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Preface

Preface

“Essential Electromagnetism” and “Essential Electrodynamics” (also to be published by Ven-
tus) are intended to be resources for students taking electromagnetism courses while pursuing
undergraduate studies in physics and engineering. Due to limited space available in this series,
it is not possible to go into the material in great depth, so I have attempted to encapsulate
what I consider to be the essentials. This book does not aim to replace existing textbooks
on these topics of which there are many excellent examples, several of which are listed in the
bibliography. Nevertheless, if appropriately supplemented, this book and “Essential Electro-
dynamics” could together serve as a textbook for 2nd and 3rd year electromagnetism courses
at Australian and British universities, or for junior/senior level electromagnetism courses at
American universities/colleges.

The book assumes a working knowledge of partial differential equations, vectors and vector
calculus as would normally be acquired in mathematics courses taken by physics and engineering
students. However, very brief introductions to vectors, vector calculus and index notation are
given in the appendices. Some of the mathematical derivations have been relegated to the
appendices, and some of those are carried out using index notation which is briefly introduced
in Appendix D, but elsewhere in the book manipulation of equations involving vector differential
calculus is done using standard vector calculus identities (also given in the appendices).

The presentation of the subject material in this book is conventional, starting with forces
between charges, electric field, Coulomb’s law, electric flux, Gauss’ law and the electrostatic
potential. Chapter 2 is on Poisson’s and Laplace’s equations, and their solution. The method
of images is applied to simple examples in plane, cylindrical and spherical geometry. Laplace’s
equation is solved analytically in Cartesian coordinates for the cases where the boundaries
are orthogonal planes, and in spherical coordinates where the boundary surface is a sphere;
these being the most commonly-encountered problems involving Laplace’s equation. Solution of
Laplace’s equation in cylindrical coordinates is not included, but may be found in most applied
mathematics texts. A numerical finite-difference method is described for solving Laplace’s
equation. This method is applicable whether or not the boundary conditions allow analytic
solutions.

Chapter 3 is on the multipole expansion of the electrostatic potential, up to and including the
quadrupole term. Chapter 4 is on macroscopic and microscopic dielectric theory, starting with
the polarisation field, polarisation charges, Gauss’ law and the displacement field, susceptibility
and permittivity, and the boundary conditions on the electric and displacement fields. Orien-
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tational polarisability of molecules, electronic polarisability of non-polar molecules and ionic
polarisability of crystals are discussed. Finally, the Clausius-Mossotti formula which connects
the microscopic and macroscopic theories is derived.

Chapter 5 deals with the magnetic field, its causes, magnetic forces and the magnetic flux. The
magnetic vector potential is derived from the Biot-Savart law, and a derivation of Ampère’s
law follows, together with examples of its use in solving problems in magnetostatics. Finally
the multipole expansion of the vector potential up to the dipole term is performed, and mag-
netic dipoles are discussed together with their magnetic field and the torques and forces they
experience in a magnetic field.

Chapter 6 focuses on the magnetism of materials, starting with the magnetisation field, mag-
netisation currents and their inclusion in Ampère’s law, and the introduction of the auxiliary
field H. Next, susceptibility and permeability are defined, and the boundary conditions on the
magnetic and auxiliary fields are derived. Finally, the causes of magnetisation are discussed,
namely orientational polarisability of atomic magnetic dipoles associated with unpaired electron
spins causing paramagnetism, and the quantum mechanical exchange interaction in some ma-
terials giving rise to unpaired electron spins lining up in the same direction as in neighbouring
atoms, and leading to ferromagnetism.
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Each chapter is followed by several exercise problems, and solutions to these problems are to
be published separately by Ventus as “Essential Electromagnetism - Solutions”. I suggest you
attempt these exercises before looking at the solutions.

I hope you find this book useful. If you find typos or errors I would appreciate you letting me
know so that I can fix them in the next edition. Suggestions for improvement are also welcome
– please email them to me at protheroe.essentialphysics@gmail.com.

This book was mainly written in the evenings and I would like to thank my family for their
support and forbearance. It is dedicated to the memory of my parents, who stimulated my
interest in science.

Raymond John Protheroe,
School of Chemistry and Physics, The University of Adelaide, Australia
December 2012
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Electrostatics

1 Electrostatics

Learning objectives

— To learn the concepts of electric charge, charge density and the electric field, and how
they are related through Coulomb’s law and the principle of superposition as applied to
forces.

— To understand the concepts of electric field lines, and electric flux as the surface integral
of the electric field.

— To be able to derive Gauss’ law in integral and differential form, and be able to use it to
obtain the electric field from symmetrical charge distributions.

— To know why some materials are conductors and others are insulators (dielectrics), why in
electrostatics the electric field is zero inside a conductor, that any charge present resides
on the surface of a conductor, and that the electric field just outside a conductor is normal
to the surface.

— To understand what the electrostatic potential is, how it may be obtained from the electric
field, and that the electric field is the negative gradient of the potential.

— To be able to find the work done to assemble a charge distribution, to understand that
the potential energy is stored in the electric field, and to be able to find its energy density.

1.1 Electric charge, field and flux

In 1785 French physicist Charles-Augustin de Coulomb (1736–1806) published his law, which
may be stated as: the force exerted on point charge Q by point charge q a distance R away
has magnitude proportional to Qq/R2 and is directed along the line between the two charges.
American statesman and scientist Benjamin Franklin (1706–1790) was responsible for naming
the charge we now associate with electrons “negative” and the charge we now associate with
protons “positive”, and was the first to state the law of conservation of charge. Electric charge
is measured in coulombs (C).

We may consider the force on charge Q as being due to the electric field E of charge q acting
on charge Q, i.e. F = QE. The electric field is defined as the force per unit test charge (unit:
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N C−1 or V m−1); a test charge being an infinitesimal point charge placed where the electric
field is to be evaluated. From Coulomb’s law, the electric field of a point charge is

E(r) = q �R
4πε0R2

(1.1)

where R = (r − r′), r′ is the source point and r is the field point as in Fig. 1.1(a), and
ε0 = 8.85418782 × 10−12 C2 N−1 m−2 is the permittivity of free space; more usually its units
are given as (F m−1) where F stands for the farad which is the unit of capacitance, and is
named after English chemist and physicist Michael Faraday (1791–1867).
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Figure 1.1: Geometry for discussing (a) Coulomb’s law for point charge q, and (b) Coulomb’s
law for charge density ρ(r).

Since the electric field is the force per unit test charge, it obeys the principle of superposition
just like forces do. Hence, for a continuous charge distribution with volume charge density ρ(r)
(C m−3) the electric field is (Fig. 1.1b)

E(r) = 1

4πε0

∫
ρ(r′)�R
R2

d3r′. (1.2)

We may think of the electric field of, for example, an isolated positive point charge (Fig. 1.2a),
in terms of field lines which emerge isotropically from positive charges (Fig. 1.2b). The number
of field lines per unit area crossing a concentric sphere of radius r is then n/(4πr2) ∝ 1/r2 where
n ∝ q is the number of field lines originating at q. At any location, the electric field’s direction
is tangential to the field line at that location.
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Figure 1.2: (a) Electric field vectors due to a positive charge, where the length of an arrow
is proportional to E at the location of its tail. (b) Electric field lines starting at an isolated
positive charge. (c) Electric field lines ending on an isolated negative charge. (d) Electric field
lines starting on positive charge +q and ending on a nearby negative charge −q. (e) Electric
field lines starting on two nearby positive charges +q repel each other. (f) Field lines for the
case of two opposite charges of unequal magnitude. “S” represents a closed surface surrounding
all charges present. Note that in these, and subsequent, figures the point charges are located
at the centres of the white discs on which their charge is written. (The field line tracing for all
the images in this book which show electric or magnetic field field lines has been done using
a numerical scheme based on the 2nd order Runge-Kutta method for initial value problems
described in Appendix F.)

1.1.1 Electric flux

The electric flux through a surface S is defined by

ΦE =

∫

S
E · dS =

∫

S
E · �n dS (1.3)

and this is proportional to the net number of field lines passing out through S, i.e. the number
going out minus the number going in (Figs. 1.2b–c). In the flux integral the vector surface
element dS is the the scalar surface element dS multiplied by the normal unit vector �n at the
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surface, i.e. dS ≡ �n dS. In the case of a closed surface the direction of dS is always defined to
be outward from the volume, but otherwise there is an ambiguity and the direction must be
specified.

For a spherical surface of radius r centred on the origin as illustrated in Fig. 1.3(a)

dS = (r dθ)(r sin θ dϕ) = r2 sin θ dθ dϕ = r2 |d(cos θ)| dϕ (1.4)

and �n = �r. Thus, for charge +q at the origin, the flux outward through the sphere of radius r
centred on the origin is

∮

S
E · dS =

∫ 2π

0

∫ 1

−1

(
q�r

4πε0r2

)
· �r r2d(cos θ) dϕ =

q

ε0
(1.5)

Of course, we could obtain this result more easily by exploiting the spherical symmetry of the
problem — the surface integral is simply the product of E = q/(4πε0r

2) with the total area of
the sphere S = 4πr2.
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Figure 1.3: (a) Surface element dS of a sphere of radius r centred on the origin, illustrating
spherical coordinates (r, θ, ϕ). (b) Surfaces dS1, dS2 and dS3 subtend the same solid angle dΩ
at point P. (c) Surfaces dS2 and dS4 are parts of the closed surface of a tetrahedron, with dS2

subtending solid angle dΩ at point P, whereas dS4 subtends solid angle −dΩ at point P.

Another way of considering the electric flux through a spherical surface is in terms of the solid
angle subtended by surface element dS at the centre of the sphere. The solid angle can be
defined in an analogous way to an ordinary angle. An arc of length ℓ which is part of a circle
or radius r subtends angle θ = ℓ/r radians (rad) at the centre, so that if the arc were closed
(i.e. a circle) the angle would be θ = 2πr/r = 2π rad. In a similar way area dS which is part
of a spherical surface of radius r subtends solid angle dΩ = dS/r2 steradians (sr) at the centre,
so that if the surface were closed (i.e. a sphere) the solid angle would be Ω = 4πr2/r2 = 4π sr.
Hence the solid angle subtended at the centre by surface element dS in Fig. 1.3(a) is

dΩ =
dS

r2
= sin θ dθ dϕ = |d(cos θ)| dϕ. (1.6)

In Fig. 1.3(b) the solid angles subtended at point P by small surfaces dS1, dS2 and dS3 are
obviously the same – it is the solid angle dΩ within the cone which has its apex at P. Notice
that only dS1 could be part of a spherical surface centred on P, in this case having radius R1,
whereas dS2 and dS3 are not centred on P. However, what counts is the projected area, so that

dΩ1 =
dS1 · R̂1

R2
1

, dΩ2 =
dS2 · R̂2

R2
2

, dΩ3 =
dS3 · R̂3

R2
3

, (1.7)

where R1, R2 and R3 are separation vectors from P to dS1, dS2 and dS3. For dS1, dS2 and
dS3 in Fig. 1.3(b) dΩ1 = dΩ2 = dΩ3 = dΩ.
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Supposing dS1, dS2 and dS3 are parts of closed surfaces S1, S2 and S3 of arbitrary shape
surrounding P , then the sold angles these surfaces subtend at P are

∮

S1

dS1 · �R1

R2
1

=

∮

S2

dS2 · �R2

R2
2

=

∮

S3

dS3 · �R3

R2
3

=

∮
dΩ = 4π (1.8)

On the other hand, if point P isn’t inside the closed surface (e.g. P is outside the tetrahedron

in Fig. 1.3c) then
∮

S

dS · �R
R2

= 0; notice that the contributions from dS2 and dS4 cancel each
other out as dΩ4 = −dΩ2.

Returning to Fig. 1.3(b), the electric fluxes due to charge q at P out through surrounding closed
surfaces S1, S2 and S3 (of which dS1, dS2 and dS3 are surface elements) are

q

4πε0

∮

S1

dS1 · �R
R2

1

=
q

4πε0

∮

S2

dS2 · �R
R2

2

=
q

4πε0

∮

S3

dS3 · �R
R2

3

=
q

4πε0

∮
dΩ =

q

ε0
, (1.9)

and this is the same for all closed surfaces surrounding charge q.

We can also think of this in terms of the number of field lines leaving a charge per unit solid
angle being isotropic (the same in all directions), and the electric flux through a suface being
proportional to the number of field lines which in turn is proportional to the charge. Then the
electric flux out through a closed surface is proportional to the solid angle it subtends, which
is 4π if the charge is inside the closed surface, or zero if the charge is outside. If we double the
charge the flux would double, or if we add additional positive charges inside the closed surface
the electric flux would always equal the sum of the charges inside, divided by ε0.

Since the direction along a field line is identical to that of the field direction, field lines must
start on positive charges. Similarly, they must end on negative charges (or extent to infinity).
Examples of field lines for different charge configurations were already shown in Figs. 1.2(d)–(f).
Consider closed surface S surrounding all of the charge in Figs. 1.2(d)–(f). For Fig. 1.2(d) the
net number of field lines leaving S is zero as is the net charge inside, so ΦE = (q − q)/ε0 = 0.
For Fig. 1.2(e) ΦE = (q+ q)/ε0 = 2q/ε0, while for Fig. 1.2(f) for which twice as many field lines
leave surface S as enter it ΦE = (2q − q)/ε0 = q/ε0.
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1.1.2 Gauss' law

This law, named after German mathematician and physicist Johann Carl Friedrich Gauss
(1777–1855), is a formalisation of the result of the previous section. Gauss’ law in integral
form is

∮

S
E · dS =

1

ε0
Qencl (1.10)

where Qencl is the net charge enclosed by surface S. Applying Gauss’ theorem (Eq. C.19) we
get

∫

V
∇ · E d3r =

∫

V

1

ε0
ρ d3r (1.11)

where surface S encloses volume V , and ρ(r) is the charge density (C m−3). Equating integrands
we obtain Gauss Law in differential form

∇ · E =
ρ

ε0
. (1.12)
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Where the symmetry permits, Gauss’ law in integral form (Eq. 1.10) gives a powerful method of
finding the electric field. The trick is to find a volume satisfying: (i) surfaces are either normal
to or parallel to the electric field, (ii) where the electric field is normal it is constant over that
surface, (iii) the charge inside can be easily calculated. In the case of surface charges it is useful
to construct a Gaussian pillbox with narrow sides and top and bottom surfaces parallel to the
surface containing the charge. Classic examples include the infinite plane with uniform surface
charge density σ (C m−2) shown in Fig. 1.4(a), and the line charge density λ (C m−1) of infinite
length shown in Fig. 1.4(b).

σ E surface

infinite plane with

surface charge

density

E

Gaussian pillbox

L

ρ

E

λ

line charge

Gaussian

S

(b)(a)

Figure 1.4: (a) Infinite plane with surface charge density σ, showing a Gaussian pillbox strad-
dling the plane and whose upper and lower surfaces are parallel to the plane. (b) Section of
infinite line charge surrounded by a Gaussian cylindrical surface.

For the case of the infinite plane, from symmetry arguments the direction of the electric field
must be normal to the plane, and for positive charge, E must be pointing away from the plane.
Then, for area S of the infinite plane the charge inside the pill-box is σS so that

|E|2S =
σ S

ε0
. ∴ E =

σ

2ε0
n̂, (1.13)

where the 2S comes from the pillbox having both an upper and a lower surface.

For an infinite line charge λ we can use Gauss’ law for a cylindrical Gaussian surface of cylindrical
coordinate radius ρ (Fig. 1.4b). Length L of the cylinder contains charge λL so that

|E|2πρL =
λL

ε0
. ∴ E =

λ

2πρ ε0
ρ̂. (1.14)

1.1.3 Conductors and insulators

To understand why some materials are conductors and some are insulators, requires a brief
excursion into quantum mechanics. In a solid, it is the outermost electrons in each atom, the
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valence electrons, which are potentially free to move in the quantum well of the volume of the
solid which has embedded in it a 3D periodic potential due to the ions in the crystal lattice.
As a result, the discrete energy levels of the atoms in the solid merge into separate bands of
closely spaced energy levels, possibly with a substantial energy gap between bands.

The energy levels are populated with all the electrons in the solid starting with the lowest levels,
but with a maximum of two electrons per level (one with spin up and the other spin down) as
allowed by the Pauli exclusion principle. As one level is filled, remaining electrons go in the
next level, and so on. The energy of the highest filled level is called the Fermi energy, EF . Of
course, at finite temperature there is a spread of electron energies above and below the Fermi
energy, except when the band is completely filled and the energy band gap is too large. Where
EF is within a band determines whether the material is a conductor, semiconductor or insulator
(Fig. 1.5).

band
gap

EF

EF

vacuum

insulator semiconductor

hole

0

conductor (metal)

conduction

E

band

valence
band

EF EF

electron
jumps

Figure 1.5: Electronic band structure of insulators, semiconductors and conductors. Red
represents filled levels, and yellow represents vacant levels.

Materials with only one valence electron per atom typically half fill the valence band, whereas
materials with two valence electrons per atom fill the valence band. If the Fermi energy is in the
middle of the band then lots of electrons with energies near the Fermi energy are able to move to
nearby vacant levels in response to an electric field, as this takes only a tiny amount of energy,
and are therefore able to move freely throughout the solid, making the material a conductor.
Also, if there are exactly enough electrons to fill the valence band but the conduction band
overlaps it, then electrons can easily move to the conduction band and the material is also a
conductor.

In contrast if the Fermi energy is at the top of a band, i.e. the band is full and there are no
electrons in the next band, the material is an insulator. In insulators electrons are trapped in
their energy levels; it takes a lot of energy (the band gap energy) to jump to the next level.
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In semiconductors the band gap is sufficiently small that a few electrons are able to jump
the band gap as a result of thermal excitation and/or in response to an electric field. In the
process they leave behind vacant levels in the valence band or “holes” which act like positive
electrons and contribute to conduction, just as the electrons that jumped to the conduction
band, thereby causing the material to become semiconducting. Semiconductors used to make
electronic components are typically “doped” with impurity ions which introduce energy levels
within the band gap.

In a conductor, electrons move in response to an electric field, which in electrostatics is due to
other charges, and will keep moving until they reach the surface where they will redistribute
themselves until the electric field inside the conductor vanishes. Thus, in electrostatics the
entire conductor has the same potential, and its surface is an equipotential surface.

Early experiments involved rubbing glass with silk, or rubbing amber with fur. What is going
on here is that ruptured chemical bonds on the surface of one material leave a charge imbalance,
and when that material is in contact with a different material with a different charge imbalance
electrons will flow from one material to the other. It is the contact area that is important in
charge transfer, rubbing just increases the contact area. The consequent displacement of
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electrons from the glass to the silk leaves the glass positively charged, and from the fur to
the amber leaves the amber negatively charged. Touching the charged glass to an isolated
conductor would cause some electrons to flow from the conductor to the glass leaving the
conductor positively charged, whereas touching the conductor with charged amber would cause
some electrons to flow from the amber to the conductor leaving it negatively charged.

1.2 The electrostatic potential

The work done, W , in moving a particle of charge Q from point A to point B along an arbitrary
path in the electric field of charge q located at rq is

W = −
∫ B

A
QE(r) · dr = −

∫ B

A
Q

q �R
4πε0R2

· dr = −
∫ B

A
Q

[
−∇

(
q

4πε0R

)]
· dr (1.15)

where R = (r − rq), and we have used an identity for ∇R−1 (see Appendix B.1). Because(
∇R−1

)
· dr is an exact differential, W is independent of the path taken from A to B. Ap-

plying the principle of superposition for electric fields, we see that this would be true for any
distribution of charges, and so for any electrostatic field.

We have just shown that E is conservative in electrostatics. A conservative field is one for
which its curl is zero, or equivalently it’s line-integral around a closed loop is zero. Thus, we
may define an electrostatic potential difference

VB − VA =
W

Q
= −

∫ B

A
E(r) · dr. (1.16)

In general, we may define the electrostatic potential

V (r) = −
∫ r

r0
E(r′) · dr′ (1.17)

such that

E(r) = −∇V (r). (1.18)

The choice of the reference point r0, where the potential is defined to be zero, is arbitrary and
does not effect the value of E(r). It is often chosen to be “at infinity”. If we set r0 = ∞ we get
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the potential for point charge q at the origin, and for point charge q′ at location r′

V (r) =
q

4πε0r
, and V (r) =

q′

4πε0R
, (1.19)

respectively, where, as usual, R = r−r′. Applying the principle of superposition, the potentials
due to volume and surface charge distributions ρ(r) and σ(r) are

V (r) = 1

4πε0

∫
ρ(r′)
R

d3r′, V (r) = 1

4πε0

∮
σ(r′)
R

dS′. (1.20)

Imagine plotting equipotential surfaces – if V only depends on say x and y you could plot a
contour map and think of high values of V corresponding to hills, and low values as valleys.
Then E at a particular location points down the steepest gradient, and is perpendicular to the
contour lines. This also means that the electric field (and field lines) are normal to equipotential
surfaces.

1.2.1 Energy stored in the electric field

Consider charge, q1 located at r1. The work done to move a second charge q2 from infinity to
r2, where the potential (due to the other charge) is V2 ≡ V (r2), is

W = q2V2 = q2
q1

4πε0|r2 − r1|
= q1

q2
4πε0|r1 − r2|

= q1V1 =
1

2
[q2V2 + q1V1]. (1.21)

In general the work done to bring together a group of N charges is

W =
1

2

N∑
i=1

qiVi (1.22)

where Vi is the potential due to all charges except charge qi. By analogy, the work done to form
a continuous charge distribution is

W =
1

2

∫

all space
ρ(r)V (r) d3r. (1.23)
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This formula cannot be used for point charges as the potential would be infinite at the locations
of the charges. In nature this is not a problem as point charges (e.g. electrons) become fuzzy
due the wave nature of particles (Heisenberg uncertainly principle).

The energy is stored in the electric field, as we can find by rewriting Eq. 1.23 as

W =
1

2

∫

all space
ε0∇ · E(r)V (r) d3r, (1.24)

=
1

2

∫

all space
ε0∇ · [E(r)V (r)]d3r − 1

2

∫

all space
ε0E(r) ·∇V (r) d3r, (1.25)

=
1

2

∮

S at∞
ε0[E(r)V (r)] · dS +

1

2

∫

all space
ε0E(r) · E(r) d3r, (1.26)

=

∫

all space

ε0
2

E(r) · E(r) d3r, (1.27)

where we have used a product rule (Eq. I.8) to integrate by parts, and Gauss’ theorem (Eq. C.19)
to replace the volume integral of ∇ · (EV ) over all space by the surface integral of EV over the
closed surface at infinity — this is zero as EV ∼ r−3 while S ∼ r2 as r → ∞. Hence, we see
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that the energy density stored in an electric field is

uE(r) =
ε0
2

E(r) · E(r) =
ε0
2
[E(r)]2 . (1.28)

Summary of Chapter 1

Coulomb’s law

— Force on charge Q by charge q a distance R away is proportional to Qq/R2.

— Force on Q is due to the electric field E of q acting on Q, i.e. F = QE(rQ).

— Electric field is defined as the force per unit test charge (unit: V m−1).

— Electric field obeys the superposition principle.

— For a point source q (C) or volume charge density ρ(r′) (C m−3) at the source point r′ the
electric field at the field point r is

E(r) = q �R
4πε0R2

, E(r) = 1

4πε0

∫
ρ(r′)�R
R2

d3r′. (1.29)

where R = (r − r′).

— ε0 = 8.85418782× 10−12 F m−1 is the permittivity of free space.

Electric flux and Gauss’ law

— Electric flux through surface S is defined by ΦE =

∫

S
E · dS.

— Gauss’ law:
∮

S
E · dS =

1

ε0
Qencl, ∇ · E =

ρ

ε0
.

Electrostatic potential

— E is conservative in electrostatics and we may define an electrostatic potential

V (r) = −
∫ r

r0
E(r′) · dr′, E(r) = −∇V (r). (1.30)
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— The choice of reference point r0, where the potential is defined to be zero, is arbitrary and
does not effect E. It is often chosen to be “at infinity”

Energy stored in the electric field

— The work done to bring together N charges, or a continuous charge distribution ρ(r) is

W =
1

2

N∑
i=1

qiV (ri), W =
1

2

∫

all space
ρ(r)V (r) d3r. (1.31)

— The energy density stored in an electric field is uE(r) =
ε0
2

E(r) · E(r).

Exercises on Chapter 1

1–1 The surface of a non-conducting sphere of radius a centred on the origin has surface charge
density σ(a, θ, ϕ) = σ0 cos θ and is uniformly filled with charge of density ρ0. Find the
electric field at the origin.

1–2 A spherically symmetric charge distribution has the following charge density profile

ρ(r, θ, ϕ) =

{
ρ0 (r < a)

ρ0(r/a)
−β (r ≥ a)

(1.32)

where β is a constant (2 < β < 3). Find the electric field and electrostatic potential
everywhere.

1–3 The electric field is given by E(r) = E0 cos(z/z0) exp(−r/r0)�r, where z0 and r0 are con-
stants. Find the charge density.

1–4 If we had a point charge q at the origin we might choose the reference point to be some
point at an arbitrary distance r0 (usually infinity) from the origin. Then if we wish to
find V (r, θ, ϕ) it would be convenient to have the reference point at r0 = (r0, θ, ϕ). Al-
though obtaining the potential in this case is trivial, and one would usually just write it
down, obtain the potential by carrying out explicitly the line integral for an appropriately
parameterised curve.

1–5 The electric field is given by E(r) = E0 cos(z/z0) exp(−r/r0)�r, where z0 and r0 are con-
stants. Check whether or not the electric field is conservative. If it is conservative find
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the potential, if it isn’t suggest how it may be possible to find the electrostatic part of the
electric field (if present) and the corresponding electrostatic potential V (r).

1–6 How much work must be done to assemble: (a) a physical dipole made of charge +q and
charge −q separated by distance d, (b) a physical quadrupole made up of four charges +q,
−q, +q and −q on successive corners of a square of side d, and (c) a physical quadrupole
made up of four charges −q, +q, +q and −q equally spaced apart by distance d on a
straight line (see diagram below).

+
(a) (c)

+ +

1 2 3 4

4

1

3

2

(b)

d

+

+

d

d

1–7 (a) Use Gauss’ law in integral form to find the electric field due to charge density ρ(r) =
ρ0 exp(−r/r0), and (b) check that you obtain the original charge density by taking the
divergence of the electric field you find.

1–8 An isolated conducting sphere of radius a has net charge Q. Find how much work was
done to charge the sphere using two different methods: (a) from the charge on the sphere
and its potential, (b) by finding the energy stored in the electric field.
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2 Poisson's and Laplace's equations

Learning objectives

— To be able to derive Poisson’s equation from Gauss’ law, and know that Laplace’s equation
is a special case of Poisson’s equation which applies in charge-free regions.

— To know that the method of images for solving Poisson’s equation works by substitut-
ing appropriate image charges for conducting boundaries, and to be able to obtain the
potential for simple cases where there is plane, spherical and cylindrical symmetry.

— To be able to solve Laplace’s equation in Cartesian coordinates in 3D for the potential
inside a rectangular box where the potential or surface charge density is specified on all
surfaces, and also for the case where the potential only depends on two of the coordinates.

— To be able to solve Laplace’s equation in spherical coordinates inside and outside a spher-
ical surface where the potential or surface charge density is specified, using the Legendre
polynomials in the case of no azimuthal dependence of the boundary conditions, and using
spherical harmonics for the general case.

— To learn how to use a finite-difference numerical method for solving Laplace’s equation.

2.1 Poisson's equation

Named after Simon-Denis Poisson (1781–1840), Poisson’s equation is obtained from Gauss’ law
by taking the divergence of E = −∇V ,

∇ · (−∇V ) =
ρ(r)
ε0

(2.1)

giving Poisson’s equation

∇2V(r) = −ρ(r)
ε0

. (2.2)

We already know its solution for the boundary condition V (r → ∞) = 0, i.e. Eq. 1.20

V (r) = 1

4πε0

∫
ρ(r′)
|r − r′|d

3r′. (2.3)
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As an aside, we can use Poisson’s equation and the potential due to a point charge to check
an identity involving the 3D Dirac delta function δ3(r) which is described in Appendix C.7. A
point charge q located at rq is represented by charge density ρ(r) = q δ3(r − rq). But for this
case the potential is given by Eq. 1.19, so

∇2

(
q

4πε0|r − rq|

)
= − q

ε0
δ3(r − rq), (2.4)

∴ ∇2 1

|r − rq|
= −4πδ3(r − rq), (2.5)

in agreement with Eq. C.38.

Often the boundary conditions differ from V (r → ∞, θ, ϕ) = 0, and we will need to solve
Poisson’s equation or Laplace’s equation taking account of boundary conditions determined by
the problem. The usual types of boundary condition are Dirichlet boundary conditions for which
V is specified at a boundary (e.g. a system of conductors held at various known potentials),
and Neumann boundary conditions for which ∂V /∂n|boundary is specified at a boundary. Note
that ∂V /∂n represents the rate of increase of V with distance in the direction normal to the
surface, and that E · �n = −∂V /∂n. From Gauss’ law, this is equivalent to specifying the surface
charge density at the boundary surface. In Appendix E it is shown that the solution of Poisson’s
equation is unique if V is specified anywhere on the boundaries, or is unique up to an additive
constant potential if E · �n is specified on the boundaries.

2.2 Method of images

2.2.1 Point charge above a grounded plane conductor

The method of images is a powerful way of solving Poisson’s equation where the symmetry of
the problem permits. The simplest case is that of a charge −q, say, some distance away from a
grounded plane conductor as shown in Fig. 2.1(a). If we have two equal but opposite charges in
empty space then the potential in the plane midway between the charges will be zero (Fig. 2.1b),
giving the same electric field above that plane as above the grounded conductor with the single
charge −q. It is as if at the mirror-image point below the conducting plane there is another
charge, the image charge, qi, which in the case a plane conductor is the same magnitude but
opposite sign to the real charge.
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Figure 2.1: (a) Point charge −q above a grounded plane conductor showing field lines (blue
curves with arrows), equipotential contours (red curves) and the location of the image charge.
(b) Field lines and equipotentials of two real charges −q and +q in the same locations as the
real charge and image charge in part (a).

As an example, consider the case of a grounded conductor in the xy plane with charge −q

located at (0, 0,+z0). The potential and electric field for z > 0 can be calculated as the sum of
those due to the real charge −q and image charge +q at (0, 0,−z0),
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V (x, y, z > 0) =
−q

4πε0
√

x2 + y2 + (z − z0)2
+

+q

4πε0
√

x2 + y2 + (z + z0)2
, (2.6)

E(x, y, z > 0) =
−q

4πε0

x�x + y�y + (z − z0)�z
[x2 + y2 + (z − z0)2]3/2

+
+q

4πε0

x�x + y�y + (z + z0)�z
[x2 + y2 + (z + z0)2]3/2

. (2.7)

The resulting field lines and equipotential surfaces (equipotentials for short) are plotted in
Fig. 2.1(a). Notice that at the surface of the conductor the electric field lines (and E) are
normal to the surface. The reason for this is that electric field lines start or end on charges,
and that if E was not normal to the surface at some location, the charges on the surface
would experience sideways forces redistributing them across the surface until E became normal
everywhere on the surface.

Surface charge will be present on the conducting surface, as we can easily show using Gauss’ law.
Imagine a Gaussian pillbox similar to that in Fig. 1.4(a) but with the important difference that
the plane is the surface of a conductor and the volume below the plane (where the lower part
of the pillbox is) is inside the conductor. Because in electrostatics E = 0 inside a conductor,
there is only a contribution to

∮
E · dS from the upper surface of the pillbox, and the surface

charge density on a conductor must therefore be in general

σ(r) = ε0E · �n = ε0(−∇V ) · �n = −ε0
∂V

∂n
, (2.8)

where ∂V /∂n is the directional derivative normal to the surface and is defined as (∇V ) · �n.

Returning to the example above, at the surface z = 0, and so the electric field from Eq. 2.7
becomes

E(x, y, 0) =
q

2πε0

z0�z
[x2 + y2 + z20 ]

3/2
, (2.9)

and hence the surface charge density on the conductor is

σ(x, y, 0) =
q

2π

z0

(x2 + y2 + z20)
3/2

=
q

2π

z0

(s2 + z20)
3/2

≡ σ(s, z0) (2.10)

where s = (x2 + y2)1/2. Notice that the induced surface charge density in this case is positive
everywhere, and this is because the charge near the conductor which induced the surface charge
is negative.
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We can integrate the surface charge density over the conductor to find the total induced surface
charge,

qs =

∫ ∞

0
2πs σ(s, z0)ds =

q

2π

∫ ∞

0
2πs

z0

(s2 + z20)
3/2

dR = −q

[
z0√

s2 + z20

]∞

0

= +q.

(2.11)

Finally, the force between charge −q and the grounded plane must be the same as would exist
between the real charge −q and a real charge of magnitude equal to qi (in this case +q) at the
image charge’s location

F =
1

4πε0

qqi
R2

qqi

= − 1

4πε0

q2

(2z0)2
(2.12)

where Rqqi is the distance between the image charge and the real charge, in this case Rqqi = 2z0.

2.2.2 Point charge outside grounded spherical conductor

The method of images may be used to find the potential due to a point charge q outside a
grounded conducting sphere of radius a (as in Fig. 2.2a) by replacing the sphere by a fictitious
image charge, qi, inside the conductor. From symmetry arguments, the image charge qi must
be on the line from sphere’s center to charge q, and the sum of the potentials due to the real
charge and image charge must be zero on the surface of the sphere, e.g. at point P,

V (r) = 1

4πε0

(q
d
+

qi
b

)
, (2.13)

=
1

4πε0


 q√

a2 + z2q − 2azq cos θ
+

qi√
a2 + z2i − 2azi cos θ


 , (2.14)

=
1

4πε0

(
q/a√

1 + (zq/a)2 − 2(zq/a) cos θ
+

qi/zi√
1 + (a/zi)2 − 2(a/zi) cos θ

)
. (2.15)

By inspection, the boundary condition V = 0 on the surface of the sphere is satisfied for any
θ-value by q/a = −q1/zi and zq/a = a/zi, from which we obtain the location and magnitude of
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the image charge

zi = a2/zq, qi = −(a/zq)q. (2.16)

The resulting field lines and equipotentials are plotted in Fig. 2.2(b).

V

z

q

O

P

a

b

θ r

d

q

(a)

i

z i

zq

=0

Figure 2.2: Point charge outside grounded spherical conductor showing (a) position of image
charge, and (b) field lines and equipotentials.
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2.2.3 Line charge outside grounded cylindrical conductor

We previously used Gauss’ law to find E due to an infinite line charge (Fig. 1.4b, and Eq. 1.14)

E =
λ

2πρε0
�ρ. (2.17)

From the electric field we find the potential

V (r) = −
∫ r

r0
E(r′) · dr′ (2.18)

where r0 is the reference point where the potential is defined to be 0. Because of the cylindrical
symmetry about the line charge, we can define the reference “point” to be anywhere on a
concentric cylinder of arbitrary cylindrical radius ρ0, and so the potential is

V (r) = −
∫ ρ

ρ0

λ

2πρ ε0
�ρ · (�ρ dρ) = − λ

2πε0

∫ ρ

ρ0

dρ

ρ
=

λ

2πε0
ln

(
ρ0
ρ

)
. (2.19)

O

line charge

λ

d

P

−λ

a

φ

line
charge

i

image

d

Figure 2.3: Line charge outside grounded cylindrical conductor showing position of image line
charge, and geometry for finding the potential.

Next consider the potential due to two parallel line charges λ1 and λ2. Suppose that for line
charge 1 the reference “point” is arbitrarily set at cylindrical radius ρ

(1)
0 away from it, and

for line charge 2 the reference “point” is arbitrarily set at cylindrical radius ρ
(2)
0 away from

it. Clearly the two reference “points” can not coincide, and so one should ask whether or not
this matters, but as we shall see it doesn’t. Let’s just go ahead and apply the principle of
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superposition and write down the potential due to the two line charges

V (r) =
λ1

2πε0
ln
(
ρ
(1)
0

ρ1

)
+

λ2

2πε0
ln

(
ρ
(2)
0

ρ2

)
(2.20)

=
1

2πε0

(
λ1 ln ρ(1)0 + λ2 ln ρ(2)0

)
− 1

2πε0
(λ1 ln ρ1 + λ2 ln ρ2) (2.21)

= V0 − 1

2πε0
(λ1 ln ρ1 + λ2 ln ρ2) . (2.22)

where ρ1 is the distance of line charge 1 to the field point r, and ρ2 is the distance of line
charge 2 to the field point. Note that in Eq. 2.21 the first term involves only constants, the
constant line charge densities λ1 and λ2 and the arbitrary constants ρ(1)0 and ρ

(2)
0 , and so may

be written as an arbitrary constant potential V0 whose value will not affect the electric field or
the potential difference between two points.

Equipotential contours and field lines are plotted in Fig. 2.4(a) for the the case of two parallel
line charges with equal but opposite line charge densities, +λ and −λ, for which

V (r) = V0 − λ

2πε0
ln
(
ρ1
ρ2

)
. (2.23)

Notice that the equipotential surfaces for this case are of circular cross section. This tells us
immediately that for the case of a line charge and a parallel grounded conducting cylinder we
can use the method of images with an equal but opposite image line charge inside the conducting
cylinder and parallel to the real line charge.

In Fig. 2.3 The line charge density λ (C m−1) is parallel to the conducting cylinder’s axis and
distance d from it. We have just seen that we can use an image line charge −λ which from
symmetry must be parallel to to and in the plane containing the cylinder axis and the real line
charge λ. One can show (Exercise 2—3) that the cylinder’s surface is an equipotential if

di = a2/d. (2.24)

Equipotential contours and electric field lines are shown in Fig. 2.4(b). The result above may
also be applied to the case of two parallel conducting cylinders, e.g. a twin wire transmission
line having equal but opposite charges (Fig. 2.4c) in order to work out the capacitance per unit
length (Exercise 2–4); the capacitance of two conductors with potential difference V and having
charge +q on one and −q on the other is C = q/V and will be discussed further in Chapter 4.
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Figure 2.4: Electric field lines and equipotentials around: (a) two parallel line charges +λ
and −λ, (b) one line charge +λ and a parallel conducting cylinder, (c) two parallel conducting
cylinders with equal and opposite charge. In (b) and (c) the dots show the positions of image
charges.
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2.3 Laplace's Equation

Named after Pierre-Simon, Marquis de Laplace (1749–1827), Laplace’s equation is simply Pois-
son’s equation for ρ(r) = 0, and in the three main coordinate systems is given by

Cartesian: ∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0. (2.25)

Cylindrical: 1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+

1

ρ2
∂2V

∂ϕ2
+

∂2V

∂z2
= 0. (2.26)

Spherical: V
1

r2
∂

∂r

(
r2

∂V

∂r

)
+

1

r2 sin θ
∂

∂θ

(
sin θ∂V

∂θ

)
+

1

r2 sin2 θ
∂2V

∂ϕ2
= 0. (2.27)

It must be solved together with boundary conditions appropriate to the problem.

2.3.1 3D Laplace's equation in Cartesian coordinates

Using the method of separation of variables we will find the general solution for the potential
inside a rectangular box where the potential is specified to be zero on all but one of its surfaces.
The particular solution can then be obtained by applying the boundary condition that the
potential must be that specified on the surface which has V ̸= 0. Having solved for this case,
we can do the same for V being non-zero on each of the other five sides, and then use the principle
of superposition to get the full solution. The geometry to be used for solving Laplace’s equation
is shown in Fig. 2.5(a) together with a cartoon (Fig. 2.5b) indicating how the full solution may
be built up from six solutions, each being for when the potential is specified on one of the
surfaces and is zero on the other five.

(a) (b)

b
ya

x

z

c

Figure 2.5: (a) Geometry for solving Laplace’s equation in 3D in Cartesian coordinates for the
field inside a rectangular box where the potential is specified on the six surfaces. (b) A cartoon
indicating how the full solution may be built up from six solutions.

Using the method of separation of variables we try to find a solution of the form V (x, y, z) =
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X(x)Y (y)Z(z) and substitute this into Laplace’s equation, which becomes

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
X(x)Y (y)Z(z) = 0, (2.28)

d2X(x)

dx2
Y (y)Z(z) +X(x)

d2Y (y)

dy2
Z(z) +X(x)Y (y)

d2Z(z)

dz2
= 0, (2.29)

∴ X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
+

Z ′′(z)

Z(z)
= 0. (2.30)

Note that the 1st term depends only on x, the 2nd only on y and the 3rd only on z. The
only way that the equation can hold as x, y or z are varied independently is if each term is a
constant, and the three separation constants add to zero,

X ′′(x)

X(x)
= S1,

Y ′′(y)

Y (y)
= S2,

Z ′′(z)

Z(z)
= S3, where S1 + S2 + S3 = 0. (2.31)

At least one of the three separation constants must be positive and at least one must be negative.

For our hollow rectangular box (Fig. 2.5) let’s choose the surface with non-zero potential to be
that at z = c, on which the potential is specified to be V (x, y, c) = V0(x, y). It makes sense to
have S1 and S2 negative so that the equations in x and in y will have periodic solutions, making
it easy to satisfy their boundary conditions. Then the three equations to solve are

X ′′(x) = −α2X(x), Y ′′(x) = −β2Y (y), Z ′′(x) = γ2Z(z), (2.32)

where γ2 = α2 + β2. These equations have well-known solutions

X(x) = a1 sin(αx) + a2 cos(αx), (2.33)
Y (y) = b1 sin(βy) + b2 cos(βy), (2.34)
Z(z) = c1 exp(γz) + c2 exp(−γz), (2.35)

as can easily be checked by substitution. For Eqs. 2.33 and 2.34 the boundary conditions, i.e.
V (0, y, z) = V (a, y, z) = 0 and V (x, 0, z) = V (x, b, z) = 0, require a2 = b2 = 0 and that

α = αk ≡ kπ

a
, β = βl ≡

lπ

b
, and so γ2 = γ2kl ≡ α2

k + β2
l , (2.36)

where k and l are integers. For Eq. 2.35 the boundary condition V (x, y, 0) = 0 requires c2 = −c1,
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and so Z(z) ∝ (eγz − e−γz)/2 = sinh(γz); actually, we could equally well have written the
general solution of Eq. 2.35 in terms of the hyperbolic sine and cosine functions (Fig. 2.6), i.e.

Z(z) = d1 sinh(γz) + d2 cosh(γz) = d1
eγz − e−γz

2
+ d2

eγz + e−γz

2
. (2.37)

A useful property of the hyperbolic sine and cosine functions is that

d

dz
sinh(z) = cosh(z) and d

dz
cosh(z) = sinh(z). (2.38)

Then, the general solution to Laplace’s Equation for the case where V (x, y, c) ̸= 0 with the
potential on all other surfaces being zero is

V (x, y, z) =

∞∑
k=1

∞∑
l=1

Akl sinh (γkl z) sin (αk x) sin (βl y) . (2.39)
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Figure 2.6: Hyperbolic sine and cosine functions compared with the positive and negative
exponentials.

The coefficients Akl can be obtained using the boundary condition at z = c, i.e. by solving

∞∑
k=1

∞∑
l=1

Akl sinh (γkl c) sin (αk x) sin (βl y) = V0(x, y). (2.40)

The easiest way to solve this is by recognising that the left hand side of Eq. 2.40 is actually a
2D Fourier sine series, i.e.

V0(x, y) =
∞∑
k=1

∞∑
l=1

Bkl sin
(
kπx

a

)
sin

(
lπy

b

)
, (2.41)

for which the Fourier series coefficients are

Bkl =
4

ab

∫ a

0

∫ b

0
V0 (x, y) sin

(
kπx

a

)
sin

(
lπy

b

)
dx dy. (2.42)

Hence

Akl =
Bkl

sinh (γkl c)
=

4

a b sinh (γkl c)

∫ a

0

∫ b

0
V0 (x, y) sin (αk x) sin (βl y) dx dy. (2.43)
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2.3.2 2D Laplace's Equation in Cartesian Coordinates

If there is no dependence on z, we need only to solve Laplace’s equation in 2D for the region
inside a rectangular cross-section pipe. Again the method of separation of variables can be used
together with the principle of superposition to break down a problem with V ̸= 0 on all four
sides to 4 simpler problems with V ̸= 0 only on one side. We need to decide after examining
the problem whether it is sensible to have the periodic solution for X(x) or for Y (y). Keep the
negative sign for the equation for X(x) if the boundary conditions suggest it would be simpler
to solve if we have a periodic solution in x, e.g. if V=0 at both boundaries in x.

The general solutions are then of the form

V (x, y) = (A cos(kx) +B sin(kx))
(
Ceky +De−ky

)
, (2.44)

or equivalently

V (x, y) = (A cos(kx) +B sin(kx))
[
C ′ cosh(ky) +D′ sinh(ky)

]
. (2.45)

Finally, the boundary conditions are applied, as for the 3D case, to find allowed values of k and
the coefficients in the Fourier series for the potential on the side where V ̸= 0, and so the full
solution. For example, inside the rectangular region corresponding to 0 < x < a and 0 < y < b

with V (x, b) = V0(x), and V=0 on the other 3 sides,

V (x, y) =

∞∑
n=0

An sin
(nπ

a
x
)
sinh

(nπ
a
y
)
, (2.46)

and the boundary condition at y = b determines the coefficients An in this Fourier sine series

An =
2

a

1

sinh
(
nπ
a b

)
∫ a

0
V0(x) sin

(nπ
a
x
)
dx. (2.47)

As an example we shall consider the case where a = b = 1 m, V (x, b) = 1 V and V = 0 on the
other three sides. Then,

An =
2

sinh (nπ)

∫ 1

0
sin (nπx) dx. ∴ An =

4

nπ sinh (nπ) (for odd n). (2.48)
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Using Eqs. 2.46 and 2.48, and summing terms up to n = 19 we obtain the solution contoured
in Fig. 2.7.

Figure 2.7: Contours of V for the the result using Eqs. 2.46 and 2.48, and summing terms up
to n = 19.
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We can obtain the electric field from the potential in the usual way

Ex = −∂V

∂x
= −4

∑
n, odd

1

sinh (nπ) cos(nπx) sinh(nπy), (2.49)

Ey = −∂V

∂y
= −4

∑
n, odd

1

sinh (nπ) sin(nπx) cosh(nπy). (2.50)

Another example of solving Laplace’s equation in 2D is given in Exercise 2–5.

2.4 Laplace's equation in spherical coordinates

In spherical coordinates Laplace’s equation is

1

r2
∂

∂r

(
r2

∂V

∂r

)
+

1

r2 sin θ
∂

∂θ

(
sin θ∂V

∂θ

)
+

1

r2 sin2 θ
∂2V

∂ϕ2
= 0. (2.51)

2.4.1 Solution for no azimuthal dependence

Here we will first consider the case of azimuthal symmetry (∂V /∂ϕ = 0) and look for solutions
of the form V (r, θ) = R(r)Θ(θ). Then

1

R(r)

d

dr

(
r2

dR(r)

dr

)
= − 1

Θ(θ) sin θ
d

dθ

(
sin θdΘ(θ)

dθ

)
. (2.52)

The left hand side depends only on r, and the right hand side depends only on θ. Each side
must equal the same separation constant C, and so we have two ordinary differential equations

1

R(r)

d

dr

(
r2

dR(r)

dr

)
= C, (2.53)

− 1

Θ(θ) sin θ
d

dθ

(
sin θdΘ(θ)

dθ

)
= C. (2.54)

We will first tackle the radial equation (Eq. 2.53), and to simplify later working (we’ll see
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shortly) set C ≡ α(α+ 1) and write it as

d

dr

(
r2

dR(r)

dr

)
= α(α+ 1)R(r). (2.55)

This equation has general solution

R(r) = Arα +Br−(α+1) (2.56)

as we can easily check by substitution.

The angular equation (Eq. 2.54) can be re-written in terms of cos θ,

d

d(cos θ)

[
(1− cos2 θ) dΘ

d(cos θ)

]
+ α(α+ 1)Θ = 0, (2.57)

which is known as Legendre’s equation. This equation can be solved by a power series method,
and the series converges for −1 ≤ cos θ ≤ 1 for integer values of α = ℓ ≥ 0. Since Legendre’s
equation is 2nd order, there are two linearly-independent solutions for each value of α, of which
one is infinite for cos θ = ±1. The finite solutions are are called “Legendre polynomials”,
Pℓ(cos θ), and the first 6 Legendre polynomials are

P0(cos θ) = 1, (2.58)
P1(cos θ) = cos θ, (2.59)

P2(cos θ) =
1

2
(3 cos2 θ − 1), (2.60)

P3(cos θ) =
1

2
(5 cos3 θ − 3 cos θ), (2.61)

P4(cos θ) =
1

8
(34 cos4 θ − 30 cos2 θ + 3), (2.62)

P5(cos θ) =
1

8
(63 cos5 θ − 70 cos3 θ + 15 cos θ), (2.63)

and are plotted in Fig. 2.8. Notice that Pℓ(cos θ) are normalised to 1 at cos θ = 1, and that
Pℓ(cos θ) is an even function if ℓ is even, and an odd function if ℓ is odd.

The Legendre polynomials form a complete orthogonal set

∫ 1

−1
Pℓ′(cos θ)Pℓ(cos θ)d cos θ =

2

2ℓ+ 1
δ ℓ ℓ′ , (2.64)
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Figure 2.8: The first 6 Legendre polynomials.

where δij is the Kronecker delta which takes the value 1 if i = j and 0 if i ̸= j. Note the
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similarity to the sine and cosine functions in Fourier series; this enables us to represent any
function f(x) over the range −1 ≤ x ≤ +1 as a sum of Legendre polynomials

f(x) =

∞∑
ℓ=0

CℓPℓ(x), where Cℓ =
2ℓ+ 1

2

∫ 1

−1
f(x)Pℓ(x)dx. (2.65)

If f(x) is an even (odd) function, only terms with even (odd) ℓ will be non-zero.

The General solution of Laplace’s equation with axial symmetry is then

V (r, θ) =
∞∑
ℓ=0

(Aℓ r
ℓ +Bℓ r

−(ℓ+1))Pℓ(cos θ). (2.66)

The coefficients in the series are obtained from the boundary conditions. If the region inside
the boundaries contains r = 0 then all Bℓ will be zero, but if the region inside the boundaries
contains r = ∞ then (usually) all Aℓ will be zero. At the boundary (often a spherical surface
with radius r = a) where the potential is specified, we can use the orthogonality of Pℓ(cos θ)
to find the coefficients. Hence, for the region inside a spherical surface of radius r = a, where
V (a, cos θ) = V0(cos θ), we have

Aℓ a
ℓ =

2ℓ+ 1

2

∫ 1

−1
V0(cos θ)Pℓ(cos θ)d cos θ. (2.67)

Often it is simpler to re-write V0(cos θ) as a series of Legendre polynomials and obtain Aℓ simply
by comparing it with V (a, cos θ) in Eq. 2.66. An example is given in Exercise 1–7.

2.4.2 Solution including azimuthal dependence

In this case the potential depends on both θ and ϕ at a spherical boundary. We will represent
the angular dependence in terms of spherical harmonics

Yℓm(θ, ϕ) =

√
(2ℓ+ 1)

4π

(ℓ− 1)!

(ℓ+ 1)!
Pm
ℓ (cos θ)eimϕ, (2.68)
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where

Pm
ℓ (x) = (−1)m(1− x2)m/2 dm

dxm
Pℓ(x) (2.69)

are associated Legendre functions. The first 9 spherical harmonics are given in Eq. 2.70, and
the first 16 spherical harmonics are contoured in Fig. 2.9.

Y0,0 =
1√
4π

.

Y1,0 =

√
3

4π
cos θ, Y1,±1 = ∓

√
3

8π
sin θe±iϕ. (2.70)

Y2,0 =

√
5

16π
(3 cos2 θ − 1), Y2,±1 = ∓

√
15

8π
cos θ sin θ e±iϕ, Y2,±2 =

√
15

32π
sin2 θ e±2iϕ.

Figure 2.9: The first 16 spherical harmonics. Note: these polar plots are not equal-area
projections.

The spherical harmonics form a complete orthonormal set

∫ 2π

0
dϕ

∫ π

0
dθ sin θ Y ∗

ℓ,m(θ, ϕ)Yℓ′,m′(θ, ϕ) = δℓ,ℓ′δmm′ , (2.71)

and since we are integrating over all θ and ϕ we are actually integrating over all solid angles,
i.e.

∮
dΩY ∗

ℓ,m(θ, ϕ)Yℓ′,m′(θ, ϕ) = δℓ,ℓ′δmm′ . (2.72)
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Using spherical harmonics, the general solution of Laplace’s equation in spherical coordinates
where there is azimuthal dependence is a straightforward extension of the case with no depen-
dence on ϕ,

V (r, θ, ϕ) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

(Aℓ,m rℓ +Bℓ,m r−(ℓ+1))Yℓ,m(θ, ϕ). (2.73)

Suppose, then that there is a spherical surface of radius a centred on the origin on which the
potential is specified as V (a, θ, ϕ) = V0(θ, ϕ). If we wish to find the potential outside the sphere,
to keep V finite all Aℓ,m must be zero in Eq. 2.73, and using Eq. 2.72 together with the boundary
condition we obtain

V (r ≥ a, θ, ϕ) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

Bℓ,m r−(ℓ+1)Yℓ,m(θ, ϕ), (2.74)

V0(θ, ϕ) =

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

Bℓ′,m′ a−(ℓ′+1)Yℓ′,m′(θ, ϕ), (2.75)
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∮
dΩY ∗

ℓ,m(θ, ϕ)V0(θ, ϕ) =

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

Bℓ′,m′ a−(ℓ′+1)

∮
dΩY ∗

ℓ,m(θ, ϕ)Yℓ′,m′(θ, ϕ), (2.76)

∴
∮

dΩY ∗
ℓ,m(θ, ϕ)V0(θ, ϕ) =

∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

Bℓ′,m′ a−(ℓ′+1)δℓ,ℓ′δmm′ . (2.77)

∴ Bℓ,m = a(ℓ+1)

∮
dΩY ∗

ℓ,m(θ, ϕ)V0(θ, ϕ). (2.78)

Similarly, inside the sphere

V (r ≤ a, θ, ϕ) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

Aℓ,m rℓYℓ,m(θ, ϕ), (2.79)

Aℓ,m = a−ℓ

∮
dΩY ∗

ℓ,m(θ, ϕ)V0(θ, ϕ). (2.80)

As an example suppose the potential on the surface of a sphere is

V (a, θ, ϕ) = V1 sin θ(1 + 2 cos θ) sinϕ, (2.81)

and we need to find the potential outside. This relatively simple boundary condition can be
re-written in terms of spherical harmonics as follows

V (a, θ, ϕ) = V1

[√
2π

3
[Y1,1(θ, ϕ)− Y1,−1(θ, ϕ)] + 2

√
2π

15
[Y2,1(θ, ϕ)− Y2,−1(θ, ϕ)]

]
. (2.82)

Hence,

B1,1 = V1

√
2π

3
a2, B1,1 = −V1

√
2π

3
a2, B2,1 = V1

√
2π

15
a3, and B2,1 = −V1

√
2π

15
a3,
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giving

V (r, θ, ϕ) = V1
a2

r2

√
2π

3
[Y1,1(θ, ϕ)− Y1,−1(θ, ϕ)] + 2V1

a3

r3

√
2π

15
[Y121(θ, ϕ)− Y2,−1(θ, ϕ)] ,

= V1
a2

r2
sin θ cosϕ+ 2V1

a3

r3
sin θ cos θ cosϕ. (2.83)

2.5 Finite-difference method for Laplace's equation

Numerical finite-difference methods may be used when analytic methods are impractical. They
can be motivated by the equation of heat conduction in solids, which becomes Laplace’s equation
for heat-source free regions in equilibrium.

The equation of heat conduction in solids in a region where there are no heat sources is

∇2T =
1

α

∂ T

∂t
(2.84)

where T (r, t) is the temperature and α is the thermal diffusivity. If the boundaries are held at
fixed temperatures then for any initial temperature distribution the temperature distribution
evolves to a steady state at t → ∞ at which time

∇2T = 0, (2.85)

which is Laplace’s equation.

By analogy, in electrostatics we can solve Laplace’s equation by numerically “evolving” an initial
potential in “time” to t → ∞ using

∂V

∂t
= ∇2V, (2.86)

or, in practice, until V (r) stops changing. The potential will then have “relaxed” to a steady-
state and obey Laplace’s equation. This equation does not represent the time-dependence of
V (r) — we are still discussing electrostatics !
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We shall solve Eq. 2.86 numerically by taking “time” steps δt

V (r, t+ δt) = V (r, t) +
[
∇2V (r, t)

]
δt, (2.87)

calculating V (r, t) only at points on a 3D rectangular grid with spacing L and a “time” grid with
spacing δt. We shall obtain ∇2V by numerical differentiation, using the shorthand notation

V n
i,j,k ≡ V (x = iL, y = jL, z = kL, t = nδt), (2.88)

and carrying out numerical differentiation with respect to x

∂V

∂x

����
(x+L/2,y,z,t)

≈
V n
i+1,j,k − V n

i,j,k

L
,

∂V

∂x

����
(x−L/2,y,z,t)

≈
V n
i,j,k − V n

i−1,j,k

L
, (2.89)

∴ ∂2V

∂x2
(x, y, z, t) ≈

V n
i+1,j,k + V n

i−1,j,k − 2V n
i,j,k

L2
. (2.90)

Hence, we obtain the Laplacian of V in 2D and in 3D,
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[
∇2V

]n
i,j

≈ 1

L2

(
V n
i+1,,j + V n

i−1,j + V n
i,j+1 + V n

i,j−1 − 4V n
i,j

)
, (2.91)

[
∇2V

]n
i,j,k

≈ 1

L2

(
V n
i+1,j,k + V n

i−1,j,k + V n
i,j+1,k + V n

i,j−1,k + V n
i,j,k+1 + V n

i,j,k−1 − 6V n
i,j,k

)
.

Then a suitable iteration scheme in 2D would be

V n+1
i,j = V n

i,j +
[
∇2V

]n
i,j

δt. (2.92)

∴ V n+1
i,j = V n

i,j +
1

L2

[
(V n

i+1,j + V n
i−1,j + V n

i,j+1 + V n
i,j−1)− 4V n

i,j

]
δt. (2.93)

The “time step” δt is arbitrary, and so we can choose whatever we like for it. The method is
simplified by setting δt = L2/4 (for 2D) or δt = L2/6 (for 3D), and so in 2D and 3D problems
the iteration procedure is simply

V n+1
i,j =

1

4

(
V n
i+1,j + V n

i−1,j + V n
i,j+1 + V n

i,j−1

)
, (2.94)

V n+1
i,j,k =

1

6

(
V n
i+1,j,k + V n

i−1,j,k + V n
i,j+1,k + V n

i,j−1,k + V n
i,j,k+1 + V n

i,j,k−1

)
. (2.95)

Thus, for each iteration we replace the potential on each non-boundary grid point by the average
of the potentials at its nearest neighbours.

As an example, we solve the 2D problem of the potential inside a pipe of square cross section
(1 m by 1 m) where the potential is specified on each of the four sides: V (0, y, z)=0, V (1, y, z)=0,
V (x, 0, z)=0 and V (x, 1, z)=1 V. This is the same problem we used as an example for analytic
solution (Fig. 2.7). We choose a grid spacing L=0.01 m, i.e. 100×100 cells (101×101 grid
points), and after each iteration reset the outer grid points to the potentials on the boundary
surfaces. At the two corners where V changes discontinuously from V=0 to V=1 V we set the
potential to be the average value, i.e. V (0, 1, z)=V (1, 1, z)=0.5 V. The result is contoured in
Fig. 2.10 after 100, 1000, and 10,000 iterations.

Since the information on the potential can propagate from one boundary to another at a rate no
faster than one cell per iteration, the number of iterations required to approach a steady-state
must be much larger than the maximum number of grid points in any coordinate direction (101
in this example). In the present example we see that the number of iterations required, ∼10,000,
exceeds this by a factor of 100. Because of the large number of iterations required, very efficient
codes are needed, and should use array manipulation methods available in modern programming
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Figure 2.10: Numerical solution of Laplace’s equation in 2D for the boundary condition being
V = 0 on all sides of the square except for the side at y = 1 where V = 1. Contour levels are
V = 0.1, 0.2, . . . , 0.9.

languages, rather than using do loops, when computing the average potential around each grid
point, and when resetting the boundary potential. The code used in this example was written
in IDL and is given in Appendix G.

Summary of Chapter 2

Poisson’s and Laplace’s equations

— Can be solved numerically, by the method of images in some cases, or analytically using
Fourier methods if boundary conditions permit.

Laplace’s equation in Cartesian coordinates

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
V (x, y, z) = 0. (2.96)

— In 2D, inside rectangular region corresponding to 0 < x < a and 0 < y < b with V (x, b) =

V0(x), and V=0 on the other 3 sides,

V (x, y) =

∞∑
n=0

An sin
(nπ

a
x
)
sinh

(nπ
a
y
)
. (2.97)
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— The boundary condition at y = b determines the coefficients An in this Fourier sine series

An =
2

a

1

sinh
(
nπ
a b

)
∫ a

0
V0(x) sin

(nπ
a
x
)
dx. (2.98)

— In 3D, inside rectangular region corresponding to 0<x<a, 0<y < b and 0<z < c with
V (x, y, c) = V0(x, y), and V=0 on the other 5 sides

V (x, y, z) =

∞∑
k=1

∞∑
l=1

Akl sinh (γkl z) sin (αk x) sin (βl y) , (2.99)

αk ≡ kπ

a
, βl ≡

lπ

b
and γ2kl ≡ α2

k + β2
l . (2.100)

— The boundary condition at z = c determines the coefficients Akl in this 2D Fourier sine
series

Akl =
4

a b sinh (γkl c)

∫ a

0

∫ b

0
V0 (x, y) sin (αk x) sin (βl y) dxdy. (2.101)
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Spherical coordinates with no dependence on ϕ

1

r2
∂

∂r

(
r2

∂V

∂r

)
+

1

r2 sin θ
∂

∂θ

(
sin θ∂V

∂θ

)
= 0. (2.102)

— The general solution involves powers of r and Legendre polynomials Pℓ(cos θ)

V (r, θ) =
∞∑
ℓ=0

(Aℓ r
ℓ +Bℓ r

−(ℓ+1))Pℓ(cos θ). (2.103)

— If the space considered contains r = 0 then all Bℓ = 0, or if the space considered contains
r = ∞ then all Aℓ = 0.

— The boundary conditions at r = a determine the coefficients Aℓ or Bℓ using orthogonality
of Pℓ(cos θ)

∫ 1

−1
Pℓ′(cos θ)Pℓ(cos θ)d cos θ =

2

2ℓ+ 1
δ ℓ ℓ′ . (2.104)

Spherical coordinates with dependence on ϕ

— The solution involves powers of r and spherical harmonics Yℓ,m(θ, ϕ)

V (r, θ, ϕ) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

(Aℓ,m rℓ +Bℓ,m r−(ℓ+1))Yℓ,m(θ, ϕ). (2.105)

— If the space considered contains r = 0 then all Bℓ,m = 0, or if the space considered contains
r = ∞ then all Aℓ,m = 0.

— The boundary conditions at r = a determine the coefficients Aℓ,m or Bℓ,m using orthogo-
nality of Yℓ,m(θ, ϕ)

∮
dΩY ∗

ℓ,m(θ, ϕ)Yℓ′,m′(θ, ϕ) = δℓ,ℓ′δmm′ . (2.106)
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Finite-difference method

— The potential is defined on a rectangular grid with potentials on the boundary grid points
fixed by the boundary conditions.

— The potentials at the non-boundary grid points are set to reasonable values, e.g. average
of boundary potential.

— The potentials on the non-boundary grid points are replaced by the average of the poten-
tials over the nearest 6 grid points (3D) or the nearest 4 grid points (2D).

— The procedure immediately above is repeated until the potential stops changing.

Exercises on Chapter 2

2–1 Charge +q is located on the z axis a distance d/2 from a grounded plane conductor in
the x–y plane. Find how much work was done to bring the charge to its current location
using two different approaches: (a) the work done against the electrostatic force if the
image charge were real and there was no grounded conductor, (b) the work done against
the electrostatic force due to the induced surface charge

σ(x, y, 0) =
−q

2π

z

(x2 + y2 + z2)3/2
(2.107)

where z is the height of the charge above the plane.

2–2 Charge +q is brought near to two orthogonal grounded conducting planes, one correspond-
ing to the x–z plane and the other to the y–z plane. The charge is located at (a, b, 0).
Find the work done in bringing the charge from infinity to its current location (a) by using
the method of images to find the potential at the location of the real charge, and (b) by
considering the force on the charge as it is brought from infinity.

2–3 Show that the potential outside a long conducting cylinder of radius a in the presence of
a long parallel line charge +λ at distance d is identical to the potential of the line charge
and a parallel image line charge −λ at distance di from the cylinder’s axis towards the real
line charge (see diagram below). [Hint: draw lines to point P from the two line charges.
Use the cosine rule of triangles to write the two distances in terms of a, di, d and ϕ and use
the formula the for potential due to a line charge, and superposition, to write a formula
for the potential at P. Finally require that V does not change if ϕ changes.]
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O

line charge

λ

d

P

−λ

a

φ

line
charge

i

image

d

2–4 Find the capacitance of a two-wire transmission line comprising two identical parallel cylin-
drical conductors of radius a whose axes are separated by distance D (see diagram below).
You may use the result for the potential due to a line charge near a single cylindrical
conductor to find the potential difference by replacing the cylinders by equal but opposite
image line charges, +λ and −λ (C m−1). The capacitance of two conductors with potential
difference V and having charge +q on one and −q on the other is C = q/V

−λ +λ

Cylinder 1 Cylinder 2

d
ρ

A

d  = a  /di

B

di

2

d

D

iρ2
1

a

2–5 A region of space is bounded by three plane conductors as illustrated. Find the potential
everywhere between the conductors.

0
0

y

b

x

8

V(x,b)=0

V(x,0)=0

V(0,y)=V
0

2–6 Find the potential inside the rectangular region, 0< x< a, 0< y< b and 0< z < c with
V (x, y, c) = V0(x, y), and V=0 on the other 5 sides, where

V0(x, y) = V1 sin
(πx

a

)
sin

(
3πy

b

)
. (2.108)
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2–7 The potential on a non-conducting sphere of radius a is given by

V = V0(3 cos2 θ + cos θ − 1).

(a) Find the potential and electric field inside the sphere.
(b) Find the potential and electric field outside the sphere.
(c) Find the surface charge density on the sphere as a function of θ.

2–8 Consider a point charge on the z-axis at z = r′. Find V (r, θ, ϕ) in terms of Legendre
polynomials for r > r′.

2–9 The potential on the surface of a sphere is

V (a, θ, ϕ) = V1 sin θ sinϕ+ V2 sin θ cos θ sinϕ. (2.109)

Find the potential inside the sphere.
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3 Multipole expansion for localised charge distribution

Learning objectives

— To understand how the potential for a localised charge distribution may be approximated
at large distances by the first one or two non-zero terms of the multipole expansion of the
potential.

— To be able to obtain the the monopole moment, dipole moment and quadrupole moment
tensor in Cartesian coordinates for simple cases, and to be able approximate the potential
using these.

— To be able to find the electric field and potential due to electric dipoles.

— To be able to perform a multipole expansion of the potential in spherical coordinates.

3.1 Point charge on z axis

Consider the potential due to a point charge q on the z axis a distance r′ from the origin
(Fig. 3.1a). We can obtain the expression for the potential V (r) for r > r′ as a solution of
Laplace’s equation in spherical coordinates with azimuthal symmetry. For this problem we can
use Coulomb’s law for the potential due to point charge as the boundary condition (Exercise 2–
8). The result is found to be

V (r, θ, ϕ) =
q

4πε0

∞∑
ℓ=0

(r′)ℓr−(ℓ+1)Pℓ(cos θ). (3.1)

In Eq. 3.1, θ is just the angle between r and r′, so that cos θ = �r · �r ′ and

V (r) = q

4πε0

∞∑
ℓ=0

(r′)ℓr−(ℓ+1)Pℓ(�r · �r ′). (3.2)

Written this way the result is applies equally whether or not the charge is located on the z-axis
(Fig. 3.1b).

The result given in Eq. 3.2 may be extended immediately to a localised charge distribution
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3 R

r’

r

θ

z(c)

y

x

z(a)

y

r’

R
r

x

R

r’

θ

rq

z(b)

y

q

θ

r’ρ(   )d  r’

x

Figure 3.1: Geometry for potential due to: (a) point charge q on z axis, (b) point charge q
away from the z axis, (c) arbitrary charge density ρ(r).

(Fig. 3.1c) for which we will obtain the multipole expansion of the potential. For charge density
ρ(r), the contribution of volume d3r′ to the potential at r > r′ is

dV (r) = ρ(r ′)d3r′

4πε0

∞∑
ℓ=0

(r′)ℓr−(ℓ+1)Pℓ(�r · �r ′). (3.3)

For a localised charge density ρ(r) the potential outside charge region is therefore
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V (r) = 1

4πε0

∞∑
ℓ=0

r−(ℓ+1)

∫
ρ(r ′)(r′)ℓPℓ(�r · �r ′)d3r′. (3.4)

Far away from the charge region we can approximate this by first few terms

V (r) ≈ 1

4πε0r

∫
ρ(r ′) d3r′ +

1

4πε0r2

∫
ρ(r ′) r′ (�r · �r ′) d3r′

+
1

4πε0r3

∫
ρ(r ′)(r′)2

1

2

[
3(�r · �r ′)2 − 1

]
d3r′ + . . . (3.5)

The first three terms are the monopole, dipole and quadrupole terms of the multipole expansion,
and they are proportional to r−1, r−2 and r−3, with each having its own multipole moment.
The lowest non-zero multipole moment is independent of the choice of coordinate origin, unlike
higher multipole moments.

3.2 The monopole moment

The monopole potential is

Vmon(r) =
1

4πε0r

∫
ρ(r ′) d3r′ =

q

4πε0r
(3.6)

where the monopole moment is just the net charge q.

3.3 The dipole moment

The dipole potential is

Vdip(r) =
1

4πε0r2

∫
ρ(r ′) r′ (�r · �r ′) d3r′ =

1

4πε0r2
�r ·

∫
ρ(r ′) r ′ d3r′ =

�r · p
4πε0r2

(3.7)

where the dipole moment is

p =

∫
ρ(r ′) r ′ d3r′, (3.8)
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or, for a collection of n point charges located at r[k],

p =
n∑

k=1

qk r[k]. (3.9)

An example is the physical dipole comprising charge +q located at r[1] and charge −q located
at r[2] for which p = [(+q)r[1] + (−q)r[2]] = qd, where d = (r[1] − r[2]) is the separation vector
from the negative charge to the positive charge.

3.4 The quadrupole moment tensor

The quadrupole potential is

Vquad(r) =
1

4πε0r3

∫
ρ(r ′)(r′)2

1

2

[
3(�r · �r ′)2 − 1

]
d3r′. (3.10)

Exercise 1–2 is to show that this can be written

Vquad(r) =
1

4πε0r5
1

2

3∑
i=1

3∑
j=1

Qij rirj (3.11)

where r1 ≡ x, r2 ≡ y and r3 ≡ z, and the quadrupole moment tensor for charge density ρ(r),
or for n charges with the kth charge qk located at r[k], is

Qij =

∫
ρ(r ′)

[
3r ′

i r
′
j − δij (r

′)2
]
d3r′, Qij =

n∑
k=1

qk

[
3r

[k]
i r

[k]
j − δij (r

[k])2
]
. (3.12)

As an example, consider the physical quadrupole made up of four charges at the corners of a
square of side 2 m in the xy plane: +10−4 C at (1,1,0), -10−4 C at (-1,1,0), +10−4 C at (-1,-1,0)
and -10−4 C at (1,-1,0), with distances in metres. The charge arrangement is depicted below
together with its quadrupole moment tensor

−10−4 +10−4

+10−4 −10−4

Qij =




0 1.2× 10−3 0

1.2× 10−3 0 0

0 0 0


 (C m2).

(3.13)
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Since the monopole and dipole terms are zero, the quadrupole moment tensor is independent of
choice of origin. The potential calculated using the quadrupole moment is plotted in Fig. 3.2,
where it is compared with the potential calculated for the four charges directly using Coulomb’s
law. Another example of the quadrupole moment tensor is given in Exercise 3–4.

Figure 3.2: Potential due to the four charges and their quadrupole moment tensor (Eq. 3.13)
as described above: left — calculated using the quadrupole moment; right — calculated for the
four charges directly from Coulomb’s law. (Potentials higher than 106.4 V are set to 106.4 V).
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3.5 Electric dipoles

Electric dipoles are important because, as we shall see in the next chapter, when dielectrics are
subject to an electric field they acquire an electric dipole moment. Also, oscillating dipoles are
efficient radiators of electromagnetic waves, and are discussed in the 2nd book in this series
“Essential Electrodynamics”.

For a dipole p at the origin pointing in the z-direction

Vdip(r) =
1

4πε0

p · �r
r2

=
1

4πε0

p cos θ
r2

. (3.14)

The components of the electric field, Edip(r) = −∇Vdip(r), are

Er = −∂V

∂r
=

2p cos θ
4πε0r3

, Eθ = −1

r

∂V

∂θ
=

p sin θ
4πε0r3

, Eϕ = − 1

r sin θ
∂V

∂ϕ
= 0.

∴ Edip(r) =
p

4πε0r3

[
2 cos θ�r + sin θ �θ

]
. (3.15)

For a dipole at the origin pointing in an arbitrary direction

Edip(r) = −∇
(

1

4πε0

p · r
r3

)
, (3.16)

= − 1

4πε0

[
p · r∇

(
1

r3

)
+

1

r3
∇ (p · r)

]
, (3.17)

= − 1

4πε0

[
p · r (−3)

(
1

r4

)
�r +

1

r3
∇ (pxx+ pyy + pzz)

]
, (3.18)

Edip(r) =
1

4πε0r3
[3(p · �r)�r − p ] . (3.19)

While a physical dipole comprises two charges, +q and −q, separated by distance d and has
dipole moment p = qd where d extends from −q to +q, a pure dipole can be thought of as a
physical dipole with dipole moment p = qd, with q = p/d, in the limit that d → 0. Field lines
of a physical dipole and a pure dipole are shown in Fig. 3.3. If we were to zoom out so that the
scale was very much larger than the separation between the two point charges in part (a) the
two fields would then appear to be identical.
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Figure 3.3: Field lines of (a) a physical dipole, and (b) a pure dipole.

3.6 Multipole expansion in spherical coordinates

In addition to the multipole expansion in Cartesian coordinates, one can perform a multipole
expansion of a localised charge distribution in spherical coordinates. We give this without proof,

V (r, θ, ϕ) =
1

ε0

∞∑
ℓ=0

ℓ∑
m=−ℓ

qℓ,m
2ℓ+ 1

r−(ℓ+1)Yℓ,m(θ, ϕ), (3.20)

where the spherical multipole moments are

qℓ,m =

∫
Y ∗
ℓ,m(θ′, ϕ′)r′

ℓ
ρ(r′)d3r′. (3.21)

These are directly related to the Cartesian multipole moments, e.g.

q00 =
1

4π
q, q11 = −

√
3

8π
(px − ipy), q10 =

√
3

4π
pz. (3.22)

Summary of Chapter 3

Multipole expansion for a localised charge distribution
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— Far from a localised charge distribution the potential is

V (r) ≈ q

4πε0r
+

�r · p
4πε0r2

+
1

4πε0r5
1

2

3∑
i=1

3∑
j=1

Qij rirj + . . . (3.23)

— Dipole moment for charge density ρ(r), and point charges

p =

∫
ρ(r ′) r ′ d3r′, p =

n∑
i=1

qir[i] (3.24)

— Quadrupole moment tensor for charge density ρ(r) and point charges,

Qij =

∫
ρ(r ′)

[
3r ′

i r
′
j − δij (r

′)2
]
d3r′, Qij =

n∑
k=1

qk

[
3r

[k]
i r

[k]
j − δij (r

[k])2
]

(3.25)

— Potential and electric field of a dipole p at the origin pointing in the z-direction

Vdip(r) =
1

4πε0

p · �r
r2

, Edip(r) =
p

4πε0r3

[
2 cos θ�r + sin θ �θ

]
(3.26)
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Exercises on Chapter 3

3–1 On the surface of a non-conducting sphere of radius a is surface charge density σ(a, θ, ϕ) =

σ0 cos3 θ. Find the dipole moment of the sphere.

3–2 The quadrupole potential is

Vquad(r) =
1

4πε0r3

∫
ρ(r ′)(r′)2

1

2

[
3(�r · �r ′)2 − 1

]
d3r′. (3.27)

Show that it can be written as

Vquad(r) =
1

4πε0r5
1

2

3∑
i=1

3∑
j=1

Qij rirj (3.28)

where the quadrupole moment tensor is

Qij =

∫
ρ(r ′)

[
3r ′

i r
′
j − δij (r

′)2
]
d3r′. (3.29)

[This exercise is easy using index notation.]

3–3 A physical quadrupole is made up of four charges lined up along the z axis: -q0 at (0,0,−2a),
+q0 at (0,0,−a), +q0 at (0,0,a) and -q0 at (0,0,2a). (a) Obtain the quadrupole moment.
(b) Find the potential at r = (b, b, 0) for b ≫ a.

3–4 Charge −q is located at the origin and charge +q is located at
(x, y, z) = (a sin θ0 cosϕ0, a sin θ0 sinϕ0, a cos θ0).
(a) Find the the non-zero moments of the multipole expansion of the potential in Cartesian
coordinates, i.e. q, p, Qij (if non-zero), and use these moments in the multipole expansion
in Cartesian coordinates to find the potential at (x, y, z) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ)
where r ≫ a. (b) Find the non-zero moments of the multipole expansion of the potential
in spherical coordinates, i.e.

qℓm =

∫
Y ∗
ℓm(θ′, ϕ′)r′

ℓ
ρ(r′)d3r′, (3.30)

and use these moments in the multipole expansion in spherical coordinates to find the
potential at (r, θ, ϕ) where r ≫ a. Compare the result with that from part (a).
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Learning objectives

— To understand that dielectric materials when placed in an electric field acquire an electric
dipole moment per unit volume described by the polarisation field, and that this leads to
polarisation volume and surface charge densities.

— To learn how Gauss’ law must be modified to include polarisation charges, and that it
may be written in terms of a new field called the electric displacement.

— To learn that for many dielectrics the polarisation is proportional to the electric field
with the constant of proportionality being the electric susceptibility, and to learn how the
susceptibility is related to the permittivity.

— To be able to calculate the capacitance of capacitors having a simple geometry.

— To know and be able to apply the boundary conditions on the potential, electric field and
displacement field at an interface between two dielectrics.

— To understand, on a microscopic level, the causes of polarisation, including the orien-
tational polarisability of polar molecules, electronic polarisability of non-polar molecules
and the ionic polarisability of crystals.

— To know that the electric field at the atomic scale responsible for aligning or stretching
atomic or molecular dipoles is different to the macroscopic electric field in the dielec-
tric, and that the Clausius-Mossotti formula accounts for this in relating the molecular
polarisability to the permittivity.

4.1 Dielectrics

Electrons in dielectrics or insulators are attached to specific atoms or molecules. This is very
different to in conductors where some fraction of electrons are free to move throughout the
material. Some molecules have permanent electric dipoles. If an electric field is applied to a
dielectric, molecules rotate or atoms become stretched, and the material becomes polarised. A
polarised material has a net dipole moment per unit volume called the polarisation field, P(r)
(units: C m−2).
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4.2 Macroscopic dielectric theory

By working out the potential of a polarised object we shall identify parts due to volume and
surface polarisation charges. The electrostatic potential due to a point dipole located at r′ is

Vdip(r) =
1

4πε0

p · �R
R2

(4.1)

where R = (r−r ′) as usual. For a polarised dielectric the dipole moment due to volume element
d3r′ at position r ′ is P(r ′)d3r′, and so for the whole object of volume V

V (r) =
1

4πε0

∫

V

P(r ′) · �R
R2

d3r′ =
1

4πε0

∫

V
P(r ′) ·

( �R
R2

)
d3r′. (4.2)

But we know (Eq. B.9) that R−2 �R = ∇ ′R−1 where ∇ ′ =

(
�x ∂

∂x′
+ �y ∂

∂y′
+ �z ∂

∂z′

)
, and so

V (r) =
1

4πε0

∫

V
P(r ′) ·∇ ′

(
1

R

)
d3r′. (4.3)
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Then we can use the product rule ∇ ′ · (uA) = (∇ ′u) · A + u(∇ ′ · A) to integrate by parts

V (r) =
1

4πε0

∫

V
∇ ′ ·

[
P(r ′)

R

]
d3r′ − 1

4πε0

∫

V

∇ ′ · P(r ′)

R
d3r′, (4.4)

and then use Gauss’ theorem on the 1st integral to obtain

V (r) =
1

4πε0

∮

S

P(r ′) · �n
R

dS′ − 1

4πε0

∫

V

∇ ′ · P(r ′)

R
d3r′, (4.5)

where surface S bounds volume V.

Comparing Eq. 4.5 with the potential due to surface and volume charge densities (Eqs. 1.20)
we see that

V (r) =
1

4πε0

∮

S

σpol(r ′)

R
dS′ +

1

4πε0

∫

V

ρpol(r ′)

R
d3r′, (4.6)

and the “polarisation” or “bound” volume and surface charge densities are

ρpol(r) = −∇ · P(r) (unit: C m−3), (4.7)

σpol(r) = P(r) · �n (unit: C m−2). (4.8)

Figure 4.1 is a cartoon which attempts to illustrate how surface and volume polarisation charges
occur at an atomic level in a dielectric material. In Fig. 4.1(a) we show a microscopic rectangular
slab of dielectric of length L containing an array of atoms which have been stretched to form
tiny dipoles in the presence of an applied electric field. The material is uniformly polarised,
with P(r) = P0�x. On the right hand side of the dielectric σpol(L, y, z) = P · �x = +P0 (positive
surface charge), whereas on the left hand side σpol(0, y, z) = P · (−�x) = −P0 (negative surface
charge). There is no surface polarisation charge present on the top and bottom surfaces as
P · �n = 0 there. Also, because P is uniform, ρpol(r) = −∇ ·P(r) = 0 and so there is no volume
polarisation charge either.

In Fig. 4.1(b) the dielectric has been polarised non-uniformly and in the rectangular slab shown
P(r) = (P0 + ax) �x. There is still negative surface charge on the left hand side and positive
surface charge on the right hand side, but they have unequal magnitudes: σpol(0, y, z) = −P0

and σpol(L, y, z) = (P0 + aL). Inside the slab ∇ · P(r) = a and so the polarisation volume
charge density is negative, ρpol(r) = −a. This can be expected as, although there are equal
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Figure 4.1: Explanation of polarisation charge: (a) uniform polarisation giving rise to surface
polarisation charge on the surfaces defined by x = 0 and x = L, (b) non-uniform polarisa-
tion giving rise also to a volume polarisation charge density. The displacement of electron
distributions from the nuclei are exaggerated.

numbers of real positive and negative charges, the negative charges occupy a smaller volume
than the positive charges (compare the two boxes in Fig. 4.1b) giving rise to a net volume
polarisation charge density which is negative. If the slab has cross-sectional area S, then the
total polarisation charge is qpol = S[(−P0) + (P0 + aL) + (−a× L)] = 0.

4.3 Gauss' law and the electric displacement

Inside dielectrics, Gauss’ Law must include both free charge ρf and polarisation charge ρpol

∇ · E(r) =
ρf (r) + ρpol(r)

ε0
=

ρf (r)−∇ · P(r)
ε0

. (4.9)

∴ ∇ · [ε0E(r) + P(r)] = ρf (r). (4.10)

Hence, Gauss’ law in matter becomes

∇ · D(r) = ρf (r),
∮

D · dS = Qf , (4.11)

where D(r) = [ε0E(r) + P(r)] is the displacement field (unit: C m−2).
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4.3.1 Energy density

We shall now find the energy density of an electric field in a dielectric, starting with

W =
1

2

∫

all space
ρf (r)V (r)d3r, (4.12)

and using Gaus’ law to replace ρf

W =
1

2

∫

all space
(∇ · D)V d3r, (4.13)

=
1

2

∫

all space
∇ · (V D)d3r − 1

2

∫

all space
(∇V ) · D d3r, (4.14)

where we have used a product rule to integrate by parts. Then using Gauss’ theorem on the
1st integral and E = −∇V on the 2nd integral we find

W =
1

2

∮

S at∞
(V D) · dS +

1

2

∫

all space
E · D d3r, (4.15)
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∴ W =
1

2

∫

all space
E · D d3r, (4.16)

since the surface integral is zero because for a localised charge distribution V D ∼ r−3 and
S ∼ r2 as r → ∞. Hence the energy density is 1

2E · D.

4.3.2 Linear dielectrics

For linear dielectrics, i.e. most materials unless the electric field is too high,

P = ε0χeE (4.17)

where χe is the electric susceptibility. Then

D = (ε0E + P) = ε0(1 + χe)E = εE = εrε0E = Kε0E (4.18)

ε is the permittivity and εr = K is its relative permittivity or dielectric constant. Some values
of relative permittivity are: εr = 1 (vacuum), εr=1.00055 (Nitrogen), εr=5.9 (salt), εr=80.1
(water).

4.3.3 Capacitors

A capacitor is a device for storing charge, typically comprising two conductors separated from
each other by air or a dielectric, the simplest being the parallel plate capacitor comprising
two parallel conducting plates separated by a small gap. The potential difference between two
conductors, “a” and “b”, say, is

V = (Va − Vb) = −
∫ a

b
E · dr. (4.19)

The electric field due to the two charged conductors which have surface areas Sa and Sb is

E(r) = 1

4πε0

∫

Sb+Sa

σ(r ′)

R2
�R dS′ (4.20)
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where σ(r) is the surface charge density on the conductors. If the charge on each conductor is
doubled, E is doubled and V must also be doubled, and so the charge stored q is proportional
to V . The constant of proportionality is the capacitance C, such that q = CV . The unit of
capacitance is the farad, and is named after Michael Faraday.

To charge a capacitor, you must transport electrons from the positive plate to the negative
plate. If the capacitor has charge q′, the potential difference is V = q′/C, and so the work done
to add a small additional charge dq′ to a capacitor which already stores charge q′ is

dW = V dq′ =
q′

C
dq′. (4.21)

We can integrate this from q′ = 0 to q′ = q to determine the work done to charge an initially
uncharged capacitor with charge q

W =

∫ q

0

q′

C
dq′, ∴ W =

1

2

q2

C
=

1

2
CV 2. (4.22)

A schematic diagram of a parallel plate capacitor is shown in Fig. 4.2(a) where the plate
separation is greatly exaggerated. The capacitance can be calculated as follows: (i) neglecting
fringing fields (bulging out around the edges of the plates) the electric field is located solely
between the plates and is perpendicular to the plates, (ii) using Gauss’ law the surface charge
density is σ0 = ε0E, (iii) the total charge is

q = Sσ0 = Sε0E = Sε0
V

a
. ∴ C =

Sε0
a

. (4.23)

If a dielectric is placed between the plates, E is unchanged (it depends only on V and a), but the
dielectric becomes polarised P = ε0χeE and acquires surface polarisation charge (see Fig. 4.2b)

σpol = P · �n = χeε0E · �n. (4.24)

To keep E the same, more charge (shown in red) must flow onto the plates to cancel the
polarisation charge such that

σ = (σ0 + σpol) = (ε0E + ε0χeE) = (1 + χe)ε0E = εE. ∴ C =
Sε

a
. (4.25)
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(b)
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+

+

+
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+

+

+
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+

+

+

E = V/a E = V/a

aV V

σ  = ε0 0E
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+

E E

0σ = (σ  + σ    )pol

Figure 4.2: Parallel plate capacitor filled with: (a) air (ε ≈ ε0), (b) dielectric with permittivity
ε. The separation between the plates is greatly exaggerated, and the gap between the dielectric
and the plates is negligible.

Practical capacitors used in ordinary circuits are made of two long (to make S large) strips of
metal foil separated by a thin (to make a small) insulating layer, and rolled up into a cylinder
(to save space).
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4.4 Boundary conditions on V , E and D

The boundary condition on V at the interface between two materials is simply that V must
be continuous across the interface; otherwise at the interface the electric field would be infinite
there.

To obtain the boundary conditions on E and D at the interface between two materials we split
up the problem into finding the conditions on the components normal to and parallel to the
interface. We obtain the boundary conditions on the normal components by applying Gauss’
law to an infinitessimally-thin Gaussian pill-box spanning the interface between two materials
as in Fig. 4.3(a). Since both the surface polarisation charge and the free surface charge will
enter into Gauss’ law for E, whereas only the free surface charge enters into Gauss’ law for D,
the boundary condition on the normal component of D is much more useful. Then,

∮

S1+S2

D(r) · �n dS = Qf, encl, D1 · �n1S1 + D2 · �n2S2 = S1 σf . (4.26)

∴ (D1 − D2) · �n1 = σf , (4.27)

since S2 = S1, and so the normal component of D is unchanged across the interface between
two materials, unless there is free surface charge on the boundary.

S=S

S
1

2 1

a

Γ
b

Γ

σ

(a) (b)

bt

at

E
||

D
1

D
2

f

2
n

1
n

E
2

E
1

Figure 4.3: (a) Gaussian pill box used to find the boundary condition on the normal component
of D; (b) integration loops used to find the boundary condition on the parallel component of
E.

In electrostatics the electric field is conservative, and so

∮

Γ
E(r) · dr = 0 (4.28)

for any “loop”. Using infinitesimally narrow loops Γa or Γb of lengths ℓa and ℓb spanning the
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interface, and with �ta orthogonal to �tb, as in Fig. 4.3(b), we obtain

(E1 − E2) · (ℓa�ta) = 0, and (E1 − E2) · (ℓb�tb) = 0. (4.29)

Adding the components of E parallel to �ta and to �tb we have the component of the electric field
parallel to the interface, E∥, and this must be the same on either side of the boundary,

E∥
1 = E∥

2. (4.30)

4.5 Microscopic dielectric theory

In the presence of an electric field, atoms become stretched or molecules rotate thereby acquiring
on average a dipole moment p = αpolE where αpol is the polarisability.

4.5.1 Orientational polarisability of polar molecules

Molecules having a permanent electric dipole are called polar molecules. A common example
is the water molecule illustrated in Fig. 4.4(a), but there are many other examples including
carbon monoxide and ozone. In the presence of a uniform electric field the net force on an
electric dipole is zero, but a permanent electric dipole such as a water molecule will experience
a torque tending to align its dipole moment with the electric field (Fig. 4.4b),

N =

(
L
2

)
× (qE) +

(
−L
2

)
× (−qE) = qL × E,

∴ N = p × E. (4.31)

At a finite temperature, collisions with other molecules regularly mis-align individual molecules
such that, on average, only partial alignment is maintained.

The lowest energy state of a polar molecule in an electric field corresponds to when p is aligned
parallel to E, and the work done to rotate p so that it is oriented at angle θ to the electric field
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Figure 4.4: (a) Diagram of water molecule showing its dipole moment. (b) Forces on individual
charges of a physical dipole.

is

W (θ) =

∫ θ

0
N(θ′)dθ′ =

∫ θ

0
pE sin θ′dθ′ = pE(1− cos θ). (4.32)

At finite temperatures, the probability density of W , and consequently of cos θ, can be obtained
using the Boltzmann distribution, i.e.
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f(W ) ∝ e−W (θ)/kT ∝ e pE cos θ/kT , ∴ f(cos θ) ∝ ey cos θ, (4.33)

where y ≡ pE/kT . For this probability density, the time-average of a dipole moment’s compo-
nent parallel to E is

⟨p cos θ⟩ = p

∫ 1
−1 cos θ e

y cos θd cos θ∫ 1
−1 e

y cos θd cos θ
= p

[
coth(y)− 1

y

]
≡ pL(y), (4.34)

where L(y) is the “Langevin function” which is plotted in Fig. 4.5. For ordinary electric fields
and temperatures, y ≪ 1 such that L(y) ≈ y/3, and the orientational polarisability obeys the
“Curie law” named after Pierre Curie (1859–1906) who discovered the 1/T dependence,

αpol =
⟨p · �E⟩

E
≈ p2

3kT
. (4.35)

Figure 4.5: The Langevin function (Eq. 4.34).

4.5.2 Electronic polarisability of non-polar molecules

In an attempt to understand how atoms acquire an electric dipole moment when placed in
an electric field we approximate an atom by a nucleus screened by its inner electrons (effective
charge +e) and a spherical valence electron “cloud” (charge -e) of radius a0 ≈ 10−10 m (Fig. 4.6).
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In the presence of an applied electric field, as the electron cloud becomes displaced with respect
to the nucleus by an amount de it experiences a restoring force

Fres = − (de/a0)
3e2

4πε0d2e
d̂e = − e2

4πε0a30
de. (4.36)

This is equivalent to Hooke’s law with “spring constant” κ ≈ e2/4πε0a
3
0.

dF

−e

electron cloud

nucleus
(charge +e)

(charge  −e)
+e

−e

Applied electric field

a

No applied field

0
res

E

e

E

Figure 4.6: Semi-classical model of an atom without, and with, an applied electric field (dis-
placement greatly exaggerated).

The net force on the valence electron is then

me
d2de

dt2
= −eE − κde, (4.37)

which must be zero in electrostatics. Hence there will be an equilibrium displacement, dipole
moment and molecular polarisability

de = −e
E
κ
, p = −ede = e2

E
κ
, αpol =

p

E
=

e2

κ
= 4πε0a

3
0. (4.38)

4.5.3 Ionic polarisability of crystals

Consider a tiny piece of a salt crystal sketched in Fig. 4.7(a) comprising Na+ and Cl− ions in
a face-centred cubic structure. In the absence of an applied electric field the crystal has zero
net dipole moment. Within the crystal, physical dipoles are associated with pairs of Na+ and
Cl− ions but they cancel out over the volume of the crystal as shown (there are equal numbers
of dipoles pointing to the left as there are to the right). This might look a bit suspicious, as
you could draw all the dipoles to point to the right as in Fig. 4.7(b). However, for this rather
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artificial construct there will remain unpaired ions, resulting in negative surface charge on the
right and positive surface charge on the left, and the dipoles associated with the surface charges
would cancel the internal dipoles.

−

+
E = 0

(b) (c)
E = 0

p

p

E

564 pm

(a)

Cl −

+

+

−

Na

Figure 4.7: Face-centred cubic crystal structure of NaCl (salt) showing: (a) locations of Na+
and Cl− ions and how dipoles associated with ion pairs will cancel over the volume, (b) an
alternative way of showing the cancellation as in this case internal dipoles are cancelled by
those associated with surface charge, (c) a net dipole moment if an electric field is applied (ion
displacements exaggerated).

Fig. 4.7(c) shows negative ions displaced to the left and positive ions displaced to the right in
response to an applied electric field such that the internal dipoles no longer cancel, but give
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rise to an overall polarisation in the direction of the applied field. Usually for crystals (NaCl is
an exception) the direction of E relative to crystal planes matters, and p is related to E by the
polarisability tensor, rather than the (scaler) polarisability.

4.5.4 Clausius-Mossotti formula

In an amorphous substance made of non-polar molecules, or an isotropic crystal such as NaCl,
placed in an external electric field Eext a molecule located at rmol will acquire an induced dipole
moment

p = αpolEmicro(rmol) (4.39)

where Emicro(rmol) is the microscopic electric field at the location of the molecule.

In a slab of dielectric in a uniform external electric field Eext, perpendicular to the slab, the
macroscopic field inside the slab will be

Emacro =
ε0
ε

Eext. (4.40)

But this is not the electric field we need for Eq. 4.39 — we need the field that would be at rmol

if the molecule weren’t there.

For amorphous substances we can approximate the microscopic electric field by the field at the
centre of a spherical hole of radius a and volume ∼ 1/N surrounding the molecule, where N is
the number density of molecules (Fig. 4.8). At the centre of the hole, “O”, we need to add the
field due to the surface polarisation charge of density σpol(θ) on the surface S of the hole,

Emicro = Emacro +
1

4πε0

∮

S

σpol(θ) �R
R2

dS = Emacro +
1

4πε0

∮

S

σpol(θ) �n
a2

dS. (4.41)

The surface polarisation charge density is

σpol(θ) = P · �n = P �z · �n = −P cos θ. (4.42)

The minus sign comes from the direction of �n which is outward from the volume of the material
(towards centre of hole).
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Figure 4.8: Geometry used for calculating microscopic electric field inside an amorphous di-
electric.

From symmetry arguments Emicro must be in the z direction, and using �n ·�z = − cos θ we have

Emicro · �z = Emacro +
1

4πε0a2

∫ 1

−1
(−P cos θ)(− cos θ)2πa2d(cos θ), (4.43)

Emicro · �z = Emacro +
P

2ε0

∫ 1

−1
cos2 θ d cos θ. (4.44)

∴ Emicro = Emacro +
P
3ε0

. (4.45)

We are now in a position to obtain the Clausius-Mossotti formula, named after German physicist
Rudolf Julius Emanuel Clausius (1822–1888) and Italian physicist Ottaviano-Fabrizio Mossotti
(1791–1863), which relates the molecular polarisability to the relative permittivity. If the num-
ber density of molecules is N , the polarisation will be

P = NαpolEmicro = Nαpol

(
Emacro +

P
3ε0

)
. (4.46)

Solving for P,

P =
Nαpol

1−Nαpol/3ε0
Emacro. (4.47)

Hence, we obtain the susceptibility and the relative permittivity

χe =
P

ε0E
=

Nαpol/ε0
1−Nαpol/3ε0

, (4.48)

εr = (1 + χe) =
1 + 2Nαpol/3ε0
1−Nαpol/3ε0

, (4.49)
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and finally the Clausius-Mossotti formula

αpol =
3ε0
N

(
εr − 1

εr + 2

)
. (4.50)

An example is given in Exercise 4–7

Summary of Chapter 4

Macroscopic dielectric theory

— The polarisation field P (units: C m−2) is the net dipole moment per unit volume.

— Surface and volume polarisation charge due to polarisation of dielectric

ρpol(r) = −∇ · P(r) (unit: C m−3), σpol(r) = P(r) · �n (unit: C m−2). (4.51)
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— Gauss’ law and the electric displacement field D(r) = [ε0E(r) + P(r)]

∇ · D(r) = ρf (r),
∮

D · dS = Qf,encl. (4.52)

— For linear dielectrics P = ε0χeE

D = (ε0E + P) = ε0(1 + χe)E = εE = εrε0E = Kε0E (4.53)

where ε is the permittivity, K = εr is the relative permittivity or dielectric constant.

— Boundary conditions at interface between two dielectrics

(D1 − D2) · �n1 = σf , E∥
1 = E∥

2. (4.54)

Microscopic dielectric theory

— In an electric field, atoms or molecules acquire a dipole moment p = αEmicro where αpol

is the molecular polarisability.

— The “microscopic electric field” at the location of an atom or molecule differs from the
macroscopic field in a dielectric. In an amorphous dielectric

Emicro = Emacro +
P
3ε0

. (4.55)

— Clausius-Mossotti formula

αpol =
3ε0
N

(
εr − 1

εr + 2

)
. (4.56)

Exercises on Chapter 4

4–1 A dielectric sphere (dielectric constant K) of radius a is placed in an initially uniform
electric field E0. (a) What are the boundary conditions on V , E and D for this problem.
(b) Find the potential everywhere. (c) Find E, D and P everywhere. (d) Find the dipole
moment of the sphere and the surface polarisation charge density.
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4–2 An electret, i.e. a piece of material with a permanent electric polarisation, is in the shape
of a sphere of radius a and has P(r) = P0. (a) Find the surface polarisation charge density
and the dipole moment of the sphere, (b) find V , E, and D everywhere, and (c) sketch the
field lines of E and D.

4–3 The space between two concentric conducting cylinders of radius a and b > a and length
L ≫ b is filled with a dielectric with permittivity ε. The inner and outer conductors
are held at potentials Va and Vb, respectively. Find: (a) E, D and P everywhere; (b)
the polarisation surface and volume charge density everywhere, and the net polarisation
charge; (c) the free charge on the inner and outer conductors, and the capacitance.

4–4 A spherical capacitor is filled with two different dielectrics with permittivities ε1 and ε2 as
shown in the diagram. The capacitor is charged such that charge +q is on the inner con-
ductor. Find: (a) D, E and P everywhere; (b) the polarisation surface and volume charge
density everywhere; (c) the net polarisation charge; (d) the potential difference between
the inner and outer conductor, and the capacitance of the capacitor.

ε ε12

c

b
a

conducting
spherical
shells

+q

4–5 A uniform slab of material with relative permittivity εr is suspended parallel to the xy-
plane, and has its lower surface at z = 0 and its upper surface at z = d. Outside the slab
there is a uniform electric field E0 = E0(sin θ0 x̂−cos θ0 ẑ). (a) Find formulae for E, D and
P in the dielectric, the angle between E in the dielectric and the normal to the surface,
and the surface polarisation charge density at z = 0 and z = d. (b) Find numerical values
for the case of E0 = 1000 V m−1, θ0 = 45◦ and εr = 2, and include a sketch showing field
directions.

4–6 Derive the force on an electric dipole in a non-uniform electric field.

4–7 The relative permittivities of Nitrogen, Argon and Hydrogen in gas (at 20◦C) and liquid
phases are given below.
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Element N2 gas Ar gas H2 gas N2 liquid Ar liquid H2 liquid
εr 1.000546 1.000517 1.000272 1.45 1.53 1.22

http://www.kayelaby.npl.co.uk/general_physics/2_2/2_2_1.html

Use the Clausius-Mossotti formula to find the electronic polarisability, and compare the
results for the same elements in the liquid and gas phases. [You will need to look up any
constants and the atomic weights and densities required.]
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5 Magnetic field and vector potential

Learning objectives

— To understand the concept of the magnetic field, and that electric currents cause magnetic
fields.

— To learn that an electric charge moving in a magnetic field experiences a force given by
the Lorentz force law, and that as a result wires carrying electric currents in a magnetic
field experience a force given by Ampère’s force law.

— To be able to apply the Biot-Savart law to calculate magnetic fields due to simple current
distributions.

— To be able to calculate the vector potential for simple current distributions, and to use it
to find the magnetic field.

— To be able to use Ampère’s law in integral and differential form to find the current density
from magnetic fields, and the magnetic fields from symmetric current distributions.

— To understand the concept of the magnetic flux, that it must be zero for a closed surface
(no magnetic charge law), and how the magnetic flux linking two circuits leads to the
concept of mutual inductance.

— To learn about the multipole expansion of the vector potential and that the dipole term
is the lowest non-zero term.

— To be able to obtain the magnetic dipole moment of a current distribution, and the
magnetic field of a magnetic dipole.

— To be able to calculate the torque on a magnetic dipole or a circuit in a magnetic field.

5.1 Magnetism

Magnets have been known since antiquity – pieces of lodestone (magnetised magnetite Fe3O4)
attract pieces of iron, and when suspended freely point to the magnetic North Pole. Magnetite is
a ferromagnetic mineral which became magnetised by strong magnetic fields, possibly associated
with lightning strike. Compasses were invented in China in the 2nd Century B.C. and were
being used by European navigators by the 12th Century A.D. A compass points in the direction
of the magnetic field.
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Magnetic fields occur throughout the Universe – the Earth’s magnetic field is probably produced
by electrical currents associated with magnetohydrodynamic flows within the Earth’s core.
Similarly, the Sun and the stars have magnetic fields, pulsars being extreme examples, with
some varieties known as magnetars having fields as high as 1014 times that on the Earth’s
surface. Magnetic fields also pervade the Solar System, interstellar space and, at some level,
everywhere in the Universe with the possible exception of giant voids in cosmic structure.

Apart from permanent magnets, the main sources of magnetic fields are electrical currents. In
the case of a current along a long straight wire, the magnetic field circulates around the current
as shown in Fig. 5.1(a). The unit of magnetic field, B, is the tesla (T) which is named after
Serbian-American electrical engineer Nicola Tesla (1856–1943).

5.2 The magnetic field and forces

As well as producing magnetic fields, electrical currents experience a force in the presence of
a magnetic field. For example, the current in one wire produces a magnetic field which causes
the current in another wire to experience a force. Historically, this magnetic force between two
wires carrying currents was investigated in the 1820’s and 1830’s by Gauss and French physicist
André-Marie Ampère (1775–1836). A formulation giving the force on a particle with charge Q

moving with velocity v through an electric field E and magnetic field B is the Lorentz force
(see Fig. 5.1b),

F = Q(E + v × B), (5.1)

named after Dutch physicist Hendrik Antoon Lorentz (1853–1928), of Lorentz transformation
fame.

5.2.1 Forces on currents

We can consider the force between two parallel wires using the Lorentz force law as in Fig. 5.1(c).
We define a line current I as the net charge per unit time flowing along a filamentary wire, and
so the net charge flowing past some point in time dt is dQ = Idt. The unit of current is the
amp (A) and is named after Ampère. Note that 1 A = 1 C s−1.

If the effective current flow speed is v then charge dQ is located over length dr = v dt of wire,
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d   =   dtmag

Current

Wire

(a)

I

(b) (c)

I

d F

+Q

v

B

B

v

dQ

r v

I

Fmag

21

Figure 5.1: (a) Circulation of magnetic field around a long straight current. (b) Lorentz force
on charge Q moving at velocity v parallel to the wire carrying current I. (c) Lorentz force on
length dr of a second wire (carrying current I2) due to the magnetic field of current I1.

and hence the force on section dr is

dFmag = dQv × B = (I dt)v × B = I dr × B. (5.2)

Since the force on section dr of the wire is dFmag = Idr × B the force on the entire circuit is
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Fmag =

∮
(I dr × B). (5.3)

This is one version of Ampère’s force law.

Currents can also flow across a surface as “current sheets” and are described by the surface
current density K (amps per metre). Currents flowing through a volume are described by the
volume current density J (amps per square metre). The latter two cases are illustrated in
Fig. 5.2. Since the force on section dr of the wire is dFmag = Idr × B the forces on the entire
circuit for the three cases are:

Fmag =

∮
Idr × B ←→

∫
K × B dS ←→

∫
J × B d3r. (5.4)

a dS = a dr

I = Ka

dr

(a)

K J

dr

dS
3d  r = dS dr

I = J dS

(b)

Figure 5.2: Sketch illustrating (a) surface current density (b) volume current density.

5.2.2 Hall effect

As discovered by American physicist Edwin H. Hall (1855-1938), when a current is passed
through a semiconductor in the presence of a magnetic field a voltage, called the Hall voltage,
develops perpendicular to the current direction. This phenomena, due to the Lorentz force on
electrons or holes carrying the current, is called the Hall effect. The geometry for calculating
the Hall voltage is shown in Fig. 5.3.

Note that the direction of the current I in the diagram is that of the conventional current, so
that the motion of electrons is in the opposite direction. The current is

I = J h d = (nc q v)h d, (5.5)

where J is the current density, nc the number density of charge carriers of change q, and v their
effective velocity. The Lorentz force qv×B acts on the charge carriers deflecting them towards
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d

I

− +

B

h

VH

V

A

Figure 5.3: Geometry for calculating the Hall voltage.

one side, and causing one side of the semiconducting strip to become positive and the other
negative.

In equilibrium, the Lorentz force of magnitude qvB is opposed by the electrostatic force of
magnitude qVH/d due to this charge separation, where VH is the Hall voltage. Hence,

VH = d v B = d
I

nc q h d
B =

1

nc q

I B

h
= RH

I B

h
. (5.6)

The ratio of the Hall voltage to the product of the current and the magnetic field divided by
the element thickness is known as the Hall coefficient,

RH =
1

nc q
. (5.7)

It is a characteristic of the material from which the semiconductor is made, as its value depends
on the type, number and properties of the charge carriers: electrons in a conductor (q = −e),
electrons in a “n-type semiconductor” (q = −e), and holes which act like positive electrons in
a “p-type semiconductor” (q = +e).

The Hall effect can be used to measure magnetic fields with a “Hall probe”. The quantum
Hall effect which occurs for a two-dimensional electron gas in high magnetic fields and low
temperatures was discovered by in 1980 by Klaus von Klitzing (b. 1943) and has led to a new
standard for measurement of electrical resistance.

5.2.3 Cyclotron motion

A charged particle with velocity perpendicular to a uniform magnetic field will move in a circular
orbit as in Fig. 5.4. The radius of the orbit and its angular frequency can be found by equating
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the Lorentz force QvB to the centripetal force mv2/R, giving for non-relativistic velocities

R =
mv

QB
, ωcycl =

v

R
=

QB

m
, (5.8)

where ωcycl is called the cyclotron frequency. For relativistic particles of total energy γmc2 and
momentum γmv

R =
γmv

QB
, ω =

v

R
=

QB

γm
. (5.9)

z

x

y

R

F

v

B

Q

Figure 5.4: Circular motion of a charged particle in a magnetic field.

If v is not perpendicular to B, the particle will undergo helical motion.
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5.2.4 Biot-Savart law

Named after French physicists Jean-Baptiste Biot (1774–1862) and Félix Savart (1791–1841)
this experiment-based law gives the magnetic field due to arbitrary line currents (Fig. 5.5a),
surface currents and volume current distributions (Fig. 5.5b)

B(r) =
µ0 I

4π

∮
dr′ × �R

R2
←→ µ0

4π

∫ K(r ′)× �R
R2

dS′ ←→ µ0

4π

∫ J(r ′)× �R
R2

d3r′,

(5.10)

where R = (r − r ′) and µ0 = 4π × 10−7 H m−1 is the permeability of free space — the henry
(H) is the unit of inductance and is named after American scientist Joseph Henry (1797–1878).

B

r’ d  r’3
(   )r’J

B

r’

I

(a) (b)

y

r

z

d

(x,y,z)

R

r’

x

(x’,y’,z’)

d

y

r

z

d

(x,y,z)

R

x

(x’,y’,z’)

Figure 5.5: Contribution dB of (a) section dr′ of line current I, and (b) volume current density
J(r′) inside volume d3r′, to magnetic field at r.

We can use the Biot-Savart law to find the magnetic field of a long straight wire carrying current
I as in Fig. 5.6. From the cross product, dB must be into the page as shown, i.e. in the �ϕ
direction in cylindrical coordinates (ρ, ϕ, z). The contribution to the magnetic field at (ρ, ϕ, 0)
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due to the section of wire of length dz′ at z′ is

dB(ρ, ϕ, 0) =
µ0

4π

I dz′ × �R
R2

. (5.11)

∴ B(ρ, ϕ, 0) =
µ0I

4π

∫ ∞

−∞

sin θ
R2

dz′ �ϕ, (5.12)

=
µ0I

4π

∫ ∞

−∞

ρ

R

1

R2
dz′ �ϕ, (5.13)

=
µ0I

4π
ρ

∫ ∞

−∞

1

(ρ2 + z′2)3/2
dz′ �ϕ, (5.14)

B(ρ, ϕ, 0) =
µ0I

4π
ρ

[
z′

ρ2
√

ρ2 + z′2

]∞

−∞

�ϕ. (5.15)

∴ B(ρ, ϕ, z) =
µ0I

2πρ
�ϕ (5.16)

since the magnitude can only depend on ρ and I, and B is in the �ϕ direction as in Fig. 5.1(a).

d B

ρ θ

z

R

d z’
Iz=0

z’

Figure 5.6: Geometry for calculation of the magnetic field due to a long straight wire carrying
current I.

5.3 The magnetic vector potential

From Biot and Savart’s law we can find a potential which is a vector field, called the magnetic
vector potential A(r), from which we can obtain the magnetic field B(r) in an analogous (but
different) way to obtaining the electric field from the electrostatic potential. We start with the
Biot-Savart law, and use an identity for ∇R−1 (Eq. B.7),

B(r) =
µ0

4π

∫
J(r ′)×

�R
R2

d3r′ = −µ0

4π

∫
J(r ′)×∇

(
1

R

)
d3r′. (5.17)
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Then, using the product rule ∇× (uF) = (∇u)× F + u(∇× F) we have

−J(r ′)×∇
(
1

R

)
= ∇×

(
J(r ′)

R

)
− 1

R
[∇× J(r ′)]. (5.18)

But ∇× J(r ′) = 0 because here the differentiation is with respect to x, y, z (not x′, y′, z′), and
so

B(r) =
µ0

4π

∫
∇×

(
J(r ′)

R

)
d3r′ = ∇×

(
µ0

4π

∫ J(r ′)

R
d3r′

)
. (5.19)

∴ B(r) = ∇× A(r), (5.20)

where

A(r) = µ0

4π

∫ J(r ′)

R
d3r′ (5.21)

is the magnetic vector potential, or just the “vector potential”.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

��������	
�����������
��������
���������
�����������
��������
����������������������������������

������������
������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
��������������

��������	
������


��	��������	
������


������������


����������


����������
�������


���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com


Essential Electromagnetism

95 

Magnetic field and vector potential
Essential Electromagnetism 5 Magnetic field and vector potential

Exercise 5–2 is to use Eq. 5.21 to find the vector potential of an infinite straight wire along the
z axis carrying current I, although we can actually find this in a simpler way from the magnetic
field which we know to be µ0I/2πρ �ϕ (Eq. 5.16), and we will do so now.

Using B = ∇× A in cylindrical coordinates

µ0I

2πρ
�ϕ =

(
1

ρ

∂Az

∂ϕ
−

∂Aϕ

∂z

)
�ρ+

(
∂Aρ

∂z
− ∂Az

∂ρ

)
�ϕ+

1

ρ

(
∂

∂ρ
(ρAϕ)−

∂Aρ

∂ϕ

)
�z. (5.22)

∴ µ0I

2πρ
= −∂Az

∂ρ
(5.23)

∴
∫

dAz = −µ0I

2π

∫
dρ

ρ
(5.24)

∴ A(r) = −�z µ0I

2π
ln(ρ) + �zC (5.25)

where C is an integration constant whose value has no effect on the magnetic field.

5.3.1 Gauge transformations

The magnetic field is unchanged by adding the gradient of an arbitrary scalar field U(r) to A,

A(r) = µ0

4π

∫ J(r ′)

R
d3r′ + ∇U(r), (5.26)

because ∇×∇U(r) = 0. The transformation A → A +∇U is called a gauge transformation.
Exercise 5–3 is to show that

∇ · A(r) = ∇2U(r). (5.27)

The “gauge” is determined by the value of ∇ · A, and in magnetostatics, it is convenient to
choose ∇ · A = 0 (Coulomb gauge).
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5.4 Ampère's law

This law, named after André-Marie Ampère, is obtained by taking the curl of B and using the
2nd derivative rule for curl of curl, followed by ∇ · A = 0

∇× B(r) = ∇× [∇× A(r)] (5.28)

= ∇ [∇ · A(r)] − ∇2A(r) (5.29)

= 0− ∇2

[
µ0

4π

∫ J(r ′)

R
d3r′

]
(5.30)

= −µ0

4π

∫
J(r ′)∇2

(
1

R

)
d3r′. (5.31)

Note that in the last line the Laplacian operator has moved to the right of J(r′) because the
differentiation here is with respect to unprimed coordinates. Now, Eq. C.39 gives

∇2

(
1

R

)
= −4πδ3(R) = −4πδ3(r − r ′). (5.32)

∴ ∇× B(r) = −µ0

4π

∫
J(r ′)

[
−4πδ3(r − r ′)

]
d3r′. (5.33)

∴ ∇× B(r) = µ0J(r), (5.34)

which is Ampère’s law in differential form. We can use Stokes’ theorem (Appendix C.6) to find
Ampère’s law also in integral form

∮

Γ
B(r) · dr = µ0

∫

S
J(r) · dS (5.35)

where loop Γ bounds surface S.

Ampère’s law in integral form can be exploited in a similar way to Gauss’ law in integral form if
the symmetry of problem allows. An “Ampèrian loop” plays an equivalent role to the “Gaussian
surface” when using Gauss law. As an example, consider the magnetic field of a long straight
wire carrying current I. There is cylindrical symmetry, and we can for convenience define the
z axis to be along the wire. Then the magnitude of the field must depend only on cylindrical
coordinate ρ and the field must be in the �ϕ direction as in Fig. 5.1(a). Taking a circular
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Amperian loop Γ of radius ρ as in Fig. 5.7(a)

∮

Γ
B · dr = µ0Iencl, B 2πρ = µ0I, (5.36)

giving

B =
µ0I

2πρ
�ϕ. (5.37)

I
coils

Γ
2

I
N

a

Γ

2

(b)

ρ

Γ

z

(a)

z
I

ρ
1

L

ρ

1

Figure 5.7: (a) Amperian loop Γ centred on the axis of a long wire carrying current I. (b)
A long solenoid (much longer than shown) and a circular Amperian loop Γ1 concentric the
solenoid’s axis, and a rectangular Amperian loop Γ2 with two sides parallel to the solenoid’s
axis, one of which is inside the solenoid.
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Another example is the long solenoid as depicted in Fig. 5.7(b). For a circular Ampèrian loop Γ1

concentric with the axis, Iencl = I if Γ1 is outside the solenoid (ρ1 > a), and Iencl = 0 if it is inside
(ρ1 < a). Hence, outside the solenoid, the azimuthal component is Bϕ(ρ > a, ϕ, z) = µ0I/2πρ,
whereas inside Bϕ(ρ < a, ϕ, z) = 0. It is widely stated that the magnetic field outside a long
solenoid is zero, which appears to contradict this result. It is true that the magnetic field outside
is very much less than inside, and one can design a solenoid with B = 0 outside by having a
double coil with current flowing out in the +z direction in one coil, and back in the −z direction
in the other, such that the net current through the circular loop Γ1 is zero.

From the symmetry of the problem, if there were a component of B in the �ρ direction it would be
the same everywhere over the surface of a concentric cylinder, and this would give

∮
B · dS ̸= 0

which is not allowed if, as it appears, magnetic charge doesn’t exist (as is discussed in the next
section). We have already found Bϕ inside and outside the cylinder, so now we examine Bz

using rectangular Amperian loop Γ2 with two sides parallel to the solenoid’s axis, one of which
is inside the solenoid. The current enclosed is Iencl = NI, for all ρ2 values, so that Ampère’s
law implies that BzL, and thus Bz, is the same for all ρ > a. But Bz(ρ = ∞, ϕ, z) must be zero,
so that Bz(ρ > a) = 0. Similar arguments show that Bz(ρ < a, ϕ, z) = B0, i.e. Bz is constant
inside the solenoid. Ampère’s law for loop Γ2 is then

∮
B · dr = µ0Iencl, BzL = µ0NI, (5.38)

giving

B(ρ, ϕ, z) =

{
µ0nI �z inside solenoid
µ0I/(2πρ)�ϕ outside solenoid (usually neglected)

(5.39)

where n = N/L is the number of coils (or “turns”) per unit length.

5.5 Magnetic flux

The magnetic flux through surface S is defined as

ΦB ≡
∫

S
B(r) · dS =

∫

S
∇× A(r) · dS, (5.40)
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and using Stokes’ theorem we find that

ΦB =

∮

Γ
A(r) · dr (5.41)

where loop Γ bounds surface S. This result is very useful for finding the vector potential from
the magnetic field in cases where we can exploit the symmetry of the problem, in a similar way
to finding the magnetic field from the current density using Ampère’s law.

We shall now use Eq. 5.41 to find the vector potential due to current I flowing in a long solenoid
(Fig. 5.7b). From Eq. 5.21, one expects there to be a z component of A outside the solenoid due
to the net current I flowing along the solenoid, but we will neglect this here. Since the current
in the solenoid circulates in the �ϕ direction, from symmetry arguments we should expect that
A will have a ϕ component. Applying Eq. 5.41 to loop Γ1 for a solenoid of radius a as shown,

2πρ1Aϕ(ρ1, ϕ, z) =

{
πρ21µ0nI inside solenoid (ρ1 < a),
πa2µ0nI outside solenoid (ρ1 > a).

(5.42)

Hence,

A(ρ, ϕ, z) =

{
(µ0nIρ/2)�ϕ inside solenoid (ρ < a),
(µ0nIa

2/2ρ)�ϕ outside solenoid (ρ > a).
(5.43)

5.5.1 No magnetic charge law

We can derive this very important law from

B(r) = ∇× A(r), (5.44)

and then using the second-derivative rule ∇ · (∇× c) = 0 we obtain,

∇ · B = 0. (5.45)

Comparing this with Gauss’ law in differential form ∇ · E = ρ/ε0 we see that Eq 5.45 implies
that magnetic charge does not exist. Some particle theories predict the existence of massive
magnetic monopoles, but so far none have been found. Magnetic dipoles do exist however, and
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are very important in discussing magnetic materials.

As we shall see later in this chapter, Eq 5.45 given in integral form below (as can be found by
applying Gauss’ theorem to the differential form),

∮
B · dS = 0, (5.46)

is important in determining the boundary condition on B between two materials.

5.5.2 Mutual inductance

A current flowing around a loop of wire (e.g. Coil 1 in Fig. 5.8) produces a magnetic field, and
some of the field lines may pass through a second loop of wire (e.g. Coil 2). If we double the
current I1 the magnetic field will double, as will the number of field lines through Coil 2. The
way to quantify this threading of Coil 1’s field through Coil 2 is by the mutual inductance M

defined as the magnetic flux through Coil 2 due to current I1, divided by I1
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M ≡
ΦB,2

I1
=

1

I1

∮

2
A1(r2) · dr2 =

1

I1

∮

2

µ0I1
4π

∮

1

dr1
R21

· dr2 (5.47)

where R21 is the separation vector from line element dr1 to line element dr2 (Fig. 5.8b). Hence

M =
µ0

4π

∮

2

∮

1

dr1 · dr2
R21

, (5.48)

and we see that the mutual inductance could be calculated also from magnetic flux due to Coil
2 through Coil 1 divided by I2 with exactly the same value, i.e. M = ΦB,2/I1 = ΦB,1/I2. Also
note that M only depends on the geometry (separation, shapes and sizes) of the two coils. The
unit of inductance is the henry (H). We shall return to the topic of inductance in “Essential
Electrodynamics” in the context of Faraday’s law.

Coil 2
Coil 1

1

I2
z

y
x

21 r
R

2dI 1

r1
r2

d r

Figure 5.8: (a)–Left: randomly selected magnetic field lines due to current I1 in Coil 1, some
of which thread Coil 2. (b)–Right: geometry for calculation of the mutual inductance of the
two coils.

5.6 Multipole expansion of vector potential

For the localised current distribution J(r) the vector potential and its components are

A(r) = µ0

4π

∫ J(r ′)

R
d3r′, Ai(r) =

µ0

4π

∫
Ji(r ′)

R
d3r′, (5.49)
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where i = 1, 2, 3 correspond to x, y, z. This is similar to Coulomb’s law for a localised charge
distribution which we expressed as a multipole expansion (Eq. 3.5). Thus

Ai(r) =
µ0

4πr

∫
Ji(r ′)d3r′ +

µ0

4πr3

∫
Ji(r ′)r · r ′d3r′ + . . . . (5.50)

∴ A(r) = µ0

4πr

∫
J(r ′)d3r′ +

µ0

4πr3

∫
J(r ′)r · r ′d3r ′ + . . . (5.51)

(monopole term) (dipole term) (5.52)

In magnetostatics a localised current distribution may be considered as being made of n closed
circuits, Γi, carrying currents, Ii, and so

A(r) = µ0

4πr

n∑
i=1

Ii

∮

Γi

dr ′ +
µ0

4πr3

n∑
i=1

Ii

∮

Γi

dr ′ r · r ′ + . . . (5.53)

(monopole term) (dipole term). (5.54)

Note, the monopole term vanishes because dr ′ is an exact differential, and we are left with the
dipole and higher terms. In Appendix H we show that the dipole term can be written

A(r) = µ0

4π

m × r
r3

, (5.55)

where the magnetic dipole moment is

m =
1

2

n∑
i=1

Ii

∮

Γi

r ′ × dr ′ (n current loops), (5.56)

m =
1

2

∫
r ′ × J(r ′) d3r′ (volume current distribution). (5.57)

Consider the current loop in the x–y plane shown in Fig. 5.9(a). The cross product of the two
vectors r ′ and dr ′ generates a parallelogram of area |r ′ × dr ′|, with half its area corresponding
to the area of the shaded triangle in Fig. 5.9(a) labelled dS, i.e.

1

2
r ′ × dr ′ = dS �z. (5.58)
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Hence, integrating Eq. 5.56 around this loop would give

m = IS ẑ (5.59)

where S is the area of the loop.

L

m

S

N

d r’

(b)(a)

S
I

y

x

r’

dS

(c)

Figure 5.9: (a) Current loop in xy plane. (b) Earth’s magnetic field outside the Earth approx-
imated by that of magnetic dipole m at its centre, currently misaligned by 168.5◦ with respect
to the Earth’s spin angular momentum L. (c) Magnetic field of a bar magnet.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://thecvagency.co.uk


Essential Electromagnetism

104 

Magnetic field and vector potential
Essential Electromagnetism 5 Magnetic field and vector potential

5.6.1 Dipole magnetic field

The magnetic field of a magnetic dipole resembles the electric field of an electric dipole (Fig. 3.3).
The Earth’s magnetic field outside the Earth’s surface can be approximated by that of a dipole
of moment |m| = 8.2 × 1022 A m2 at the centre of the Earth (Fig. 5.9b). The dipole moment
m is directed at an angle of about 168.5◦ to Earth’s spin direction, so that the “real” magnetic
North Pole is actually 11.5◦ from the geographic South Pole! The magnetic field of a bar magnet
is sketched in Fig. 5.9(c) showing the magnet’s north and south poles – by convention magnetic
field lines leave the magnet at its north pole and enter the magnet at its south pole.

We derive the magnetic field of a dipole here using vector identities. A derivation using index
notation is carried out in Exercise 5–7. Taking the curl of the vector potential in Eq. 5.55,

B(r) = µ0

4π
∇×

(
m × r

r3

)
. (5.60)

Using the product rule for the curl of a cross product,

∇× (a × b) = (∇ · b)a − (∇ · a)b + (b ·∇)a − (a ·∇)b, (5.61)

we have

∇×
(

m × r
r3

)
=

(
∇ · r

r3

)
m − (∇ · m)

r
r3

+
( r
r3

·∇
)

m − (m ·∇)
r
r3

, (5.62)

= 0− 0 + 0− (m ·∇)
r
r3

, (5.63)

where we have used ∇ · (�r/r3) = 0 (r > 0) for the 1st term, and that m is a constant vector in
the 2nd and 3rd terms on the right. Then

B(r) = − µ0

4π
(m ·∇)

r
r3

, (5.64)

= − µ0

4π

[
r (m ·∇)

1

r3
+

1

r3
(m ·∇)r

]
. (5.65)
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Now, firstly

r (m ·∇)
1

r3
= r

(
mx

∂

∂x
+my

∂

∂y
+mz

∂

∂z

)
(x2 + y2 + z2)−3/2, (5.66)

= r
[
mx(−3/2)(x2 + y2 + z2)−5/22x + my(−3/2)(x2 + y2 + z2)−5/22y

= + mz(−3/2)(x2 + y2 + z2)−5/22z
]
, (5.67)

∴ r (m ·∇)
1

r3
= −3(m · r)r 1

r5
. (5.68)

Secondly,

1

r3
(m ·∇)r =

1

r3

(
mx

∂

∂x
+my

∂

∂y
+mz

∂

∂z

)
(x�x + y�y + z�z), (5.69)

∴ 1

r3
(m ·∇)r =

1

r3
m. (5.70)

Hence, for r > 0 the magnetic field of a magnetic dipole of moment m is

B(r) = µ0

4π

[
3r(m · r)− r2m

r5

]
. (5.71)

This has identical form to the electric field due to electric dipole of moment p (Eq. 3.19).

5.6.2 Torques on magnetic dipoles

The net force on a current loop (or dipole) in a magnetic field is

Fmag = I

∮
(dr × B), (5.72)

which for a uniform magnetic field is

Fmag = I

(∮
dr

)
× B = 0, because

∮
dr = 0. (5.73)

Although there is no net force, a dipole does experience a torque tending to align its dipole
moment with the magnetic field direction. To find the value of the torque consider a rectangular
current loop, with sides of length a and c, carrying current I in a uniform magnetic field as shown
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in the two orthogonal views in Fig. 5.10(a) and (b). Using Ampère’s force law dF = I dr × B
we will find the force on each of the four sections.

θsina

m

θ

θ

I
a

(a)

z

x

BF

I

(b)

F

F

F

I

FI

I

z

y

m

F

c

B
T

B

B

L R

T

Figure 5.10: Geometry for calculating the torque on a rectangular current loop in the presence
of a uniform magnetic field (a) looking in the ŷ direction, and (b) looking in the −x̂ direction.

From Fig. 5.10(a), we see the top and bottom sections of the loop are perpendicular to B, and so
FT = −IcB x̂ and FB = IcB x̂ = −FT and these two forces cancel each other. Similarly, looking
at Fig. 5.10(b), we see that the forces on the left and right sections are FL = −Ia sin(π− θ)B ŷ
and FR = Ia sin(π− θ)B ŷ = −FL, and so also cancel each other such that the net force is zero
in agreement with Eq. 5.73.
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From Fig. 5.10(a), we see that there will be a torque on the current loop due to forces FT and
FB equal to N = −|FT|a sin θ �y = −IacB sin θ �y, and this tends to align m parallel to B. Given
that B = B �z and m = Iac(cos θ �z + sin θ �x) we find that

N = m × B. (5.74)

Such current loops in a magnetic field form the basic design of the galvanometer at the heart of
all analogue current, voltage or charge measuring devices (Fig. 5.11), and also electric motors.
Similarly, these torques also tend to align electron magnetic moments (associated with spin)
parallel to B causing paramagnetism, to be discussed in the next chapter.

soft iron

I

N S
spring

coils

magnet

Figure 5.11: A simple galvanometer to measure current I has coils through which the current
flows, a permanent magnet with shaped pieces to provide the same field configuration with
respect to the coils at all deflection angles, a spring to provide a torque to balance the torque
on the magnetic moment of the current through the coils, and a needle pointer.

To rotate the dipole moment, work must be done against the torque, and so the potential energy
of a dipole in a magnetic field is

W (θ) =

∫ θ

θref

N(θ′)dθ′ = mB

∫ θ

θref

sin θ′dθ′ = mB(cos θref − cos θ), (5.75)

∴ W = −m · B (5.76)

where, for convenience, we have chosen the reference angle to be θref = π/2.

As an aside, although for a uniform magnetic field there is no net force on a magnetic dipole,
in a non-uniform magnetic field there is. The force on the dipole is

F = −∇W = ∇(m · B). (5.77)
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If the dipole is aligned with B, it will experience a force in the direction of increasing B.
Actually, the result in Eq. 5.77 glosses over a number of issues including whether the dipole
is due to a current loop, electron orbital motion or spin. Nevertheless, Eq. 5.77 explains why
paramagnets and ferromagnets are attracted to strong magnetic fields whereas diamagnets are
repelled.

Summary of Chapter 5

Magnetic forces

— Lorentz force law F = Q(E + v × B).

— Force on a circuit in a magnetic field Fmag =
∮
(I dr × B).

— For surface and volume currents Fmag =
∫

K × B dS =
∫

J × B d3r.

Magnetic field and vector potential

— Biot-Savart law

B(r) = µ0 I

4π

∮
dr′ × �R

R2
, B(r) = µ0

4π

∫ J(r ′)× �R
R2

d3r′. (5.78)

— Vector potential A where B = ∇× A

A(r) = µ0

4π

∫ J(r ′)

R
d3r′. (5.79)

Ampère’s law and the no magnetic charge law

— Ampère’s law

∇× B(r) = µ0J(r),
∮

Γ
B(r) · dr = µ0

∫

S
J(r) · dS,

∮
B · dr = µ0Iencl. (5.80)

— Magnetic flux ΦB ≡
∫

S
B(r) · dS =

∮

Γ
A(r) · dr.

— No magnetic charge law ∇ · B = 0,

∮
B · dS = 0.
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Multipole expansion of vector potential

— The monopole term is zero, and the dipole term is

A(r) = µ0

4π

m × r
r3

. (5.81)

— Magnetic dipole moment for n current loops and for a volume current distribution

m =
1

2

n∑
i=1

Ii

∮

Γi

r ′ × dr ′, m =
1

2

∫
r ′ × J(r ′) d3r′. (5.82)

— Dipole magnetic field

B(r) = µ0

4π

[
3r(m · r)− r2m

r5

]
. (5.83)

— Torque on dipole N = m × B.
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Exercises on Chapter 5

5–1 Two parallel wires are separated by distance a and carry currents I1 and I2 in the same
direction. Find the force per unit length of wire. Include a diagram showing the direction
of the force. If I1 = I2 = 1 A and a = 1 m, what is the magnitude of the force per unit
length?

5–2 Using the equation for the vector potential in terms of the current density (Eq. 5.21) find
the vector potential of an infinite straight wire along the z axis carrying current I.

5–3 We can add the gradient of a scalar field U(r) to A(r) without changing B(r). This is
called a gauge transformation. The “gauge” of the vector potential is determined by the
value of ∇ · A. Show that in magnetostatics ∇ · A = ∇2U(r).

5–4 (a) Find the vector potential of the constant magnetic field B0 = (B0
x, B

0
y , B

0
z ), (b) check

that the vector potential you find does give the desired magnetic field, (c) find ∇ · A and
check it is what is expected in magnetostatics. [Hint: first find the vector potential A(z)(r)
of the simpler constant field B0

z ẑ by writing down the components of ∇×A(z) in Cartesian
coordinates before appealing to the symmetry of the problem, and then integrating.]

5–5 A steady current I flows down a long cylindrical wire of radius b. Find the magnetic field
both inside and outside the wire.

5–6 A semi-infinite solenoid of radius a, has n turns per unit length, extends from z = −∞ to
z = 0 along the z axis and carries current I in the +ϕ̂ direction. Magnetic flux is confined
to the solenoid, but emerges isotropically from its end at the origin as shown below.

θ

B

semi−infinite solenoid

z

(a) On the cone of half-angle θ with apex at the origin there is a circular loop (as shown)
with all points on the loop being at distance r ≫ a from the origin. Find the magnetic flux
passing through this loop. (b) Find the magnetic vector potential at the point (r, θ, ϕ),
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and take it’s curl to find the magnetic field. [The expression for magnetic flux through a
loop in terms of the vector potential may be useful here.]

5–7 By taking the curl of the vector potential for a magnetic dipole with moment m located
at the origin, find it’s magnetic field using index notation.

5–8 A circular current loop in the xy plane has radius a and is centred on the origin. It carries
current I in the ϕ-direction. There is a uniform magnetic field B(r) = B0(cos θẑ + sin θŷ)
present. By integrating the torque dN = r′ × dF on line element dr′ of the current loop
at r′, find the torque on the entire current loop. Compare your result with the result you
would get by first finding the current loop’s dipole moment, and then applying the formula
for the torque on a magnetic dipole in a magnetic field.
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6 Magnetism of materials

Learning objectives

— To learn that a material placed in a magnetic field acquires a magnetic dipole moment
per unit volume described by the magnetisation field, and that magnetisation results in
surface and volume magnetisation currents.

— To be able to calculate the magnetisation currents, magnetic field and the magnetic dipole
moment of a permanently magnetised object.

— To understand that the magnetisation currents must be added to any free currents present
when applying Ampère’s law, and that this leads to the introduction of a new field H.

— To be able to apply the boundary conditions on B and H at an interface between two
materials.

— To learn that for many materials the magnetisation is proportional to H, with the con-
stant of proportionality being the magnetic susceptibility, which in turn is related to the
permeability.

— To understand the causes of paramagnetism, and how a semi-classical treatment leads to
Curie’s law.

— To understand the causes of ferromagnetism, and that it requires no applied magnetic
field to sustain it.

— To know how the magnetisation of a ferromagnetic material changes with applied magnetic
field or H, and to be able to calculate the work done as a ferromagnetic material is brought
around a hysteresis loop.

— To understand the concept of magnetic circuits, and to be able to calculate magnetic fields
in simple magnetic circuits.

6.1 Magnetic materials

While in an external magnetic field, a paramagnetic substance becomes magnetised with a
net dipole moment parallel to the magnetic field. Paramagnetism occurs if, for a particular
substance, the atomic electrons have unpaired spin allowing the electron magnetic moments
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of those unpaired electrons to experience a torque aligning them with B. Ferromagnetism is
due to the quantum mechanical exchange interaction causing long-range ordering of electron
spins within a “domain” — a concentration of aligned magnetic dipoles. If a material is neither
paramagnetic nor ferromagnetic, it will show (usually weak) diamagnetism. This is due to the
effect of the magnetic field acting on orbiting electrons and changing the magnetic moment
associated with their orbital motion in such a way that the net dipole moment becomes anti-
parallel with B. Diamagnetism occurs for all atoms, but in paramagnetic and ferromagnetic
materials is masked by the typically stronger paramagnetism and ferromagnetism.

6.2 Magnetisation field

In the presence of a magnetic field matter becomes magnetised in an analogous way to that in
which matter becomes polarised in the presence of an electric field. Magnetic dipole moments
due to electron spin or orbital motion get partially or fully lined up in some direction giving
the material a net magnetic dipole moment. To describe this we define the magnetisation field
M(r) in a similar way to the polarisation field in electrostatics, namely the magnetisation field
is defined as the magnetic dipole moment per unit volume. The magnetisation field M has
units of magnetic dipole moment (A m2) divided by those of volume (m3), i.e. its units are (A
m−1). In the same way that in electrostatics the electric field of a polarised object is identical
to that due to its polarisation charges, the magnetic field of a magnetised object is identical to
that of its magnetisation currents, also known as “bound currents”.

6.3 Magnetisation currents and Ampère's law

The vector potentials of a magnetic dipole with moment m at the origin, of a magnetic dipole
with moment m located at r′, and of a magnetised object are given by

A(r) = µ0

4π

m × r
r3

, A(r) = µ0

4π

m × R
R3

, A(r) = µ0

4π

∫ M(r ′)× R
R3

d3r′ (6.1)

where, as usual, R = r − r′.

To derive the magnetisation currents of a magnetised object we will need the following: an
identity for ∇ ′R−1, the product rule for ∇ × (aF), and a corollary to Gauss’ Theorem, all
of which are obtained in Exercise 6–1. The derivation of magnetisation currents proceeds as
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follows. First re-write the cross product in the integral in Eq. 6.1

A(r) = µ0

4π

∫
M(r ′)×

�R
R2

d3r′. (6.2)

Then, use ∇ ′R−1 = +R−2 �R (Eq. B.9) to find

A(r) = µ0

4π

∫
M(r ′)×∇ ′

(
1

R

)
d3r′. (6.3)

Next, using the rule for the curl of the product of scalar and vector fields (Eq. I.9) we obtain

A(r) = µ0

4π

∫

V

∇ ′ × M
R

d3r′ − µ0

4π

∫

V
∇ ′ ×

(
M
R

)
d3r′. (6.4)

Finally, using the corollary to Gauss’ theorem
∫
V ∇× Fd3r = −

∮
S F × dS we get

A(r) = µ0

4π

∫

V

∇ ′ × M
R

d3r′ +
µ0

4π

∮

S

(
M
R

)
× dS′, (6.5)

∴ A(r) = µ0

4π

∫

V

∇ ′ × M
R

d3r′ +
µ0

4π

∮

S

M × dS′

R
. (6.6)

Hence, the field of a magnetised object is the same as would be produced by “magnetisation
currents”

Jmag(r) = ∇× M(r) (volume), Kmag(r) = M(r)× �n (surface). (6.7)

To visualise these magnetisation currents, consider a rectangular block of material uniformly
magnetised in the −�x direction as in Fig. 6.1(a). We can imagine the magnetisation field as
being due to the tiny current loops shown. If M is constant throughout the material then each
of these fictitious current loops carries an identical current, such that inside the material the
current on one side of a loop is in the opposite direction to the current on the nearest side of an
adjacent loop and cancels it out (see inset in Fig. 6.1a). So, Jmag(r) = 0 inside the uniformly
magnetised material, as it must be since ∇× M = 0.

There is no magnetisation surface current density in the surfaces perpendicular to M (with
darker shading), i.e. parallel to the yz plane in Fig. 6.1(a), because M× �n = 0 there. However,
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for the loops which have one side next to the surface, the currents on that side of the loops have
no opposing currents to cancel with. The result is a magnetisation surface current Kmag(r) =
M(r) × n̂ such that on the surface of the side with lighter shading parallel to the xz plane
Kmag(r) = M ẑ whereas on the top surface with lighter shading (parallel to the xy plane)
Kmag(r) = M ŷ.

0

y=d

constant

y=

M

=0

M varies

J

varies
(b)

magK

(a)

mag

M

mag

K

y x

z

constant

magJ

magK z=M

mag yK =M
internal
sections
cancel

M

Figure 6.1: Physical interpretation of magnetisation currents. (a) Uniform magnetisation.
Inset shows detail of cancelation of internal currents (b) Mx varies with y showing: left –
internal currents don’t cancel; right – the relative magnitudes of the surface magnetisation
current densities Kmag as it varies over the surfaces, as well as the direction of the volume
magnetisation current density Jmag.
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If M varies with position inside the material, as well as the surface magnetisation currents
there will also be a volume magnetisation current density provided ∇ × M(r) ̸= 0. One
example is is shown in Fig. 6.1(b) where M(r) depends only on y and varies linearly with y,
i.e. M(r) = Mx(y) x̂ = −(M0 + ay) x̂ such that J(r) = ∇ × M(r) = −dMx/dy ẑ = a ẑ. The
resulting surface and volume current densities are illustrated in Fig. 6.1(c) where on the top
surface Kmag(r) = Mx(y) ŷ which varies with position, while on the sides parallel to the x–z
plane the magnetisation surface current densities are constant with the values Kmag(x, 0, z) =

−Mx(0) ẑ = M0 ẑ and Kmag(x, d, z) = Mx(d) ẑ = −(M0 + ad) ẑ.

6.3.1 Cylindrical magnets

As an example of magnetisation currents, we consider a permanent magnet in the form of a
short cylinder with uniform magnetisation M along its axis as in Fig. 6.2(a). The magnetisation
surface current Kmag(r) = M(r) × n̂ is zero on the two ends, but on the cylindrical surface
Kmag(r) = M ϕ̂ (Fig. 6.2b). This surface magnetisation current distribution would give an
identical magnetic field to a free surface current density K = nI ϕ̂ where I = M/n is the
current in a tightly-wound solenoid of the same size as the magnet (Fig. 6.2b), and n is the
number of turns per metre.

Figure 6.2: Magnetic field of (a) a short cylinder with uniform magnetisation M = M ẑ parallel
to its axis, and (b) a solenoid of identical size with n coils per unit length and carrying current
I = M/n, effectively a surface current K = nIϕ̂.
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6.4 Ampère's law in magnetised materials

For magnetic materials we must include Jmag as well as the “free current” Jf , i.e. J used
previously must be replaced by the total current density as free currents and magnetisation
currents are equally good at producing magnetic fields. Hence,

∇× B = µ0(Jf + Jmag) = µ0(Jf +∇× M). (6.8)

Hence, Ampère’s law in magnetised materials is

∇× H = Jf , where H =
B
µ0

− M. (6.9)

H is sometimes called magnetic intensity but more often simply “H”. It has units A m−1. Using
Stokes’ theorem we obtain Ampère’s law in integral form

∮

Γ
H · dr = If, encl, (6.10)

where If, encl is the free current enclosed by loop Γ.

6.4.1 Boundary Conditions on B and H

We obtain these boundary conditions from the no-magnetic-charge law and Ampère’s law in
integral form. Consider the Gaussian pillbox shown in Fig. 6.3(a) but with infinitesimally
narrow sides. The surface integral of B over the pillbox with identical top and bottom surface
areas S1 = S2 is given by

∮

S
B(r) · dS = 0, (B1 · �n1S1 + B2 · �n2S2) = 0. (6.11)

∴ B⊥
above = B⊥

below, (6.12)

and we see that the component of B normal to the interface is unchanged across the boundary.

To find the boundary condition on H we apply Ampère’s law
∮

H · dr = If,encl to Ampèrian
loops Γa and Γb of length d and infinitesimal width (Fig. 6.3b). Consider loop Γa whose sides
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H
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2

Figure 6.3: Geometry for obtaining the boundary conditions on (a) the normal component
of B, and (b) the component of H parallel to the interface between material 1 (above the
interface) and material 2 (below). The thickness of the Gaussian pill box and the widths of the
Amperian loops are exaggerated in the diagrams, and should be considered as infinitesimal.

are parallel to Kf such that enclosed current is zero, and loop Γb whose sides are perpendicular
to Kf and has enclosed current Kf d,

∮

Γa

H · dr = (H1 · �ta d− H2 · �ta d) = 0, (6.13)
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and

∮

Γb

H · dr = (H1 · �tb d− H2 · �tb d) = Kfd. (6.14)

So the component of H parallel to both the surface and Kf is unchanged, and the component
of H which is both parallel to the surface and perpendicular to Kf is changed by an amount
Kf . Combining the results for the two parallel components of H we obtain

(H∥
above − H∥

below) = Kf × �n. (6.15)

6.5 Magnetic susceptibility and permeability

For linear materials, M = χMH where χM is the magnetic volume susceptibility, and so

B = µ0(H + M) = µ0(1 + χM )H = µH (6.16)

where µ is the permeability of the material, and µ0 is the permeability of free space. Since the
magnetic dipoles are at the atomic/molecular level, with M depending on the number density
of atoms/molecules (which varies by orders of magnitude between gases and solids), it makes
sense when comparing the magnetic properties of materials to divide the magnetic volume
susceptibility by the density. This quantity, called the magnetic mass susceptibility is tabulated
in Table 6.1 for several elements, compounds and substances.

Substance χM/ρ Substance χM/ρ Substance χM/ρ Substance χM/ρ

Aluminium +0.82 Bismuth −1.70 Copper −0.107 Gallium −0.30
Germanium −0.15 Gold −0.19 Helium −0.59 Hydrogen −2.49
Krypton −0.41 Lead −0.15 Mercury −0.21 Neon −0.41
Nitrogen −0.54 Oxygen +133.6 Phosphorus −1.13 Platinum +1.22
Potassium +0.65 Silicon −0.16 Silver −0.25 Sodium +0.75
Sulphur −0.62 Uranium +2.19 CO2 −0.59 H2O −0.90
HCl −0.75 H2SO4 −0.50 NaCl −0.64 NH3 −1.38
NO +59.3 Perspex −0.5 Polyethylene +0.2 P.V.C. −0.75

Table 6.1: Mass susceptibilities, χM/ρ (10−8 kg−1 m3) at 20◦ C of some common elements,
compounds and materials (data taken from Kaye & Laby
http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_6.html).
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6.6 Paramagnetism

Pierre Curie discovered that for ordinary temperatures and magnetic fields paramagnetic ma-
terials obey χM ≡ (M/H) ∝ 1/T . Paramagnetism is analogous to orientational polarisability
of permanent molecular electric dipoles. Magnetic torques on atomic dipole moments cause
paramagnetism, and it is the magnetic moments associated with unpaired spin that are respon-
sible. Unpaired electron spin will occur where there is an unfilled atomic sub-shell. However,
in metals only those electrons with energies near the Fermi energy can respond in this way and
so paramagnetism in metals is weak and does not follow the Curie law.

For a particle of mass Mp and charge q in a circular orbit of radius R with speed v (Fig. 5.4)
the magnitudes of the magnetic dipole moment mdip and angular momentum L are

mdip =
1

2
qvR, and L = MpvR, (6.17)

where the dipole moment is the product of the current (q divided by orbital period 2πR/v) and
the area of the orbit (πR2). The gyromagnetic ratio is defined as

mdip
L

=
q

2Mp
, and mdip =

qL

2Mp
. (6.18)

For atoms we need to take account of quantum mechanics, in which the quantum of angular
momentum is ℏ ≡ h/2π where h is Planck’s constant. The natural unit of mdip is therefore the
“Bohr magneton”

µB =
e ℏ
2me

. (6.19)

The total angular momentum J = L+S is the sum of the orbital angular momentum of electrons
and their spin. For B = B ẑ the quantum number M for the z-component of J is relevant here,
such that the z-component of the magnetic dipole moment mdip is

mdip,z = −gJµBM, gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
, (6.20)

where gJ is the “Landé g-factor”. Note that if L = 0 (no orbital angular momentum) then
J = S and gJ = 2 for electron spin, and that if S = 0 (no spin angular momentum) then J = L

and gJ = 1 for electron orbital angular momentum.
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As an aside, the Zeeman effect is the atomic energy-level splitting in a magnetic field

∆E = −mdip · B = +gJµBMB (6.21)

and this provides an important method for radio astronomers to determine the magnetic field
present in some astrophysical sources.

6.6.1 Derivation of susceptibility

Paramagnetism is due to partial alignment of permanent atomic magnetic dipoles. For a full
treatment, a quantum statistical mechanical approach is required, taking account of the quan-
tum numbers for total angular momentum J, orbital angular momentum L, and spin S. How-
ever, the problem is simplified for the case atoms with zero orbital angular momentum, as we
then have gJ = 2 and only two possible spin states Ms = ±1

2 . The corresponding magnetic
dipole moments are
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mdip,z = −gJµBMs = −2µB

(
±1

2

)
= ∓µB, (6.22)

and the corresponding potential energy values are

W = −m · B = −mdip,zB = ±µBB. (6.23)

Using the Boltzmann distribution, for temperature T the probabilities of the electron magnetic
moment being parallel and antiparallel to the magnetic field are

Pparallel = P0 e
µBB/kT , Pantiparallel = P0 e

−µBB/kT (6.24)

where P0 is a constant and (Pparallel+Pantiparallel) = 1. Then, for number density N of unpaired
electrons the magnetisation is

M = (Pparallel − Pantiparallel)NµB
�B =

eµBB/kT − e−µBB/kT

eµBB/kT + e−µBB/kT
NµB

�B. (6.25)

For µBB ≪ kT , i.e. for ordinary temperatures and magnetic fields,

M ≈ µBB

kT
NµB

�B =
µB

kT
NµB (µ0H), (6.26)

and the magnetic susceptibility becomes

χm ≈
Nµ0µ

2
B

kT
, (6.27)

consistent with the Curie law.

6.7 Ferromagnetism

Ferromagnetism is non-linear, and no external fields are needed to keep a ferromagnet magne-
tised. Ferromagnetism is due to long-range ordering of unpaired electron spins causing then to
line up parallel to each other. Anti-ferromagnetism is similar, except that neighbouring dipoles
point in opposite directions. Ferrimagnetism has oppositely pointing neighbouring dipoles of
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different magnitude which don’t cancel. These three possibilities are illustrated schematically
in Fig. 6.4.

FerrimagneticFerromagnetic Antiferromagnetic

Figure 6.4: Arrangement of dipoles in crystal lattice planes of ferromagnetic, antiferromagnetic
and ferrimagnetic materials.

Alignment occurs in microscopic “domains” with the magnetisation direction of each domain
usually being random, and giving an overall unmagnetised state. When placed in an external
magnetic field, domains with magnetisation aligned partially with B grow at the expense of less
favourably aligned ones so that the average magnetisation is in the direction of B. Torques N =

m×B try to align individual dipoles with B, but they like to stay parallel to their neighbours,
and a lot of work is needed to shift the domain boundaries to achieve greater alignment. For
ferromagnetic materials, the magnetic field BM = µ0M due to the resulting magnetisation M is
typically much larger than the applied field B0 = µ0H. In ferromagnetism and ferrimagnetism
the material becomes paramagnetic above a critical temperature at which a phase transition
occurs called the Curie temperature (after Pierre Curie) and in anti-ferromagnetism above the
Néel temperature (after French physicist Louis Néel 1904–2000). Practical applications of this
phase transition occur in electro-optical devices and hard disk drives when heat is used to erase
and write data.

Typically one would examine the magnetic properties of a ferromagnetic material by placing
the sample inside a solenoid and varying the current (and consequently H) sinusoidally, often
at mains frequency (50 Hz or 60 Hz), and displaying BM vs. H on an oscilloscope or computer
screen. An example is shown in Fig. 6.5(a) for a magnetically-soft iron-based amorphous alloy.
What is found is that BM remains positive even when H returns to zero following its maximum
positive value, and that BM reaches zero only after a time lag when H is sufficiently negative.
Provided Hmax is not too large BM vs. H is approximately linear. Such a material would be
used mainly for magnetic cores in transformers. For larger applied fields, M saturates when all
domains having spins partially aligned with H have grown as much as is possible.

This type of non-reversible process is called hysteresis. To bring the sample through one cycle
of the “hysteresis loop” work must be done per unit volume of the ferromagnetic material equal
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Figure 6.5: Hysteresis in (a) a magnetically-soft iron-based amorphous alloy, (b) a magnetically-
hard alloy of iron, aluminium, nickel and cobalt, Alnico.

to the loop’s area, W =

∮
H dB. Depending on the practical application of the magnetic

material, which can vary enormously from computer discs to permanent magnets to magnetic
films for fridge magnets to magnetic shielding of electronics, one would choose a material which
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has “low hysteresis” (area of hysteresis loop is small), and is termed “magnetically soft” (good
for magnetic cores for transformers and for electromagnets), or one which has “high hysteresis”
and is termed “magnetically hard” (good for permanent magnets), or one which has the right
shape of the hysteresis loop for the job in question.

The hysteresis loop of a magnetic material is characterised by its remanence BR (T), its coerciv-
ity HC (A m−1) and its saturation BS (T), and these three quantities are labelled in Fig. 6.5(a).
For this particular amorphous alloy: BR = 0.1 T, HC = 10 A m−1 and BS = 1 T. Again, de-
pending on the application, the shape of the hysteresis loop is important – it depends not only
on the material but also on whether it has been annealed, i.e. heated and cooled in the presence
of a magnetic field aligned in a particular direction. An example of a hysteresis loop with a
very different shape to that of the magnetically-soft amorphous alloy is shown in Fig. 6.5(b),
in this case for a magnetically hard alloy of iron, aluminium, nickel and cobalt ”Alnico”, which
would be used for permanent magnets.

A recent development allows us to image ferromagnetic domains using scanning electron micro-
scopes (SEM). These microscopes work by having a beam of keV to multi-keV energy electrons
scan across the surface of the electrically conducting sample in a raster scan pattern. If the
object is non-conducting it must be coated with a thin layer of a good conductor such as gold.
Some of the scanning electrons are absorbed and the resulting current depends on the local
surface height and material properties, and is used to construct an image of the surface which
is displayed on a computer screen. Electrons scattered off the surface can also be collected in
real-time, as can X-rays emitted as a result of the surface bombardment, and are also used in
construction of the image in some SEMs.

Recently, a detector was developed to collect and analyse the spin state of the scattered elec-
trons, which in turn depends on the magnetisation direction of the patch of surface being
imaged. This scanning electron microscope with polarisation analysis (SEMPA) technique en-
ables images of the domain structure on the surface of a ferromagnetic material to be made.
Figure 6.6 shows images of magnetic domains and domain wall dynamics in Metglas® ribbons.
SEMPA measurements of the magnetic domains are shown at four points on the hysteresis loop
(centre) showing the magnetic state corresponding to each image.
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Figure 6.6: Hysteresis in an amorphous alloy. Red (darker shading) indicates posi-
tive magnetisation, green (lighter shading) indicates negative. The small, relatively im-
mobile domains are pinned by stress fields induced during fabrication. Each of the im-
ages is approximately 980 microns wide. Image is courtesy of A. Gavrin et al., from
http://www.nist.gov/cnst/epg/wall_motion_proj.cfm (reproduced with permission).

6.7.1 Magnetic circuits

Consider two rods made of plastic, each of which is heated in order to bend it into a horseshoe
shape. The two plastic horseshoes are placed end-to-end almost touching but leaving two short
air gaps between them. Wires are wrapped around part of one of the horseshoes to form a
short solenoid as shown in Fig. 6.7(a). A current passing through the solenoid will produce a
magnetic field which, because the magnetic susceptibility of plastic is tiny, will be only slightly
different to the field the solenoid would produce in air.

N turns

I

(a) (b)

N turns
current I

2

d

a

Figure 6.7: (a) Two horseshoes made of plastic and placed end-to-end almost touching but
leaving small air gaps, and having a short solenoid wound around part of one horseshoe. (b) As
part (a) but with the horseshoes being made of ferrite core material.

Now consider horseshoes of identical size and shape to the plastic horseshoes, but made of
ferrite core material. Ferrite is magnetically soft and has µ ≫ µ0. There is an identical short
solenoid with N coils carrying current I as shown in Fig. 6.7(b). The magnetic field in the
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ferrite core will be dramatically different to that in the plastic horseshoes as can be shown
using the boundary condition on H at the boundary between the ferrite core material and the
air. Since there are no free surface currents in the ferrite, the component of H parallel to the
surface, H∥, must be continuous across the boundary between ferrite and air

B∥
ferrite/µferrite = B∥

air/µair. (6.28)

Hence, B∥
ferrite ≫ B∥

air as µferrite ≫ µ0, and the magnetic field will be largely confined to the
ferrite core, with the field lines making loops as shown. Using the boundary condition on the
normal component of B, the magnetic field in the two air gaps between the two horseshoes
must be unchanged across the boundaries as the air gap surfaces are normal to B inside the
ferrite core.

As the ferrite core effectively channels the magnetic field, effectively we have a magnetic circuit.
As an example, we shall calculate the magnetic field in the air gaps for a permeability of
µ1 = 5, 000µ0 for the horseshoe on the left and µ2 = 3, 000µ0 for the horseshoe on the right –
strictly speaking ferromagnetic materials are non-linear, but we shall assume these values apply
to initial magnetisation before the field saturates. The other values we shall use in this example
are I = 0.2 A, N = 50, the lengths around the two horseshoes being L1 = 30 cm and L2 = 20
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cm, a ≪ L2 and the air gaps having width d = 0.2 mm (≪ a). Applying Ampère’s law to the
closed curve following the centre of the cross-sections of the ferrite core horseshoes

∮
H · dr = Iencl, ∴ L1

B

µ1
+ L2

B

µ2
+ 2d

B

µ0
= NI. (6.29)

Substituting the numbers we find B = 0.024 T.

Summary of Chapter 6

Macroscopic theory of magnetism

— The magnetisation field M is defined as the magnetic dipole moment per unit volume.

— Paramagnets have M parallel to the applied field, diamagnets have M anti-parallel.

— Magnetised materials have magnetisation currents

Jmag(r) = ∇× M(r) (volume), Kmag(r) = M(r)× �n (surface). (6.30)

— Ampère’s law in magnetised materials ∇× H = Jf ,

∮
H · dr = If, encl,

where H = B/µ0 − M.

— Boundary Conditions between magnetic materials

B⊥
above = B⊥

below, (H∥
above − H∥

below) = Kf × �n. (6.31)

— Linear materials: susceptibility χM and permeability µ

B = µ0(H + M) = µ0(1 + χM )H = µH. (6.32)

Paramagnetism

— Magnetic torques on atomic dipole moments cause paramagnetism.

— At normal temperatures and applied fields partial alignment occurs giving

χM ≡ µ0M

B
≈ µ0nm2

3kT
. (6.33)
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Ferromagnetism

— Ferromagnets are non-linear due to long-range ordering causing unpaired electron spins
to line up parallel with each other.

— Alignment occurs in microscopic domains with the direction of M in each domain being
random, and giving overall unmagnetised state.

— When a magnetic field is applied, torques N = m×B try to align individual dipoles with
the applied field.

— Work is done to shift the domain boundaries to cause overall magnetisation.

— This non-reversible process is called hysteresis – a plot of BM vs. applied H shows the
hysteresis loop.

— The area of the loop gives the work done to take the sample around one cycle of the loop.

Exercises on Chapter 6

6–1 Derive the following which are needed to obtain the magnetisation currents of a magnetised
object: (a) Identity for ∇ ′R−1,

∇ ′R−1 = +R−2 �R. (6.34)

(b) Product rule for ∇× (aF),

∇× (aF) = (∇a)× F + a∇× F. (6.35)

(c) Corollary to Gauss’ Theorem,

∫

V
∇× F d3r = −

∮

S
F × dS. (6.36)

6–2 A thin disc of magnetised material is coincident with the xy plane. It is of thickness s and
radius a and has magnetisation M = M0�z. Find the magnetisation current, and from this
find the magnetic dipole moment of the disc. Compare this with what you would get by
multiplying the disc’s volume by M.
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6–3 Consider a permanent magnet in the form of a short cylinder of radius a extending along
the z axis from z = −L to z = +L and having uniform magnetization M = M0ẑ. (a) Find
B and H at all points (0, 0, z) on the cylinder’s axis, and plot B(0, 0, z) and H(0, 0, z) vs.
z. (b) Discuss whether the result obtained in part (a) obeys Ampère’s law for H in integral
form.

6–4 A cylindrical rod of radius a and length h ≫ a is permanently magnetised along its length
which coincides with the z direction, i.e. M = M0ẑ. (a) Find the surface magnetisation
current Kmag(r), and use it together with Ampere’s law to find B and H inside and outside
the rod (assume h → ∞). (b) The rod is now bent into a circle of circumference (h+ 2L)

such that there is an air gap of width 2L < a. Plot B and H along the axis of the magnet
in the vicinity of the air gap for the case of a = 0.5 and L = 0.2.

6–5 Consider a permanently magnetised sphere of radius a with uniform magnetisation M(r) =
M0ẑ. (a) Find the surface magnetisation current density, and use this to find the magnetic
dipole moment of the sphere. Compare this with what you expect given the volume of the
sphere and the magnetisation field. (b) Find B and H at the centre of the sphere.

6–6 Consider the hysteresis loops of the magnetically-soft iron-based amorphous alloy and the
magnetically-hard alloy of iron, aluminium, nickel and cobalt shown in Fig. 6.5.
(a) Estimate the work done to bring 1 cm3 of each material through one cycle of the
hysteresis loop. (b) Two transformers operating at 50 Hz have magnetic cores of volume
100 cm3 (one of each type of material) and are (unwisely) operated at a current at which
saturation occurs. How much power is lost as heat in each case? [You could print Fig. 6.5
and estimate the area by drawing over it a grid and measuring by hand sufficient points
on the graph to get within say 20% accuracy for the area.]
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Due to limited space available in this series, it is not possible to go into the material in great
depth, so I have attempted to encapsulate what I consider to be the essentials of electrostatics
and magnetism. In a separate volume to be published by Ventus Publishing ApS, “Essential
Electrodynamics”, I cover in similar depth Maxwell’s equations, electromagnetic waves and
radiation. Both books contain student exercises, and I give the solutions to these exercises in
separate volumes also to be published by Ventus: “Essential Electromagnetism - Solutions” and
“Essential Electrodynamics - Solutions”.

My aim with the present book is not to replace existing textbooks in these subjects of which
there are many excellent examples, but rather to supplement the textbook specified by the
professor teaching the course — I have always found the need to read about a particular topic in
at least two books to improve my understanding. Nevertheless, if appropriately supplemented,
this book together with “Essential Electrodynamics” could serve as a textbook for 2nd and 3rd
year electromagnetism courses at Australian and British universities, or for junior/senior level
electromagnetism courses at American universities/colleges.

A few of the books that I found helpful over many years of teaching electromagnetism are listed
below.

— Barger, VD & Olsson MG 1987 Classical electricity and magnetism: a contemporary
perspective, Allyn and Bacon, Boston

— Bleaney, BI & Bleaney, B 1976, Electricity and magnetism, 3rd Edn. Oxford University
Press, Oxford

— Cheng, DK 1989, Field and wave electromagnetics, 2nd Edn. Addison-Wesley, Boston

— Feynman, RP, Leighton, RB & Sands, M 1964, The Feynman Lectures on Physics, Volume
II, Addison-Wesley, Reading, Mass.

— Griffiths, DJ 1981, Introduction to Electrodynamics, 3rd Edn. Prentice Hall, New Jersey.

— Heald, MA &Marion, JB 1994, Classical Electromagnetic Radiation, 3rd Edn. Brooks/Cole,
Pacific Grove CA

— Jackson, JD 1998, Classical Electrodynamics, 3rd Edn. Wiley, New York
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— Lorrain, P, Corson, DR & Lorrain, F 1988, Electromagnetic fields and waves: including
electric circuits, 3rd Edn. Freeman, New York

— Nayfeh, MH & Brussel, MK 1985, Electricity and Magnetism, Wiley, New York

— Purcell EM 1965, Electricity and Magnetism, McGraw-Hill, New York

A useful free resource of physical and chemical data is available at

— Kaye, GWC & Laby, TH 1995, Tables of Physical & Chemical Constants, 16th Edn. Kaye
& Laby Online www.kayelaby.npl.co.uk

The following websites provide online integration, differentiation, etc.
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A Vectors

Vectors have both a magnitude and a direction. In print they are represented by a letter in
bolface type, e.g. the magnetisation might be written M, or by an arrow over the symbol when
handwritten, e.g. −→M. In three-dimensional space we can have vectors such as the velocity of a
particle at time t, say v(t), and vector fields such as the flow velocity within a fluid v(x, y, z, t)
at position (x, y, z) at time t. One can also have scalars such as the charge q of a particle, and
scalar fields such as charge density ρ(x, y, z, t) at position (x, y, z) at time t. What scalars and
scalar fields have in common is that they have just one component (it takes only one number
to define them), whereas both vectors and vector fields have a magnitude and a direction, and
so it takes three numbers to define them.

Perhaps the simplest vector to describe is the position vector r of some point in space defined
by its Cartesian coordinates (x, y, z), or the vector r′ being the position vector corresponding
to the point (x′, y′, z′). The position vector r′ is represented by a an arrow extending from the
origin (0, 0, 0) to (x′, y′, z′) as in Fig. A.1(a). Its magnitude is just the length (measured in m)
of the arrow which, using Pythagoras’ theorem, is r′ =

√
x′2 + y′2 + z′2. The vector’s direction

is represented by three direction cosines, cos θ′x, cos θ′y and cos θ′z, which are the cosines of the
angles the vector makes with the three Cartesian axes as shown in Fig. A.1(b).

z

x y

’

y’

(c)

x

r’

z

r’

yy’

z

θyθx

θ ’

’

(a) (b)

x

r’

z

y

z’

x’

(x’,y’,z’)

x’

(x’,y’,z’)

z’

Figure A.1: (a) Position vector r′ of point (x′, y′, z′). (b) Position vector r′ and the angles
θ′x, θ′y and θ′z; note that x′ = r′ cos θ′x, y′ = r′ cos θ′y and z′ = r′ cos θ′z. (c) Unit vectors in the
x, y and z directions.

We define a unit vector as being a vector having a dimensionless magnitude of 1. We have
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just seen one example — the direction cosines of r′ are the Cartesian components of the unit
vector in the direction of r′, i.e. �r′ = (cos θ′x, cos θ′y, cos θ′z). Note that the “hat” above vector r′

indicates that it is a unit vector, i.e. in this case

�r′ =
r′
|r′| =

(x′, y′, z′)√
x′2 + y′2 + z′2

= (cos θ′x, cos θ′y, cos θ′z). (A.1)

A unit vector �r′ pointing in the direction of r′ has been added to Fig. A.1(b). Unit vectors in
the x, y and z directions are written �x, �y and �z (in some books they are written i, j and k).
These three unit vectors form an orthogonal set of basis vectors (Fig. A.1c).

The force F on a particle has a magnitude F (measured in N) and acts in the direction defined
by its direction cosines. Multiplying the magnitude of the force by the three direction cosines
gives the three Cartesian components of the force, Fx, Fy and Fz, each of which is a scalar,
and these three numbers (together with the vector’s dimensions) completely specify the vector.
Multiplying the three components of F by the corresponding unit vectors we can reconstruct
the original vector by vector addition,

F = Fx�x + Fy�y + Fz�z, (A.2)

where the rule for vector addition may be stated as: “Put the 2nd vector so that its tail is at
the head of the 1st arrow, then the 3rd arrow so its tail is at the head of the 2nd, and the vector
sum of the three vectors is the vector extending from the tail of the 1st vector to the head of
the 3rd vector” (see Fig. A.2). Notice that we obtained each of the three vectors that we added
by multiplying a vector, e.g. �x, by a scalar, Fx, to get a new vector Fx�x parallel to the �x and
having magnitude equal to the magnitude of �x (1 because it is a unit vector) multiplied by the
value of the scalar (Fx).

z

x

y

z

x

yx

y

zF

F

F

F

Figure A.2: The components of F.

Download free eBooks at bookboon.com



Essential Electromagnetism

135 

Appendices
Essential Electromagnetism A Vectors

A.1 Dot and cross products

Multiplying vectors by vectors is a little more complicated as there are different types of mul-
tiplication to consider. We have just now implicitly used the scalar product or “dot product”
of two vectors, written

A · B = AB cos θ (A.3)

where θ is the angle between the directions of the two vectors. Taking the dot product of vector
F with a unit vector gives the component of F in the direction of the unit vector, e.g.

Fx = F · x̂ = F cos θx, Fy = F · ŷ = F cos θy, Fz = F · ẑ = F cos θz. (A.4)

The vector product or “cross product” of two vectors, written A×B, is a vector whose magnitude
is

|A × B| = AB sin θ (A.5)

where θ is the angle between the directions of the two vectors, and its direction is given by the
right hand rule (Fig. A.3). Hence, the Cartesian unit vectors obey the following

x̂ × ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ, x̂ × ẑ = −ŷ, ŷ × x̂ = −ẑ, ẑ × ŷ = −x̂, (A.6)

and x̂ × x̂ = ŷ × ŷ = ẑ × ẑ = 0. We can use these relations to obtain a formula for the cross
product of two vectors in terms of their components

A × B = (Axx̂ +Ayŷ +Azẑ)× (Bxx̂ +Byŷ +Bzẑ), (A.7)

= 0 +AxByẑ −AxBzŷ +−AyBxẑ + 0 +AyBzx̂ +AzBxŷ −AzByx̂ + 0, (A.8)

=

∣∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣
. (A.9)

Two separation vectors which start at the same point, such as A and B in Fig. A.4(a), generate
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A

B

C = A   B

θ

A

B

C = A   B

Figure A.3: The cross product and the right hand rule – point your index finger in the direction
of the first vector (A in this case) and swing your 2nd finger to point in the direction of the 2nd
vector (B in this case) and then your thumb is pointing in the direction of their cross product
(A × B).

a parallelogram which has an area equal to |A × B|. Three separation vectors which start at
the same point, such as A, B and C in Fig. A.4(b), generate a parallelepiped. The volume of
this parallelepiped (also called the scalar triple product) is

C · (A × B) = A · (B × C) = B · (C × A). (A.10)

The area of the parallelogram generated by two separation vectors, and the volume of the
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parallelepiped generated by three separation vectors are useful for constructing the infinitesimal
surface and volume elements in curvilinear coordinate systems, i.e. Jacobian determinants.

area =

volume =

θ

(a)

area =

θ

height =

n
n

(b)

sin

A B

A B

C

C

B

A

C  A   B(        )

A

B

B

Figure A.4: (a) Cross product of two vectors generates a parallelogram of area |A × B|.
(b) Scalar triple product of three vectors generates a parallelepiped of volume |C · (A × B)|.
(�n is a unit vector normal to the parallelogram and is in the direction of A × B.)

A.2 Vector product identities

a · (b × c) = b · (c × a) = c · (a × b), (A.11)
a × (b × c) = b(a · c) − c(a · b). (A.12)

B Vector differential calculus

B.1 The Gradient

In one dimension the differential operator d/dx operating on a function f(x) gives df/dx, i.e.
the gradient at x of a plot of f vs. x. In three dimensions the gradient operator ∇ operating on
a scalar field f(x, y, z) gives a vector field whose magnitude is the steepest gradient, i.e. highest
rate of increase of f with distance, and is pointing in the direction of the steepest gradient. The
gradient operator is

∇ =

(
�x ∂

∂x
+ �y ∂

∂y
+ �z ∂

∂z

)
. (B.1)
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A useful example is the scalar field rn = (x2 + y2 + z2)n/2,

∇rn = �x ∂

∂x
(x2 + y2 + z2)n/2 + �y ∂

∂y
(x2 + y2 + z2)n/2 + �z ∂

∂z
(x2 + y2 + z2)n/2, (B.2)

= �x n

2
(x2 + y2 + z2)(n/2−1) 2x + �y n

2
(x2 + y2 + z2)(n/2−1) 2 y

+ �z n

2
(x2 + y2 + z2)(n/2−1) 2 z, (B.3)

= n (�xx+ �yy + �zz) rn−2, (B.4)

= n r rn−2, (B.5)

= n rn−1 �r. (B.6)

Similarly, for the nth power of the magnitude of the separation vector
Rn = |r − r′| = [(x− x′)2 + (y − y′)2 − (z − z′)2]n/2,

∇Rn = nRn−1 �R. (B.7)

We can also differentiate Rn with respect to primed coordinates, i.e. using the operator

∇′ =

(
�x ∂

∂x′
+ �y ∂

∂y′
+ �z ∂

∂z′

)
(B.8)

with the result

∇′Rn = −nRn−1 �R. (B.9)

B.2 The Divergence

The divergence operator is

∇· ≡
(
�x ∂

∂x
+ �y ∂

∂y
+ �z ∂

∂z

)
· (B.10)
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and it operates on a vector field, producing a scalar field which measures the density of the
whatever is the source of the vector field. The divergence of the vector field A(x, y, z) is

∇ · A =

(
�x ∂

∂x
+ �y ∂

∂y
+ �z ∂

∂z

)
· A =

∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
. (B.11)

As an example, the divergence of A(x, y, z) = 2xx̂+ xyz2ŷ + (x7 + y + z)ẑ is

∇ · A =
∂

∂x
(2x) +

∂

∂y
(xyz2) +

∂

∂z
(x7 + y + z) = xz2 + 3. (B.12)

B.3 The Curl

The curl operator is

∇× ≡
(
�x ∂

∂x
+ �y ∂

∂y
+ �z ∂

∂z

)
× (B.13)
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and it operates on a vector field and produces a vector field which measures the rotation
(curling) present in the vector field at the point where it is evaluated. In Cartesian coordinates
its components give the amount of rotation around axes parallel to the x, y and z directions,

∇× A =

�����������

x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

�����������

, (B.14)

∴ ∇× A = �x
(
∂Az

∂y
− ∂Ay

∂z

)
+ �y

(
∂Ax

∂z
− ∂Az

∂x

)
+ �z

(
∂Ay

∂x
− ∂Ax

∂y

)
. (B.15)

C Vector integral calculus

C.1 Line integrals

A line integral (or path integral) is an integral of some quantity along some specified path
in space. A path is one-dimensional and so locations along the path r(λ) may be uniquely
specified by a single parameter, in this case λ. As one moves along the path increasing λ by dλ

the position vector changes from r to (r+ dr) where dr = (dr/dλ)dλ. For example, the quarter
circle shown in Fig. C.1(a) may be parameterised in terms of the angle ϕ,

r(ϕ) = a cosϕ�x + a sinϕ�y. (C.1)

As one moves along the path increasing ϕ by dϕ the position vector changes from r to (r + dr)
where

dr =
dr
dϕ

dϕ =

(
�xdx

dϕ
+ �ydy

dϕ
+ �zdz

dϕ

)
dϕ = (−a sinϕ�x + a cosϕ�y + 0)dϕ. (C.2)

The line integral may be of several different types. For example
∫ r2
Γ, r1 |dr| would simply give the

distance along path Γ (from r1 to r2), and
∫ r2
Γ, r1 A · dr would give the integral of the tangential

component of A along the path Γ. For example, the line integral of A = bx �x around the
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Γ

0
a

a

dr

(a) (b)

path
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u

u+du v+dv

v

u v

v

1

2 1

2

B

A

φ

φ

φ +dφ

x0

y

dS B= A

Figure C.1: (a) A line element dr in a quarter circle in the 1st quadrant of the xy plane. (b)
Surface element dS in a surface defined by r(u, v) for u1 < u < u2 and v1 < v < v2.

quarter circle is

∫

Γ
A · dr =

∫ π/2

0
b(a cosϕ)�x · (−a sinϕ�x + a cosϕ�y) dϕ, (C.3)

= −ba2
∫ π/2

0
sinϕ cosϕdϕ = −ba2

[
−1

2
cos2 ϕ

]π/2
0

= − ba2

2
. (C.4)

A line integral around a closed loop is represented by
∮
Γ A · dr.

C.2 Surface Integrals

The most common type of surface integral encountered in electromagnetism is the flux integral
which is of the form

∫
S F · dS and gives the flux of the vector field F through the surface.

For example if F represented the flow velocity (m s−1) of an incompressible fluid then the flux
integral would give the rate at which the fluid pass through the surface (m3 s−1).

We need two parameters, say u and v to parameterise a surface S, r = r(u, v). Then the surface
element can be written dS = A × B, as in Fig. C.1(b), where

A =
∂r
∂u

du, B =
∂r
∂v

dv, (C.5)
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Hence, for S corresponding to u1 < u < u2 and v1 < v < v2

∫

S
F · dS =

∫ u2

u1

∫ v2

v1

F(u, v) · ∂r
∂u

× ∂r
∂v

dv du. (C.6)

There are two directions perpendicular to any surface, so the direction must be specified – by
definition it is outward from the volume for integrals over closed surfaces, which are written as∮
S F ·dS. One must always make sure that dS points in the right direction for the problem (i.e.
into or out of the surface).

As an example, we shall consider a simple flux integral over the surface of the cone shown in
Fig. C.2. For points in the surface

r = r sin θc cosϕ�x + r sin θc sinϕ�y + r cos θc�z. (C.7)

and so it makes sense to use as parameters r (0 < r ≤ R) and ϕ (0 < ϕ ≤ 2π).
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A

c θcR

B

θ

y

r

dS

z

φ

x

R

sin

Figure C.2: Surface element dS in the surface of a cone.

Then

A =
∂r
∂ϕ

dϕ = −r sin θc sinϕdϕ x̂ + r sin θc cosϕdϕ ŷ , (C.8)

B =
∂r
∂r

dr = sin θc cosϕdr x̂ + sin θc sinϕdr ŷ + cos θc dr ẑ, (C.9)

dS = A × B =

∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

−r sin θc sinϕdϕ r sin θc cosϕdϕ 0

sin θc cosϕdr sin θc sinϕdr cos θc dr

∣∣∣∣∣∣∣∣∣
. (C.10)

∴ dS = (sin θc cos θ cosϕ x̂ + sin θc cos θ sinϕ ŷ − sin2 θc ẑ)r dr dϕ. (C.11)

We now have the surface element, and for our simple example of a flux integral we will integrate
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F(r) = F �z over this surface,

∫

S
F · dS =

∫ 2π

0

∫ R

0
(F�z) · (sin θc cos θ cosϕ �x + sin θc cos θ sinϕ �y − sin2 θc �z)r dr dϕ,

= −F sin2 θc
∫ 2π

0

∫ R

0
r dr dϕ, (C.12)

= −FπR2 sin2 θc. (C.13)

This is obviously correct since F = F�z is constant, dS ·�z is everywhere negative and π(R sin θc)2

is the projected area of the cone perpendicular to �z. In this case we didn’t need to parameterise
the surface or do the integral; we could have just inspected the problem an written down the
answer!

C.3 Volume Integrals

For volume integrals we need three parameters, u, v, and w. The volume element is dV =

|C · (A × B)| as in Fig. A.4(b) with

C =
∂r
∂u

du, A =
∂r
∂v

dv, B =
∂r
∂w

dw. (C.14)

Then

∫

V
F d3r =

∫ ∫ ∫
F |J | du dv dw (C.15)

where J is the Jacobian determinant, written

J ≡ ∂ (x, y, z)

∂ (u, v, w)
=

∂r
∂u

·
(
∂r
∂v

× ∂r
∂w

)
. (C.16)

When symmetry permits one can often use cylindrical or spherical polar coordinates for which
the Jacobian determinants are J = ρ (cylindrical coordinates ρ,ϕ,z), and J = r2 sin θ (spherical
coordinates r,θ,ϕ).
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C.4 Gradient theorem

The gradient theorem states

∫ rb

ra
∇ϕ · dr = ϕ(rb)− ϕ(ra) (C.17)

independent of path, as is easily proved from the definition of the gradient, ∇ϕ · dr = dϕ. This
is an exact differential, and so

∫ rb

ra
∇ϕ · dr =

∫ rb

ra
dϕ = [ϕ]rbra = ϕ(rb)− ϕ(ra). (C.18)
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C.5 Gauss' theorem

Gauss’ Theorem (Divergence Theorem) states

∫

V
∇ · F d3r =

∮

S
F · dS (C.19)

where dS is the surface normal which is directed outwards from the volume, and surface S

bounds volume V . So we could in fact define the divergence of F as

∇ · F = lim
V→0

(
1

V

∮

S
F · dS

)
, (C.20)

and so the divergence of a vector field F(r) can be thought of as the net outward flux of F per
unit volume.

C.6 Stokes' theorem

Stokes’ theorem (curl theorem) states that

∫

S
∇× F · dS =

∮

Γ
F · dr (C.21)

where loop Γ bounds surface S, and dr is directed depending on the orientation of dS according
to the right hand rule for use with Stokes’ theorem as in Fig. C.3(a) — fingers curl around path
Γ and thumb points in direction dS.

1

Γ2

Γ3

r1

r2

S

(a) (b)

Γ
Γ

Γ

rd
rd

dS

d

Figure C.3: (a) Right hand rule for directions of line integration and surface element when
using Stokes’ theorem. (b) Three paths joining r1 to r2.
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C.6.1 Conservative fields and exactness

If for a vector field F(r) one finds that ∇×F = 0, then F is said to be conservative, and Stokes’
theorem implies that

∮

Γ
F · dr = 0 (C.22)

for any closed loop such as (Γ1 + Γ2) or (Γ1 + Γ3) in Fig. C.3(b). Hence, if F is conservative

∮

(Γ1+Γ2)
F · dr =

∮

(Γ1+Γ3)
F · dr = 0 (C.23)

Since Γ1 is common to both these closed loops

∫ r2

r1,Γ2

F · dr =

∫ r2

r1,Γ3

F · dr (C.24)

and so the integral must be independent of path. This allows us to define a potential

Φ(r) = −
∫ r

r0
F(r′) · dr′ (C.25)

such that F(r) = −∇Φ. Then

−
∫ r

r0
F(r′) · dr′ =

∫ r

r0
∇Φ(r′) · dr′ =

∫ r

r0
dΦ = Φ(r)− Φ(r0), (C.26)

and we see that if ∇×F = 0 then F ·dr is exact because ∇Φ(r) ·dr = dΦ is an exact differential.

Before moving on, a word of caution is necessary. The result above is true only for simply-
connected regions, i.e. regions without holes in them. An example of a multiply-connected
region is shown in Fig. C.4(a). Everywhere along loop Γ1 we have ∇× E = 0 and so we might
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reasonably expect that
∮

Γ1

E · dr = 0. However, it’s not! Using Stokes’ theorem

∮

Γ1

E · dr =

∫

S1

∇× E · dS +

∫

S2

∇× E · dS, (C.27)

= 0 +

∫

S2

∇× E · dS, (C.28)

= −
∮

Γ2

E · dr ̸= 0, (C.29)

and this is because the region is multiply-connected and inside S2 we have ∇× E ̸= 0.

∆

x E=0/

Γ1

∆∆

x E=0

∆∆

x E=0/

Γ2

Γ3

Γ4S2

S1

S1

(a) (b)Γ1

Γ2

∆∆

x E=0

∆

Figure C.4: (a) A multiply-connected region comprising region S1 where ∇×E = 0 surrounding
a hole (region S2) where ∇× E ̸= 0. (b) As part (a) but with a cut to make region S1 simply
connected.
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We can make region S1 simply-connected by making a cut as shown in Fig. C.4(b). Then,
integrating around the boundary of the simply-connected region

∮

Γ1+Γ3+Γ2+Γ4

E · dr = 0. (C.30)

C.7 Dirac delta function

Point charges have infinite charge density but finite charge, and we can use the Dirac delta
function, δ (x− x0), to represent them. The one-dimensional version δ (x) is defined such that

∫ ∞

−∞
f (x) δ (x− a) dx = f (a) . (C.31)

An important property is

δ(cx) =
1

|c|
δ(x). (C.32)

In three dimensions we have

δ3(r) = δ(x)δ(y)δ(z), (C.33)
∫

all space
δ3(r)d3r ≡

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x)δ(y)δ(z)dx dy dz = 1, (C.34)

∫

all space
f(r) δ3(r − a) d3r = f(a). (C.35)

In cylindrical and spherical coordinates we need to divide by the appropriate Jacobian

δ3(r − r0) =
1

r2 sin θ δ(r − r0)δ(θ − θ0)δ(ϕ− ϕ0) (spherical), (C.36)

δ3(r − r0) =
1

ρ
δ(ρ− ρ0)δ(ϕ− ϕ0)δ(z − z0) (cylindrical). (C.37)
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Two important identities are

∇ ·

( �R
R2

)
= 4πδ3(R), (C.38)

∇2 1

R
= −4πδ3(R), (C.39)

where R = (r − r′).

C.8 Heaviside step function

Discontinuous changes of some quantity with position can be represented by the Heaviside step
function H(x− x0) defined by

H(x− x0) =




0 (x < x0),

1/2 (x = x0),

1 (x > x0).

(C.40)

It has the property that

d

dx
H(x− x0) = δ(x− x0). (C.41)

An example of its use would be to describe a square voltage pulse of height V0 starting at time
t1 and ending at t2 for which

V (t) = V0H(t1)[1−H(t2)]. (C.42)

Another example would be to describe the electric field on the surface of a spherical conductor
of radius a carrying charge q. The radial component of the electric field is zero inside and finite
and radial outside,

Er(r) =
q

4πε0r2
H(r − a). (C.43)
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Gauss’ law tell’s us that the charge density is ε0∇ · E

ρ(r) = ε0
1

r2
∂

∂r

(
r2Er

)
, (C.44)

= ε0
1

r2
∂

∂r

(
r2

q

4πε0r2
H(r − a)

)
, (C.45)

=
q

4πr2
∂

∂r
H(r − a), (C.46)

=
q

4πr2
δ(r − a), (C.47)

where δ(x) is the Dirac delta function. We know that all the charge resides on the surface
of a conductor, so that in this case we have a surface charge density σ(a) = q/4πa2 which
corresponds to the volume charge density above.
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D Basics of index notation

The components of the vector A are denoted Ai, where i is its index, i.e. A1 ≡ Ax, A2 ≡ Ay

and A3 ≡ Az. Similarly, for a matrix, Bij represents the component in ith row and jth column.

The Kronecker delta is defined

δij =

{
1, if i = j

0, otherwise
(D.1)

The Levi-Civita tensor is defined

εijk =




1, if i j k = 12 3 or 3 1 2 or 2 3 1
−1, if i j k = 13 2 or 2 1 3 or 3 2 1
0, otherwise

(D.2)

Note that εijk is 1 for cyclic permutations of 123, and −1 for anti-cyclic permutations, e.g. 321,
and 0 otherwise.

In matrix multiplication [A] = [B][C]

Aij =

3∑
k=1

BikCkj . (D.3)

In the Einstein summation convention if an index appears twice (dummy index) then the re-
peated index is summed over for all three values of that index — there is no need to write the
summation sign — so that

Aij = BikCkj (D.4)

is entirely equivalent to Eq. D.3. We see that the dummy index k has disappeared while the
free indices i and j remain.

In index notation the dot product is

A · B = AiBi. (D.5)
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Following each summation the number of indices is reduced by one (in the dot product above
it is reduced from 1 to 0); this is called contraction. Another example of contraction is

δijAik = Ajk (D.6)

where this time the number of indices goes from 3 to 2.

Symmetric tensors obey

Cij = Cji or Cijk = Ckji (D.7)

and are unchanged when any two indices are swapped. Anti-symmetric tensors obey

Dij = −Dji or Dijk = −Dkji (D.8)

and when any two indices are swapped they changes sign. The Levi-Civita Tensor, εijk, is
anti-symmetric. The Kronecker Delta, δij , is symmetric. When you sum over all elements of
the product of two tensors one of which is symmetric and the other anti symmetric the result
is zero, e.g. if Aij is symmetric and Bij antisymmetric, then AijBij = 0.

The gradient operator is

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
,

so that in index notation it is ∇i = ∂/∂ri.

The divergence of a vector field D is

∇ · D = ∇iDi. (D.9)

The cross product of F and G, and its ith component are

F × G = εijk �ei Fj Gk, [F × G]i = εijk Fj Gk, (D.10)

where �e1, �e2 and �e3 are the unit vectors in the x, y and z directions.
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Similarly for the Curl of a vector field H

∇× H = εijk êi∇jHk, [∇× H]i = εijk ∇jHk. (D.11)

A useful identity for the Kroneker delta is

∇irj =
∂ri
∂rj

= δij (D.12)

A useful Levi-Civita Identity is

εijkεimn = δjmδkn − δjnδkm. (D.13)

To make the 1st index of two Levi-Civita tensors the same apply a cyclic permutation to the
indices of one of them.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/Subscrybe


Essential Electromagnetism

155 

Appendices
Essential Electromagnetism E Uniqueness of solutions of Poisson’s equation

E Uniqueness of solutions of Poisson's equation

We will prove by contradiction that the solution of Poisson’s equation is unique. Consider
the possibility that there could be two different solutions V1(r) and V2(r) for the same charge
density ρ(r) and boundary conditions. The corresponding electric fields E1(r) = −∇V1(r) and
E2(r) = −∇V2(r) must satisfy Gauss law,

∇ · [−∇V1(r)] =
ρ(r)
ε0

and ∇ · [−∇V2(r)] =
ρ(r)
ε0

. (E.1)

∴ ∇ · [∇(V2 − V1)] = 0. (E.2)

Using product rule Eq. I.8 we may write

∇ · [(V2 − V1)∇(V2 − V1)] = ∇(V2 − V1) ·∇(V2 − V1) + (V2 − V1)∇ · [∇(V2 − V1)] .

∴ ∇ · [(V2 − V1)∇(V2 − V1)] = |∇(V2 − V1)|2 + 0. (E.3)

Integrating over volume V inside the boundary surface S,

∫

V
∇ · [(V2 − V1)∇(V2 − V1)] d

3r =

∫

V
|∇(V2 − V1)|2d3r, (E.4)

∴
∮

S
(V2 − V1)∇(V2 − V1) · �ndS =

∫

V
|∇(V2 − V1)|2d3r (E.5)

where we have used Gauss’ theorem on the left hand side.

If V is specified on the boundary surface then on that surface V2(r) = V1(r), or if E · �n is
specified on the boundary (∇V2) · �n = (∇V1) · �n. In either case the surface integral is zero, and
we are left with

∫

V
|∇(V2 − V1)|2d3r = 0. (E.6)

Since the integrand is everywhere greater than or equal to zero, this equation can only be
satisfied if ∇(V2 − V1) = 0, in other words if E2(r) = E1(r). So, we have just have proved that
the solution for the electric field is unique, and consequently that V2(r) = V1(r) + Vconst where
Vconst is an arbitrary constant potential. If the potential is specified anywhere on the boundary
then V2(r) = V1(r) everywhere inside the boundary.
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F Field line tracing as an initial value problem

For solving an ordinary differential equation, dy/dx = f(x), given initial conditions y(x0) = y0,
one can use Euler’s method with “steps” of length ∆ in x,

xn+1 = xn +∆; yn+1 = yn + f(xn)∆. (F.1)

Similarly for tracing field lines of vector field F(r) one could use a scheme motivated by Euler’s
method, as illustrated in Fig. F.1(a)

rn+1 = rn + F̂(r)∆. (F.2)

A scheme motivated by the 2nd order Runge-Kutta Method for solving initial value problems
gives greatly improved accuracy, as illustrated in Fig. F.1(b)

rn+1/2 = rn + F̂(rn)
∆

2
; rn+1 = rn + F̂(rn+1/2)∆. (F.3)

n

x n

rn

n+1/2 x n+1

rn

F(         )rn+1/2

y
n+1/2

y
n+1

0
0 x

∆
error

y

0
0

∆/2

∆

x

y(a) (b)

error

rn+1y
n+1

x n+1

y
n

rn+1

x n x

y

(   )rn F(   )rnF

Figure F.1: Comparison of (a) Euler’s method and (b) the 2nd order Runge-Kutta method of
solving initial value problems as applied to field-line tracing.

This straightforward technique has been used for producing all the images in this book which
show electric or magnetic field lines. The best example to show the accuracy of this method is a
magnetic field line of an infinite straight current, whose field is given by B = (µ0I/2πρ)ϕ̂. The
field lines should therefore be circles in the x–y plane, and the two methods discussed above
are compared for the same step size in Fig. F.2.
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Figure F.2: Comparison of (a) Euler’s method and (b) the 2nd order Runge-Kutta method
adapted for tracing the magnetic field of an infinite straight current along the z axis.

G Code for 2D finite-difference method for Laplace's equation

The IDL code below was used to solve the 2D problem of the potential inside a rectangular
pipe of square cross section (1 m by 1 m) where the potential is specified on each of the four
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   n_iter=10000                  ;;; number of iterations

   nx_cells=100                  ;;; number of cells in x
   ny_cells=100                  ;;; number of cells in y
   nx=nx_cells+2                 ;;; need extra grid points at cell 
   ny=ny_cells+2                 ;;; boundary each side for BC

   x=(findgen(nx)-1)/(nx-3)      ;;; x and y values
   y=(findgen(ny)-1)/(ny-3)

   Vx0=0.                          ;;; potentials on the 4 boundary surfaces
   Vx1=0.
   Vy0=0.
   Vy1=1.
   Vstart=(Vx0+Vx1+Vy0+Vy1)/4.     ;;; Average of V over boundaries. 
   Potential=fltarr(nx,ny)+Vstart  ;;; Declare and initialise array for V.

   BoundaryMask=fltarr(nx,ny)+1.   ;;; Set BC mask to 0 at boundary, 1 elsewhere.
   BoundaryMask(0:1,*)=0.          ;;; After each iteration the potential is 
   BoundaryMask(nx-2:nx-1,*)=0.    ;;; multiplied by the mask before adding 
   BoundaryMask(*,0:1)=0.          ;;; the BC potential.
   BoundaryMask(*,ny-2:ny-1)=0.

   BoundaryPotential=fltarr(nx,ny)     ;;; Set to BC V at boundary, 0 elsewhere
   BoundaryPotential(0:1,*)=Vx0
   BoundaryPotential(nx-2:nx-1,*)=Vx1
   BoundaryPotential(*,0:1)=Vy0
   BoundaryPotential(2:nx-3,ny-2)=Vy1
   BoundaryPotential(1:nx-2,ny-1)=Vy1
   BoundaryPotential(1,ny-2)=0.5*(Vx0+Vy1)
   BoundaryPotential(nx-2,ny-2)=0.5*(Vx1+Vy1)

   FOR i_iter=1,n_iter DO BEGIN                ;;; Iterate.
                                               ;;; Average over 4 nearby points
      Potential=(SHIFT(Potential,1,0)+SHIFT(Potential,-1,0) $      
                 +SHIFT(Potential,0,1)+SHIFT(Potential,0,-1))/4.   
      Potential=Potential*BoundaryMask         ;;; Reset BC
      Potential=Potential+BoundaryPotential
   ENDFOR

   CONTOUR,  Potential, X, Y, LEVELS=0.1*findgen(11),/fill
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sides: V (0, y, z)=V (1, y, z)=V (x, 0, z)=0 V, and V (x, 1, z)=1 V. We choose a grid spacing
L=0.01 m, i.e. 100×100 cells (101×101 grid points). After each iteration, the potentials at
the outer grid points are reset to the potentials on the boundary surfaces. At the corners
where V changes discontinuously from V=0 to V=1 V we set the potential to be the average
value, i.e. V (0, 1, z)=V (1, 1, z)=0.5 V. The result is contoured in Fig. 2.10. The code uses array
manipulation methods available in modern programming languages rather than using do loops
when computing the average potential around each grid point, and in resetting the boundary
potential.

The IDL code contains numerous comments, but I will explain some of the procedures called
which are specific to IDL.
FINDGEN(n) declares a floating-point array with n elements which have the values: 0,1,2,…n-1.
FLTARR(n,m) declares a 2D a floating-point array with n×m elements.
NAME(i:j,*) means the array made up of the elements of the 2D array NAME having the 1st
index in the rangle i to j and all values of the 2nd index.
SHIFT(NAME,k,l) means the array constructed from 2D array NAME by shifting the 1st index
by k and the 2nd by l.
CONTOUR, together with some other formatting statements (not shown), contours the result.

H Dipole term of multipole expansion of vector potential

The dipole term can be written

A(r) = µ0

4πr3

n∑
i=1

Ii

∮

Γi

dr ′ r · r ′. (H.1)

Using the method of integration by parts, the integrals in the dipole term may be written as

∮

Γi

(r · r′)dr′ =

∮

Γi

d [(r · r′)r′] −
∮

Γi

(r · dr′)r′, (H.2)
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but the 1st integral on the right is zero because d[(r · r′)r′] is an exact differential. Hence,

∮

Γi

(r · r′)dr′ = −
∮

Γi

(r · dr′)r′. (H.3)

∴
∮

Γi

(r · r′)dr′ +
∮

Γi

(r · r′)dr′ =

∮

Γi

(r · r′)dr′ −
∮

Γi

(r · dr′)r′, (H.4)

∴
∮

Γi

(r · r′)dr′ =
1

2

∮

Γi

[
(r · r′)dr′ − (r · dr′)r′

]
. (H.5)

Now from the vector triple product rule we have (r′ × dr′)×r = (r·r′)dr′ − (r·dr′)r′ (Appendix
A.2), and so

∮

Γi

(r · r′)dr′ =
1

2

∮

Γi

(
r′ × dr′

)
× r. (H.6)

∴ A(r) = µ0

4π

m × r
r3

, (H.7)

where the magnetic dipole moments for n current loops and a volume current distribution are

m =
1

2

n∑
i=1

Ii

∮

Γi

r ′ × dr ′, m =
1

2

∫
r ′ × J(r ′) d3r′. (H.8)
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I Summary of vector calculus identities

I.1 Integral theorems

Gradient theorem:

∫ rb

ra
∇ϕ · dr = ϕ(rb)− ϕ(ra) (independent of path). (I.1)

Gauss’ theorem:

∫

V
∇ · F d3r =

∮

S
F · dS (S bounds V ). (I.2)

Corollary to Gauss’ Theorem:

∫

V
∇× F d3r = −

∮

S
F × dS (S bounds V ). (I.3)

Stokes’ theorem:

∫

S
∇× F · dS =

∮

Γ
F · dr (where Γ bounds S). (I.4)

I.2 Product rules

∇(uv) = u(∇v) + v(∇u) (I.5)

∇(A · B) = A × (∇× B) + B × (∇× A) + (A ·∇)B + (B ·∇)A (I.6)

∇ · (A × B) = (∇× A) · B − (∇× B) · A (I.7)

∇ · (uA) = (∇u) · A + u(∇ · A) (I.8)

∇× (uA) = (∇u)× A + u(∇× A) (I.9)

∇× (A × B) = (∇ · B)A − (∇ · A)B + (B ·∇)A − (A ·∇)B (I.10)
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I.3 Second derivatives

∇ · (∇ψ) = ∇2ψ (I.11)

∇× (∇ψ) = 0 (I.12)

∇(∇ · A) = ∇× (∇× A) +∇2A (I.13)

∇ · (∇× A) = 0 (I.14)

∇× (∇× A) = ∇(∇ · A)−∇2A (I.15)

I.4 Vector operations in Cartesian coordinates (x, y, z)

dr = dx �x + dy �y + dz �z (I.16)

d3r = dx dy dz (I.17)

∇f =
∂f

∂x
�x +

∂f

∂y
�y +

∂f

∂z
�z (I.18)

∇ · A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
(I.19)

∇× A =

(
∂Az

∂y
− ∂Ay

∂z

)
�x +

(
∂Ax

∂z
− ∂Az

∂x

)
�y +

(
∂Ay

∂x
− ∂Ax

∂y

)
�z (I.20)

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
(I.21)
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I.5 Vector operations in spherical polar coordinates (r, θ, ϕ)

dr = dr�r + r dθ �θ + r sin θ dϕ �ϕ (I.22)

d3r = r2dr sin θ dθ dϕ (I.23)

∇f =
∂f

∂r
�r +

1

r

∂f

∂θ
�θ +

1

r sin θ
∂f

∂ϕ
�ϕ (I.24)

∇ · A =
1

r2
∂

∂r
(r2Ar) +

1

r sin θ
∂

∂θ
(sin θAθ) +

1

r sin θ
∂Aϕ

∂ϕ
(I.25)

∇× A =
1

r sin θ

[
∂

∂θ
(sin θ Aϕ)−

∂Aθ

∂ϕ

]
�r +

1

r

[
1

sin θ
∂Ar

∂ϕ
− ∂

∂r
(r Aϕ)

]
�θ

+
1

r

[
∂

∂r
(r Aθ)−

∂Ar

∂θ

]
�ϕ (I.26)

∇2f =
1

r2
∂

∂r

(
r2

∂f

∂r

)
+

1

r2 sin θ
∂

∂θ

(
sin θ∂f

∂θ

)
+

1

r2 sin2 θ
∂2f

∂ϕ2
(I.27)
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I.6 Vector operations in cylindrical coordinates (ρ, ϕ, z)

dr = dρ �ρ+ ρ dϕ �ϕ+ dz �z (I.28)

d3r = ρ dρ dϕ dz (I.29)

∇f =
∂f

∂ρ
�ρ+

1

ρ

∂f

∂ϕ
�ϕ+

∂f

∂z
�z (I.30)

∇ · A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aϕ

∂ϕ
+

∂Az

∂z
(I.31)

∇× A =

(
1

ρ

∂Az

∂ϕ
−

∂Aϕ

∂z

)
�ρ+

(
∂Aρ

∂z
− ∂Az

∂ρ

)
�ϕ+

1

ρ

(
∂

∂ρ
(ρAϕ)−

∂Aρ

∂ϕ

)
�z (I.32)

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2
∂2f

∂ϕ2
+

∂2f

∂z2
(I.33)
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J Maxwell's Equations (Static Fields)

Differential form:

Vacuum: Matter:

∇ · E =
ρ

ε0
∇ · D = ρf (Gauss’ law)

∇ · B = 0 ∇ · B = 0 (no magnetic charge)

∇× E = 0 ∇× E = 0 (E is conservative)

∇× B = µ0J ∇× H = Jf (Ampère’s law)

(J.1)

Integral form:

Vacuum: Matter:
∮

S
E · dS =

1

ε0

∫

V
ρ d3r

∮

S
D · dS =

∫

V
ρf d

3r (Gauss’ law)

∮

S
B · dS = 0

∮

S
B · dS = 0 (no magnetic charge)

∮

Γ
E · dr = 0

∮

Γ
E · dr = 0 (E is conservative)

∮

Γ
B · dr = µ0

∫

S
J · dS

∮

Γ
H · dr =

∫

S
Jf · dS (Ampère’s law)

(J.2)

Note: in the 1st row S bounds V ; in the 2nd row S is any closed surface; in the 3rd row Γ is
any closed loop; in the 4th row Γ bounds S.
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