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Of Symbols

Area

width

buckling coefficient

diameter

modulus of elasticity, Young’s modulus

shearing factor

external force

factor of safety

modulus of rigidity

height

second moment, or moment of inertia, of the area A respect to the z or y axis
polar moment of inertia of the area A

length

elongation of bar

bending moment, couple

normal or axial force

first moment of area with respect to the z or y axis
radius of gyration of area A with respect to the z axis
radius

reaction at point i

length of centreline

torque

thickness

change of temperature

strain energy density

strain energy

volume

transversal force

uniform load

deflection

area bounded by the centerline of wall cross-section area
coefficient of thermal expansion (in chapter 2)
parameter of rectangular cross-section in torsion
shearing strain

strain

angle of twist

slope at point i

shearing stress
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T, allowable shearing stress
o stress or normal stress
Ol allowable normal stress
o maximum normal stress
O\ von Misses stress

1ses
oy normal or axial stress
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Preface

This book presents a basic introductory course to the mechanics of materials for students of mechanical
engineering. It gives students a good background for developing their ability to analyse given problems
using fundamental approaches. The necessary prerequisites are the knowledge of mathematical analysis,

physics of materials and statics since the subject is the synthesis of the above mentioned courses.

The book consists of six chapters and an appendix. Each chapter contains the fundamental theory and
illustrative examples. At the end of each chapter the reader can find unsolved problems to practice their
understanding of the discussed subject. The results of these problems are presented behind the unsolved

problems.

Chapter 1 discusses the most important concepts of the mechanics of materials, the concept of stress.
This concept is derived from the physics of materials. The nature and the properties of basic stresses,

i.e. normal, shearing and bearing stresses; are presented too.

Chapter 2 deals with the stress and strain analyses of axially loaded members. The results are generalised

into Hooke’s law. Saint-Venant’s principle explains the limits of applying this theory.

In chapter 3 we present the basic theory for members subjected to torsion. Firstly we discuss the torsion

of circular members and subsequently, the torsion of non-circular members is analysed.
In chapter 4, the largest chapter, presents the theory of beams. The theory is limited to a member with
at least one plane of symmetry and the applied loads are acting in this plane. We analyse stresses and

strains in these types of beams.

Chapter 5 continues the theory of beams, focusing mainly on the deflection analysis. There are two

principal methods presented in this chapter: the integration method and Castiglianos theorem.

Chapter 6 deals with the buckling of columns. In this chapter we introduce students to Euler’s theory in

order to be able to solve problems of stability in columns.

In closing, we greatly appreciate the fruitful discussions between our colleagues, namely prof. Pavel

Elesztés, Dr. Michal Cekan. And also we would like to thank our reviewers’ comments and suggestions.

Roland Janco

Branislav Hu¢ko
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1 Introduction - Concept of stress

1.1 Introduction

The main objective of the mechanics of materials is to provide engineers with the tools, methods and

technologies for

o analysing existing load-bearing structures;

o designing new structures.

Both of the above mentioned tasks require the analyses of stresses and deformations. In this chapter we

will firstly discuss the stress.

1.2 A Short Review of the Methods of Statics

Fig. 1.1

Let us consider a simple truss structure, see Fig. 1.1. This structure was originally designed to carry a
load of 15kN. It consists of two rods; BC and CD. The rod CD has a circular cross-section with a 30-mm
diameter and the rod BC has a rectangular cross-section with the dimensions 20x80 mm. Both rods are
connected by a pin at point C and are supported by pins and brackets at points B and D. Our task is to
analyse the rod CD to obtain the answer to the question: is rod CD sufficient to carry the load? To find
the answer we are going to apply the methods of statics. Firstly, we determine the corresponding load
acting on the rod CD. For this purpose we apply the joint method for calculating axial forces n each rod

at joint C, see Fig. 1.2. Thus we have the following equilibrium equations

Download free eBooks at bookboon.com



15kN

Fig. 1.2

4
YE =0 Fgc —Fepz =0

YE =0 FCD§—15k1v=0 (1.1)

Solving the equations (1.1) we obtain the forces in each member: F,.= 20 kN ,F, = 25 kN. The force F,.
is compressive and the force F is tensile. At this moment we are not able to make the decision about
the safety design of rod CD.

Secondly, the safety of the rod BC depends mainly on the material used and its geometry. Therefore we

need to make observations of processes inside of the material during loading.
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Let us consider a crystalline mesh of rod material. By detaching two neighbour atoms from the crystalline
mesh, we can make the following observation. The atoms are in an equilibrium state, see Fig. 1.3(a). Now
we can pull out the right atom from its equilibrium position by applying external force, see Fig. 1.3(b).
The applied force is the action force. Due to Newton’s first law a reaction force is pulling back on the
atom to the original equilibrium. During loading, the atoms find a new equilibrium state. The action
and the reaction are in equilibrium too. If we remove the applied force, the atom will go back to its
initial position, see Fig. 1.3(a). If we push the right atom towards the left atom, we will observe a similar
situation; see Fig. 1.3(c). Now we can build the well-known diagram from the physics of materials:
internal force versus interatomic distance, see Fig. 1.4. From this diagram we can find the magnitudes of
forces in corresponding cases. Now we can extend our observation to our rod CD. For simplicity let us
draw two parallel layers of atoms inside the rod considered, see Fig. 1.5. After applying the force of the
external load on CD we will observe the elongation of the rod. In other words, the interatomic distance
between two neighbouring atoms will increase. Then due to Newton’s first law the internal reaction
forces will result between two neighbouring atoms. Subsequently the rod will reach a new equilibrium.

Thus we can write:
N F,=F,p or Yinternal forces = external applied force (1.2)

The next task is to determine the internal forces. Considering the continuum approach we can replace

equation (1.2) with the following one:

Resultant of internal forces = external applied force (1.3)

Fig. 1.6
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The resultant can be determined by applying the method of section. Passing the section at some arbitrary
point Q we get two portions of the rod: CQ and DQ, see Fig. 1.6. Since force F, = 25 kN must be applied
at point Q for both portions to keep them in equilibrium, we can conclude that the resultant of internal
forces of 100 kN is produced in the rod CD, when a load of 15kN is applied at C.

The above mentioned method of section is a very helpful tool for determining all internal forces. Let us
now consider the arbitrary body subjected to a load. Dividing the body into two portions at an arbitrary
point Q, see Fig. 1.7, we can define the positive outgoing normal n*.the normal forceNyis the force
component in the direction of positive normal. The force component derived by turning the positive
normal clockwise about Z at Q is known as the shear force V(x), the moment M(x) about the z-axis
defines the bending moment (the positive orientation will be explain in Chapter 4). The moment T(y)

defines the torque with a positive orientation according to the right-hand rule.

APPLIED

FORCE @ @

F_ __________________
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Fig. 1.8
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For assessing the safety of rod CD we need to ask material scientists for the experimental data about the
materials response. When our rod is subjected to tension, we can obtain the experimental data from a
simple tensile test. Let us arrange the following experiments for the rod made of the same material. The
output variables are the applied force and the elongation of the rod, i.e. the force vs. elongation diagram.
The first test is done for the rod of length L, and cross-sectional area A, see Fig 1.8 (a). The output can
be plotted in Fig 1.8 (d), seen as curve number 1. For the second test we now define the rod to have
a length of 2L while all other parameters remain, see Fig. 1.8 (b). The result is represented by curve
number 2, see Fig. 1.8 (d). It is only natural that the total elongation is doubled for the same load level.
For the third test we keep the length parameter L but increase the cross-sectional area to 2A. The result
are represented by curve number 3, see Fig. 1.8 (d). The conclusion of these three experiments is that the
load vs. elongation diagram is not as useful for designers as one would initially expect. The results are
very sensitive to geometrical parameters of the samples. Therefore we need to exclude the geometrical

sensitivity from experimental data.

1.3 Definition of the Stresses in the Member of a Structure

The results of the proceeding section represent the first necessary step in the design or analysing of
structures. They do not tell us whether the structure can support the load safely or not. We can determine
the distribution functions of internal forces along each member. Applying the method of section we
can determine the resultant of all elementary internal forces acting on this section, see Fig. 1.9. The
average intensity of the elementary force AN over the elementary area AA is defined as AN/AA. This
ratio represents the internal force per unit area. Thus the intensity of internal force at any arbitrary point

can be derived as

Fig. 1.9

. . AN _ dN
intensity = limygo— = — (1.4)
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Whether or not the rod will break under the given load clearly depends upon the ability of the material
to withstand the corresponding value, see the above mentioned definition, of the distributed internal
forces. It is clear that this depends on the applied load Fp, the cross-section area A and on the material

of the rod considered.

The internal force per unit area, or the intensity of internal forces distributed over a given cross-sectional
area, is called stress. The stress is denoted by the Greek letter sigma 0. The unit of stress is called the

Pascal which has the value N /m?. Then we can rewrite equation (1.4) into

— i AN _ dN
o =lMpg0 77 =27 (1.5)

The positive sign indicates tensile stress in a member or that the member is in tension. The negative

sign of stress indicates compressive stress in a member or that the member is subjected to compression.

The equation (1.5) is not so convenient to use in engineering design so solving for this equation we get

N = [odA (1.6)
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If we apply Saint Venant’s principle, see Section 2.6 for more details, we can assume the uniform stress
distribution function over the cross-section, except in the immediate vicinity of the loads points of

application, thus we have

N=0¢[dA=0A or az% (1.7)

N_

Fig. 1.10

A graphical representation is presented in Fig. 1.10. If an internal force N was obtained by the section
passed perpendicular to the member axis, and the direction of the internal force N coincides with the
member axis, then we are talking about axially loaded members. The direction of the internal force N also
determines the direction of stress 0. Therefore we define this stress o as the normal stress. Thus formula

(1.7) determines the normal stress in the axially loaded member.

From elementary statics we get the resultant N of the internal forces, which then must be applied to
the centre of the cross-section under the condition of uniformly distributed stress. This means that
a uniform distribution of stress is possible only if the action line of the applied loads passes through the
centre of the section considered, see Fig. 1.11. Sometimes we this type of loading is known as centric
loading. In the case of an eccentrically loaded member, see Fig. 1.12, this condition is not satisfied,
therefore the stress distribution function is not uniform. The explanation will be done in Chapter 4.
The normal force N; = F and the moment M; = Fd are the internal forces obtained through the

method of section.
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Fig. 1.11 Fig. 1.12

14 Basic Stresses (Axial, Normal, Shearing and Bearing stress)

Fig. 1.13

In the previous Section we discussed the case when the resultant of internal forces and the resulting stress
normal to the cross-section are considered. Now let us consider the cutting process of material using
scissors, see Fig. 1.13. The applied load F is transversal to the axis of the member. Therefore the load F
is called the transversal load. Thus we have a physically different stress. Let us pass a section through
point C between the application points of two forces, see Fig. 1.14 (a). Detaching portion DC form the
member we will get the diagram of the portion DC shown in Fig. 1.14(b). The zero valued internal
forces are excluded. The resultant of internal forces is only the shear force. It is placed perpendicular to
the member axis in the section and is equal to the applied force. The corresponding stress is called the
shearing stress denoted by the Greek letter tau 7. Now we can define the shearing stress as In comparison
to the normal stress, we cannot assume that the shearing stress is uniform over the cross-section. The
proof of this statement is explained in Chapter 4. Therefore we can only calculate the average value of

shearing stress:
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Fig. 1.14

. AV av
T = llmAA_,()ﬂ = J or V= deA (18)
.o
ave — A (1.9)

The presented case of cutting is known as the shear.

The cutaway effect can be commonly found in bolts, screws, pins and rivets used to connect various
structural components, see Fig. 1.15(a).Two plates are subjected to the tensile force F. The corresponding
cutting stress will develop in plane CD. Considering the method of section in plane CD, for the top

portion of the rivet, see Fig. 1.15(b), we obtain the shearing stress according to formula (1.9)

B
i
F——o | D
(" —
V=F
b)
Fig. 1.15
v F
Tave = 7 = N (1.10)

Until now we have discussed the application of section in a perpendicular direction to the member axis.
Let us now consider the axially loaded member CD, see Fig. 1.16. If we pass the section at any arbitrary
point Q over an angle 0 between the perpendicular section and this arbitrary section, we will get the
free body diagram shown in Fig. 1.17. From the free body diagram we see that the applied force F is in
equilibrium with the axial force P, i.e. P = F. This axial force P represents the resultant of internal forces

acting in this section. The components of axial force are
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Fig. 1.16

Fig. 1.17

N =Pcos@f and V =Psinf

(1.11)
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The normal force N and the shear force V represent the resultant of normal forces and shear forces
respectively distributed over the cross-section and we can write the corresponding stresses over the

cross-section A, = A /cos0 as follows

_ N _ Pcos6 _ F 2
O'—E— o = 4, COS 0 (1.12)
cos 6
v P sin 6 F .
Tave = 7~ =~y =Esm9c059 (1.13)
cos 6

For the perpendicular section, when 8 = 0, we get 0 = O = and 7., = 0. These results

4o
correspond to the ones we found earlier. In the point of view of mathematics, the magnitudes of stresses

depend upon the orientation of the section.

B A =
2l

sectiona — a

GO

FLAT END 20|

o
&
s
D
o]

Fig. 1.18

The resultant stress from the normal and shearing stress components is called the axial stress (the stress in

the direction of the axis) and it is denoted as p; see Fig. 1.18. Then using elementary mathematics we get

P =+0%+ Tg2 (1.14)

The exact mathematical definition of the axial stress is the same as previously defined stress types, i.e.

_ i AP _ dP
p = lMygm0 7 = 7 (1.15)
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Fig. 1.19

Fig. 1.20
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Fittings, bolts, or screws have a lateral contact within the connected member, see Fig. 1.19. They create
the stress in the connected member along the bearing surface or the contact surface. For example let
us consider the bolt JK connecting two plates B and C, which are subjected to shear, see Fig. 1.19. The
bolt shank exerts a force P on the plate B which is equal to the applied force F. The force P represents
the resultant of all elementary forces distributed over the half of the cylindrical hole in plate B, see
Fig. 1.20. The diameter of the cylindrical hole is D and the height is t. The distribution function of the
aforementioned stresses is very complicated and therefore we usually use the average value of contact
or bearing stress. In this case the average engineering bearing stress is defined as
_ F

P F
g =t=L=L (1.16)

1.5 Application to the Analysis and Design of Simple Structures

Let us recall the simple truss structure that we discussed in Section 1.2, see Fig. 1.1. Let us now detach
rod CD for a more detailed analysis, see Fig. 1.21. The detailed pin connection at point D is presented

in Fig 1.22. The following stresses acting in the rod CD can be calculated

sectiona —a  sectionc — ¢

D a
N /b
) 4

‘oi}ol

N

sectionb — b
S
= o)

30

Fig. 1.21

TOP VIEW
OFENDD

Fig. 1.22
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1.6

The normal stress in the shank of the rod CD:

The normal force acting in the circular shank is Fop = 25 kN, the corresponding cross-

2
. . 30
sectional area is Agpgnr = T (7) = 706,9 mm?. Then we have

Fep . 25000 N
Ashank  706,9mm 2

Oshank = = 35,4 MPa

The normal stresses in the flat end of D:

The normal force acting in the flat end is Frp = 25 kN again, the corresponding cross-

sectional areas are at the section a-a A,, = (50 — 20).30 = 900mm? and at the section

b-b Ay, = 50.30 = 1500mm?. Thus we get
25000 N

F F 25000 N
Ogq = -2 = >=278MPa and oy, =-L=—"—"—
Aga 900mm App 1500 mm

= 16,7 MPa

The shearing stress in the pin connection D:

The shear force acting in the pin is Frp, = 25 kN, the corresponding cross-sectional area is
2
Apn =T (?) = 314,2 mm?. Then we have
Fcp 25000 N

Tpin = = = 79,6 MPa

Agpin  314,2mm?2

The bearing stress at D:

The contact force acting in the cylindrical hole is Fy,44ny = 25 kN,, the corresponding cross-

sectional area is Apearing = 30.30 = 900mm?. Using formula (1.16) we get

Fbearing 25000 N
Opearing = = = 27,8 MPa
bearing Abearing 900 mm 2 ’

Method of Problem Solution and Numerical Accuracy

Every formula previously mentioned and derived has its own validity. This validity predicts the application

area, i.e. the limitations on the applicability. Our solution must be based on the fundamental principles of

statics and mechanics of materials. Every step, which we apply in our approach, must be justified on this

basis. After obtaining the results, they must be checked. If there is any doubt in the results obtained, we

should check the problem formulation, the validity of applied methods, input data (material parameters,

boundary conditions) and the accuracy of computations.

The method of problem solution is the step-by-step solution. This approach consists of the following steps:
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i. Clear and precise problem formulation. This formulation should contain the given data and
indicate what information is required.

ii. Simplified drawing of a given problem, which indicates all essential quantities, which should
be included.

iii. Free body diagram to obtaining reactions at the supports.

iv. Applying method of section in order to obtain the internal forces and moments.

v. Solution of problem oriented equations in order to determine stresses, strains, and

deformations.

Subsequently we have to check the results obtained with respect to some simplifications, for example

boundary conditions, the neglect of some structural details, etc.
The numerical accuracy depends upon the following items:

« the accuracy of input data;

o the accuracy of the computation performed.
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For example it is possible that we can get inaccurate material parameters. Let us consider an error of
5% in Young’s modulus. Then the calculation of stress contains at least the same error, the explanation
can be found in Section 2.5. The accuracy of computation is tightly connected with the computational

method applied. We can apply either the analytical solution or the iterative solution.

1.7 Components of Stress under General Loading Conditions

Fy
Fy

Fig. 1.23

Until now we have limited the discussion to axially loaded members. Let us generalise the results obtained
in the previous sections. Thus we can consider a body subjected to several forces, see Fig. 1.23. To analyse
the stress conditions created by the loads inside the body, we must apply the method of sections. Let us
analyse stresses at an arbitrary point Q. The Euclidian space is defined by three perpendicular planes,

therefore we will pass three parallel sections to the Euclidian ones through point Q.

Fy

Fig 1.24
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Firstly we pass a section parallel to the principal plane yz, see Fig. 1.24 and take into account the left
portion of the body. This portion is subjected to the applied forces and the resultants of all internal forces
(these forces replace the effect of the removed part). In our case we have the normal force Ny and the
shear force Vx. The lower subscript means the direction of the positive outgoing normal. The general
shear force V; has two components in the directions of y and z, i.e. V. and V2. The superscript indicates
the direction of the shear component. For determining the stress distributions over the section we need
to define a small area AA surrounding point Q, see Fig. 1.24. Then the corresponding internal forces are

AN, , Any , AV . Recalling the mathematical definition of stress in equations (1.5) and (1.8), we get

ANy — N — 1 AVE
AA Txy = IMpg-0 AA Tyxz = IMpg-0 AA

o, = limAA_>0 (117)
These results are presented in Fig.1.25 Remember that the first subscript in 0y, Ty, and Ty is used to
indicate that the stresses under consideration are exerted on a surface perpendicular to the x axis. The
second subscript in the shearing stresses identifies the direction of the component. The same results

will be obtained if we apply the same approach for the right side of the body considered, see Fig. 1.26.

Fig. 1.25

Tx

Fig.1.26
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Secondly we now pass a section parallel to the principal plane of xz, where we will get the stress

components: gy, T,, and Ty, in a similar way. Thirdly, passing a section parallel to the principal plane

VX
of xy, we can also get the stress components: 0, T;x and T, by the same way. Thus the stress state
at point Q is defined by nine stress components. With respect to statics, it is astatically indeterminate

problem, since we only have six equilibrium equations.

Fig. 1.27

Fig. 1.28

To visualise the stress conditions at point Q, we can represent point Q as a small cube, see Fig. 1.27.
There are only three faces of the cube visible in Fig. 1.27. The stresses on the hidden parallel faces are
equal and opposite of the visible ones. Such a cube must satisfy the condition of equilibrium. Therefore
we can multiply the stresses by the face area A4 to obtain the forces acting on the cube faces. Focusing
on the moment equation about the local axis, see Fig. 1.28 and assuming the positive moment in the

counter-clockwise direction, we have

a

>M, =0 rxyAAg—ryxAA§+rxyAA§—ryxAA5=0 (1.18)
we then conclude
Txy = Tyx (1.19)
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The relation obtained shows that the y component of the shearing stress exerted on a face perpendicular
to the x axis is equal to the x component of the shearing exerted on a face perpendicular to the y axis.

Similar results will be obtained for the rest of the moment equilibrium equations, i.e.

Tyy = Tyy and T, =T, (1.20)

The equations (1.19) and (1.20) represent the shear law. The explanation of the shear law is: if the
shearing stress exerts on any plane, then the shearing stress will also exert on the perpendicular
plane to that one. Thus the stress state at any arbitrary point is determined by six stress components:

Ox) 0y, 07, Ty s Tuz s Ty

1.8 Design Considerations and Factor of Safety

In the previous sections we discussed the stress analysis of existing structures. In engineering applications
we must design with safety as well as economical acceptability in mind. To reach this compromise stress

analyses assists us in fulfilling this task. The design procedure consists of the following steps:

a T
ayt----
U U 1---
U
5 Y
Fig. 1.29
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o Determination of the ultimate stress of a material. A certified laboratory will make material
tests in respect to the defined load. For example they can determine the ultimate tensile
stress, the ultimate compressive stress and the ultimate shearing stress for a given material, see
Fig. 1.29.

o Allowable load and allowable stress, Factor of Safety. Due to any unforeseen loading during
the structures operation, the maximum stress in the designed structure can not be equal to
the ultimate stress. Usually the maximum stress is less than this ultimate stress. Low stress
corresponds to the smaller loads. This smaller loading we call the allowable load or design
load. The ratio of the ultimate load to the allowable load is used to define the Factor of Safety

which is:

Ultimate load (1.21)

Factor Of Safety =F.S.= Allowable load

An alternative of this definition can be applied to stresses:

Factor of Safety = F.S.= Ultimate stress (1.22)

Allowabl e stress

o Selecting the appropriate Factor of Safety. The appropriate Factor of Safety (ES.) for a given
design application requires good engineering judgment based on many considerations, such

as the following:

- Type of loading, i.e. static or dynamic or random loading.

- Variation of material properties, i.e. composite structure of different materials.

- Type of failure that is expected, i.e. brittle or ductile failure, etc.

- Importance of a given member, i.e. less important members can be designed with
allowed ES.

- Uncertainty due to the analysis method. Usually we use some simplifications in our
analysis.

- 'The nature of operation, i.e. taking into account the properties of our surrounding, for

example: corrosion properties.

For the majority of structures, the recommended ES. is specified by structural Standards and other

documents written by engineering authorities.
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2 Stress and Strain — Axial Loading

2.1 Introduction

In the previous chapter we discussed the stresses produced in the structures under various conditions,
i.e. loading, boundary conditions. We have analyzed the stresses in simply loaded members and we
learned how to design some characteristic dimensions of these members due to allowable stress. Another
important aspect in the design and analysis of structures are their deformations, and the reasons are very
simple. For example, large deformations in the structure as a result of the stress conditions under the
applied load should be avoided. The design of a bridge can fulfil the condition for allowable stress but
the deformation (in our case deflection) at mid-span may not be acceptable. The deformation analysis
is very helpful in the stress determination too, mainly for statically indeterminated problems. Statically
it is assumed that the structure is a composition of rigid bodies. But now we would like to analyse the

structure as a deformable body.

2.2 Normal Stress and Strain under Axial Loading
Fig. 2.1
3
LOAD
ELONGATION
Fig. 2.2
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Let us assume that the rod BC, of length L with constant cross-sectional area A, is hanging on a fixed
point B, see Fig. 2.1 . If we apply the load F we can observe an elongation of the rod BC. Both the applied

force and elongation can be measured. And we can plot the load vs. elongation, see Fig. 2.2.

As we mentioned in the previous chapter, we would like to avoid plotting geometrical characteristics,
i.e. cross-sectional area and length. We cannot use such a graph directly to predict the rod elongation

of the same material with different dimensions. Let us consider the following examples:
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The applied load F causes the elongation AL. The corresponding normal stress can be found by passing
a section perpendicular to the axis of the rod (method of sections) applying this method we obtain
o, = %: F/A, see Fig. 2.1. If we apply the same load to the rod of length 2L and the same cross-
sectional area A, we will observe an elongation of 2AL with the same normal stress o, = F /A, see
Fig. 2.3. This means the deformation is twice as large as the previous case. But the ratio of deformation

over the rod length is the same, i.e. is equal to AL/L. This result brings us to the concept of strain.

We can now define the normal strain ¢ caused by axial loading as the deformation per unit length of
the rod. Since length and elongation have the same units, the normal strain is a dimensionless quantity.
Mathematical, we can express the normal strain by:

AL

Ey = —

L (2.1)

/A{xn
| ¥
| /v
.
Bl __——1Fg ——--_|C
)//
Ax _ X
Fig. 2.4

This equation is valid only for a rod with constant cross-sectional area. In the case of variable cross sectional

area, the normal stress varies over the axis of the rod by 0, = F /A (x)- Then we must define the normal

strain at an arbitrary point Q by considering a small element of undeformed length Dx. The corresponding

elongation of this element is D(DL), see Fig 2.4. Thus we can define the normal strain at point Q as:
A(AL) _ dAL

Ey = limAx_,O T = (2.2)

which again, results in a dimensionless quantity.
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2.3

Stress and Strain — Axial Loading

Stress-Strain Diagram, Hooke’s Law, and Modulus of Elasticity
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Fig. 2.5 Test specimen

Fig. 2.6 MTS testing machine, see [www.mts.com
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As we discussed before, plotting load vs. elongation is not useful for engineers and designers due to
their strong sensitivity on the sample geometry. Therefore we explained the concepts of stress and strain
in Sec. 1.3 and Sec. 2.2 in detail. The result is a stress-strain diagram that represents the relationship
between stress and strain. This diagram is an important characteristic of material and can be obtained
by conducting a tensile test. The typical specimen can be shown in Fig. 2.5. The cross-sectional area
of the cylindrical central portion of the specimen has been accurately determined and two gage marks
have been made in this portion at a distance L, from each other. The distance L, is known as the gage
length (or referential length) of the specimen. The specimen is then placed into the test machine seen in
Fig. 2.6, which is used for centric load application. As the load F increases, the distance L between gage
marks also increases. The distance can be measured by several mechanical gages and both quantities (load
and distance) are recorded continuously as the load increases. As a result we obtain the total elongation
of the cylindrical portion DL=L-Lfor each corresponding load step. From the measured quantities we
can recalculate the values of stress and strain using equations (1.5) and (2.1). For different materials
we obtain different stress-strain diagrams. In Fig. 2.7 one can see the typical diagrams for ductile and

brittle materials.
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For a more detailed discussion about the diagrams we recommend any book which is concerned with

material sciences for engineers.

Many engineering applications undergo small deformations and small strains. Thus the response of
material can be expected in an elastic region. For many engineering materials the elastic response is

linear, i.e. the straight line portion in a stress-strain diagram. Therefore we can write:

o, =E¢, (2.3)

This equation is the well-known Hooke’s law, found by Robert Hooke (1635-1703), the English pioneer
of applied mechanics. The coefficient E is called the modulus of elasticity for a given material, or
Young’s modulus, named after the English scientist Thomas Young (1773-1829). Since the strain ¢ is a
dimensionless quantity, then the modulus of elasticity E has the same units as the stress o, in Pascals. The
physical meaning of the modulus of elasticity is the stress occurring in a material undergoing a strain

equal to one, i.e. the measured specimen is elongated from its initial length L .
If the response of the material is independent from the direction of loading, it is known as isotropic.

Materials whose properties depend upon the direction of loading are anisotropic. Typical example of

anisotropic materials are laminates, composites etc.
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24 Poisson’s Ratio

(a) ASSUMED ROD (b) UNIT CUBE

Fig. 2.8

As we can see in the previous sections (2.2 and 2.3) the normal stress and strain have the same direction
as the applied load. Let us assume that the homogenous and isotropic rod is axially loaded by a force F as

in Fig. 2.8. Then the corresponding normal stress is o, = % = F/Aand applying Hooke’s law we obtain:

e ==l (2.3)

Fig. 2.9

It is natural to assume that normal stresses on the faces of a unit cube which represents the arbitrary point
Qare zero. g, = g,=0. This could convince one to assume that the corresponding strains € , €, are zero too.
But this is not our case. In many engineering materials the elongation in the direction of applied load is
accompanied with a contraction in any transversal direction, see Fig. 2.9. We are assuming homogeneous
and isotropic materials, i.e. mechanical properties are independent of position and direction. Therefore
we have ¢ = £,. This common value is called the lateral strain. Now we can define the important material

constant: Poisson’s ratio, named after Simeon Dennis Poisson (1781-1840), as:
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lateral strain (2 4)
- axial strain
or
€y £,
Yy =——== —— 2.
» » (2.5)

Note that the contraction in the lateral direction means that the reduction of lateral dimension return a
negative value of strain and a positive value of Poisson’s ratio. Usually Poisson’s ratio has a value within
the interval of (0, 5) for common engineering materials like steel, iron, brass, aluminium, etc. If we apply

Hooke’s law and eq. (2.5) we will obtain the following strains:

Ox F VO x vF
g, =—==— and &, =¢&, =— = —— 2.6
: == (2.6)

Fig. 2.10 Open foam
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Naturally, there exist some materials with a negative value of Poisson’s ratio. These materials are known
as cellular, i.e. foams and honeycombs. Instead of contraction, they elongate in the lateral direction.
The structure of these materials is presented in Fig. 2.10. For more information see any book written by
L.J. Gibson and M.E. Ashby.

2.5 Generalised Hooke’s Law for Multiaxial Loading

Fig. 2.11

Until now we have discussed slender members (rods, bars) under axial loading alone. This resulted
in a stress state at any arbitrary point of Q: g, = S,
loading acting in the direction of all three coordinate axes and producing non-zero normal stresses:
o, # 0y, # g, # 0, see Fig. 2.11.

g, = 0, = 0. Now let us consider multiaxial

y y
A A
! 1+ &
1
1+Ey
1 1+ ¢,

(a) BEFORE DEFORMATION

> (b) AFTER DEFORMATION

Fig. 2.12
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Let us consider that our material is isotropic and homogeneous. Our arbitrary point Q is represented by
a unit cube (where the dimensions of each side are a unit of the length), see Fig. 2.12. Under the given
multiaxial loading the unit cube is deformed into a rectangular parallelepiped with the following sides:
(1+¢), (1 + ey), (1+ ¢,), where €, €, €, are strains in the directions of the coordinate axes seen in
Fig. 2.12(b). It is necessary to emphasis that the unit cube is undergoing the deformation motion only
with no rigid motion (translation). Then we can express the strain components €, £, €, in terms of the
stress components 0,, 0, 0,. For this purpose, we will first consider the effect of each stress component
separately. Secondly we will combine the effects of all contributing stress components by applying the
principle of superposition. This principle states that the final effect of combined loading can be obtained
by determining the effects for individual loads separately and subsequently these separate effects are

combined into the final result.

Inour case the strain componentsare caused by the stress component o, : in the xdirection €, = 0, /E and
in the yand zdirections &), = &, = —va, / E recalling eq. (2.6). Similarly, the stress component s, causes
the strain components: in the y direction & = 0, /E and in x and z directions &; = &; = —vo, /E
. And finally the stress component s causes the strain components: in z direction ;" = 0y /E and in x
and y directions &y = & = — V0, /E . These are separate effects of individual stress components. The

final strain components are then the sums of individual contributions, i.e.

=& tete =S—-—F——+~

E E E
o ) w_ _VOx | Oy Vg,
& =&+ tey= - +E : (2.7)
— o » o VO x Voy 0z
Ez_gz+€z+€z__?_ - +F

Y —

4 Tay = Tyx
Te = T
Ty, = Ty

Fig.2.13

The equation (2.7) are known as a part of the generalised Hooke’s law or a part of the elasticity equations

for homogeneous and isotropic materials.
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—_

Fig. 2.14

Until now, shearing stresses have not been involved in our discussion. Therefore consider the more
generalized stress state defines with six stress components 0y, 0y, 0, Ty, Txz, Ty se€ Fig. 2.13. The
shearing stresses Txy, Txz, Tyz have no direct effect on normal strains, as long as the deformations remain
small. In this case there is no effect on validity of equation (2.7). The occurrence of shearing stresses is

clearly observable. Since the shearing stresses tend to deform the unit cube into a oblique parallelepiped.
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n
3= Yy

Fig.2.15

For simplicity, let us consider a unit cube of material which undergoes a simple shear in the xy plane,
see Fig.2.14. The unit cube is deformed into the rhomboid with sides equal to one, see Fig. 2.15. In other
words, shearing stresses cause the shape changes while normal stresses cause the volume changes. Let us
focus on the angular changes. The four angles undergo a change in their values. Two of them reduced
their values from 2 to g — Yy, While the other two increase from T o g — Vxy- This angular change
Vxy (measured in radians) defines the shearing strain in both directions x and y. The shearing strain is
positive if the reduced angle is formed by two faces with the same direction as the positive x and y axes,

see Fig. 2.15. Otherwise it is negative.

In a similar way as the normal stress-strain diagram for tensile test we can obtain the shear stress-strain
plot for simple shear or simple torsion, discussed in Chapter 3. From a mathematical point of view we

can write Hooke’s law for the straight part of the diagram by:

Txy = Gny (2.8)

The material constant G is the shear modulus for any given material and has the similar physical meaning

as Young’s modulus.

If we consider shear in the xz and yz planes we will get similar solutions to Eq. (2.8) for stresses in those

planes, i.e.

Txz = nyz Tyz = nyz (2_9)

Finally we can conclude that the generalised Hooke’s law or elasticity equations for the generalised stress

state are written by:
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e

ezz—vg" %+% (2.10)
Viy =L

Viz =

Ve = 2

The validity of these equations is limited to isotropic materials, the proportionality limit stress that can
not be exceeded by none of the stresses, and the superposition principle. Equation (2.10) contains three
material constants E, G, v that must be determined experimentally. In reality we need only two of them,

because the following relationship can be derived

E

G= 2(1+v) (2.11)

2.6 Saint Venant’s Principle

P e — — — — — —— —  —

Fig. 2.16
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Fig. 2.17

Until now we have discussed axially loaded members (bars, rods) with uniformly distributed stress
over the cross-section perpendicular to the axis of the member. This assumption can cause errors in the
vicinity of load application. For simplicity let us consider a homogeneous rubber-like member that is
axially loaded by a compressive force F, see Fig. 2.16. Let us make the following two experiments. Firstly,
we draw a squared mesh over the member; see Fig. 2.17(a). Then we apply the compressive load through
two rigid plates; see Fig. 2.17(b). The member is deformed in such a manner that it remains straight but
the original square element change into a rectangular elements, see Fig. 2.17(b). The deformed mesh
is uniform; therefore the strain distribution over a perpendicular cross-section is also uniform. If the
strain is uniform, then we can conclude that the stress distribution is also similarly uniform described
by Hooke’s law. Secondly we apply the compressive force to the same meshed member throughout the
sharp points, see Fig. 2.18. This is the effect of a concentrated load. We can observe strong deformations
in the vicinity of the load application point. At certain distances from the end of a member the mesh
is again uniform and rectangular. Therefore we can say that there are large deformations and stresses
around the load application point while uniform deformations and stresses occur farther from this point.
In other words, except for the vicinity of load application point, the stress distribution function may be
assumed independently to the load application mode. This statement which can be applicable to any

type of loading is known as Saint-Venant’s principle, after Adhémar Barré de Saint-Venant (1797-1886).
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i

Fig. 2.18

While Saint-Venant’s principle makes it possible to replace actual loading with a simpler one for

computational purposes, we need to keep in mind the following:

 The actual loading and loading used to compute stresses must be statically equivalent.
 Stresses cannot be computed in the vicinity of load application point. In these cases

advanced theoretical and experimental method must be applied for stress determination.
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2.7 Deformations of Axially Loaded Members

Fig. 2.18

Let us consider a homogeneous isotropic member BC of length L, cross-sectional area A, and
Young’s modulus E subjected to the centric axial force F, see Fig. 2.18. If the resulting normal stress
0, = Nx)/A = F/A does not exceed the proportional limit stress and applying Saint-Venant’s principle

we can then apply Hooke’s law
o, = Eeg, or Ex == (2.12)

And substituting for the normal stress 0, = N(yy/A = F/A we have

_ N _ F

*  EA EA (2.13)

Recalling the definition of normal strain, equation (2.1) we get

AL = ¢, L (2.14)
and substituting equation(2.13) into equation (2.14) we have
_ Nl _ FL
AL = = (2.15)
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Now we can conclude that the application of this equation: Equation (2.15) may be used only if the rod
is homogeneous (constant E), has a uniform cross-sectional area A, and is loaded at both ends. If the
member is loaded at any other point or is composed from several different homogeneous parts having
different cross-sectional areas we must apply the division into parts satisfying the previous conclusion.
Denoted Njc), Ei, Aj, Ljtheinternal normalforce, Young’s modulus, cross-sectional area and length
corresponding to the part i respectively. Then the total elongation is the sum of individual elongations

(principle of superposition):

Nigx) Li
AL =37 AL = Y1~

Zl—l 2 i=1 Ei Ai (2.16)
In the case of variable cross-sectional area, as in Fig. 2.4, the strain depends on the position of the arbitrary
point Q, therefore we must apply equation (2.2) for the strain computation. After some mathematical

manipulation we have the total elongation of the member

N
pa 0% (2.17)

Asz(L)

Until now we could solve problems starting with the free body diagram, and subsequently determine the
reactions from equilibrium equations. Recalling the method of sections in (chapter 2.2) we can compute
internal forces at any arbitrary section, allowing us to then proceed with computing stresses, strains

and deformations. But many engineering problems can not be solved by the approach of statics alone.
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Fig. 2.19

For simplicity, let us consider a simple problem, see Fig. 2.19. Using statics we cannot solve the problem
through equilibrium equations. The main difficulty in this problem is that the number of unknown
reactions is greater than the number of equilibrium equations. From a mathematical point of view the
problem is ill-conditioning. For our case we obtain one equilibrium equation as

2F,=0: Re—F+Rg=0 (2.18)
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There are two unknown reactions in equation (2.18). Problems of this type are called statically

indeterminate problems.
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To overcome the static indeterminacy we need to complete the system of equilibrium equations with
relations involving deformations by considering the geometry of the problem. These additional relations
are called deformation conditions. For practical solution let us consider the following transformation in
Fig. 2.20. The problem presented is exactly the same as the problem in Fig. 2.19. This problem is statically
indeterminate to the first degree. Removing the redundant support at point C and replacing it with the
unknown reaction R_we obtain the so-called statically indeterminate problem with unknown reaction,
see Fig. 2.20(b). Now our task is to receive the same response for the statically indeterminate problem
as in the original statically indeterminate problem. To get the same response of the structure we need
to impose the deformation condition for point C, that the displacement for this point is equal to zero,

see Fig. 2.21, or mathematically
uc =0 (2.19)
This condition (2.19) coincides with the total elongation of the member also equal to zero. We then have:

Uc = AL=0 (2.20)

The member presented in Fig. 2.21 can be divided into two homogeneous parts. Therefore the total

elongation is a sum of individual elongation, equation (2.16), i.e. AL = AL; + AL,. Then we have

AL = Niml1 n N2xlL2 ~0
EA EA

(2.21)
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Both normal forces Ny = —R.,Ny) =F — R are functions of unknown reaction R_.. Solving
equation (2.21) we obtain the value of reaction R_.. We can then continue by solving in the usual way

for statically determinate problems.

2.8 Problems Involving Temperature Changes
L

B C

A

AT ALt
U» -

B C'

Aty

Y

Fig. 2.22

In the previous discussions we assumed constant temperature as the member was being loaded. Let us
now consider a homogeneous rod BC with the constant cross-sectional area A and the initial length
L, see Fig. 2.22. If the temperature of the rod grows by AT then we will observe the elongation of the
rod by AL, see Fig. 2.22. This elongation is proportional to the temperature increase AT and the initial

length L. Using basic physics we have

ALy = a(AT)L (2.22)

where a is the coefficient of thermal expansion. The thermal strain ¢, is associated with the aforementioned

elongation AL . i.e. & = ALp/L. Then we have

er = a(AT) (2.23)
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RIGID PLATES

/m

-

AT

A
Y

Fig. 2.23

In this case there is no stress in a rod. We can prove this very easily by applying the method of sections

and writing equilibrium equations.

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
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Fig. 2.24

By modify the previous rod by placing it between two rigid plates and subjecting it to a temperature

change of AT we will observe no elongation because of the fixed supports at its ends. We know that this

problem is statically indeterminate due to the supports at each end. Let us then transform the problem

into the so-called statically determinate problem. Removing the support at point C and replace it by

unknown reaction R_.. Now we can apply the principle of superposition in the following way. Firstly,
we heat the rod by AT, see Fig. 2.24(a), then we can observe the elongation ALy = a(AT)L, see
Fig. 2.24(b). Secondly, we push the rod by the reaction R back to its initial length, see Fig. 2.24(c). The

effect of pushing is the opposite of elongation ALg,.. Applying the formulas (2.22) and (2.15) we have

AL; = a(AT)L and  ALg, =25

Expressing the condition that the total elongation must be zero, we get

RcL _

—=0
EA

AL = ALy + ALg, = a(AT)L +

This equation represents the deformation condition. And we can compute the reaction as

R; = —EAa(AT)

and corresponding stress
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2.9 Trusses

) D
@ L, =L
E, A
B o U =?
) \E, A
;| Ve =7
) L, =L cos© -
Fig. 2.25

The truss is a structure consisting of several slender members (rods, bars) that are subjected to axial
loading only. The simple truss structure is presented in Fig. 2.25. This truss consists of two bars of the
same cross-sectional area A and Young’s modulus E. The truss is loaded by a vertical force F. Our task is
to compute the vertical and horizontal displacements of joint C. Applying the methods of statics we can
determine axial forces in each bar: N; = F/sinf ,N, = F/tan 6. Consequently, we can determine
elongations for individual bars using equation (2.15)

Nolz _ _Flz

and AL, =—=

_Nily _ Fly
ALy = EA ~ EAtan 0 (2.28)

EA  EAsin®

The deformed configuration can be founded by drawing two circles with centres at joints B and D with

the following radii, see Fig. 2.26

©

i
AL”f
s B @ e | /
;__:N-z_ S
M i //
/ /
/ i
e
7 e
1 /’/
G
=7
Fig. 2.26
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F
r{ =L + AL, = L, (1 + L 9)

rp =1lo — AL, =Ly (1 N EAtl:m 9)

The deformations are relatively small, therefore we can replace the circles with tangents perpendicular

to the undeformed bars, see Fig. 2.27. One can then compute the horizontal and vertical displacements
as follows:

FL,
Uc 2 EAtan 6

. ALy+ALq cos 6 FL FL 2.29
ve = AL;sin @ + ket = 1 2 ( )

tan " EAsin20 = EAtan26

D

Ve

CI
Fig. 2.27 Vertical and horizontal displacements

2.10  Examples, Solved and Unsolved Problems

Problem 2.1

Fig.2.28
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A steel bar has the following dimensions: a = 100 mm, b = 50 mm, L = 1500 mm, shown in Fig. 2.28.
If an axial force of F = 80 kN is applied to the bar, determine the change in its length and the change in
the dimensions of its cross-section after the load is applied. Assume that the material behaves elastically,

where the Young’s modulus for steel is E = 200 GPa and Poisson’s ratio v = 0.32.

Solution

The normal stress in the bar is

3
o L _E__ 800N (6. 10°Pa=16.0 MPa.
A ab (0.1 m)(0.05 m)

The strain in the x direction is

16x10°P
g == 0 8 _g0x10°,
E  200x10°Pa

The axial elongation of the bar then becomes

o FL
AL =g l=—21=~— =(80x10°)x1.5m = 120um.
N ( ) pm

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

\7\‘ PDF components for PHP developers
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Using Eq. (2.6) for the determination of Poisson’s ratio, where v = 0.32 as given for steel, the contraction

strain in the y and z direction are

e, =g, =—ve, =-0.32(80x10°) =-25.6 um/m.

y

Thus the changes in the dimensions of cross-section are given by

AL =¢ L =-vea=-va —=— aab_E
Fv
AL =——=-2.56 pm
* bE :

AL, =g, L =—veb=—vb Ix - —vbi
E abE

AL =——=-1.28 um.
aE H

Problem 2.2

Fig. 2.29

A composite steel bar shown in Fig. 2.29 is made from two segments, BC and CH, having circular cross-
section with a diameter of D,.=D and D, = 2D. Determine the diameter D, if we have an allowable
stress of 6, = 147 MPa and the applied load is F = 20 kN.

Solution

We can divide the bar into three parts (BC, CG and GH) which have constant cross-section area and

constant loading.
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Stress and Equilibrium for part BC

X, € <O,L>

Solution of normal (axial) load N,

D F, =0: F-N,=0 = N, =F=20kN
Stress in the part BC

N
o =D _ F2 _ 4F2:4><20020ON:25464.8L2
A, nD” =D nD D

Equilibrium and stress in part CG

xy €(L,2L)

Solution of normal (axial) load N,

F F
DF, =0 F-———- N,=0 = N,=

Stress in part BC

5, :&: F2 _ 4F2 :4X200?ON:25464.8L2
A, nD” =D 7D D
4
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Equilibrium of part and stress in part GH

xy €(2L,3L)

Solution of normal (axial) load N

D F, =0: F—————EF—EF—NHI:O = N, =-3F

N,; =-3F =-3x20000 N = -90000 N

RAND
MERCHANT
BANK
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Y O | l T I I I N K Traditional values. Innovative ideas.
]
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Thinking that can change your world

Rand Merchant Bank is an Authorised Financial Services Provider

59 Click on the ad to read more

Download free eBooks at bookboon.com



http://www.rmb.co.za

Stress in part CD

N —
Oy =—+= 3F2 =— 3F2 =—3X200?0N =—19098.6i2
A, n(2D) D nD D
4

For all parts, draw the diagram of normal force and stress. The maximum stress is in the first part (BC),

which we can compare with the allowable stress and obtain the parameter D

4F 4F
Oyvax = Op = E <oy = D> -
D> fw = D>132 mm
n 147 MPa
Problem 2.3
Fig 2.30

Determine the elongation of a conical bar shown in Fig. 2.30 at point B without considering its weight.
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Given by maximum cone diameter of D, length L, modulus of elasticity E and applied force F, Determine

the maximum stress in the conical bar.

Solution

The problem is divided into two parts.

Equilibrium of the first part

X, € (O, L/2>

We determine the normal force N, and normal stress c,
Normal force N;:

ZFixl =0: Ni(x)=0 = Ni(x)=0

Calculate angle B from the geometry of the cone given by diameter D, at position x,

E
2 2 X
tan f === = D ,)=—D
ﬁ L I( I) L

Cross-sectional area (function of position) in the first part is

D m(x ’ nDZX?
s b

Normal stress o is as follows

N, (x 0
o,(x) =) 9
A/(x,) nDx;
412
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Equilibrium of the second part

X, € (L/2,L>

P X

We determine the normal force N, and normal stress o
Normal force N

ZFixH =0: Ny(x,)-F=0 = Ny(x,)=F

360°
thinking.

Deloitte.

DiSCOVCI‘ the truth at WWW.dClOittC.Ca/CaI‘CCI‘S © Deloitte & Touche LLP and affiliated entities.
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Calculation of angle b from geometry and diameter D, at position x|

D Dy(xy)
2 2 Xy
tan f === = D,x,)=—D
B L X 1 (Xyp) L

Cross-section area (function of position) in second part is

Dy m(x : nDZXi
A== (0 =T

Normal stress G, is then

N, (x,) F 4FL?
oy(xy) = = 2.2 2.2
Ay(xy) wDx;  wDx

417

Fig. 2.31

The graphical result of the normal force and stress is shown in the Fig. 2.31.

Elongation is found by summing the elongation of each part using integration, because cross-section

area is a function of position in all parts, which is given by

N, (x,) dx _’_]“ Ny (xy) dx
I
EA,(x,) T EAL(Xy)

L2

AL, =AL +AL, = |

0

!

L2 0 L F
ALB:J‘—dXI-FJ'ﬁ I
EA, (x,) EnD Xy

0 L2

417
4F1> % 1 4FI2[ 17" 4F12 1
ALBZFI—Z =057 TuoeT
D" 7, X, EaD"| L], EaD"L
4FL
AL, =
" EaD?

Download free eBooks at bookboon.com



Problem 2.4

Fig. 2.32
A bar BC and CG oflength L is attached to rigid supports at B and G. Part BC have a square cross-section
and between point C and G the cross section is circular. What are the stresses in portions BC and CG
due to the application of load F at point C in Fig. 2.32. The weight of the bar is neglected. Design the
parameter D to accommodate for the given allowable strss o, . length L, modulus of elasticity E and

applied force F are known. Problem is statically indeterminate.

Solution

Fig. 2.33

At first, we detach the bar at point B and define a reaction at its location, which will be solved from the

deformation condition. (See Fig. 2.33).

The solution is divided into two solutions part BC and CG.
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Free-body diagram on portion I (part BC):

X, € <0,L>

From the equilibrium equation in the first part, we obtain
DE, =0: Ni(x)-R=0 = Nj(x)=R

Solution of cross-section area is given From Pythagoras theorem where we determine the side length
of the square:

(2D)’ =a* +a’
A, =a’ = 4D? =2a’ = A, =2D’
2D? =a?

oy,

. / A R

DTS AEENE 1

T WANT TO CHANGE DIRECTION,

n AND THE WORLD
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Stress in portion BC is

NI(XI)= R
A 2D°

GI(X,)z

Free-body diagram an portion II (part CG):

x; €(L,2L)

From the equilibrium equation in the second part, we obtain

DF, =0: Ny(x,)+F-R=0 = Ny(x;)=R-F

Stress in portion CG is

NII(X]I) _ R-F — 4(R_F)
Ay(xy) @D’ D’
4

oy (Xy) =

We determine the unknown reaction from the deformation condition, total elongation (movement of

point B) is equal to zero:

AL, =0 = AL =AL +AL,=0 = AL +AL,=0

from which we have

PL PL RL 4(R-F)L
Gl Sl el = 2+(2:()
EA, E A, E2D EnD
8F
nR+8(R-F)=0 = R-=
n+8
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Fig. 2.34

We insert the solved reaction into the result of parts BC and CG,

8F
N =R=—=0.72F
(X)) 8

N, (x,) 8F F
01(X1)=Al L= >=036—
(x,) (n+8)2D D
N, (x,)=R-F :%—F:—%:—O.ZSF
T TT

and draw the diagram of normal forces and stresses for both portions, which is shown in the Fig. 2.34

Design of parameter D

The maximum (absolute value) of stresses is the same for both portions, we compare them with the

allowable stress and we get the designed parameter D:

0.36F

F
c = 036—<o = D>
MAX D? All Gu
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Problem 2.5

Fig. 2.35

In Fig. 2.35, a bar of length 2L with uniform circular cross-section area and made of the same material
with a modulus of elasticity E, is subjected to an applied force F. determine the stress in the bar. Consider

the weight of bar (density p and gravity g are known).

bookbooncom

Corporate eLibrary
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Solution

Fig. 2.36
Problem is statically indeterminate and for the solution we use the deformation condition at point B.
First step of solution is to substitute an unknown reaction at point B (see Fig. 2.36).
Because the problem is in pure tension, the reaction RY and moment M are zero, reaction R is non-zero.

Solution of this problem is divided into two parts.

X, € <O,L>

Equilibrium of first part

D E, =0: N/(x)+R-G,=0 = N(x)=G-R

where G, is gravitational load of first part, defined by

G, =mg =pVg =pgA x,
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Normal force and stress is gathered by
Ni(x;) =pgAx, —R

N, (x;) _ pgAX; —R = pgx, -R
A (x;) A A

o (x,) =

x; €(L,2L)

Equilibrium at the second part, is given by

zFix“ =0: Ny(x)+F-R-G,; =0 =  Ny(xy)=F+G,;-R

Normal force and stress is as follows

Ny (xy) =F+pgA;x; —R =F+pgAx; —R

N, (x F+ -R F
u 11): pgAX, =t pgx, ——

TR A A A

Deformation condition at point A

Total elongation at point A is equal to zero, which is consisting of the first part of the bar AL and second
part AL . For solution of each part we used the integral form because normal force is a function of

position. Unknown reaction R after calculation becomes

PILI + PIILH —

AL, =AL, +AL, =0
EIAI EHAH

t —-R)L T (F —-R)L
J(pgAXI ) dx[+f( +pgAX, —R) dx, =0
0 L

EA EA

2pgAL+F=2R = R:pgAL+§
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Fig. 2.37

We insert the result of reaction R into the function of normal force and stress for both parts and the

diagram for force and stress is shown in Fig. 2.37.

F F
N, (x,) = pgAx, —(pgALJrEj = pgA(x, _L)_E

N, (x,) _ pgAx; —R
Al(x) A,

F
G[(X[)z ng(X[_L)_ﬁ

F) F
Ny (xy) =F+pgAx; —R =F+pgAx —(pgAL+ 5) =57 pgA(x,; —L)

N, (x F
n(Xu) =—+pgx, -L)

o (Xy)=
ll( Il) AH (XH) 2A

Problem 2.6

Fig. 2.38
A rod of length L, cross-sectional area A, and modulus of elasticity E, has been place inside a tube with

the same length L, but of differing cross-section area A, and modulus of elasticity E, (Fig. 2.38). What
is the deformation of the rod and tube when F is applied to the end of the plate as shown?
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Solution

The axial force in the rod and in the tube is denoting by N, | -and N respectively. we draw a free-

TUBE?

body diagram for the rigid plate in Fig. 2.39:

Fig. 2.39

ZF' =0:  Npygg + Ngop —F=0 = Nyggg +Ngop =F (a)

The problem is statically indeterminate. However, the geometry of the problem shows that the deformation

DL, and DL . of the rod and tube must be equal:

Nuge L N. L
AL = ALgop = 3 TUBEATUBE — = RODAROD
TUBEZ »TUBE ROD‘YROD
E A
Nyuse = Npop —LUBETUBE
EropAron .

Equation (a) and (b) can be solved simultaneously for N,/ -and N .. by:

Eruse Aruse
Nron ﬁ"' Ngop =F
ROD%}ROD

E A
N TUBE/MTUBE | | | = |
ROD( E_A j

ROD* *ROD

F
Ngop =
(ETUBEATUBE +1j

EropArop

N _ Eruse Aruse F
TUBE
EronArop [ETUBEATUBE +1J
EronArop
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Problem 2.7

Fig. 2.40

Determine the value of stress in the steel bar shown on Fig. 2.40 when the temperature change of the
bar is AT = 30 °C. Assume a value of E = 200 GPa and a = 12 x 10° 1/°C for steel.

Solution

We first determine the reaction at the support. Since the problem is statically indeterminate, we detach

the bar from its support at B.

Fig. 2.41

The corresponding deformation from temperature exchange (Fig. 2.41) is

AL, =a AT L

Applying the unknown force N at the end of the bar at B (Fig. 2.41). We use eq. (2.15) to express

compression

the corresponding deformation AL

compression

AL _ Ncompression L
compression
P EA
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Total deformation of the bar must be zero at point B, from which we have the following deformation

condition

AL =AL

compression T>

from this we obtain N

compression

N =a AT EA

compression

Stress in the bar is then given by

Ncompression _ o AT EA

=a AT E=12x10"° 1/°Cx30 °Cx200x10° Pa =72 MPa.

o=

A A

(]
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Problem 2.8

Fig. 2.42

Determine the stress of the aluminum bar L = 500 mm shown in Fig. 2.42. when its temperature changes

by AT = 50 °C. Use the value E = 70 GPa and a = 22.2 x 10 1/°C for aluminum.

Solution

We determine the elongation of the bar from temperature exchange from the following equation

X e(O,L)

Fig. 2.43

AL=AL, =0 AT L=222x10"° 1/°Cx40 °Cx500 mm = 0.444 mm

We divide the bar into one component part shown in Fig. 2.43. From equilibrium equation in this part

we find the unknown normal force:

DF,=0: Nx=0

Stress in the aluminum bar we describe by
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Problem 2.9

Fig. 2.44

The linkage in Fig. 2.44 is made of three 304 stainless members connected together by pins, each member
has a cross-sectional area of A = 1000 mm?®. If a vertical force F = 250 kN is applied to the end of the

member at D, Determine the stresses of all members and the maximum stress Opaxe

Solution

Fig. 2.45

First we disconnected the member CD and draw a free-body diagram (shown in Fig. 2.45) We then

solve for the force N, by the following equilibrium equation

> F,=0: Ny -F=0 = N, =F=250kN
Other normal forces N, . and N, . we determined from equilibrium at point C (shown in Fig. 2.46),
given by:

ana==0M_ 0666 =  a=33.69
L, 15m

Download free eBooks at bookboon.com



In the x direction

ZF =0: —Ngesina+Np.sina=0 =  —Ng.+Ny. =0

X

Fig. 2.46

Npe =Nye
In the y direction
ZEy =0: Ngecoso+Ny.cosa—N =0

F 250 kN

= =150.23 kN
2 coso. 2 cos 33.69°

2Ny.cosa=N,=F = Ny =

Ne =Ny =150.23 kN

Stresses in the members are

N ) ?
O = —€ = 15023 10 ZN =150.23 MPa
A 1000 mm

3

Ope = Nic = 150.23 10 ZN =150.23 MPa
A 1000 mm

_ Ng 250 10°N

[ ] =
“© A 1000 mm>

=250 MPa

Maximum value of stress is at link CD

Cyax = Ocp = 250 MPa
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Problem 2.10

Fig. 2.47

The assembly consists of two titanium rods and a rigid beam AC in Fig. 2.47. The cross section area is
A, =60 mm*and A = 45 mm’. The force is applied at a = 0.5 m. Determine the stress at rod GB and
CD; if a the vertical force is equal to F = 30 kN.

With us you can
shape the future.
Every single day.
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WWw.eon-career.com
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Solution

Fig. 2.48

The unknown normal forces in the titanium rod are found from the equilibrium equation of rigid beam
GC in Fig. 2.48, given by

DF,=0: Ng+Ng-F=0

iy
> M,;=0: Ng3a-Fa=0 = Ny, =

Ngs = F— N, =30 KN—10 kN = 20 kN

N =20 kN

Stress in rod AB and CD is given by the following

N
Ogp = _GB _ —20000 Ij =333.3 MPa
Ag 60 mm

Ne 10000 N

A= g = 2222 MPa
D mm

Scp =

Problem 2.11

) i "l’tuumm |
- L e L >
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The rigid bar BD is supported by two links AC and CD in Fig. 2.49. Link CH is made of aluminum
(E, = 68.9 GPa) and has a cross-section area A, = 14 mm? link DG is made of aluminum (E, = 68.9
GPa) and has a cross-section of A .=2A_, =280 mm® For the uniform load w = 9 kN/m, determine

the deflection at point D and stresses in the link CH and DG.

Solution

Free body diagram of rigid bar BD

Fig. 2.50

Equilibrium equation of moment at point B in the bar BC (Fig. 2.50), is expressed as

> M =0: NgyLsino+Np;2L-w2LL =0

2

= NCH 74‘ 2N DG = 2wL, (a)

where

tana:%zl = a=45

in equation (a) we have two unknowns. We need a second equation for the solution of normal forces in

the links from the deformation condition in Fig. 2.51, from the similar triangles

Fig. 2.51
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ABDD' = ABCC'

BD BC L sina 2L

In these triangles the angle  are the same from which we have the following equation:

. AL AL
sing=—=L = (CC'=—"<%
CC' sin a

AL — NCHLCH — NCH \/EL
B Ay EA

NyL N,.L
ALDG — DG DG — 2%(;

DG ADG

Aley _Alpq _ Ny 212 N L N = Nog ®)
. - - CH —
Lsina 2L EAN2 2EA 4
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Solving for the system of equations (a) and (b), we get

Nog £+ 2N, =2wL = Ny = le—L =0.92wL
72+2
8
N, =0.92wL =0.92 300N/m Im =276 N
N, = Nopg __wL 0.92wL —023wL

EE
8

Ny = 0.23wL =0.23 300N/m 1m =69 N

Stress in link CH is

ooy = e - ON__y 93 mpa
A 14 mm
Stress in link DG is
= h = 216N _ 9.86 MPa

(e} =
PO AL, 28 mm?

Deflection of point D is given by the following

AL = Noolog _ 0.92wLL _ 092 300N/m (1m)’
T E A 2EA 268.9 10°Pa 14 10°m?

DG

DG

ALy, =1.4310*m =0.143 mm

Unsolved problems

Fig. 2.52 Fig. 2.53 Fig. 2.54
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Problem 2.12

Both portions of rod GBC in Fig. 2.52 are made of aluminum for which E = 70 GPa. Knowing that the
magnitude of F is 4 kN, determine (a) the value of F, so that the deflection at point A is zero, (b) the

corresponding deflection of point B, (c) the value of stress for each portion.

[F1 = 32.8 kN; AL, = 0.073 mm; 6, = 12.73 MPa; 5, = 10.19 MPa]

Problem 2.13

Link DB in Fig. 2.53 is made of aluminum (E = 72 GPa) and has a cross-sectional area of 300 mm?.
Link CG is made of brass (E = 105 GPa) and has a cross-sectional area of 240 mm?”. Knowing that they
support rigid member HBC, determine the maximum force F that can be applied vertically at point H,

if the deflection of H cannot exceed 0.35 mm.

[F = 16.4 kN]

Problem 2.14

In Fig 2.54 a vertical load F is applied at the center B of the upper section of a homogeneous conical
frustum with height h, minimum radius a, and maximum radius 2a. Young’s modulus for the material

is denoted by E and we can neglect the weight of the structure. determine the deflection of point B.

Fh
AL, =—
[ i 2Ena2]

Fig. 2.55 Fig. 2.56 Fig. 2.57
Problem 2.15

Determine the reaction at D and B for a steel bar loaded according to Fig. 2.55, assume that a 4.50
mm clearance exists between the bar and the ground before the load is applied. The bar is steel
(E =200 GPa),

[R, = 430.8 kN, R = 769.2 kN]
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Problem 2.16

Compressive centric force of N = 1000 N is applied at both ends of the assembly shown in Fig 2.56 by

means of rigid end plates. Knowing that E_. . =200 GPa and E =70 GPa, determine (a) normal

STEEL ALUMINUM
stresses in the steel core and the aluminum shell, (b) the deflection of the assembly.

[o = 3.32 MPa; ¢ = 9.55 MPa; AL = 4.74x10° mm)]

ALUMINUM STEEL

Problem 2.17

= 200 GPa) and the other of brass (E
105 GPa), are joined at B and restrained by supports at G and C. For the given load, determine (a) the
reaction at G and C, (b) the deflection of point B.

Two cylindrical rods in Fig. 2.57, one made of steel (E

STEEL BRASS

[R, = 134 kN; R, = 266 kN; DL, = - 0.3 mm]
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Problem 2.18

L,y =1.5m
-~ C L= 2m
—ﬁb
L, w = 300 N/m
H; D
_%D
Fig. 2.58

The rigid bar HBC is supported by a pin connection at the end of rod CB which has a cross-sectional
area of 20 mm? and is made of aluminum (E = 68.9 GPa). Determine the vertical deflection of the bar

at point D in Fig. 2.58 when the following distributed load w=300N/m is applied.

[AL, = 12.1 mm]

Problem 2.19

Fig. 2.59

The bar has length L and cross-sectional area A. (see Fig. 2.59) Determine its elongation due to the force

F and its own weight. The material has a specific weight y (weight / volume) and a modulus of elasticity E.
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3 Torsion

3.1 Introduction

Fig. 3.1 Member in torsion
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In the previous chapter we discussed axially loaded members and we analyzed the stresses and strains
in these members, but we only considered the internal force directed along the axis of each member
without observing any other internal force. Now we are going to analyse stresses and strains in members
subjected to twisting couples or torques T and T, see Fig. 3.1. Torques have a common magnitude and

opposite sense and can be represented either by curved arrows or by couple vectors, see Fig. 3.2.

Fig. 3.2 Alternative representations of torques
Members in torsion are encountered in many engineering applications and are primarily used to transmit

power from one point to another. These shafts play important roles in the automotive and power industry.

Some applications are presented in Fig. 3.3.

Fig. 3.3 Transmitting shafts, [http://www.directindustry.com]
There is a parallelism between an axially loaded member and a member in torsion. Both vectors of

applied force Fand applied torque T act in the direction of the member axes, see Fig. 3.4. Further on,

will see the results of a deformation analysis speak more about this parallelism.
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Fig. 3.4 Parallelism
This chapter contains two different approaches in solving torsion problems. Firstly we will present the
theory for members with circular cross-sectional areas (circular members in short) and secondly we will

extend our knowledge of this theory for application on non-circular members.

3.2 Deformation in a Circular Shaft

Fig. 3.5
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Let us consider a circular shaft fixed to a support at point B while the other end is free, see Fig. 3.5. The
shaft is of length L with constant circular cross-sectional area A. If the torque T is applied at point C
(free end of shaft), then the shaft will twist, i.e. the free end will rotate about the shaft axis through the
angle of twist ¢ and the shaft axis remains straight after applying the load.

Before applying the load, we can draw a square mesh over the cylindrical surface of the shaft as well as
varying diameters on the front circular surface of the shaft, see Fig. 3.6(a). After applying the load and

under the assumption of a small angle of twist (less than 5°) we can observe the distortion in Fig. 3.6(b):

1. All surface lines on the cylindrical part rotate through the same angle y.

2. The frontal cross-sections remain in the original plane and the shape of every circle remains
undistorted as well.

3. Diameters on the front face remain straight.

4. The distances between concentric circles remain unchanged.
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Fig. 3.6
These experimental observations allow us to conclude the following hypotheses:
1. All cross-sectional areas remain in the original plane after deformation.
2. Diameters in all cross-sections remain straight.

3. The distances between any arbitrary cross-sections remain unchanged.

The acceptability of these hypotheses is proven by experimental results. The aforementioned hypotheses

result in no strain along the member axis. Applying equation (2.5) for isotropic material, we get

&=0 = g =¢=0 (3.1)
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Fig. 3.7

Using equations of elasticity (2.10) we have g, = 0. Equation (3.1) means that the edge dimensions of
the unit cube are unchanged, but the shape of unit cube is changing. This can be proven with a small
experiment. Let us imagine a circular member composed of two wooden plates which represent the faces
on the front of the member. Now consider several wooden slats that are nailed to these plates and make
up the cylindrical surface of the member, see Fig. 3.7. Let us make two markers on each neighbouring
slat, see Fig. 3.7(a). These markers represent the top surface of the unit cube. After applying a load, the
markers will slide relative to each other, see Fig. 3.7(b). The square configuration will then be deformed

into a rhombus which proves the existence of a shearing strain.
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We can now determine the shearing strain distribution in a circular shaft, see Fig. 3.5, and which has
been twisted through the angle ¢, see Fig. 3.8(a). Let us detach the inner cylinder of radius p,p € (0, R)
from the shaft. Now lets consider a small square element on its surface formed by two adjacent circles and
two adjacent straight lines traced on the surface of the cylinder before any load is applied, see Fig. 3.8(b).
Now subjecting the shaft to the torque T, the square element becomes deformed into a rhombus, see
Fig. 3.8(c). Recalling that, in section 2.5, the angular change of element represents the shearing strain.

This angular change must be measured in radians.

From Fig. 3.8(c) one can determine the length of arc EE ) using basic geometry: EE T = Ly or EE S = pP.

Then we can derive
Yy = - (3.2)

where y, ¢ are both considered to be in radians. From equation (3.2) it is clear for a given point on the

shaft that the shearing strain varies linearly with the distance p from the shaft axis.

Due to the definition of inner radius p the shearing strain reaches its maximum on the outer surface of

the shaft, where p = R. Then we get

R
Ymax = T(p (3.3)

Using equations (3.2) and (3.3) we can eliminate the angle of twist. Then we can express the shearing
strain y at an arbitrary distance form the shaft axis by the following:

y =%Ymax (3 4)
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33 Stress in the Elastic Region

Fig. 3.9

Fig. 3.10
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Let us consider a section BC of the circular shaft with constant diameter D along its length L, subjected
to torques T'and T" at its ends, see Fig. 3.9. Applying the method of sections, we can divide the shaft into
two arbitrary portions BQ and QC at any arbitrary point Q. In order to satisfy conditions of equilibrium
for each part separately, we need to represent the removed part with internal forces. In our case, from
the equilibrium equations, we get non-zero values only for the torque T(x), see Fig. 3.10(a). This
torque represents the resultant of all elementary shearing forces dF exerted on a section at point Q, see

Fig. 3.10 (b). If the portion BQ is twisted, we can write
fde = T(x) (3.5)

where p is the perpendicular distance from the force dF to the shaft axis. The shearing force dF can be

expressed as follows dF = tdA, then substituting into equation (3.5) we get
fp’L'dA = T(x) (3.6)

Recalling Hooke’s law from Section 2.5 we can write

=Gy (3.7)
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and applying equation (3.4) we get

=2
Gy - R GYmax (3.8)

or

T= _Tmax (39)

Fig. 3.11

This equation shows that the shearing stress also varies linearly with the distance p from the shaft axis,
as long as the yield stress is not exceeded. The distribution functions of shearing stress are presented in
Fig. 3.11(a), for a solid circle, and in Fig. 3.11(b) for a hollow circle (p €(R;, R,)). For the latter case we
can write

Ry
Tmin = E Tinax (3-10)

The integral equation (3.6) determines the relationship between the resultant of internal forces T(x) and

the shearing stress 7. Substituting 7 from equation (3.9) into (3.6) we get

Tmax
Ty = 2= [ p*dA (3.12)

The integral in the last member represents the polar moment of inertia J with respect to its centre O,

for more detail see Appendix A. Then we have

TX
Tioy = 24 | or Toax = ;)R (3.13)

Substituting equation (3.9) into (3.13) we get

—Tw
]

T (3.14)
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34 Angle of Twist in the Elastic Region

Fig.3.12

When observing the deformation of a circular shaft subjected to a torque T, see Fig. 3.12, we can see
the rotation of the free end C, about the shafts axis or angle of twist ¢. The entire shaft remains in the
elastic region after applying the load. The considered shaft has a constant, circular cross-section with a
maximum radius R, and a length of L. Now we can recall equation (3.3) where the maximum shearing

strain ¥max and the angle of twist are related by the following

Ry
Vmax = N (33)
We are assuming that there is elastic response, therefore we can apply Hooke’s law for simple shear
Yimax = Tmax /G . After substituting equation (3.13) into Hooke’s law, and knowing that T(x) =T
T(x) = T along the whole axis of the shaft, we get

x T
Ymax = é])R :aR (3.15)

Equating the right-hand members of equations (3.3) and (3.15), and solving for ¢ we have

= —T(X)L = E

o o (3.16)

The obtained formula shows that the angle of twist is proportional to the applied torque within the elastic
region. If we compare the results of equation (2.15) from chapter 2, one can conclude the following
parallelism: AL £ @, Ny =T E £ G, A £ ]. This equation is valid only if the shaft is made of

homogenous material (constant G), has a uniform cross-sectional area (constant ]), and is loaded at its ends.

If the shaft is composed from several different parts, each individually satisfying the validity of equation

(3.16), we can extend formula (3.16) using the principles of superposition as follows:

_ _ Tix) Li
¢ =X =X - (3.17)
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where Tix), Gi, Ji, Li is the internal torque, shear modulus, polar moment of inertia and length

corresponding to the part i respectively.

In the case of variable cross-sectional area along the shaft, as in Fig.3.12, the strain depends on the
position of the arbitrary point Q, therefore we must apply a similar equation to (2.2) for the computation

of the shearing strain. After some mathematical manipulation the total angle of twist of the member is

T X
@ = f(L) G(])dx (3.18)

3.5 Statically indeterminate Shafts
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Fig.3.13

Until now, we have discussed statically determinate problems. But there are some situations, where the
internal torques can not be determinated using statics alone. For simplicity, let us consider a simple
problem, see Fig. 3.13. In this case we cannot solve the problem through equilibrium equations from
statics alone. The main difficulty in this problem is that the number of unknown reactions is greater than
the number of equilibrium equations. From a mathematical point of view, the problem is ill-conditioned.

For our case we obtain one equilibrium equation to be
YXTy,=0: Tc—T+ Tz =0 (3.18)

This problem is statically indeterminate. To overcome this difficulty we must use the same approach as
in Chapter 2, Section 2.7 , i.e. to add deformation conditions. In our case the angle of twist at point C

is equal to zero, and corresponds to the total angle of twist
P=¢c=X10;=0 (3.19)

Using equation (3.17) we obtain

Tl(x) Lq TZ(X) Lo
GJ1 GJ2

=10 =@+, = =0 (3.20)

Both internal torques Ty) =T —T¢, Tpn) = T¢ are functions of unknown reaction T. Solving
J2Ly

equation (3.20) we obtain the value of reaction T, = Tobiciily
2Lb17J1L2

T. We can then continue by solving in

the usual way (for statically determinate problems).
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3.6 Design of Transmission Shafts

In designing transmission shafts the principal specifications that must be satisfied are the power to be
transmitted and the velocity of rotation. Our task now is to select the material and the type and the size

of cross-section to satisfy the strength condition, i.e. the maximum shearing stress will not exceed the

allowable shearing stress Tmax < Tall, when the shaft is transmitting the required power at the specified

velocity. Recalling elementary physics we have

P=Tw =2nfT (3.21)
Where P is the transmitted power, ® is the angular velocity, and fis the frequency of rotation. Solving

equation (3.21) for T obtains the torque exerted on our shaft which is transmitting the required power

P at a frequency of rotation £,

T=2" (3.22)
Now we can apply the strength condition using equation (3.13) as follows
T
Tmax = ]_R < Ta (3.23)

Substituting equation (3.22) into (3.23) we get

R <1y or ]E =

2nf] 2nfta (3.24)

The value J/R represents the allowable minimum. This variable is known as the section modulus and can

be found in any common section standards.

3.7 Torsion of Non-Circular Members

Fig. 3.14
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Fig. 3.15

All previous formulas have been derived upon the axisymmetry of deformed members. Let us now
consider the shaft with square cross-section, see Fig. 3.14. Experimental results show that the cross-
section of this type warped out of their original plane. Therefore we cannot apply relations which are
otherwise valid for circular members. For example, for a circular shaft the shearing stress varies linearly
along the distance from the axis. Therefore, one could expect that the maximum stresses are at the
corners of the square cross-sections but they are actually equal to zero. For this reason, we can consider
a torsionally loaded bar, with an arbitrary non-circular cross-section, see Fig. 3.15. The shearing stress
acts in an arbitrary direction on the contour of the cross-section. This stress T has two components:
a normal component Tt and the tangential component t,. Due to the shear law, component v’ must
exist. But there is no load in that direction and therefore this stress is equal to zero and subsequently
t, =1 = 0. The result means that in the vicinity of contour, the shearing stress is in the direction of

tangent to the contour.

Fig.3.16

Download free eBooks at bookboon.com



Now let us consider a small unit cube at the corner of a square cross-section, see Fig. 3.16(a). The corner
is the intersection point of two contour lines. Therefore at the corner we have two tangential components
T, and T_, see Fig. 3.16(b). According to the shear law, other shearing components, T, and T, , must exist .

Both are on the free surface, and there is no load in the x-axis direction. We can then write
Ty =0 and 171, =0 (3.25)
and it follows that

Ty =0 and 171,,=0 (3.26)

Fig.3.17

Let us imagine a small experiment, let’s twist a bar with square cross-section and made of a rubber-like
material. We can verify very easily, that there are no stresses and deformations along the edges of the

bar and the largest deformations and stresses are along the centrelines of the bars faces.

Fig.3.18
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Applying the methods of mathematical theory of elasticity for the bar with rectangular cross-section
bxh, we will get the stress distribution functions presented in Fig. 3.17. The corner stresses are equal to
zero. We can find the two local stresses which are largest at point I and II (Roman numerals). Denoting
L as the length of the bar, b and h as the narrow and wide side of bar cross-section respectively and T

as the applied torque, see Fig. 3.18, we have

T
T = Tpax =5 and 7 = Bty (3.27)

The coefficient o, depend only upon the ratio h/b. The angle of twist can be expressed as

TL
Q= (3.28)

The coefficient y also depends only upon the ratio h/b. All coeflicients a,f3,y are presented in the following
Tab. 3.1.

0,208 0,231 0,239 0,246 0,258 0,267 0,282 0,299 0,307 0,313 0,333

1,000 0,859 0,820 0,795 0,776 0,753 0,745 0,743 0,742 0,742 0,742

0,141 0,196 0,214 0,229 0,249 0,263 0,281 0,299 0,307 0,313 0,333

Tab. 3.1
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Fig. 3.19

The stress distribution function over the non-circular cross-section can be visualised by the membrane
analogy. Firstly, what does this analogy mean? Two processes are analogous if both can be describe by the
same type of equations. In our case we have the twisting of a non-circular bar and the deformation of a
thin membrane subjected to internal pressures, see Fig. 3.19. Both processes are determined by the same

type of differential equations. Secondly, we need to determine the analogous variables. In our case we have

T £ volume bouded by the deformed membrane and horizontal plane
value of shearing strain £ tangent of maximum slope (3.29)
direction of shearing strain % horizontal tangent

TANGENT OF
MAX. SLOPE HHORIZONTAL
> TANGENT

T
RECTANGULAR )T
SUPTORT

Fig. 3.20

The graphical representation of these equations is presented in Fig. 3.20.

The membrane analogy can be efficiently applied for members whose cross-section can be unrolled into
the basic rectangle bxh, see Fig. 3.21. Another application of the membrane analogy is for members with
cross-sections composed from several rectangles, see Fig. 3.22. These cross-sections cannot be unrolled
into one simple rectangle bxh. For this case we can assume that the total volume of deformed membrane
is equal to the sum of individually deformed membranes, see Fig. 3.23. If the torque is analogous to the

membrane volume, and then we can write
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b

2
Z /yﬂ%

7777777777777

=

Fig. 3.21 Fig. 3.22

P=P1=P2="=¢n
After simple mathematical manipulations of these equations we determine that the total torsional stiffness

is equals to the sum of individual torsional stiffness’ of each rectangle, i.e.
yhb = Xy, hib} (3.31)

subsequently the largest stress corresponding to each rectangle can be found by

T;
(Zihib-z

L

T, = (3.33)

Deformed
membranes

Fig. 3.23
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3.8 Thin-Walled hollow Members

Fig. 3.24

In the previous section we discussed members with open non-circular cross-sections subjected to
torsional loading. The results obtained in the previous section required advanced theory of elasticity.

For thin-walled hollow members we can apply some simple computations to obtain results.
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Fig. 3.25

Let us consider the thin-walled hollow member of non-circular cross-section, see Fig. 3.24. The wall
thickness varies within the transverse section and remains very small in comparison to other dimensions.
Let us detach a small coloured portion DE. This portion is bounded by two parallel transverse sections
by the distance Ax and two parallel longitudinal planes. Focusing on the equilibrium of part DE in the
longitudinal direction x, the shear law says that the shear forces Fj,, Ff are exerted on faces D and E,

see Fig. 3.25. We then get the corresponding equation
YE =0: Fp—F;=0 (3.34)

The longitudinal shear forces Fp, Fp are acting on the small faces of areas Axt;, and Axtg. Thus we

can express the force as a product of shearing stress and area, i.e.

FD = TDAD = TDAxtD ) FE = TEAE = TEAXtE (3.35)

Substituting equation (3.35) into (3.34) we get

TDAxtD - TEAxtE =0

or (3.36)

Tplp = Tptg

Since the selection of portion DE is arbitrary, and then the product 7t is constant throughout the member.

Denoting this product by g we get

q = tt = constant (3.37)

jl'
L.
| NS

Fig. 3.26
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Fig. 3.27

This new variable describes the shear flow in the member. The direction of shearing stress is determined by

the direction of shear forces and the application of the shear law as one can see in Fig. 3.26 and Fig. 3.27.

Fig. 3.28
Now let us consider a small element ds which is a portion of the wall section, see Fig. 3.28. The

corresponding area is dA = tds. The resultant of shearing stresses exerted within this area is denoting
by dF or

dF = 1dA = ttds = qds (3.38)

The moment dM, of this force about the arbitrary point C is

dM, = pdF = pqds = qpds (3.39)
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Fig. 3.29

Where p is the distance of C to the action line of dF. The action line passes through the centre of this
element and the product pds represents the doubled area dA, see Fig. 3.29. We then have

dM; = q2dA (3.40)

In a mathematical point of view, the integral of moments around the wall section represents the resulting

moment that is in equilibrium with the applied torque 7. Thus we have

T=¢dM,. = §q2dA (3.41)
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Since the shear flow is constant, we get

T=q¢$2dA =q2A (3.42)

Fig. 3.30

Where A is the area bounded by the centreline of the section, see Fig. 3.30. From the previous equation

we can easily derive the formula for calculating the shearing stress
T=-"— (3.43)
The corresponding angle of twist can be derived by using the method of strain energy, see Appendix

A.4.2. We then get

= ¢= 3.44
P =2 (3.44)

If the section can be built from several parts of constant thicknesses it is known to be piecewise constant,

equation (3.44) can then be simplified

_ Tl g s
MR (3.45)

3.9 Examples, Solved and Unsolved Problems

Problem 3.1

Fig. 3.31
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For the steel shaft with applied torque T = 2400 Nm shown in Fig. 3.31 (G = 77 GPa), determine (a) the
maximum and minimum shearing stress in the shaft, (b) the angle of twist at the free end. The shafthas

the following dimensions: L = 500 mm, D, = 40 mm, D, = 50 mm.

Solution

Fig. 3.32

Fig. 3.32

The shaft in Fig. 3.32 consists of one portion, which has uniform cross-section area and constant internal

torque. From the free body diagram in Fig. 3.33 we find that:

Y M, =0: Tx)+T=0
T(x)=-T =-2400 Nm

The polar moment of inertia (see Appendix A.2) is
D; D
J:JFULL_JHOLE:TC S T
32 32

_ (50 mm)* 7 (40 mm)*
32 32

J =362265 mm*
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Maximum shearing stress. On the outer surface, we have

T TD ~ 2400%10° N.mmXSOmm

_ _ 1 YruL
Tmax - P max -

J J 2 362265 mm* 2

r =165.5 MPa.

Minimum shearing stress. The stress is proportional to its distance from the axis of the shaft

Fig. 3.34

EXPERIENCE THE POW
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D

ﬂ:i:& = Tmin:Tmax&
Tmax & 2 D2
2
£ =165.6 MPa 20 _ 135 5 Mpa
50 mm

Another way th determine this is by:

- T _TDyue ~2400x10° N.mm 40 mm

mn = P =T 362265 mm* 2
7. =132.5 MPa.
Fig. 3.35

Graphically we can show shearing stress in Fig. 3.34 and the diagram of torque along the length of the
shaft is shown in Fig. 3.35.

Angle of twist.

Using Eq. (3.16) and recalling that G = 77 GPa for the shaft we obtain

_TL  2400x10° N.mm x 500 mm
Y7G1 T 77x10° Nfmm® x 362265 mm"

@ =0.043 rad = 2.465°
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Problem 3.2

Fig. 3.36

The vertical shaft AC is attached to a fixed base at C and subjected to a torque T shown in Fig. 3.36.
Determine the maximum shearing stress for each portion of the shaft and the angle of twist at A. Portion
AB is made of steel for which G = 77 GPa with a diameter ofD = 30 mm. Portion BC is made of

STEEL
brass for which G = 37 GPa with a diameter of D = 50 mm. Parameter L is equal to 100 mm

BRASS

Solution

Fig.3.37

The complete shaft consists of two portions, AB and BC (see Fig. 3.37), each with uniform cross-section

and constant internal torque.

X, € <O,L>

Fig.3.38
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Solution of portion AB
Passing a section though the shaft between A and B and using the free body diagram shown Fig. 3.38,

we find

> M, =0: Tx)+T=0T,(x)=-T

Fig.3.38

The maximum shearing stress is on the outer surface, we have

T — m P — m DSTEEL — |T| DSTEEL
max I J max I J 2 anTEEL 2
32
16 T 16T
Tt = 63 _ 16 - =1.886x107*T
11D ). (30 mm)

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

\7\‘ PDF components for PHP developers
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Diagram of the shearing stress across the cross-section area is shown in Fig. 3.39.

Solution of portion BC

Xy € <L, 2L>

Fig. 3.40

Now passing a section between B and C (see Fig. 3.40) we obtain

ZMixH =0: ,(x)+T-2T=0T,(x)=T

Again, the maximum shearing stress is on the outer surface, found by the following

— |TH| _ m& _ |T| DBRASS
Tmax | pmax nm— - 4
] J 2 wDi, 2
32
Tinaxl = I?T = 16T 3 :4074X10_5T
MDgrass (50 mm)
Fig. 3.41

Graphically, the shearing stress is shown in Fig. 3.41.
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When we compare the results from both portions the maximum shearing stress is in portion AB, which

compares with the allowable stress. From this inequality, we have the unknown torque T.

7’-rnax = Trnaxl < TAH
3
__ 16 T <z, T< Tan™ Dgrggr
nD;TEEL 16
T < T D, 150 MPaxmx (30 mm)® oo oo
16 16 ’
T <795215,6 Nm
Fig. 3.42

Choosing the torque T = 795 kNm. We can graphically represent the torque along the length of shaft

in Fig. 3.42.

Angle of twist

Using Eq. (3.17), we have

_~ L L
— J.G,
T,. L T.. L
@, =—AB —AB BC LBC
Jas Gas Joe Gae
_ TgLlg Tye Lyc
Py = 4 4
7T Digrpgy 7T Diggass G
3 AB 30 BC
= 32 Ty Lo + 32 Tye L =-9.48 rad

4
T Dgrpp G ap

4
T DgrassGe
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Problem 3.3

Fig 3.43

A torque T is applied as shown in Fig. 3.43 to a solid tapered shaft AB. Determine the maximum shearing

stress and show, by integration, that the angle of twist at A is

_7TL
P 122Gt

The radius c, length L, modulus of rigidity G and applied torque T, are given.
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Solution

X, € (O,L>

Fig 3.44

Weonly have one part so from free body diagram (see Fig. 3.44), we find

DM, =0: Tx)-T=0 = Tx)=T

Fig 3.45

Fig 3.46

The maximum of shearing is onthe outer surface. The radius c(x) at location x is found from similarity

of triangles, Fig. 3.45.

tanﬁ:%:M = C(X)ZC(H%}
X
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The diameter D(x) at location x is

DX)=2c¢(x) = D(x)=2c (1+%).

Moment of inertia at location x is

. n{2c(l+xﬂ
7 D(x) _ L

J =
=", 32

The maximum shearing stress at position x on the outer surface is

rn (9=, =L D®___ 16T

oo 36 2 n[Zc (1+XH
L

Angle of twist is determined from the definition of the angle of twist Eq. (3.18), and we have

_T Tx) :j 32T 2T l TL

L
_oGJ(X) ) 0 O\ 7T dx= Gn16c'([ X 12Grct
Gn|2c 1+f L

In the fig. 3.46 is a graph of the torque along length L.

Problem 3.4

Fig. 3.47

A circular shaft BH is attached to fixed supports at both ends with a torque T applied at the midsection
(Fig. 3.47). Determine the torque exerted on the shaft by each of the supports and determine the

maximum shearing stress.

The length L, modulus of rigidity G and applied torque T, are given.
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Solution

Fig. 3.48

The problem is statically indeterminate. The support at point H is replaced by an unknown support
reaction T, (horizontal and vertical reactions are equal to zero, because this is a problem of pure torsion).

The solution is divided into two part (see Fig. 3.48).

Free-body diagram on portion I (part HC):

X, € <O,L>
360°
thinking.
u
Deloitte.
Discover thC truth at WWW.dClOitte,Ca/CaI‘CCI‘S © Deloitte & Touche LLP and affiliated entities.
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From the equilibrium equation of the first part, we obtain
DM, =0: T(x)+T;=0 = T(x,)=-T,

Free-body diagramon portion II (part CB):

Xy € <L,2L>

From the equilibrium equation of the second part, we obtain

ZMiXI] :0: T[I(Xl[)_T+TH :0 - T[[(XII)Z_TH_T

The unknown reaction is determined from the deformation condition, that the total angle of twist of
shaft BH must be zero, since both of its ends are restrained.j, and j denote the angle of twist for portions

AC and CB respectively, we write
=0 = @o=0+0,=0 = @+¢,=0,

from which we have

TILI + THLH —

GIJI GIIJH

3

where G, =G, =G, ], =], =] and L, = L, = L because both parts of shaft are made from same material,

have the same cross-section area, and the same length. Then solving for T,, we have

T(x)+T,x;)=0 = -T,-T;,#T=0 = THzg
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Substituting the results for each part, we obtain

TI(XI)=_TH:E TII(XH)Z_TH_Tz_E_T ———

The diagram of torque is shown in Fig. 3.49.

Fig. 3.49

Fig. 3.50

Fig. 3.51
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Fig. 3.52

Reaction at point B.

Drawing a free-body diagram of the shaft and denoting the torques exerted by supports T, and T, (see

Fig. 3.50) we obtain the equilibrium equation

DM, =0: T,+T,-T=0 = TB:T—TH:%

The maximum shearing stress at part HC (outer surface) is

T
IT,| "2/D 16T 8T
Tlmax =7 Pmax1 = 4 5= 3 = 3
J, D" 2 2aD’ =D

32

oy,
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The maximum shearing stress at part BC (outer surface) is

T
2-Hmax:M maxII: 542: 8T3
Iy nD" 2 =aD

32

The diagram of shearing stresses for each part is shown in the Fig. 3.51and Fig. 3.52.

Problem 3.5

Fig. 3.53

The bars in Fig. 3.53 have a square and rectangular cross-section area. Knowing that the magnitude of

torque T is 800 Nm determine the maximum shearing stress for each bar.
The dimensions are given by L = 400 mm, a = 50 mm and b = 35 mm

Solution

For a bar with square cross-section area (see Fig. 3.53a) and bar with rectangular cross-section area (see

Fig. 3.53b), the maximum shearing stress is defined by Eq. (3.27)

_ T
aab’

max

where the coeflicient ais obtained from tab. 3.1 in section 3.7. We have

a_ 50 mm =1 = «a=0.208 for square cross section
b 50 mm

and
a 50mm )
—= =143 = o =0.231 for rectangular cross section.
b 30 mm
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Maximum shearing stress for square cross-section in Fig. 3.53a is

L 800 Nm _=30.77 MPa.

Tmax =
aab’  0.208x0.050 mx(0.050 m)

Maximum shearing stress for rectangular cross-section in Fig. 3.53b is

R 800 Nm —1.98 MPa.

“aab’ 0.208x0.050 mx(0.035 m)’

max

Problem 3.6

Fig. 3.54

Two shafts of the same length and made by the same materials is connected by a welded rigid beam.On
the ends of the rigid beam amoment couple given by force F is applied. Cross-section area of the shaft

is in Fig. 3.54. Design parameter D if wearegiven an allowable stress oft ; = 150 MPa.
Given: F = 1000 N, ¢ = 200 mm, a = 2D, t = 0.1D, L = 400 mm.

Solution

From the given force, we find the total magnitude of the torque T applied to both shafts

T=Fc=1000N x 0.2 m=200 Nm

This torque will then be dived on both shafts and from the equilibrium of the rigid beam, we have

T=T +T, (a)

We have two unknowns torques T, and T,, so we need a second equation, which is found from the

deformation condition

TL TL

= : —_— _’
e GIl, GJ,

(b)
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where angle of twist for the first cross-section area is

_4A”  4(19Dx1.9D)"  52.1284D*

= = = =0.686D*
: Ig 2(1.9D 1.9D) 76
t

J

()

+
0.1D 0.1D

and for the second cross-section is

4
5, =D (@)
32 -
inserting (c) and (d) into (b), we get
T, =6.998 T, (f)

Solving the system of equations (a) and (f), we give

T, =0.875T =0.875 F ¢ = 0.875x200Nm =175 Nm

T, =0.125T =0.125 F ¢ = 0.125x200Nm =25 Nm

bookbooncom
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Maximum shearing stress in the first cross-section is

T, 0.875Fc _ 175Nm _2424
[ 2 A = 2 = T = 3 Nm
twn  2x(1.9D)"0.1D  0.722D° D

Maximum shearing stress in the second cross-section is

T, 16T, 16x25Nm 1273
Z-max n— 3= 3 = 3 = 3 Nm
nD D nD D

16

To design parameter D, we get the maximum shearing stress (from all parts), which compare with the

allowable stress, we then get

242 .4 242 .4 242 .4
Toax] =3 Nm<r,, = D=23; Nm:i/ 6Nrn2
D Tap 150x10°Nm
D>0.012m
Problem 3.7

Fig. 3.55
A torque T = 850 Nm is applied to a hollow shaft with uniform wall thickness t = 6 mm shown in Fig. 3.55.
Neglecting the effect of stress concentration, determine the shearing stress at points a and b. Determine

the angle of twist at the end of shaft when L is 200 mm and the modulus of rigidity is G = 77 GPa.

Given: R = 30 mm, t = 6 mm, L, =60 mm, L = 200 mm.
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Solution

Fig. 3.56

Fig. 3.57

From the definition of maximum shearing stress for thin-walled hollow shafts, we have

where A is the area bounded by the centerline of wall cross-section area (Fig. 3.56 — hatching area), we have

2
A=mR’+2RL, = {m%) +2(R+%)Ll

The shearing stress at point a and b is

T 3 850000 Nmm
2At. 2x6mmx7381,19 mm*

=9.6 MPa

The angle of twist of a thin-walled shaft of length L and modulus of rigidity G is defined

TL
4 GJ
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4A°
ds
Y di

where the moment of inertiais J =

ds
Integral mz is computed along the centerline of the wall section and we get

N

ds:s_1+s_2+s_3+s_4:n33mm+60mm+n33mm+60mm:54'5575

SE t t ot ot 6 mm 6 mm 6 mm 6 mm

C4a7 4x(738119 mm? )’

J= =
0 ds 54.5575
dt

=3994460.65 mm*

s

Angle of twist at the end of the shaft is given by the following

_TL_ 850000 Nmmx200 mm
GJ  77x10° MPax3994460.65 mm

¢ —=5.527x10"* rad = 0.032°

(]
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Unsolved problems

Fig. 3.58 Fig. 3.59

Problem 3.8

A torque T =750 Nm is applied to the hollow shaft shown in the Fig. 3.58 that has a uniform wall thickness

of t = 8 mm. Neglecting the effect of stress concentration, determine the shearing stress at points a and b.

[t, =1, = 16.1MPa]

Problem 3.9

The composite shaft in the Fig. 3.59 is twisted by applying a torque T at its end. Knowing that the
maximum shearing stress in steel is 150 MPa, determine the corresponding maximum shearing stress

in the aluminum core. Use G = 77 GPa for steel and G = 27 GPa for aluminum.

[t =39.44 MPa, T = 10.31kNm]

max aluminum

Problem 3.10

A statically indeterminate circular shaft BH consists of length L and diameter D (portion CH) and length
L with diameter 2D (portion BC). The shaft is attached by fixed supports at both ends, and a torque T
is applied at point C (see Fig. 3.60). Determine the maximum shearing stress in portion BC and CH,

and reaction at the support in point H.

{T _T 32T 16T }

H T z-maxBC: maxCH_17TCD3

S T
17 17 n D°
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Fig. 3.60

Fig. 3.61

Problem 3.11

Using T, = 150 MPa, determine the largest torque T that may by applied to each of the steel bars and to

the steel tube shown in Fig. 3.61.Given is a = 50 mm, b = 24 mm, t = 8 mm and L = 200 mm.

[(a) T=531.2 Nm, (b) T = 4233.6 Nm]

Problem 3.12

A 1.25 m long angle iron with L cross-section (shown in Fig. 3.62). Knowing that the allowable shearing
stress t , = 60 MPa and modulus of rigidity G = 77 GPa and ignoring the effects of stress concentration,
(a) determine the largest magnitude of torque T that may by applied, (b) the corresponding angle of

twist at the free ends. The dimensions are h = 50 mm, b = 25 mm, t = 5 mm and L = 200 mm.

[(a) T = 35kNm, (b) j = 31.2 rad]
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Fig. 3.62
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Appendix

A1l Centroid and first moment of areas

Fig. A.1

Consider an area A located in the zy plane (Fig. A.1). The first moment of area with respect to the z

axis is defined by the integral

Similarly, the first moment of area A with respect to the y axis is

0, = J z d4 (A2)

A

If we use SI units are used, the first moment of Q and QY are expressed in m® or mm?®.

Fig. A.2

The centroid of the area A is defined at point C of coordinates j and Z (Fig. A.2), which satisfies the

relation

Download free eBooks at bookboon.com



z dA4

A C—y

N|
I

A3
y (A.3)

Fig.A.3
When an area possesses an axis of symmetry, the first moment of the area with respect to that axis is zero.

Considering an area A, such as the trapezoidal area shown in Fig. A.3, we may dividethe area into

simple geometric shapes. The solution of the first moment Q, of the area with respect to the z axis can
be divided into components AL A, and we can write

szj;ydAZJydAJrJydA:ZﬁAi (A.4)

Solving the centroid for composite area, we write

247, _2A4E

DR -

Example A.01

Fig.A.4

For the triangular area in Fig. A.4, determine (a) the first moment Q, of the area with respect to the z
axis, (b) the y ordinate of the centroid of the area.
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Solution

(a) First moment Q

Fig. A.5

We selected an element area in Fig. A.5 with a horizontal length u and thickness dy. From thesimilarity

in triangles, we have

u_h-y
b h

and
d4d=udy= b%dy

using Eq. (A.1) the first moment is

(b) Ordinate of the centroid

1
Recalling the first Eq. (A.4) and observing that 4 = Ebh , we get

0.=4y = = %bhzzébhzy = y=-=h

W | -
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A.2 Second moment, moment of areas

Consider again an area A located in the zy plane (Fig. A.1) and the element of area dA of coordinate y

and z. The second moment, or moment of inertia, of area Awith respect to the z -axis is defined as
2
L=[y dda (A.6)
A

Example A.02

Locate the centroid C of the area A shown in Fig. A.6

Fig. A.6
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Solution

Selecting the coordinate system shown in Fig. A.7, we note that centroid C must be located on the y

axis, since this axis is the axis of symmetry thanz =0.

Fig.A.7

Dividing A into its component parts A and A, determine the y ordinate of the centroid, using Eq. (A.5)

_AF Ay, _(208t)x Tt (40x6t)x 3t 184¢° a6t
A+ A, 2tx8t + 4tx6t 40t7

<

Similarly, the second moment, or moment of inertia, of area A with respect to the y axis is

I,=[z"dd4. (A7)

A

We now define the polar moment of inertia of area A with respect to point O (Fig. A.8) as the integral

J,=[p* dd, (A.8)
A
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Fig.A.8

where p is the distance from O to the element dA. If we use SI units, the moments of inertia are expressed

in m* or mm*.

An important relation may be established between the polar moment of inertia ] of a given area and

the moment of inertia I and I of the same area. Noting that P> =y +2", we write

JO=J‘,02 dA:J‘(szrzz)dA=J‘y2 dA+J.z2 d4
A A A

A

or
J,=1,+1, (A.9)

The radius of gyration of area A with respect to the z axis is defined as the quantity r , that satisfies the

I.=1’4 = 7. :\/1—2 (A.10)

In a similar way, we defined the radius of gyration with respect to the y axis and origin O. We then have

relation

A

. I
Iy =l"yA = l"y = q (A.11)
J, =14 = 1= \/ﬁ (A.12)

Substituting for J, I and I, in terms of its corresponding radi of gyration in Eg. (A.9), we observe that

) (A.13)
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Example A.03

For the rectangular area in Fig. A.9, determine (a) the moment of inertia I of the area with respect to

the centroidal axis, (b) the corresponding radius of gyration r,.

Fig. A.9

Solution

(a) Moment of inertia I. We select, as an element area, a horizontal strip with length b and thickness

dy (see Fig. A.10). For the solution we use Eq. (A.6), where dA = b dy, we have
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Fig. A.10

(b) Radius of gyration r,. From Eq. (A.10), we have

1
]/'Z: —_ = _— = —_— - ]/'Z:—
2 Von VR Ji2

Example A.04

For the circular cross-section in Fig. A.11. Determine (a) the polar moment of inertia J , (b) the moment

of inertia I and Iy.

Fig. A.11
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Solution

(a) Polar moment of Inertia. We select, as an element of area, a ring of radius p and thickness dp (Fig.
A.12). Using Eq. (A.8), where dA = 2 nip dp, we have

D/2 D/2

J, =Ip2 d4 = J. p 2rpdp =27 I pdp .
A 0 0

4
J0:6D ‘
32

Fig. A.12

(b) Moment of Inertia. Because of the symmetry of a circular area I = I . Recalling Eg. (A.9), we can write

~ D*
J0=[Z+[ :2]2 = ]Z:J":i
7 2 2
_ =D
Y 64
A3 Parallel axis theorem
Fig.A.13
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Considering the moment of inertia I of an area A with respect to an arbitrary z axis (Fig. A.13). Let us
now draw the centroidal z’ axis, i.e., the axis parallel to the z axis which passes though the area’s centroid
C. Denoting the distance between the element dA and axis passes though the centroid Cby y’, we write

y =y + d. Substituting for y in Eq. (A.6), we write

L=[y da=[(y+d) dd,
A

A

I =jy'2 d4+2d [y da+d*[ dd,
A A A
I.=1.+0.+Ad’ (A.14)

where I, is the area’s moment of inertia with respect to the centroidal 2’ axis and Q, is the first moment
of the area with respect to the z’ axis, which is equal to zero since the centroid C of the area is located
on that axis. Finally, from Eq. (A.14)we have

2 2
I =1 +Ad (A.15)
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A similar formula may be derived, which relates the polar moment of inertia ] of an area to an arbitrary
point O and polar moment of inertia J . of the same area with respect to its centroid C. Denoting the

distance between O and Cby d, we write
J, =JC+Ad2 (A.16)

Example A.05

Determine the moment of inertia I of the area shown in Fig. A.14 with respect to the centroidal z axis.

Fig. A.14

Solution

The first step of the solution is to locate the centroid C of the area. However, this has already been done

in Example A.02 for a given area A.

We divide the area A into two rectangular areas A, and A, (Fig. A.15) and compute the moment of

inertia of each area with respect to the z axis. Moment of inertia of the areas are

Iz = Izl +122

where I  is the moment of inertia of A, with respect to the z axis. For the solution, we use the parallel-

axis theorem (Eq. A.15), and write

I, = Tz + Aldlz = %blhf + b1h1d12

1

z1

= éxfﬁt x (2t)° + 8t x 2t x (7t — 4.6t)

1,=97.5t"
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Fig. A.15

In a similarly way, we find the moment of inertia I , of A, with respect to the z axis and write

I,= Tz + Azdi = %bzhg + b2h2d§

z2

I :%x4t x (6t)° + 4t x 6t x (4.6t —3t)
1,=1334¢"

The moment of inertia I of the area shown in Fig. A.14 with respect to the centroidal z axis is

I =1,+1,=975t"+133.4t" =230.9t".

Example A.06

Fig.A.16

Determine the moment of inertia I of the area shown in Fig. A.14 with respect to the centroidal z axis

and the moment of inertia I of the area with respect to the centroidal y axis.
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Fig. A.17

Solution

The first step of the solution is to locate the centroid C of the area. This area has two axis of symmetry,

the location of the centroid C is in the intersection of the axes of symmetry.
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Fig. A.18

We divide the area A into three rectangular areas A, A, and A,. The first way we can divide area A can

be seen in Fig. A.17, a second way can be seen in Fig. A.18.

Solution the division of area A by Fig. A.17 (the first way) themoment of inertia I is

Iz =Izl +122 +1237

where

I,=1.+Ad :éblhf +bhd’ =...=196t",
I,=1+A,d =éb2h§ +b,h,d3 =... =36t",
Iy=1.+Ad}= %b3h§ +bsh,d; =...=196t".

Resulting in

I =1,+1,+1,=196t"+36t" +196t" = 428t".
For the moment of inertia Iy we have
Iy = Iyl +Iy2 +Iy3,

where

_T =Lhp =éx2tx(6t)3 =36t",
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1 =Ty =Lh2b§ :%><6‘[><(2t)3 =4t*,

12

—_ 1 3 1 3 4
1,=1, :Eh3b3 :Ex2tx(6t) =36t".

Resulting in

_ _ agd 4 4 mpd
I,=1,+1,+1,=36t"+4t" +36t" =76t".
The solution for the division of area A according to Fig. A.18 (by the second way) the moment of inertia I is
]z = ]zl _122 _123’
where

L,=T.=Lbn :%x6tx(10t)3 — 500t",

L,-T =Lon :%Xth(6t)3 =36t*,

2

12
I,=T.=1b h3=ix2tx(6t)3=36t“
z3 z 12 3573 12 .

Resulting in

I =1,—1,—1,=500t"-36t"—36t* =428t

For the moment of inertia Iy we have

I,=1,-1,-1;,

where

- 1 3 1 3 4
1, =T, =—hb} = =x10tx(6t)’ =180t",

— 1 1
I, =—h,b} +h,b,d :Ex6tx(2t)3 +6tx2tx(2t)" =52t

<
[\S}
Il
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1

1,=1, =—2h3b§ +h,b,d? :%x6tx(2t)3 +6tx2tx(2t)" = 52t".

Resulting in

4 4 4 4
I,=1,-1,-1,=180t"-52t* -52t* = 76t".

Example A.07

Fig. A.19
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In order to solve the torsion of a rectangular cross-section in Fig. A.19, we defined (See S.P. Thimoshenko
and J.N. Goodier, Theory of Elasticity, 3d ed. McGraw-Hill, New York, 1969, sec. 109) the following

parameters for b>h:

J=vyb’h,
S, =a b’ h,
S,=Bbh,

where parameters a, B and y are in Tab.A.1.

The shearing stresses at point 1 and 2 are defined as

T _
lez—maxz_’ TZ__’
Sl
where T is the applied torque.
Tab.A.1
h/b | 1 1.2 L.5 2 3 5 10 >10
o |0.208 |0.219|0.231 | 0.246 | 0.267 | 0.291 | 0.313 | 1/3
0.208 | 0.196 | 0.180 [ 0.155] 0.118 | 0.078 [ 0.042 | O
Y 0.1404 | 0.166 | 0.196 | 0.229 | 0.263 | 0.291 | 0.313 | 1/3

A4 Product of Inertia, Principal Axes

Definition of product of inertia is

Iyzzjyz
A

d4

(A.17)

(A.18)

(A.19)

(A.20)

(A.20a)

in which each element of area dA is multiplied by the product of its coordinates and integration is

extended over the entire area A of a plane figure. If a cross-section area has an axis of symmetry which

is taken for the y or z axis (Fig. A.19), the product of inertia is equal to zero. In the general case, for

any point of any cross-section area, we can always find two perpendicular axes such that the product

of inertia for these vanishes. If this quantity becomes zero, the axes in these directions are called the

principal axes. Usually the centroid is taken as the origin of coordinates and the corresponding principal

axes are then called the centroidal principal axes.
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Fig. A.19a

If the product of inertia of a cross-section area is known for axes y and z (Fig. A.19a) thought the centroid,

the product of inertia for parallel axes y’ and z’ can be found from the equation
I,.=1,+Amn. (A.20b)
The coordinates of an element dA for the new axes are

y'=y+n; z'=z+m.

Hence,

I,. :jy'z'dA:j(y+n)(z+m)dA:Iysz+ImndA+JymdA+Inz daA.
A A A A A

A

The last two integrals vanish because C is the centroid so that the equation reduces to (A.20b).

A5 Strain energy for simple loads

Fig. A.20
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Consider a rod BC of length L and uniform cross-section area A, attached at B to a fixed support. The
rod is subjected to a slowly increasing axial load F at C (Fig. A.20). The work done by the load F as it is
slowly applied to the rod must result in the increase of some energy associated with the deformation of

the rod. This energy is referred to as the strain energy of the rod. Which is defined by
Strain energy =U = IOXF dx (A.21)

Dividing the strain energy U by the volume V = A L of the rod (Fig. A.20) and using Eq. (A.21), we have

U ¢« F
7= OH dx (A.22)

Recalling that F/A represents the normal stress o_in the rod, and x/L represents the normal strain e,

we write

U &
S =l,00 e (A.23)

The strain energy per unit volume, U/V, is referred to as the strain-energy density and will be denoted

by the letter u. We therefore have
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u= J.g o, deg, (A.24)
0

A.5.1 Elastic strain energy for normal stresses

In a machine part with non-uniform stress distribution, the strain energy density u can be defined by

considering the strain energy of a small element of the material with the volume AV. writing

u=1lim AU u du (A.25)
= — oru=—-r. .
MU AY dv
for the value of _within the proportional limit, we may set 6, = E ¢ _in Eq. (A.24) and write
1 o,
= — 2 = — = X
u= 2 ESX 2 stx 2E - (A26)

The value of strain energy U of the body subject to uniaxial normal stresses can by obtain by substituting
Eq. (A.26) into Eq. (A.25), to get

6,
=] dr. (A.27)

Elastic strain energy under axial loading

When arod isacted on by centric axial loading, the normal stresses are o= N/A from Sec. 2.2. Substituting

for o_into Eq. (A.27), we have

N2 L NZ
U= S 47 o setting dy = 4.V, U= ! TR (A.28)

If the rod hasa uniform cross-section and is acted on by a constant axial force F, we then have

2
U=NL
2EA

(A.29)

Elastic strain energy in Bending

The normal stresses for pure bending (neglecting the effects of shear) is 6 = My /I from Sec. 4. Substituting
for o_into Eq. (A.27), we have

2.2
U=[Zdr=[Z—-dr
2E 2E1 (A.30)

Setting dV = dA dx, where dA represents an element of cross-sectional area, we have
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2 L 2

7 dx (A31)

Example A.08

Fig. A.21

Determine the strain energy of the prismatic cantilever beam in Fig. A.21, taking into account the effects

of normal stressesonly.

Solution

The bending moment at a distance x from the free end is M = —F x . Substituting this expression into

Eq. (A.31), we can write

L 2 L 2 213
U= = [IEX) g FL
2E] 0 2E] 6E/

0

A5.2 Elastic strain energy for shearing stresses

When a material is acted on by plane shearing stresses T _ the strain-energy density at a given point can

be expressed as

7
u=[z, dy,, (A32)
0

where y_ is the shearing strain corresponding to T . For the value of t_ within the proportional limit,

we have 1= G y_, and write
xy xy

1., 1 7’
u=—QGy. =—r1 == (A.33)
2 7/xy 2 xyj/xy 2G

Substituting Eq. (A.33) into Eq. (A.25), we have

2

U=| Dy gy (A34)
2G ’
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Elastic strain energy in Torsion

The shearing stresses for pure torsion aret, = Tp /] from Sec. 3. Substituting for 7, into Eq. (A.27),

we have

T2 22
U:jidV:jT—ndV (A.35)
2G 2GEJ*?

Setting dV = dA dx, where dA represents an element of the cross-sectional area, we have

L T2 L T2
v ! 2G.J? (Joaa)ax=] 267 & (A.36)

0
In the case of a shaft of uniform cross-sectionacted on by a constant torque T, we have
(A.37)
2G
Elastic strain energy in transversal loading

If the internal shear at section x is V, then the shear stress acting on the volume element, having a length
of dx and an area of dA, is = V Q /I t from Sec. 4. Substituting for T into Eq. (A.27), we have
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1 (v T
U= I_ = _(I_tQj ! 2GI U A jdx (A.38)

The integral in parentheses is evaluated over the beam’s cross-sectional area. To simplify this expression

we define the form factor for shear

= izf (A.39)
A

Substituting Eq. (A.39) into Eq. (A.38), we have

2

I Ss 2Gid dx (A.40)

Fig. A.22

The form factor defined by Eq. (A.39) is a dimensionless number that is unique for each specific cross-
section area. For example, if the beam has a rectangular cross-section with a width b and height h, as
in Fig. A.22, then

{=b, A=bh, JERLER

12

—_ 2 h b(h 5
0=y y (2 yj 2(4 yj

Substituting these terms into Eq. (A.39), we get

bh +h/2 b2 h2 6
](S = 2 j- 2 __y2 b dy:_ (A.41)
( 1 bh3j J e 5

12
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Example A.09

Fig. A.23

Determine the strain energy in the cantilever beam due to shear if the beam has a rectangular cross-

section and is subject to a load E Fig. A.23. assume that EI and G are constant.

Solution

From the free body diagram of the arbitrary section, we have

V(x)=F.
Since the cross-section is rectangular, the form factor f, = g from Eq. (A.41) and therefore Eq. (A.40)
becomes

“6 F? 3 FL

Ushear - = X
)52G64 5G4

Using the results of Example A.08, with A=bh, /= %b h*, the ratio of the shear to the bending strain

energy is
3FL
Ushear _ 5 GA _ih_ZE
U FFl’ 10L°G

bending

6E/

Since G = E/ 2(1+n) and n = 0.5, then E = 3G, so

Upo _310°3G_9 17
Uppig 10 G 101

It can be seen that the result of this ratio will increasing as L decreases. However, even for short beams,
where, say L = 5 h, the contribution due to shear strain energy is only 3.6% of the bending strain energy.

For this reason, the shear strain energy stored in beams is usually neglected in engineering analysis.
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