the correlation coefficient Rxy D u
0

xu
0

y=
�q

u
02
y

q
u

02
y

�
and using

(9.20) and (9.21) one gets:

j�12j D j�t j D �Rxylxly

�
dux

dy

�2

D �l2

�
dux

dy

�2

(9.22)

where l2 D Rxylxly is the mixing length of Prandtl. The mixing length
is determined from empirical data. For instance, the length for the wall
bounded flow is

l D �y (9.23)

� is the first constant of the turbulence, or the constant of Karman. It is
equal to 0:41. Van Driest proposed the modification of (9.23) to take the
wall damping effect into account:

l D �y
�
1 � e

�yu�
�A

�
(9.24)

where A is the Van Driest constant, which is equal to 26 or 27. In shear flows
l D Const � ı.x/, where ı is the shear layer thickness.
We consider again the thin boundary layer, i.e. the stress is approximately
equal to the wall stress �w D �12. Using (9.22) and (9.23) we get

�w D �l2

�
dux

dy

�2

(9.25)

dux

dy
D

1

l

r
�w

�
D

u�

�y
(9.26)

The differential equation (9.26) reads

ux

u�

D
1

�
ln yC

C C (9.27)

The constant C is approximately equal to 5:2. The region (9.27) is referred
to as the logarithmic region which takes place within 30 < yC < 300. The
region 5 < yC < 30 between the viscous and the logarithmic regions is called
the buffer layer. The region at yC > 300 is the wake region. The results of
the analysis are summarized in Fig. 9.24
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where l2 D Rxylxly is the mixing length of Prandtl. The mixing length
is determined from empirical data. For instance, the length for the wall
bounded flow is
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� is the first constant of the turbulence, or the constant of Karman. It is
equal to 0:41. Van Driest proposed the modification of (9.23) to take the
wall damping effect into account:
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where A is the Van Driest constant, which is equal to 26 or 27. In shear flows
l D Const � ı.x/, where ı is the shear layer thickness.
We consider again the thin boundary layer, i.e. the stress is approximately
equal to the wall stress �w D �12. Using (9.22) and (9.23) we get
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dux

dy

�2
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dux

dy
D

1

l

r
�w

�
D
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The differential equation (9.26) reads

ux

u�
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1

�
ln yC

C C (9.27)

The constant C is approximately equal to 5:2. The region (9.27) is referred
to as the logarithmic region which takes place within 30 < yC < 300. The
region 5 < yC < 30 between the viscous and the logarithmic regions is called
the buffer layer. The region at yC > 300 is the wake region. The results of
the analysis are summarized in Fig. 9.24
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Figure 9.24: Structure of the velocity distribution in the turbulent boundary
layer. U C D ux=u� .
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Chapter 10

Basic definitions of the
statistical theory of turbulence

10.1 Reynolds averaging

Reynolds proposed to represent any stochastic quantity in turbulent flow as
the sum of its averaged part and fluctuation. For instance, this representation
applied for velocity components reads

ux D Nux C u0
xI uy D Nuy C u0

yI uz D Nuz C u0
zI (10.1)

The Reynolds averaged velocities are

Nux D lim
T !1

1

T

TZ

0

uxdt I Nuy D lim
T !1

1

T

TZ

0

uydt I

Nuz D lim
T !1

1

T

TZ

0

uzdt

9>>>>>>>=
>>>>>>>;

(10.2)

The averaged fluctuation is zero

u0
x;y;z D 0

The root of the averaged square of fluctuations is called root mean square,
or r.m.s.. The quantity averaged twice is equal to quantity averaged once
u D u.

If the turbulence process is statistically unsteady (for instance r.m.s is changed
in time), the definition of the Reynolds averaging (10.2) is not applicable and
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should be extended using the concept of ensemble averaging. Within the en-
semble averaging the stochastic process is repeated N times from the initial
state. The turbulent quantity u is measured at a certain time t� N times.
The ensemble averaged quantity is then:

u.t�/ D lim
N !1

1

N

NX
iD1

ui.t
�/

10.2 Isotropic and homogeneous turbulence

The turbulence is isotropic if r.m.s of all three velocity fluctuations are equal

u02
x D u02

y D u02
z (10.3)

The turbulence parameters are invariant with respect to the rotation of the
reference system. The turbulence is homogeneous in some fluid volume if
all statistical parameters are the same for all points in this volume, i.e.

u02
x;y;z.Ex/ D u02

x;y;z.Ex C Er/. This equality can be written for all statistical
moments. The turbulence parameters are invariant with respect to the trans-
lation of the reference system.

10.3 Correlation function. Integral length

The product of two fluctuations is the correlation. The product of two fluc-
tuations at two point separated by the distance Er is the correlation function:

Rij .Ex; Er/ D u0
i.Ex/u0

j .Ex C Er/ (10.4)

If i D j the correlation function Ri i is reffered as to the autocorrelation
function. In homogeneous turbulence Ri i depends only on the separation:

Rij .Er/ D u0
i.Ex/u0

j .Ex C Er/ (10.5)

The coefficient of the autocorrelation function is changed between zero and
one:

�i i.Ex; Er/ D
u0

i.Ex/u0
i.Ex C Er/

u02
i .Ex/

(10.6)

A sample of the autocorrealtion function coefficient for scalar fluctuation f 0
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Figure 10.1: Autocorrelation function coefficient for scalar fluctuation at
three different points A; B and C across the jet mixer.

�f .Ex; Er/ D
f 0.Ex/f 0.Ex C Er/

f 02.Ex/
(10.7)

at three different points A; B and C across the jet mixer is shown in Fig. 10.1.
In measurements presented in Fig. 10.1 the scalar f is the concentration of
the dye injected from the nozzle (see Fig. 10.1, low picture, right). The
change of the function has a certain physical meaning. Let us consider the
autocorrelation function with respect to the point C (blue line):

�f .rC ; r/ D
f 0.rC /f 0.rC C r/

f 02.rC /
(10.8)

where r is the radial coordinate across the pipe. The �f .rC ; rA/ is negative. It
means the increase of the quantity f at the point C (f 0.rC / > 0) is followed
by the decrease of this quantity at the point A (f 0.rA/ < 0) . This is true in
statistical sense, i.e. the most probable consequence of the increase f .rC / is
the decrease of f .rA/.

The correlation function and autocorrelation function can be written not
only for spatial separation but also for separation in time. For example, the
autocorrelation temporal function of the ui fluctuation is

103
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103
�i i.Ex; �/ D

u0
i.Ex; t/u0

i.Ex; t C �/

u02
i .Ex; t/

(10.9)

The integral of the spatial autocorrelation functions

Lij .Ex/ D

1Z

0

�i i.Ex; xj /dxj (10.10)

is the integral length. The integral lengths are estimations of the size of the
largest vortex in flow. A sample of the integral length of the scalar field f

along the jet mixer centerline (Fig. 10.1, right)

Lf .x/ D

D=2Z

�D=2

�f .r/dr (10.11)

is shown in fig. 10.2, where �f is the autocorrelation function across the jet
mixer, d is the nozzle diameter, D is the diameter of the closing pipe. Lf

is the estimation of the largest structure of the scalar field (in this case, the
size of the spot of colored liquid injected from the nozzle).

The integral of the temporal autocorrelation functions

Ti.Ex/ D

1Z

0

�i i.Ex; �/d� (10.12)

is the integral time length.

Coefficients of the autocorrelation function of the axial velocity fluctuations
for the free jet are presented in Fig. 10.3. The line 1 corresponds to the
autocorrelation function calculated along the jet boundary line (shown by
the blue line in Fig. 10.3, right). The line 2 corresponds to the autocor-
relation function calculated along the jet axis. Oscillating character of the
dependency Ruu.�x=d/ indicates the presence of vortex structures arising
at the jet boundary and attaining the jet axis. The distance between zero
points is roughly the vortex size.

10.3.1 Some relations in isotropic turbulence

In the isotropic turbulence u02 D u0
l
.x/u0

l
.x/ D u0

t.x/u0
t.x/ D ::: the autocor-

relation function can be represented in the form [13]
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�i i.Ex; �/ D
u0

i.Ex; t/u0
i.Ex; t C �/

u02
i .Ex; t/

(10.9)

The integral of the spatial autocorrelation functions

Lij .Ex/ D

1Z

0

�i i.Ex; xj /dxj (10.10)

is the integral length. The integral lengths are estimations of the size of the
largest vortex in flow. A sample of the integral length of the scalar field f

along the jet mixer centerline (Fig. 10.1, right)

Lf .x/ D

D=2Z

�D=2

�f .r/dr (10.11)

is shown in fig. 10.2, where �f is the autocorrelation function across the jet
mixer, d is the nozzle diameter, D is the diameter of the closing pipe. Lf

is the estimation of the largest structure of the scalar field (in this case, the
size of the spot of colored liquid injected from the nozzle).

The integral of the temporal autocorrelation functions

Ti.Ex/ D

1Z

0

�i i.Ex; �/d� (10.12)

is the integral time length.

Coefficients of the autocorrelation function of the axial velocity fluctuations
for the free jet are presented in Fig. 10.3. The line 1 corresponds to the
autocorrelation function calculated along the jet boundary line (shown by
the blue line in Fig. 10.3, right). The line 2 corresponds to the autocor-
relation function calculated along the jet axis. Oscillating character of the
dependency Ruu.�x=d/ indicates the presence of vortex structures arising
at the jet boundary and attaining the jet axis. The distance between zero
points is roughly the vortex size.

10.3.1 Some relations in isotropic turbulence

In the isotropic turbulence u02 D u0
l
.x/u0

l
.x/ D u0

t.x/u0
t.x/ D ::: the autocor-

relation function can be represented in the form [13]
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Figure 10.2: Distribution of the integral length of the scalar field along the
jet mixer centerline.

Figure 10.3: Autocorrelation functions in free jet flow.
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Figure 10.2: Distribution of the integral length of the scalar field along the
jet mixer centerline.

Figure 10.3: Autocorrelation functions in free jet flow.
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Rij D u2

�
f � g

r2
rirj C gıij

�
(10.13)

where

f .r/ D
u0

l
.x/u0

l
.x C r/

u0
l
.x/u0

l
.x/

; (10.14)

is the autocorrelation of the longitudinal velocity calculated in longitudinal
direction. For instance, the autocorrelation function of the ux fluctuation
calculated in x direction,

f .r/ D
u0

x.x/u0
x.x C r/

u0
x.x/u0

x.x/
; (10.15)

or the autocorrelation function of the uy fluctuation calculated in y direction:

f .r/ D
u0

y.y/u0
y.y C r/

u0
y.y/u0

y.y/
; (10.16)

The function f .r/ is the same in both cases (10.15) and (10.16). The au-
tocorrelaton function g.r/ is calculated for transversal velocities along any
direction

g.r/ D
u0

t.x/u0
t.x C r/

u0
t.x/u0

t.x/
(10.17)

For instance, the autocorrelation function of the ux fluctuation calculated in
y direction,

g.r/ D
u0

x.y/u0
x.y C r/

u0
x.y/u0

x.y/
; (10.18)

or the autocorrelation function of the uy fluctuation calculated in x direction:

g.r/ D
u0

y.x/u0
y.x C r/

u0
y.x/u0

y.x/
; (10.19)

The function g.r/ is the same in both cases (10.18) and (10.19). The ve-
locities components used in the previous definitions are illustrated in Fig.
10.4. ui is the velocity pulsation vector, uil is its projection on the direction
connecting two points (i.e. longitudinal direction), uit is its projection on
the transversal direction. Products like uituit are the correlations between
points 1 and 2.
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Figure 10.4: Illustrations of velocities used in calculations of the longitudinal
f and transversal g autocorrelations.

Figure 10.5: Illustration of the autocorrelation functions f and g and Taylor
microscales.

The following relations are valid between g and f in the isotropic homoge-
neous turbulence (see [13]):

g D f C
1

2
r

@f

@r
(10.20)

Typical form of f and g is shown in Fig. 10.5. The change of the sign of g

function is due to the continuity equation of the velocity field. The integral
length calculated using f is twice as large as that calculated using g.

10.3.2 Taylor microscale �

Until Kolmogorov derived his estimations for vortices in 1941, it has been
thought that the minimum vortices arising in the turbulent flow have sizes
estimated by Taylor. Let us consider the parabola fitted to the autocorre-
lation function at point r D 0. The parabola intersects the horizontal axis
at a certain point. The coordinate of this point � is the scale introduced by
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function is due to the continuity equation of the velocity field. The integral
length calculated using f is twice as large as that calculated using g.

10.3.2 Taylor microscale �

Until Kolmogorov derived his estimations for vortices in 1941, it has been
thought that the minimum vortices arising in the turbulent flow have sizes
estimated by Taylor. Let us consider the parabola fitted to the autocorre-
lation function at point r D 0. The parabola intersects the horizontal axis
at a certain point. The coordinate of this point � is the scale introduced by

107
Taylor and called as the Taylor microscale. The Taylor microscale can be
calculated through the second derivative of the autocorrelation function at
r D 0. The Taylor series of f in the vicinity of the point r D 0 is

f .r/ D 1 C
1

2

@2f

@r2
.0/r2

C O.r4/ (10.21)

The parabola fitted to the curve f .r/ at r D 0 intersects the horizontal axis
at the point:

�f D

s
�

2

@2f

@r2 .0/
(10.22)

Similar relations can be derived for the transversal autocorrelation

�g D

s
�

2

@2g

@r2 .0/
(10.23)

Today the Taylor microscale � is still in use in turbulent research although
it has no physical meaning. Very popular is the Reynolds number based on
the Taylor microscale

Re D u0�=� (10.24)

which characterizes the state of the turbulence in the flow.

10.3.3 Correlation functions in the Fourier space

Any continuous function can be represented in the Fourier space:

f .Er; t/ D

1Z

�1

Of . Ek; t/ei EkErd Ek (10.25)

The new function Of . Ek; t/ is then known as the Fourier transform and/or
the frequency spectrum of the function f . The Fourier transform is also a
reversible operation:

Of . Ek; t/ D
1

8�3

1Z

�1

f .Er; t/e�i EkErd Er (10.26)

The Fourier transformation can be also written for the correlation function:
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Rij .Er/ D

1Z

�1

˚ij .Ek/ei EkErd Ek; ˚ij .Ek/ D
1

8�3

1Z

�1

Rij .Er/e�i EkErd Er (10.27)

Very often one uses one dimensional correlation functions defined as

�ij .k1/ D
1

2�

1Z

�1

Rij .r1; 0; 0/e�ik1r1dr1 D

1Z

�1

1Z

�1

˚ij .k1; k2; k3/dk2dk3

(10.28)
Proof of the formula (10.28) The inverse Fourier transform of the function
Rij .r1; 0; 0/:

�ij .k1; 0; 0/ D
1

2�

1Z

�1

Rij .r1; 0; 0/eik1r1dr1 (10.29)

The inverse transformation reads:

Rij .r1; 0; 0/ D

1Z

�1

�ij .k1; 0; 0/e�ik1r1dk1 (10.30)

The general definition is

Rij .r1; r2; r3/ D

1Z

�1

1Z

�1

1Z

�1

˚ij .k1; k2; k3/ei EkErdk1dk2dk3 (10.31)

From the last formula we have:

Rij .r1; 0; 0/ D

1Z

�1

� 1Z

�1

1Z

�1

˚ij .k1; k2; k3/dk2dk3

�
eik1r1dk1 (10.32)

Comparison of (10.32) with (10.30) results in the desired formula

�ij .k1; 0; 0/ D

1Z

�1

1Z

�1

˚ij .k1; k2; k3/dk2dk3 (10.33)
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1Z
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1Z
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10.3.4 Spectral density of the turbulent kinetic energy

According to the definition of the correlation function

Rij .Er/ D u0
i.Ex/u0

j .Ex C Er/ (10.34)

the total turbulent kinetic energy is

TKE D
1

2
Ri i.0/ D

1

2

1Z

�1

˚i i.Ek/d Ek D

1Z

0

˚i i.Ek/d Ek (10.35)

The quantity

E.k/ D

Z

j Ekj

˚i i.Ek/d Ek (10.36)

is the spectral density of the turbulent kinetic energy. Physically it is the
energy on the sphere k D

p
k2

1 C k2
2 C k2

3 in the Fourier space. The total
turbulent kinetic energy is then:

TKE D

1Z

0

E.k/dk (10.37)

10.4 Structure functions

10.4.1 Probability density function

We take the definitions from Wikipedia: In probability theory, a probability
density function (pdf), or density of a continuous random variable, is a func-
tion that describes the relative likelihood for this random variable to take
on a given value. The probability for the random variable to fall within a
particular region is given by the integral of this variables density over the
region. The probability density function is non negative everywhere, and its
integral over the entire space is equal to one.

10.4.2 Structure function

Kolmogorov introduced the structure function of q order for any stochastic
function. For instance, for the longitudinal velocity along the longitudinal
direction (see Fig. 10.5) it reads:
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tion that describes the relative likelihood for this random variable to take
on a given value. The probability for the random variable to fall within a
particular region is given by the integral of this variables density over the
region. The probability density function is non negative everywhere, and its
integral over the entire space is equal to one.
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function. For instance, for the longitudinal velocity along the longitudinal
direction (see Fig. 10.5) it reads:
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Figure 10.6: Kurtosis of the structure function for the concentration of the
scalar field obtained in the jet mixer.

Sq.l/ D h.u2l � u1l/
q
i (10.38)

The standard deviation squared is then �2 D S2. If the p.d.f. of the structure
function is described by the Gaussian function

p:d:f:.x/ D
1

p
2��

e
�.x��/2

2�2 (10.39)

where � is the mean value of the stochastic value, the turbulence is Gaussian.
In reality, the most of the turbulence parameters are not Gaussian. The
deviations from the Gaussian turbulence is characterized by the kurtosis
Kurt and skewness Sk. The kurtosis

Kurt D
h.u2l � u1l/

4i

.h.u2l � u1l/2i/2
(10.40)

is three for the Gaussian turbulence. Big values of the kurtosis means that
the p.d.f. distribution of the structure function S1.l/ D hu2l � u1li is very
flat. The kurtosis is also often called as flatness. If kurtosis for small l � 0

is big, it means that the field of the stochastic field is very intermittent. Big
differences are possible even if the separation between two points l is small.
The p.d.f. function has long tails in this case. A sample of kurtosis for the
scalar structure function S.x/ D f .x C r/ � f .x/ is given in Fig.10.6.

The skewness

111Sk D
h.u2l � u1l/

3i

.h.u2l � u1l/2i/3=2
(10.41)

is zero for the Gaussian process. For the isotropic turbulence the skewness
of the derivative

Sk D
h
�

@ul

@l

�3
i

h
h
�

@ul

@l

�2
i

i3=2
(10.42)

is equal to �0:5. Physically it means that negative values of the derivative @ul

@l

are more probable than positive ones. Please prove that the skewness (10.42)
is the skewness of the structure functions of the first order S1.l/ D hu2l �u1li

calculated at l ! 0.

Exercise 1.
Calculate the Reynolds averaged values of the time dependent signals

u.t/ D cos2 t;

u.t/ D sin t;

u.t/ D

�
1 � t; t � 1;

0; t > 1:

Solution:

u.t/ D
1

2
;

u.t/ D 0;

u.t/ D 0:

Exercise 2.
Find the Reynolds stresses for the isotropic turbulence.

0
@

2 r12 r13

r21 r22 r23

r31 r32 r33

1
A

Solution: 0
@

2 0 0

0 2 0

0 0 2

1
A
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Find the Reynolds stresses for the isotropic turbulence.

0
@

2 r12 r13

r21 r22 r23

r31 r32 r33

1
A

Solution: 0
@

2 0 0

0 2 0

0 0 2

1
A
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Sk D
h.u2l � u1l/

3i

.h.u2l � u1l/2i/3=2
(10.41)

is zero for the Gaussian process. For the isotropic turbulence the skewness
of the derivative

Sk D
h
�

@ul

@l

�3
i

h
h
�

@ul

@l

�2
i

i3=2
(10.42)

is equal to �0:5. Physically it means that negative values of the derivative @ul

@l

are more probable than positive ones. Please prove that the skewness (10.42)
is the skewness of the structure functions of the first order S1.l/ D hu2l �u1li

calculated at l ! 0.
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Solution: 0
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1
A

112Exercise 3.
Calculate the turbulent kinetic energy of the isotropic turbulence, if r33 D 1

Solution:

k D 3=2

Exercise 4.
Relation between longitudinal autocorrelation function

f .r/ D
ul.x/ul.x C r/

u2
l
.x/

and energy density E.k/is given by formula [13]

f .r/ D
2

u2
l

1Z

0

E.k/k�2r�2.
sin kr

kr
� cos kr/dk (10.43)

Energy density of the isotropic decaying turbulence is described as E.k/ D

k4ExpŒ�k2�. Calculate

� longitudinal autocorrelation function f ,

� integral length and

� Taylor microscale

for the isotropic decaying turbulence.

Solution:

f .r/ D
2

u2
l

1Z

0

E.k/k�2r�2.
sin kr

kr
� cos kr/dk D (10.44)

D
2

u2
l

1Z

0

ExpŒ�k2�k2r�2.
sin kr

kr
� cos kr/dk D

1

4

p
�ExpŒ�r2=4�
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Exercise 3.
Calculate the turbulent kinetic energy of the isotropic turbulence, if r33 D 1
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Energy density of the isotropic decaying turbulence is described as E.k/ D

k4ExpŒ�k2�. Calculate

� longitudinal autocorrelation function f ,

� integral length and

� Taylor microscale

for the isotropic decaying turbulence.
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L D

1Z

0

f .r/dr D
�

4

� D
4

�1=4

Exercise 5.
Calculate the probability density function of the time dependent signal

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
signal 0 0.1 0.9 0.5 0.7 0.5 0.05 0.65 0.2 0.78 0.43 0.98 0.67 0.92 0.55

using the increment 0.2.

Solution:

signal 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
p.d.f. 3/15 2/15 3/15 4/15 3/15

Exercise 6.
The velocity u was measured at N points across the pipe: uk

i , where i D 1; N

and k D 1; K is the time step number. Write a program to calculate the au-
tocorrelation function of u with respect to point N=2.

Solution:

u
k;0
i D uk

i � ui

ui D
1

K

KX
kD1

uk
i

R.i; N=2/ D

KP
kD1

u
k;0
i u

k;0

N=2

KP
kD1

u
k;02

N=2
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Chapter 11

Kolmogorov theory K41

11.1 Physical background

One of the most outstanding results in turbulence theory was obtained by
Kolmogorov (s. Fig. 11.1) in 1941. The Kolmogorov theory known as K41
is based on the hypothesis of local isotropy of the turbulent motion at small
scales. The physical model behind the Kolmogorov theory is the vortex
cascado illustrated in Fig. 11.2. Big vortices with scales L (corresponds to
the wave numbers �=L in the Fourier space) break up to small ones, which
in turn split into even smaller and so on up to the smalles vortices with the
scale �. One of the most important vortex break up mechanisms is the vortex
reconnection described above. The energy is transferred from big vortices to
small ones almost without the loss. The massive dissipation " takes place
at small vortices referred to as the dissipative or the Kolmogorov vortices.
The real turbulent vortices are similar to these calculated by Isazawa et
al. (Fig. 11.3). Vortices are displayed at three different time instants. The
upper pictures are obtained from the lower ones by filtering out the hight
frequencies. As seen big vortices are revealed in low frequency simulation.
If the resolution is increased, more and more small scale vortex filaments
appears on the place of big smooth vortices. Thus, the most important
physical processes during the vortex break up are:

� Transfer energy from large scales to small ones and

� Dissipation of the energy in small vortices.
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Figure 11.1: Andrey Kolmogorov was a mathematician, preeminent in the
20th century, who advanced various scientific fields (among them probabil-
ity theory, topology, intuitionistic logic, turbulence, classical mechanics and
computational complexity).

Figure 11.2: Illustration of the vortex cascado.
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20th century, who advanced various scientific fields (among them probabil-
ity theory, topology, intuitionistic logic, turbulence, classical mechanics and
computational complexity).

Figure 11.2: Illustration of the vortex cascado.
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Figure 11.3: Turbulent vortices revealed in DNS calculations performed by
Isazawa et al. (2007).

11.2 Dissipation rate

Two parameters, which are of importance during the cascado process, are
the kinematic viscosity � and the dissipation rate ". The energy dissipation
rate per unit mass of a turbulent fluid is given by

" D
�

2

X
i;j

�@u0
i

@xj

C
@u0

j

@xi

�2
D 2�sij sij (11.1)

where sij D
1
2
.

@u0
i

@xj
C

@u0
j

@xi
/ is the fluctuating rate of strain:

sij D Sij � S ij D
1

2
.
@ui

@xj

C
@uj

@xi

/ �
1

2
.
@ui

@xj

C
@uj

@xi

/ (11.2)

The dissipation " is a random function of the coordinates and time, which
fluctuates together with the field u.x; t /. In what follows we consider the
mean dissipation rate " designating it as ". The energy dissipated by the
small vortices is generated by large scale vortices. The energy production is
defined as

P D u0
iu

0
j

@ui

@xj

(11.3)

Based on the dimension analysis, Prandtl and Kolmogorov proposed the
estimation of the integral length of the turbulent flow
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Figure 11.3: Turbulent vortices revealed in DNS calculations performed by
Isazawa et al. (2007).

11.2 Dissipation rate

Two parameters, which are of importance during the cascado process, are
the kinematic viscosity � and the dissipation rate ". The energy dissipation
rate per unit mass of a turbulent fluid is given by
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The dissipation " is a random function of the coordinates and time, which
fluctuates together with the field u.x; t /. In what follows we consider the
mean dissipation rate " designating it as ". The energy dissipated by the
small vortices is generated by large scale vortices. The energy production is
defined as

P D u0
iu

0
j

@ui

@xj

(11.3)

Based on the dimension analysis, Prandtl and Kolmogorov proposed the
estimation of the integral length of the turbulent flow

117L �
k3=2

"
(11.4)

The formula (11.4) is valid for very high Reynolds numbers for the turbulence
being in the equilibrium, i.e. the production of the turbulence is compensated
by its dissipation, i.e. P D ".

11.3 Kolmogorov hypotheses

The basis of the Kolmogorov theory are three hypotheses, which are supposed
to be valid for high Reynolds numbers Ret D

vL
�
, where v D

p
TKE D

p
k

is the characteristic fluctuation velocity.

The Kolmogorov hypothesis of local isotropy reads:

At sufficiently high Reynolds number Ret , the small-scale turbulent motions
(l � lEI ) are statistically isotropic

Here lEI is the lengthscale as the demarcation between the anisotropic large
eddies and the isotropic small eddies. Kolmogorov argued that all informa-
tion about the geometry of the large eddies - determined by the mean flow
field and boundary conditions - is also lost. Directional information at small
scales is lost. With the other words, the direction of the vorticity vector !

of small turbulent vortices is uniformly distributed over the sphere. As a
consequence, the statistics of the small-scale motions are in a sense universal
- similar in every high-Reynolds-number turbulent flow (see [14]).

The Kolmogorov first similarity hypothesis reads:

In every turbulent flow at sufficiently high Reynolds number Ret , the statistics
of the small-scale motions (l < lEI ) have a universal form that is uniquely
determined by � and ".

For this range of scales we can introduce characteristic size �, characteristic
velocity u� and characteristic time �� which depend only on two parameters
� and ":

� D �˛�"ˇ� ; u� D �˛u"ˇu; �� D �˛� "ˇ� (11.5)

The analysis of dimension allows one to derive the following dependences:
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L �
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"
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� D

�
�3

"

�1=4

;

u� D .�"/1=4;

�� D .�="/1=2

(11.6)

Here � is the scale of the smallest dissipative vortices ( Kolmogorov scale),
u� is the characteristic velocity of turning of Kolmogorov vortices,
�� is characteristic turn over time of Kolmogorov vortices.
Using expressions

" �
k3=2

L
u � k1=2 (11.7)

some useful estimations can be derived from (11.6):

�=L � .Ret/
�3=4;

u�=u D .Ret/
�1=4;

��=T D .Ret/
�1=2

(11.8)

Very remarkable is the first formula defining the ratio between the smallest
and largest vortices in the flow. If L is, say one meter, and the fluctua-
tion 1m=s, the turbulent Reynolds number in water is Ret D 106. The
Kolmogorov scale is in this case 32000 as less as the flow macroscale L. Es-
timations of the Kolmogorov scale in the jet mixer with nozzle diameter of
d D 1cm and closing pipe of D D 5cm diameter is shown in Fig. 11.4.

The Kolmogorov second similarity hypothesis reads:

In every turbulent flow at sufficiently high Reynolds number, the statistics of
the motions of scale l in the range L � l � � have a universal form that is
uniquely determined by ", independent of �.

This range is called as the inertial subrange. Since the vortices of this range
are much larger than Kolmogorov vortices, we can assume that their Reynolds
numbers lul=� are large and their motion is little affected by the viscosity.
The energy density depends on the wave number k and the dissipation rate
"

E.k/ D "˛kˇ (11.9)
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and largest vortices in the flow. If L is, say one meter, and the fluctua-
tion 1m=s, the turbulent Reynolds number in water is Ret D 106. The
Kolmogorov scale is in this case 32000 as less as the flow macroscale L. Es-
timations of the Kolmogorov scale in the jet mixer with nozzle diameter of
d D 1cm and closing pipe of D D 5cm diameter is shown in Fig. 11.4.

The Kolmogorov second similarity hypothesis reads:

In every turbulent flow at sufficiently high Reynolds number, the statistics of
the motions of scale l in the range L � l � � have a universal form that is
uniquely determined by ", independent of �.

This range is called as the inertial subrange. Since the vortices of this range
are much larger than Kolmogorov vortices, we can assume that their Reynolds
numbers lul=� are large and their motion is little affected by the viscosity.
The energy density depends on the wave number k and the dissipation rate
"

E.k/ D "˛kˇ (11.9)
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Figure 11.4: Distribution of the Kolmogorov scale along the centerline of
the jet mixer and free jet. The dissipation rate " is calculated from the
k � " model and the experimental estimatin of Miller and Dimotakis (1991)
" D 48.U 3

d
=d/..x � x0/=d/�4.

The analysis of dimension leads to the Kolmogorov law

E.k/ D ˛"2=3k�5=3 (11.10)

where ˛ � 1:5 is the constant.

11.4 Three different scale ranges of turbulent

flow

Three different ranges can be distinguished in the spectrum of scales in the
full developed turbulence at high Reynolds numbers Ret (Fig.11.5):

� Energy containing range at l > lEI (according to Pope [14], lEI �
1
6
L).

Within this range the kinetic energy of turbulence is generated and big
turbulent eddies are created.

� Inertial subrange at lDI < l < lEI (according to Pope [14], lDI � 60�).
Within this subrange the energy is transferred along the scales towards
dissipative vortices without any significant loss, i.e. " � 0. The energy
density obeys the Kolmogorov law (11.10).

� Dissipation range l < lDI . The dissipation of the energy of big vortices
occurs within the dissipation range.

120

Figure 11.4: Distribution of  the Kolmogrov scale along the centerline of  the jet mixer 
and free jet [47]. The dissipation rate ε is calculated from the k – ε model and the 
experimental estimation of  the Miller and Dimotakis (1991) ε = 48(U  3d/d  )((x – x0)/d  )–4.
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Figure 11.4: Distribution of the Kolmogorov scale along the centerline of
the jet mixer and free jet. The dissipation rate " is calculated from the
k � " model and the experimental estimatin of Miller and Dimotakis (1991)
" D 48.U 3

d
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The analysis of dimension leads to the Kolmogorov law

E.k/ D ˛"2=3k�5=3 (11.10)

where ˛ � 1:5 is the constant.

11.4 Three different scale ranges of turbulent

flow

Three different ranges can be distinguished in the spectrum of scales in the
full developed turbulence at high Reynolds numbers Ret (Fig.11.5):

� Energy containing range at l > lEI (according to Pope [14], lEI �
1
6
L).

Within this range the kinetic energy of turbulence is generated and big
turbulent eddies are created.

� Inertial subrange at lDI < l < lEI (according to Pope [14], lDI � 60�).
Within this subrange the energy is transferred along the scales towards
dissipative vortices without any significant loss, i.e. " � 0. The energy
density obeys the Kolmogorov law (11.10).

� Dissipation range l < lDI . The dissipation of the energy of big vortices
occurs within the dissipation range.

120The inertial subrange and dissipation range belong to the universal equilib-
rium range. Three corresponding ranges can be distinguished in the distribu-
tion of the energy density over the wave numbers k Fig. 11.6. The presence
of the inertial and dissipation subranges was confirmed in numerous exper-
imental measurements performed after development of the K41 theory (see
Fig. 11.7, 11.8).

Figure 11.5: Three typical scale ranges in the turbulent flow at high Reynolds
numbers.

Figure 11.6: Three typical ranges of the energy density spectrum in the
turbulent flow at high Reynolds number. 1- energy containing range, 2-
inertial subrange, 3- dissipation range.
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Fig. 11.7, 11.8).
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Figure 11.6: Three typical ranges of the energy density spectrum in the
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inertial subrange, 3- dissipation range.
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Figure 11.7: Experimental confirmation of the Kolmogorov law. The com-
pensated energy spectrum for different flows.
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Figure 11.8: Experimental confirmation of the Kolmogorov law for the con-
centration fluctuations in the jet mixer. Measurements of the LTT Rostock.

11.5 Classification of methods for calculation

of turbulent flows.

The energy spectrum Fig. 11.6 is used to classify three main methods of tur-
bulent flows modelling (Fig. 11.9). The most general strategy is the Direct
Numerical Simulation (DNS). Within the DNS the whole spectrum of tur-
bulent structures is modelled starting from the biggest vortices of the energy
containing range till the smallest dissipative Kolmogorov vortices. The Large
Eddy Simulation (LES) models the energy containing vortices and a fraction
of vortices corresponding to the inertial subrange. The effect of remain-
ing vortices is considered using different approximation models. Since small
vortices are universal, the models are also supposed to be universal. The
Reynolds averaged Navier Stokes (RANS) models are dealing with the large
vortices corresponding to the energy containing range. The effect of other
vortices is taken by different semi- empiric models which are not universal.

11.6 Limitation of K-41. Kolmogorov theory

K-62

The strongest and simultaneously the most questionable assumption of the
Kolmogorov-41 is: Dissipation rate is an universal constant for each turbulent
flow. Already in 1942, during a scientific seminar the Nobel price laureate
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Figure 11.8: Experimental confirmation of the Kolmogorov law for the con-
centration fluctuations in the jet mixer. Measurements of the LTT Rostock.
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Numerical Simulation (DNS). Within the DNS the whole spectrum of tur-
bulent structures is modelled starting from the biggest vortices of the energy
containing range till the smallest dissipative Kolmogorov vortices. The Large
Eddy Simulation (LES) models the energy containing vortices and a fraction
of vortices corresponding to the inertial subrange. The effect of remain-
ing vortices is considered using different approximation models. Since small
vortices are universal, the models are also supposed to be universal. The
Reynolds averaged Navier Stokes (RANS) models are dealing with the large
vortices corresponding to the energy containing range. The effect of other
vortices is taken by different semi- empiric models which are not universal.
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The strongest and simultaneously the most questionable assumption of the
Kolmogorov-41 is: Dissipation rate is an universal constant for each turbulent
flow. Already in 1942, during a scientific seminar the Nobel price laureate
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Figure 11.9: Three main methods of turbulent flows modelling.

Figure 11.10: Vortex structures resolved by different models.

Landau noted, that the dissipation rate is a stochastic function, it is not
constant. We consider the consequences of the neglect of this fact.
According to the Kolmogorov - Obukhov law the structure function of the
q-th order

Sq.l/ D h.u2l � u1l/
q
i (11.11)

has the following asymptotic behaviour at small l

Sq.l/ � ."l/q
� .l/�q (11.12)

Fig. 11.11 shows that the predictions of Kolmogorov and Obukhov deviate
from measurement data. The reason of the discrepancy is the physical phe-
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Figure 11.9: Three main methods of turbulent flows modelling.

Figure 11.10: Vortex structures resolved by different models.
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nomenon called the intermittency. The intermittency is caused by the pres-
ence of laminar spots in every turbulent flows even at very high Reynolds
numbers.

Figure 11.11: Power of the structure function. Experiments versus prediction
of Kolmogorov and Obukhov.

After the deviation between the K-41 and measurement was documented,
Kolmogorov tried to improve his theory. New Kolmogorov theory called as
K-62 was published in 1962.
New theory is based on two following assumptions:

� Assumption 1:

Sq.l/ D< ı�
q

l
>�< "

q=3

l
> lq=3;

�q D
q

3
C �q=3 < "

q

l
>� l�q

(11.13)

� Assumption 2:

P."l/ D ce
.ln"�a/2

2�
l2 a D ln N" 
2

l D A C �ln.L=l/

�q D
�

2
q.1 � q/ &q D

q

3
C

�

18
q.3 � q/ < "2

l >� l��
(11.14)

Unfortunately, various experiments showed later that the second assumption
is proved to be wrong.

11.6.1 Exercises

Exercise 1. Calculate the Reynolds averaged values of the time dependent
signals

u.t/ D cos2 t;

125u.t/ D sin t;

u.t/ D

�
1 � t; t � 1;

0; t > 1:

Solution:

u.t/ D
1

2
;

u.t/ D 0;

u.t/ D 0:

Exercise 2. Find the Reynolds stresses for the isotropic turbulence.
0
@

2 r12 r13

r21 r22 r23

r31 r32 r33

1
A

Solution: 0
@

2 0 0

0 2 0

0 0 2

1
A

Exercise 3. Calculate the turbulent kinetic energy of the isotropic turbu-
lence, if r33 D 1

Solution:
k D 3=2

Exercise 4. Relation between longitudinal autocorrelation function

f .r/ D
ul.x/ul.x C r/

u2
l
.x/

and energy density E.k/is given by formula [13]

f .r/ D
2

u2
l

1Z

0

E.k/k�2r�2.
sin kr

kr
� cos kr/dk (11.15)

Energy density of the isotropic decaying turbulence is described as E.k/ D

k4ExpŒ�k2�. Calculate
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A

Exercise 3. Calculate the turbulent kinetic energy of the isotropic turbu-
lence, if r33 D 1

Solution:
k D 3=2

Exercise 4. Relation between longitudinal autocorrelation function

f .r/ D
ul.x/ul.x C r/

u2
l
.x/

and energy density E.k/is given by formula [13]

f .r/ D
2

u2
l

1Z

0

E.k/k�2r�2.
sin kr

kr
� cos kr/dk (11.15)

Energy density of the isotropic decaying turbulence is described as E.k/ D

k4ExpŒ�k2�. Calculate

126� longitudinal autocorrelation function f ,

� integral length and

� Taylor microscale

for the isotropic decaying turbulence.
Solution:

f .r/ D
2

u2
l

1Z

0

E.k/k�2r�2.
sin kr

kr
� cos kr/dk D (11.16)

D
2

u2
l

1Z

0

ExpŒ�k2�k2r�2.
sin kr

kr
� cos kr/dk D

1

4

p
�ExpŒ�r2=4�

L D

1Z

0

f .r/dr D
�

4


 D
4

�1=4

Exercise 5. Calculate the probability density function of the time depen-
dent signal

time 0 1 2 3 4 5 6 7
signal 0 0.1 0.9 0.5 0.7 0.5 0.05 0.65

time 8 9 10 11 12 13 14
signal 0.2 0.78 0.43 0.98 0.67 0.92 0.55

using the increment 0.2.

Solution:

signal 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
p.d.f. 3/15 2/15 3/15 4/15 3/15

Exercise 6. The velocity u was measured at N points across the pipe: uk
i ,

where i D 1; N and k D 1; K is the time step number. Write a program to
calculate the autocorrelation function of u with respect to point N=2.
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� longitudinal autocorrelation function f ,

� integral length and

� Taylor microscale

for the isotropic decaying turbulence.
Solution:

f .r/ D
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u2
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1Z
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kr
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D
2

u2
l

1Z

0
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kr
� cos kr/dk D

1

4

p
�ExpŒ�r2=4�

L D

1Z

0

f .r/dr D
�

4


 D
4

�1=4
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Solution:

u
k;0
i D uk

i � ui

ui D
1

K

KX
kD1

uk
i

R.i; N=2/ D

KP
kD1

u
k;0
i u

k;0

N=2

KP
kD1

u
k;02

N=2
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Chapter 12

Reynolds Averaged Navier
Stokes Equation (RANS)

According to the Reynolds averaging each fluctuating quantity is represented
as the sum of the averaged value and its fluctuation:

ux D Nux C u0
xI uy D Nuy C u0

yI uz D Nuz C u0
z (12.1)

where the averaged part is defined as:

Nux D
1

T

TZ

0

uxdt I Nuy D
1

T

TZ

0

uydt I Nuz D
1

T

TZ

0

uzdt (12.2)

The Reynolds averaging has the following properties:

� averaged fluctuation is zero:

Nf 0 D 0 (12.3)

� double averaged quantity is equal to once averaged one:

NNf D Nf (12.4)

� averaged sum is equal to the sum of averaged:

f C g D Nf C Ng (12.5)

� operators of averaging and differentiation commutate:

@f

@t
D

@ Nf

@t
;

@f

@x
D

@ Nf

@x
(12.6)
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Chapter 12

Reynolds Averaged Navier
Stokes Equation (RANS)

According to the Reynolds averaging each fluctuating quantity is represented
as the sum of the averaged value and its fluctuation:
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0
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The Reynolds averaging has the following properties:

� averaged fluctuation is zero:

Nf 0 D 0 (12.3)

� double averaged quantity is equal to once averaged one:

NNf D Nf (12.4)

� averaged sum is equal to the sum of averaged:
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� operators of averaging and differentiation commutate:
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D

@ Nf

@t
;

@f

@x
D

@ Nf

@x
(12.6)

129
� averaged product of two fluctuating quantities is not zero:

f 0g0 ¤ 0; Nf g D Nf Ng (12.7)

� averaged product of any averaged quantity and fluctuation is zero:

Nf g0 D Nf Ng0 D 0 (12.8)

The starting point of the derivation of the RANS equation is the original
Navier Stokes (NS) equation:

@ui

@t
C uj

@ui

@xj

D Fi C
1

�

@�j i

@xj

(12.9)

Here we use the summation convention of Einstein:

uj

@ui

@xj

D u1

@ui

@x1

C u2

@ui

@x2

C u3

@ui

@x3

(12.10)

The NS equation is supplied with the continuity equation, which for the case
of incompressible flow takes the form:

@ui

@xi

D
@u1

@x1

C
@u2

@x2

C
@u3

@x3

D 0 (12.11)

Using the continuity equation the convective term is written in the conser-
vative form:

uj

@ui

@xj

D uj

@ui

@xj

C ui

@uj

@xj

D
@.uiuj /

@xj

(12.12)

With (12.12) the NS equation reads

@ui

@t
C

@.uiuj /

@xj

D Fi C
1

�

@�j i

@xj

(12.13)

This equation is valid for fluctuating quantities represented in Reynolds
form (12.1)

@. Nui C u0
i/

@t
C

@. Nui C u0
i/. Nuj C u0

j /

@xj

D NFi C F 0
C

1

�

@. N�j i C � 0
j i/

@xj

(12.14)

Both r.h.s. and l.h.s. are averaged:
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� averaged product of two fluctuating quantities is not zero:
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Navier Stokes (NS) equation:

@ui

@t
C uj

@ui

@xj

D Fi C
1

�
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@ui

@xi

D
@u1

@x1

C
@u2

@x2

C
@u3

@x3

D 0 (12.11)

Using the continuity equation the convective term is written in the conser-
vative form:

uj

@ui

@xj

D uj

@ui

@xj

C ui

@uj

@xj

D
@.uiuj /

@xj

(12.12)

With (12.12) the NS equation reads

@ui

@t
C

@.uiuj /

@xj

D Fi C
1

�

@�j i

@xj

(12.13)

This equation is valid for fluctuating quantities represented in Reynolds
form (12.1)

@. Nui C u0
i/

@t
C

@. Nui C u0
i/. Nuj C u0

j /

@xj

D NFi C F 0
C

1

�

@. N�j i C � 0
j i/

@xj

(12.14)

Both r.h.s. and l.h.s. are averaged:

130@. Nui C u0
i/

@t
C

@. Nui C u0
i/. Nuj C u0

j /

@xj

D NFi C F 0 C
1

�

@. N�j i C � 0
j i/

@xj

(12.15)

Utilization of Reynolds averaging properties results in:

@ Nui

@t
C

@. Nui Nuj C u0
iu

0
j /

@xj

D NFi C
1

�

@ N�j i

@xj

(12.16)

Writing the term u0
iu

0
j on the r.h.s we obtain the Reynolds averaged Navier

Stokes equation (RANS). Its unsteady version is called as the unsteady
Reynolds averaged NS equation (URANS):

�
@ Nui

@t
C �

@ Nui Nuj

@xj

D � NFi C
@

@xj

. N�j i � %u0
iu

0
j / (12.17)

There are two important features of URANS in comparison with NS:

� The URANS is written for the averaged quantities, whereas the NS for
instantaneous ones,

� The URANS has additional term on the r.h.s. �%u0
iu

0
j which is called

the Reynolds stress Rij .

Generally the Reynolds stress is the matrix with nine terms:

Rij

ˇ̌
ˇ̌
ˇ̌
��u0

xu0
x ��u0

xu0
y ��u0

xu0
z

��u0
xu0

y ��u0
yu0

y ��u0
yu0

z

��u0
xu0

z ��u0
yu0

z ��u0
zu0

z

ˇ̌
ˇ̌
ˇ̌ (12.18)

Due to symmetry condtitions the number of unknown stresses is six. The
term �%u0

iu
0
j is called the stress since it has the same appearance in NS

equation as the laminar stress:

�j i D ��

�
@ui

@xj

C
@uj

@xi

�
� pıij (12.19)

Laminar stress appears due to viscosity effects whereas the Reynolds stress
is caused by flow fluctuations. Now the system of four fluid equations (three
URANS+ continuity) has ten unknowns: three averaged velocity compo-
nents Nui , averaged pressure Np and six Reynolds stresses. The system of
fluid dynamics is not closed. Additional relations are necessary to express
the Reynolds stresses through the velocities and pressure. This problem of
determination of Reynolds stresses is called as the closure problem of the
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Utilization of Reynolds averaging properties results in:
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Writing the term u0
iu

0
j on the r.h.s we obtain the Reynolds averaged Navier

Stokes equation (RANS). Its unsteady version is called as the unsteady
Reynolds averaged NS equation (URANS):
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There are two important features of URANS in comparison with NS:

� The URANS is written for the averaged quantities, whereas the NS for
instantaneous ones,

� The URANS has additional term on the r.h.s. �%u0
iu

0
j which is called

the Reynolds stress Rij .

Generally the Reynolds stress is the matrix with nine terms:
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Due to symmetry condtitions the number of unknown stresses is six. The
term �%u0
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0
j is called the stress since it has the same appearance in NS
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turbulence. A huge amounts of closure models was developed within the
framework of URANS methodology. As said above the URANS methods
models the biggest vortices of the flow. The resting scales, which are filtered
by the Reynolds avergaing out, are big enough and not universal. This is
the reason why the URANS models are not universal. Most of them are of
semi empirical character. They are based on submodels with few constants
selected for simple canonical flows. Non universality of closure models is the
biggest weakness of URANS turbulence modelling.
The majority of URANS models used in engineering are based on the Boussi-
nesq hypothesis which is the formal extension of the Newton hypothesis to
turbulent flows. Boussinesq proposed to express the Reynolds stress through

the strain rate tensor Sij D
1
2

�
@ Nuj

@xi
C

@ Nui

@xj

�
in the form of the Newton hy-

pothesis with the only difference that instead of the kinematic viscosity � the
turbulent viscosity �t is used

��u0
iu

0
j D ��t

�
@ Nuj

@xi

C
@ Nui

@xj

�
�

2

3
�ıij k (12.20)

In the simplest form for flow along the plate with ux.y/ and uy D uz D 0

the formula (12.20) reads

��u0
xu0

y D ��t

d Nux

dy
(12.21)

The last term in (12.20) is introduced to keep the consistency. Indeed the
sum of three diagonal terms of the Reynolds matrix is equal to the turbulent
kinetic energy k D

1
2
u0

iu
0
i . Without this term the sum of r.h.s of (12.20)

would result in the sum of the diagonal terms of the strain rate matrix
S11 C S22 C S33 which is zero due to the continuity equation. It would
be wrong result because k ¤ 0. The turbulent closures (12.20) are referred
to as the isotropic because the coefficient �t is equal for all matrix elements
Rij .
While the kinematic viscosity depends on the liquid, the turbulent kinematic
viscosity depends on the turbulent state of the flow. According to estimation
of Landau the ratio of the turbulent kinematic viscosity to the kinematic one
is proportional to the ratio of the Reynolds number to that corresponding to
the transition for this type of flow

�t=� � Re=Recrit (12.22)

The URANS closure models are subdivided into algebraic and differential
ones. The most prominent model amount the algebraic models is the Prandtl
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S11 C S22 C S33 which is zero due to the continuity equation. It would
be wrong result because k ¤ 0. The turbulent closures (12.20) are referred
to as the isotropic because the coefficient �t is equal for all matrix elements
Rij .
While the kinematic viscosity depends on the liquid, the turbulent kinematic
viscosity depends on the turbulent state of the flow. According to estimation
of Landau the ratio of the turbulent kinematic viscosity to the kinematic one
is proportional to the ratio of the Reynolds number to that corresponding to
the transition for this type of flow

�t=� � Re=Recrit (12.22)

The URANS closure models are subdivided into algebraic and differential
ones. The most prominent model amount the algebraic models is the Prandtl
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model described above. The disadvantages of the algebraic models are:

� they are good only for the simplest flow,

� not suitable for 3D flows,

� not suitable for separation flows,

� turbulent viscosity depends on averaged values of velocities,

� do not consider the flow history.

These disadvantages can be overcome using differential models which are
subdividided into one, two and multi equation models. One and two equa-
tion models are usually isotropic based on the Boussinesq approach (12.20).
Among the one equation models the most modern and efficient is the model
of Spalart Allmares (SA model) written for the modified kinematic turbulent
viscosity �. The equation for � reads

@�

@t
C Nuj

@�

@xj

D Cb1�� � Cw1fw

�
�

d

�2

C
1

�

@

@xk

�
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@xk

�
C

Cb2

�

d�

dxk

d�

dxk

(12.23)
where

Cb1 D 0; 1355; Cb2 D 0; 622; C�1 D 7; 1; � D 2=3;

Cw1 D
Cb1

k2
C

1 C Cb2

�
; Cw2 D 0; 3; Cw3 D 2; 0; k D 0; 41

(12.24)
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�3 C C 3
�1

; f�2 D
�

1 C �f�1

; fw D g

�
1 C C 6

w3

g6 C C 6
w3

�1=6

;

� D ��; g D r C Cw2.r6
� r/; r D

�

�k2d 2

(12.25)

� D S C
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k2d 2
f�2; S D

p
2˝ij ˝ij ; ˝ij D

1

2

�
@ Nui

@xj

�
@ Nuj

@xi

�
(12.26)

Within the more advanced k � " model the turbulent kinetic energy and the
dissipation rate are calculated from the transport equations:
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dissipation rate are calculated from the transport equations:

133
@k

@t
C Nuj

@k

@xj

D
@

@xj

��
� C

�t

�k

�
@k

@xj

�
C �ij

@ Nui

@xj

� "

@"

@t
C Nuj

@"

@xj

D
@

@xj

��
� C

�t

�"

�
@"

@xj

�
C

C"1"

k
�ij

@ Nui

@xj

�
C"2"2

k

9>>>=
>>>;

(12.27)

If k and " are known the turbulent viscosity �t can be found from the di-
mension analysis, applied to the dissipation rate

" � k3=2=L (12.28)

turbulent kinematic viscosity

�t D C�

p
kL (12.29)

Here C� D 0:09 is the empirical constant. Substitution of (12.28) into (12.29)
leads to the sought relation:

�t D C�

p
kL D C�

k2

"
(12.30)

If �t is known, the Reynolds stresses can be determined from the Boussinesq
approach (12.20).
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Chapter 13

Reynolds Stress Model (RSM)

13.1 Derivation of the RSM Equations

13.1.1 Step 1

The k � th Navier-Stokes equation
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is multiplied with the velocity component ui
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The i � th equation is multiplied with k � th velocity component:
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Resulting equations (13.2) and (13.3) are then sumed:
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(13.4)

Substitution of Reynolds decomposition

ui D Nui C u0
i ; p D Np C p0; �j i D N�j i C � 0

j i (13.5)

into the equation (13.4) results in
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13.1.2 Step 2

The k � th Reynolds averaged Navier Stokes equation
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is multiplied with the i � th component of averaged velocity
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Again the i � th Reynolds averaged Navier Stokes equation is multiplied with
the k � th component of averaged velocity
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The sum of two last equations reads
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13.1.3 Step 3

Subtracting the last equation from (13.6) results in
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The i � th equation is multiplied with k � th velocity component:
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(13.3)

Resulting equations (13.2) and (13.3) are then sumed:
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Substitution of Reynolds decomposition

ui D Nui C u0
i ; p D Np C p0; �j i D N�j i C � 0

j i (13.5)

into the equation (13.4) results in
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13.1.2 Step 2

The k � th Reynolds averaged Navier Stokes equation
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is multiplied with the i � th component of averaged velocity
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Again the i � th Reynolds averaged Navier Stokes equation is multiplied with
the k � th component of averaged velocity
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The sum of two last equations reads
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13.1.3 Step 3

Subtracting the last equation from (13.6) results in
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we get the Reynolds stress model equation
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which can be written in a compact form
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The physical meaning of terms on the r.h.s is as follows
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Using identities (please prove them)
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13.1.4 Analysis of terms

The diffusion of energy
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is due to

� molecular diffusion, described by the term:

�
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k
/
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(13.20)

� turbulent diffusion, described by the term:

�u0
iu

0
j u0

k
(13.21)

� turbulent diffusion caused by correlation between pressure and velocity
fluctuations

1

�
.ıjku0

i C ıij u0
k
/p0 (13.22)

The two last terms are unclosed. Here we face with the famous problem noted
first by Friedman and Keller (1924): Effort to derive the equations for the

second order moments u0
iu

0
k
results in the necessity of determination of new

unclosed terms including third order moments u0
iu

0
j u0

k
. Using the method

proposed by Friedman and Keller in 1924 it is possible to derive equations
for moments of arbitrary order. However, the equation for the m � th order
will contain unclosed moments of the m C 1 � th order. Impossibility of
obtaining of a closed system of equations for a finite number of moments,
known as the Friedman-Keller problem is a direct consequence of the nonlin-
earity of the Navier Stokes equations.

The also unclosed term

Rik D
1

�

�
@u0

i

@xk

C
@u0

k

@xi

�
p0 (13.23)

describes the redistribution of the energy between different tensor compo-
nents u0

iu
0
k
caused by correlation between the stresses and pressure fluctua-

tions.
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The term

Pik D �u0
j u0
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� u0
j u0

i

@ Nuk

@xj

(13.24)

is responsible for the energy generation, i.e. the transport of the energy
transfer from averaged (mean) flow to oscillating flow (fluctuations). And,
finally,

"ik D 2�
@u0

i

@xj

@u0
k

@xj

(13.25)

is the dissipation. This unclosed term is responsible for the transformation
of the turbulent kinetic energy into the inner energy of the flow.
RSM model based on equations (13.14) is used to determine the Reynolds
stresses from the transport equations. It is not based on the Boussinesq
approach and takes the anisotropy of stresses into account. This model is
the best one among RANS models.
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Chapter 14

Equations of the k - " Model

14.1 Derivation of the k-Equation

According to definition

k D u0
k
u0

k
=2 (14.1)

Assuming i D k in the Reynolds stress model equations (13.14)

@

@t
.u0

iu
0
k
/ C Nuj

@

@xj

.u0
iu

0
k
/ D

@

@xj
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ans summing equations for k=1,2 and 3 we obtain the transport equations
for the total kinetic energy k:
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Dissipation ( Pseudodissipation) (14.6)

The relation between the true and pseudodissipation is
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For large Reynolds numbers the true dissipation and the pseudodissipation
are equal.

" � "S (14.8)

More precise analysis shows that

" � "S � Re�1
t (14.9)

where

Ret D
p

kL=� (14.10)

Two unknown terms in the diffusion
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are determined by the gradient assumption
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@k
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(14.12)

where �k is an empirical constant. Dissipation is determined by the energy
containing motion using the formula of Prandtl- Kolmogorov

"s D CDk3=2=L (14.13)

The Reynolds stresses are seeking in form proposed by Boussinesq:
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Substitution of all these approximations into the equation (14.3) results in
the k-Equation
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14.2 Derivation of the "-Equation

The Navier Stokes equation
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(14.16)

is differentiated and multiplied with the derivative
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and then it is averaged. The following identities are used in transformations:
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For large Reynolds numbers the true dissipation and the pseudodissipation
are equal.
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More precise analysis shows that
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Two unknown terms in the diffusion
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are determined by the gradient assumption
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where �k is an empirical constant. Dissipation is determined by the energy
containing motion using the formula of Prandtl- Kolmogorov
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The Reynolds stresses are seeking in form proposed by Boussinesq:
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Substitution of all these approximations into the equation (14.3) results in
the k-Equation
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14.2 Derivation of the "-Equation

The Navier Stokes equation
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is differentiated and multiplied with the derivative
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and then it is averaged. The following identities are used in transformations:
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This gives:
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The terms on the r.h.s. were approximated according to the following for-
mula:
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Constants are taken from planar jet and mixing layer:

C"1 D 1:44; C"2 D 1:92; �k D 1; �" D 1:3 (14.31)

Hereby the full closed system of the k � " model reads:
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Under assumption that the generation of the turbulent energy equals to the
its dissipation (the turbulence is in equilibrium, turbulent scales are in the
inertial range) Kolmogorov and Prandtl derived the relation between the
kinetic energy, the dissipation rate and the integral lengths L:
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(14.33)

From the dimension analysis
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p
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follows
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(14.35)

As soon as k and " are known the turbulent kinematic viscosity �t is com-
puted from (14.35) and Reynolds stresses can be calculated from the Boussi-
nesq hypothesis and then substituted into the Reynolds averaged Navier
Stokes equations. The problem is mathematically closed.

The k � " model is the classical approach, which is very accurate at large Re
numbers. At small Re number, for instance close to the wall, the approxima-
tions used in derivation of k � " model equations are not valid. To overcome
this disadvantage various low Reynolds k � " models were proposed.
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Constants are taken from planar jet and mixing layer:

C"1 D 1:44; C"2 D 1:92; �k D 1; �" D 1:3 (14.31)
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Under assumption that the generation of the turbulent energy equals to the
its dissipation (the turbulence is in equilibrium, turbulent scales are in the
inertial range) Kolmogorov and Prandtl derived the relation between the
kinetic energy, the dissipation rate and the integral lengths L:
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From the dimension analysis
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As soon as k and " are known the turbulent kinematic viscosity �t is com-
puted from (14.35) and Reynolds stresses can be calculated from the Boussi-
nesq hypothesis and then substituted into the Reynolds averaged Navier
Stokes equations. The problem is mathematically closed.

The k � " model is the classical approach, which is very accurate at large Re
numbers. At small Re number, for instance close to the wall, the approxima-
tions used in derivation of k � " model equations are not valid. To overcome
this disadvantage various low Reynolds k � " models were proposed.

14514.3 Method of wall functions

Basic relations of k � " model were derived under assumption that the local
turbulent Reynolds number Ret D

p
kL=� is very high. This is not the case

in the wall flow. Due to damping effect of the wall, the velocity pulsations
and the turbulent kinetic energy are small. Application of the k � " model
is not valid. An efficient solution of this problem was proposed by Spalding
who developed the method of wall functions. The wall function is an ana-
lytical representation of the solution close to the wall which is matched with
the numerical solution far from the wall. Below we derive basic relations of
the wall function method following to the textbook [15].

It is assumed that the turbulence is in equilibrium, i.e. P D ":
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From analysis of dimension we obtain

�t D c�k1=2L (14.38)

Using the Kolmogorov-Prandtl estimation " � k3=2=L we get
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(14.39)

From (14.36) and (14.37) it follows

�t D l4=3
� "1=3

and

" D c3=4
� k3=2=l
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14.3 Method of wall functions

Basic relations of k � " model were derived under assumption that the local
turbulent Reynolds number Ret D

p
kL=� is very high. This is not the case

in the wall flow. Due to damping effect of the wall, the velocity pulsations
and the turbulent kinetic energy are small. Application of the k � " model
is not valid. An efficient solution of this problem was proposed by Spalding
who developed the method of wall functions. The wall function is an ana-
lytical representation of the solution close to the wall which is matched with
the numerical solution far from the wall. Below we derive basic relations of
the wall function method following to the textbook [15].
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Let yp be the ordinate of the first grid node near the wall.
Using approximation of Prandtl for l we obtain the dissipation rate at yp:
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Values "p (14.40) and �w (14.41) are used within finite volume method when
the k � " equations are written for the volumes adjacent to the wall. For
instance the generation term is calculated as
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From (14.36) and (14.39) we have:
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Values "p (14.40) and �w (14.41) are used within finite volume method when
the k � " equations are written for the volumes adjacent to the wall. For
instance the generation term is calculated as
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Chapter 15

Large Eddy Simulation (LES)

15.1 LES filtering

Within the LES all vortices are subdivided into large resolved vortices and
fine modelled subgrid vortices. The border between vortices should lie within
the inertial range. The separation of fine scale motions (small fine vortices)
from large ones is done using the spatial filtering. Let ' be any stochastic
function which is represented as the sum of filtered part and fluctuation:

' D Q' C '0

where the filtered part is defined as

Q'.Ex; t/ D

Z 1

�1

Z 1

�1

Z 1

�1

'.Ex � Es; t/F.Es/d Es

Here F(Es) is the filtering function, satisfying the condition

1Z

�1

1Z

�1

1Z

�1

F.Es/d Es D 1

Three different filtering functions shown in Fig. 1: ideal filter, Gauss filter
and top hat filter. Ideal filter is applied in Fourier space. High frequencies
are cut off. Low frequencies are simulated directly. The top hat filter is some
kind of smoothing applied in physical space. The simplest case is smoothing
over three neighboring points

Q'i D
1

b
.'i�1 C a'i C 'iC1/

where b D 2 C a.
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14915.1.1 Properties of filtering

The spatial filtering and Reynolds averaging are both filtering operations.
LES spatial filtering has properties which differ from these of Reynolds av-
eraging. First, the spatialy averaged quantity is not zero. Double filtering is
not equal once filtering:

e' 0
¤ 0; QQ' ¤ Q';

Both conditions are compatible because

e' 0
D A' � Q' D Q' � QQ' ¤ 0

Figure 15.1: Different filtering functions used in LES.

Other important properties are similar to these of RANS averaging:
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150� Averaged sum of two quantities is equal to the sum of averaged quan-
tities:

A' C g D Q' C Qg

� Filtering operator commutes with the differentiation operator, if filter-
ing is homogeneous:

f@'

@t
D

@ Q'

@t

e@'

@xj

D
@ Q'

@xj

A very important relation which is the consequence of these properties is

f'� D
f
Q' Q� C eQ'� 0

C
eQ�' 0

C e' 0� 0

In the case of Reynolds averaging only the first and the last terms remain.
The properties of large and small scale motions are shown in the table 15.1.

Large scale motion Small scale motion

Generated by mean flow Generated by large scale structures
Depends on the flow geometry Universal
Regular Stochastic
Deterministic description Stochastic description
Heterogeneous Homogeneous
Anisotrop Isotrop
Exists long time Exists short time
Diffusive Dissipative
Modelling is complicated Easy to model

Table 15.1: Properties of large and small scale motions

A very important conclusion from this table is the fact that the small scale
motion is universal. Therefore one can expect that the models describing the
small scale motion in contrast to RANS models are also universal.

15.2 LES equations

The governing equations of LES are derived from the Navier Stokes equation
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Application of the filter operation to (15.1) results in
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Averaged sum is equal to the sum of averaged terms:
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Introducing the term

�SGS
ij D euiuj � Qui Quj

the equation (15.2) is rewritten in the final form

@
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.� Qui/ C
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@xj

.� Qui Quj / D
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@xj

�
��

@ Qui

@xj

� ��SGS
ij

�
�

@ Qp

@xi

C �gi

The term �SGS
ij D euiuj � Qui Quj is the subgrid stress (SGS) which considers

the effect of small fine vortices on large scale motion directly resolved on the
grid.

15.3 Smagorinsky model

Note that the fine scale vortices are not resolved. They filtered out by the
filtering operation. The effect of these vortices is taken by the term �SGS

ij

into account. Since the small vortices are not modeled, the subgrid stress are
calculated using phenomenological models. The most recent phenomenolog-
ical model was proposed by Smagorinsky in 1963. The Smagorinsky model
is just the extension of the Boussinesq approach

�ij �
1

3
�kkıij � �2�t

NSij ;

Smagorinsky introduced the subgrid viscosity �SGS instead of the turbulent
kinematic viscosity

�SGS
ij �

1

3
�SGS

kk ıij � �2�SGS
QSij ;

Expression for the subgrid viscosity was obtained by Smagorinsky with the
use of idea taken from the Prandtl mixing length theory. According to

152

Prandtl, the turbulent kinematic viscosity is proportional to the mixing
length squared and the velocity gradient close to the wall

�t D l2
j
d Nux

dy
j

According to Smagorinsky, the subgrid viscosity is proportional to the mag-
nitude of the strain rate tensor Sij and to a certain length lS squared

�SGS D l2
S j QSij j; j QSij j D

q
2 QSij

QSij

Where

QSij D
1

2

�
@ Qui

@xj

C
@ Quj

@xi

�

The length lS is assumed to be proportional to the mesh size

lS D CS�

where CS is the constant of Smagorinsky.

The Smagorinsky constant was estimated first by Lilly. The main assumption
of the Lilly analysis is the balance between generation

Pr D ��ij
QSij D 2�t

QSij
QSij D �t j QSij j

2

and dissipation of the turbulent kinetic energy

" D NP D �t j QSij j2 D l2
S j QSij j3 (15.3)

Lilly estimated the strain rate tensor magnitude for Kolmogorov spectrum

QS2 � 7C "2=3��4=3

Substitution of the last formula into (15.3) results in:

lS D
�

.7C /3=4

�
QS2

3=2

QS3

�1=2

Assuming additionally that QS2
3=2

� QS3, the length lS and the Smagorinsky
constant are expressed through the Kolmogorov constant C D 1:5:

CS D
lS

�
D

1

.7C /3=4
� 0:17
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153The Smagorinsky constant 0:17 is derived analytically with a few strong
assumptions. The experience shows that numerical results agree with mea-
surements much better if a reduced value of the Smagorinsky constant is
used. Common values are 0:065 and 0:1.

Advantages and disdvantages of the Smagorinsky model are summarized in
the table 19.1.

Advantages Disadvantages
Simple Laminar flow is not modelled
Low computational costs Constant of Smagorinsky is constant in time and

space
Stable Actually, the constant is chosen arbitrarily

depending on the problem under consideration
Good accuracy in ideal Sensible to grid
conditions

Purely dissipativ
Damping of pulsation is too strong

Table 15.2: Advantages and disadvantages of the Smagorinsky model

We finish this section with a very important comment:

� the LES models are consistent when the resolution increases, i.e. � ! 0.

Indeed, if the resolution is increased, � ! 0, the SGS stresses disappear.
The LES equation is passed to the original Navier Stokes equations. The
LES simulation becomes the DNS simulation if � ! 0. On the contrary, the
URANS simulation is not consistent when � ! 0. The Reynolds stresses
don’t disappear if the resolution is increased � ! 0. The turbulence is then
twice resolved.

15.4 Model of Germano ( Dynamic Smagorin-

sky Model)

The classical model of Smagorinsky with the parameter CS being constant
for the whole computational domain is proved to be very diffusive. Germano
proposed to calculate the Smagorinsky constant CS being variable both in
space and in time, i.e. CS D CS.x; t /. The constant is determined using the
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dynamic procedure which is then referred to as the Dynamic Smagorinsky
Model (DSM).
According to the definition the subgrid stress is

�SGS
ij D euiuj � Qui Quj (15.4)

Germano introduces the double filtering or the test filtering designated as
�
u D OQu. Here the tilde symbol means the first filtering with filter width �

whereas the hat symbol stands for the second filtering with filter width ∼ 2�.
The symbol means the resulting double filtering. Using the definition (15.4)
we can write

T test
ij D

_
uiuj �

�
ui

�
uj D beuiuj � OQui

OQuj (15.5)

Filtration of (15.4) results in

O�SGS
ij D beuiuj � bQui Quj (15.6)

Subtracting (15.6) from (15.5) yields

T test
ij � O�SGS

ij D bQui Quj � OQui
OQuj (15.7)

We suppose that the double filter width is small. Therefore the Smagorinsky
model is valid for both stresses �SGS

ij and T test
ij :

�SGS
ij �

1

3
�SGS

kk ıij D �2
�
C �

s �
�2

j QSij j
�

QSij

�
D 2C mSGS

ij ;

T test
ij �

1

3
T test

kk ıij D �2
�
C �

s
O�
�2

j
OQSij j
� OQSij

�
D 2C mtest

ij ;

(15.8)

The application of the double filter to �SGS
ij gives:

O�SGS
ij �

1

3
O�SGS
kk ıij D 2C OmSGS

ij (15.9)

where C D C 2
S . Here we supposed that the filtered product of the constant

C with mij is equal to the product of filtered mij with the same constant

bC m � C Om

We introduce the tensor Lij which is equal to the difference between test
filter and once filtered original SGS stress:

Lij D T test
ij � O�SGS

ij D bQui Quj � OQui
OQuj (15.10)
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D 2C mtest

ij ;

(15.8)

The application of the double filter to �SGS
ij gives:

O�SGS
ij �

1

3
O�SGS
kk ıij D 2C OmSGS

ij (15.9)

where C D C 2
S . Here we supposed that the filtered product of the constant

C with mij is equal to the product of filtered mij with the same constant

bC m � C Om

We introduce the tensor Lij which is equal to the difference between test
filter and once filtered original SGS stress:

Lij D T test
ij � O�SGS

ij D bQui Quj � OQui
OQuj (15.10)

155Using this designation we get from (15.8) and (15.9)

2CMij D Lij �
1

3
Lkkıij (15.11)

where

Mij D mtest
ij � OmSGS

ij

The system (15.11) is overdefined (six equations for one unknown coefficient
C ). To get an unique solution we multiply both the l.h.s. and r.h.s of (15.11)
with the tensor Sij . The final result for C is

C D
Lij

QSij

2Mij
QSij

(15.12)

Use of (15.14) is problematic since the denumerator Mij
QSij can become zero.

To overcome this difficulty Lilly proposed to determine the constant from the
condition of the minimum residual of the equation (15.11):

Q D

�
Lij �

1

3
Lkkıij � 2CMij

�2

! min (15.13)

The minimum is attained at the point with zero derivative of the functional
Q on the parameter C :

@Q

@C
D �4Mij

�
Lij �

1

3
Lkkıij � 2CMij

�
D 0 (15.14)

It follows directly from (15.14):

C D
Mij Lij �

1
3
Lkkıij Mij

2Mij Mij

D
Mij Lij

2Mij Mij

(15.15)

since ıij Mij D 0. The solution (15.15) corresponds to the minimum of Q(C)
since the second derivative @2Q=@C 2 is positive at this point

@2Q

@C 2
D 8Mij Mij > 0 (15.16)

Theoretically the constant C can become negative. The case C < 0 and
�SGS can be considered as the energy backscattering. However, this leads
to strong numerical instability. That is why the dynamic constant is limited
from below:

C D max

�
Mij Lij

2Mij Mij

; 0

�
� 0 (15.17)
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The subgrid kinematic viscosity is always positive

�SGS D C�2
j QSij j � 0

15.5 Scale similarity models

Figure 15.2: Illustrations for derivation of the scale similarity model.

Despite the fact that diffusion of the classic Smagorinsky model was sub-
stantially reduced by the dynamic choice of the Smagorinsky constant, the
Dynamic Smagorinsky model remains very diffusive. This disadvantage was
overcome within the similarity models. The main point of the similarity
model is the assumption that the statistical properties of the once filtered
field Qui are identical to these of the double filtered field QQui . It is the case
if the filter width is small. The difference between once and double filtered
velocities is negligible, i.e. different scale motions are similar.

Let us consider Quj as the original (unfiltered) field. QQuj is the filtered field
and Quj � QQuj is the pulsation (see Fig. 15.2). Then from the definition of the
subgrid stress one obtains

�SGS
ij D eQui Quj � QQui

QQuj (15.18)

The formula (15.18) is the scale similarity model proposed by Bardina et
al. [16]. As seen the SGS stress can be calculated directly from the resolved
field Qui .
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The subgrid kinematic viscosity is always positive

�SGS D C�2
j QSij j � 0
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Figure 15.2: Illustrations for derivation of the scale similarity model.
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Dynamic Smagorinsky model remains very diffusive. This disadvantage was
overcome within the similarity models. The main point of the similarity
model is the assumption that the statistical properties of the once filtered
field Qui are identical to these of the double filtered field QQui . It is the case
if the filter width is small. The difference between once and double filtered
velocities is negligible, i.e. different scale motions are similar.

Let us consider Quj as the original (unfiltered) field. QQuj is the filtered field
and Quj � QQuj is the pulsation (see Fig. 15.2). Then from the definition of the
subgrid stress one obtains

�SGS
ij D eQui Quj � QQui

QQuj (15.18)

The formula (15.18) is the scale similarity model proposed by Bardina et
al. [16]. As seen the SGS stress can be calculated directly from the resolved
field Qui .

15715.6 Mixed similarity models

The experience shows that diffusion produced by the scale similarity mo-
del (15.18) is too low. The numerical calculations are often unstable using
this model. Taking the fact into account, that the diffusion of the Smagorin-
sky model is too high, it was decided to combine the Samgorinsky and scale
similarity models to get the proper diffusion. The advantages and disadvan-
tages of both models are summarized as follows

� Dynamic Smagorinsky Model (DSM): energy dissipation is overesti-
mated (drawback), energy backscattering is not reproduced (draw-
back),

� Scale similarity model: energy backscattering is reproduced (advan-
tage), energy dissipation is underestimated (drawback).

The idea combine models to strengthen the advantages and to overcome dis-
advantages of both models. The hybrid model called as the mixed similarity
model is written as

� r
ij D

�eQui Quj � QQui
QQuj

�
� 2

�
C �

S �
�2

j QS j QSij (15.19)

The mixed model can be derived in a more formal way. For that the velocity
decomposition into filtered and pulsation parts:

euiuj D e. Qui C u0
i/. Quj C u0

j / D eQui Quj C eu0
i Quj C eu0

j Qui C eu0
iu

0
j (15.20)

is substituted into the SGS stress expression:

�SGS
ij D euiuj � Qui Quj (15.21)

Finally we have Leonard’s formulation of the mixed model:

�SGS
ij D Lij C Cij C Rij (15.22)

where
Lij D eQui Quj � Qui Quj is the Leonard stress

Cij D eQuiu
0
j C eQuj u0

i is the Cross stress

Rij D eu0
iu

0
j is the Reynolds stress

The sum of the cross and Reynolds stresses is calculated via the Smagorinsky
model with the dynamically determined constant CS
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158Cij C Rij D �2
�
C �

S �
�2

j QS j QSij (15.23)

A substantial disadvantage of this formulation is the fact that the Leonard
stress does not satisfy the Galilean invariance condition. The Galilean in-
variance is the independence of basic formula of mechanics on the speed of
the reference system.

The classical definition of the SGS stresses possesses the Galilean invariance.
Indeed, let V be the speed of the reference system. The velocity relative to
the reference system is

EW D Eu C EV (15.24)

The SGS stress does not depend on the reference system speed:

AWiWj � QWi
QWj D

D G. Qui C Vi C u0
i/. Quj C Vj C u0

j / � G. Qui C Vi C u0
i/
G. Quj C Vj C u0

j / D

D e. Qui C u0
i/. Quj C u0

j / � C. Qui C u0
i/
C. Quj C u0

j / D euiuj � Qui Quj

(15.25)

On the contrary, the Leonard stress is not Galilean invariant:

AQWi
QWj � QWi

QWj D eQui Quj � Qui Quj � Vi
Qu0

j � Vj
Qu0

i (15.26)

Germano proposed an alternative formulation

�SGS
ij D L0

ij C C 0
ij C R0

ij (15.27)

where all stresses are Galilean invariant:

L0
ij D eQui Quj � QQui

QQuj is the Leonard stress

C 0
ij D eQuiu

0
j C eu0

i Quj � QQui
Qu0

j � Qu0
i
QQuj is the Cross stress

R0
ij D eu0

iu
0
j � Qu0

i
Qu0

j is the Reynolds stress

C 0
ij C R0

ij D �2
�
C �

S �
�2

j QS j QSij (15.28)

Exercise: Prove the following facts:
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Cij C Rij D �2
�
C �

S �
�2

j QS j QSij (15.23)

A substantial disadvantage of this formulation is the fact that the Leonard
stress does not satisfy the Galilean invariance condition. The Galilean in-
variance is the independence of basic formula of mechanics on the speed of
the reference system.

The classical definition of the SGS stresses possesses the Galilean invariance.
Indeed, let V be the speed of the reference system. The velocity relative to
the reference system is

EW D Eu C EV (15.24)

The SGS stress does not depend on the reference system speed:
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On the contrary, the Leonard stress is not Galilean invariant:
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i (15.26)

Germano proposed an alternative formulation
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ij (15.27)

where all stresses are Galilean invariant:

L0
ij D eQui Quj � QQui

QQuj is the Leonard stress

C 0
ij D eQuiu

0
j C eu0

i Quj � QQui
Qu0

j � Qu0
i
QQuj is the Cross stress

R0
ij D eu0
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Qu0

j is the Reynolds stress

C 0
ij C R0

ij D �2
�
C �

S �
�2

j QS j QSij (15.28)

Exercise: Prove the following facts:

159� equivalence of subgrid stresses computed from formulations of Ger-
mano (15.27) and the original one proposed by Leonard (15.22),

� Galilean invariance of stresses in Germano‘s formulation (15.27).

15.7 A-posteriori and a-priori tests

Two tests are used to verify LES models. The comon way is the a-posteriori
test. The LES simulation is performed and then the flow parameters obtained
from the simulation are compared with these from measurement. Depending
on comparison results the conclusion about quality of LES models is drawn.
The disadvantage of such approach is that the LES results are affected by
modelling errors, errors of approximation of differential operators and round-
ing errors. In a-posteriori test they can not be separated.

Direct test of quality of subgrid stresses is the a-priori test. First, the subgrid
stress is calculated at each time instant from the definition

�
SGSdef
ij D euiuj � Qui Quj (15.29)

Then the subgrid stress is computed again at each time instant from any
model, say Smagorinsky one

�SGSmod
ij �

1

3
�SGSmod

kk ıij D �2.CS�/2
j QSij j QSij (15.30)

The subgrid stresses �
SGSdef
ij and �SGSmod

ij averaged in time are compared
each with other. If

�
SGSdef
ij � �SGSmod

ij

the SGS model is accurate.

A big difficulty of a-priori tests is the determination of velocities Qui . For
that it is necessary first to obtain the unfiltered velocities ui with spatial and
temporal resolutions compared with the Kolmogorov scales. At present this
is a big challenge to measure three components of velocity in a volume with
high spatial and temporal resolutions. The Particle Image Velocimetry (PIV)
measurements are mostly planar measurements within a two dimensional
window. Direct Numerical Simulation data are often used as the source for
a-priori tests. Three components of velocity in a volume, obtained from DNS,
are filtered and utilized for the test. However, it should be noted that DNS
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� equivalence of subgrid stresses computed from formulations of Ger-
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is a big challenge to measure three components of velocity in a volume with
high spatial and temporal resolutions. The Particle Image Velocimetry (PIV)
measurements are mostly planar measurements within a two dimensional
window. Direct Numerical Simulation data are often used as the source for
a-priori tests. Three components of velocity in a volume, obtained from DNS,
are filtered and utilized for the test. However, it should be noted that DNS
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simulation is restricted by relatively low Reynolds numbers, whereas main
laws of LES are valid for high Re numbers.

161

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

How to retain your  
top staff

FIND OUT NOW FOR FREE
Get your free trial

Because happy staff get more done

What your staff really want?

The top issues troubling them?

How to make staff assessments 
work for you & them, painlessly?

DO YOU WANT TO KNOW:

http://s.bookboon.com/performancereviewpro-bookboonlp


Lectures on computational fluid dynamics

160 

Hybrid URANS-LES methods

Chapter 16

Hybrid URANS-LES methods

16.1 Introduction

As discussed above, the most promising approach to resolve the flow un-
steadiness is the Large Eddy Simulation (LES), which is already widely used
for research purposes. Typical Reynolds numbers in engineering are very
large even at model scales. The grid resolution necessary for a pure LES
is so huge that it makes the direct application of LES impossible (see Sec.
16.4). A practical solution of this problem is the use of hybrid URANS-LES
methods, where the near body flow region is treated using URANS and far
flow regions are treated with LES.

According to Peng [17] the hybrid techniques can be subdivided into flow
matching and turbulence matching methods. Within the flow matching
methods the interface between URANS and LES is explicitly defined. LES
filtered equations are solved in the LES region, whereas URANS equations
are solved in the URANS domain. The flow parameters (velocities, kinetic
energy) are matched at the interface between the URANS and the LES re-
gions. Among the most important contributions to the development of flow
matching methods we mention the works of (Davidson, Dalstroem [18]; Ter-
racol [19]; Jakirlic et. al. [20]; Temmerman et. al. [21]) and others. A
serious weakness of this approach is the development of robust procedures to
set the URANS-LES interface for complicated flow geometries. Within the
framework of the turbulence matching method an universal transport equa-
tion is solved in the whole computational domain. The stress terms in this
equation are treated in different ways in LES and URANS domains. There
are various procedures to distinguish between LES and URANS cells. The
most popular hybrid method is Detached Eddy Simulation (DES) proposed
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by (Spalart et al.[22]). The original version of this method is based on the
classic Smagorinsky LES model and the Spalart-Allmaras (SA) URANS ap-
proach. SA is used close to the wall, whereas LES in the rest part of the
flow. The switching between the two techniques is smooth and occurs in
a ”gray” subdomain. There are two major improvements of DES, devel-
oped recently. The first one, DDES (Delayed DES), has been proposed to
detect the boundary layers and to prolong the RANS mode, even if the wall-
parallel grid spacing would normally activate the DES limiter (Spalart [23]).
The second one, IDDES (Improved DDES), allows one to solve the prob-
lems with modelled-stress depletion and log-layer mismatch. For the details
see the review (Spalart [23]). In spite of a wide application area DES has
serious principle limitations thoroughly analyzed by (Menter, Egorov [24]).
Other versions of the turbulence matching methods using different blend-
ing functions to switch the solution between LES and URANS modes were
proposed by (Peng [17]; Davidson, Billson [25]; Abe, Miyata [26]) and others.

A very critical point of the turbulence matching methods is the transition
from the time (or ensemble) averaged smooth URANS flow to the oscillat-
ing LES flow, see (Menter, Egorov, 2005). The oscillations have to appear
within a short flow domain in a ”gray zone” between LES and URANS. Ex-
perience shows that it is extremely difficult to provide a smooth transition
of the turbulent kinetic energy passing from the URANS to LES domain. To
overcome this problem (Schlueter et al. [27]) and (Benerafa et al. [28]) used
an additional forcing term in the Navier Stokes equation artificially enhanc-
ing fluctuations in the gray zone. However, the problem of smooth solution
transition from URANS to LES still remains as the main challenge for the
turbulence matching methods.

16.2 Detached Eddy Simulation (DES)

The most popular hybrid method -detached eddy simulation- was proposed
in 1997 by Spalart et al. [22]. The principle of DES is illustrated in Fig. 16.1.
Close to the body the solution is calculated using the URANS mode. Far
from the wall the LES equations are solved. The grey zone between URANS
and LES is the mixed solution.

The classical version of the DES approach is based on the Spalart Almaras
(SA) model formulated with respect to the modified turbulent viscosity Q� D

�t=f�1. The transport equation for Q� reads
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by (Spalart et al.[22]). The original version of this method is based on the
classic Smagorinsky LES model and the Spalart-Allmaras (SA) URANS ap-
proach. SA is used close to the wall, whereas LES in the rest part of the
flow. The switching between the two techniques is smooth and occurs in
a ”gray” subdomain. There are two major improvements of DES, devel-
oped recently. The first one, DDES (Delayed DES), has been proposed to
detect the boundary layers and to prolong the RANS mode, even if the wall-
parallel grid spacing would normally activate the DES limiter (Spalart [23]).
The second one, IDDES (Improved DDES), allows one to solve the prob-
lems with modelled-stress depletion and log-layer mismatch. For the details
see the review (Spalart [23]). In spite of a wide application area DES has
serious principle limitations thoroughly analyzed by (Menter, Egorov [24]).
Other versions of the turbulence matching methods using different blend-
ing functions to switch the solution between LES and URANS modes were
proposed by (Peng [17]; Davidson, Billson [25]; Abe, Miyata [26]) and others.

A very critical point of the turbulence matching methods is the transition
from the time (or ensemble) averaged smooth URANS flow to the oscillat-
ing LES flow, see (Menter, Egorov, 2005). The oscillations have to appear
within a short flow domain in a ”gray zone” between LES and URANS. Ex-
perience shows that it is extremely difficult to provide a smooth transition
of the turbulent kinetic energy passing from the URANS to LES domain. To
overcome this problem (Schlueter et al. [27]) and (Benerafa et al. [28]) used
an additional forcing term in the Navier Stokes equation artificially enhanc-
ing fluctuations in the gray zone. However, the problem of smooth solution
transition from URANS to LES still remains as the main challenge for the
turbulence matching methods.

16.2 Detached Eddy Simulation (DES)

The most popular hybrid method -detached eddy simulation- was proposed
in 1997 by Spalart et al. [22]. The principle of DES is illustrated in Fig. 16.1.
Close to the body the solution is calculated using the URANS mode. Far
from the wall the LES equations are solved. The grey zone between URANS
and LES is the mixed solution.

The classical version of the DES approach is based on the Spalart Almaras
(SA) model formulated with respect to the modified turbulent viscosity Q� D

�t=f�1. The transport equation for Q� reads

164

by (Spalart et al.[22]). The original version of this method is based on the
classic Smagorinsky LES model and the Spalart-Allmaras (SA) URANS ap-
proach. SA is used close to the wall, whereas LES in the rest part of the
flow. The switching between the two techniques is smooth and occurs in
a ”gray” subdomain. There are two major improvements of DES, devel-
oped recently. The first one, DDES (Delayed DES), has been proposed to
detect the boundary layers and to prolong the RANS mode, even if the wall-
parallel grid spacing would normally activate the DES limiter (Spalart [23]).
The second one, IDDES (Improved DDES), allows one to solve the prob-
lems with modelled-stress depletion and log-layer mismatch. For the details
see the review (Spalart [23]). In spite of a wide application area DES has
serious principle limitations thoroughly analyzed by (Menter, Egorov [24]).
Other versions of the turbulence matching methods using different blend-
ing functions to switch the solution between LES and URANS modes were
proposed by (Peng [17]; Davidson, Billson [25]; Abe, Miyata [26]) and others.

A very critical point of the turbulence matching methods is the transition
from the time (or ensemble) averaged smooth URANS flow to the oscillat-
ing LES flow, see (Menter, Egorov, 2005). The oscillations have to appear
within a short flow domain in a ”gray zone” between LES and URANS. Ex-
perience shows that it is extremely difficult to provide a smooth transition
of the turbulent kinetic energy passing from the URANS to LES domain. To
overcome this problem (Schlueter et al. [27]) and (Benerafa et al. [28]) used
an additional forcing term in the Navier Stokes equation artificially enhanc-
ing fluctuations in the gray zone. However, the problem of smooth solution
transition from URANS to LES still remains as the main challenge for the
turbulence matching methods.

16.2 Detached Eddy Simulation (DES)

The most popular hybrid method -detached eddy simulation- was proposed
in 1997 by Spalart et al. [22]. The principle of DES is illustrated in Fig. 16.1.
Close to the body the solution is calculated using the URANS mode. Far
from the wall the LES equations are solved. The grey zone between URANS
and LES is the mixed solution.

The classical version of the DES approach is based on the Spalart Almaras
(SA) model formulated with respect to the modified turbulent viscosity Q� D

�t=f�1. The transport equation for Q� reads

164

Figure 16.1: Zones of the Detached Eddy Simulation.
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Figure 16.1: Zones of the Detached Eddy Simulation.
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Here d is the distance from the wall. The physical sense of different terms
is illustrated in (16.1). Far from the wall the generation and the distruction
terms are approaching each to other and the turbulence attains the equilib-
rium state:

Cb1
QS Q�„ƒ‚…

Generation

� Cw1fw

�
Q�

d

�2

„ ƒ‚ …
Destruction

� 0

The kinematic viscosity is then calculated from the formula

Q� �
Cb1

Cw1

QSd 2

which is similar to the Smagorinsky one:

�t D l2
S j QSij j; j QSij j D

q
2 QSij

QSij

lS D CS�

DES inventors proposed to use the following expression for d :

d D minfd; CDES�g; � D maxf�x; �y; �zg

where CDES � 1:3 is the DES constant. Now the main idea of the DES
becomes obvious:

� At small wall distance d < CDES� the Spalart Almaras URANS model is
active

� At large wall distance d > CDES� the Spalart Almaras URANS model is
smoothly passed into the Smagorinsky model.

Samples of DES applications are presented in Fig. 16.2 and 16.3.

Despite of the wide application Detached Eddy Simulation technique is not
free of disadvantages. Menter [24] notes: The essential concern with DES
is that it does not continuously change from RANS to LES under grid re-
finement. In order for LES structures to appear, the grid spacing and time
step have to be refined beyond a case-dependent critical limit. In addition, a
sufficiently large instability mechanism has to be present to allow the rapid
formation of turbulent structures in regions where the DES limiter is acti-
vated. If one of the two, or both requirements are violated, the resulting
model is undefined and the outcome is largely unpredictable.
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Figure 16.2: Squires K.D., Detached-eddy simulation: current status and
perspectives.

Figure 16.3: Squires K.D., Detached-eddy simulation: current status and
perspectives.

16.3 Hybrid model based on integral length

as parameter switching between LES and

URANS

A simple hybrid model proposed in [29] is based on the observation that the
basic transport equations have the same form in LES and RANS

@ui

@t
C

@.uiuj /

@xj

D �
@p�

@xi

C
@.� l

ij C � t
ij /

@xj

; (16.2)

but the interpretation of the overline differs. In LES it means filtering, but
in RANS it stands for the Reynolds, or ensemble, averaging. Here we used
the standard notation of p� for the pseudo-pressure, and � l

ij and � t
ij for the
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Figure 16.2: Flow around combat aircraft. (Squires K.D., Detached-eddy simulation: 
current status and perspectives)

Figure 16.3: Flow around combat aircraft. (Squires K.D., Detached-eddy simulation: 
current status and perspectives)

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

165 

Hybrid URANS-LES methods

Figure 16.4: The division of the computational domain into the URANS
(dark) and LES (light) regions at one time instant for hybrid calculation of
tanker.

laminar and turbulent stresses respectively. Note that the turbulent stresses
are calculated in different ways in LES and URANS regions.
The computational domain in our model is dynamically (i.e. at each time
step) divided into the LES and URANS regions. A cell of the mesh belongs
to one or the other region depending on the relation between the integral
length scale L and the extended LES filter � according to the following rule:

if L > � then the cell is in the LES region;

if L < � then the cell is in the URANS region:
(16.3)

The integral length scale is calculated from the known formula of Kolmogorov
and Prandtl with the correction factor 0:168 taken from [12]

L D C
k3=2

"
; (16.4)

where k is the turbulent kinetic energy and " is the dissipation rate. The
constant C is C � 0:168 close to the wall y=ı < 0:2, C � 0:35 at 0:2 < y=ı <

0:7 and C � 1:0 in the outer area of the bounder layer y=ı > 0:7, where ı is
the boundary layer thickness. L varies from one time step to another, which
results in varying decomposition of the computational domain into the LES
and URANS regions. The extended LES filter is computed as

� D

q
d 2
max C ı2; (16.5)

where dmax is the maximal length of the cell edges dmax D max.dx; dy; dz/

and ı D .the cell volume/1=3 is the common filter width used in LES. This
choice ensures that very flat cells in the boundary layer (for which ı � 0

but dmax > 0) are treated correctly. � depends only on the mesh and it is
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Figure 16.4: The division of the computational domain into the URANS
(dark) and LES (light) regions at one time instant for hybrid calculation of
tanker.
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precomputed only once before the main computation.

As a sample LES and URANS regions are shown in Fig. 16.4 for flow around
a tanker. The URANS region is located close to the ship surface and plays
the role of a dynamic wall function. In areas of bilge vortices formation, the
boundary layer is shedding from the hull and penetrates into the outer flow
part. Since the boundary layer is a fine scale flow the procedure (16.3) recog-
nizes the bilge vortex formation zones as URANS ones. There is a technical
issue concerning the cells which are far from the ship hull and where both
k and " are small, so large numerical errors are introduced into the integral
length scale computed according to Eq. (16.4). To avoid an irregular dis-
tribution of URANS and LES zones, the general rule (16.3) of the domain
decomposition is corrected in such a way that the LES region is switched to
URANS one if k is getting less than some threshold. This procedure has no
influence on the ship flow parameters since it is used far from the area of the
primary interest.

We have performed several calculations with different combinations of LES
and URANS models to find the most efficient one for the problem under
consideration. Among the models we used in our computations are the linear
and nonlinear k-", k-! SST and k"v2f URANS models combined with the
simple and dynamic Smagorinsky as well as with the dynamic mixed LES
closure models. The experience shows that the most satisfactory results are
obtained using the URANS approach based on the k"v2f turbulent model
of [30] and LES approach based on the Smagorinsky dynamic model. The
turbulent stresses � t

ij are calculated from the Boussinesq approximation using
the concept of the turbulent viscosity. The only difference between LES
and URANS is the definition of the kinematic viscosity. Within LES it is
considered as the subgrid viscosity and calculated according to the dynamic
model of Smagorinsky:

�SGS D cDı2
jSij j; Sij D

1

2

�
@uj

@xi

C
@ui

@xj

�
; (16.6)

where Sij is the strain velocity tensor and cD is the dynamic constant. In
the URANS region the viscosity is calculated from the turbulent model of
[30]:

�t D min

�
0:09

k2

"
; 0:22v2Tt

�
; (16.7)

where v2 is the wall normal component of the stresses and Tt is the turbulent

169

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

167 

Hybrid URANS-LES methods

precomputed only once before the main computation.

As a sample LES and URANS regions are shown in Fig. 16.4 for flow around
a tanker. The URANS region is located close to the ship surface and plays
the role of a dynamic wall function. In areas of bilge vortices formation, the
boundary layer is shedding from the hull and penetrates into the outer flow
part. Since the boundary layer is a fine scale flow the procedure (16.3) recog-
nizes the bilge vortex formation zones as URANS ones. There is a technical
issue concerning the cells which are far from the ship hull and where both
k and " are small, so large numerical errors are introduced into the integral
length scale computed according to Eq. (16.4). To avoid an irregular dis-
tribution of URANS and LES zones, the general rule (16.3) of the domain
decomposition is corrected in such a way that the LES region is switched to
URANS one if k is getting less than some threshold. This procedure has no
influence on the ship flow parameters since it is used far from the area of the
primary interest.

We have performed several calculations with different combinations of LES
and URANS models to find the most efficient one for the problem under
consideration. Among the models we used in our computations are the linear
and nonlinear k-", k-! SST and k"v2f URANS models combined with the
simple and dynamic Smagorinsky as well as with the dynamic mixed LES
closure models. The experience shows that the most satisfactory results are
obtained using the URANS approach based on the k"v2f turbulent model
of [30] and LES approach based on the Smagorinsky dynamic model. The
turbulent stresses � t

ij are calculated from the Boussinesq approximation using
the concept of the turbulent viscosity. The only difference between LES
and URANS is the definition of the kinematic viscosity. Within LES it is
considered as the subgrid viscosity and calculated according to the dynamic
model of Smagorinsky:

�SGS D cDı2
jSij j; Sij D

1

2

�
@uj

@xi

C
@ui

@xj

�
; (16.6)

where Sij is the strain velocity tensor and cD is the dynamic constant. In
the URANS region the viscosity is calculated from the turbulent model of
[30]:

�t D min

�
0:09

k2

"
; 0:22v2Tt

�
; (16.7)

where v2 is the wall normal component of the stresses and Tt is the turbulent
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p
�="/.

16.4 Estimations of the resolution necessary

for a pure LES on the example of ship

flow

In the CFD community one can observe tendency to use pure LES without
paying any attention to resolution problems. Very often LES is running on
typical RANS grids. In fact, such computations can give correct results if the
flow structures to be captured are large enough and exist for a long time. In
some cases modeling of such structures does not require detailed resolution
of boundary layers and a thorough treatment of separation regions. As an
example one can mention flows around bluff bodies with predefined separa-
tion lines like ship superstructures. Application of underresolved LES for
well streamlined hulls should be considered with a great care. First of all,
one should not forget that the basic LES subgrid models are derived under
the assumption that at least the inertial turbulent subrange is resolved. Sec-
ond, underresolution of wall region leads to a very inaccurate modeling of
the boundary layer, prediction of the separation and overall ship resistance.
It is clearly illustrated in the Table 16.1. The ship resistance obtained from
underresolved LES using the wall function of (Werner, Wengle [31]) is less
than half of the measured one and that obtained from RANS. Obviously, the
application of modern turbulence LES models, more advanced than RANS
models, does not improve but even makes the results much worse with the
same space resolution. The change from RANS to LES should definitely be
followed by the increase of the resolution which results in a drastic increase
of the computational costs. These facts underline necessity of further devel-
opment towards hybrid methodology. Although in (Alin et al. [32]) it has
been shown that the accuracy of the resistance prediction using pure LES at
a very moderate resolution with yC � 30 can be improved using special wall
functions, the most universal way for the present, to our opinion, is applica-
tion of hybrid methods. The impossibility of pure LES is illustrated below
for flow around the KVLCC2 tanker.

The precise determination of the necessary LES resolution is quite difficult.
Estimations presented below are based on the idea that about 80% of the
turbulent kinetic energy should be directly resolved and the rest is modeled
in a properly resolved LES simulation. Implementation of this idea implies
the knowledge of the Kolmogorov � and the integral length L scales which are
used to draw the typical spectra of the full developed turbulence E.k/. The
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wave number k� separating the resolved and modeled turbulence is found
from the condition

R1

k� E.k/dkR1

0
E.k/dk

� 0:2: (16.8)

The maximum possible cell size is then �max D 2�=k�. The scales L and
� are found from the known expression � D .�3="/1=4 and Eq. (16.4), where
the kinetic energy k and the dissipation rate " are taken from RANS simula-
tions using k-" linear model. The ratio � D �max=� is then used as the scale
parameter for grid generation. Both lengths vary in space which makes the
grid generation procedure very complicated. To roughly estimate the size of
the grid we assume that � is constant. We performed different calculations
determining � at the two following points: i) the point where L=� is maximal
in the ship boundary layer and ii) the point in the propeller disk where the
vorticity E! is maximal (region of the concentrated vortex structure). The lat-
ter is dictated by the wish to resolve the most intensive vortex flow structures
which have the strongest influence on the propeller operation. Since LES ap-
plication is required in the ship stern area only this part of the computational
volume has been meshed. It covers the boundary layer of the stern region
starting from the end of the parallel midship section. The thickness of the
meshed region has been constant and equal to the maximum boundary layer
thickness at the stern ıBL. The grid for a pure LES is generated using the
following algorithm. The minimum Kolmogorov length �min is determined
in the near wall region. The cell sizes in x and z directions along the wall
are calculated by multiplication of �min with the scale parameter �. These
sizes remain constant for all cells row in y direction which is normal to the
ship surface (see Fig. 16.5). The cells have at least two equal sizes which is
desirable from the point of view of LES accuracy. The choice of the size in y

direction is dictated by proper resolution of the boundary layer. Close to the
wall this size is chosen from the condition �w D min.yw ; �min/. Since yw is
chosen as the ordinate where yC D 1 the first nodes lay deeply in the viscous
sublayer. The size in y direction at the upper border of the boundary layer
is equal to �1 D ��ı , where �ı is the Kolmogorov scale at y D ıBL. A
simple grading is used in y direction between �w and �1.

Results of the estimations are as follows: the required grid size ranges from
� 5 M to � 25 M for Re D 2:8 � 106, and from � 7 M to � 60 M for
Re D 5:8 � 106. The results vary depending on the value of � in use, so
they should be considered as very rough estimations. Together with simi-
lar estimations for the nonlinear k-" model these results show that the LES
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wave number k� separating the resolved and modeled turbulence is found
from the condition

R1

k� E.k/dkR1

0
E.k/dk

� 0:2: (16.8)
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Figure 16.5: The cell parameters.

grid should have the order of tens of millions of nodes. Nowadays, the com-
putations with hundred millions and even with a few billions of nodes are
becoming available in the research community. However, a numerical study
of engineering problems implies usually many computations which have to be
performed within a reasonable time with moderate computational resources.
In this sense, the results of the present subsection clearly demonstrate that
the pure LES is impossible for ship applications so far. To verify that the
resolution estimation procedure we used gives meaningful results, it has been
applied for turbulent boundary layer (TBL) benchmark. We found from me-
thodical calculations that the pure LES with 1M cells is quite accurate for
prediction of the velocity distribution, TBL thickness, TBL displacement
thickness and the wall shear stress. The estimation procedure presented
above predicted the necessary resolution around 0.5M. Therefore, the esti-
mations presented for a ship model are rather lower bound for the resolution
required for a pure LES.

172

CR CP CF

KRISO Exp. 4:11 � 10�3 15% 85%
RANS k"v2f 4:00 � 10�3 16% 84%
k-! SST SAS 3:80 � 10�3 18% 82%
Underresolved LES 1:70 � 10�3 81% 19%
Hybrid RANS LES 4:07 � 10�3 17% 83%

Table 16.1: Results of the resistance prediction using different methods. CR is
the resistance coefficient, CP is the pressure resistance and CF is the friction
resistance
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Chapter 17

Mathematical model of the ice
protection of a human body at
high temperatures of
surrounding medium

17.1 Designations

17.1.1 List of symbols

A area (m2)
cp specific heat capacity (J/(kgK))
F density of heat release(W=m3)
h sector height (m)
K correlation factor of the rectal temperature
k the thermal conductivity (W/(mK))
M work done by person (W)
m body mass (kg)
P body height (cm)
Q internal energy (J)
PQ heat flux (W)

R sector radius (m)
T temperature (deg)
x radial coordinate along the sector (m)
˛ central sector angle (deg)
� skin thickness (m)
� thermal diffusivity (m2=s)
� mass density (kg=m3)

 initial temperature (deg)
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17.1.2 Subscripts

core human body core
hum human body
i number of human body layer
j number of point on the human body
med surrounding medium
melt melting ice
outer outer boundary of clothes
skin human body skin

17.1.3 Superscripts

0 degree of Celsius

17.2 Introduction

The heat transfer inside the human body is an extremely complicated prob-
lem which is difficult to formulate properly. The body generates the heat
within certain organs which is then transferred by the thermal diffusion
through the body substance possessing very non uniform properties. How-
ever, the thermal diffusion being complicated is not the main difficulty of
modeling. A large fraction of the heat generated by internal organs is trans-
ported to the body periphery by a complicated net of blood vessels. This
process has still not been modeled with a desirable accuracy. While a full
detailed model of the human thermodynamics is still remaining the problem
of the future, the practical design of protection clothes demands the reliable
models already now. Such models are necessary to reduce the time and costs
consuming measurements and to avoid dangerous experiments with people
under emergency conditions. The models can be only of a semi empiric char-
acter and must relay on measurements data to diminish the modelling errors.

Especially interesting is the case of human thermodynamics at high tem-
peratures T of surrounding medium. At T > 350 the ability of human
thermoregulation is very restricted [33]. The acceptable body temperature
variation can be only one degree of Celsius. If the body temperature exceeds
this threshold the protecting mechanisms regulating the excessive heat in the
organism through the breathing, humidity diffusion of the skin, radiation and
transpiration don’t work [34], [35]. The most effective principle of the protec-
tion is the mechanism of the heat absorption through, for instance, the ice
embedded into the clothes. This approach being environmentally friendly,
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Figure 17.1: Sketch of the human body used in simulations. A- heart, B-
liver, C - kidney.

technologically easy and renewable can be used for protection clothes of res-
cue teams working under high temperatures up to 500 and more.

17.3 Human body and ice protection models

The human body model used for simulation is shown in Fig. (17.1). The
main sizes of the body which are important for the discussion of results are
presented in the table 17.1.

Commonly the human body is represented as a set of geometric elements ac-
cording to the original idea proposed by Stolwijk [36]. The body is assumed
to be slender with domination of the heat transfer in horizontal planes. On
the contrary to common models the horizontal cross section of the human
body is represented in our model as a nearly elliptical section with the dis-
placed center. The cross section of the body is subdivided into the five
layers [33]: skin, fat layer, muscles and two core layers (see Fig. (17.2)). The
core represents all human organs and blood vessels. The cross section of
the human body is then represented as a set of sectors subdivided along the
radius into five layers with constant thermal properties (see Fig. 17.2). The
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Table 17.1: Sizes of the body used in simulations

Element Size in meter

1 0.127
2 0.127
3 0.234
4 0.090
5 0.215

radii of each sector R can be found from the table 17.2. The upper elliptical
cylinder is from the neck to the waist, whereas the lower one from the waist
to the thing (Fig. 17.1). The skin thickness � is approximately calculated as
the radius R divided by 60:25 [33]. The sizes of different layers inside of the
cross section are presented in the table 17.3. At the high temperatures the
main part of the heat production occurs in certain organs. The knowledge
about the heat distribution inside the body allows one to choose the most
efficient design of the ice protection which typical construction is shown in
Fig. 17.3. In the mathematical model the ice and the clothes layer are mod-
elled by additional layers covering the human body (Fig. 17.2). The human
body model was developed on the base of data taken from [36], [37], [38]
and [39].

17.4 Mathematical model

It is assumed, that the heat exchange between the sectors is negligible at
every cross section of the human body. Therefore both the vertical and cir-
cumferential heat transfer processes are not taken into account. The heat
transfer along the radius x within each sector is described by the one di-
mensional heat conduction equation derived from the energy conservation
consideration. The change of the internal energy in the sector element with
coordinates x and x C dx due to heat transport within the time dt is

dQ1 D

�
k.x C dx/S.x C dx/

@T

@x
� k.x/S.x/

@T

@x

�
dt �

@

@x

�
k.x/S.x/

@T

@x

�
dt

(17.1)
where T .x; t/ is the temperature, k is the thermal conductivity, S.x/ D ˛xh

is the sector arc length multiplied with its height h and ˛ is the central angle
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Figure 17.2: Horizontal cross section of the human body represented as an
ellipse with five layers: 1- inner core, 2- outer core, 3- muscles, 4- fat, 5- skin.

Figure 17.3: Ice protection construction. 1- polyurethane foam, 2- ice
briquette, 3- human body, 4-special overheating protection clothes, 5-
polyurethane net (air layer).
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Table 17.2: Radii of the elliptical cross sections used in simulations

radial upper elliptical lower elliptical
line cylinder, m cylinder, m

OJ 0.118 0.109
OB, OB1 0.122 0.112
OC, OC1 0.137 0.121
OD, OD1 0.159 0.135
OE, OE1 0.181 0.156
OF, OF1 0.195 0.176
OG, OG1 0.200 0.190
OH, OH1 0.187 0.173
OK, OK1 0.163 0.145
OL, OL1 0.138 0.121
OM, OM1 0.120 0.106
ON, ON1 0.110 0.980

OP 0.106 0.940

Table 17.3: Radii of layers used in simulations in fraction of the skin thickness
�

Elliptical Element Area Layer Radius
cylinder length, m m2

Core 36:15�

upper 0.476 0.489 Muscle 53:70�

Fat layer 59:25�

Skin 60:25�

Core 36:15�

lower 0.317 0.293 Muscle 53:70�

Fat layer 59:25�

Skin 60:25�

of the sector. Within the material we have additionally the heat release with
the heat density F (heat per unit volume):

dQ2 D SFdxdt (17.2)
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Table 17.2: Radii of the elliptical cross sections used in simulations
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of the sector. Within the material we have additionally the heat release with
the heat density F (heat per unit volume):

dQ2 D SFdxdt (17.2)

183Due to the heat transfer and heat release the internal energy of the material
is changed by dQ3

dQ3 D cp�S
@T

@t
dxdt (17.3)

where cp is the specific heat capacity and � is the mass density of the material.
By conservation of energy

dQ1 C dQ2 D dQ3

or

S.x/
@T

@t
D �

@

@x

�
S.x/

@T

@x

�
C S.x/f .x/ (17.4)

where �.x/ D k=.cp�/ is the thermal diffusivity and f .x/ D F.x/=.cp�/.
The equation (17.4) is solved at the initial condition

T .x; 0/ D '.x/ (17.5)

and the boundary conditions formulated at the sector center

T .0; t/ D Tcore (17.6)

and at the outer boundary of the clothes

T .xouter ; t / D Tmed (17.7)

The temperature of the surrounding medium was Tmed D 500. It was as-
sumed that the core center (at x D 0) temperature was constant in time
Tcore D 36:70.

The heat transfer process is subdivided into three steps. Within the first
step the ice is warmed up to the melting temperature. The melting process
is followed by the absorption of the heat coming from both the surrounding
medium Qmed

PQmed D �med

@T

@x
Amed (17.8)

and the human body Qhum caused by metabolism

PQhum D �skin

@T

@x
Askin (17.9)
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T .x; 0/ D '.x/ (17.5)

and the boundary conditions formulated at the sector center

T .0; t/ D Tcore (17.6)

and at the outer boundary of the clothes

T .xouter ; t / D Tmed (17.7)

The temperature of the surrounding medium was Tmed D 500. It was as-
sumed that the core center (at x D 0) temperature was constant in time
Tcore D 36:70.

The heat transfer process is subdivided into three steps. Within the first
step the ice is warmed up to the melting temperature. The melting process
is followed by the absorption of the heat coming from both the surrounding
medium Qmed

PQmed D �med

@T

@x
Amed (17.8)

and the human body Qhum caused by metabolism

PQhum D �skin

@T

@x
Askin (17.9)

184where �med is the thermal diffusivity of the clothing layer adjacent to the
ice layer, Amed is the surface between the ice layer and adjacent clothing
layer in a sector under consideration, �skin is the thermal diffusivity of the
human skin and Askin is the skin surface in the sector. The second step is the
ice layer melting. The phase transition in matter is described by the Stefan
problem [40]. In this paper we used a simplified approach based on the heat
balance conditions. It is assumed that the water and ice mixture is uniform
with the constant temperature of zero degree of Celsius. The dynamics of
the boundary between the water and ice is not considered. The heat fluxes
(17.8) and (17.9) are constant in time. The second step is finished in time t�

once the ice is melted:

Qmelt D . PQmed C PQskin/t� (17.10)

Here Qmelt is the heat necessary to melt the whole ice. After that, within
the third step the water from the melted ice is warming up due to heat fluxes
(17.8) and (17.9) continuing in time. The calculations within the third step
are running as long as the comfort conditions are fulfilled.

The equation (17.4) is solved using the finite differential method on the
uniform grid �x D const with the constant time step �t D const . The
numerical implementation utilizes the central differential scheme for space
derivatives and Crank Nicolson implicit representation of the unsteady term.
An inhouse code was developed for this purposes.

17.5 Results

17.5.1 Design of the protection clothes

The calculations were performed for five elements of the human body shown
in Fig.17.1. Thermodynamic properties of the body layers are given in the
table 17.4. Usually, the ice protection construction consists of the ice layer
separated from the surrounding medium by several layers. In the present
work we used three layers: outer clothing layer with thickness of 0:001m, iso-
lating layer of 0:009m and the air layer of 0:003m. All layers have the initial
temperature T 0

i D 190. The air gap between the ice and the underwear of
the thickness 0:0025 m was 0:003 m thick. The human body was 180 cm in
height with the mass of 80 kg. The full description of the input data can be
found in [41]. It was assumed that the test person does the work at a rate of
about M D 420 watts. Additional heat release due to this work was taken
into account during numerical simulations in the heat production rate f .x/
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(see Eq. (17.4)).

Table 17.4: Thermodynamic coefficients of the body layers used in simula-
tions

layer heat thermal density initial heat
capacity, conductivity, temperature, production,
KJ/K W/(mK) kg m�3 Deg. Celsius W

core 39.97 0.4186 1050 36.89 76.24-80.00
muscles 74.68 0.3959 1050 36.28 8.30-9.00

fat 17.73 0.3348 850 34.53 3.57-4.00
skin 5.07 0.0807 1000 33.62 0.66-0.7

The numerical simulations are used to find the distribution of the ice thick-
ness necessary to keep the body core (both inner an outer) temperature at less
than 36:70˙10 within one hour at the temperature of surrounding medium of
500. The numerical results were utilized to design a special protection jacket
for rescue team working under emergency conditions in the mining industry.
Since the continuous distribution of the ice protection is difficult from the
technology point of view and undesirable from ergonomics considerations the
jacket protection was designed using the discrete distribution of the ice in
form of briquettes embedded into the jacket (see Fig. 17.4). The further
simulations have been performed to prove the ability of the new designed
jacket to satisfy the protection requirements. Fig. 17.5 illustrates the tem-
perature distribution around the human body in centers of the upper and the
lower elliptical cylinders shown in Fig. 17.1. The discrepancy between the
desirable temperature 36:70 corresponding to the continuous ice distribution
and the actual temperature corresponding to the discrete ice distribution can
be considered as acceptable. Therefore the jacket designed on the base of
numerical simulations was manufactured and tested in further experimental
investigations.

17.5.2 Experimental proof of numerical prediction

The numerical prediction and the jacket designed on basis of numerical sim-
ulations was proved in various tests. The first series of 48 measurements
was carried out in a thermal chamber. The measurements were performed
with healthy candidates at the age between 30 and 45 years, P D 168 � 188
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Since the continuous distribution of the ice protection is difficult from the
technology point of view and undesirable from ergonomics considerations the
jacket protection was designed using the discrete distribution of the ice in
form of briquettes embedded into the jacket (see Fig. 17.4). The further
simulations have been performed to prove the ability of the new designed
jacket to satisfy the protection requirements. Fig. 17.5 illustrates the tem-
perature distribution around the human body in centers of the upper and the
lower elliptical cylinders shown in Fig. 17.1. The discrepancy between the
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Figure 17.4: Overheating protection jacket designed on the base of simula-
tions.

Figure 17.5: Temperature distributions around the body with continuous ice
distribution and with ice briquettes. Results of numerical simulations after
60 minutes.
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Figure 17.6: Development of the averaged temperature in the air gap between
the underwear and the ice protection on the human chest. Comparison be-
tween the measurement (solid line) and the numerical simulations (dotted
line).

cm in height and normal weight m. The body surface A can be calculated
from the empirical formula A D 0:24m0:425P 0:4 [41]. The candidates weared
the jackets (see Fig. 17.4)were doing the work at a rate of about M D 420

watts which corresponds to a hard work typical for the mining industry. The
temperature of the surrounding medium was T � 500. The temperature has
been measured in the air gap between the underwear and the ice at seven
points around the chest (section 2 in Fig. 17.1). The temperature averaged
over these points is presented in Fig. 17.6. The discrepancy between the
measurement and the numerical simulations does not exceed 14 percent af-
ter 60 minutes of the real time. This agreement can be considered as quite
satisfactory taking the simplicity of the used model and complexity of the
problem into account.
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Figure 17.7: Test person weared overheating protection jacket (left) and
distribution of the temperature sensors on the human body (right).

The task of this study is the determination of the temperature in the body
core. It is a difficult problem since the direct measurement is impossible.
The experience gathered in physiology [42] shows that the core temperature
can reliably be determined if the temperature Tj at five characteristic points
(forehead, chest, hand, thigh and shin) is known (see Fig.17.7). The sensors
were mounted directly on the human skin with the rate of press not exceeding
0:2 � 0:25 Pa. The accuracy of measurements is estimated as 0:10C . These
temperatures are summed up with weighting coefficients wj . Each tempera-
ture is nearly constant within a certain area Aj . The weighting coefficients
are calculated as the ratio of Aj to the total body surface A, i.e. wj D Aj =S .
The averaged temperature is calculated then from the formula [41]

T D 0:07T1 C 0:5T2 C 0:05T3 C 0:18T4 C 0:2T5 (17.11)

where Tj sensors readings according to the numeration shown in Fig. 17.7.
The prediction accuracy can be sufficiently increased when the core temper-
ature is calculated with account for the test person feeling and the rectal
temperature Trectal according to the formula [41]

Tinner D KTrectal C .1 � K/T (17.12)

The correlation factor K is taken from the table 17.5 [39]. Figure 17.8 shows
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Figure 17.7: Test person weared overheating protection jacket (left) and
distribution of the temperature sensors on the human body (right).
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the time history of the inner temperature Tinner . The most important con-
clusion drawn from this figure is that the inner temperature Tinner doesn’t
exceed the threshold 360 within 60 minutes. Thus, the aim of the design has
been achieved.

Table 17.5: Coefficient K depending on the test person feelings and energy
expenditure E D M=A .W=m2/. A is the body surface (m2) and M is the
work (W )

feeling j E 70 88 113 145 178

cold 0.55 0.57 0.59 0.62 0.64
chilly 0.57 0.58 0.60 0.64 0.65

slightly chilly 0.59 0.60 0.63 0.65 0.67
comfort 0.62 0.64 0.65 0.67 0.69

slightly warm 0.70 0.70 0.70 0.70 0.70
warm 0.79 0.77 0.74 0.72 0.72
hot 0.86 0.82 0.79 0.76 0.73

The second series of measurements was carried out directly during the work
in a cole mine at the temperature not higher than 600 without fire action.
During one year of observations no equipment fault has been documented.
The temperature of workers was kept at a prescribed level during at least
55 � 60 minutes as predicted both in numerical simulations and thermal
chamber tests.

17.6 Discussion

This chapter presents relatively simple and efficient model of the heat trans-
fer within the human body at high temperatures of the surrounding medium.
The human body cross section is represented as an ellipse with a few lay-
ers, modelling the internal organs. The heat generation by internal organs
is taken into account. The ice protection and the clothes are modelled as
additional layers covering the human body. Neglecting the heat transfer in
vertical and circumferential directions the problem is reduced to the solution
of the one dimensional heat conduction equation with variable heat diffu-
sivity. The simulations were performed using the finite differential method.
Results of simulation were used for calculation of the ice layer thickness nec-
essary to prevent the body overheating and to keep the temperature of the
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Figure 17.8: Inner human body temperature versus time.

body core at 36:70 ˙10 within one hour. The results of simulations were used
for design of special overheating protection jacket. The labour tests of the
jacket and trials at real conditions confirmed the prediction of the numerical
simulations.
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CFD Design of cloth for
protection of divers at low
temperatures under current
conditions

Study was performed for the model Tin Man presented in Fig. 18.1. Inner
thermodynamics in the body was not modelled. The temperature of the hu-
man body was assumed to be constant and equal to 330 at the temperature
of the surrounding medium of 10 degrees of Celsius. Thus, the Dirichlet
boundary conditions were enforced for the temperature whereas the heat
flux from the body was calculated. Heat exchange by shivering, breathing
and radiation was neglected. The heat exchange between the body and sur-
rounding medium is mostly determined by the convection due to wind. The
incompressible flow was calculated using steady RANS (Reynolds Averaged
Navier- Stokes Equations) using the k � ! SST model. Temperature was
considered as a passive scalar determined from the temperature transport
equation. The framework OpenFOAM was utilized for the numerical solu-
tion of this problem.
First, CFD was validated for the case of the air flow. Distribution of the heat
transfer coefficient along the Tin Man body is shown in Fig. 18.1, left. The
minimal heat flux takes place in the separation area with reduced flow veloc-
ities, i.e. behind the body arms and head, as well as in the stagnation area
in the front part of the body. Figure 18.1 illustrates the integral coefficient
of the heat transfer hc obtained by integration over the whole body sur-
face. Results of authors marked by crosses are compared with experimental
data of de Dear et al. (triangles) and different calculations. Shadowed grey
area shows the scattering of data otbained using various approaches. Big
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Figure 18.1: Left: Heat transfer coefficient at air speed of 1m=s. Right:
Whole body convective heat transfer coefficient hc from various published
works. The figure is taken from [2]. Blue crosses show results of the present
work.

scattering of data illustrates the complexity of the problem of the human
body thermodynamics interaction with a surrounding medium. Our results
agree satisfactory with measurements. Note that the calculations at small
air speeds were performed assuming the laminar character of the flow.

Within the next step the Tin Man body was weared in a neoprene cloth
with the thickness of 1:0 cm to reproduce the case of a diver working at
low temperatures of 100 in a sea current with the speed of 1 m=s. The Tin
Man body temperature was uniformly distributed along the body and was 33

degrees of Celsius. The cloth was assumed to be waterproof and uniformly
contaminated by oil products. This case is typical for ship repair works and
rescue and technical operations in oil spill zones. Contamination in terms
of gram per centimeter squared as well as the heat diffusivity coefficient of
contaminated cloth are given in the table 18.1. The size of the computational
domain was 12�12�6 meters, whereas the size of the body was 1:65 meters.
For discretization a mesh with 1:3 million of cells was used with yC values
below 0:5 on the whole body. The results for heat flux depending on the
contamination are presented in the last column of table 18.1 and in Fig. 18.2.
As seen the heat flux is almost linear function of the contamination.

The Tin Man body is a primitive simplest geometry. From one side, it makes
the solution of the inner thermodynamics problem much easier. From the
other side, such simplified geometry is not suitable for aerodynamic calcula-
tions since it consists of sharp edges with numerous strong separations. Nu-
merical solution becomes unstable leading to unsatisfactory convergence. Al-
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though the real human body is geometrically more complex, the flow around
it can be calculated much easier than in the Tin Man case. Therefore, fur-
ther investigations done by our group were performed for real human body
geometry (Fig. 19.1) designed by the Hohenstein Institute [43] based on the
detailed antropological study of different people categories.

Contamination Heat diffusivity Heat flux
g=cm2 m2=s W=m2s

0:0 2:07 � 10�6 1:89

0:5 2:72 � 10�6 2:41

2:5 5:27 � 10�6 4:46

4:5 7:74 � 10�6 6:33

6:5 1:01 � 10�5 8:08

Table 18.1: Heat flux from the diver depending on the
cloth contamination

Figure 18.2: Heat flux from the
diver depending on the cloth con-
tamination
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Chapter 19

CFD application for design of
cloth for protection from low
temperatures under wind
conditions. Influence of the
wind on the cloth deformation
and heat transfer from the
body.

Lebedeva and Brink [44] have shown the influence of wind on heat transfer
due to cloth deformation caused by wind induced pressures. Experimental
study was performed in open type wind tunnel with closed test section up to
Reynolds number of 3:6 � 105 based on the air speed and diameter of cloth
packages in form of cylinders. The aim of the present work is to get similar
estimations for real human body form.

19.1 Wind tunnel measurements of pressure

distribution

The experiment was conducted in the wind tunnel of the Chair of Ocean
Engineering at the Rostock University. The wind tunnel of the Göttingen
type has the test section of lengths of 2:8 m with the square cross section
of 1:4 � 1:4 m2. The model of the height of 700 mm was manufactured by
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Figure 19.1: Human body model in wind tunnel of the Rostock university
(left). Positions of measurement points (right).

downsizing the real body with the scale factor of 0:39. Within the open test
section the size of the air jet with uniform velocity distribution is estimated
as one meter at least. Since it is one and half times as large as the model
height, the influence of the jet boundaries on flow around the body can be
considered as negligible. Two measurement series were performed. In the
first one the pressure was measured at nine points distributed at three cross
sections z D 0:329; 0:418 and 0:476 (see Fig. 19.1 and 19.3) using inclined
manometers which are very accurate for low pressures measurements. Due
to high inertia of inclined manometers the unsteady pressure oscillations
are not captured. Position of measurement points is shown in Fig. 19.1
(points 1; 10; 100, 5; 50; 500 and 9; 90; 900). The measurements were performed
with the air speed of 10m=s at 14 degrees of Celsius. Reynolds number
based on the maximum transversal body size is around 1:33 � 105. In the
second series the measurements were performed at nine points 1; :::; 9 shown
in Fig. 19.3(right) only at z D 0:418 (waist). This more detailed investigation
was carried out for two air speeds of 10 and 15 m=s.

19.2 Numerical simulations of pressure dis-

tribution and comparison with measure-

ments

Numerical simulations were performed using the commercial software pack-
age STAR CCM+ for the air speed of 10 m/s. The boundary layer on the
windward side is supposed to be in transitional state. Due to strong sep-
aration the flow on the leeward side of the model and in the wake can be
considered as a turbulent one. The computational domain has the cross sec-
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tion of 2:1 � 2:1 m2. A length of the domain is 2:1 m in front of the human
body (0:7 m height) and 4:2 m behind it. The grid consists of 1:2 � 106

polyhedron cells with maximal yC value of 40. On the model sides the yC

value is varied between 20 and 25. To exclude ambiguity connected to the
flow character, simulations were performed both for pure turbulent and pure
laminar flows with and without roughness.

19.3 Comparison of CFD results with mea-

surements

Comparison with measurements for the first series is presented in Fig. 19.2.
The results of measurements and simulations agree well in the front part of
the body and in the separation area. Both simulations and measurements
predict the increase of the pressure coefficient in the section z D 0:476 m
at angle � 90 degrees caused by the stagnation effect of the shoulder. On
the side of the model in cross sections z D 0:329 and 0:418 the agreement is
not satisfactory. To clarify this problem, the more detailed second measure-
ment series was performed. All results obtained at z D 0:418 are presented
in Fig. 19.3. The big difference takes place around the angle of approx. 90
degrees in the area of the separation (point 5 in Fig. 19.1). The experiment
doesn’t predict the strong under pressure region on the side of the model.
The minimum experimental pressure coefficient is around �1 whereas the
simulation predicts �2:2 both for laminar and turbulent cases. The differ-
ence between the laminar and turbulent solutions is negligible. This might
be due to two facts. First, the cross section is elliptical (Fig. 19.2, left)
and the averaged position of flow separation points is fixed at the widest
axis and doesn’t depend on the flow character. Second, strong unsteady
flow oscillation makes the difference between laminar and turbulent pressure
distributions negligible.

The experimental results raised many questions. Without big error, the
flow can be considered as quasi two dimensional in cross sections along the
human body. Then Cpmin is minus three for the case of two dimensional
cylinder flow. Due to three dimensional effects Cpmin can be smaller, but
not three times smaller like in measurements. The numerical simulation
reveals no separation up to angle of 90 degrees. Within the separation zone
at angles larger than 120 degrees the numerical pressure coefficient is nearly
constant. These facts are in a good agreement with classic knowledge about
bluff bodies flows. In experiment, Cp slightly increases in the separation
area at angles larger than 90 degrees. Also, a relatively big discrepancy
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Figure 19.2: Contrours of torso (left) and pressure coefficient Cp distribution
around the body at three different altitudes z D 0:329; 0:418 and 0:476m.

between Cp determined for 10 and 15 m/s seems to be very questionable, at
least within the zone of weak Reynolds number influence, i.e. at angles less
than 90 degrees. The flow at angles larger than 90 degrees is unsteady. The
scattering of the data due to unsteady effects is shown both for simulations
and measurement. Obviously, the unsteady pressure oscillations can not
be reason for the disagreement between simulation and experiments. More
detailed experimental study should be carried out in the future to clear this
problem.

19.4 Change of thermal conductivity caused

by wind induced pressures

Estimations of pressure influence on cloth thermal conductivity was per-
formed experimentally in the Thermal laboratory of the Don State Technical
University. The cloth of 30 mm thickness was manufactured from the Saviour
with Flamestat Cotton (upper sheet), the insulation Thinsulate and Taffeta
as a lining. The cloth is used in oil industry for work at very low temperatures
under oil contamination conditions.
It was assumed that the pressure acts only in normal direction and shear
stresses are neglected. The cloth has such a structure that it can be pressed
but not stretched. With the other words, the cloth has no deformation if
the pressure difference �p D p � patm is negative. Bearing this in mind, the
cloth deformation calculated using numerical pressure data can be considered
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Figure 19.2: Contrours of torso (left) and pressure coefficient Cp distribution
around the body at three different altitudes z D 0:329; 0:418 and 0:476m.

between Cp determined for 10 and 15 m/s seems to be very questionable, at
least within the zone of weak Reynolds number influence, i.e. at angles less
than 90 degrees. The flow at angles larger than 90 degrees is unsteady. The
scattering of the data due to unsteady effects is shown both for simulations
and measurement. Obviously, the unsteady pressure oscillations can not
be reason for the disagreement between simulation and experiments. More
detailed experimental study should be carried out in the future to clear this
problem.

19.4 Change of thermal conductivity caused

by wind induced pressures

Estimations of pressure influence on cloth thermal conductivity was per-
formed experimentally in the Thermal laboratory of the Don State Technical
University. The cloth of 30 mm thickness was manufactured from the Saviour
with Flamestat Cotton (upper sheet), the insulation Thinsulate and Taffeta
as a lining. The cloth is used in oil industry for work at very low temperatures
under oil contamination conditions.
It was assumed that the pressure acts only in normal direction and shear
stresses are neglected. The cloth has such a structure that it can be pressed
but not stretched. With the other words, the cloth has no deformation if
the pressure difference �p D p � patm is negative. Bearing this in mind, the
cloth deformation calculated using numerical pressure data can be considered
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Figure 19.3: Left: Pressure distribution �p on the body obtained us-
ing StarCCM+ commercial software. Contours of three cross sections at
z D 0:329; 0:418 and 0:476 m are marked by black lines. Right: Pressure
coefficient Cp distribution around the body at z D 0:418. Points position
1; ::; 9 is shown in Fig. 19.1. Grey zone is the area of unsteady pressure
coefficient oscillations in the laminar solution. Vertical lines indicate the
scattering of experimental data at points 5, 6 and 7.
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as reliable one since the area of positive Cp is approximately the same in
experiments and simulations. The cloth samples were subjected to pressure
and then the thermal conductivity was measured using steady state method.
Approximation of measurement points results in the following interpolation
formula:

k D 0:22 C c1�p C c2�p2 (19.1)

where k is the thermal conductivity coefficient in W=mK, C1 D 9:322 �

10�4 W
mKPa

and C2 D 9:775 � 10�6 W
mKPa2 . Fig. 19.4 shows distribution of the

thermal conductivity around the body at three sections along the human
body. As seen the conductivity can increase in the stagnation area at the
chest up to four and half times for strong wind of 20 m/s. To estimate the
integral wind influence f the thermal conductivity referred to that without
wind was integrated over the body at five sections:

f .z/ D

I
k.wind ¤ 0/=k.wind D 0/r d# (19.2)

where # and r are zylindrical coordinates in a cross section. The results are
summarized in the table 19.1. At strong wind of 20 m/s or 72 km/h the
integral increase of thermal conductivity can be up to seventy percent in the
chest cross section. At moderate wind of 10 m/s the maximum influence is
less than ten percent.

Table 19.1: Thermal conductivity factor f .z/ integrated in circumferential
direction

Body part Wind 10 m/s 20 m/s
Chest (z D 0:476 m) 1:096 1:729

Waist (z D 0:418 m) 1:025 1:199

Hip (z D 0:329 m) 1:085 1:668

Upper leg (z D 0:25 m) 1:025 1:194

Lower leg (z D 0:12 m) 1:018 1:141
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Figure 19.4: Change of thermal conductivity due to pressure induced by wind
of 10 m/s (left) and 20 m/s (right). Thermal conductivity without wind is
0:22 W/mK.
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Chapter 20

Simulation of human comfort
conditions in car cabins

The comfort conditions of drivers and passengers is one of the most important
research topics in car industry. In this chapter we present a fragment of the
research conducted in this field at the chair of modelling and simulation of
the University of Rostock. The calculations presented below were carried
out by Stefan Knochenhauer. A compact car was chosen as the object of
investigations. The cabin geometry is represented in Fig. 20.1. The inlet
of the air stream coming from the ventilation channel is marked by green
color whereas the air outlet by red one. The grid with 6.5 million of cells
is shown in Fig. 20.2. The mathematical model is based on the URANS
equation (12.17) and temperature transport equation (1.30). The turbulent
character of the temperature transport is taken into account by introduction
of the additional turbulent heat conduction. It means that instead of �

in the equation (1.30) we use the sum � C �t , where �t is the turbulent
heat conduction coefficient. �t is expressed through the turbulent kinematic
viscosity �t and the turbulent Prandtl number P rt

�t

�cp

D
�t

P rt

(20.1)

The turbulent kinematic viscosity is computed from the URANS closure mod-
els (see Chapters 12, 13 and 14) whereas the turbulent Prandtl number is
assumed to be constant P rt � 0:7. The URANS closure model used in this
work is the k � ! SST model [45]. Numerical simulations were performed
using the finite volume method (see Chapter 6). Boundary conditions are
given in the table 20.1.
A few selected results of calculations are illustrated in Fig. 20.3. The distri-
butions of air velocity and temperature inside of the car cabin are strongly
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inhomogeneous. In regions of strong velocity the convective heat transfer
dominates whereas in stagnation areas the heat exchange is mostly due to
the heat conduction.

Figure 20.1: Sketch of the car cabin studied numerically.

Figure 20.2: Grids with 6.5 million of cells generated with snappyHexMesh.
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Surface physical quantity Condition

Inlet

Velocity
�
ux uy uz

�

Pressure grad p D 0

Temperature T D konst:

turbulent kinetic energy k D konst:

specific turbulent dissipation rate ! D konst:

Outlet

Velocity grad U D 0

Pressure p D 0

Temperature grad T D 0

turbulent kinetic energy grad k D 0

specific turbulent dissipation rate grad ! D 0

Other surfaces

Velocity U D 0

Pressure grad p D 0

Temperature
T D konst: or
grad T D 0 or

coupled boundary condition

turbulent kinetic energy modelled by wall function

specific turbulent dissipation rate modelled by wall function

Table 20.1: Boundary conditions

(a) Velocity field (b) Temperature field

Figure 20.3: Results of numerical simulations.

207

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

199 

Bibliography

Bibliography

[1] Tsinober A. An informal introduction to turbulence. Kluwer Academic
Publisher, 2004.

[2] Novieto D. Zhang Y. and Yingchun J. Human envoronmental heat trans-
fer simulation with cfd- the advances and challenges.building simulation
2009. pages 2162–2168. Eleventh International IBPSA Conference, Glas-
gow, Scotland, July 27–30, 2009 2009.

[3] Ferziger J. and Peric M. Computational Methods for Fluid Dynamics.
Springer, 2002.

[4] Seibold B. A compact and fast matlab code solving the incompress-
ible navier-stokes equations on rectangular domains. Applied Mathemat-
ics, Massachusetts Institute of Technology, www-math.mit.edu/ seibold,
2008.

[5] Dornseifer T. Griebel M. and Neunhoeffer T. Numerical simulation in
fluid dynamics: A practical introduction. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1998.

[6] Phillips A.B. Turnock S.R. and Furlong M. Urans simulations of static
drift and dynamic manouveres of the KVLCC2 tanker. pages F63–F68.
Proceedings of the SIMMAN workshop, 2008.

[7] Liseikin V. Grid Generation Methods. Springer, 2010. 390p.

[8] Warsi Z.U.A Thompson I.F. and Mastin C.W. Numerical grid genera-
tion. Foundations and applications, 1997.

[9] Novikov E. Generalized dynamics of three-dimensional singularities
(vortons). Sov. JETP, 84(3):975 – 981, 1984.

[10] Chorin A. The evolution of a turbulent vortex. Comm. in Mathematical
Physics, 83:517 – 535, 1982.

209

Bibliography

[1] Tsinober A. An informal introduction to turbulence. Kluwer Academic
Publisher, 2004.

[2] Novieto D. Zhang Y. and Yingchun J. Human envoronmental heat trans-
fer simulation with cfd- the advances and challenges.building simulation
2009. pages 2162–2168. Eleventh International IBPSA Conference, Glas-
gow, Scotland, July 27–30, 2009 2009.

[3] Ferziger J. and Peric M. Computational Methods for Fluid Dynamics.
Springer, 2002.

[4] Seibold B. A compact and fast matlab code solving the incompress-
ible navier-stokes equations on rectangular domains. Applied Mathemat-
ics, Massachusetts Institute of Technology, www-math.mit.edu/ seibold,
2008.

[5] Dornseifer T. Griebel M. and Neunhoeffer T. Numerical simulation in
fluid dynamics: A practical introduction. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1998.

[6] Phillips A.B. Turnock S.R. and Furlong M. Urans simulations of static
drift and dynamic manouveres of the KVLCC2 tanker. pages F63–F68.
Proceedings of the SIMMAN workshop, 2008.

[7] Liseikin V. Grid Generation Methods. Springer, 2010. 390p.

[8] Warsi Z.U.A Thompson I.F. and Mastin C.W. Numerical grid genera-
tion. Foundations and applications, 1997.

[9] Novikov E. Generalized dynamics of three-dimensional singularities
(vortons). Sov. JETP, 84(3):975 – 981, 1984.

[10] Chorin A. The evolution of a turbulent vortex. Comm. in Mathematical
Physics, 83:517 – 535, 1982.

209

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.fuqua.duke.edu/globalmba

BUSINESS HAPPENS HERE.BUSINESS HAPPENS

http://s.bookboon.com/fuqua


Lectures on computational fluid dynamics

200 

Bibliography

Bibliography

[1] Tsinober A. An informal introduction to turbulence. Kluwer Academic
Publisher, 2004.

[2] Novieto D. Zhang Y. and Yingchun J. Human envoronmental heat trans-
fer simulation with cfd- the advances and challenges.building simulation
2009. pages 2162–2168. Eleventh International IBPSA Conference, Glas-
gow, Scotland, July 27–30, 2009 2009.

[3] Ferziger J. and Peric M. Computational Methods for Fluid Dynamics.
Springer, 2002.

[4] Seibold B. A compact and fast matlab code solving the incompress-
ible navier-stokes equations on rectangular domains. Applied Mathemat-
ics, Massachusetts Institute of Technology, www-math.mit.edu/ seibold,
2008.

[5] Dornseifer T. Griebel M. and Neunhoeffer T. Numerical simulation in
fluid dynamics: A practical introduction. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1998.

[6] Phillips A.B. Turnock S.R. and Furlong M. Urans simulations of static
drift and dynamic manouveres of the KVLCC2 tanker. pages F63–F68.
Proceedings of the SIMMAN workshop, 2008.

[7] Liseikin V. Grid Generation Methods. Springer, 2010. 390p.

[8] Warsi Z.U.A Thompson I.F. and Mastin C.W. Numerical grid genera-
tion. Foundations and applications, 1997.

[9] Novikov E. Generalized dynamics of three-dimensional singularities
(vortons). Sov. JETP, 84(3):975 – 981, 1984.

[10] Chorin A. The evolution of a turbulent vortex. Comm. in Mathematical
Physics, 83:517 – 535, 1982.

209
[11] Chorin A. Constrained random walks and vortex filaments in turbulence

theory. Comm. in Mathematical Physics, 132:519 – 536, 1990.

[12] Schlichting H. Boundary layer theory. Springer, 2000.

[13] Batchelor G. The Theory of Homogeneous Turbulence. Cambridge Uni-
versity Press, Cambridge, 1956.

[14] Pope S. Turbulent flows. Cambridge University Press, Cambridge, 2000.

[15] Below I.A. and Isaev S.A. Modelling of turbulent flows. Saint Petersburg,
(2001).

[16] Ferziger H. Bardina J. and Reynolds W. Improved subgrid models for
large eddy simulation. AIAA Paper, pages 80 – 1357, 1980.

[17] Peng S. Hybrid rans-les modeling based on zero- and one- equation
models for turbulent flow simulation. pages 1159 – 1164. Proc. of 4th
Int. Symp. Turb. and Shear Flow Phenomena, 2005.

[18] Davidson L. and Dalstroem S. Hybrid rans-les: An approach to make les
applicable at high reynolds number. Int. J. of Comp. Fluid Dynamics,
19:415 – 427, 2005.

[19] Terracol M. Airframe noise prediction by mean of a zonal rans/les ap-
proach. pages 1165 – 1169. In: Proc. of 4th Int. Symp. Turb. and Shear
Flow Phenomena, 2005.

[20] Kniesner B. Kadavelil G. Basara B. Jakirlic S., Saric S. and Chaouat B.
Sgs modelling in les of wall-bounded flows using transport rans models:
from a zonal to a seamless hybrid les/rans method. pages 1057 – 1062.
Proc. of 6th Int. Symp. Turb. and Shear Flow Phenomena, 2007.

[21] Leschziner M. Temmerman L., Hadziabdec M. and Hanjalic K. A hybrid
two-layer urans-les approach for large-eddy simulation at high reynolds
numbers. Int. J. of Heat and Fluid, 26:173 – 190, 2005.

[22] Strelets M. Spalart P. R., Jou W. H. and Allmaras S. R. Comments on
the feasibility of les for wings and on a hybrid rans/les approach. pages
137 – 148. Advances in LES/DNS: Proc. of the first AFOSR Interna-
tional Conf. on DNS/LES, 1997.

[23] Spalart P.R. Detached-eddy simulation. Annu. Rev. Fluid Mech., 41:181
– 202, 2009.

210

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

201 

Bibliography

[11] Chorin A. Constrained random walks and vortex filaments in turbulence
theory. Comm. in Mathematical Physics, 132:519 – 536, 1990.

[12] Schlichting H. Boundary layer theory. Springer, 2000.

[13] Batchelor G. The Theory of Homogeneous Turbulence. Cambridge Uni-
versity Press, Cambridge, 1956.

[14] Pope S. Turbulent flows. Cambridge University Press, Cambridge, 2000.

[15] Below I.A. and Isaev S.A. Modelling of turbulent flows. Saint Petersburg,
(2001).

[16] Ferziger H. Bardina J. and Reynolds W. Improved subgrid models for
large eddy simulation. AIAA Paper, pages 80 – 1357, 1980.

[17] Peng S. Hybrid rans-les modeling based on zero- and one- equation
models for turbulent flow simulation. pages 1159 – 1164. Proc. of 4th
Int. Symp. Turb. and Shear Flow Phenomena, 2005.

[18] Davidson L. and Dalstroem S. Hybrid rans-les: An approach to make les
applicable at high reynolds number. Int. J. of Comp. Fluid Dynamics,
19:415 – 427, 2005.

[19] Terracol M. Airframe noise prediction by mean of a zonal rans/les ap-
proach. pages 1165 – 1169. In: Proc. of 4th Int. Symp. Turb. and Shear
Flow Phenomena, 2005.

[20] Kniesner B. Kadavelil G. Basara B. Jakirlic S., Saric S. and Chaouat B.
Sgs modelling in les of wall-bounded flows using transport rans models:
from a zonal to a seamless hybrid les/rans method. pages 1057 – 1062.
Proc. of 6th Int. Symp. Turb. and Shear Flow Phenomena, 2007.

[21] Leschziner M. Temmerman L., Hadziabdec M. and Hanjalic K. A hybrid
two-layer urans-les approach for large-eddy simulation at high reynolds
numbers. Int. J. of Heat and Fluid, 26:173 – 190, 2005.

[22] Strelets M. Spalart P. R., Jou W. H. and Allmaras S. R. Comments on
the feasibility of les for wings and on a hybrid rans/les approach. pages
137 – 148. Advances in LES/DNS: Proc. of the first AFOSR Interna-
tional Conf. on DNS/LES, 1997.

[23] Spalart P.R. Detached-eddy simulation. Annu. Rev. Fluid Mech., 41:181
– 202, 2009.

210[24] Menter F. and Egorov J. Turbulence models based on the length-scale
equation. pages 941 – 946. Proc. of 4th Int. Symp. Turb. and Shear
Flow Phenomena, 2005.

[25] Davidson L. and Billson M. Hybrid les-rans using synthesized turbulent
fluctuations for forcing in the interface region. Int. J. of Heat and Fluid,
27:1028 – 1042, 2006.

[26] Abe K. and Miyata Y. An investigation of hybrid les/rans models for
predicting flow fields with separation. pages 1153 – 1158. Proc. of 4th
Int. Symp. Turb. and Shear Flow Phenomena, 2005.

[27] Pitsch H. Schlueter J. U. and Moin P. onsistent boundary conditions for
integrated les/rans simulations: Les outflow conditions. volume 3121,
pages 1 – 8. AIAA, 2002.

[28] Ducros F. Benerafa Y. and Sagaut P. Rans/les coupling using a forcing
term approach. pages 1141 – 1146. 4th Int. Symp. Turb. and Shear Flow
Phenomena, 2005.

[29] Shchukin E. Kornev N., Taranov A. and Kleinsorge L. Development
of hybrid urans-les methods for flow simulations in the ship stern area.
Ocean Engineering, 38(16):1831 – 1838, 2011.

[30] Durbin P. Near-wall turbulence closure modeling without damping func-
tions. J. Theor. Comput. Fluid Dyn, 1991.

[31] Werner H. and Wengle H. Large-eddy simulation of turbulent flow over
and around a cube in a plate channel. 8th Symposium on Turbulent
Shear Flows, 1991.

[32] Fureby C. Huuva T. Alin N., Bensow R. and Svennberg U. Current
capabilities of des and les for submarines at straight course. J. Ship
Research, 54:184 –196, 2010.

[33] Guminer P.K. Thermoregulation studying in hygiene and work physiol-
ogy. Medgiz, Moscow, page 147, 1962.

[34] Novieto D. Zhang Y. and Yingchun J. Human environmental heat trans-
fer simulation with cfd the advances and challenges. pages 2162 – 2168.
Eleventh International IBPSA Conference, Glasgow, Scotland, 2009.

[35] Cherunova I.V. New technologies of heat protection wear design, (in
russian). Technologies of textile industry, pages 51 – 54, 2009.

211

[24] Menter F. and Egorov J. Turbulence models based on the length-scale
equation. pages 941 – 946. Proc. of 4th Int. Symp. Turb. and Shear
Flow Phenomena, 2005.

[25] Davidson L. and Billson M. Hybrid les-rans using synthesized turbulent
fluctuations for forcing in the interface region. Int. J. of Heat and Fluid,
27:1028 – 1042, 2006.

[26] Abe K. and Miyata Y. An investigation of hybrid les/rans models for
predicting flow fields with separation. pages 1153 – 1158. Proc. of 4th
Int. Symp. Turb. and Shear Flow Phenomena, 2005.

[27] Pitsch H. Schlueter J. U. and Moin P. onsistent boundary conditions for
integrated les/rans simulations: Les outflow conditions. volume 3121,
pages 1 – 8. AIAA, 2002.

[28] Ducros F. Benerafa Y. and Sagaut P. Rans/les coupling using a forcing
term approach. pages 1141 – 1146. 4th Int. Symp. Turb. and Shear Flow
Phenomena, 2005.

[29] Shchukin E. Kornev N., Taranov A. and Kleinsorge L. Development
of hybrid urans-les methods for flow simulations in the ship stern area.
Ocean Engineering, 38(16):1831 – 1838, 2011.

[30] Durbin P. Near-wall turbulence closure modeling without damping func-
tions. J. Theor. Comput. Fluid Dyn, 1991.

[31] Werner H. and Wengle H. Large-eddy simulation of turbulent flow over
and around a cube in a plate channel. 8th Symposium on Turbulent
Shear Flows, 1991.

[32] Fureby C. Huuva T. Alin N., Bensow R. and Svennberg U. Current
capabilities of des and les for submarines at straight course. J. Ship
Research, 54:184 –196, 2010.

[33] Guminer P.K. Thermoregulation studying in hygiene and work physiol-
ogy. Medgiz, Moscow, page 147, 1962.

[34] Novieto D. Zhang Y. and Yingchun J. Human environmental heat trans-
fer simulation with cfd the advances and challenges. pages 2162 – 2168.
Eleventh International IBPSA Conference, Glasgow, Scotland, 2009.

[35] Cherunova I.V. New technologies of heat protection wear design, (in
russian). Technologies of textile industry, pages 51 – 54, 2009.

211

[29] �Kornev N., Taranov A., Shchukin E., and Kleinsorge L. Development of  
hybrid urans-les methods for flow simulations in the ship area. Ocean Engineering, 
38(16):1831–1838, 20111.

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

202 

Bibliography

[24] Menter F. and Egorov J. Turbulence models based on the length-scale
equation. pages 941 – 946. Proc. of 4th Int. Symp. Turb. and Shear
Flow Phenomena, 2005.

[25] Davidson L. and Billson M. Hybrid les-rans using synthesized turbulent
fluctuations for forcing in the interface region. Int. J. of Heat and Fluid,
27:1028 – 1042, 2006.

[26] Abe K. and Miyata Y. An investigation of hybrid les/rans models for
predicting flow fields with separation. pages 1153 – 1158. Proc. of 4th
Int. Symp. Turb. and Shear Flow Phenomena, 2005.

[27] Pitsch H. Schlueter J. U. and Moin P. onsistent boundary conditions for
integrated les/rans simulations: Les outflow conditions. volume 3121,
pages 1 – 8. AIAA, 2002.

[28] Ducros F. Benerafa Y. and Sagaut P. Rans/les coupling using a forcing
term approach. pages 1141 – 1146. 4th Int. Symp. Turb. and Shear Flow
Phenomena, 2005.

[29] Shchukin E. Kornev N., Taranov A. and Kleinsorge L. Development
of hybrid urans-les methods for flow simulations in the ship stern area.
Ocean Engineering, 38(16):1831 – 1838, 2011.

[30] Durbin P. Near-wall turbulence closure modeling without damping func-
tions. J. Theor. Comput. Fluid Dyn, 1991.

[31] Werner H. and Wengle H. Large-eddy simulation of turbulent flow over
and around a cube in a plate channel. 8th Symposium on Turbulent
Shear Flows, 1991.

[32] Fureby C. Huuva T. Alin N., Bensow R. and Svennberg U. Current
capabilities of des and les for submarines at straight course. J. Ship
Research, 54:184 –196, 2010.

[33] Guminer P.K. Thermoregulation studying in hygiene and work physiol-
ogy. Medgiz, Moscow, page 147, 1962.

[34] Novieto D. Zhang Y. and Yingchun J. Human environmental heat trans-
fer simulation with cfd the advances and challenges. pages 2162 – 2168.
Eleventh International IBPSA Conference, Glasgow, Scotland, 2009.

[35] Cherunova I.V. New technologies of heat protection wear design, (in
russian). Technologies of textile industry, pages 51 – 54, 2009.

211[36] Palella B.I. Alfano1 F. R. and G. Riccio. Thermode 193: an enhanced
stolwijk thermoregulation model of the human body. page 8. 7th Interna-
tional Thermal Manikin and Modelling Meeting, University of Coimbra,
2008.

[37] Smith T. Anatomie-atlas: Aufbau und Funktionsweise des menschlichen
Körpers. Dorling Kindersley, Deutschland, page 448, 2011.

[38] Herman I.P. Physics of a human body. Springer, 860p., 2007.

[39] Zhavoronkov A. Grivina I. and Postnikov N. Pecularities of develop-
ments of imitation model ”human-clothes-medium” (in russian) textile
industry. 3:36 – 37, 1988.

[40] Alexiades V. and Solomon A.D. Mathematical modeling of melting and
freezing processes: Basic concepts & applications. Taylor & Francis,
1992.

[41] Cherunova I. Theoretical foundations of complex design of special clothes
for protection at high temperatures conditions. PhD thesis, South Rus-
sian University of Economics and Service, Shakhty, 2008.

[42] Vitte N.K. Thermal exchange and its hygienic value. State medical
publishing, Kiev, page 145, 1956.

[43] www.hohenstein.de.

[44] Brink I. and Lebedeva E. Investigation of wind influence on packages of
heat protecting cloth. Textile Industry, 3:34–36 (in Russian), 2005.

[45] Menter F.R. Zonal two equation k-! turbulence models for aerody-
namic flows. AIAA 93-2906, 24th Fluid Dynamics Conference, Orlando,
Florida, 1993.

212

[46]  �Ginevsky A.S., Vlasov Ye.V., Karavosov R.K., 2004, Acoustic control of  turbulent 
jets, Springer, 232 p.

[47] ��Kornev N., Zhdanov V. and Hassel E. (2008) Study of  scalar macro- and 
microstructures in a confined jet, Int. Journal Heat and Fluid Flow, vol. 29/3, 
665–674.

[48]  �Frick P., Turbulence, Models and Methods, Lecture course, Perm State University, 
Vol.~2, pp.~138, 1999.

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

203 

Index

Index

"-Equation, 143

a-posteriori test, 160
a-priori test, 160
alternating direction implicit, 49
amplification of the vorticity, 84
artificial viscosity, 33
autocorrelation function, 102

backward difference scheme, 28
Biot-Savart law, 83
block structured grids, 75
body forces, 18
boundary conditions, 24, 26
Boussinesq hypothesis, 132
buffer layer, 99

central difference scheme, 28
collocated grid, 41
constant of Karman, 99
continuity equation, 17
convective acceleration, 23
correlation function, 102
Courant Friedrich Levy criterion, 37
Crank-Nicolson scheme, 31
cross stress, 158, 159

density, 25
Detached Eddy Simulation, 163, 164
Direct Numerical Simulation, 123
Dirichlet condition, 26, 48
dissipation, 139
dissipation range, 120
dissipation rate, 117
Dynamic Smagorinsky Model, 154

energy containing range, 120
energy production, 117
ensemble averaged quantity, 102
experiment of Reynolds, 89
explicit scheme, 31
explicit time advance, 39

Finite Volume Method, 55
folding, 85
forward difference scheme, 28
Fourier law, 25
fractional step methods, 50
friction velocity, 95
Friedman-Keller problem, 138

Galilean invariance, 159

heat conduction coefficient, 26
heat conduction equation, 25, 26
heat flux, 25
heat sources, 25
homogeneous turbulence, 102
hybrid URANS-LES methods, 163

implicit scheme, 31
inertial subrange, 119, 120
inner energy balance equation, 25
integral length, 102
isotropic turbulence, 102

k - " Model, 141
k-Equation, 141
Kelvin Helmholtz instability, 91
Kolmogorov first similarity hypothe-

sis, 118

213

"-Equation, 141
a-posteriori test, 158
a-priori test, 158
alternating direction implicit, 49
amplification of the vorticity, 81
artificial viscosity, 33
autocorrelation function, 101

backward difference scheme, 27
Biot-Savart law, 80
block structured grids, 74
body forces, 17
boundary conditions, 24, 26
Boussinesq hypothesis, 144
buffer layer, 98

central difference scheme, 28
collocated grid, 41
constant of Karman, 97

continuity equation, 17
convective acceleration, 24
correlation function, 101
Courant Friedrich Levy criterion, 37
Crank-Nicolson scheme, 31
cross stress, 157, 158

density, 25
Detached Eddy Simulation, 161, 163
Direct Numerical Simulation, 123
Dirichlet condition, 26, 48
dissipation, 139
dissipation range, 120
dissipation rate, 117
Dynamic Smagorinsky Model, 152
energy containing range, 120
energy production, 117
ensemble averaged quantity, 100
experiment of Reynolds, 87

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Join American online
 LIGS University! 

▶▶ enroll by December 18th, 2014
▶▶ start studying and paying only in 2015 

▶▶ save up to $ 1,200 on the tuition!

▶▶ Interactive Online education
▶▶ visit ligsuniversity.com to find out more!

Interactive Online programs
BBA, MBA, MSc, DBA and PhD 

Special Christmas offer: 

Note: LIGS University is not accredited by any 
nationally recognized accrediting agency listed 
by the US Secretary of Education. 
More info here. 

http://s.bookboon.com/LIGS


Lectures on computational fluid dynamics

204 

Index

explicit scheme, 31
explicit time advance, 38

Finite Volume Method, 55
folding, 83
forward difference scheme, 28
Fourier law, 25
fractional step methods, 51
friction velocity, 94
Friedman-Keller problem, 138

Galilean invariance, 157

heat conduction coefficient, 26
heat conduction equation, 25, 26
heat flux, 25
heat sources, 25
homogeneous turbulence, 101
hybrid URANS-LES methods, 160

implicit scheme, 31
inertial subrange, 119, 120
inner energy balance equation, 25
integral length, 102
isotropic turbulence, 103

k - " Model, 139
k-Equation, 139
Kelvin Helmholtz instability, 89
Kolmogorov first similarity hypothesis, 117
Kolmogorov hypothesis of local isotropy, 118
Kolmogorov law, 120
Kolmogorov scale, 119
Kolmogorov second similarity hypothesis, 119
Kolmogorov theory K-62, 123
Kolmogorov theory K41, 114
kurtosis, 110

lambda structures, 92
laminar, 81

Large Eddy Simulation, 123, 147

Lax-Wendroff scheme, 53

Leonard stress, 157, 158

LES equations, 149

LES filtering, 147

limiters function, 40

local acceleration, 24

logarithmic region, 98

material substantial derivative, 24

mixed schemes, 39

mixed similarity models, 156

morphing grids, 75

Navier Stokes Equation, 21, 79

Neumann condition, 26, 48

Newton hypothesis, 22

Newtonian liquids, 22

normal stress, 21

overset or chimera grids, 75

pairing, 89

PISO algorithm, 70

Poisson equation, 39

Prandtl mixing length model, 96

pressure, 23

pressure correction method, 64

probability density function, 109

properties of Reynolds averaging, 128

properties of surface forces, 19

properties of surface forces, 19

pseudodissipation, 139

Reynolds averaged Navier Stokes, 123

Reynolds averaging, 100

Reynolds stress, 131, 157, 158

Reynolds Stress Model, 134

Richardson poem, 86

Download free eBooks at bookboon.com



Lectures on computational fluid dynamics

205 

Index

scale similarity models, 156
shear stress, 21
SIMPLE method, 65
SIMPLEC algorithm, 73
skewness, 110
Smagorinsky model, 152
Spalart Allmares (SA model), 132
specific heat capacity, 25
splitting according to physical processes, 51
staggered grid, 41
streaks, 92, 94
structure function, 109
structured grids, 74
subgrid stress (SGS), 150
subgrid viscosity, 151
surface forces, 19

Taylor microscale, 107

time-advancing, 40

turbulence, 81

turbulent kinematic viscosity, 132

turn over time, 118

TVD schemes, 41

unstructured grids, 75

upwind difference scheme, 28

Van Driest constant, 98

viscous sublayer, 96

vortex cascado, 116

vortex reconnection, 86

vorticity, 82

vorticity transport equation, 81

wake region, 98

Download free eBooks at bookboon.com


