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List Of Symbols
A Area
b width
B.C. buckling coefficient
D diameter
E modulus of elasticity, Young’s modulus
fS shearing factor
F external force
F.S. factor of safety
G modulus of rigidity
h height
Iz, Iy second moment, or moment of inertia, of the area A respect to the z or y axis
Jo polar moment of inertia of the area A
L length
DL elongation of bar
M bending moment, couple
N normal or axial force
Qz, Qy first moment of area with respect to the z or y axis
rz radius of gyration of area A with respect to the z axis
R radius 
Ri reaction at point i
s length of centreline
T torque
t thickness
∆T change of temperature
u strain energy density
U strain energy
V volume
V transversal force
w uniform load
y(x) deflection

A area bounded by the centerline of wall cross-section area
α coefficient of thermal expansion (in chapter 2)
α parameter of rectangular cross-section in torsion
γ shearing strain
ε strain
ϕ angle of twist
Θi slope at point i
τ shearing stress

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part II

10 

List Of Symbols

τall allowable shearing stress
σ stress or normal stress
σall allowable normal stress
σmax maximum normal stress
σMises von Misses stress
σN normal or axial stress
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Preface

Preface
This book presents a basic introductory course to the mechanics of materials for students of mechanical 
engineering. It gives students a good background for developing their ability to analyse given problems 
using fundamental approaches. The necessary prerequisites are the knowledge of mathematical analysis, 
physics of materials and statics since the subject is the synthesis of the above mentioned courses. 

The book consists of six chapters and an appendix. Each chapter contains the fundamental theory and 
illustrative examples. At the end of each chapter the reader can find unsolved problems to practice their 
understanding of the discussed subject. The results of these problems are presented behind the unsolved 
problems.

Chapter 1 discusses the most important concepts of the mechanics of materials, the concept of stress. 
This concept is derived from the physics of materials. The nature and the properties of basic stresses, 
i.e. normal, shearing and bearing stresses; are presented too.

Chapter 2 deals with the stress and strain analyses of axially loaded members. The results are generalised 
into Hooke’s law. Saint-Venant’s principle explains the limits of applying this theory. 

In chapter 3 we present the basic theory for members subjected to torsion. Firstly we discuss the torsion 
of circular members and subsequently, the torsion of non-circular members is analysed.

In chapter 4, the largest chapter, presents the theory of beams. The theory is limited to a member with 
at least one plane of symmetry and the applied loads are acting in this plane. We analyse stresses and 
strains in these types of beams.

Chapter 5 continues the theory of beams, focusing mainly on the deflection analysis. There are two 
principal methods presented in this chapter: the integration method and Castigliano’s theorem.

Chapter 6 deals with the buckling of columns. In this chapter we introduce students to Euler’s theory in 
order to be able to solve problems of stability in columns.

In closing, we greatly appreciate the fruitful discussions between our colleagues, namely prof. Pavel 
Élesztős, Dr. Michal Čekan. And also we would like to thank our reviewers’ comments and suggestions.

Roland Jančo
Branislav Hučko
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Bending of Straight Beams

4	 Bending of Straight Beams
4.1	 Introduction

In the previous Chapters we have discussed axial loading by vector analysis, i.e. the vectors of applied 
forces and moments coincide with the direction of the member’s axes. Now we are going to investigate 
transverse loading, i.e. the applied loads cause that some of the internal force and moment vectors to be 
perpendicular to the axis of the member, see Fig. 4.1. The presented bar in the clamp, used for gluing 
sheets of plywood together, is subjected to the bending moment M = Fd and the normal force N = F The 
cantilever beam is subjected to the bending moment M(x) = Fx and the shear or transverse force V(x) = Fx. 
In these cases, where perpendicular internal moment vectors are contained, the members are subjected 
to bending. Our discussion will be limited to the bending of straight prismatic members with at least 
one plane of symmetry at the cross-sections, see Fig. 4.2. The applied loads are exerted in the plane of 
symmetry, see Fig. 4.3. Under these limitations we will analyse stresses and strains in members subjected 
to bending and subsequently discuss the design of straight prismatic beams.

 
Fig. 4.2
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Fig. 4.3

4.2	 Supports and Reactions

 
Fig. 4.4 Basic supports
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As we mentioned before in a step-by-step approach, the first step is to draw the free body diagram, where 
the removed supports are replaced by corresponding reactions. The four basic supports and reactions 
are represented in Fig. 4.4.

The next step in the step-by step solution is to calculate the reactions using equilibrium equations. If 
the bending problem is in a plane, then the beam has three degrees of freedom (DOFs). To prevent 
motion of the beam, the supports must fix all three DOFs, see Fig. 4.5. Thus we obtain the equilibrium 
equations as follows

� (4.1)
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Fig. 4.5 Free-body-diagrams

4.3	 Bending Moment and Shear Force

 

Fig. 4.6

The method of section is applied for determining the distribution functions of bending moments and 
shear forces. The positive orientation of shear force is explained in Section 1.2, see Fig. 1.7. The positive 
sign in the bending moment depends on the deformation. Let us consider only a bending moment 
exerted in the arbitrary section of a beam, see Fig. 4.6. This bending moment can be replaced with the 
moment couple . These force systems are equivalent. The upper force  is the compressive 
force and the lower force  is tensile. Thus the positive bending moment causes a compression in the 
upper portion of the beam and simultaneously causes a tension in the lower portion of beam, see Fig. 
4.7 and the negative bending moment results in an opposite beam deformation. The effects of positive 
and negative bending moments on beam deformations are also presented in Fig. 4.7.
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Fig. 4.7

4.4	 Shear and Bending Moment Diagrams

 
Fig. 4.8

For determining and drawing the shear force, or simple shear and bending moment diagram, we must 
strictly apply the step-by-step solution, for more details about this approach see Section 1.6. Let us explain 
the whole procedure on a simply supported beam, see Fig. 4.8(a). In this beam we have two portions, 
namely portion BC which we denote as the first and portion CD which we denote as the second. Drawing 
the free body diagram and solving the corresponding equilibrium equations we get the reactions, see  
Fig. 4.8(b). Then, cutting the beam at an arbitrary point QQ from the left side to the right one for portion 
BC, see Fig. 4.9(a) we draw this separated portion BQ and replace the effect of the removed part by adding 
positive internal forces in section Q1Q1, see Fig. 4.9(b) and thus get the following equilibrium equations

� (4.2)

Solving for equations (4.2) we get
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� (4.3)

Next, cutting portion CD at an arbitrary point Q2 from the right side to the left, see Fig 4.9(c), we get

� (4.4)

or

� (4.5)

Fig. 4.9 

Then we can draw the shear and bending moment diagrams, see Fig. 4.9(d) for the shear force and for 
the bending moment, Fig. 4.9(e). 
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A great disadvantage when using the above mentioned approach is the use of two functions for the shear 
forces and two functions for the bending moments. Considering the beam with ten different portions, 
then we will get ten different functions for the given variables! To overcome this inconvenience, we 
can apply singularity functions for determining the shear and bending moment diagrams. The use of 
singularity functions makes it possible to represent the shear V and the bending moment M by a single 
mathematical expression. Lets again consider the previous problem of the simply supported beam, see 
Fig. 4.8. Instead of applying two cuts in opposite directions we will now assume the same direction for 
both cuts. Thus we get the following shear and bending moment functions

� (4.6)

and

� (4.7)
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By simple comparison of equations (4.6) and (4.7) the presented functions can be expressed by the 
following representations

� (4.8)

and we specify, that the second term in the above equation will be included into our computation 
if , and ignored if  In other words, the brackets  should be replaced by ordinary 
parentheses  when  and by zero if 

The functions  are called the singularity function and by their definition we have

� (4.9)

 Fig. 4.10

The graphical representation of the constant, linear and quadratic functions are presented in Fig. 4.10. 
The basic mathematical operations with singularity functions, such as integrations and derivations, are 
exactly the same as with ordinary parenthesis, i.e.

�  (4.10)
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Fig. 4.11

 

Fig. 4.12

Now when the beam is subjected to several loads, we can then divide them into individual basic loads 
using the principle of superposition. Thus the shear and bending moment at any point of the beam 
can be obtained by adding up the corresponding functions associated with each of the basic loads and 
reactions. The singularity functions for simple loads are represented in Fig. 4.11. 
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In the following problem Fig. 4.12, an illustrative application of the singularity functions can be seen. 
Our task is to find the distribution functions of shear and bending moment. At first we divide the applied 
load into basic loads according to Fig. 4.11 and then apply the principle of superposition to get

 
Fig. 4.13

The last two terms in the above equations represent the distributed load that does not finish at the end 
of beam as the corresponding singularity function assumes. The presented function in Fig. 4.11 is the 
open-ended one. Therefore we must modify it by adding two equivalent open-ended loadings. To clarify 
this statement, see Fig. 4.13.

4.5	 Relations among Load, Shear, and the Bending Moment

 
Fig. 4.14
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Sometimes the determination of internal forces may be cumbersome when several different types of 
loading are applied on to the beam. This can be greatly facilitated if some relations between load, shear, 
and bending moment exist. Therefore, let us now consider the simply supported straight beam subjected 
to a distributed load w, see Fig. 4.14. We detach portion DD' of the beam by two parallel sections and 
draw the free body diagram of the detached portion. The effects of the removed parts are replaced 
by internal forces at both points, namely the bending moment M and the shear force V at D, and the 
bending moment  and the shear force  at D’. This detached portion has to be 
in equilibrium, then we can write the equilibrium equations as follows

�  (4.11)

after some mathematical manipulations we get

�  (4.12)
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approaching  to zero, we get

�  (4.13)

These relations between the applied load, shear force, and bending moment are known as Zhuravsky’s 
theorem (D.I. Zhuravsky, 19th century). We should also note that the sections were made from the left to 
the right side. If we make the sections in the opposite direction, the results will have the opposite sign. 
Therefore the complete Zhuravsky theorem can be stated as follows

�  (4.14)

4.6	 Definition of Normal and Shearing Stresses

Let us consider the cantilever beam BC subjected to an applied force at its free end, see Fig. 4.15. 
Applying the step-by-step solution, we get the shear function and bending moment function as 

 respectively. These two functions represent the combined load on the 
cantilever beam. The bending moment  represents the effect of the normal stresses in the cross-
section, while the shear force  represents the effect of the shearing stresses. This allows us to simplify 
the determination of the normal stresses for pure bending. This is a special case when the whole beam, 
or its portion, is exerted on by only the bending moment, see the examples in Fig. 4.16.

 
Fig. 4.15
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Fig. 4.16

Firstly, let us consider the effect of the pure bending moment . Let us consider the cantilever beam 
with a length L subjected to the moment couple M, see Fig. 4.16(b). The corresponding bending moment 

=  obtained by the method of section. This bending moment represents the resultant of all 
elementary forces acting on this section, see Fig. 4.17. For simplicity the bending moment considered 
is positive. Both force systems are equivalent, therefore we can write the equivalence equations 
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�  (4.15)

 
Fig. 4.17

The rest of the equivalence equations can be obtained by setting the sum of the y components, z 
components, and moments about the x axis to be equal to zero. But these equations would involve only 
the components of shearing stress and the components of the shearing stress are both equal to zero! As 
one can see, the determination of the normal stress is a statically indeterminate problem. Therefore it 
can be obtained only by analysing the deformation of the beam.

Let us analyse the deformation of the prismatic straight beam subjected to pure bending applied in the plane 
of symmetry, see Fig 4.18. The beam will bend uniformly under the action of the couples M and M', but it 
will remain symmetric with respect to the plane of symmetry. Therefore each straight line of undeformed 
beam is transformed into the curve with constant curvature, i.e. into a circle with a common centre at C. The 
deformation analysis of the symmetric beam is based on the following assumptions proven by experiments:
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Fig. 4.18

•	 transverse sections remain plane after deformation and these sections pass through a 
common point at C;

•	 due to uniform deformation, the horizontal lines are either extended or contracted;
•	 the deformations of lines are not depend on their positions along the width of the cross-

section, i.e. the stress distribution functions along the cross-sectional width are uniform;
•	 the material behaviour is linear and elastic, satisfying Hooke law, having the same response 

in tension and compression.

 
Fig. 4.19
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Since the vertical sections are perpendicular to the circles after deformation, we can then conclude that 
 Subsequently, due to the uniform deformations along the cross-

sectional width, we get  Then, at any point of a member in pure bending, 
only the normal stress component  is exerted. Therefore at any point of a member in pure bending, 
we have a uniaxial stress state. Recalling that, for  lines BD and B’D’ decrease and increase 
in length, we note that the normal strain  and the corresponding normal stress  are negative in the 
upper portion of the member (compression) and positive in the lower portion (tension), see Fig. 4.19.

 
Fig. 4.20
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From the above it follows that there must exist a neutral line (N.L.) with zero values of  and . This 
neutral line represents the neutral surface (N.S) due to the uniform deformations along the cross-sectional 
width. The neutral surface intersects the plane of symmetry along the circular arc of GH, see Fig. 4.20(a), 
and intersects the transverse section along the straight line known as the neutral axis (N.A.), see  
Fig 4.20(b).

Denoting the radius of the neutral arc GH by ρ, θ becomes the central angle corresponding to GH. 
Observing that the initial length L of the undeformed member is equal to the deformed arc GH, we have

�  (4.16)

now consider the arc JK located at a distance y from the neutral surface, the length L’ can be expressed 
as follows

�  (4.17)

Since the initial length of the arc JK is equal to L, then its deformation is

�  (4.18)

and we can calculate the longitudinal strain  as follows

�  (4.19)

The negative sign is due to the fact that we have assumed the bending moment to be positive and thus, 
the beam to be concave upward. We can now conclude that the longitudinal strain  varies linearly 
with distance from the neutral surface. It is only natural that the strain  reaches its absolute maximum 
value at the furthest distance from the neutral surface , thus we get

�  (4.20)

Solving equation (4.20) for  and substituting into equation (4.19) we obtain

�  (4.21)

This result is only qualitative though, due to the fact that, until now, we have not located the neutral 
surface or neutral axis. On the other hand, we can determine the normal stress distribution function along 
the vertical axis y so we can multiply equation (4.21) by Young’s modulus E, since we are considering 
the linear elastic response, thus

� (4.22)
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Fig. 4.21

This result shows that, in the elastic region, the normal stress varies linearly with the distance from the 
neutral surface as well, see Fig. 4.21. 

But still the location of the neutral surface and the maximum absolute value  are unknown! 
Therefore we recall equations (4.15) and substitute for  into the first relation and get

 � (4.23)

From which it follows that

�  (4.24)

The last equation shows that the first moment must be equal zero, or in the sense of statics, that the 
neutral axis passes through the centre of the cross-section. 

Now we can recall the third equation in (4.15), after substituting for  we obtain

�  (4.25)

The integral  represents the moment of inertia, or the second moment of the cross-section with 
respect to the neutral axis, that coincides with the z axis. For more details about moments of inertia, see 
Appendix A. Denoting the moment of inertia by I, we have

�  (4.26)

After substituting for  we can obtain the formula for normal stress  at any distance from the 
neutral axis as follows

�  (4.27)
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Returning to equation (4.26), the ratio  depends upon the geometry of the cross-section, thus this 
can be any other cross-sectional characteristic which is known as the section modulus S

� (4.28)

Substituting for the section modulus S into equation (4.26) we get

�  (4.29)

Finally we return to the second equation in (4.15) and substitute for , to obtain

�  (4.30)

From which it follows that

�  (4.31)

The above equation represents the product of inertia and it must be equal to zero. This means that the 
neutral axis (z axis) and y axis are principal axes of inertia, for more details see Appendix A. 

The deformation of a member as a result of a bending moment  is usually measured by the curvature 
of the neutral surface. From mathematics the curvature is reciprocal to the radius of curvature ρ, and it 
can be derived from equation (4.20) as follows

�  (4.32)

Recalling Hooke law  and equation (4.26) we get

�  (4.33)

 
Fig. 4.22
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Secondly, let us consider the effect of the shear force . As we mentioned before, the shear force  
represents the effect of the shearing stresses in the section. Let us consider the transversally loaded 
cantilever beam with a vertical plane of symmetry from Fig. 4.15. Fig. 4.22 graphically represents the 
distributions of elementary normal and shear forces on any arbitrary section of the cantilever beam. These 
elementary forces are equivalent to the bending moment  and the shear force  
Both systems of forces are equivalent, therefore we can write the equations of equivalence. Three of them 
involve the normal force  only and have already been discussed in the previous subsection, see 
equations (4.15). Three more equations involving the shearing forces  and  can now be 
written. But one of them expresses that the sum of moments about the x axis is equal to zero and it can 
be dismissed due to the symmetry with respect of the xy plane. Thus we have 

�  (4.34)

 
Fig. 4.23
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Fig. 4.24

The first equation above indicates that the shearing stress must exist in the transverse section. The 
second equation shows that the average value of the horizontal shearing stress  is equal to zero. But 
this statement does not mean that the shearing stress  is zero everywhere. Again as one can see, the 
determination of the shearing stress is a statically indeterminate problem. The following assumptions 
about the distribution of the shearing stress have been formulated by Zhuravsky:

•	 the direction of shearing stresses are parallel to the shear force;
•	 the shearing stresses acting on the surface at the distance y1 from the neutral surface are 

uniform, see Fig. 4.23.

The existence of shearing can be proven by the shear law. Let us build our cantilever beam from two 
portions that are clamped together, see Fig. 4.24(a). The cantilever beam is divided into two portions 
at the neutral surface GH. After applying a load F each portion will slide with respect to each other, 
see Fig. 4.24(b). In contrast, the free end of the solid cantilever beam is smooth after the deformation; 
see Fig. 4.24(c). To obtain the same response, i.e. the smooth end for the clamped cantilever beam, we 
must insert additional forces between portions to conserve the constant length of both arches GH and 
G'H'; see Fig. 4.24(d). This represents the existence of shearing stresses on the neutral surface and the 
perpendicular cross-section (along the neutral axis).
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Fig. 4.25

For determining the shearing stress at a distance y1 from the neutral surface, we can detach a small 
portion C'D'DC with length dx at the distance xx from the free end of the cantilever beam, see Fig. 
4.25. The width of the detached portion at the vertical distance y1 is denoted by b. Thus we can write 
the equilibrium equation in the x direction for the detached portions as follows

�  (4.35)

The normal stress at point B can be expressed by  and its increment at point B' can be 
expressed as  see Fig. 4.25(b), after substituting into equation (4.35) we have

�  (4.36)

subsequently we can now get the shearing stress  at the distance y1 from the neutral axis

�  (4.37)

or

�  (4.38)
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The shear force is determined by the Zhuravsky theorem, i.e.  and the first moment of 
the face C'D' is calculated by  The negative sign in the above equations represents the 
opposite orientation of the positive shear force on the face C'D' to the orientation of the y axis. Thus 
satisfying our positive definition of the shear force we can write

 
Fig. 4.26

�  (4.39) For the rectangular cross-section of the beam with the dimensions bxh, see Fig. 
4.26, we have

� (4.40)

knowing that  we can finally formulate the shearing stress distribution function

� (4.41)
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Fig. 4.27

This equation represents a parabolic distribution of the shearing stresses along the vertical axis with 
zero values at the top and bottom. The maximum value of the shearing stress, i.e. , is at 
the neutral surface, see Fig. 4.26.

If we apply equations (4.39) for determining the distribution of shearing stresses  along the vertical 
axis  of W-beams (wide flange beam) or S-beams (standard flange beams), we will get the distribution 
function presented in Fig. 4.27. The discontinuity of the distribution function is caused by the jump in 
width at the connection of the flange to the web. 

 
Fig. 4.28 continued

For determining the shearing stress  in the flange of W-beams or S-beams we need to detach the 
portion , see Fig. 4.28(a). Again we can apply the above mentioned approach and we can write 
the equilibrium equation for the detached portion, in the  direction, as follows

� (4.42)

Solving this equation we have

� (4.43)
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or

� (4.44)

Then substituting for the first moment of the area   we get

� (4.45)

 

Fig. 4.28 end

This equation shows that the shearing stress  is linearly dependent on the width of the detached 
portion, namely on , see Fig. 4.28(b).

4.7	 Design of Straight Prismatic Beams

The design of straight prismatic beams is usually controlled by the maximum absolute value of the 
bending moment  in the beam. This value can be found from the bending moment diagram. The 
point with the absolute maximum value of bending moment  is known as the critical point of a 
beam. At the critical point the maximum normal stress can be calculated as follows

safe design requires that the strength condition  be satisfied. From this condition we can 
determine the minimum section modulus

� (4.46)
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Fig. 4.29

Then we need to check our design in respect to the absolute maximum value of the shear force  
obtained from the shear diagram. The reason is simple; the maximum absolute value of the normal 
stress is either on the top or the bottom of the section considered and the absolute value of the shearing 
stress is on the neutral axis, see Fig. 4.29. Therefore the shear strength condition  must be 
satisfied, where

� (4.47)
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 Fig. 4.30

The last step is more complicated, mainly for W-beams. If we draw the distribution functions of the 
normal and shearing stresses, see Fig. 4.30, the critical point will be at the connection between the flange 
and the web. At point , combined loading exists with relatively high values of both stresses. Therefore 
we need to discuss the strength criterion of combined loading.

Fig. 4.31 Fig. 3.32 Fig. 3.33

For deriving the strength criterion of combined loading, we first have to analyse the stress transformation. 
For simplicity let us consider a plane stress state at any arbitrary point  defined by two normal stresses  

 and one shearing component , see Fig. 4.31. The plane μ is characterised by stress components  
and the plane  is characterised by stress components . These planes correspond to the  
coordinate system. Now our task is to determine the normal and shearing stresses at any arbitrary plane  
η, see Fig. 4.32. Making a section by plane η we get the triangle from the unit square, see Fig. 4.33. This 
triangle must also be in equilibrium and by inserting the normal stress σ and the shearing stress  τ into 
the plane η we can write the equilibrium equations

� (4.48)
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After some mathematical manipulation we obtain

� (4.48)

Applying the following relations

we have

� (4.50)

These equations show that the stress transformation depends upon the angle θ and are independent to 
the material properties. Let us modify equations (4.50) to give

� (4.51)

Squaring both equations and then adding them together we get

� (4.52)

 
Fig. 4.34
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The above equation represents a circle defined by its centre at  and with a radius of 
 in the space of σ, τ. This circle is the well-known Mohr’s circle. The graphical 

representation of Mohr’s circle is presented in Fig. 4.34. The physical meaning of Mohr’s circle is that 
each point of this circle represents a plane characterised by the stresses σ, τ. Denoting the average stress 
as  we get

� (4.53)

 
Fig. 4.35
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The Mohr circle has four important points denoted by B, C, and D, see Fig. 4.35. Point A represents the 
plane which has the maximum normal stress  ; Point B represents the plane with minimum 
normal stress  and points C, D represent the planes with maximum shearing stress . 
Mathematically we have

� (4.54)

 
Fig. 4.36

The plane A contains the normal stress  and zero shearing stress. This plane is known as the principal 
plane and the corresponding normal stress as the principal stress. Plane B is also a principal plane with 
a principal stress . Planes C, D are known as the planes of maximum shearing stresses. The position of 
plane μ in Mohr’s circle depends on the value of the corresponding normal stress σ and the orientation 
of the shearing stress τ. If the shearing stress tends to rotate the element in a clockwise manner, the 
point on Mohr’s circle corresponding to that face is located above the σ axis. If the shearing stress tends 
to rotate the element counterclockwise, the point on Mohr’s circle corresponding to that face is located 
below the σ axis, see Fig. 4.36. In our case (Fig. 3.32) the shearing stress  in the plane μ tends to 
rotate the element counterclockwise, so the plane is located below the σ axis, see Fig. 4.37. Pointing out 
the difference between the unit square and Mohr’s circle, the angle θ in the unit square is doubled in 
Mohr’s circle. Therefore we have to rotate the plane μ by 2θ in the same direction to get plane η, see 
Fig. 4.37. The principal planes A, B can be found graphically in the unit square by rotating the plane μ   
about the principal angle , see Fig. 4.38. The principal angle can be determined from the condition 
that there is no shearing stress on the principal plane. Thus we get

� (4.55)
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Fig. 4.37

 
Fig. 4.38

The experimental observations show that the failure of brittle materials depends strongly on the maximum 
normal stress, i.e. they fail suddenly without any yielding prior. Therefore it is natural that we compare 
the ultimate normal stress caused by simple uniaxial loading  to the maximum normal stress for a 
given spatial stress state, i.e. with the maximum principal stress 

� (4.56)

This equation is known as Coulomb’s criterion (Ch. Coulomb 1736–1806).
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Fig. 4.39

For ductile materials this criterion doesn’t apply therefore we must compare other quantities. Usually we 
compare the strain energies which is the energy accumulated in the body during the deformation process 
with no dissipation (no internal sources of energy). Firstly, we derive the strain energy for a member BC 
in tension, see Fig. 4.39. Since there is no dissipation during the deformation process, the strain energy 
U is equal to the work done by the external forces W 

� (4.57)
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Dividing equation (4.57) by the volume of the member V = AL we get the strain energy density

� (4.58)

The total strain energy density for multiaxial loading is equal to the sum of individual strain energy 
densities for each load. Then we can conclude that

� (4.59)

For the plane stress state we analogically get

� (4.60)

Substituting the equations of elasticity (2.10) into equation (4.60) results in 

� (4.61)

and in the terms of the principal stresses we obtain

� (4.62)

From the theory of elasticity, the total strain energy density can be decomposed additively in the 
volumetric and the distortion parts. The volumetric part  causes a volumetric change in the body and 
the distortion part  causes the body’s change in shape. Then

� (4.63)

Let us introduce the average value of principal stresses assuming the spatial stress state

and define that

� (4.64)
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Fig. 4.40

we can then make this decomposition graphically, see Fig. 4.40. From the drawing, it is clear that the stress 
 causes the volumetric change and the stresses  cause the shape of the body to change. For 

the plane stress state  and knowing that  we can derive the distortion energy density

� (4.65)

Considering the simple tensile test for which  and  applies at yield, then the distortion 
energy . The maximum distortion energy (Mises criterion), for plane stress, indicates 
that a given state of stress is safe as long as . Substituting the strain energy density from 
equation (4.65) we then get

� (4.66)

Considering a special case of the plane stress state defined by  we can derive 
the corresponding principal stresses as follows

� (4.67)

Then substituting the above equations into equation (4.66), we obtain

� (4.68)

Now we can apply Mises criterion for checking the connection between the flange and the web, see 
Fig. 4.29 and assuming a factor of safety F . S we get the allowable stress for a given material

� (4.69)

and finally we have

� (4.70)
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If our design satisfies Mises criterion (4.70) at the flange-web connection, then our design is considered 
to be safe.

4.8	 Examples, Solved and Unsolved Problems

Problem 4.1

 
Fig. 4.41

A beam with a circular cross-section acted on by a force F and bending moment M=FL seen in the Fig. 
4.41. Determine, and draw along its length, the internal moment M and transversal force V. Draw the 
stress distribution over the cross-section at the location of maximum bending moment and determine 
the von Mises stress at point 1, 2, 3, 4.

Solution

 
Fig. 4.42

x 0,L∈

The shaft consist of one portion (see Fig. 4.42), which has a uniform cross-section area, constant internal 
bending moment, and constant transversal load. See the free body diagram in Fig. 4.43, from which we find

iQM 0 :  M(x) + M Fx = 0   M(x) M Fx= + ⇒ = − −∑

M(x) FL Fx F (L x)= − − = − + � (a)

ixF 0 :  N(x)  = 0=∑

iyF 0 :  V(x) F   0    V(x) F= − = ⇒ =∑ � (b)
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Fig. 3.43

The maximum internal moment in the beam is M = 2FL at x = L and the transverse load is contant V = 
F along the length of the beam in Fig. 4.44. 

Moment of inertia about the neutral axis is

 

Maximum bending stress. The maximum bending stress occurs at the point farthest away from the neutral 
axis. This is at the top (point 2) and bottom (point 4) of the beam c = D/2. Thus,
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Fig. 4.44

smax is the maximum absolute value from Eq. (a), which is located at x = L and we get

The maximum shear stress occurs at the neutral axis for a circular cross-section which is

Graphically, the bending stress and shearing stress are shown in Fig. 4.45. Von Mises criterion says

� (c)

Fig. 4.45 

The Mises stress at point 1 and 3 in Fig. 4.45 is the same, because from the diagram in the Fig. the 
bending stress is s = 0 and the shearing stress is at its maximum t = tmax, which is 
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The Mises stress at point 2 and 4 in Fig. 4.45 is the same because, from the diagram in the figure, the 
bending moment is at its maximum s = smax and the shearing stress is 

t = 0, which is 

Problem 4.2

 
Fig. 4.46

For the beam with a load shown in Fig. 4.46, determine (a) the equation defining the transversal load and 
bending moment at any point (b) draw the shear and bending moment diagram (c) locate the maximum 
bending moment and maximum transversal load (d) determine the von Mises stress at point 1, 2, 3, 4 
for a rectangular cross-section area

Solution

The shaft consists of two portions, AB and AC (see Fig. 4.47), and each portion has uniform cross-section 
and constant external forces.

Reactions

Considering the free body diagram of the entire beam (Fig. 4.47), we write

ix Bx BxF 0 :  R   = 0          R   = 0= − ⇒∑

iy A B A B
8F 0 :  R + R 4wL = 0          R   = 4wL R wL
3

= − ⇒ − =∑

iA B Bx
3L L 4M 0 :  R 3L w3L + wL   = 0          R   = wL
2 2 3

= − ⇒∑
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Fig. 4.47

Solution of portion AC

Passing a section though the beam between A and C and using the free body diagram shown in Fig. 
4.48, we find

I
iQ I I I

xM 0 :  M (x ) + w x  = 0
2

=∑

2
I

I I
w xM (x )

2
= −

iy I I IF 0 :  V (x )  w x  = 0= − −∑

I I IV (x ) w x= −
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The diagram of transversal load and bending moment is shown in Fig. 4.50.

Ix 0,L∈

 

Fig. 4.48

IIx 0,3L∈

 
Fig. 4.49

 

Fig. 4.50

 
Fig. 4.51
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Fig. 4.52

Solution of portion AB

Now passing a section between A and B, we have (see Fig. 4.49)

2
II

iQ II II B
wxM 0 :  M (x ) + R = 0

2
= − −∑

2 2
II II

II II B II
wx 4 wxM (x ) = R wLx

2 3 2
− = −

iy II II II BF 0 :  V (x )  w x + R  = 0= −∑

II II II B II
4V (x ) = w x  R w x  wL
3

− = −

Graphically the transversal load and bending moment is shown in Fig. 4.50. We have two points with 
the local maximum values. At point I we have the maximum bending moment while the transversal 
load is zero. At point II we have a nonzero bending moment and the maximum transversal load. We 
will control the rectangular cross-section area at both points. 

Von Mises stress at point I in Fig. 4.50.

At this location we only have a nonzero maximum value of the bending moment. At this point we have 
pure bending. The maximum value of stress is at points 2 and 4 (see Fig. 4.51), which are
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Von Mises stress at point II in Fig. 4.50.

At this location, we have a nonzero value of the bending moment and the maximum transversal load. 
The maximum bending stress is at points 2 and 4 (see Fig. 4.52) , which are

Where the shearing stress is zero. The Von Mises stress at points 2 and 4 are 
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At points 1 and 3, the bending stress is zero and we only have the maximum shearing stress, which is

2h h bhy b
2 4 8

Q A  = = × × = 
 

2

max
3

bh 5V wLV 3 V 3 5 wL8 3 .1 2 bh 2 bh 2 bhb bh
12

z

Q
t I

τ
×

= = = = =
×

The Von Mises stress at points 1 and 3 are

Problem 4.3

Fig. 4.53

For the beam with a load shown in Fig. 4.53, determine (a) the equation defining the transverse load and 
bending moment at any point (b) draw the shear and bending moment diagram (c) locate the maximum 
bending moment and maximum transverse load. (d) design the cross-section area at point a, b and c.

Solution

The shaft consists of three portions AC, CB, and BD (see Fig. 4.53), each with a uniform cross-section 
and constant external forces.

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part II

55 

Bending of Straight Beams

Reactions

Considering the free body diagram of the entire beam (Fig. 4.54), we write

ix AxF 0 :  R   = 0=∑

iA B B
5M 0 :  2FL R 2L+ F3L  = 0          R   = F
2

= − ⇒∑

iy A B A B
5 FF 0 :  R + R 2F F = 0          R  3F R   3F F
2 2

= − − ⇒ = − = − =∑

 
Fig. 4.54

Ix 0,L∈

Fig. 4.55

Solution of part AC. 

At position x1 we assign the internal forces and moment to be positive as shown in Fig. 4.55. We find 
the internal forces and bending moment from the following equilibrium equations:

iQ I I A IM 0 :  M (x )  R  x  = 0= −∑

 
I I A I I

FM (x ) R x x
2

= =

iy I I AF 0 :  V (x ) R   = 0= − +∑  
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I I A
FV (x ) R
2

= =

ix I I AxF 0 :  N (x ) R   = 0= +∑  I IN (x ) 0=

Solution of part CB. 

In the same way as the solution of part AC, we write the equilibrium equations for part CB (Fig. 4.56), 
which are 

( )iQ II II A II IIM 0 :  M (x )  R  x  + 2F  x L = 0= − −∑

( )II II A II II II
3M (x ) R x 2F x L Fx 2FL
2

= − − = − +

iy II II AF 0 :  V (x ) R 2F  = 0= − + −∑  

II II A
F 3V (x ) R 2F 2F F
2 2

= − = − = −

ix II II AxF 0 :  N (x ) R   = 0= +∑  II IIN (x ) 0=

Solution of part BD. 

IIx L,2L∈

Fig. 4.56

IIIx 0,L∈

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part II

57 

Bending of Straight Beams

Fig. 4.57

Part BD is shown in Fig. 4.57 with the internal forces (transversal V and normal N force) and internal 
bending moment located at point Q. We solve these internal forces and moment from the following 
equation

iQ III III IIIM 0 :  M (x )  F x  = 0= +∑

III III IIIM (x ) F x= −

iy III IIIF 0 :  V (x ) F  = 0= −∑  

III IIIV (x ) F=
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ix III IIIF 0 :  N (x )  = 0= −∑  III IIIN (x ) 0=

Fig. 4.58

Graphically the transversal load and bending moment for all parts can be seen in Fig. 4.58. From this 
Fig. 4.58, the maximum transversal load and bending moment can be found at xII = 2L. Maximum values 
at this location (point I) are

max II IIM M (x =2L) F L= = −

max II II
3V V (x =2L) F 
2

= = −

Normal Stress on the Transverse Plane. (see Fig. 4.59)

Fig. 4.59

For the cross-sectional area in Fig. 4.59 we have Iz = 428 t4 from Appendix – Example A.06. We determine 
the stresses sa, sb and sc.
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at point a:

and at point b:

and at point c:

Shearing Stress on the Transverse Plane.

At point a: Q = 0 ta = 0

At point b: 3
c1y (6t 2t) 4t 48tQ A= = × × =

3

b 4 2

3 F 48tV 9 F2
 2t 428t 107 tz

Q
t I

τ
×

= = =
×

At point c:

3
1 c1 2 c2

3y y (6t 2t) 4t (2t 3t) t 57t
2

Q A A= + = × × + × × =

3

c 4 2

3 F 57tV 171 F2
 2t 428t 1712 tz

Q
t I

τ
×

= = =
×

Fig. 4.60

Principal stress at Point a. The stress state at point a consists of the normal stress sa and the shearing 
stress ta = 0. Drawing Mohr’s circle (Fig. 4.60) we find
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Fig. 4.61

Principal stress at Point b. The stress state at point b consists of the normal stress sb and the shearing 
stress tb. We draw Mohr’s circle (Fig. 4.61) and find
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Fig. 4.62

Principal stress at Point c. The stress state at point c consists of the normal stress sc = 0 and shearing 
stress tc. Drawing Mohr’s circle (Fig. 4.62) we find

Problem 4.4

Fig. 4.63

For the loaded beam in Fig. 4.63, determine (a) the equation defining the transversal load and bending 
moment at any point, (b) the location of the maximum bending moment and maximum transversal load 
(c) draw the shear and bending moment diagram and design, for the given cross-section area, using von 
Mises criterion. (d) calculate the principal stresses at point a, b and c.

Solution

Reactions

Considering the free body diagram (Fig. 4.64), we write

ix BxF 0 :  R   = 0=∑
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iB A B
L LM 0 :  w L R L M = 0          R   = 0.542wL
2 4
 = + − − ⇒ 
 

∑

iy A B A B
wL wLF 0 :  + R + R = 0          R R   0.042wL
2 2

= − ⇒ = − = −∑

Fig. 4.64

Ix 0,L/2∈

Fig. 4.65

(a) the equation defining the transversal load and bending moment at any point 

We must consider the solution of two parts (part AB and BC). For both parts we find the bending moment 
and transversal load. The normal load is equal to zero for all parts because we don’t have an axial load.

Solution of part AB in the Fig. 4.65. 

I
iQ I I I

xM 0 :  M (x )  w x  = 0
2

= +∑

2
I

I I
w xM (x )

2
= −

iy I I IF 0 :  V (x ) w x  = 0= − −∑  

I I IV (x ) w x= −

ix I IF 0 :  N (x ) = 0=∑

IIx 0, L∈
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Fig. 4.66

Solution of part BC in the Fig. 4.66. 

iQ II II B IIM 0 :  M (x ) M  R  x = 0= − − +∑

2

II II B II II
w LM (x ) M R x 0.042wLx
12

= − + = − −

iy II II BF 0 :  V (x ) R  = 0= +∑  

II II BV (x )  R 0.042wL= − =

ix II IIF 0 :  N (x ) = 0=∑
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Fig. 4.67

(b) location of maximum bending moment and maximum transversal load

Graphically, the transversal load and bending moment can be seen in Fig. 4.67. From the graphical 
solution, the position of maximum bending moment and transversal load is at the same point, point I 
(or point B) at

I
Lx
2

=

where the maximum value of bending moment and transversal load is

2
max I IM M (x =L/2) 0.125wL= = −

max I IV V (x =L/2) 0.5wL = = −

(d) Design the cross-section area at point a, b and c.

Fig. 4.68
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Normal stress on Transverse Plane. (see Fig. 4.68)

For cross-section area in the Fig. 4.68 we have Iz = 230.9t4 and yc =4.6t from the Appendix – Example 
A.05. Determining the stresses sa, sb and sc. we write for point a:

point b:

point c:

Shearing stress on the Transverse Plane.

At point a: Q = 0 ta = 0

At point b:

3
c1y (8t 2t) 2.4t 38.4tQ A= = × × =

3

b 4 2

V 0.5wL 38.4t wL0.021
 4t 230.9t tz

Q
t I

τ ×
= = =

×

At point c:

3
2 c2y (4.6t 4t) 2.3t 42.32tQ A= = × × =

3

c 4 2

V 0.5wL 42.32t wL0.023
 4t 230.9t tz

Q
t I

τ ×
= = =

×
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Fig. 4.69

Principal stress at Point a. The stress state at point a consists of the normal stress sa and the shearing 
stress sa = 0. drawing Mohr’s circle (Fig. 4.69) we find
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Fig. 4.70

Principal stress at Point b. The stress state of point b consists of the normal stress σb and shearing stress 
τb. Drawing Mohr’s circle (Fig. 4.70) we find

Fig. 4.71

Principal stress at Point c. The stress state at point c consists of the normal stress σc = 0 and shearing 
stress τc. Drawing Mohr’s circle (Fig. 4.71) we find
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Problem 4.5

Fig. 4.72

For the loaded beam in Fig. 4.72 determine (a) the equation defining the transversal, normal (axial) load, 
and bending moment at any point, (b) location of maximum bending moment, maximum transversal 
load, and maximum normal load (c) draw the normal and transversal load and bending moment diagram 
and design for the given cross-section area in the critical location using von Mises criterion.

Solution

Fig. 4.73

Ix 0,L∈

(a) the equation defining the transversal and normal (axial) load and bending moment at any point

We have a beam with a free end. From the free end, we have constant cross-section area, constant bending 
moment, transversal load, and normal load. Thus we do not need to find the reactions at the support. 
The division into the parts is shown in the Fig. 4.73.
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Solution of the first part in Fig. 4.74. 

Fig. 4.74

IIx 0,2L∈

At location x1 we assign the positive orientation of the normal force N1, transversal force VI and bending 
moment MI. We find these forces and moments from the following equilibrium equations: 

I
iQ I I I

xM 0 :  M (x )  w x  = 0
2

= − −∑

2
I

I I
w xM (x )

2
= −

iy I I IF 0 :  V (x ) w x  = 0= −∑  

I I IV (x ) w x=

ix I IF 0 :  N (x ) = 0=∑
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Solution of the second part in Fig. 4.75. 

Fig. 4.75

The second part starts from the 90° bend in the beam see Fig. 4.73. For solution we use the positive 
normal force NII, transversal force VII and bending moment MII, see Fig. 4.75. Equilibrium equations 
at point Q are

iQ II II
LM 0 :  M (x ) wL = 0
2

= − −∑
2

II II
wLM (x )

2
= −

iy II IIF 0 :  V (x )  = 0= −∑  

II IIV (x ) 0=

ix II IIF 0 :  N (x ) wL = 0= − −∑

II IIN (x ) wL= −

(b) location of maximum bending moment, maximum transversal load and maximum normal load

The graphical diagram of the normal load, transversal load, and bending moment for both parts can be 
seen in Fig. 4.76. the design has its maximum values in point I at location 

Ix L=

with values 

2

max I I
wLM M (x =L)

2
= = −

max I IV V (x =L) wL = =

I IN (x =L) 0=
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and second position (because here the maximum normal load occurs) is in the same point I at location 

IIx 0=

with values 

2

max II II
wLM M (x =0)

2
= = −

II IIV (x =0) 0=

max II IIN N (x =0) wL = = −

Fig. 4.76

For the given cross-section area we design for both positions.

Design of rectangular cross-section at point I, when xI = L. 

The maximum bending stress is

The shearing stress is (from Problem 4.2)

max 2

V 3 V 3 wL 3 wL ,
 2 bh 2 bh 4 bz

Q
t I

τ = = = =
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and the normal stress is

Fig. 4.77

The bending, normal and shearing stress diagram is shown in Fig. 4.77. Von Mises stress at point 2 and 
4, when the bending stress is nonzero, is

and at point 1 and 3, when the shearing stress is nonzero, we get

Design of rectangular cross-section at point I, when xII = 0. 

The maximum bending stress is

The shearing stress is (from Problem 4.2)

max

V 3 V 3 0 0,
 2 bh 2 bhz

Q
t I

τ = = = =

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part II

73 

Bending of Straight Beams

and the normal stress is

Fig. 4.78

The bending, normal and shearing stress diagram is in Fig. 4.78. The Von Mises stress at point 2 is 

Note that in this point we have a different sign for the bending and normal stress.

The Von Mises stress at point 4 is

Note that, in this point we have the same sign as the bending and normal stress.

At point 1 and 3, all stresses are zero and we get
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Problem 4.6

Fig. 4.79

For the curved beam in Fig. 4.79 determine: (a) the equation defining the transversal and normal (axial) 
load and bending moment at any point, (b) location of the maximum bending moment, maximum 
transverse load and maximum normal load (c) draw the normal load, transversal load, and bending 
moment diagram and check a given cross-section area in critical points using von Mises criterion.

Solution

Fig. 4.80

Fig. 4.81

(a) the equation defining the transversal load, normal (axial) load and bending moment at any point
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Starting from the free end at point B we can define, in cylindrical coordinates, the angle j. The bending 
moment in position j at point Q, seen in Fig 4.81 and Fig. 4.83, we find the moment equilibrium at 
point Q which is 

iQM 0 :=∑ ( )M( ) + M  FR sin 2FR 1 cos  = 0ϕ ϕ ϕ− − − −

M( ) = 2FR cos  FR sin  ϕ ϕ ϕ−

We find the normal and transversal loads at point Q from the decomposition of all forces to the new 
coordinate system x’y’ in Fig. 4.82. We write the equilibrium equations for the force in the x’ direction 

ix'F 0 :  N( ) Fsin 2Fcos  = 0ϕ ϕ ϕ= − − +∑

from which we have a normal force 

N( ) Fsin 2Fcos .ϕ ϕ ϕ= − +

The equilibrium equation in the y’ direction is 

iy'F 0 :  V( ) Fcos 2Fsin  = 0ϕ ϕ ϕ= − −∑
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from which we have a transversal load 

V( ) = Fcos 2Fsin  .ϕ ϕ ϕ+

Fig. 4.82

Fig. 4.83

(b) location of the maximum bending moment, maximum transversal load, maximum normal load, and 
(c) draw the normal and transversal load and bending moment diagram

The graphical presentations of the results are shown in Fig. 4.84. From these diagrams we have two 
locations which have maximum values (point I and II).

at location j = 0 (point I) we have

maxM M( 0) 2FRϕ= = =

maxN N( 0) 2Fϕ= = =

V( 0) Fϕ = =
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at location φ = π/2 (point II) we have

(c) check a given cross-section area in critical points using von Mises criterion

Fig. 4.84

Design of cross-section area in point I.

The maximum bending stress is

The shearing stress is (see, Timoshenko et al)

and the normal stress is
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A diagram of the bending, normal and shearing stress can be seen in Fig. 4.85. 

Von Mises stress at point 2 is

Note that, in this point we have a different sign for the bending and normal stress.

Von Mises stress at point 4 is

Fig. 4.85

Note that, in this point we have the same sign for the bending and normal stress.

At point 1 and 3 from Fig. 4.85 we get

Design of cross-section area in point II.

The maximum bending stress is
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The shearing stress is (see, Timoshenko et al)

and the normal stress is

Ther bending, normal and shearing stress diagram can be seen in Fig. 4.86. 
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The Von Mises stress at point 2 is

 Fig. 4.86

Note that, in this point, we have a different sign for the bending and normal stress.

The Von Mises stress at point 4 is

Note that, In this point, we have the same sign for the bending and normal stress.

At point 1 and 3 from Fig. 4.86 we get
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Problem 4.7

 Fig. 4.87

For the beam in Fig. 4.87 determine the maximum values of bending moment, torque, and transversal 
load. Draw the diagram of bending moment, torque and transversal load and check the circular cross-
section for strength using Mises criterion. The length L, a, diameter D, force F, and allowable stress σall 
are given. 

Solution

 Fig. 4.88

The equivalent force system is determined by the torque T and the transversal load F shown in Fig. 4.88. 
After this transformation we have a cantilever beam, which has a T = Fa and force F at its free end, see 
Fig. 4.89 (last view).

This problem is a combination of torsion and bending. The solution is to divide the problem into two 
parts, the torsion solution and bending solution. Then we sum the results from both parts. 
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 Fig. 4.89

Solution for torsion (see chapter 3 Torsion)

We solve for the part with length x, see Fig. 4.90, where, in the cutting plane area, we assign the positive 
torque moment T(x). The value of T(x) is found from the equilibrium equation of moment about the 
x axis, which is
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 x 0,L∈

Fig. 4.90

ixM 0 :  T(x) T = 0= −∑

T(x) = T = Fa

The torque diagram along the length of the beam can be seen in Fig. 4.93.

 
x 0,L∈

Fig. 4.91

Solution for bending.

For the part of the beam at length x and with internal forces and moment at point Q, see Fig. 4.91. We 
find the bending moment from the equilibrium equation

iQM 0 :  M(x)  F x = 0= − −∑
M(x)  F x,= −

transversal load

iyF 0 :  V(x) F = 0= −∑
V(x) F,=

and normal (axial) load

ixF 0 :  N(x) = 0.=∑
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The bending moment and transversal load diagrams are shown in Fig. 4.92.

 Fig. 4.92

 Fig. 4.93

Check of the circular cross-section.
The maximum bending stress is

The shearing stress is (see, Timoshenko et al)
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and the maximum shearing stress in torsion is (from chapter 3)

 Fig. 4.94

The bending, normal, and shearing stress diagrams are shown in Fig. 4.94. 
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The Von Mises stress at point 2 and 4 is

 Fig. 4.95

At point 1, the shearing stress from the transversal load and torque are in the same directions (see 
Fig. 4.95), and we get

At point 3 the shearing stress from the transversal load and torque are in the opposite directions (see 
Fig. 4.95), we get
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Unsolved problems

Fig. 4.96 Fig. 4.97

Problem 4.8

For the beam in Fig. 4.96, Determine (a) the equation of the transversal and bending curve, (b) the 
absolute maximum value of the bending moment and transversal load in the beam, (c) the Von Mises 
stress for the rectangular cross-section area at point 1, 2, 3 and 4 at the position of the maximum bending 
moment. Assume that L = 500 mm, w = 12 kN/m, b = 20 mm and h = 30 mm.

[RAx =0 N, RA = 3000 N, RB = 3000 N, Mmax = 375 Nm,  Vmax = 3000 N,  
σMises 1 = σMises 3 = 0 MPa,  σMises 2 = σMises 4 = 125 MPa]
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Problem 4.9

For the beam in Fig. 4.97, which has a length L = 300 mm and is loaded by the uniform load w = 5 
kN/m, force F = 1.2 kN applied at point B and bending moment M = 1.5 kNm at point C, determine 
(a) the maximum absolute value of the bending moment and transversal load, (b) design the diameter 
D of the circular cross-section area for the given allowable stress of 250 MPa. The beam has a circular 
cross-section area along its whole length.

[RBx =0 N, RBy = 5187.5 N, RA = 7137.5 N, Mmax = 1500 Nm, Vmax = 5187.5 N, D ≥ 39.4 mm]

Problem 4.10

For the curved beam in Fig. 4.98 determine (a) the reaction at the supports (b) the maximum absolute 
value of the bending moment, transversal and normal load, (c) design the rectangular cross-section area 
with a width b and height h, when the ratio between h / b = 2 for a given allowable stress σall. For the 
solution used the parameters R = 1 m, M = 0.5 kNm, and sall = 150 MPa.

[RAx =0 N, RA = 803.85 N, RB = 803.85 N, Mmax = 696.15 Nm,  
Vmax = 803.85 N,  Nmax = 803.85 N, b ≥ 17.1 mm]

 Fig. 4.98
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5	 Deflection of Beams
5.1	 Introduction

In the previous Section we talked about the stress and strain analyses of beams under transverse loading. 
Safe design requires that we satisfy not only the strength criteria but also the deformation response. The 
deformation response involves the acceptable strains, deflections and slopes which fit the requirements of 
the structure. Deriving the formula for calculating the radius of curvature of the neutral surface we have

� (5.1)

This equation is valid if Saint Venant’s principle is satisfied for a beam transversely loaded. The bending 
moment varies from section to section and therefore the curvature of the neutral surface will vary as well.

This will constitute the basis for the integration method used to calculate deflections and slopes. There 
are several other methods based on different approaches like the energy method (Castigliano’s theorem). 
Both methods are discussed in this Chapter.

5.2	 Integration method

 Fig. 5.1 Cantilever beam

Equation (5.1) represents information about the shape of the deformed beam only, for example consider 
the cantilever beam BC of length L acted on by the applied load F, see Fig. 5.1. Usually the analysis and 
design of such a beam would require more precise information about the beam’s deformation, i.e. detailed 
information about the deflection and the slope at various points of the beam. The problem of calculating 
the maximum deflection has particular importance in beam design. Therefore our task is to find any 
relation between the position of an arbitrary point, determined by the distance x from the end of the 
beam, and the deflection y measured from the axis of the undeformed beam at this point, see Fig 5.2. 
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 Fig. 5.2

From mathematics we get the curvature at point  to be

� (5.2)

where dy/dx and d2y/dx2 are the first and second derivatives of the function y(x) representing the 
elastic curve. Assuming the elastic response to loading, we can expect a very small value of beam slope  
θ(x)=dy/dx and its square is negligible compared to unity. Thus we get

� (5.3)
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The equation obtained is a second-order linear differential equation; it is the governing differential 
equation for the elastic curve. Using the double integration in x for this differential equation we will obtain 
the elastic curve. For the prismatic beam we can consider the constant flexural rigidity EI so we have

� (5.4)

where  is the integration constant. By integrating the above equation we obtain

 Fig. 5.3 Boundary conditions

where  is also an integration constant. With respect to mathematics we get an infinite number of 
solutions. To obtain the solution for the beam considered we need to apply boundary conditions, or 
more precisely, from the conditions imposed on the beam by its supports. In this Section we will limit 
ourselves to statically determinate beams, i.e. the corresponding reactions can be determined my methods 
of statics directly. Possible boundary conditions are presented in Fig. 5.3. 
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 Fig. 5.4 Simply supported beam

The problem of searching for the maximum deflection can be mathematically formulated as the problem 
of searching for the maximum value within the interval. For example in Fig. 5.1 the maximum deflection 
is at the free end of the cantilever beam.

Let us consider the simply supported beam BC of length L, see Fig. 5.4. Our task is to calculate the 
deflection at point D. The solution can be obtained using the step-by-step approach, see Chapter 1. Thus 
we get  The beam has three homogeneous parts due to the load and sections. 
For each part one can easily determined the bending moment distribution functions as follows

Subsequently we get three differential equations using equation (5.3) because this is not the case of the 
prismatic beam, then
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Integration of the above equations we get

For this problem we get six integration constants. Therefore we need boundary conditions

the connectivity conditions between parts of the beam

Solving the boundary and connectivity conditions we can get the integration constants as follows
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Then substituting the integration constants and  into the elastic curve of the first part, the 
deflection at point D becomes

For the prismatic beam  we will get a solution of .

5.3	 Using a Singularity Function to Determine the Slope and Deflection of 
Beams

 Fig. 5.5 Prismatic simply supported beam

As we discussed before in Chapter 4, the application of singularity functions is a very progressive 
methodology. The method can be applied for prismatic beams only. Let us apply the singularity function 
a modification of the previous example that has constant flexural rigidity, see Fig. 5.5. We can then write 
the bending moment

� (5.5)

Then we have

� (5.6)

after integrating we obtain

� (5.7)
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This equation contains only two integration constants that can be determined from boundary conditions

or

Solving these boundary conditions, we get the integration constants  and 
subsequently we can determine the deflection at point 

The reduction of the number of integration constants is a great advantage of using singularity functions. 

5.4	 Castigliano’s Theorem

 Fig. 5.6

Let us consider the simply supported beam BC of length L acted on by two concentrated forces F1 and 
F2 at points D1 and D2, see Fig. 5.6. The strain energy accumulated in the beam is equal to the work 
done by the applied forces since they are applied slowly. To evaluate this work we need to first express 
the deflections y1 and y2 in terms of the loads F1 and F2. 

 Fig. 5.7
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Let us assume that only F1is applied to the beam, see Fig. 5.7. The deflection at both points is proportional 
to the applied load F1. Denoting these deflections by y11 and y21 we have

� (5.8)

where  and  are the influence coefficients. These constants represent the deflection at points D1 
and D2. 

 Fig. 5.8

Now we apply the load F2 separately to the beam, see Fig. 5.8. Denoting deflections at points D1 and 
D2by y12 and y22 we have

� (5.9)
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Applying the principle of superposition we get the total deflection at these points as follows

�  (5.10)

 Fig. 5.9

To compute the work done by forces F1 and F2 and thus the strain energy of the beam, it is convenient 
to apply the force F1 first and then to add the force F2 after, see Fig. 5.9. Then we have

�  (5.11)

If the load  had been applied first and then the load , the work done by those forces would be 
calculated as

�  (5.12)

This can be illustrated in Fig. 5.10. Comparing equations (5.11) and (5.12) we get .

 Fig. 5.10
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Thus we can conclude that the deflection produced at D1 by the unit load applied at D2 is equal to the 
deflection produced at D2 by the unit load applied at D1. This is known as Maxwell’s reciprocal theorem 
(Maxwell 1831–1879). 

Now differentiating equation (5.11) with respect to F1 we get

�  (5.13)

Differentiating equation (5.11) with respect to F2, while keeping in mind that , we obtain

�  (5.13)

 Fig. 5.11

The physical meaning of the last equations is that, the deflection or the displacement of the applied load 
point is in the direction of the applied load and is equal to the partial derivative of the strain energy 
with respect to the applied load, see Fig. 5.11, namely

�  (5.14)

This is the well-known Castigliano’s theorem, (Castigliano 1847–1884). This formulation can be extended 
to the applied bending couple M and torqueT, i.e.

�  (5.15)

We need to emphasise that Castigliano’s theorem can only be used for calculating the deflection y, the 
slope, θ or the angle of twist ϕ at the points where the concentrated forces or bending couples (torques) 
are acting.
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5.5	 Deflections by Castigliano’s Theorem

 Fig. 5.12
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In the previous Section we have discussed Castigliano’s theorem that is based on the determination of the 
strain energy. The strain energy has been defined in Chapter 4. The individual strain energies for each 
basic loading are presented in Appendix A. Then using the principle of superposition we can express 
the total accumulated strain energy as the sum of individual energies accumulated for each load in the 
structure, i.e.

�  (5.16)

where  are strain energies caused by the bending moments, shear forces, torques and 
normal forces.

Let us consider the cantilever beam BC of length L subjected to the distributed load w, see Fig. 5.12. 
Our task is to calculate the deflection and the slope at its free end B. Castigliano’s theorem can not be 
apply directly, because there are no concentrated forces, nor is there any applied couple at point B. To 
overcome this problem we apply a fictitious or dummy load in the required direction. Thus we can 
calculate the deflection as follows

�  (5.17)

 Fig. 5.13

Then making  in this equation, the deflection reaches a value corresponding to the given load. 
In our case we can apply a fictitious downwards force  at point B, see Fig. 5.13. Then the bending 
moment distribution function is

�  (5.18)

using  the effect of shear force contribution can be neglected and we have

�  (5.19)
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The derivative of the bending moment with respect to the fictitious load is

�  (5.20)

Substituting for  from (5.18) and (5.20) into equation (5.19), and making  we 

obtain the deflection at point B for a given load

�  (5.21)

The positive sign indicates the downwards direction since we assumed the fictitious downward load.

�  (5.22)

For determining the slope  we can apply a fictitious counterclockwise couple , see Fig. 5.14. Then 
we have

�  (5.23)

�  (5.24)

�  (5.25)

Fig. 5.15

Substituting for  from (5.23) and (5.25) into the equation (5.24), and making  we 
obtain the slope at point B for a given load

�  (5.26)

The positive sign indicates the counterclockwise direction since we assumed the fictitious 
counterclockwise load.
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�  (5.27)

5.6	 Statically Indeterminate Beams

Statically indeterminate problems can be solved in the usual way by removing the redundant supports 
and replacing them by unknown reactions. Then we can apply the step-by-step approach for determining 
internal force distribution functions. But these functions involve unknown reactions. To determine those 
reactions we can apply deformation conditions that correspond to the removed supports.

Let us consider the cantilever beam BC with a length L subjected to the distributed load w, see Fig. 5.15. 
The presented beam is statically indeterminate to the first degree. We replace the redundant support at B 
by the unknown reaction . To get the same deformation response we need to impose the deformation 
condition

 Fig. 5.15

�  (5.28)

The bending moment and its derivative can be expressed as

�  (5.29)

�  (5.30)

Substituting for  and  from (5.29) and (5.30) into equation (5.28) we get

�  (5.31)

Solving the above equation for the unknown reaction  we obtain

�  (5.32)
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The same problem can be solved by the integration method. We can use the same bending moment 
distribution function , after substituting into equation (5.3) we have

�  (5.33)

and by integrating we get

�  (5.34)

�  (5.35)

The equation (5.35) contains three unknowns: two integration constants  and the reaction .  
Therefore we must impose three equations: two boundary conditions and one deformation condition as follows

�  (5.36)

Solving this system of equations, we obtain the integration constants  and the 
reaction 

5.7	 Examples, solved and unsolved problems

Problem 5.1

Fig. 5.16

For the loaded beam shown in Fig. 5.16, Determine (a) the equation of the elastic curve, deflection at 
point C, and slope at point B (b) Using the singularity function, express the deflection as a function of 
the distance x from support B, and determine the deflection at point C and slope at point B.
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Solution

Fig. 5.17

Drawing the free-body diagram of the beam, see Fig. 5.17, we find reactions from the equilibrium 
equations

ix BxF 0 :  R   = 0=∑

1
iA D 1 D

LM 0 :  R L F L   = 0    R F
L

= − ⇒ =∑

2
iy B D B

LF 0 :  R + R F = 0    R = F
L

= − ⇒∑
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Fig. 5.18

(a) the equation of the elastic curve, deflection at point C, and slope at point B

Drawing the free-body diagram of portion BQ of the beam (Fig. 5.18) and finding the moment about 
Q, we find that

iQ I I B I I I B IM 0 :  M (x )  R x  = 0    M (x ) = R x= − ⇒∑

2
I I B I I

LM (x ) = R x F x
L

= � (a)

Substituting for M (Eqn. (a)) into Eq. (5.3) we write

( )
2

I 2
B I I2

I

d y M 1 1 LR x F x .
dx EI EI EI L

= = =

Integrating twice in xI, we have

2
I 2 I

1
I

dy F L x ,
dx EI L 2

C= +

3
2 I

I I 1 I 2
F L xy (x ) x .
EI L 6

C C= + +

Fig. 5.19
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Drawing the free-body diagram of portion QD of the beam (Fig. 5.19) and finding the moment about 
Q, we find that

iQ II II D II II II D IIM 0 :  M (x )  R x  = 0    M (x ) = R x= − + ⇒∑

1
II II D II II

LM (x ) = R x F x .
L

= � (b)

Substituting for M (Eqn. (b)) into Eq. (5.3) we write

( )
2

II II II 1
D II II2

II

d y M (x ) 1 1 LR x F x .
dx EI EI EI L

= = =

Integrate twice in xII, we have

2
II 1 II

3
II

dy F L x ,
dx EI L 2

C= +

3
1 II

II II 3 II 4
F L xy (x ) x .
EI L 6

C C= + +

The integration constant unknowns C1, C2, C3 and C4 are found through boundary conditions

1)	 I I Ix =0    y (x ) 0,⇒ =

2)	 II II IIx =0    y (x ) 0,⇒ =

3)	 I 1 II 2 I I II IIx =L , x =L     y (x ) y (x ),⇒ =

4)	 I 1 II 2 I I II IIx =L , x =L     y' (x ) y' (x ).⇒ = −

Results from the boundary conditions are 

3
2

I I 1 2 2
F L 0y (x 0) 0 0     0
EI L 6

C C C= = = + + ⇒ =

3
1

II II 3 4 4
F L 0y (x 0) 0 0     0
EI L 6

C C C= = = + + ⇒ =
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( )1 21 2
1

L +2LF L L
6EI L

C = −
 

( )1 21 2
3

2L LFL L
6EI L

C
+

= −

The equation of elastic curve in portion BC and CD is

( )1 232 1 2
I I I I

L +2LF L F L Ly (x ) x x
6EI L 6EI L

= − � (c)

( )1 231 1 2
II II II II

2L LF L FL Ly (x ) x x
6EI L 6EI L

+
= − � (d)

Deflection at point C is

( ) 2 2
1 232 1 2 1 2

I I 1 1 1

L +2LF L F L L FL Ly (x =L ) L L .
6EI L 6EI L 3 EI L

= − = −

and slope at point B is

( )2
1 22 1 2

I 1 1

L +2Ldv F L 0 F L L(x 0) .
dx EI L 2 6EI L

C CΘ = = = + = = −
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Fig. 5.20

Fig. 5.21

(b) Using the singularity function, express the deflection as a function of the distance x from the support B 
and determine the deflection at point C and slope at point B.

From Fig. 4.11, we have

1 1
B 1M(x) = R x F x L− − � (e)

Using Eq. (5.3) and Eq. (e), we write

2
1 1

B 12

d y M(x) 1 R x F x L
dx EI EI

 = = − − 

and, integrating twice in x,

2 2B
1 1

dy R FEI x x L
dx 2 2

C= − − + � (f)

3 3B
1 1 2

R FEI y(x) x x L x
6 6

C C= − − + + � (g)

The boundary conditions are

1)	 x=0    y(x) 0,⇒ =
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2)	 x=L    y(x) 0.⇒ =

Using the first condition and noting that each bracket < > contains a negative quantity, and thus equal 
to zero, we find 

3 3B
1 1 2 2

R FEI 0 0 0 L 0     0
6 6

C C C= − − + + ⇒ =

From the second condition we get

3 3B 1 2
1 1 1 1 2

R F FL L0 L L L L  (L 2L )
6 6 6L

C C= − − + ⇒ = − +

Substituting C1 and C2 into Eq. (g), we have

3 3B 1 2
1 1 2

1 R F FL L y(x) x x L (L 2L )x
EI 6 6 6L

 = − − − +  

Deflection at point D. Substituting x = L1 into the deflection curve equation, we find

2
3 3B 1 2

1 1 1 1 1 2
1 R F FL L y(x=L ) L L L (L 2L )
EI 6 6 6L

 
= − − − + 

 

2 2
1 2

1
FL L y(x=L )
3 EI L

= −

The slope at B is 

2 2B
1

1 2
1 2

dv 1 R F(x 0) 0 0 L
dx EI 2 2

FL L                                             (L 2L )
6L

Θ = = = − − −
− + 

( )1 21 2 L +2LF L L(x 0)
6EI L

Θ = = −
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Problem 5.2

Fig. 5.22

For the uniformly loaded beam in Fig. 5.22, Determine (a) the equation of the elastic curve and the 
deflection and slope at point B (b) Using the singularity function, express the deflection as a function 
of distance x from the free end at B and determine the deflection and slope at point B.

Solution

Fig. 5.23
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Fig. 5.24

(a) the equation of the elastic curve and the deflection and slope at point B

Drawing the free-body diagram of portion BQ (Fig. 5.24) we take the moment about Q and find that

2 2

iQ
wx wxM 0 :  M(x)  = 0 M(x) = 

2 2
= + ⇒ −∑ � (a)

Using Eq. (5.3) and Eq. (e), we write

2 2 2

2

d y M 1 wx wx
dx EI EI 2 2EI

 
= = − = − 

 

and integrating twice in x,

3

1
dy wx
dx 6EI

C= − +
� b)

The boundary conditions are

1)	 x=L    y(x) 0,⇒ =

2)	 x=L    y'(x) 0.⇒ =

and from the second boundary condition, we have

3 3

1 1
x=L

dy wL wL0     
dx 6EI 6EI

C C= = − + ⇒ =

using the first boundary condition, we get

4 4 4

2 2
wL wL 1 wLy(x=L) 0     
24EI 6EI 8 EI

C C= = − + + ⇒ = −

Substituting C1 and C2 into Eq. (b), we have
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4 3 4wx wL 1 wLy(x) x
24EI 6EI 8 EI

= − + − � (c)

Substituting x = 0 into Eq. (c), we find the deflection at point B

4

B
1 wLy y(x 0)
8 EI

= = = −

and slope at point B 

3 3 3

B
dv w0 wL wL(x=0)
dx 6EI 6EI 6EI

Θ = Θ = = − + =

Fig. 5.25

(b) Using the singularity function, express the deflection as a function of the distance x from the free end 
at B and determine the deflection slope at point B.

The equation defining the bending moment of beam using Fig. 4.11, we have

2wM(x) = x
2

− � (d)

Using Eq. (5.3) and Eq. (d), we write

2
2

2

d y M(x) 1 w x
dx EI EI 2

 = = −  

and multiplying both members of this equation by the constant EI, we have

2
2

2

d y wEI x .
dx 2

= −
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Integrating twice in w, we get

3
1

dy wEI x
dx 6

C= − +

4
1 2

wEI y(x) x x
24

C C= − + + � (e)

The boundary conditions from Fig. 5.23 are

1)	 x=L    y(x) 0,⇒ =

2)	 x=L    y'(x) 0.⇒ =

From which, we have

3
3

1 1
dy w wLEI 0 L     
dx 6 6

C C= = − + ⇒ =

and
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3
4

2
w wLEI y(x L) 0 L L
24 6

C= = = − + +

4
2

1 wL
8

C = −

Substituting C1 and C2 into Eq. (e), we have

3
4 41 w wL 1 y(x) x x wL

EI 24 6 8
 

= − + − 
 

The deflection at point B is

3 4
4 4

B
1 w wL 1 1 wL y y(x=0) 0 0 wL .
EI 24 6 8 8 EI

 
= = − + − = − 

 

The slope at point B is

3 3
3

B
dv 1 w wL wL(x=0) 0 .
dx EI 6 6 6EI

 
Θ = Θ = = − + = 

 

Problem 5.3

Fig. 5.26

For the beam and loading shown in Fig. 5.26 Determine (a) the equation of the elastic curve, deflection 
at C, and slope at B and C (b) Using the singularity function, express the deflection as a function of the 
distance x from the support at B and determine the deflection at C and slope at B and C.

Solution

Fig. 5.27

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part II

115 

Deflection of Beams

From the free-body diagram in Fig. 5.27 we have the reactions

ix DxF 0 :  R   = 0=∑

iB D D
L L L 3M 0 :  R L w  = 0    R wL
2 2 4 8
 = − + ⇒ = 
 

∑

iy B D B
wL 1F 0 :  R + R  = 0    R = wL
2 8

= − ⇒∑

Drawing the free-body diagram of portion BQ of the beam (Fig. 5.28) and finding the moment about 
Q, we see that

iQ I I B I I I B IM 0 :  M (x )  R x  = 0    M (x ) = R x= − ⇒∑

I I I
1M (x ) = wLx
8 � (a)

inserting this result into the differential equation of an elastic curve, we get 

2
I

I2
I

d y M 1 1 wLx
dx EI EI 8

= =

Integrating twice in x, we have

2
I I

1
I

dy wL x
dx 8EI 2

C= +

3
I I I 1 I 2

wLy (x ) x x
48EI

C C= + + � (b)

Ix 0,L/2∈

Fig. 5.28
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IIx 0, L/2∈

Fig. 5.29

In the same way, we finding the elastic curve in portion QD, from Fig. 5.29, we have

2
II

iQ II II D II
wxM 0 :  M (x )  R x  = 0

2
= − + −∑

2 2
II II

II II D II II
wx 3 wxM (x ) =  R x  wLx  

2 8 2
− = − � (c)

and 

2 2
II II II II

II2
II

d y M (x ) 1 3 wxwLx  
dx EI EI 8 2

 
= = − 

 
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2 3
II II II

3
II

dy 1 3 x wxwL  
dx EI 8 2 6

C
 

= − + 
 

4
3 II

II II II 3 II 4
3wL wxy (x ) x x
48EI 24EI

C C= − + + � (d)

x 0,L∈

Fig. 5.30

Fig. 5.31

The boundary conditions, from Fig. 5.26, are

1)	 xI=0 ⇒ yI(xI)=0,

2)	 xII=0 ⇒ yII(xII)=0,

3)	 xI=L/2, xII=L/2 ⇒ yI(xI)= yII(xII)

4)	 xI= L/2, xII=L/2 ⇒ y'I(xI)= –y'II(xII)

After using all the conditions, we solve for the integration constants

3

1
7 wL ,
384 EI

C = −
 2 0,C =  

3

3
3 wL ,
128 EI

C = −
4 0.C =

and the equations of the elastic curve are
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3
3

I I I I
wL 7 wLy (x ) x x

48EI 384 EI
= − � (e)

4 3
3 II

II II II II
3wL wx 3 wLy (x ) x x
48EI 24EI 128 EI

= − − � (f)

The deflection at point C is

3 3 4

C I I
L wL L 7 wL L 5 wLy y x =
2 48EI 2 384 EI 2 768 EI

     = = − = −     
     

and the slope at point C is

2 3 3

C I
L wL L 7 wL 1 wLx
2 16EI 2 384 EI 384 EI

   Θ = Θ = = − = −   
   

The slope at point B is

( ) ( )
3 3

2
C I

wL 7 wL 7 wLx 0 0
16EI 384 EI 384 EI

Θ = Θ = = − = −

(b) Using the singularity function, express the deflection as a function of the distance x from the support 
at B and determine the deflection at C and slope at B and C.

Using Fig. 4.11, we have

2 2
1 1

B
w L wL w LM(x) = R x x x x
2 2 8 2 2

− − = − −

Substituting M(x) into Eq. (5.3), we have 

22
1

2

d y M(x) 1 wL w Lx x
dx EI EI 8 2 2

 
= = − − 

  

now multiplying by EI, we get

22
1

2

d y wL w LEI x x
dx 8 2 2

= − −

Integrating twice with respect to x, we have 
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3
2

1
dy wL w LEI x x
dx 16 16 2

C= − − +

4
3

1 2
wL w LEI y(x) x x x
48 64 2

C C= − − + + � (g)

The boundary conditions are

1)	 x= 0 ⇒ y(x)=0,
2)	 x=L  ⇒ y(x)=0,

from which we have

3

1
7wL ,
384

C = −
 2 0.C =

The equation of the elastic curve using a singularity function is
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4 3
31 wL w L 7wL y(x) x x x

EI 48 64 2 384
 

= − − − 
   � (h)

The deflection at point C is

3 4 3L 1 wL L w L L 7wL L y x
2 EI 48 2 64 2 2 384 2

  = = − − −  
    

4

C
L 5wL y v x
2 768 EI

 = = = − 
 

while the slope at point C is

2 3 3L dv 1 wL L w L L 7wLx=
2 dx EI 16 2 16 2 2 384

  Θ = = − − −  
    

3

C
L wLx
2 384 EI

 Θ = Θ = = − 
 

The slope at point B is

3 3
2L 1 wL w L 7wLx= 0 0

2 EI 16 16 2 384
  Θ = − − −  

    

3

B
L 7wLx
2 384 EI

 Θ = Θ = = − 
 

Problem 5.4

Fig. 5.32

For a beam subjected to a moment shown in Fig. 5.32 determine (a) using a singularity function, find 
the deflection as a function of the distance x from the support at B, (b) the deflection at C and slope at B.
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Solution

x 0,L∈

Fig. 5.33

From the free-body diagram in Fig. 5.33 we have the reactions

ix BxF 0 :  R   = 0=∑

o
iB D o D

MM 0 :  R L M  = 0    R
L

= + ⇒ =∑

o
iy B D B D

MF 0 :  R + R = 0    R = R
L

= ⇒ − = −∑

Using Fig. 4.11 we obtain the bending moment at x (see Fig. 5.33)

1 0 1 0o
B o o

MM(x) = R x M x a x M x a
L

− − = − − −

We insert the last expression into the equation of the elastic curve Eq. (5.3) and get

2
1 0o

o2

Md y M(x) 1 x M x a
dx EI EI L

 = = − − −  

2
1 0o

o2

Md yEI x M x a
dx L

= − − −

After double Integrating the last expression, we have

2 1o
o 1

MdyEI x M x a
dx 2L

C= − − − +

3 2o o
1 2

M MEI y(x) x x a x
6L 2

C C= − − − + + � (a)
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Fig. 5.34

Constants C1 and C2 can be determined from the boundary condition shown in Fig. 5.34. Setting x = 
0, y = 0 in Eq. (a) and noting that all brackets contain negative quantities, therefore equal to zero, we 
conclude that

2 0.C =

Now setting x = L, y = 0, and C2 = 0 in Eq. (a), we write

3 2o o
1

M MEI y(x L) 0 L L a L.
6L 2

C= = = − − − +
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Since all the quantities between the brackets are positive, the brackets can be replaced by ordinary 
parentheses. Solving for C1, we find

( )2 2o
1

M 3b L
6L

C = −

Substituting C1 and C2 into Eq. (a), we have

( )3 2 2 2o o oM M M1 y(x) x x a 3b L x
EI 6L 2 6L

 = − − − + −  

We find the deflection at point C 

( )3 2 2o oM M1 y(x a) a 3b L a
EI 6L 6L

 = = − + −  

o
C

My y(x a) ab(b a).
3 EI L

= = = −

The slope at point B we find

( )2 1 2 2o o
o

M Mdv 1(0) 0 M 0 a 3b L
dx EI 2L 6L

 Θ = = − − − + −  

( )2 2o
B

M(0) 3b L
6 EI L

Θ = Θ = −

Problem 5.5

Fig. 5.35

Using the singularity functions for the beam shown in Fig. 5.35 determine (a) the deflection as a function 
of the distance x from the support at B, (b) the deflection at B, D and slope at G.
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Solution

x 0,3L∈

Fig. 5.36

From the free-body diagram in Fig. 5.36 we have the reactions

ix CxF 0 :  R   = 0=∑

iG C CM 0 :  F3L R 2L FL = 0    R 2F= − + ⇒ =∑

iy C G GF 0 :  R + R 2F= 0    R = 0= − ⇒∑

Using Fig. 4.11 we obtain the bending moment at x (see Fig. 5.36)

1 1 1
CM(x) = F x  R x L F x 2L− + − − −

1 1 1M(x) = F x  2F x L F x 2L− + − − − � (a)

Substituting Eq. (a) into the equation of the elastic curve Eq. 5.3 we get

2
1 1 1

2

d y M(x) 1 F x  2F x L F x 2L
dx EI EI

 = = − + − − − 

2
1 1 1

2

d yEI F x  2F x L F x 2L
dx

= − + − − −

After double integrating with respect to x, we have

2 2 2
1

dy F FEI x  F x L x 2L
dx 2 2

C= − + − − − +

3 3 3

1 2

F F FEI y(x) x  x L x 2L
6 3 6

               xC C

= − + − − −

+ +
� (b)
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The boundary conditions are

1)	 x = L ⇒  y(x) = 0,
2)	 x = 3L ⇒  y(x) = 0,

from which we have

2
1

11 FL
12

C =
 

3
2

3 FL .
4

C = −

Fig. 5.37
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The equation of the deflection curve is

3 3 3

2 3

1 F F Fy(x) x  x L x 2L
EI 6 3 6

1 11 3            FL x FL
EI 12 4

 = − + − − − +  
 + −  

� (c)

and is graphically shown in Fig. 5.37.

The deflection at point B is 

3

B 2
1 3 FL y y(x 0) .
EI 4 EI

C= = = = −

while the deflection at point D is

3

D
5 FL y y(x 2L) .
6 EI

= = = −

and the slope at point G is

( )2 1 2 2o o
o

M Mdv 1(x) x M x a 3b L
dx EI 2L 6L

 Θ = = − − − + −  

2

G
47 PL(x 3L) .

4 EI
Θ = Θ = = −

Problem 5.6

Fig. 5.38

Using the singularity functions for the beam shown in Fig. 5.38 determine (a) the deflection as a function 
of the distance x from the support at B, (b) the deflection at B and D.
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Solution

x 0,L∈

Fig. 5.39

We begin by solving for the reaction at point B, because x starts from point B. From the free-body 
diagram in Fig. 5.39 we have the reactions

ix BxF 0 :  R   = 0=∑

iy B B
wL wLF 0 :  R = 0    R = 
2 2

= − ⇒∑

2
iB B B

L L L 3M 0 :  M w = 0    M wL
2 2 4 8
 = + + ⇒ = − 
 

∑

The bending moment using the singularity function is

2
1 0

B B
w LM(x) = R x M x x
2 2

+ − −

2
1 02wL 3 w LM(x) = x wL x x .

2 8 2 2
− − −

Substituting M(x) into the elastic curve equation we get

22
1 02

2

d y M(x) 1 wL 3 w Lx wL x x
dx EI EI 2 8 2 2

 
= = − − − 

  

22
1 02

2

d y wL 3 w LEI x wL x x .
dx 2 8 2 2

= − − −

Double integrating the last equation with respect to x, we get
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3
2 12

1
dy wL 3 w LEI x wL x x
dx 4 8 6 2

C= − − − +

4
3 22

1 2

wL 3 w LEI y(x) x wL x x
12 16 24 2

               xC C

= − − −

+ + � (a)

Fig. 5.40
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The boundary conditions from Fig. 5.40 are

1)	 x 0    y(x) 0,= ⇒ =

2)	 d y(x)x 0    0,
d x

= ⇒ =

from which we get

1 0,C =  2 0.C =

After substituting C1 and C2 into Eq. (a) we get the deflection at x

4
3 221 wL 3 w L y(x) x wL x x

EI 12 16 24 2
 

= − − − 
  

Graphically the deflection curve is shown in Fig. 5.40.

Deflection at point C is

3 2
2

C
1 wL L 3 L y (x L/2) wL
EI 12 2 16 2

y
 

= = = − 
  

4

C
7 wL y y(x L/2) .
192 EI

= = = −

Deflection at point D is

4
3 41 wL 3 w L y(x L) L wL

EI 12 16 24 2
 

= = − − 
  

4

D
41 wL y y(x L) .

384 EI
= = = −

Problem 5.7

Fig. 5.41
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Using the singularity functions for the beam shown in Fig. 5.41 determine (a) the deflection as a function 
of the distance x from the support at B, (b) the deflection at C.

Solution

x 0,4L∈

Fig. 5.42

From the free-body diagram in Fig. 5.42 we find the reactions

ix HxF 0 :  R   = 0=∑

iB H HM 0 :  R 4L w 2L (2L)= 0    R wL= + ⇒ =∑

iy B H BF 0 :  R R w2L= 0    R = wL= + − ⇒∑

The bending moment, see Fig. 4.11, are 

 

1 2 2
B

w wM(x) = R x x L x 3L
2 2

− − + −

1 2 2w wM(x) = wL x x L x 3L
2 2

− − + − � (a)

Using Eq. (5.3), we write

2
1 2 2

2

d y w wEI wL x x L x 3L
dx 2 2

= − − + −

and then double integrate with respect to x,

2 3 3
1

dy wL w wEI x x L x 3L
dx 2 6 6

C= − − + − +
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3 4 4
1 2

wL w wEI y(x) x x L x 3L x
6 24 24

C C= − − + − + +

Fig. 5.43

Using the following boundary conditions (see Fig. 5.43)

1)	 x= 0 ⇒ y(x) = 0,
2)	 x= 4L ⇒ y(x) = 0.

then

3
1

11 wL ,
6

C = −  2 0.C =
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The equation of the elastic curve using singularity function is

3 4 4 31 wL w w 11 y(x) x x L x 3L wL x
EI 6 24 24 6

 = − − + − −  

Deflection at point C is

4

C
19 wLy y(x 2L) .

8 EI
= = = −

Problem 5.8

Fig. 5.44

Apply Castigliano’s theorem for determining the deflection at point C of the beam presented in Fig. 5.44.

Solution

x 0,L∈

Fig. 5.45

To solve using Castigliano’s theorem’s we need to apply an external force at the point that we wish to 
find the deflection. Therefore, at point C, we assume a zero value force FC.
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 Fig. 5.46

Drawing the free-body diagram of portion CQ (Fig. 5.46) and taking the moment about Q, we find that

iQ C
xM 0 :  M(x)  w x F x = 0
2

= − − −∑

C
xM(x) =  w x F x
2

− −
� (a)

Definition of deflection by Castigliano is 

C
C

 y
F
U∂

=
∂ � (b)

where U is the strain energy defined in Appendix, Eq. (A.31), which is

( )
2 2

2
2

0 0

 y d dx  dx
2E 2E

L LM MU A
I I

= =∫ ∫ ∫

Substituting Eq. (A.31) into (b), we have

C
C C0

1 M(x)y M(x)  dx
F EI F

LU∂ ∂
= =
∂ ∂∫

� (c)

Substituting Eq. (a) into Eq. (c), we get

C C C
C C0

1 x xy  w x F x   w x F x dx
F EI 2 F 2

LU∂ ∂   = = − − − −   ∂ ∂   ∫

( )C C
C 0

1 xy  w x F x x  dx
F EI 2

LU∂  = = − − − ∂  ∫
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After integration we have the deflection at point C

L4 4
3

C
0 0

1 w w x wLy x  dx
EI 2 2EI 4 8EI

L   = = =     
∫

� (d)

Problem 5.9

 Fig. 5.47

For the beam and load shown in Fig. 5.47, use the Castigliano’s theorem to determine the deflection at C.

Solution

From the free-body diagram in Fig. 5.47 we find the following reactions

ix BxF 0 :  R   = 0=∑

iB D D
2M 0 :  R 3L F2L  0    R F
3

= − = ⇒ =∑

iy B D B
1F 0 :  R R F  0    R = F
3

= + − = ⇒∑

 Fig. 5.47

Ix 0,2L∈

Fig. 5.48
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Drawing the free-body diagram of portion BQ of the beam (Fig. 5.48) and finding the moment about 
Q, we can see that

iQ I I B I I I B IM 0 :  M (x )  R x  = 0    M (x )  R x= − ⇒ =∑

I I I
FM (x )  x
3

=
� (a)

IIx 0,L∈

Fig. 5.49

Drawing the free-body diagram of portion QD of the beam (Fig. 5.49) and finding the moment about 
Q, we find that

iQ II II D II II II D IIM 0 : M (x )  R x  = 0 M (x )  R x= − + ⇒ =∑
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II II II
2M (x )  F x
3

=
� (b)

In order to find the deflection at point C we must modify Castigliano’s theorem in Eq. (5.14) for two 
portions, which is

2L
I I

C I I I
C 0

L
II

II II II
0

1 M (x ) y M (x )  dx +
F EI F

1 M(x )                        + M (x )  dx
EI F

U∂ ∂
= =
∂ ∂

∂
∂

∫

∫
� (c)

Substituting Eq. (a) and Eq. (b) into Eq. (c) we have

2L L
I

C I I II II II
0 0

1 F x 1 2 2 y x  dx + F x x  dx
EI 3 3 EI 3 3

= ∫ ∫

Integrating the last equation, we get the deflection at point C

2L L3 3 3
I II

C
0 0

F x 4F x 4 FL y +
9EI 3 9EI 3 9 EI

   
= =   

   

Problem 5.10

 Fig. 5.50

For the uniformly loaded beam shown in Fig. 5.50, determine (a) the reaction at support B applying 
both Castigliano’s theorem and the integration method, (b) the reaction at support B and using the 
singularity function.

Solution

This problem is a statically indeterminate one. For its solution we need the boundary condition, which 
states that the deflection at point B is equal to zero, because in this point we have a rigid support. This 
support can then be replaced with the unknown reaction RB, see Fig. 5.51.
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 Fig. 5.51

x 0,L∈

Fig. 5.52

(a) the reaction at support B using Castigliano’s theorem and the function of the elastic curve

Drawing the free-body diagram of portion BQ of the beam (Fig. 5.52) and taking into account the 
moment about Q, we find that

iQ B
xM 0 :  M(x)  R x wx  = 0
2

= − +∑

2

B
wxM(x) = R x

2
−

� (a)

 Fig. 5.53
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From the equilibrium of forces in the x and y direction we have

ixF 0 :  N(x)  = 0=∑

iy B BF 0 :  R V(x) wx = 0    V(x) R wx= − − ⇒ = −∑

Substitute the bending moment, Eq. (a), into Castigliano’s theorem (Eq. 5.14) we obtain the following form

L

B
B B0

1 M(x) y M(x)  dx 0
R EI R
U∂ ∂

= = =
∂ ∂∫ � (b)

and we have

L 2 2

B B
B0

1 wx wx 0 R x R x  dx
EI 2 R 2

   ∂
= − −   ∂   

∫

From the solution of the last equation we get

B
3 R wL.
8

= � (c)

Substituting this into the bending moment of Eq. (a), and the equation for the transversal load, we have

2 2

B
wx 3 wxM(x) = R x wLx

2 8 2
− = −

B
3V(x) R wx wL wx
8

= − = −

The bending moment and transversal load diagram is shown in Fig. 5.53.

Substituting M(x) into the elastic curve equation Eq. (5.3)

2 2

2

d y M(x) 1 3 wxwLx
dx EI EI 8 2

 
= = − 

 

2 2

2

d y 3 wxEI wLx
dx 8 2

= −

and double integrating the last equation with respect to x, we have
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3
2

1
dy 3 wxEI wLx
dx 16 6

C= − +

4
3

1 2
3 wxEI y(x) wLx x
48 24

C C= − + +
� (d)

The integration constants C1 and C2, are found from the following boundary conditions

1.	 x = L ⇒ y(x) =0,
2.	 x = L ⇒ y'(x) =0,

Note that we cannot use the condition x = 0, y = 0 because this condition was used for the calculation 
of the reaction at point B and thus the integration constants are 

3
1

1 wL ,
48

C = −  2 0C =
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Substituting these into Eq. (d), we have 

4
3 31 3 wx 1y(x) wLx wL x

EI 48 24 48
 

= − − 
 

(b) the reaction at support B and the elastic curve using the singularity function.

Using Fig. 4.11 we find the bending moment and transversal load with the singularity function

1 2
B

wM(x) = R x x
2

−

0 1
BV(x) = R x w x−

Using Eq. (5.3), we write

2
1 2

B2

d y M(x) 1 w R x x
dx EI EI 2

 = = −  

2
1 2

B2

d y wEI  R x x .
dx 2

= −

Integrating the last expression twice with respect to x we have

2 3dy R wEI  x x
dx 2 6

= − +

3 4B
1 2

R wEI y(x)  x x x
6 24

C C= − + + � (e)

 Fig. 5.54
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The boundary conditions from Fig. 5.51 are

1.	 x = 0 ⇒ v(x) =0,
2.	 x = L ⇒ v(x) =0,
3.	 x = L ⇒ v'(x) =0.

Using all boundary conditions we get

3
1

1 wL ,
48

C = − 2 0,   andC = B
3R wL.
8

=

Substituting the integration constants into Eq. (e), we have 

3 4 31 wL w 1v(x)  x x wL x
EI 16 24 48

 = − −  

where the bending moment is

1 23 wM(x) = wL x x
8 2

−

and the transversal load is

0 13V(x) = wL x w x
8

−

Diagram of the elastic curve can be seen in Fig. 5.54.

Problem 5.11

 Fig. 5.55

For the beam with the load shown in Fig. 5.55 determine, (a) the reaction at all supports by using 
Castigliano’s theorem, (b) draw the diagram of bending moment and transversal load.

Solution

The problem is statically indeterminate so we first exchange the support at point C with an unknown 
reaction RC. This reaction is found from the deformation condition, which says that the deflection at 
point C is equal to zero (yC = 0). (See Fig. 5.56).
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 Fig. 5.56

 Fig. 5.57

The next step is to now solve for Fig. 5.57, where we consider RC to be known. From the free-body 
diagram in Fig. 5.57 we find the reactions to be a function of the force RC, which are

ix BxF 0 :  R   = 0=∑

iB D C
3 3 3M 0 :  R L R L w L L  0
2 2 4

= − − =∑
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D C

2 3R R wL
3 4

= +

iy B C D
3F 0 :  R R R wL  0
2

= + + − =∑

			    
B C

1 3R   R wL  
3 4

= +

 

Ix 0,L∈

Fig. 5.58

Drawing the free-body diagram of portion BQ of the beam (Fig. 5.58) and considering the moment 
about Q, we find that

I
iQ I I B I I

xM 0 :  M (x )  R x wx  = 0
2

= − +∑

2 2
I I

I I B I C I
wx 1 3 wxM (x ) = R x R wL x

2 3 4 2
 − = + − 
  � (a)

where the normal force is

ix I IF 0 :  N (x )  = 0=∑

and the transversal force is

iy B I I IF 0 :  R V (x ) wx  = 0= − −∑

I I B I C I
1 3V (x ) R wx R wL wx
3 4

= − = + −
� (b)
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IIx 0, L/2∈

Fig. 5.59

Drawing the free-body diagram of portion QD of the beam (Fig. 5.59) and considering the moment 
about Q, we find that

II
iQ II II D II II

xM 0 :  M (x )  R x wx  = 0
2

= − + −∑

2
II

II II C II
2 3 wxM (x ) R wL x
3 4 2

 = + − 
  � (c)

The normal force at portion QD is

ix II IIF 0 :  N (x )  = 0=∑

and the transversal force at portion QD is

iy D II II IIF 0 :  R V (x ) wx  = 0= + −∑

II II D I C II
2 3V (x ) R + wx R wL wx
3 4

 = − = − + + 
  � (d)

Now we use the deformation condition by Castigliano’s theorem which says 

C
C C(L)

1 M(x) v M(x)  dx 0
R EI R
U∂ ∂

= = =
∂ ∂∫

For two portions we write

2L
I I

I I I
C0

L
II

II II II
C0

1 M (x )0 M (x )  dx +
EI R

1 M(x )                        + M (x )  dx
EI R

∂
=

∂

∂
∂

∫

∫
� (e)

and substitute Eq. (a) and Eq. (c) into Eq. (e), to get
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L 2
I I

C I I
0

L/2 2
II

C II II II
0

1 1 3 wx x 0 R wL x  dx +
EI 3 4 2 3

1 2 3 wx 2        R wL x  x dx
EI 3 4 2 3

  = + −  
  
  + −  
  

∫

∫

Solving for the last equation we get

C
33R wL.
32

= −
� (f)

While the other reactions are

B
1 33 3 13R   wL wL wL,
3 32 4 32
 = − + = + 
 

D
2 33 3 1R wL wL wL
3 32 4 16
 = − + = + 
 

(b) draw the diagram of bending moment and transversal load
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The bending moment of portion BC is

2
I

I I I
13 wxM (x ) = wLx
32 2

−

and the transversal load is 

I I C I
1 3V (x ) R wL wx
3 4

= + −

The position of the local extreme for the bending moment is found from the transversal load, which is 
equal to zero in the extreme position

I I ext ext ext
13 13V (x x ) wL wx 0    x L
32 32

= = − = ⇒ =

The bending moment in the extreme position is

2
I I ext

169M (x x ) = wL
2048

=

Bending moment of portion CD is

2
II

II II II
1 wxM (x ) wLx

16 2
= −

transversal load is 

II II II
1V (x ) wL wx

16
= − +

The position of the bending moments local extreme is found from the transversal load, which is equal 
to zero at the extreme.

II II ext ext ext
1 1V (x x ) wL wx 0    x L

16 16
= = − + = ⇒ =

The bending moment in the extreme position is

2
2

II II ext
1 L w L 1M (x x ) wL wL

16 16 2 16 512
 = = − = 
 
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The bending moment and transversal load diagram can be seen in Fig. 5.60.

 Fig. 5.60

Problem 5.12

Fig. 5.61

For the curved beam, loaded at its end, see Fig. 5.61, determine, (a) the reaction at all supports by using 
Castigliano’s theorem, (b) the diagram for the bending moment, transversal and normal load.

Solution

Fig. 5.62
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This problem is statically indeterminate so we must convert it to the statically determinate problem by 
representing the roller support by an unknown reaction RB in Fig. 5.62. We find this reaction from the 
boundary condition that the deflection in this point is equal to zero.

Fig. 5.63

Drawing the free-body diagram of portion BQ of the curved beam (Fig. 5.63 or Fig. 5.64) and considering 
the moment about Q, we find that

iQ BM 0 :  M( )  R R sin FR(1 cos ) = 0ϕ ϕ ϕ= − + − −∑

BM( )  R R sin FR(1 cos ).ϕ ϕ ϕ= − − � (a)
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The force 2F and RB decompose to a new coordinate system represented in Fig. 5.64 with equilibrium 
in the x’y’ coordinate system, finding normal load 

ix' BF 0 :  N( ) Fcos R sin   = 0ϕ ϕ ϕ= − + +∑

BN( ) Fcos R sinϕ ϕ ϕ= + � (b)

and transversal load

iy' BF 0 :  V( ) Fsin R cos   = 0ϕ ϕ ϕ= − +∑

BV( )  Fsin R cos .ϕ ϕ ϕ= − � (c)

then defining the strain energy within cylindrical coordinates we get 

2

( )

M( )  Rd
2EI

U
ϕ

ϕ ϕ= ∫ � (d)

Fig. 5.64

Castiliano’s theorem in cylindrical coordinates becomes

ð/2

B
B B0

1 M( )y M( )  Rd .
R EI R
U ϕϕ ϕ∂ ∂

= =
∂ ∂∫ � (e)

while the deformation condition using Eq. (e) is as follows

ð/2

B
B B0

1 M( )y M( )  Rd 0.
R EI R
U ϕϕ ϕ∂ ∂

= = =
∂ ∂∫

Substituting Eq. (a) into our equation, we have
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[ ]
ð/2

B
0

R R sin FR(1 cos ) R sin  d 0,ϕ ϕ ϕ ϕ− − =∫

Fig. 5.65

and we find the reaction at point B as

� (f)

Substituting Eq. (f) into Eq. (a), Eq. (b) and Eq. (c) we get

The diagram of the bending moment is shown in Fig. 5.66 where the local extreme is found from the 
transversal load when its value is equal to zero

The value of the bending moment in the extreme is 
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oM(32.48 )  0.186FR=

The transversal force diagram is shown in Fig. 5.67 and the diagram of normal force is shown in the 
Fig. 5.68.

Fig. 5.66 Fig. 5.67 Fig. 5.68
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Unsolved problems

Problem 5.12

For the beam loading according to Fig. 5.69, determine (a) the reaction at the supports, (b) the deflection 
at point C, (c) the slope at point B. Use the following parameters: E = 210 GPa, I = 8.2 10-7 m4.

 [ ]Bx B D C BR 0, R 2500 N,  R 500 N, y 1.47 mm,  0.0036 rad= = = = − Θ = −

Problem 5.13

For the beam and loading shown in Fig. 5.70, determine (a) the reaction at the supports, (b) the deflection 
at point C, (c) the slope at point B. Assume: E = 210 GPa, I = 7.2 10-7 m4.

 [ ]Bx B D C DR 0, R 5281.82 N,  R 5118.18 N, y 14.1 mm,  0.021 rad= = = = − Θ = −

Fig. 5.69 Fig. 5.70

Problem 5.14

For beam and load shown in Fig. 5.71, determine (a) the reactions at the supports, (b) the deflection at 
point D, (c) the slope at point B.

 

4 3

Bx B C D B
1 5 35 wL 1 wLR 0, R wL, R wL,  y ,  
4 4 24 EI 6 EI

 
= = − = = − Θ = 

 

Problem 5.15

For the beam which is loaded according to Fig. 5.72, determine (a) the reaction at the supports, (b) the 
deflection at point C, (c) the slope at point C.

 

o o o
Bx B C C C

M M M L1R 0, R , R ,  y 0,  
L L 12 EI

 = = = − = Θ =  

Fig. 5.71 Fig. 5.72
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Problem 5.16

For the beam and load shown in Fig. 5.73, determine (a) the reaction at the roller support, (b) the 
deflection at point C.

 

2
o o

B C
M M L9 1R ,  y

8 L 128 EI
 

= − = 
 

Problem 5.17

For the beam and load shown in Fig. 5.74, determine (a) the reaction at the roller support, (b) the 
deflection at point C.

 

3

B C
2 5 FLR F,  y
3 486 EI

 
= = − 

 

Fig. 5.73 Fig. 5.74

Problem 5.18

For the beam subjected to the moment in Fig. 5.75, determine (a) the reaction at point B, (b) the 
deflection at point C.

 

2
o o o

B B C
M M M L3 1R ,  M ,  y

2 L 4 96 EI
 

= = = − 
 

Problem 5.19

For beam with the loading shown in Fig. 5.78, determine (a) the reaction at point B, (b) the deflection 
at point C.

 

4
2

B B C
32 4 34 wLR wL,  M wL ,  y
25 3 75 EI

 
= = = − 

 

Fig. 5.75 Fig. 5.76
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Problem 5.20

For the beam with the load shown in Fig. 5.77, determine (a) the reaction at point C, (b) the deflection 
at point C.

 

4

C C
3 1 wLR wL,  y

16 16 EI
 

= = − 
 

Fig. 4.77
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6	 Columns
6.1	 Introduction

Until now we have dealt with the analysis of stress and strain in structures acted on by specified loads 
without any unacceptable deformations in the elastic region. Sometimes the structure can suddenly 
change its configuration at a certain load level. After removing the load, the structure will return to its 
initial configuration according to the condition of elastic response. The sudden change in configuration 
represents the unstable mode of the structure deformation. To exclude unstable modes of deformations, 
we need to gain knowledge about the stability of structures. That is, to determine the critical load which 
corresponds to the initiation of the unstable deformation modes.

In this Chapter we are going to analyse only simple structures, in our case columns. 

6.2	 Stability of Structures

 Fig. 6.1

Let us consider a column BC of length L with a pin connection at both ends, see Fig. 6.1. This column 
is acted on by the centric axial compressive force F. Let us suppose that the design of the considered 
column satisfies the strength condition  and its deformation  falls within 
the given specification. What this means is that the column is designed properly. However, it might 
happen that the column will lose stability and buckle and instead of remaining straight it will suddenly 
curve sharply, see Fig. 6.2.
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 Fig. 6.2

To understand the process of buckling, let us build a simple model of our column BC. This column 
consists of two rigid rods BD and CD connected together at point D by a pin and the torsional spring 
characterised by the spring constant K, see Fig. 6.3. If the applied load is perfectly aligned with the rods, 
the presented system remains straight and stable, see Fig. 6.4(a). But if we move point D to the right 
slightly, the rods will form a small angle ∆θ, see Fig. 6.4(b). This state is unstable because, after removing 
the applied load, the system will return to the initial stable mode by the action of the torsional spring. 
It is not possible to find the critical load FCR from the unbuckled state, therefore we must analyse the 
buckled structure. For simplicity let us consider rod CD only, see Fig. 6.5. We can observe two couples 
acting on the rod considered, namely the couple caused by forces F and F' and the couple  
exerted by the spring. If the couple of forces F and F' is smaller than the couple M, then the system 
tends to be in its initial stable configuration, i.e. in the equilibrium position. If couple M is smaller than 
the force couple F and F', then the system tends to move away from the equilibrium position to the 
unstable configuration. If both couples are in equilibrium, then the corresponding load is the critical 
load FCR. Then we can write
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 Fig. 6.4

 Fig. 6.5

� (6.1)

Assuming a small angular change where  we get

� (6.2)

For the load  the structure is in a stable state, i.e. there is no buckling. For an applied load of 
 the structure is in an unstable state, i.e. the structure can buckle. Assuming the applied load 
 the structure moves away from equilibrium and, after some oscillations, will settle in to its new 

equilibrium position which will be different from its previous one. For this reason the simplification of 
 cannot be valid anymore. Thus we need to solve the non-linear equation

� (6.3)
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or

� (6.4)

The last equation represents the problem of buckling equilibrium. This is out of our interest. We always 
try to design structures which resist to buckling.

6.3	 Euler’s formulas for Columns

 Fig. 6.6

Let us consider the column BC of the length L with a pin connection at both ends, see Fig. 6.1 again. 
This column is subjected to the centric axial compressive force F. Our task is to determine the critical 
load FCR, which causes buckling. Therefore we need to analyse the deformed rod, see Fig. 6.6. It can be 
assumed that the column is a vertical beam. Then, applying the step-by-step approach, we can determine 
the internal forces acting at the arbitrary point Q. The shape of the buckled column can be described as 
an elastic curve. Mathematically we get

� (6.5)

or

� (6.6)

Assuming that  we obtain

� (6.7)

The general solution of the above equation has the form
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� (6.8)

The integration constants A and B can be determined from the boundary conditions, which must be 
satisfied at both ends. Firstly we make x = 0 then y = 0 and we find that B = 0. Secondly we make x = 
L then y = 0 and we find that

� (6.9)

This equation either has the solution A = 0, which does not make physical sense, or sin pL = 0. If 
 then . Substituting for  and solving, we get

� (6.10)

The smallest value of the load F defined by the equation (6.10) is corresponding to  , thus we obtain 
the critical load

� (6.10)

The expression above is well-known as Euler’s formula, Euler (1707–1783). Substituting Euler’s formula 
into  and then into equation (6.8) we have
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� (6.11)

This is the elastic curve of a beam after it has buckled. The constant  can be determined from the 
condition . 

The corresponding critical stress can be calculated as

� (6.12)

Setting , where  is the radius of gyration. Then we obtain

� (6.13)

The quantity  is the slenderness ratio.

 Fig. 6.7

The validity of Euler’s formula can be extended to columns with different supports. Therefore we can 
introduce the effective length , which generalises pin-ended columns with other types of columns. 
Thus we can express the critical load and stress as follows

� (6.14)

The quantity  is the effective slenderness ratio.
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 Fig. 6.8

Let us consider a column BC of length L, fixed at C, and free at B, see Fig. 6.7. In this case we observe 
that the column will behave like the upper part of the pin-ended column with an effective length of 

, and an effective slenderness ratio of λe = 2L/r.

Now considering the column BC of length L with both ends fixed, see Fig. 6.8. Then, due to the horizontal 
symmetry at the point , we get horizontal reactions at the supports which must be equal to zero. The 
vertical tangents at points B, C, D to the elastic curve have zero slopes. Therefore there exists two inflexion 
points E, F, where the bending moments are equal to zero, see Fig. 6.9. For the pin-ended column, the 
bending moments at the supports are equal to zero too. Thus portion EF of the column behaves like the 
pin-ended column with an effective length of Le = L/2, and an effective slenderness ratio of  λe = L/2r.

 Fig. 6.9

Finally let us consider column BC of length L with one fixed end C and one pinned end B, see Fig. 
6.10. In this case we must write the differential equation of the elastic curve in order to determine the 
effective length. Therefore drawing the free body diagram with corresponding boundary equations, see 
Fig. 6.11, then applying the method of section in order to obtain the bending moment at any arbitrary 
point Q, we have
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� (6.15)
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substituting into equation (6.5) we get the differential equation of the elastic curve

 Fig. 6.11

� (6.16)

or

� (6.17)

or

� (6.18)

Solving this equation requires the addition of solutions of the homogeneous equation (6.6) and the 
particular solution of the non-homogeneous equation. The particular solution is determined by the 
order of the polynomial function on the right side of equation (6.18). One can easily derive that this 
particular solution is

� (6.19)

Then the general solution of the equation (6.18) has the form

� (6.20)

This equation contains three unknowns: A, B, V. Applying the boundary condition for point B as x = 0 
then y = 0 we find that B = 0. Making the next conditions as x = L, y = 0 and  we obtain
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� (6.21)

and

� (6.22)

Dividing equation (6.21) by equation (6.22) we get

� (6.23)

Solving the above equation can be done by Newton’s iterative method, (for more details see A. Ralston 
et al: A First Course in Numerical Analysis), as follows

� (6.24)

Using  and solving for the critical load we get

� (6.25)

The effective length can be obtained by equating the right-hand sides of the equations (6.25) and (6.14)

� (6.26)

Solving this equation, we obtain the effective length for this case  . 

Then we can summarise the effective lengths for the various end conditions considered in this Section, 
see Fig. 6.12.
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 Fig. 6.12

6.4	 Design of Columns under a Centric Load

In the previous Section we have derived a formula for calculating the critical stress as

� (6.27)
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 Fig. 6.13

This equation shows that the critical stress is proportional to Young’s modulus of the column material, 
and inversely proportional to the square of the slenderness ratio of the column. For a certain material, 
i.e. for a given Young’s modulus, we will get the plot of the critical stress versus the slenderness ratio, 
see Fig. 6.13. It is clear that for short columns, with low slenderness ratios, that the critical stress can 
exceed both: the ultimate stress and the yield stress before reaching Euler’s critical stress. Therefore we 
must modify the plot of the critical stress versus the slenderness ratio. For the illustration let us consider 
steel with a Young’s modulus of , the ultimate stress , and the yield stress 

 Assuming that  we can derive the minimum slenderness ratio

 Fig. 6.14
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If the current stress is greater than the critical stress , i.e. , then the material behaviour is 
not elastic and we cannot apply Euler’s formula. For short columns which , the critical load  

 is determined empirically using experimental results. These experimental results can be approximated 
by Tetmayer’s curve (L. Tetmayer 1850–1905)

� (6.28)

where  are the material constants. Then we get the limit curve of the critical stress versus the 
slenderness ratio consisting of three regions, see Fig. 6.14. Region 1, limited by the yielding stress , 
is valid for short columns. Region 2, limited by Tetmayer’s curve, is valid for intermediate columns and 
region 3, limited by Euler’s curve, is valid for long columns.

For the design of columns, we apply the buckling coefficients. These coefficients are determined by STN 
standards for a given material with a corresponding slenderness ratio. Thus the strength condition 

 must be modified as

� (6.29)

where B. C. is the buckling coefficient. Thus we can determine the allowable stress for centric loading to be

� (6.30)

6.5	 Design of Columns under an Eccentric Load

 Fig. 6.15
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 Fig. 6.16

In this section we discuss the design of columns undergoing eccentric loading. Let us consider an eccentric 
load applied in the plane of a column’s symmetry at an eccentricity of e, see Fig. 6.15. This eccentric load 
F can be replaced with the axial force F and the couple M = Fe. Then the normal stress exerted on the 
transverse section of the considered column can be expressed by superposing the axial load F and the 
couple M, see Fig. 6.16. This is valid only if the conditions of Saint Venant’s principle are satisfied and 
as long as the stresses involved do not exceed the proportional limit of the material. We can then write 
the stress caused by the eccentric load to be

�  (6.31)
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The maximum compressive stress can be calculated as

�  (6.32)

This maximum stress can not exceed the allowable stress in a properly designed column. To satisfy this 
requirement we can apply two approaches: the allowable stress method or the interaction method.

The allowable stress method. This method is based on the assumption that the allowable stress for centric 
loading is equal to the allowable eccentric loading. The design of the column must satisfy the strength 
condition  where  Then combining with the equation (6.32) we get

�  (6.33)

 Fig. 6.17

The interaction method. This method is based on the assumption that the allowable stress for centric 
loading is smaller than the allowable stress for bending. Therefore let us modify equation (6.33) by 
dividing the value of allowable stress to obtain

�  (6.34)

substituting the allowable centric stress in the first term and the allowable bending stress in the second 
term we have

�  (6.35)

This is known as the interaction formula. 

When an eccentric load is applied outside of the plane of symmetry, it causes bending about two principal 
axes, see Fig. 6.17. We then have a centric load F and two couples My and Mz. Thus the interaction 
formula can then be modified as
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�  (6.36)

6.6	 Examples, solved and unsolved problems

Problem 6.1

Fig. 6.18

Determine the critical load of the steel bar in Fig. 6.P1. The bar has a circular cross-section area with a 
diameter D = 100mm and has a length of L = 5 m. Assume E = 200 GPa.

Solution

Fig. 6.19

The critical load can be calculated by using the differential equation of the deflection curve, which is 

M(x)y
EI

′′ =
� (a)

When the coordinate axes correspond to those in Fig. 6.19 the bending moment at point Q is found 
from the equilibrium equation
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( )iQ 0M 0 :  M(x) F y y(x)  = 0  = − −∑

( )0 0M(x) F y y(x) F y F y(x)= − = −

The normal force at point Q is

ixF 0 :  F F = 0   F F′ ′= − + ⇒ =∑

then inserting the bending moment into Eq. (a), we have

( )0 0
1 F Fy (x) F y F y(x) y y(x)
EI EI EI

′′ = − = −

2 2
0y (x) k y(x) k y′′ + = � (b)

where 

2 Fk
EI

=
� (c)

The general solution of Eq. (b) is 

0y(x) cos kx sin kx yA B= + + � (d) 

in which A and B are constants of integration. These constants are determined from the following 
boundary conditions

1.	 x = 0, y = 0,
2.	 x = 0, yʹ = 0,
3.	 x = L, y = y0

From the first boundary condition, we get

0 00 cos k0 sin k0 y     yA B A= + + ⇒ = −

Using the next boundary condition, we find the first derivation of the deflection, which is 

y'(x) k sin kx k cos kx,A B= − +

and set x = 0, y’ = 0, to get

0 k sin k0 k cos k0    B 0A B= − + ⇒ =
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The condition at the upper end of the bar requires that y = y0 when x = L, which is satisfied if 

0y cos kL 0= � (e)

Equation (e) requires that either y0 = 0 or cos kL 0= . If y0 = 0, there is no deflection of the bar and 
hence no buckling (Fig. 6.18). If cos kL 0= , we must have the relation 

( )kL 2 1
2

n π
= − � (f)

where n = 1, 2, 3…. This equation determines values of k at which a buckled shape can exist. The 
deflection y0 remains indeterminate and, for the ideal case, can have any value within the scope of small 
deflection theory.

The smallest value of kL which satisfies Eq. (e) is obtained by taking n = 1. The corresponding value of 
F will be the smallest critical load, and we have

FkL L
EI 2

π
= =

from which
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2

cr 2

EIF .
4L
π

= � (g)

and for the given value, we have

( ) ( )
( )

4
2

432 3 4 9

cr 22 2 2

DE
EI ED 0.1 m200 10  Pa32F 6.2 MN.

4L 4L 4L 4 5 m

ππ
ππ π

 
  ×× = = = = =

×

Problem 6.2

Fig. 6.20

The steel column is fixed at its bottom and is braced at its top by cables so as to prevent movement at 
the top along the y axis, Fig. 6.20. If it is assumed to be fixed at its base, determine the largest allowable 
load F that can be applied. Use a factor of safety for buckling of F.S. = 2.5. Assume the parameters: E = 
200 GPa, σY = 250 MPa, L = 6 m, b = 50 mm, h = 100 mm.

Solution

Fig. 6.21

Buckling about the y and z axes is shown in Fig. 6.22 and Fig. 6.23, respectively. 
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Buckling in the XY plane. For the solution, we use Fig. 6.22a and the differential equation of the deflection 
curve, which is 

z

M(x)y (x)
EI

′′ = � (a)

From Fig. 6.22b, using the equilibrium equation, we find the bending moment

( )iQM 0 :  M(x) F y(x) R L x  = 0  = + − −∑

( )M(x)  = F y(x) R L x   − + − � (b)

x 0,  L∈

Fig. 6.22

and axial force at point Q

ixF 0 :  F F = 0   F F′ ′= − + ⇒ =∑

Inserting Eq. (b) into Eq. (a), we get the differential equation 

( )2

z

Ry (x) k y(x) L x ,
EI

′′ = − + −

where

2
z 2

z

F Fk             EI .
EI k

= ⇒ =
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Finally, we have

( )2 2Ry (x) k y(x) k L x .
F

′′ + = − � (c)

The general solution of Eq. (c) is

( )Ry(x) cos kx sin kx L x
F

A B= + + − � (d)

and the first derivative is 

Ry'(x) k sin kx k cos kx .
F

A B= − + −

In this equation, we have three unknowns (A, B are integration constants and R is a reaction), which we 
find from the following boundary conditions

1.	 x = 0, y = 0,
2.	 x = 0, yʹ = 0,
3.	 x = L, y = 0.

From boundary condition no. 1, we get
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( )R R0 cos k0 sin k0 L 0     L.
F F

A B A= + + − ⇒ = −

From the second condition, we have

R R0 k sin k0 k cos k0           = ,
F kF

A B B= − + − ⇒

and from the last condition, we get 

0 cos kL sin kLA B= +

R RLcos kL sin kL          kL tan kL
F kF

= ⇒ =
� (e) 

The solution of Eq. (e) is found by numerical methods with the following result

4.493kL 4.493    k ,
L

= ⇒ =

from which

� (f)

The moment of inertia of a rectangular cross-section with respect to the z axis is 

3
z

1I b h
12

=
   

( )( )3 6 4
z

1I 50 mm 100 mm 4.166 10  mm
12

= = ×

The value of critical load in the XY plane is 

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part II

178 

Columns

Fig. 6.23

Buckling in the XZ plane. 

The solution in this plane is the same as in Problem 6.1, where the critical load was solved by

The moment of inertia of a rectangular cross-section with respect to the y axis is 

3
y

1I h b
12

=
		

( )( )3 6 4
y

1I 100 mm 50 mm 1.042 10  mm
12

= = ×

The critical load in the XZ plane is 

By comparison, as the magnitude of F increases the more the column will buckle within the XY plane. 
The allowable load is therefore

cr
allow

F 14.28 kNF = 5.71 kN.
F.S. 2.5

= =

Since

cr
cr 2

F 14.28 kN= 2.86 MPa 250 MPa
A 5000 mm

σ = = <

Euler’s equation can be applied.
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Problem 6.3

Fig. 6.24

A steel column of length L and rectangular cross section has a fixed end at B and supports a centric load 
at C. Two smooth, rounded fixed plates restrain the end of the beam (point C) from moving in one of 
the vertical planes of symmetry, but allow it to move in the other plane. (a) Determine the ratio h/b of 
the two sides of cross section which correspond to the most efficient design against buckling. (b) Design 
the most efficient cross section for the column, knowing that L = 500 mm, E = 2.1 105 MPa, F = 1000 
N, and that a factor of safety of 3.0 is required.
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Solution

Buckling in the XY plane. The critical load for this plane is defined by Eq. (6.14), which is 

where

31 hb            A = h b
12zI =

and since

3
2

2 2 z
z

1 h bI b b12I A                 .
A h b 12 12z z zr r r= = = = ⇒ =

The effective slenderness ratio, Eq. (6.14), of the column with respect to buckling in the xy plane is 

eL 0.7L 0.7 12L .
bb/ 12xy

zr
λ = = =

� (a)

Buckling in the XZ plane. The critical load for this plane is defined by Eq. (6.14), which is

where

31 b h
12yI =

and since

3
2

y2 2
y

1 b hI h h12I A                 .
A h b 12 12y y yr r r= = = = ⇒ =

The effective slenderness ratio, Eq. (6.14), of the column with respect to buckling in the xz plane will be 

eL 2L 2 12L .
hh/ 12xz

yr
λ = = = � (b)
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a)	 The Most Effective Design. The most effective design is that for which the critical stresses 
corresponding to the two possible modes of buckling are equal. We note that this will be the 
case if the two values, obtained above, for the effective slenderness ratio are equal. So we can 
write

0.7 12L 2 12L b 0.7,                  0.35.
b h h 2xy xzλ λ= = ⇒ = =

b)	 Design for the given data. Since a F.S. = 3 is required.

crF (F.S.) F (3)(1000 N) 3000 N= = =

Using b = 0.35 h, we have A = h b = h 0.35 h = 0.35 h2 and 

cr
cr 2

F 3000 N=
A 0.35 h

σ =
� (c)

Setting L = 500 mm in Eq. (b), we have

eL 2 12L 2 12500 3464.10
h h hxz

yr
λ = = = =

where the critical stress is 

� (d)

comparing Eq. (c) and Eq. (d), we write

( )
( )

2 5

22

ð 2.1 10  MPa3000 N
0.35 h 3464.10 / h

×
=

( )
( )

2
4

2 5

3464.103000 N h
0.35 ð 2.1 10  MPa

=
×

and have

h 14.93 mm,  b 0.35 h 0.35 14.93 mm 5.22 mm= = = × =
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Problem 6.4

 
Fig. 6.25

The column in Fig. 6.25 consists of two different cross-section areas and has a length of L = 2 m. The 
relationship between the moment of inertia of the first and second cross-section area is 1 2I = 4I . If the 

bottom end is a fixed support while the top is free, determine the largest axial load which can be supported. 
Use E = 210 GPa, I2 = 0.15 106 mm4. 
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Solution

Fig. 6.26

We divide this problem into two parts for its solution, because we have two parts with different cross-
section. Deflection of the column after an applied critical load is shown in Fig. 6.26.

Solution of the first part. 1x 0,  L∈  

Fig. 6.27

From the equilibrium equation for the first part in Fig. 6.27, we have 

( )
1iQ 1 1 0 1 1M 0 :  M (x ) F y y (x )  = 0  = − −∑

( )1 1 0 1 1 0 1 1M (x ) F y y (x ) F y F y (x )= − = −

1ixF 0 :  F F = 0   F F′ ′= − + ⇒ =∑

The next step of the solution is to insert the bending moment into the differential equation of deflection 
in the form 

1 1
1 1

1

M (x )y (x ) ,
EI

′′ =

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part II

184 

Columns

and we have

( )1 1 0 1 1 0 1 1
1 1 1

1 F Fy (x ) F y F y (x ) y y (x )
EI EI EI

′′ = − = −

2 2
1 1 1 0 1 1 1y (x ) k y k y (x )′′ = −

2 2
1 1 1 1 1 1 0y (x ) k y (x ) k y′′ + = � (a)

where 

2
1

1

Fk .
EI

=

The solution of Eq. (a) is as follows

1 1 1 1 1 1 0y (x ) cos k x sin k x yA B= + + � (b)

where A and B are unknown integration constants and y0 is the unknown deflection of the column’s 
free end.

Fig. 6.28

Solution of the second part. 2x 0,  L∈  

The second part is shown in Fig. 6.28. The Unknown internal load is found from the equilibrium 
equations, which are

( )
2iQ 2 2 0 2 2M 0 :  M (x ) F y y (x )  = 0  = − −∑

( )2 2 0 2 2 0 2 2M (x ) F y y (x ) F y F y (x )= − = −
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2ixF 0 :  F F = 0   F F′ ′= − + ⇒ =∑

Using the bending moment M2(x2) and differential equation of beam deflection in the form 

2 2
2 2

2

M (x )y (x ) ,
EI

′′ =

from which

2 2
2 2 2 2 2 2 0y (x ) k y (x ) k y′′ + = � (c)

where 

2
2

2

Fk
EI

=

The general solution of Eq. (c) is 

2 2 2 2 2 2 0y (x ) cos k x sin k x yC D= + + � (d)

where C and D are unknown integration constants, which we find from the following boundary 
conditions:

1.	 x2 = 0, y2 = 0,
2.	 x2 = 0, yʹ2 = 0, 
3.	 x1 = 0, x2 = L, yʹ1 = yʹ2,
4.	 x1 = 0, x2 = L, y1 = y2,
5.	 x1 = L, y1 = 0,

Using the first condition, we get

2 2 0 00 cos k 0 sin k 0 y     y .C D C= + + ⇒ = −

Derivation of Eq. (d) is

2 2 2 2 2 2 2 2y' (x ) k sin k x k cos k x ,C D= − +

Using the second condition, we have
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2 2 20 k sin k 0 k cos k 0    0  for k 0C D D= − + ⇒ = ≠

In the same way, we find the derivation of deflection for the first part, which is 

1 1 1 1 1 1 1 1y' (x ) k sin k x k cos k x .A B= − +

and for 

1x 0,= 2x L,= 1 2y' y' ,=

we get

1 1 1 1 2 2 2 2k sin k 0 k cos k 0 k sin k L k cos k LA B C D− + = − +

2
1 2 2 0 2

1

kk k sin k L   y sin k L 
k

B C B= − ⇒ =

Using condition no. 4, we have

1 1 0 2 2 0cos k 0 sin k 0 y cos k L sin k L y ,A B C D+ + = + +
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from which

0 2y cos k L.A = −

and from the last condition, we get 

1
1 2

2

k tan k L tan k L.
k

= � (e)

Fig. 6.29

Since I1 = 4 I2 is required, from which we have a ratio between k1 and k2

2
1 2 1 21

2 1 1 12
2 1 2 2

2

F
k I I 4IEI     k k k 2kFk I I I

EI

= = ⇒ = = =

Inserting this result into Eq. (e), we get

1 1 1
1

1 1tan k L tan 2k L    2 tan k L  .
2 tan 2k L
= ⇒ =

� (f)

From the numerical calculation of Eq. (f) or from the graphical solution shown in Fig. 6.29, we have

k1L = 0.421,

which we compare with equation 

from which 
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This result, we plug into the general equation for the solution of the critical load (Eq. (6.14)), we get

For the given parameters, the critical load is 

( )

3 6 4
1

cr 22

0.177 EI 0.177(210 10  MPa)(4 0.15 10 mm )F
L 2000 mm

× × ×
= =

crF 5.58 kN=

Problem 6.5

Fig. 6.30

Determine the critical load of an aluminium tube shown in Fig. 6.30, which has a length L = 2.5 m and 
an outer diameter of 100 mm and 16 mm wall thickness. Assume E = 70 GPa.
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Solution

Fig. 6.31

The first step of the solution is to determine the support reactions for the deformed column in Fig. 6.31. 
From the following equilibrium equation, we find the reactions in the support.

ix Ax AxF 0 :  F R = 0   R F= − + ⇒ =∑
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0
iA 0 B B

F yM 0 :  F y  R L = 0   R  = 
L

= − ⇒∑

0
iB 0 A A

F yM 0 :  F y  R L = 0   R  = 
L

= − ⇒∑

The problem consists of a two part solution. 

The solution of the first part is in Fig. 6.32 for x1 from 0 to L. At position x1 we find the bending moment 
M1 and axial load F’ from the following equilibrium equations

( )
1iQ 1 1 Ax 1 1 A 1M 0 :  M (x ) R y (x ) R x  = 0  = − − −∑

1 1 Ax 1 1 A 1M (x ) R y (x ) R x= − +

0
1 1 1 1 1

F yM (x ) F y (x ) x
L

= − + � (a)

1ixF 0 :  F F = 0   F F′ ′= − + ⇒ =∑

1x 0,  L∈

Fig. 6.32

We insert the result of Eq. (a) into the differential equation 

1 1
1

M (x )y ,
EI

′′ =

we then have 
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2 2 0
1 1 1

yy (x) k y (x ) k x ,
L

′′ + = � (b)

where

2 Fk .
EI

=

Solution of the differential equation, Eq. (b), is 

0
1 1 1 1 1

yy (x ) cos kx sin kx x
L

A B= + + � (c)

and the first derivation of Eq. (c) is 

0
1 1 1 1

yy' (x ) k sin kx k cos kx .
L

A B= − + +

2x 0,  L∈

Fig. 6.33

The solution of the second part is in Fig. 6.33 for x2 from 0 to L. At position x2, we find the bending 
moment M2 and axial load F’ from the following equilibrium equations

( )
2iQ 2 2 0 2 2M 0 :  M (x ) F y y (x )  = 0  = − −∑

( )2 2 0 2 2 0 2 2M (x ) F y y (x ) F y F y (x )= − = − � (d)

2ixF 0 :  F F = 0   F F′ ′= − + ⇒ =∑
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We substitute the result in Eq. (d) into the differential equation

2 2
2 2

M (x )y (x ) ,
EI

′′ =

and have

2 2
2 2 2 2 0y (x ) k y (x ) k y .′′ + = � (e)

The solution of the differential equation, Eq. (e), is 

2 2 2 2 0y (x ) cos kx sin kx yC D= + + � (f)

and the first derivation of Eq. (f) is

2 2 2 2y' (x ) k sin kx k cos kx .C D= − +

The unknown integration constants A, B, C, D and the unknown deflection y0 are found from the 
boundary conditions:

1.	 x1 = 0, y1 = 0,
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2.	 x2 = 0, y2 = 0,
3.	 x1 = L, x2 = 0, y1 = 0,
4.	 x1 = L, x2 = 0, y'1 = y'2,
5.	 x2 = L, y2 = 0.

From the first boundary condition we have

0y0 cos k0 sin k0 0    0.
L

A B A= + + ⇒ =

where from the second boundary condition we get

0 00 cos k0 sin k0 y     C y .C D= + + ⇒ = −

and from the third condition, we have

0 0y y0 sin kL L    .
L sin kL

B B= + ⇒ = −

From condition no. 4, we get

0yk sin kL k cos kL k sin k0 k cos k0
L

A B C D− + + = − +

from which

0 0
0 0

y ycos kLy y cotan kL.
kL sin kL kL

D = − = −

and finally from the last condition, we have

12cos kL sin kL    2kL tan kL
kL

= ⇒ = � (g)

Fig. 6.34
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The numerical solution of Eq. (g) or from the graphical solution in Fig. 6.34, we get

kL 1.166=

from which 

cr 2

1.35EIF
L

= � (f)

For the given parameters, we have

�

and the critical load is

( )

3 6 4

cr 22

1.35EI 1.35 (70×10 MPa) (3.86 10 mm )F
L 2500 mm

×
= =

crF 58.4 kN=

Problem 6.6

Fig. 6.35

Determine the critical load of the steel tube in Fig. 6.35, consider the following parameters: L = 4 m,  
I = 7.794×106 mm4, E = 210 GPa.
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Solution

Fig. 6.36

x 0,  L∈

In this problem, we divide into two parts, the buckling is only in the part in Fig. 6.36a, the second part 
in Fig. 6.36b is without buckling, because in point B there is a pin support.
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From the moment at point B, we get 

iB B 0 B 0M 0 :  M F y  = 0    M F y= + ⇒ = −∑

Fig. 6.37

Solution for the buckling part of Fig. 6.37, we find the internal load at point Q, which are the following

( )iQ 0M 0 :  M(x) F y y(x)  = 0  = − −∑

	 ( )0 0M(x) F y y(x) F y F y(x)= − = − � (a)

ixF 0 :  F F = 0   F F′ ′= − + ⇒ =∑

For the calculation of the critical load, we use the differential equation of the deflection curved, which is

M(x)y (x) .
EI

′′ = � (b)

After putting Eq. (a) into Eq. (b), we have

2 2
0y (x) k y(x) k y′′ + = � (c)

where

2 Fk .
EI

=

the solution of Eq. (c) is 

0y(x) cos kx sin kx yA B= + + � (d)
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and its first derivation is

y'(x) k sin kx k cos kx.A B= − +

The unknowns integration constant A and B, are found from the boundary conditions

1.	 x = 0, y = 0,
2.	 x =0, y' = φ,
3.	 x = L, y = y0

From the first condition, we have

0 00 cos k0 sin k0 y     y .A B A= + + ⇒ = −

where from the third condition, we get

0 0
cos kL0 y cos kL sin kL    y .
sin kL

B B= − + ⇒ =

In the second condition, we have an unknown slope j of the deflection curve at point B, which we find 
from the second part in Fig. 6.38a. Using Castigliano’s theorem for the solution, the bending moment 
M(x) at point Q in Fig. 6.38b is 

iQ B B B BM 0 :  (x) M R x  = 0    (x) R x MM M= + − ⇒ = −∑

x 0,  L∈

Fig. 6.38
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In this equation, the reaction RB is unknown, which we find from the equilibrium at point A in Fig. 6.19a,

B
iA B B B

MM 0 :  M R L  = 0    R
L

= − + ⇒ =∑

The strain energy in bending, from the Appendix, is defined as

2

0

 dx
2E

L MU
I

= ∫
� (A.31)

and Castigliano’s theorem is 

2

B B B0 0

(x) 1 (x) dx (x)  dx
M M 2EI EI M

L LU M MMϕ
 ∂ ∂ ∂

= = = ∂ ∂ ∂ 
∫ ∫

After the solution, we have

B
B

0

1 x x M LM 1 1  dx
EI L L 3EI

L

ϕ   = − − =  
  ∫

20 0F y L y Lk
3EI 3

ϕ = − = − � (e)
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Now, we insert the result from Eq. (e) to the second boundary condition, and get 

cos kLkL 3 3 cotan kL
sin kL

= − = − � (f)

Fig. 6.39

After the numerical solution, or from the graphical solution in Fig. 6.39, we get

�

We insert this result into the general equation for the solution of the critical load (Eq. (6.14)) and get

For the given parameters, the critical load is 

( )( )
( )

3 6 4

cr 22

4.862 210 10  MPa 7.794×10  mm4.862 EIF
L 4000 mm

×
= =

crF 497.4 kN=
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Problem 6.7

Fig. 6.40

Determine the critical load for the column in Fig. 6.40.

L, E and I are given.

Solution

1x 0,  L∈

Fig. 6.41

First we solve for the reaction in the deformed column, see Fig. 6.41a. From the free body diagram and 
the following equilibrium equations, we find the reactions at the support, which are

ix Bx BxF 0 :  F R = 0   R F,= − + ⇒ =∑

iy A B A BF 0 :  R R = 0   R R ,= + ⇒ =∑

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part II

201 

Columns

This problem is symmetric, from this condition we denote M as the moment in the supports A and B, 
that is

B AM M  = M =

From the equilibrium of the moments at point B, we get 

iB B A A AM 0 :  M M R 4L = 0   R  = 0= − − ⇒∑

The solution is divide into two parts, which is show in Fig. 6.41b, because we are using an axis of symmetry.

1x 0,  L∈
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Fig. 6.42

Solution of the first part in Fig. 6.42.

At location x1 in point Q1, we find the bending moment M1(x1) and axial force F’ from the following 
equilibrium equation 

1iQ 1 1 1 1M 0 :  M (x ) Fy (x ) M = 0  = + −∑
	 1 1 1 1M (x ) F y (x ) M= − + � (a)

1ixF 0 :  F F = 0   F F′ ′= − + ⇒ =∑

Inserting Eq. (a) into the differential equation of the deflection curve 

1 1
1

1

M (x )y ,
EI

′′ =

from which 

2x 0,  L∈

Fig. 6.43
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2 2
1 1 1 1

My (x) k y (x ) k ,
F

′′ + = � (b)

where

2
1

1

F Fk .
EI EI

= =

The solution of Eq. (b) is 

1 1 1 1 1 1
My (x ) cos k x sin k x
F

A B= + + � (c)

and the first derivation is

1 1 1 1 1 1 1 1y' (x ) k sin k x k cos k x .A B= − +

Solution of second part in Fig. 6.43.

The bending moment M2(x2) and axial force F’ we obtain from the following equilibrium equation

2iQ 2 2 2 2M 0 :  M (x ) F y (x ) M = 0  = + −∑

	 2 2 2 2M (x ) F y (x ) M= − + � (d)

2ixF 0 :  F F = 0   F F′ ′= − + ⇒ =∑

inserting Eq. (d) into the differential equation of the deflection curve 

2 2
2 2

2

M (x )y (x )
EI

′′ =

from which

2 2
2 2 2 2 2 2

My (x ) k y (x ) k
F

′′ + =
� (e)

where

2
2

2

F Fk .
EI 3EI

= =
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The solution of Eq. (b) is 

2 2 2 2 2 2
My (x ) cos k x sin k x
F

C D= + + � (f)

and its first derivative is

2 2 2 2 2 2 2 2y' (x ) k sin k x k  cos k xC D= − +

To find the unknown integration constants A, B, C, D and the moment at the support M, we use the 
following boundary conditions

1.	 x1 = 0, y1 = 0
2.	 x2 = L, y'2 = 0
3.	 x1 = L, x2 = 0, y1 = y2

4.	 x1 = L, x2 = 0, y'1 = y'2 

5.	 x1 = 0, y'1 = 0

After using all boundary conditions, we have the following results:

1 1
M M1.     0 cos k 0 sin k 0     
F F

A B A= + + ⇒ = −
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1 1 1 15.     0 k sin k 0 k cos k 0    0A B B= − + ⇒ =

2 2 2 22.     0 k sin k L k  cos k LC D= − +

2
2

2

sin k L tan k L
 cos k L

D C C= =

1 1 2 2
M M3.     cos k L sin k L cos k 0 sin k 0
F F

A B C D+ + = + +

 
1 1

Mcos k L cos k L
F

C A= = −

1 1 1 1 2 2 2 24.     k sin k L k cos k L k sin k 0 k  cos k 0A B C D− + = − +

1
1 2

2

k tan k L tan k L
k

= − � (g)

Fig. 6.44

Setting a ratio between k1 and k2 in the form

2
1 2 1 11

2 1 12
2 1 2

2

F
k I I I kEI     k k kFk I I 3I 3

EI

= = ⇒ = = =

And inserting into Eq. (g) we get

1
1

k3 tan k L tan L
3

= − � (f)
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We solve Eq. (f) by the numerical method or the graphical method shown in Fig. 6.44, the result is 

Critical load is

Unsolved problems

Problem 6.8

Determine the critical load for the column in Fig. 6.45. L = 5 m, I = 3.457×106 mm4, 
E = 200 GPa is given.

 [Fcr = 39.3 kN]

Problem 6.9

Determine the critical load for an aluminum column shown in Fig. 6.46. L = 1.5 m, 
 I = 5.325×106 mm4,E = 70 GPa is given.

 [Fcr = 134.6 kN]

Problem 6.10

Determine the critical load for a brass column shown in Fig. 6.47. L = 2m, 
 I = 9.436×106 mm4,E = 120 GPa is given.

 [Fcr = 244.4 kN]

Fig. 6.45 Fig. 6.46 Fig. 6.47
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Problem 6.11

Determine the critical load for a steel column shown in Fig. 6.48. L = 1.5 m, I = 4.91×106 mm4,E = 210 
GPa is given.

 [Fcr = 604.7 kN]

Fig. 6.48
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Appendix
A.1	 Centroid and first moment of areas

Fig. A.1

Consider an area A located in the zy plane (Fig. A.1). The first moment of area with respect to the z 
axis is defined by the integral

 dz
A

Q y A= ∫ �  (A.1)

Similarly, the first moment of area A with respect to the y axis is

 dy
A

Q z A= ∫ � (A.2)

If we use SI units are used, the first moment of Qz and Qy are expressed in m3 or mm3.

Fig. A.2

The centroid of the area A is defined at point C of coordinates y and z (Fig. A.2), which satisfies the 
relation

 d
A

y A
y

A
=
∫
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 d
A

z A
z

A
=
∫

�  (A.3)

Fig. A.3

When an area possesses an axis of symmetry, the first moment of the area with respect to that axis is zero.

Considering an area A, such as the trapezoidal area shown in Fig. A.3, we may dividethe area into 
simple geometric shapes. The solution of the first moment Qz of the area with respect to the z axis can 
be divided into components A1, A2, and we can write

 1  2

 d d dz i i
A A A

Q y A y A y A y A= = + =∑∫ ∫ ∫ � (A.4)

Solving the centroid for composite area, we write

i i
i

i
i

A y
y

A
=
∑
∑ 		

i i
i

i
i

A z
z

A
=
∑
∑ � (A.5)

Example A.01

Fig. A.4

For the triangular area in Fig. A.4, determine (a) the first moment Qz of the area with respect to the z 
axis, (b) the y ordinate of the centroid of the area.
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Solution

(a) First moment Qz

Fig. A.5

We selected an element area in Fig. A.5 with a horizontal length u and thickness dy. From thesimilarity 
in triangles, we have

u h y
b h

−
=

		

h yu b
h
−

=
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and

h yd u dy b dy
h

A −
= =

using Eq. (A.1) the first moment is

( )2

0 0

h y b d b  dy = hy y  dy
h h

h h

z
A

Q y A y −
= = −∫ ∫ ∫

2 3
2b y y 1 h bh

h 2 3 6zQ
 

= − = 
 

(b) Ordinate of the centroid

Recalling the first Eq. (A.4) and observing that 
1 bh
2

A = , we get

2 21 1 1y     bh bh y    y = h
6 2 3zQ A= ⇒ = = ⇒

A.2	 Second moment, moment of areas

Consider again an area A located in the zy plane (Fig. A.1) and the element of area dA of coordinate y 
and z. The second moment, or moment of inertia, of area Awith respect to the z -axis is defined as

2  dz
A

I y A= ∫ � (A.6)

Example A.02

Locate the centroid C of the area A shown in Fig. A.6

Fig. A.6
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Solution

Selecting the coordinate system shown in Fig. A.7, we note that centroid C must be located on the y 
axis, since this axis is the axis of symmetry than z 0= .

Fig. A.7

Dividing A into its component parts A1 and A2, determine the y ordinate of the centroid, using Eq. (A.5)

2

1 1 1 2 2
2

1 2

1

i i i i
i i

i
ii

i

A y A y
A y A yy

A A AA

=

=

+
= = =

+

∑ ∑
∑ ∑

( ) ( ) 3
1 1 2 2

2
1 2

2t×8t 7t+ 4t×6t 3t 184t 4.6t
2t×8t 4t×6t 40t

A y A yy
A A

× ×+
= = = =

+ +

Similarly, the second moment, or moment of inertia, of area A with respect to the y axis is 

2  dy
A

I z A= ∫ .� (A.7)

We now define the polar moment of inertia of area A with respect to point O (Fig. A.8) as the integral

2  do
A

J Aρ= ∫ ,� (A.8)
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Fig. A.8

where ρ is the distance from O to the element dA. If we use SI units, the moments of inertia are expressed 
in m4 or mm4.

An important relation may be established between the polar moment of inertia Jo of a given area and 
the moment of inertia Iz and Iy of the same area. Noting that 2 2 2y zρ = + , we write

( )2 2 2 2 2 d  d  d  do
A A A A

J A y z A y A z Aρ= = + = +∫ ∫ ∫ ∫
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or

o z yJ I I= + � (A.9)

The radius of gyration of area A with respect to the z axis is defined as the quantity rz, that satisfies the 
relation

2     z
z z z

II r A r
A

= ⇒ = � (A.10)

In a similar way, we defined the radius of gyration with respect to the y axis and origin O. We then have 

2     y
y y y

I
I r A r

A
= ⇒ = �  (A.11)

2     o
o o o

JJ r A r
A

= ⇒ = �  (A.12)

Substituting for Jo, Iy and Iz in terms of its corresponding radi of gyration in Eg. (A.9), we observe that

2 2 2
0  z yr r r= + �  (A.13)

Example A.03

For the rectangular area in Fig. A.9, determine (a) the moment of inertia Iz of the area with respect to 
the centroidal axis, (b) the corresponding radius of gyration rz.

Fig. A.9

Solution

(a) Moment of inertia Iz. We select, as an element area, a horizontal strip with length b and thickness 
dy (see Fig. A.10). For the solution we use Eq. (A.6), where dA = b dy, we have
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( )
/ 2 / 2

/ 22 2 2 3

/ 2
/ 2 / 2

b d y b dy b y  dy y
3

h h
h

z h
A h h

I y A
+ +

+

−
− −

 = = = =  ∫ ∫ ∫

3 3
3b h h 1          b h

3 8 8 12z zI I
 

= + ⇒ = 
 

Fig. A.10

(b) Radius of gyration rz. From Eq. (A.10), we have

3
2

1 bh h h12            
bh 12 12

z
z z

Ir r
A

= = = ⇒ =

Example A.04

For the circular cross-section in Fig. A.11. Determine (a) the polar moment of inertia JO, (b) the moment 
of inertia Iz and Iy.

Fig. A.11
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Solution

(a) Polar moment of Inertia. We select, as an element of area, a ring of radius ρ and thickness dρ (Fig. 
A.12). Using Eq. (A.8), where dA = 2 πρ dρ, we have

/ 2 / 2
2 2 3

0 0

 d 2 d 2 d
D D

o
A

J Aρ ρ πρ ρ π ρ ρ= = =∫ ∫ ∫ ,

4ð D
32oJ = .

Fig. A.12

(b) Moment of Inertia. Because of the symmetry of a circular area Iz = Iy. Recalling Eg. (A.9), we can write
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4 D
322           

2 2
o

o z y z z
JJ I I I I

π

= + = ⇒ = =

4D .
64z yI I π

= =

A.3	 Parallel axis theorem

Fig. A.13

Considering the moment of inertia Iz of an area A with respect to an arbitrary z axis (Fig. A.13). Let us 
now draw the centroidal z’ axis, i.e., the axis parallel to the z axis which passes though the area’s centroid 
C. Denoting the distance between the element dA and axis passes though the centroid Cby y’, we write 
y = y’ + d. Substituting for y in Eq. (A.6), we write

( )22  d '  dz
A A

I y A y d A= = +∫ ∫ ,

2 2'  d 2 ' d dz
A A A

I y A d y A d A= + +∫ ∫ ∫ ,

2
' 'z z zI I Q Ad= + + �  (A.14)

where 'zI  is the area’s moment of inertia with respect to the centroidal z’ axis and Qz' is the first moment 
of the area with respect to the z’ axis, which is equal to zero since the centroid C of the area is located 
on that axis. Finally, from Eq. (A.14)we have

2
'z zI I Ad= + � (A.15)

A similar formula may be derived, which relates the polar moment of inertia Jo of an area to an arbitrary 
point O and polar moment of inertia JC of the same area with respect to its centroid C. Denoting the 
distance between O and Cby d, we write

2
o CJ J Ad= + �  (A.16)
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Example A.05

Determine the moment of inertia Iz of the area shown in Fig. A.14 with respect to the centroidal z axis.

Fig. A.14

Solution

The first step of the solution is to locate the centroid C of the area. However, this has already been done 
in Example A.02 for a given area A.

We divide the area A into two rectangular areas A1 and A2 (Fig. A.15) and compute the moment of 
inertia of each area with respect to the z axis. Moment of inertia of the areas are

1 2z z zI I I= + ,

where Iz1 is the moment of inertia of A1 with respect to the z axis. For the solution, we use the parallel-
axis theorem (Eq. A.15), and write

2 3 2
1 ' 1 1 1 1 1 1 1

1A d b h b h d
12z zI I= + = +

3 2
1

1 8t (2t) 8t 2t (7t 4.6t)
12zI = × × + × × −

4
1 97.5 tzI =
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Fig. A.15

In a similarly way, we find the moment of inertia Iz2 of A2 with respect to the z axis and write

2 3 2
2 '' 2 2 2 2 2 2 2

1A d b h b h d
12z zI I= + = +

3 2
2

1 4t (6t) 4t 6t (4.6t 3t)
12zI = × × + × × −

4
1 133.4 tzI =

The moment of inertia Iz of the area shown in Fig. A.14 with respect to the centroidal z axis is
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4 4 4
1 2 97.5t 133.4t 230.9t .z z zI I I= + = + =

Example A.06

Fig. A.16

Determine the moment of inertia Iz of the area shown in Fig. A.14 with respect to the centroidal z axis 
and the moment of inertia Iy of the area with respect to the centroidal y axis.

Fig. A.17

Solution

The first step of the solution is to locate the centroid C of the area. This area has two axis of symmetry, 
the location of the centroid C is in the intersection of the axes of symmetry.
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Fig. A.18

We divide the area A into three rectangular areas A1, A2 and A3. The first way we can divide area A can 
be seen in Fig. A.17, a second way can be seen in Fig. A.18.

Solution the division of area A by Fig. A.17 (the first way) themoment of inertia Izis

1 2 3,z z z zI I I I= + +

where

2 3 2 4
1 ' 1 1 1 1 1 1 1

1A d b h b h d 196t ,
12z zI I= + = + = =

2 3 2 4
2 2 2 2 2 2 2 2

1A d b h b h d 36t ,
12z zI I= + = + = =

2 3 2 4
3 ''' 3 3 3 3 3 3 3

1A d b h b h d 196t .
12z zI I= + = + = =

Resulting in

4 4 4 4
1 2 3 196t 36t 196t 428t .z z z zI I I I= + + = + + =

For the moment of inertia Iy we have

1 2 3,y y y yI I I I= + +

where

( )33 4
1 1 1

1 1h b 2t 6t 36t ,
12 12y yI I= = = × × =

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part II

222 

Appendix

( )33 4
2 2 2

1 1h b 6t 2t 4t ,
12 12y yI I= = = × × =

( )33 4
3 3 3

1 1h b 2t 6t 36t .
12 12y yI I= = = × × =

Resulting in

4 4 4 4
1 2 3 36t 4t 36t 76t .y y y yI I I I= + + = + + =

The solution for the division of area A according to Fig. A.18 (by the second way) the moment of inertia Iz is

1 2 3,z z z zI I I I= − −

where

( )33 4
1 1 1

1 1b h 6t 10t 500t ,
12 12z zI I= = = × × =

( )33 4
2 2 2

1 1b h 2t 6t 36t ,
12 12z zI I= = = × × =
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( )33 4
3 3 3

1 1b h 2t 6t 36t .
12 12z zI I= = = × × =

Resulting in

4 4 4 4
1 2 3 500t 36t 36t 428t .z z z zI I I I= − − = − − =

For the moment of inertia Iy we have

1 2 3,y y y yI I I I= − −

where

( )33 4
1 1 1

1 1h b 10t 6t 180t ,
12 12y yI I= = = × × =

( ) ( )3 23 2 4
2 2 2 2 2 2

1 1h b h b d 6t 2t 6t 2t 2t 52t ,
12 12y yI I= = + = × × + × × =

( ) ( )3 23 2 4
3 3 3 3 3 3

1 1h b h b d 6t 2t 6t 2t 2t 52t .
12 12y yI I= = + = × × + × × =

Resulting in

4 4 4 4
1 2 3 180t 52t 52t 76t .y y y yI I I I= − − = − − =

Example A.07

Fig. A.19

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part II

224 

Appendix

In order to solve the torsion of a rectangular cross-section in Fig. A.19, we defined (See S.P. Thimoshenko 
and J.N. Goodier, Theory of Elasticity, 3d ed. McGraw-Hill, New York, 1969, sec. 109) the following 
parameters for b>h:

�  (A.17)

2
1  b  h,S α= �  (A.18)

2
2  b h ,S β= �  (A.19)

where parameters α, β and γ are in Tab.A.1.

The shearing stresses at point 1 and 2 are defined as

1 max
1

T ,
S

τ τ= = 		  2
2

T ,
S

τ = �  (A.20)

where T is the applied torque.

Tab.A.1

A.4	 Product of Inertia, Principal Axes

Definition of product of inertia is

  dyz
A

I y z A= ∫ � (A.20a)

in which each element of area dA is multiplied by the product of its coordinates and integration is 
extended over the entire area A of a plane figure. If a cross-section area has an axis of symmetry which 
is taken for the y or z axis (Fig. A.19), the product of inertia is equal to zero. In the general case, for 
any point of any cross-section area, we can always find two perpendicular axes such that the product 
of inertia for these vanishes. If this quantity becomes zero, the axes in these directions are called the 
principal axes. Usually the centroid is taken as the origin of coordinates and the corresponding principal 
axes are then called the centroidal principal axes. 
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Fig. A.19a

If the product of inertia of a cross-section area is known for axes y and z (Fig. A.19a) thought the centroid, 
the product of inertia for parallel axes y’ and z’ can be found from the equation

' ' + mn.y z yzI I A= � (A.20b)

The coordinates of an element dA for the new axes are

y ' y n;= + 		  z ' z m.= +
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Hence,

( )( )' ' y 'z 'd y n z m d yz d mn d ym d nz d .y z
A A A A A A

I A A A A A A= = + + = + + +∫ ∫ ∫ ∫ ∫ ∫

The last two integrals vanish because C is the centroid so that the equation reduces to (A.20b).

A.5	 Strain energy for simple loads

Fig. A.20

Consider a rod BC of length L and uniform cross-section area A, attached at B to a fixed support. The 
rod is subjected to a slowly increasing axial load F at C (Fig. A.20). The work done by the load F as it is 
slowly applied to the rod must result in the increase of some energy associated with the deformation of 
the rod. This energy is referred to as the strain energy of the rod. Which is defined by

0
 F d

x
Strain energy U x= = ∫ �  (A.21)

Dividing the strain energy U by the volume V = A L of the rod (Fig. A.20) and using Eq. (A.21), we have

0

F  d
A L

xU x
V

= ∫ �  (A.22)

Recalling that F/A represents the normal stress σx in the rod, and x/L represents the normal strain εx, 
we write

x x0
 dU

V
ε
σ ε= ∫ �  (A.23)

The strain energy per unit volume, U/V, is referred to as the strain-energy density and will be denoted 
by the letter u. We therefore have

x x0
 du

ε
σ ε= ∫ �  (A.24)
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A.5.1 Elastic strain energy for normal stresses

In a machine part with non-uniform stress distribution, the strain energy density u can be defined by 
considering the strain energy of a small element of the material with the volume ΔV. writing 

0lim V
Uu
V∆ →

∆
=

∆
 or 

d
d
Uu
V

= .�  (A.25)

for the value of σx within the proportional limit, we may set σx = E εx in Eq. (A.24) and write

�  (A.26)

The value of strain energy U of the body subject to uniaxial normal stresses can by obtain by substituting 
Eq. (A.26) into Eq. (A.25), to get

xó  d
2E

U V= ∫ .�  (A.27)

Elastic strain energy under axial loading

When a rod is acted on by centric axial loading, the normal stresses are σx = N/A from Sec. 2.2. Substituting 
for σx into Eq. (A.27), we have

2

2  d
2E
NU V

A
= ∫  or, setting d  dV A V= , 	

2

0

 d
2E

L NU V
A

= ∫ �  (A.28)

If the rod hasa uniform cross-section and is acted on by a constant axial force F, we then have

2L
2E
NU

A
= �  (A.29)

Elastic strain energy in Bending

The normal stresses for pure bending (neglecting the effects of shear) is σx = My / I from Sec. 4. Substituting 
for σx into Eq. (A.27), we have

�  (A.30)

Setting dV = dA dx, where dA represents an element of cross-sectional area, we have

( )
2 2

0 0

 y d dx  dx
2E 2E

L LM MU A
I I

= =∫ ∫ ∫ �  (A.31)
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Example A.08

Fig. A.21

Determine the strain energy of the prismatic cantilever beam in Fig. A.21, taking into account the effects 
of normal stressesonly.

Solution

The bending moment at a distance x from the free end is M F x= − . Substituting this expression into 
Eq. (A.31), we can write

( )22 2 3

0 0

F x F L dx  dx
2E 2E 6E

L LMU
I I I

= = =∫ ∫

A.5.2	 Elastic strain energy for shearing stresses

When a material is acted on by plane shearing stresses τxy the strain-energy density at a given point can 
be expressed as
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0

 dxy xyu
γ

τ γ= ∫ ,�  (A.32)

where γxy is the shearing strain corresponding to τxy. For the value of τxy within the proportional limit, 
we have τxy = G γxy, and write 

2
xy2

xy xy xy
1 1G
2 2 2G

u
τ

γ τ γ= = = .�  (A.33)

Substituting Eq. (A.33) into Eq. (A.25), we have

2
xy  d

2G
U V

τ
= ∫ .�  (A.34)

Elastic strain energy in Torsion

The shearing stresses for pure torsion areτxy = Tρ / J from Sec. 3. Substituting for τxy into Eq. (A.27), 
we have

2 2 2
xy

2

ñ d  d
2G 2 E

TU V V
G J

τ
= =∫ ∫ �  (A.35)

Setting dV = dA dx, where dA represents an element of the cross-sectional area, we have

�  (A.36)

In the case of a shaft of uniform cross-sectionacted on by a constant torque T, we have

2L
2G
TU

J
= �  (A.37)

Elastic strain energy in transversal loading

If the internal shear at section x is V, then the shear stress acting on the volume element, having a length 
of dx and an area of dA, is τ = V Q / I t from Sec. 4. Substituting for τ into Eq. (A.27), we have

22 2 2

2 2
0

1    d  d  dx   d  dx
2G 2G  2G

L

V V A

V Q V QU V A A
I t I t

τ   = = =   
   

∫ ∫ ∫ ∫ �  (A.38)

The integral in parentheses is evaluated over the beam’s cross-sectional area. To simplify this expression 
we define the form factor for shear

2

2 2  dS
A

A Qf A
I t

= ∫ �  (A.39)
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Substituting Eq. (A.39) into Eq. (A.38), we have 

2

0

   dx
2G

L

S
VU f

A
= ∫ �  (A.40)

Fig. A.22

The form factor defined by Eq. (A.39) is a dimensionless number that is unique for each specific cross-
section area. For example, if the beam has a rectangular cross-section with a width b and height h, as 
in Fig. A.22, then

b, t = 	 A b h,= 	
31 b h

12
I =

2
2

h y h b h2A y b y y
2 2 2 4

Q y

 −    ′ ′= = + − = −    
    

 

Substituting these terms into Eq. (A.39), we get

/ 2 2 2
2

2 2
/ 23

bh b h 6y  b dy
4b 4 51 bh

12

h

S
h

f
+

−

 
= − = 
   
 
 

∫ � (A.41)

Example A.09

Fig. A.23

Determine the strain energy in the cantilever beam due to shear if the beam has a rectangular cross-
section and is subject to a load F, Fig. A.23. assume that EI and G are constant.
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Solution

From the free body diagram of the arbitrary section, we have

V(x) = F.

Since the cross-section is rectangular, the form factor 6
5Sf =  from Eq. (A.41) and therefore Eq. (A.40) 

becomes

2 2

0

6 F 3 F L   dx
5 2G 5 G

L

shearU
A A

= =∫

Using the results of Example A.08, with A = b h, 31 b h
12

I = , the ratio of the shear to the bending strain 

energy is 

2

2

2 3 2

3 F L
3 h E5 G  

F L 10 L G
6E

shear

bending

U A
U

I

= =
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Since G = E / 2(1+n) and n = 0.5, then E = 3G, so 

2 2

2 2

3 h 3G 9 h
10 L G 10 L

shear

bending

U
U

= =

It can be seen that the result of this ratio will increasing as L decreases. However, even for short beams, 
where, say L = 5 h, the contribution due to shear strain energy is only 3.6% of the bending strain energy. 
For this reason, the shear strain energy stored in beams is usually neglected in engineering analysis.
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