bookboon.com

Cryogenic Engineering: Software Solutions Vol II B

Liquefaction systems – Problems (Mathcad) Dr. M. Thirumaleshwar

Download free books at **bookboon.com**

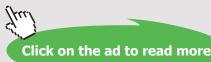
DR. M. THIRUMALESHWAR

CRYOGENIC ENGINEERING: SOFTWARE SOLUTIONS VOL II B LIQUEFACTION SYSTEMS – PROBLEMS (MATHCAD)

Download free eBooks at bookboon.com

Cryogenic Engineering: Software Solutions Vol II B Liquefaction systems – Problems (Mathcad) 1st edition © 2016 Dr. M. Thirumaleshwar & <u>bookboon.com</u> ISBN 978-87-403-1370-3 Peer reveiw: Prof. Dr. Thirumaleshwara Bhat, Principal, Shri Madhwa Vadiraja Institute of Technology & Management, Karnataka, India.

CONTENTS


	To see Part II A, download: Cryogenic Engineering: Software Solutions Part-II A Liquefaction systems – Theory+ Problems (EES)	
3	Cryogenic liquefaction systems	Part II-A
3.1	Definitions, Statements and Formulas used [1–9]:	Part II-A
3.2	Problems solved with EES:	Part II-A
3.3	References	Part II-A
	Dedication	5
	Preface	6
	About the Author	9
	About the Software used	11
3.4	Problems solved with Mathcad:	12
3.5	References	219

Rand Merchant Bank uses good business to create a better world, which is one of the reasons that the country's top talent chooses to work at RMB. For more information visit us at www.rmb.co.za

hinking that can change your world

Rand Merchant Bank is an Authorised Financial Services Provider

DEDICATION

This work is lovingly dedicated at the lotus feet of

Bhagavan Sri Sathya Sai Baba

"Strive for the happiness, the joy of all others, as earnestly as you strive for your own."

"Help Ever, Hurt Never!"

– Bhagavan Sri Sathya Sai Baba

PREFACE

This book, viz. Cryogenic Engineering: Software solutions – Part-II, is the second in the series on Cryogenic Engineering: Software Solutions.

This part is being published in two volumes, viz. Cryogenic Engineering: Software solutions – Part-II A and Part-II B. Part-II A contains the background theory, definitions and formulas and the problems solved with Engineering Equation Solver (EES). Part-II B contains problems solved with Mathcad. So, it is advisable that one refers to both the parts II A and II B.

As with the Part-I of the series, which dealt with: Introduction and properties of cryogenic fluids and properties of materials at low temperatures, the focus is on the solutions of problems in cryogenic engineering using software such as Mathcad and Engineering Equation Solver (EES). Only the essential theory and summary of equations required for calculations are given at the beginning of the chapter.

Advantages of using computer software to solve problems are reiterated:

- i) It helps in solving the problems fast and accurately
- ii) Parametric analysis (what-if analysis) and graphical visualization is done very easily. This helps in an in-depth analysis of the problem.
- iii) Once a particular type of problem is solved, it can be used as a *template* and solving similar problems later becomes extremely easy.
- iv) In addition, one can plot the data, curve fit, write functions for various properties or calculations and re-use them.
- v) These possibilities create interest, curiosity and wonder in the minds of students and enthuse them to know more and work more.

This book, viz. Cryogenic Engineering: Software solutions – Part-II deals with the liquefaction of gases.

In this book: first, a thermodynamic background for cryogenic liquefaction is given; isenthalpic and isentropic expansion, pay-off functions for a liquefier and thermodynamically ideal liquefaction system are explained.

Next, various cycles for liquefaction of gases are explained and the calculation formulas for the pay-off functions are given. The cycles dealt with are: simple Linde-Hampson (L-H) system, pre-cooled L-H system, Linde dual pressure system, Claude system, Kapitza system, Heylandt system, cycles for liquefaction of Neon, Hydrogen and Helium, Collin's Helium liquefier etc.

Finally, various types of heat exchangers, hear transfer correlations, calculation formulas and graphs for analysis by LMTD and NTU methods are given. And, Second Law analysis of the cryogenic systems is explained briefly.

Some catalogue data on commercial liquefiers for Air, Hydrogen and Helium are also given.

Many numerical problems are solved to illustrate the ease of computer calculations using Engineering Equation Solver (EES) and Mathcad software.

Useful data for Nitrogen, Hydrogen, Helium, Argon, Methane, Fluorine and Oxygen are generated from NIST website, i.e. <u>http://webbook.nist.gov/chemistry/fluid/</u>.

EES has built-in functions for properties of several gases, refrigerants and fluids (including cryogenic fluids). Therefore, it is very convenient to use EES in these calculations.

However, Mathcad does not have built-in functions for properties of gases, refrigerants and fluids.

So, Mathcad Functions were written for both saturation properties and single phase gas properties of above mentioned important cryogenic fluids, viz. Nitrogen, Hydrogen, Helium, Argon, Methane, Fluorine and Oxygen. These Functions were used in solving problems, illustrating the ease of using Mathcad in calculations and graphing.

Several Procedures/Functions are written in EES and Mathcad to simplify the standard and most required calculations, which, the students, teachers and researchers may find very useful.

S.I. Units are used throughout this book. Wide variety of worked examples presented in the book should be useful for those appearing for University, AMIE and Engineering Services examinations.

Acknowledgements: Firstly, I would like to thank all my students, who have been an inspiration to me in all my academic efforts.

Sincere thanks are due to **Rev. Fr. Joseph Lobo**, Director, St. Joseph Engineering College, Mangalore, for his kindness, regard and words of encouragement.

I am also thankful to **Dr. Thirumaleshwara Bhat**, Principal, Sri Madhwa Vadiraja Institute of Technology and Management, Bantakal, Udupi, for giving me support in my academic activities.

I gratefully remember my former colleagues at the Cryogenics section of Technical Physics Division, Bhabha Atomic Research Centre (BARC), Bombay and Centre for Advanced Technology, Indore for their sincere cooperation in a true spirit of team-work in all the projects that we undertook.

I particularly salute and admire the vision and foresight of former Heads of Technical Physics Division, BARC viz. late Mr. C. Ambasankaran, Mr. R.Y. Deshpande, Dr. S.R. Gowariker and late Mr. S.S. Ramamurthy in initiating and guiding many of the 'first of its kind' projects for Indian Space Research Organization (ISRO), designed and executed by the Cryogenics section.

I am especially grateful to Prof. R.G.Scurlock, former Director of Institute of Cryogenics, University of Southampton (U.K.), for writing a message for the Part-I of this series.

It was indeed gracious of my former Professor, under whom I studied for M.Sc. in Cryogenics at the University of Southampton, U.K. during 1970–72, and worked as a Visiting Research Fellow during 1993–94, to honor me by writing this message.

My special thanks to **Bookboon.com** for publishing this free ebook. **Ms Karin Jakobsen and Ms Sophie Tergeist** and their editorial staff have been most patient and helpful.

Finally, I would like to express my sincere thanks and appreciation to my **wife, Kala**, who, as usual, has given me continuous support, help and encouragement in all my academic activities, making many silent sacrifices.

M. Thirumaleshwar March 2016

ABOUT THE AUTHOR

Dr. M. Thirumaleshwar graduated in Mechanical Engineering from Karnataka Regional Engineering College, Surathkal, Karnataka, India, in the year 1965. He obtained M.Sc (cryogenics) from University of Southampton, U.K. and Ph.D. (cryogenics) from Indian Institute of Science, Bangalore, India.

He is a Fellow of Institution of Engineers (India), Life Member, Indian Society for Technical Education, and a Foundation Fellow of Indian Cryogenics Council.

He has worked in India and abroad on large projects in the areas involving heat transfer, fluid flow, vacuum system design, cryo-pumping etc.

He worked as Head of Cryogenics Dept. in Bhabha Atomic Research Centre (BARC), Bombay and Centre for Advanced Technology (CAT), Indore, from 1966 to 1992.

He worked as Guest Collaborator with Superconducting Super Collider Laboratory of Universities Research Association, in Dallas, USA from 1990 to 1993.

He also worked at the Institute of Cryogenics, Southampton, U.K. as a Visiting Research Fellow from 1993 to 1994.

He was Head of the Dept. of Mechanical Engineering, Fr. Conceicao Rodrigues Institute of Technology, Vashi, Navi Mumbai, India for eight years.

He also worked as Head of Dept. of Mechanical Engineering and Civil Engineering, and then as Principal, Vivekananda College of Engineering and Technology, Puttur (D.K.), India.

He was Professor and coordinator of Post-graduate program in the Dept. of Mechanical Engineering in St. Joseph Engineering College, Vamanjoor, Mangalore, India.

A book entitled **"Fundamentals of Heat and Mass Transfer"** authored by him and published by M/s Pearson Education, India (2006) **has been adopted as a Text book** for third year engineering students by the Visweswaraya Technological University (V.T.U.), Belgaum, India. He has authored a free e-book entitled **"Software Solutions to Problems on Heat Transfer"** wherein problems are solved using 4 software viz. Mathcad, EES, FEHT and EXCEL. This book, containing about 2750 pages, is presented in 9 parts and all the 9 parts can be downloaded for free from <u>www.bookboon.com</u>.

He has also authored free e-books on Thermodynamics entitled "Basic Thermodynamics: Software Solutions" and "Applied Thermodynamics: Software Solutions" wherein problems are solved using 3 software viz. Mathcad, EES, and TEST. Each of these titles is presented in 5 parts and all the books can be downloaded for free from <u>www.bookboon.com</u>.

His earlier free ebook, viz. Cryogenic Engineering: Software Solutions – Part-I was published by Bookboon about an year ago.

He has also authored **three motivational**, **free ebooks**, published by www.bookboon.com, entitled as follows:

- 1. Towards Excellence... How to Study (A Guide book to Students)
- 2. Towards Excellence... How to teach (A guide book to Teachers)
- 3. Towards Excellence... Seminars, GD's and Personal Interviews

Dr. M. Thirumaleshwar has attended several National and International conferences and has more than 50 publications to his credit.

ABOUT THE SOFTWARE USED

Following three software are used while solving problems in this book series:

- 1. Mathcad 7 and Mathcad 15 (Ref: www.ptc.com)
- 2. Engineering Equation Solver (EES) (Ref: www.fchart.com), and
- 3. EXCEL

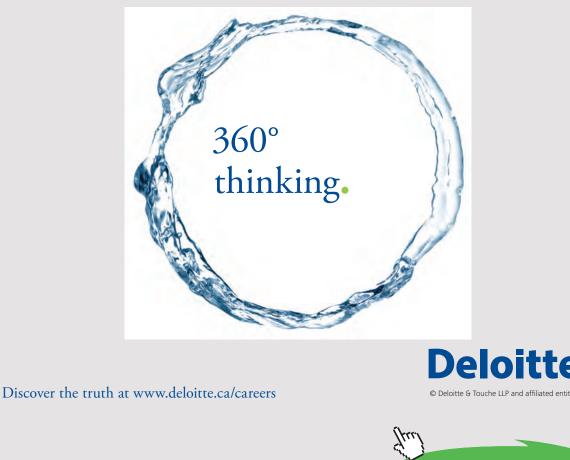
For a brief introduction to Mathcad, EES and EXCEL see the chapter 1 of the following free ebook by the author:

"Software Solutions to Problems on Heat Transfer – CONDUCTION Part-I": http://bookboon.com/en/software-solutions-to-problems-on-heat-transfer-ebook

3.4 PROBLEMS SOLVED WITH MATHCAD:

Unlike Engineering Equation Solver (EES), Mathcad does not have built-in functions for properties of cryogenic fluids.

So, we have written Mathcad Functions for properties that are essential for problem solving, for important cryogenic fluids, viz. Helium, Hydrogen,Nitrogen, Argon, Methane, Fluorine and Oxygen.


Cryogenic properties for fluids are taken from NIST [28], i.e.

http://webbook.nist.gov/chemistry/fluid/

Procedure to use the above NIST website to get both the saturation properties and superheat gas properties for different fluids is explained in detail in the earlier free ebook by this author (See pp: 40 to 48 and pp: 60 to 66 of that book), published by Bookboon. Following is the link:

Cryogenic Engineering: Software Solutions: Part-I

http://bookboon.com/en/cryogenic-engineering-software-solutions-part-i-ebook

Download free eBooks at bookboon.com

Click on the ad to read more

Note: Cryogenic Engineering: Software solutions Part-II A contains the theory of gas liquefaction and problems solved with Engineering Equation Solver (EES). So, it is suggested that while using this book (i.e. Part-II B) which has problems solved with Mathcad, the student may find it useful to have the Part-II A too readily available, so that he/she may refer to the theoretical aspects if required.

Prob. 3.3.1 Write Mathcad Functions to determine properties of Helium.

From NIST website, we get properties of Helium and then write the Mathcad Functions.

We have:

For Helium:

Saturation Properties:

Sat. Liquid:

D	E	F	G	Н	I	J
Pressure (bar)	Temp.(K)	Density (kg/m3)	Volume (m3/kg)	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	Entropy (J/g*K)
0.05	2.1883	146.21	0.0068393	-7.4633	-7.4291	-2.1439
0.15	2.7176	143.6	0.0069637	-5.716	-5.6115	-1.4151
0.25	3.0348	141.03	0.0070906	-4.9476	-4.7703	-1.1471
0.35	3.2741	138.66	0.0072121	-4.293	-4.0406	-0.9385
0.45	3.4707	136.42	0.0073304	-3.6944	-3.3645	-0.75962
0.55	3.6399	134.27	0.0074477	-3.134	-2.7243	-0.60036
0.65	3.7897	132.18	0.0075655	-2.6018	-2.1101	-0.45522
0.75	3.9247	130.12	0.0076851	-2.0911	-1.5147	-0.32064
0.85	4.0482	128.08	0.0078076	-1.5964	-0.93274	-0.1941
0.95	4.1623	126.04	0.0079343	-1.1134	-0.35968	-0.07369
1.05	4.2686	123.97	0.0080662	-0.63849	0.20846	0.0421
1.15	4.3682	121.88	0.0082049	-0.16815	0.77541	0.15454
1.25	4.4621	119.73	0.0083519	0.30091	1.3449	0.26477
1.35	4.551	117.52	0.0085094	0.77211	1.9209	0.37387
1.45	4.6354	115.21	0.00868	1.2493	2.5079	0.48294
1.55	4.7157	112.77	0.0088672	1.7369	3.1114	0.59324
1.65	4.7924	110.18	0.0090762	2.2409	3.7385	0.70628
1.75	4.8657	107.36	0.0093144	2.7693	4.3993	0.82407
1.85	4.9359	104.23	0.009594	3.3342	5.109	0.94959
1.95	5.0031	100.64	0.009936	3.9559	5.8934	1.0878
2.05	5.0674	96.304	0.010384	4.674	6.8027	1.2482
2.15	5.129	90.487	0.011051	5.5878	7.9638	1.4549
2.25	5.1875	79.733	0.012542	7.1806	10.003	1.8272

Contd...

Cv (J/g*K)	Cp (J/g*K)	Sound Spd. (m/s)	Joule-Thomson (K/bar)	Viscosity (Pa*s)	Therm. Cond. (W/m*K)	Surf. Tension (N/m	Phase	Pressure (bar)
6.0181	6.0528	216.71	-0.10843	3.61E-06	0.013577	0.00028744	liquid	0.05
2.0527	2.3697	216.82	-0.25111	3.75E-06	0.015675	0.00024125	liquid	0.15
2.0779	2.6455	213.74	-0.2093	3.68E-06	0.016651	0.00021027	liquid	0.25
2.2133	3.0182	208.55	-0.17028	3.60E-06	0.017266	0.00018586	liquid	0.35
2.3177	3.3603	203.25	-0.14041	3.52E-06	0.017692	0.0001654	liquid	0.45
2.392	3.6811	198.13	-0.11555	3.45E-06	0.018002	0.00014765	liquid	0.55
2.4455	3.9965	193.23	-0.09328	3.38E-06	0.018228	0.00013195	liquid	0.65
2.4852	4.3201	188.48	-0.072294	3.32E-06	0.018395	0.00011786	liquid	0.75
2.5158	4.6636	183.86	-0.051818	3.25E-06	0.018518	0.00010508	liquid	0.85
2.5404	5.0389	179.32	-0.031346	3.20E-06	0.018607	9.34E-05	liquid	0.95
2.5609	5.4592	174.82	-0.010503	3.14E-06	0.018672	8.27E-05	liquid	1.05
2.5788	5.9411	170.35	0.011022	3.09E-06	0.01872	7.28E-05	liquid	1.15
2.5949	6.5064	165.88	0.033519	3.03E-06	0.018757	6.37E-05	liquid	1.25
2.61	7.1864	161.39	0.057282	2.98E-06	0.018791	5.52E-05	liquid	1.35
2.6247	8.027	156.86	0.082636	2.93E-06	0.018826	4.73E-05	liquid	1.45
2.6395	9.1006	152.27	0.10996	2.87E-06	0.018869	3.99E-05	liquid	1.55
2.6548	10.528	147.59	0.13973	2.82E-06	0.018925	3.30E-05	liquid	1.65
2.6713	12.527	142.8	0.17256	2.76E-06	0.019002	2.66E-05	liquid	1.75
2.6894	15.532	137.86	0.20932	2.70E-06	0.019114	2.07E-05	liquid	1.85
2.7104	20.548	132.71	0.25134	2.63E-06	0.019288	1.51E-05	liquid	1.95
2.736	30.492	127.25	0.301	2.55E-06	0.019598	9.88E-06	liquid	2.05
2.7704	58.399	121.23	0.3639	2.45E-06	0.020342	5.05E-06	liquid	2.15
undefined	undefined	undefined	0.46755	2.28E-06	undefined	5.83E-07	liquid	2.25

Sat. vapor:

Pressure (bar)	Temp.(K)	Density (kg/m3)	Volume (m3/kg)	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	Entropy (J/g*K)
0.05	2.1883	1.1743	0.85156	11.514	15.772	8.4584
0.15	2.7176	2.9877	0.33471	12.727	17.747	7.1802
0.25	3.0348	4.6327	0.21586	13.366	18.763	6.6074
0.35	3.2741	6.2141	0.16093	13.79	19.423	6.2279
0.45	3.4707	7.7689	0.12872	14.093	19.885	5.9392
0.55	3.6399	9.3175	0.10733	14.314	20.217	5.7024
0.65	3.7897	10.874	0.091965	14.475	20.453	5.4987
0.75	3.9247	12.449	0.08033	14.589	20.614	5.3176
0.85	4.0482	14.052	0.071164	14.662	20.711	5.1523
0.95	4.1623	15.694	0.063718	14.699	20.752	4.9985
1.05	4.2686	17.385	0.05752	14.704	20.743	4.8528
1.15	4.3682	19.137	0.052254	14.677	20.686	4.7127
1.25	4.4621	20.964	0.047701	14.62	20.582	4.576
1.35	4.551	22.882	0.043703	14.531	20.43	4.441
1.45	4.6354	24.914	0.040139	14.408	20.228	4.3058
1.55	4.7157	27.088	0.036917	14.249	19.971	4.1684
1.65	4.7924	29.444	0.033963	14.047	19.651	4.0266
1.75	4.8657	32.041	0.03121	13.795	19.256	3.8775
1.85	4.9359	34.97	0.028596	13.477	18.767	3.7168
1.95	5.0031	38.387	0.02605	13.071	18.151	3.5377
2.05	5.0674	42.598	0.023475	12.528	17.341	3.3277
2.15	5.129	48.37	0.020674	11.732	16.177	3.0561
2.25	5.1875	59.35	0.016849	10.138	13.929	2.584

Contd...

Cv (J/g*K)	Cp (J/g*K)	Sound Spd. (m/s)	Joule-Thomson (K/bar)	Viscosity (Pa*s)	Therm. Cond. (W/m*K)	Phase	Pressure (bar)
3.4715	6.0683	83.394	2.7379	5.41E-07	0.0040074	vapor	0.05
3.4781	6.3917	90.176	1.7683	7.06E-07	0.0052574	vapor	0.15
3.4478	6.6202	93.357	1.488	8.07E-07	0.0059717	vapor	0.25
3.4148	6.8437	95.352	1.3476	8.86E-07	0.0065219	vapor	0.35
3.3829	7.0808	96.748	1.2618	9.54E-07	0.0069867	vapor	0.45
3.353	7.3407	97.779	1.2035	1.01E-06	0.0074048	vapor	0.55
3.325	7.631	98.564	1.1611	1.07E-06	0.0077866	vapor	0.65
3.2988	7.9595	99.171	1.1287	1.12E-06	0.0081466	vapor	0.75
3.2742	8.3354	99.645	1.103	1.17E-06	0.0084935	vapor	0.85
3.251	8.7704	100.01	1.0819	1.22E-06	0.0088344	vapor	0.95
3.2289	9.2797	100.3	1.0638	1.26E-06	0.0091754	vapor	1.05
3.2079	9.884	100.52	1.0478	1.31E-06	0.0095226	vapor	1.15
3.1877	10.612	100.69	1.033	1.35E-06	0.0098822	vapor	1.25
3.1682	11.506	100.82	1.0187	1.40E-06	0.010261	vapor	1.35
3.1491	12.627	100.92	1.0041	1.44E-06	0.010667	vapor	1.45
3.1303	14.075	101.01	0.98855	1.49E-06	0.011109	vapor	1.55
3.1116	16.009	101.1	0.97117	1.53E-06	0.011601	vapor	1.65
3.0926	18.722	101.21	0.95084	1.58E-06	0.012161	vapor	1.75
3.0728	22.786	101.38	0.92603	1.63E-06	0.012821	vapor	1.85
3.0516	29.504	101.64	0.89434	1.69E-06	0.013639	vapor	1.95
3.0273	42.595	102.11	0.85146	1.76E-06	0.014753	vapor	2.05
2.9965	78.175	103.02	0.78775	1.84E-06	0.016612	vapor	2.15
undefined	undefined	undefined	0.66396	1.99E-06	undefined	vapor	2.25

.....

Download free eBooks at bookboon.com

Isobaric data is collected for pressures, P = 1, 5...220 bar.

Sample data for P = 20 bar for temps from 5 K to 366 K is shown below:

Temperature (K)	Volume (m3/kg)	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	Entropy (J/g*K)	Cv (J/g*K)	Cp (J/g*K)	Sound Spd. (m/s)
5	0.0062943	-1.3864	11.202	-0.41206	2.2728	3.0469	333.65
15	0.015076	38.543	68.695	5.468	3.1274	6.6435	266.67
25	0.027147	75.81	130.1	8.6237	3.1862	5.7891	323.95
35	0.03835	109.61	186.31	10.518	3.1747	5.4978	375.12
45	0.049169	142.25	240.59	11.882	3.1623	5.3725	419.49
55	0.059804	174.35	293.96	12.953	3.1529	5.308	459.21
65	0.070342	206.15	346.84	13.837	3.1461	5.2708	495.57
75	0.080822	237.78	399.42	14.589	3.1411	5.2478	529.32
85	0.091267	269.28	451.82	15.245	3.1372	5.2326	561
95	0.10169	300.71	504.09	15.827	3.1343	5.2223	590.94
105	0.1121	332.08	556.27	16.349	3.1319	5.215	619.42
115	0.12249	363.41	608.39	16.823	3.13	5.2096	646.65
125	0.13288	394.71	660.47	17.257	3.1285	5.2057	672.76
135	0.14327	425.98	712.51	17.658	3.1272	5.2027	697.9
145	0.15365	457.23	764.53	18.03	3.1261	5.2004	722.17
155	0.16402	488.47	816.52	18.376	3.1252	5.1986	745.65
165	0.1744	519.7	868.5	18.701	3.1244	5.1972	768.41
175	0.18477	550.92	920.47	19.007	3.1237	5.1961	790.53
185	0.19515	582.13	972.42	19.296	3.1231	5.1952	812.04
195	0.20552	613.33	1024.4	19.569	3.1225	5.1945	833

205	0.21589	644.52	1076.3	19.829	3.1221	5.1939	853.45
215	0.22627	675.72	1128.2	20.076	3.1217	5.1934	873.42
225	0.23664	706.9	1180.2	20.312	3.1213	5.193	892.95
235	0.24701	738.09	1232.1	20.538	3.1209	5.1927	912.07
245	0.25738	769.27	1284	20.755	3.1206	5.1924	930.79
255	0.26776	800.45	1336	20.962	3.1204	5.1922	949.15
265	0.27813	831.62	1387.9	21.162	3.1201	5.192	967.16
275	0.2885	862.8	1439.8	21.354	3.1199	5.1919	984.84
285	0.29887	893.97	1491.7	21.54	3.1197	5.1918	1002.2
295	0.30925	925.14	1543.6	21.719	3.1195	5.1916	1019.3
305	0.31962	956.31	1595.6	21.892	3.1193	5.1916	1036.1
315	0.33	987.48	1647.5	22.059	3.1192	5.1915	1052.6
325	0.34037	1018.6	1699.4	22.222	3.119	5.1914	1068.9
335	0.35074	1049.8	1751.3	22.379	3.1189	5.1914	1084.9
345	0.36112	1081	1803.2	22.532	3.1187	5.1914	1100.7
355	0.37149	1112.1	1855.1	22.68	3.1186	5.1913	1116.3

Contd...

Joule-Thomson (K/bar)	Viscosity (Pa*s)	Therm. Cond. (W/m*K)	Phase	Temperature (K)
-0.16198	5.73E-06	0.028412	liquid	5
0.057907	3.95E-06	0.030214	supercritical	15
0.028803	4.72E-06	0.035567	supercritical	25
0.00022434	5.55E-06	0.041387	supercritical	35
-0.018361	6.34E-06	0.047106	supercritical	45
-0.030693	7.08E-06	0.052663	supercritical	55
-0.039183	7.78E-06	0.058052	supercritical	65
-0.045215	8.45E-06	0.063284	supercritical	75
-0.049608	9.09E-06	0.068369	supercritical	85
-0.052869	9.71E-06	0.07332	supercritical	95
-0.055326	1.02E-05	0.078148	supercritical	105
-0.057197	1.07E-05	0.082865	supercritical	115
-0.058632	1.13E-05	0.08748	supercritical	125
-0.059736	1.19E-05	0.092	supercritical	135
-0.060587	1.24E-05	0.096432	supercritical	145
-0.061239	1.30E-05	0.10078	supercritical	155
-0.061736	1.35E-05	0.10506	supercritical	165
-0.062108	1.40E-05	0.10927	supercritical	175
-0.062382	1.45E-05	0.11341	supercritical	185
-0.062574	1.50E-05	0.11749	supercritical	195
			-	

-0.062702	1.55E-05	0.12151	supercritical	205
-0.062776	1.60E-05	0.12548	supercritical	215
-0.062806	1.65E-05	0.12939	supercritical	225
-0.0628	1.70E-05	0.13326	supercritical	235
-0.062764	1.75E-05	0.13708	supercritical	245
-0.062703	1.79E-05	0.14085	supercritical	255
-0.062622	1.84E-05	0.14459	supercritical	265
-0.062524	1.89E-05	0.14828	supercritical	275
-0.062412	1.93E-05	0.15194	supercritical	285
-0.062289	1.98E-05	0.15556	supercritical	295
-0.062155	2.02E-05	0.15914	supercritical	305
-0.062014	2.07E-05	0.16269	supercritical	315
-0.061867	2.11E-05	0.16621	supercritical	325
-0.061714	2.16E-05	0.16969	supercritical	335
-0.061557	2.20E-05	0.17315	supercritical	345
-0.061397	2.24E-05	0.17658	supercritical	355

Now, to write Mathcad Functions, first write the data as Mathcad Matrix/vectors:

Properties of Helium:

Sat. properties: (Ref: NIST)

Units: psat (bar), tsat(K), vf, vg (m3/kg), hf, hg (kJ/kg), sf, sg (kJ/kg.K)

	Ps	at Tsa	at vf	vg	hf	hg	sf	sg
	0.05	2.1883	0.0068393	0.85156	-7.4291	15.772	-2.1439	8.4584
	0.15	2.7176	0.0069637	0.33471	-5.6115	17.747	-1.4151	7.1802
	0.25	3.0348	0.0070906	0.21586	-4.7703	18.763	-1.1471	6.6074
	0.35	3.2741	0.0072121	0.16093	-4.0406	19.423	-0.9385	6.2279
	0.45	3.4707	0.0073304	0.12872	-3.3645	19.885	-0.75962	5.9392
	0.55	3.6399	0.0074477	0.10733	-2.7243	20.217	-0.60036	5.7024
	0.65	3.7897	0.0075655	0.091965	-2.1101	20.453	-0.45522	5.4987
	0.75	3.9247	0.0076851	0.08033	-1.5147	20.614	-0.32064	5.3176
	0.85	4.0482	0.0078076	0.071164	-0.93274	20.711	-0.1941	5.1523
	0.95	4.1623	0.0079343	0.063718	-0.35968	20.752	-0.07369	4.9985
	1.05	4.2686	0.0080662	0.05752	0.20846	20.743	0.0421	4.8528
M_sat_He :=	1.15	4.3682	0.0082049	0.052254	0.77541	20.686	0.15454	4.7127
	1.25	4.4621	0.0083519	0.047701	1.3449	20.582	0.26477	4.576
	1.35	4.551	0.0085094	0.043703	1.9209	20.43	0.37387	4.441
	1.45	4.6354	0.00868	0.040139	2.5079	20.228	0.48294	4.3058
	1.55	4.7157	0.0088672	0.036917	3.1114	19.971	0.59324	4.1684
	1.65	4.7924	0.0090762	0.033963	3.7385	19.651	0.70628	4.0266
	1.75	4.8657	0.0093144	0.03121	4.3993	19.256	0.82407	3.8775
	1.85	4.9359	0.009594	0.028596	5.109	18.767	0.94959	3.7168
	1.95	5.0031	0.009936	0.02605	5.8934	18.151	1.0878	3.5377
	2.05	5.0674	0.010384	0.023475	6.8027	17.341	1.2482	3.3277
	2.15	5.129	0.011051	0.020674	7.9638	16.1 77	1.4549	3.0561
	2.25	5.1875	0.012542	0.016849	10.003	13.929	1.8272	2.584)

Now, separate the data vectors:

 $psat := M_sat_He^{\langle 0 \rangle} tsat := M_sat_He^{\langle 1 \rangle} vfsat := M_sat_He^{\langle 2 \rangle}$ $vgsat := M_sat_He^{\langle 3 \rangle} hfsat := M_sat_He^{\langle 4 \rangle} hgsat := M_sat_He^{\langle 5 \rangle}$ $sfsat := M_sat_He^{\langle 6 \rangle} sgsat := M_sat_He^{\langle 7 \rangle}$

Download free eBooks at bookboon.com

And, now write the Functions for sat. properties of Helium:

Function	Example
TSAT(P) := linterp(psat,tsat,P)	TSAT(1.5) = 4.676
PSAT(T) := linterp(tsat, psat, T)	PSAT(4.7) = 1.53
HFSATP(P) := linterp(psat, hfsat, P)	HFSATP(1.50) = 2.81
HFSATT(T) := linterp(tsat, hfsat, T)	HFSATT(4.5) = 1.59
HGSATP(P) := linterp(psat,hgsat,P)	HGSATP(1.0) = 20.747
$HGSATT(T) \coloneqq linterp(tsat,hgsat,T)$	HGSATT(4.5) = 20.517
HFGSATP(P) := HGSATP(P) - HFSATP(P)	HFGSATP(0.1) = 23.28
HFGSATT(T) := HGSATT(T) - HFSATT(T)	HFGSATT(5) = 12.322
SFSATP(P) := linterp(psat, sfsat, P)	SFSATP(1.0) = -0.016
$SFSATT(T) \coloneqq linterp(tsat, sfsat, T)$	SFSATT(4.5) = 0.311
SGSATP(P) := linterp(psat,sgsat,P)	SGSATP(1.0) = 4.926
SGSATT(T) := linterp(tsat, sgsat, T)	SGSATT(4.5) = 4.518

SFGSATP(P) := SGSATP(P) - SFSATP(P)	SFGSATP(1.0) = 4.941
SFGSATT(T) := SGSATT(T) - SFSATT(T)	SFGSATT(4.5) = 4.207
VGSATP(P) := linterp(psat, vgsat, P)	VGSATP(1.0) = 0.061 m ³ /kg
VGSATT(T) := linterp(tsat, vgsat, T)	VGSATT(4.5) = 0.046 m^3/kg
VFSATP(P) := linterp(psat, vfsat, P)	$VFSATP(1.0) = 8.00025 \times 10^{-3} m^3/kg$
VFSATT(T) := linterp(tsat, vfsat, T)	$VFSATT(4.5) = 8.419046 \times 10^{-3}$ m^3/kg
VFGSATP(P) := VGSATP(P) - VFSATP(P)	VFGSATP(1.0) = 0.052619 m^3/kg
VFGSATT(T) := VGSATT(T) - VFSATT(T)	VFGSATT(4.5) = 0.037578 m ³ /kg
$UGSATP(P) := HGSATP(P) - P \cdot 10^2 \cdot VGSATP(P)$	(P) UGSATP(1) = 14.686
$UFSATP(P) := HFSATP(P) - P \cdot VFSATP(P) \cdot 1$	0 ²
UFGSATP(P) := UGSATP(P) - UFSATP(P)	
$UGSATT(T) := HGSATT(T) - PSAT(T) \cdot 10^2 \cdot V$	/GSATT(T) UGSATT(4.5) = 14.572
$UFSATT(T) := HFSATT(T) - PSAT(T) \cdot 10^2 \cdot V$	FSATT(T)
UFGSATT(T) := UGSATT(T) - UFSATT(T)	

Some more Functions for two-phase properties:

In the following program: psat = sat. pr. in bar, s = entropy in kJ/kg.K

$$\begin{array}{ll} \mbox{quality}_Ps(psat\,,s) \coloneqq & \mbox{return "psat should be between 0.05 bar and 2.25 bar ! " if psat < 0.05 \\ \mbox{return "psat should be between 0.05 bar and 2.25 bar ! " if psat > 2.25 \\ \mbox{sf} \leftarrow & \mbox{SFSATP}(psat) \\ \mbox{sfg} \leftarrow & \mbox{SFGSATP}(psat) \\ \mbox{x} \leftarrow & \frac{s - sf}{sfg} \end{array}$$

Ex: psat := 2.25 s.:= 2.5

quality_Ps(psat,s) = 0.889

Download free eBooks at bookboon.com

In the following program: tsat = sat. temp, K, s = entropy in kJ/kg.K

```
quality_Ts(tsat, s) := return "tsat should be between 2.1883 K and 5.1875 K ! " if tsat < 2.1883
                          return "tsat should be between 2.1883 K and 5.1875 K ! " if tsat > 5.1875
                          sf \leftarrow SFSATT(tsat)
                         sfg \leftarrow SFGSATT(tsat)
x \leftarrow \frac{s - sf}{sfr}
  Ex:
             tsat := 2.6 s := 0.8
```

 $quality_Ts(tsat, s) = 0.263$

In the following program: tsat = sat. temp, K, h = enthalpy in kJ/kg.

quality_Th(tsat,h) := return "tsat should be between 2.1883 K and 5.1875 K ! " if tsat < 2.1883 return "tsat should be between 2.1883 K and 5.1875 K ! " $\,$ if $\,$ tsat > 5.1875 $hf \leftarrow HFSATT(tsat)$ $hfg \leftarrow HFGSATT(tsat)$ $x \leftarrow \frac{h - hf}{tsr}$ Ex: tsat := 2.6 h := 17

 $quality_Th(tsat,h) = 0.987$

quality_Ph(psat,h) := return "psat should be between 0.05 bar and 2.25 bar ! " if psat < 0.05 return "psat should be between 0.05 bar and 2.25 bar ! " if psat > 2.25 $hf \leftarrow HFSATP(psat)$ $hfg \leftarrow HFGSATP(psat)$ $x \leftarrow \frac{h - hf}{hfg}$ Ex: psat := 2.25 h := 11

 $quality_Ph(psat,h) = 0.254$

Download free eBooks at bookboon.com

In the following program: psat = sat. pr. in bar, x = quality, and s in kJ/kg.K

Ex: psat := 2.2 x := 0.448

entropy_2phase_Px(psat,x) = 2.169

Brain power

By 2020, wind could provide one-tenth of our planet's electricity needs. Already today, SKF's innovative know-how is crucial to running a large proportion of the world's wind turbines.

Up to 25 % of the generating costs relate to maintenance. These can be reduced dramatically thanks to our systems for on-line condition monitoring and automatic lubrication. We help make it more economical to create cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity, industries can boost performance beyond expectations. Therefore we need the best employees who can neet this challenge!

The Power of Knowledge Engineering

Plug into The Power of Knowledge Engineering. Visit us at www.skf.com/knowledge

SKF

Download free eBooks at bookboon.com

Click on the ad to read more

22

In the following program: tsat = sat. temp, K, x is quality, and s = entropy in kJ/kg.K

```
Ex: tsat := 2.1883 x := 1
```

```
entropy_2phase_Tx(tsat,x) = 8.458
```

In the following program: tsat = sat. temp, K, x is quality, and h = enthalpy in kJ/kg

Ex: tsat := 4 h := 20

entropy_2phase_Th(tsat,h) = 5.048

In the following program: psat = sat. pr. in bar, x = quality, and h in kJ/kg

enthalpy_2phase_Px(psat,x) := return "psat should be between 0.05 bar and 2.25 bar ! " if psat < 0.05 return "psat should be between 0.05 bar and 2.25 bar ! " if psat > 2.25 PSAT \leftarrow psat hf \leftarrow HFSATP(PSAT) hfg \leftarrow HFGSATP(PSAT) h \leftarrow hf + x \cdot hfg

Ex: psat := 2.25 x := 0.754

enthalpy_2phase_Px(psat,x) = 12.963

In the following program: tsat = sat. temp, K, x is quality, and h = enthalpy in kJ/kg

enthalpy_2phase_Tx(tsat,x) :=	return "tsat should be between 2.1883 K and 5.1875 K ! " if tsat < 2.1883
	return "tsat should be between 2.1883 K and 5.1875 K ! " if tsat > 5.1875
	hf HFSATT(tsat)
	$\begin{aligned} hfg \leftarrow HFGSATT(tsat) \\ h \leftarrow hf + x \cdot hfg \end{aligned}$
	$\mathbf{h} \leftarrow \mathbf{h}\mathbf{f} + \mathbf{x} \cdot \mathbf{h}\mathbf{f}\mathbf{g}$

Ex: <u>tsat</u> := 5 <u>x</u> := 0

enthalpy_2phase_Tx(tsat,x) = 5.857

In the following program: tsat = sat. temp, K, s in kJ/kg.K, and h = enthalpy in kJ/kg

Ex: tsat := 4 s := 5

enthalpy_2phase_Ts(tsat, s) = 19.806

In the following program: psat = sat. pr. in bar, s = entropy in kJ/kg.K, and h in kJ/kg

Ex: psat := 2.25 s := 2.5

enthalpy_2phase_Ps(psat,s) = 13.493

Download free eBooks at bookboon.com

Now, properties at 1, 5, 10...220 bar for single phase helium gas are written as Mathcad matrices.

Example for P = 1 bar and 220 bar only are shown, to conserve space:

At 1 b	ar:					TK vm^3/kg
	т	v	u	h	s	u, hkJ/kg; s…kJ/kg.K…
	(5	0.084888	18.187	26.676	6.2182)
	15	0.30963	51.225	82.188	12.421	
	25	0.52012	82.713	134.73	15.106	
	35	0.72891	114.02	186.91	16.862	
	45	0.93714	145.26	238.97	18.171	
	55	1.1451	176.47	290.98	19.215	
	65	1.353	207.66	342.96	20.083	
	75	1.5609	238.84	394.93	20.827	
	85	1.7686	270.02	446.88	21.477	
	95	1.9764	301.19	498.83	22.055	
	105	2.1841	332.36	550.77	22.575	
	115	2.3919	363.53	602.71	23.047	
	125	2.5996	394.69	654.65	23.48	
	135	2.8073	425.86	706.59	23.88	
	145	3.015	457.02	758.52	24.251	
	155	3.2227	488.18	810.46	24.597	
	165	3.4305	519.34	862.39	24.922	
M He -	175	3.6382	550.51	914.32	25.228	
M_He ₁ :=	185	3.8459	581.67	966.25	25.516	
	195	4.0536	612.83	1018.2	25.79	
	205	4.2613	643.99	1070.1	26.049	
	215	4.469	675.15	1122	26.297	
	225	4.6767	706.31	1174	26.533	
	235	4.8844	737.47	1225.9	26.758	
	245	5.0921	768.63	1277.8	26.975	
	255	5.2998	7 99 .79	1329.8	27.183	
	265	5.5075	830.94	1381.7	27.382	
	275	5.7153	862.1	1433.6	27.575	

285	5.923	893.26	1485.6	27.76	
295	6.1307	924.42	1537.5	27.939	
305	6.3384	955.58	1589.4	28.112	
 -315-	6.5461	986.74	1641.3	-28.28	
325	6.7538	1017.9	1693.3	28.442	
335	6.9615	1049.1	1745.2	28.6	
345	7.1692	1080.2	1797.1	28.752	
355	7.3769	1111.4	1849.1	28.901	

4.5

Data vectors are created from the above matrix, and Functions are written for enthalpy and entropy:

temp1 := $(M_He_1)^{(0)}$		
spvol1 := $(M_He_1)^{(1)}$ enth1 := $(M_He_1)^{(3)}$	entrop1	$:= (M_He_1)^{4}$
HHe1B(T) := linterp(temp1, enth1, T)	ex:	$\text{HHe1B(340)} = 1.771 \times 10^3$
SHe1B(T) := linterp(temp1, entrop1, T)	ex:	SHe1B(340) = 28.676

With us you can shape the future. Every single day.

For more information go to: www.eon-career.com

Your energy shapes the future.

Click on the ad to read more

At 220 bar:

T.....K v....m^3/kg u, h....kJ/kg; s...kJ/kg.K....

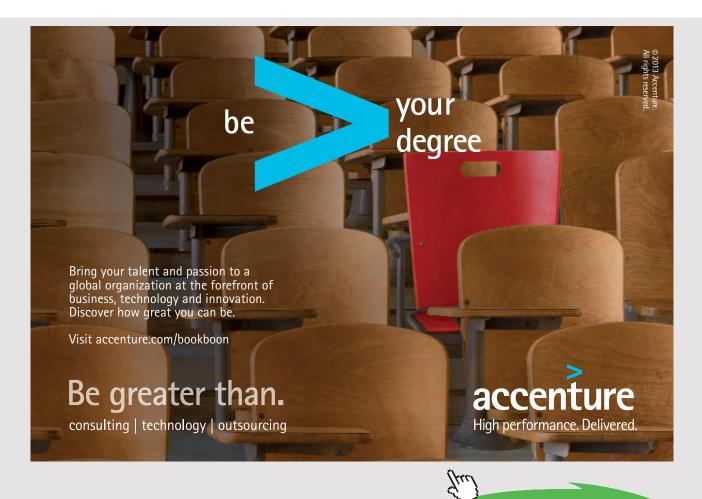
	т	v	u	h	s
	(15	0.0047112	27.364	131.01	1.1655
	25	0.0054133	58.786	177.88	3.5391
	35	0.0062499	93.235	230.73	5.3142
	45	0.0071602	128.2	285.73	6.6957
	55	0.008106	162.89	341.23	7.8095
	65	0.0090657	197.12	396.56	8.734
	75	0.010029	230.87	451.5	9.5202
	85	0.010991	264.22	506.01	10.202
	95	0.011949	297.22	560.1	10.804
	105	0.012904	329.94	613.84	11.342
	115	0.013856	362.44	667.27	11.828
	125	0.014805	394.74	720.44	12.272
	135	0.01575	426.89	773.4	12.679
	145	0.016694	458.9	826.17	13.056
	155	0.017636	490.81	878.8	13.407
	165	0.018576	522.63	931.29	13.735
	175	0.019514	554.36	983.68	14.044
M_He ₂₂₀ :=	185	0.020452	586.03	1036	14.334
	195	0.021389	61 7. 6 4	1088.2	14.609
	205	0.022325	649.2	1140.3	14.87
	215	0.02326	680.71	1192.4	15.118
	225	0.024195	712.19	1244.5	15.355
	235	0.02513	743.63	1296.5	15.581
	245	0.026064	775.05	1348.5	15.797
	255	0.026998	806.44	1400.4	16.005
	265	0.027932	837.8	1452.3	16.205
	275	0.028866	869.15	1504.2	16.397
	285	0.0298	900.48	1556.1	16.582
	295	0.030734	931.79	1607.9	16.761
	305	0.031668	963.08	1659.8	16.934
	315	0.032602	994.37	1711.6	17.101
	325	0.033536	1025.6	1763.4	17.263
	335	0.03447	1056.9	1815.2	17.42
	345	0.035404	1088.1	1867	17.573
	355	0.036338	1119.4	1918.8	17.721)

temp220 := $S220^{\langle 0 \rangle}$		
spvol220 := $\$220^{1}$ enth220 := $\$220^{3}$ entrop220 :=	= \$220 ⁽⁴⁾	
HHe220B(T) := linterp(temp220, enth220, T)	ex:	$\text{HHe220B(340)} = 1.841 \times 10^3$
SHe220B(T) := linterp(temp220, entrop220, T)	ex:	SHe220B(340) = 17.497

Now, using the above Data Matrices, write a Function to find enthalpy and entropy of superheated helium as a function of P and T:

First, create a vector of all pressure values for which we have collected data Matrices: Pressures_He := (1 5 10 15 20 30 40 60 80 100 120 140 160 180 200 220)

Explanation of the Function:


In the Function below, P and T are the Inputs, and h and s are the outputs.

If the input P value exactly matches with one of the values in the Pressures_He data vector, that particular Matrix is accessed and the h and s are found out by linear interpolation.

However, if the input P does not exactly match with any of the values in the Pressures_He data vector, then the pressures PL and PH which bracket P are found out, and the h and s are first calculated for pressures corresponding to PL and PH, and then the h and s values at the required P are found out by linear interpolation:

Now, write the function:

$$\begin{split} h_and_s_SuperheatHe(P,T) \coloneqq & \text{returm } ^{\mathsf{T}} < \mathsf{Tsat}; \text{ use two-phase Functions } ^{\mathsf{m}} \text{ if } \mathsf{T} < \mathsf{TSAT}(P) \land \mathsf{P} < 2.2746\\ & \text{returm } ^{\mathsf{T}} \text{ should be between 1 bar and } 220 \text{ bar''} \quad \text{if } \mathsf{P} < 1 \lor \mathsf{P} > 220\\ & \text{for } k \in 0..15\\ & \text{ if } \mathsf{P} = \mathsf{Pressures_He}_{0,k}\\ & h \leftarrow \mathsf{linterp}\Big[(M_He_{\mathsf{Pressures_He}_{0,k})^{\langle 0 \rangle}, (M_He_{\mathsf{Pressures_He}_{0,k})^{\langle 0 \rangle}, \mathsf{T} \Big]\\ & s \leftarrow \mathsf{linterp}\Big[(M_He_{\mathsf{Pressures_He}_{0,k})^{\langle 0 \rangle}, (M_He_{\mathsf{Pressures_He}_{0,k})^{\langle 0 \rangle}, \mathsf{T} \Big]\\ & \text{ returm } \Big(\mathsf{"Enthalpy}(kJ/kg)" \; \mathsf{"Entropy}(kJ/kg,K)" \Big)\\ & \text{ if } \mathsf{P} > \mathsf{Pressures_He}_{0,k} \land \mathsf{P} < \mathsf{Pressures_He}_{0,k+1}\\ & \mathsf{PL} \leftarrow \mathsf{Pressures_He}_{0,k} \land \mathsf{P} < \mathsf{Pressures_He}_{0,k+1}\\ & \mathsf{PL} \leftarrow \mathsf{Pressures_He}_{0,k+1}\\ & \mathsf{A} \leftarrow \mathsf{interp}\Big[(M_He_{\mathsf{PL}})^{\langle 0 \rangle}, (M_He_{\mathsf{PL}})^{\langle 3 \rangle}, \mathsf{T} \Big]\\ & \mathsf{B} \leftarrow \mathsf{interp}\Big[(M_He_{\mathsf{PL}})^{\langle 0 \rangle}, (M_He_{\mathsf{PL}})^{\langle 3 \rangle}, \mathsf{T} \Big]\\ & \mathsf{B} \leftarrow \mathsf{Interp}\Big[(M_He_{\mathsf{PL}})^{\langle 0 \rangle}, (M_He_{\mathsf{PL}})^{\langle 3 \rangle}, \mathsf{T} \Big]\\ & \mathsf{h} \leftarrow \mathsf{A} + \Big(\frac{\mathsf{P} - \mathsf{PL}}{\mathsf{PH} - \mathsf{PL}} \Big) (\mathsf{B} - \mathsf{A})\\ & \mathsf{C} \leftarrow \mathsf{interp}\Big[(M_He_{\mathsf{PL}})^{\langle 0 \rangle}, (M_He_{\mathsf{PL}})^{\langle 4 \rangle}, \mathsf{T} \Big]\\ & \mathsf{D} \leftarrow \mathsf{interp}\Big[(M_He_{\mathsf{PL}})^{\langle 0 \rangle}, (M_He_{\mathsf{PL}})^{\langle 4 \rangle}, \mathsf{T} \Big] \end{aligned}$$

Download free eBooks at bookboon.com

29

Click on the ad to read more

$$\label{eq:scalar} \begin{aligned} \ & | \qquad | \qquad s \leftarrow C + \left(\frac{P-PL}{PH-PL}\right) \cdot (D-C) \\ & | \qquad return \left(\begin{array}{c} "Enthalpy\,(kJ/kg)" & "Entropy\,(kJ/kg.K)" \\ h & s \end{array} \right) \end{aligned}$$

 Ex:
$$P := 16 \ \underbrace{T}_{AAA} := 355 \\ & h_and_s_SuperheatHe(P,T) = \left(\begin{array}{c} "Enthalpy\,(kJ/kg)" & "Entropy\,(kJ/kg.K)" \\ & 1.854 \times 10^3 & 23.158 \end{array} \right)$$

Now, write Functions for enthalpy and entropy in terms of P and T:

Remember: For He: Pc =2.2746 bar, Tc = 5.1953 K, NBP = 4.23 K

Ex:

P:= 200 bar T:= 355 K

enthalpy_He(P,T) = 1.913×10^3

Ex:

P::= 200 bar T:= 350 K TSAT(16) = 13.231

 $entropy_He(P,T) = 17.843$

Function to find h when P and s are known:

As a first step, get T when P and s are known:

 $P_{M} := 200 \text{ bar}$ $S_{M} := 5.727 \text{ kJ/kg.C}$ $T_{M} := 100 \text{ K....guess value}$ Given
entropy_He(P,T) = s $Temp_He(P,s) := Find(T)$ $Temp_He(P,s) = 36.628 \text{ K}$

Now, write the Function to get h:

Ex: P_:= 80 bar _____ = 15.87 kJ/kg.C

enthalpy_He_Ps(P,s) = 894.915 kJ/kg

Function to find T when P and h are known:

Given

 $enthalpy_He(P,T) = h$

 $\underline{\text{Temp}}_{He}(P,h) := Find(T)$

Temp_He(P,h) = 160.415 K

Function to find s when P and h are known:

As a first step, get T when P and h are known:

P...= 80 bar h...:= 900 kJ/kg

T:= 180 K....guess value

Given

 $enthalpy_He(P,T) = h$

Temp He(P,h) := Find(T)

 $Temp_He(P,h) = 167.377$ K

"I studied fnglish for 16 years but... I finally learned to speak it in just six lessons" Jane, Chinese architect

Download free eBooks at bookboon.com

Click on the ad to read more

From NIST website, we get properties of Nitrogen and then write the Mathcad Functions.

First, saturation properties are generated from the NIST website, just as we did for Helium.

Relevant properties are shown in the following Mathcad Matrix:

Sat. properties: (Ref: NIST)

Units: psat (bar), tsat(K), vf, vg (m3/kg), hf, hg (kJ/kg), sf, sg (kJ/kg.K)

	Psa	t Tsat	vf	vg	hf	hg	sf	sg	
(0.15	64.151	0.0011586	1.2557	-148.73	65.733	2.4571	5.8002	
	0.65	73.777	0.0012164	0.32631	-129.32	74.321	2.7381	5.4983	
	1.15	78.445	0.0012483	0.19291	-119.78	77 .9 75	2.8627	5.3836	
	1.65	81.744	0.0012726	0.13809	-112.96	80.299	2.947	5.3113	
	2.15	84.357	0.0012932	0.10792	-107.51	81.967	3.0119	5.258	
	2.65	86.549	0.0013115	0.088712	-102.89	83.237	3.0652	5.2157	
	3.15	88.454	0.0013281	0.075367	-98.837	84.235	3.1108	5.1805	
	3.65	90.146	0.0013436	0.065531	-95.201	85.036	3.1508	5.1501	
	4.15	91.677	0.0013582	0.057966	-91.884	85.685	3.1865	5.1234	
	4.65	93.078	0.0013722	0.051958	-88.821	86.213	3.2189	5.0994	
	5.15	94.374	0.0013856	0.047065	-85.962	86.642	3.2487	5.0776	
	5.5	95.227	0.0013947	0.044145	-84.065	86.892	3.2682	5.0634	
M sat N2 :=	7.5	99.469	0.0014439	0.032476	-74.44	87.716	3.3641	4.9944	
M_38(_1\2	9.5	102.96	0.0014905	0.025521	-66.227	87.8	3.4424	4.9384	
	11.5	105.95	0.0015361	0.020872	-58.904	87.361	3.5096	4.89	
	13.5	108.6	0.001582	0.017527	-52.18	86.502	3.5694	4.8464	
	15.5	110.97	0.0016292	0.01499	-45.872	85.276	3.6239	4.8057	
	17.5	113.13	0.0016787	0.012988	-39.851	83.701	3.6747	4.7668	
	19.5	115.12	0.0017315	0.011359	-34.015	81.775	3.7228	4.7286	
	21.5	116.97	0.001789	0.0099959	-28.275	7 9 .472	3.7693	4.6904	
	23.5	118.69	0.0018529	0.0088275	-22.541	7 6 .74	3.8148	4.6513	

 25.5
 120.31
 0.0019261
 0.0078012
 -16.706
 73.482
 3.8605
 4.6101

 27.5
 121.83
 0.0020133
 0.0068748
 -10.619
 69.527
 3.9075
 4.5653

 29.5
 123.27
 0.0021241
 0.0060068
 -4.0125
 64.53
 3.958
 4.5141

 31.5
 124.63
 0.0022833
 0.005138
 3.7511
 57.646
 4.0171
 4.4496

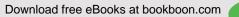
 33.5
 125.91
 0.0026279
 0.0040462
 15.897
 44.636
 4.1101
 4.3384

Now, write Mathcad Functions for saturated properties:

First, for Sat. properties:

Separate the data vectors from the above matrix:

psat := M_sat_N2	tsat := $M_sat_{N2}^{\langle 1 \rangle}$	vfsat := $M_sat_N2^{2}$
vgsat := $M_sat_N2^{(3)}$	hfsat := $M_sat_N2^{\langle 4 \rangle}$	hgsat := $M_sat_N2^{(5)}$
sfsat := $M_sat_N2^{(6)}$	sgsat := $M_sat_{N2}^{\langle 7 \rangle}$	



Now, write the Functions for sat. properties of N2:

TSAT(P) := linterp(psat,tsat,P)	TSAT(1.5) = 80.754
PSAT(T) := linterp(tsat, psat, T)	PSAT(90) = 3.607
HFSATP(P) := linterp(psat,hfsat,P)	HFSATP(1.150) = -119.78
HFSATT(T) := linterp(tsat, hfsat, T)	HFSATT(90) = -95.515
HGSATP(P) := linterp(psat,hgsat,P)	HGSATP(1.50) = 79.602
HGSATT(T) := linterp(tsat,hgsat,T)	HGSATT(90) = 84.967
HFGSATP(P) := HGSATP(P) - HFSATP(P)	HFGSATP(1.5) = 194.608
HFGSATT(T) := HGSATT(T) - HFSATT(T)	HFGSATT(90) = 180.482
SFSATP(P) := linterp(psat, sfsat, P)	SFSATP(1.0) = 2.825
SFSATT(T) := linterp(tsat, sfsat, T)	SFSATT(90) = 3.147
SGSATP(P) := linterp(psat, sgsat, P)	SGSATP(1.5) = 5.333
SGSATT(T) := linterp(tsat, sgsat, T)	SGSATT(90) = 5.153

SFGSATP(P) := SGSATP(P) - SFSATP(P)	SFGSATP(1.5) = 2.411
SFGSATT(T) := SGSATT(T) - SFSATT(T)	SFGSATT(90) = 2.005
VGSATP(P) := linterp(psat,vgsat,P)	VGSATP(1.5) = 0.155 m^3/kg
VGSATT(T) := linterp(tsat, vgsat, T)	VGSATT(90) = 0.066 m^3/kg
VFSATP(P) := linterp(psat, vfsat, P)	$VFSATP(1.5) = 1.26531 \times 10^{-3} m^3/kg$
VFSATT(T) := linterp(tsat, vfsat, T)	$VFSATT(90) = 1.342263 \times 10^{-3}$ m^3/kg
VFGSATP(P) := VGSATP(P) - VFSATP(P)	VFGSATP(1.5) = 0.153271 m ³ /kg
VFGSATT(T) := VGSATT(T) - VFSATT(T)	VFGSATT(90) = 0.065037 m^3/kg
$UGSATP(P) := HGSATP(P) - P \cdot 10^2 \cdot VGSATP$	(P) $UGSATP(1.5) = 56.421$
$UFSATP(P) := HFSATP(P) - P \cdot VFSATP(P) \cdot 1$	10 ²
UFGSATP(P) := UGSATP(P) - UFSATP(P)	
$UGSATT(T) := HGSATT(T) - PSAT(T) \cdot 10^2 \cdot$	VGSATT(T) $UGSATT(90) = 61.025$
$UFSATT(T) := HFSATT(T) - PSAT(T) \cdot 10^2 \cdot 10^2$	VFSATT(T)
UFGSATT(T) := UGSATT(T) - UFSATT(T)	

In the following program: psat = sat. pr. in bar, s = entropy in kJ/kg.K

Ex: psat := 2.25 s:= 4.5

quality_Ps(psat,s) = 0.663

In the following program: tsat = sat. temp, K, s = entropy in kJ/kg.K

 $quality_Ts(tsat, s) = 0.125$

In the following program: tsat = sat. temp, K, h = enthalpy in kJ/kg.

quality_Th(tsat,h) :=	return "tsat should be between 64.151 K and 125.91 K ! " if tsat < 64.151 return "tsat should be between 64.151 K and 125.91 K ! " if tsat > 125.91
	return "tsat should be between 64.151 K and 125.91 K ! " if tsat > 125.91
	$hf \leftarrow HFSATT(tsat)$
	$hfg \leftarrow HFGSATT(tsat)$
	$\begin{split} hf &\leftarrow \text{HFSATT(tsat)} \\ hfg &\leftarrow \text{HFGSATT(tsat)} \\ x &\leftarrow \frac{h - hf}{hfg} \end{split}$
Ex: <u>tsat</u> := 70	h := 17

 $quality_Th(tsat,h) = 0.74$

quality_Ph(psat,h) := return "psat should be between 0.15 bar and 33.5 bar ! " if psat < 0.15 return "psat should be between 0.15 bar and 33.5 bar ! " if psat > 33.5 $hf \leftarrow HFSATP(psat)$ $hfg \leftarrow HFGSATP(psat)$ $x \leftarrow \frac{h - hf}{hfg}$

Ex: psat := 2.25 h := 11

 $quality_Ph(psat, h) = 0.623$

In the following program: psat = sat. pr. in bar, x = quality, and s in kJ/kg.K

Ex:

entropy_2phase_Px(psat,x) = 4.019

In the following program: tsat = sat. temp, K, x is quality, and s = entropy in kJ/kg.K

$$\begin{array}{ll} entropy_2phase_Tx(tsat,x) := & return \ "tsat should be between 64.151 \ K \ and \ 125.91 \ K \ ! \ " \ if \ tsat < 64.151 \\ return \ "tsat should be between 64.151 \ K \ and \ 125.91 \ K \ ! \ " \ if \ tsat > 125.91 \\ sf \ \leftarrow \ SFSATT(tsat) \\ sfg \ \leftarrow \ SFGSATT(tsat) \\ s \ \leftarrow \ sf \ + \ x \ sfg \end{array}$$

Ex: tsat := 85 x := 1

entropy_2phase_Tx(tsat,x) = 5.246

In the following program: tsat = sat. temp, K, x is quality, and h = enthalpy in kJ/kg

Ex: tsat := 85 h := 20

entropy_2phase_Th(tsat,h) = 4.512

In the following program: psat = sat. pr. in bar, x = quality, and h in kJ/kg

```
enthalpy_2phase_Px(psat,x) := return "psat should be between 0.15 bar and 33.5 bar ! " if psat < 0.15
                                    return "psat should be between 0.15 bar and 33.5 bar ! " if psat > 33.5
                                    PSAT \leftarrow psat
                                   hf \leftarrow HFSATP(PSAT)
                                   hfg \leftarrow HFGSATP(PSAT)
                                   h \leftarrow hf + x \cdot hfg
```

Ex: psat := 2.25 x := 0.754

enthalpy_2phase_Px(psat,x) = 35.774

In the following program: tsat = sat. temp, K, x is quality, and h = enthalpy in kJ/kg

enthalpy_2phase_Tx(tsat, x) := return "tsat should be between 64.151 K and 125.91 K ! " if tsat < 64.151 return "tsat should be between 64.151 K and 125.91 K ! " if tsat > 125.91 hf
$$\leftarrow$$
 HFSATT(tsat)
hf \leftarrow HFSATT(tsat)
hfg \leftarrow HFGSATT(tsat)
h \leftarrow hf + x \cdot hfg
Ex: tsat := 85 x := 0

EX.

enthalpy_2phase_Tx(tsat,x) = -106.155

In the following program: tsat = sat. temp, K, s in kJ/kg.K, and h = enthalpy in kJ/kg

Ex: tsat := 85 s := 5

enthalpy_2phase_Ts(tsat, s) = 61.469

In the following program: psat = sat. pr. in bar, s = entropy in kJ/kg.K, and h in kJ/kg

Ex:

psat := 2.25 s := 4

enthalpy_2phase_Ps(psat,s) = -23.717

Superheated N2 properties:

Isobaric data is collected for pressures, P = 1, 5...240 bar.

And, properties at these pressures are written as Mathcad matrices.

Download free eBooks at bookboon.com

Click on the ad to read more

40

Example for P = 1 bar only is shown below, to conserve space:

۵	t 1 bar:					TK vm^3/kg u, hkJ/kg;
	Т	v	u	h	S	s…kJ/kg.K…
	(77.244	0.21947	55.126	77.073	5.4116)
	85	0.24425	61.248	85.672	5.5178	
	95	0.27552	68.982	96.534	5.6386	
	105	0.30635	76.615	107.25	5.7458	
	115	0.3369	84.188	117.88	5.8425	
	125	0.36725	91.723	128.45	5.9307	
	135	0.39748	99.233	138.98	6.0117	
	145	0.4276	106.73	149.49	6.0868	
	155	0.45765	114.2	159.97	6.1567	
	165	0.48765	121.67	170.44	6.2222	
	175	0.5176			6.2837	
	185	0.54752				
	195	0.5774				
	205	0.60726				
M_N2 ₁ :=	215	0.6371				
- 1	225	0.66693			6.546	
	235	0.69673				
	245	0.72653				
	255	0.75632		264.33		
	265	0.78609				
	275	0.81586			6.755	
	285	0.84562				
	295 305	0.87558				
		0.90312				
		0.96461				
		0.99434				
		1.0241				
		1.0538				
		1.0835				
toma 1 - (1			2.0.27	570.52	,,	,
temp1 := (1 spvol1 := (1. 6.	AT 1/3	entrop1 := $(M_N2_1)^{\langle 4 \rangle}$
spvoii :=	^{IVI_IV2} 1)	enth	и .= (М	- ¹⁸² 1)	·
HN21B(T)	:= linter	p(temp1	, enth1,7	I)		ex: HN21B(340) = 352.86
SN21B(T)	:= linter	p(temp1,	entrop1	,T)		ex: SN21B(340) = 6.976

Now, using the above data Matrices, write a Function to find enthalpy and entropy of superheated nitrogen when P and T are given.

Procedure is exactly as we did in the case of Helium, earlier:

First, create a vector of all pressure values for which we have collected data Matrices:

Pressures_N2 := (1 5 10 15 20 30 40 60 80 100 120 140 160 180 200 220 240)

$$\begin{split} \mathbf{N} \ \mathbf{h}_{and_s_Superheat} \mathbf{N}_{2}(\mathbf{P}, \mathbf{T}) &:= \end{tabular} returm "T < Tsat; use two-phase Functions" if $\mathbf{T} < TsAT(\mathbf{P}) \land \mathbf{P} < 33.958 \\ returm "P should be between 1 bar and 240 bar" if $\mathbf{P} < 1 \lor \mathbf{P} > 240 \\ \text{for } \mathbf{k} \in 0..16 \\ if \ \mathbf{P} = \operatorname{Pressures_N2}_{0,\mathbf{k}} \\ h \leftarrow \operatorname{interp} \left[(\mathbf{M}_{N2} \mathbf{P}_{\operatorname{Pressures_N2}_{0,\mathbf{k}})^{(0)}, (\mathbf{M}_{N2} \mathbf{P}_{\operatorname{Pressures_N2}_{0,\mathbf{k}})^{(0)}, (\mathbf{M}_{N2} \mathbf{P}_{\operatorname{Pressures_N2}_{0,\mathbf{k}})^{(0)}, (\mathbf{M}_{N2} \mathbf{P}_{\operatorname{Pressures_N2}_{0,\mathbf{k}})^{(0)}, (\mathbf{M}_{N2} \mathbf{P}_{\operatorname{Pressures_N2}_{0,\mathbf{k}})^{(0)}, (\mathbf{T}) \\ returm \begin{pmatrix} "Enthalpy (\mathbf{k}J/\mathbf{k}g)" & "Entropy (\mathbf{k}J/\mathbf{k}g,\mathbf{K})" \\ \mathbf{h} & \in \operatorname{interp} \left[(\mathbf{M}_{N2} \mathbf{P}_{\mathbf{PL}})^{(0)}, (\mathbf{M}_{N2} \mathbf{P}_{\mathbf{L}})^{(3)}, \mathbf{T} \right] \\ \text{For the pressures_N2}_{0,\mathbf{k}} \land \mathbf{P} < \operatorname{Pressures_N2}_{0,\mathbf{k}+1} \\ PL \leftarrow \operatorname{Pressures_N2}_{0,\mathbf{k}} \land \mathbf{P} < \operatorname{Pressures_N2}_{0,\mathbf{k}+1} \\ A \leftarrow \operatorname{interp} \left[(\mathbf{M}_{N2} \mathbf{P}_{\mathbf{PL}})^{(0)}, (\mathbf{M}_{N2} \mathbf{P}_{\mathbf{PL}})^{(3)}, \mathbf{T} \right] \\ B \leftarrow \operatorname{interp} \left[(\mathbf{M}_{N2} \mathbf{P}_{\mathbf{PL}})^{(0)}, (\mathbf{M}_{N2} \mathbf{P}_{\mathbf{PL}})^{(3)}, \mathbf{T} \right] \\ h \leftarrow A + \left(\frac{\mathbf{P} - \mathbf{PL}}{\mathbf{PH} - \mathbf{PL}} \right) (\mathbf{B} - \mathbf{A}) \\ C \leftarrow \operatorname{interp} \left[(\mathbf{M}_{N2} \mathbf{P}_{\mathbf{PL}})^{(0)}, (\mathbf{M}_{N2} \mathbf{P}_{\mathbf{PL}})^{(4)}, \mathbf{T} \right] \\ D \leftarrow \operatorname{interp} \left[(\mathbf{M}_{N2} \mathbf{P}_{\mathbf{PL}})^{(0)}, (\mathbf{M}_{N2} \mathbf{P}_{\mathbf{PL}})^{(4)}, \mathbf{T} \right] \\ s \leftarrow C + \left(\frac{\mathbf{P} - \mathbf{PL}}{\mathbf{PH} - \mathbf{PL}} \right) (\mathbf{D} - \mathbf{C}) \\ returm \begin{pmatrix} "Enthalpy (\mathbf{k}J/\mathbf{k}g)" & "Entropy (\mathbf{k}J/\mathbf{k}g,\mathbf{K})" \\ \mathbf{h} & s \end{pmatrix} \right] \end{cases}$$$$

Ex: P := 16 T_:= 355 TSAT(16) = 111.51 h_and_s_SuperheatN2(P,T) = $\begin{pmatrix} "Enthalpy (kJ/kg)" & "Entropy (kJ/kg.K)" \\ 366.32 & 6.193 \end{pmatrix}$

Now, write Functions for enthalpy and entropy in terms of P and T:

Remember: For N2: Pc =33.958 bar, Tc = 126.192 K, NBP = 77.355 K

enthalpy_N2(P,T) :=
return "P should be between 1 bar and 240 bar" if
$$P < 1 \lor P > 240$$

tsat \leftarrow TSAT(P) if $P \le 33.958$
h \leftarrow h_and_s_SuperheatN2(P,T)_{0,0} if (T \ge tsat $\land P \le 33.958$)
h \leftarrow h_and_s_SuperheatN2(P,T)_{0,0} if (P > 33.958)
(return "State point in two phase region--- use 2 phase Functions") if (T < tsat $\land P < 33.958$)
P.:= 16 bar T.:= 120 K TSAT(16) = 111.51 h_and_s_SuperheatN2(P,T)_{0,0} = 99.851

 $enthalpy_N2(P,T) = 99.851$

 $\underline{P} := 16 \quad \text{bar} \quad \underline{T} := 115 \quad \text{K} \quad \text{TSAT}(16) = 111.51 \qquad \qquad \text{h_and_s_SuperheatN2(P,T)}_{0,1} = 4.856$

 $entropy_N2(P,T) = 4.856$

Function to find s when P and h are known:

As a first step, get T when P and h are known:

 $P_{M} := 10 \text{ bar} \quad h_{M} := 150 \text{ kJ/kg}$ $T_{M} := 180 \text{ K....guess value}$ Given
enthalpy_N2(P,T) = h $T_{emp_{M}}N2(P,h) := Find(T)$ $Temp_N2(P,h) = 152.552 \text{ K}$

Ex: $\underline{P} := 10$ bar $\underline{h} := 150$ kJ/kg Temp_N2(P,h) = 152.552

 $entropy_N2_Ph(P,h) = 5.422$

Function to find T when P and h are known:

Function to find h when P and s are known:

As a first step, get T when P and s are known:

 $P_{m} := 200 \text{ bar}$ $s_{m} := 5.3 \quad \text{kJ/kg.C}$ $T_{m} := 300 \quad \text{K....guess value}$ Given
entropy_N2(P,T) = s $Temp_N2(P,s) := Find(T)$ $Temp_N2(P,s) = 334.18 \quad \text{K}$

Now, write the Function to get h:

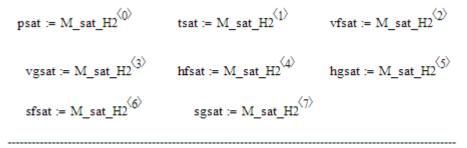
enthalpy_N2_Ps(P, s) := $\begin{bmatrix} retum "P should be between 1 bar and 240 bar" & if P < 1 \lor P > 240 \\
T \leftarrow Temp_N2(P, s) \\
h \leftarrow enthalpy_N2(P, T)
\end{bmatrix}$ Ex: $\underbrace{P}_{M} := 15 \text{ bar} \qquad \underbrace{S}_{M} := 5.77 \quad kJ/kg.C$ enthalpy_N2_Ps(P, s) = 238.348 kJ/kg

Prob. 3.3.3 Write Mathcad Functions to determine properties of Hydrogen

From NIST website, we get properties of Hydrogen and then write the Mathcad Functions.

We have: For Hydrogen, summary of relevant Saturation Properties:

Properties of Hydrogen:


Sat. properties: (Ref: NIST)

Units: psat (bar), tsat(K), vf, vg (m3/kg), hf, hg (kJ/kg), sf, sg (kJ/kg.K)

	Psat	Tsat	vf	vg	hf	hg	sf	sg
	(0.1	14.51	0.013063	5.8678	-49.972	404.88	-2.7969	28.55
	0.6	18.717	0.013765	1.2005	-15.821	438.59	-0.78005	23.499
	1.1	20.65	0.014179	0.69693	2.8538	450.2	0.13316	21.796
	1.6	22.021	0.01452	0.49523	17.475	456.5	0.78479	20.721
	2.1	23.113	0.014828	0.38484	30.066	460.19	1.3102	19.92
	2.6	24.033	0.015116	0.31459	41.416	462.29	1.7599	19.272
	3.1	24.836	0.015395	0.26566	51.932	463.26	2.159	18.721
	3.6	25.552	0.015668	0.22947	61.855	463.39	2.522	18.236
	4.1	26.202	0.01594	0.20151	71.343	462.84	2.8581	17.8
	4.6	26.798	0.016213	0.17919	80.507	461.7	3.1736	17.399
	5.1	27.35	0.01649	0.1609	89.434	460.06	3.4731	17.024
	5.6	27.866	0.016773	0.1456	98.191	457.94	3.7602	16.67
M ant U2 -	6.1	28.35	0.017065	0.13258	106.83	455.37	4.0376	16.332
M_sat_H2 :=	6.6	28.806	0.017369	0.12132	115.42	452.37	4.3078	16.005
	7.1	29.239	0.017686	0.11146	123.99	448.93	4.5728	15.686
	7.6	29.651	0.018021	0.10272	132.59	445.03	4.8348	15.372
	8.1	30.044	0.018377	0.094892	141.29	440.65	5.0956	15.06
	8.6	30.419	0.01876	0.087801	150.13	435.74	5.3573	14.747
	9.1	30.779	0.019177	0.081312	159.19	430.24	5.6223	14.429
	9.6 10.1	31.125 31.458	0.019636 0.020153	0.075306 0.06968	168.55 178.35	424.04 417	5.8936 6.175	14.102 13.761
	10.6	31.778	0.020747	0.06433	188.77	408.9	6.472	13.399
	11.1	32.087	0.021455	0.059143	200.09	399.38	6.7934	13.004
	11.6	32.385	0.022342	0.053967	212.83	387.79	7.1549	12.557
	12.1	32.673	0.023561	0.048532	228.17	372.71	7.5912	12.015
	12.6	32.95	0.025629	0.042089	249.89	349.72	8.2153	11.245

Now, write Mathcad Functions for saturation properties:

First, separate the data vectors from the Matrix:

Function	Example
TSAT(P) := linterp(psat,tsat,P)	TSAT(1.5) = 21.747
PSAT(T) := linterp(tsat,psat,T)	PSAT(25) = 3.215
HFSATP(P) := linterp(psat,hfsat,P)	HFSATP(1.50) = 14.551
HFSATT(T) := linterp(tsat, hfsat, T)	HF\$ATT(25) = 54.205
HGSATP(P) := linterp(psat,hgsat,P)	HGSATP(1.5) = 455.24
HGSATT(T) := linterp(tsat,hgsat,T)	HGSATT(25) = 463.29
HFGSATP(P) := HGSATP(P) - HFSATP(P)	HFGSATP(1.5) = 440.689
HFGSATT(T) := HGSATT(T) - HFSATT(T)	HFGSATT(25) = 409.085

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758.

Download free eBooks at bookboon.com

Click on the ad to read more

47

SFSATP(P) := linterp(psat, sfsat, P)	SFSATP(1.5) = 0.654
SFSATT(T) := linterp(tsat, sfsat, T)	SFSATT(25) = 2.242
SGSATP(P) := linterp(psat,sgsat,P)	SGSATP(1.5) = 20.936
SGSATT(T) := linterp(tsat, sgsat, T)	SGSATT(25) = 18.61
SFGSATP(P) := SGSATP(P) - SFSATP(P)	SFGSATP(1.5) = 20.282
SFGSATT(T) := SGSATT(T) - SFSATT(T)	SFGSATT(25) = 16.368
VGSATP(P) := linterp(psat,vgsat,P)	VGSATP(1.50) = 0.536 m ³ /kg
VGSATT(T) := linterp(tsat, vgsat, T)	VGSATT(25) = 0.257 m^3/kg
VFSATP(P) := linterp(psat, vfsat, P)	VFSATP(1.0) = 0.014096 m ³ /kg
VFSATT(T) := linterp(tsat, vfsat, T)	VFSATT(25) = 0.015458 m ³ /kg
VFGSATP(P) := VGSATP(P) - VFSATP(P)	VFGSATP(1.0) = 0.783548 m ³ /kg
VFGSATT(T) := VGSATT(T) - VFSATT(T)	VFGSATT(25) = 0.241913 m^3/kg
$UGSATP(P) := HGSATP(P) - P \cdot 10^2 \cdot VGSATP(P)$	(P) UGSATP(1) = 368.114
$UFSATP(P) := HFSATP(P) - P \cdot VFSATP(P) \cdot 1$	0 ²
UFGSATP(P) := UGSATP(P) - UFSATP(P)	
$UGSATT(T) := HGSATT(T) - PSAT(T) \cdot 10^{2} \cdot 10^{2}$	VGSATT(T) UGSATT(4.5) = 2.174×10^{3}
$UFSATT(T) := HFSATT(T) - PSAT(T) \cdot 10^2 \cdot V$	/FSATT(T)
UFGSATT(T) := UGSATT(T) - UFSATT(T)	

In the following program: psat = sat. pr. in bar, s = entropy in kJ/kg.K

$$\begin{array}{ll} \mbox{quality_Ps(psat,s)} \coloneqq & \mbox{return "psat should be between 0.1 bar and 12.6 bar ! " if psat < 0.1 \\ & \mbox{return "psat should be between 0.1 bar and 12.6 bar ! " if psat > 12.6 \\ & \mbox{sf} \leftarrow \mbox{SFSATP(psat)} \\ & \mbox{sfg} \leftarrow \mbox{SFGSATP(psat)} \\ & \mbox{x} \leftarrow \frac{s - sf}{sfg} \end{array}$$

Ex: psat := 2.25 s:= 19

quality_Ps(psat,s) = 0.96

In the following program: tsat = sat. temp, K, s = entropy in kJ/kg.K

Ex: tsat := 25 s.:= 18

In the following program: tsat = sat. temp, K, h = enthalpy in kJ/kg.

 $\begin{array}{ll} \mbox{quality}_Th(tsat,h) := & \mbox{return "tsat should be between 14.51 K and 32.95 K ! " $ if tsat < 14.51 $ return "tsat should be between 14.51 K and 32.95 K ! " $ if tsat > 32.95 $ hf \leftarrow HFSATT(tsat) $ hfg \leftarrow HFGSATT(tsat) $ hfg \leftarrow HFGSATT(tsat) $ x \leftarrow \frac{h-hf}{hfg} $ \end{array}$

Ex: tsat := 25 h := 460

 $quality_Th(tsat,h) = 0.992$

 $\begin{array}{ll} \mbox{quality_Ph(psat,h):=} & \mbox{return "psat should be between 0.1 bar and 12.6 bar!" if $psat < 0.1$} \\ & \mbox{return "psat should be between 0.1 bar and 12.6 bar!" if $psat > 12.6$} \\ & \mbox{hf} \leftarrow \mbox{HFSATP(psat)} \\ & \mbox{hfg} \leftarrow \mbox{HFGSATP(psat)} \\ & \mbox{x} \leftarrow \frac{h - hf}{hfg} \end{array}$

Ex: psat := 2.25 h := 460

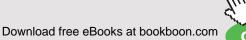
quality_Ph(psat,h) = 0.998

In the following program: psat = sat. pr. in bar, x = quality, and s in kJ/kg.K

Ex: psat := 2.2

entropy_2phase_Px(psat,x) = 9.676

x := 0.45


TURN TO THE EXPERTS FOR SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do business reviews of existing subscription businesses and we develope acquisition and retention strategies.

Learn more at linkedin.com/company/subscrybe or contact Managing Director Morten Suhr Hansen at mha@subscrybe.dk

SUBSCRYBE - to the future

Click on the ad to read more

In the following program: tsat = sat. temp, K, x is quality, and s = entropy in kJ/kg.K

Ex: tsat := 25 x := 1

entropy_2phase_Tx(tsat,x) = 18.61

In the following program: tsat = sat. temp, K, x is quality, and h = enthalpy in kJ/kg

Ex: tsat := 25 h := 400

entropy_2phase_Th(tsat,h) = 16.078

In the following program: psat = sat. pr. in bar, x = quality, and h in kJ/kg

Ex: psat := 2.25 x := 0.754

enthalpy_2phase_Px(psat,x) = 355.692

In the following program: tsat = sat. temp, K, x is quality, and h = enthalpy in kJ/kg

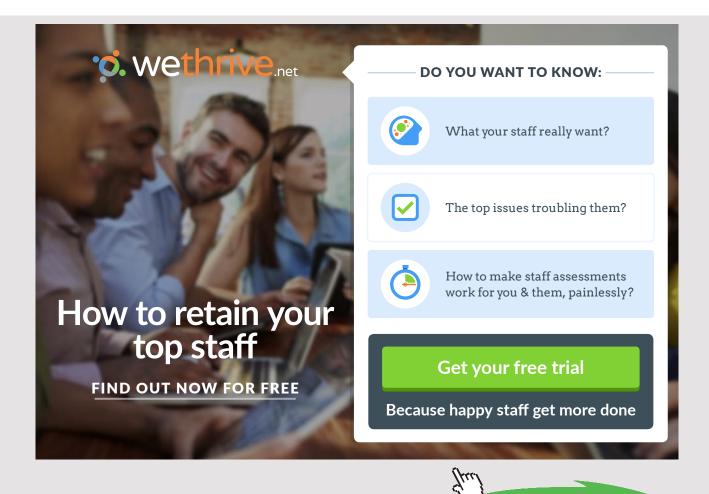
Ex: tsat := 25 x := 0

enthalpy_2phase_Tx(tsat,x) = 54.205

In the following program: tsat = sat. temp, K, s in kJ/kg.C, and h = enthalpy in kJ/kg

Ex: tsat := 24 s := 5

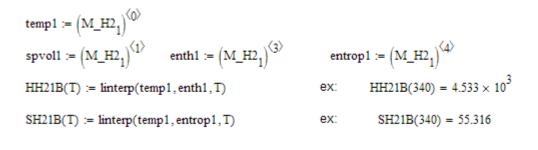
enthalpy_2phase_Ts(tsat, s) = 119.153


In the following program: psat = sat. pr. in bar, s = entropy in kJ/kg.K, and h in kJ/kg

```
enthalpy_2phase_Ps(psat, s) := return "psat should be between 0.1 bar and 12.6 bar ! " if psat < 0.1
return "psat should be between 0.1 bar and 12.6 bar ! " if psat > 12.6
x \leftarrow quality_Ps(psat, s)
PSAT \leftarrow psat
hf \leftarrow HFSATP(PSAT)
hfg \leftarrow HFGSATP(PSAT)
h \leftarrow hf + x \cdot hfg
Ex: psat := 2.25 s. := 2.5
```

enthalpy_2phase_Ps(psat, s) = 58.132

Properties of superheated H2:


Isobaric data is collected for pressures, P = 1, 5...240 bar. Now, properties at these pressures are written as Mathcad matrices.

Click on the ad to read more

Example for P = 1 bar only is shown below, to conserve space:

At 1 bar	-					TK vm^3/kg u, hkJ/kg;
	Т	v	u	h	s	skJ/kg.K
	(20.324	0.7596	372.49	448.45	22.066	
	30	1.1962	437.23	556.85	26.442	
	40	1.6247	501.12	663.58	29.514	
	50	2.0458	564.1 7	768.76	31.861	
	60	2.4637	627.15	873.52	33.771	
	70	2.8799	690.75	978.74	35.393	
	80	3.295	755.71	1085.2	36.815	
	90	3.7095	822.72	1193.7	38.092	
	100	4.1235	892.24	1304.6	39.26	
	110	4.5372	964 .57	1418.3	40.344	
	120	4.9507	1039.8	1534.9	41.358	
	130	-3.3639-	1118	1634.4	-42.314-	
	140	5.7771	1198.9	1776.6	43.22	
	150	6.1901	1282.4	1901.4	44.081	
	160	6.6031	1368.3	2028.6	44.902	
	170	7.0159	1456.4	2158	45.686	
	180	7.4288	1546.4	2289.3	46.437	
M_H2 ₁ :=	190	7.8415	1638.2	2422.4	47.156	
	200	8.2543	1731.6	2557.1	47.847	
	210	8.667	1826.4	2693.1	48.51	
	220	9.0796	1922.4	2830.4	49.149	
	230	9.4923	2019.5	2968.7	49.764	
	240	9.9049	2117.6	3108.1	50.357	
	250	10.318	2216.5	3248.2	50.929	
	260	10.73	2316.1	3389.1	51.482	
	270	11.143	2416.3	3530.6	52.016	
	280	11.555	2517.2	3672.7	52.532	
	290	11.968	2618.4	3815.2	53.033	
	300	12.38	2720.1	3958.2	53.517	
	310	12.793	2822.2	4101.4	53.987	
	320	13.205	2924.5	4245	54.443	
	330	13.618	3027.1	4388.9	54.886	
	340	14.03	3129.9	4532.9	55.316	
	350	14.443	3232.8	4677.1	55.734	
	360	14.855	3336	4821.5	56.14	
						-

Now, using the above Data Matrices, write a Function to find enthalpy and entropy of superheated hydrogen as a function of P and T:

First, create a vector of all pressure values for which we have collected data Matrices:

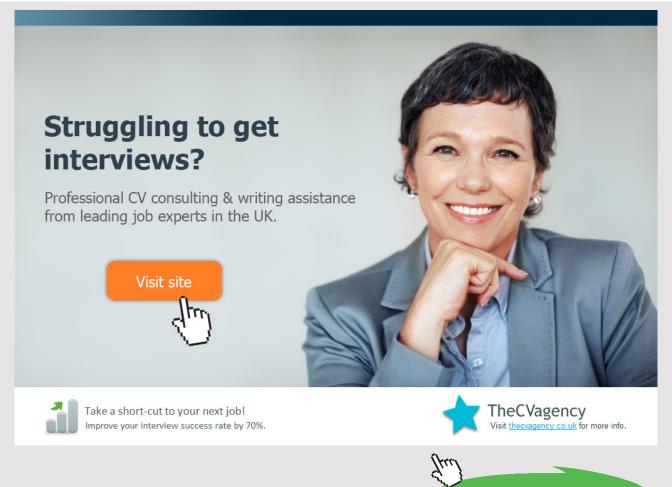
Pressures_H2 := (1 5 10 15 20 30 40 60 80 100 120 140 160 180 200 220 240)

Now, write the Function just as we did for He and N2:

.

$$\begin{split} \mathbf{h}_{and_s_SuperheatH2}(\mathbf{P}, \mathbf{T}) \coloneqq & \text{returm } ^{\mathsf{T}} \mathsf{T} < \mathsf{Tsat}; \text{ use two-phase Functions'' if } \mathbf{T} < \mathsf{TSAT}(\mathbf{P}) \land \mathbf{P} < \mathsf{12.96} \\ \text{returm } ^{\mathsf{P}} \text{ should be between 1 bar and 240 bar'' if } \mathbf{P} < \mathsf{1} \lor \mathbf{P} > 240 \\ \text{for } k \in 0..16 \\ & \text{if } \mathbf{P} = \mathsf{Pressures_H2}_{0,k} \\ & \text{h} \leftarrow \mathsf{interp} \Big[(\mathbf{M}_{-}\mathsf{H2}_{\mathsf{Pressures_H2}_{0,k})^{\langle \mathcal{O} \rangle}, (\mathbf{M}_{-}\mathsf{H2}_{\mathsf{Pressures_H2}_{0,k})^{\langle \mathcal{O} \rangle}, (\mathbf{M}_{-}\mathsf{H2}_{\mathsf{Pressures_H2}_{0,k})^{\langle \mathcal{O} \rangle}, (\mathbf{T}_{-}\mathsf{H2}_{\mathsf{Pressures_H2}_{0,k})^{\langle \mathcal{O} \rangle}, (\mathbf{T}_{-}\mathsf{H2}_{\mathsf{Pressures_H2}_{0,k+1}) \\ & \mathsf{F} \leftarrow \mathsf{Pressures_H2}_{0,k+1} \\ & \mathsf{A} \leftarrow \mathsf{interp} \Big[(\mathbf{M}_{-}\mathsf{H2}_{\mathsf{PL}})^{\langle \mathcal{O} \rangle}, (\mathbf{M}_{-}\mathsf{H2}_{\mathsf{PL}})^{\langle \mathcal{O} \rangle}, \mathbf{T} \Big] \\ & \mathsf{B} \leftarrow \mathsf{interp} \Big[(\mathbf{M}_{-}\mathsf{H2}_{\mathsf{PL}})^{\langle \mathcal{O} \rangle}, (\mathbf{M}_{-}\mathsf{H2}_{\mathsf{PL}})^{\langle \mathcal{O} \rangle}, \mathbf{T} \Big] \\ & \mathsf{h} \leftarrow \mathsf{A} + \Big(\frac{\mathsf{P} - \mathsf{PL}}{\mathsf{PH} - \mathsf{PL}} \Big) \cdot (\mathsf{B} - \mathsf{A}) \\ & \mathsf{C} \leftarrow \mathsf{interp} \Big[(\mathbf{M}_{-}\mathsf{H2}_{\mathsf{PL}})^{\langle \mathcal{O} \rangle}, (\mathbf{M}_{-}\mathsf{H2}_{\mathsf{PL}})^{\langle \mathcal{O} \rangle}, \mathbf{T} \Big] \\ & \mathsf{D} \leftarrow \mathsf{interp} \Big[(\mathbf{M}_{-}\mathsf{H2}_{\mathsf{PL}})^{\langle \mathcal{O} \rangle}, (\mathbf{M}_{-}\mathsf{H2}_{\mathsf{PL}})^{\langle \mathcal{O} \rangle}, \mathsf{T} \Big] \\ & \mathsf{s} \leftarrow \mathsf{C} + \Big(\frac{\mathsf{P} - \mathsf{PL}}{\mathsf{PH} - \mathsf{PL}} \Big) \cdot (\mathsf{D} - \mathsf{C}) \\ & \mathsf{returm} \begin{pmatrix} \mathsf{"Enthalpy}(kJ/\mathsf{kg})\mathsf{"} \quad \mathsf{"Entropy}(kJ/\mathsf{kg}\mathsf{K})\mathsf{"} \\ & \mathsf{h} \qquad \mathsf{s} \end{pmatrix} \end{pmatrix} \end{split}$$

Ex:
$$P := 200$$
 $T_{,,} = 70$
h_and_s_SuperheatH2(P,T) = $\begin{pmatrix} "Enthalpy (kJ/kg)" & "Entropy (kJ/kg.K)" \\ 770.25 & 10.855 \end{pmatrix}$


Now, write Functions for enthalpy and entropy in terms of P and T:

Remember: For H2: Pc =12.964 bar, Tc = 33.14 K, NBP = 20.369 K

enthalpy_H2(P,T) := return "P should be between 1 bar and 240 bar" if P < 1 \u2265 P > 240 $tsat \leftarrow TSAT(P)$ if $P \le 12.96$ $h \leftarrow h_and_s_uetheatH2(P,T)_{1,0}$ if $(T \ge tsat \land P \le 12.96)$ $h \leftarrow h_and_s_SuperheatH2(P,T)_{1,0}$ if (P > 12.96) (return "State point in two phase region--- use 2 phase Functions") if $(T < tsat \land P < 12.96)$

Ex: P := 10 bar T := 35 K TSAT(10.0) = 31.391

enthalpy_H2(P,T) = 491.198

Download free eBooks at bookboon.com 56

Click on the ad to read more

Ex: P:= 10 bar T:= 32 K TSAT(10) = 31.391 entropy_H2(P,T) = 14.183

Function to find h when P and s are known:

As a first step, get T when P and s are known:

 $P_{M} := 16 \text{ bar}$ $S_{M} := 44 \text{ kJ/kg.C}$ $T_{M} := 300 \text{ K....guess value}$ Given
entropy_H2(P,T) = s $Temp_H2(P,s) := Find(T)$

Temp_H2(P,s) = 342.406 K

Now, write the Function to get h:

Ex: P_:= 20 bar _____ := 25 kJ/kg.C

enthalpy_H2_Ps(P, s) = 1.125×10^3 kJ/kg

Function to find s when P and h are known:

As a first step, get T when P and h are known:

P:= 20 bar h:= 1800 kJ/kg

T := 120 K....guess value

Given

 $enthalpy_H2(P,T) = h$

 $Temp_H2(P,h) := Find(T)$

Temp_H2(P,h) = 142.7 K

Ex: P := 20 bar h := 1800 kJ/kg

 $entropy_H2_Ph(P,h) = 30.981$

Function to find T when P and h are known:

 $P_{M} := 20 \text{ bar} \qquad h_{M} := 1770 \text{ kJ/kg}$ $T_{M} := 150 \text{ K....guess value}$ Given
enthalpy_H2(P,T) = h $T_{emp_{M}}H2(P,h) := Find(T)$ $Temp_H2(P,h) = 140.345 \text{ K}$

Function for Isenthalpic temp drop:

Ex:

 $\label{eq:constraint} \textbf{T_i} \coloneqq 300 \quad \textbf{K} \qquad \textbf{P_f} \coloneqq 1 \qquad \text{bar} \qquad \textbf{P_i} \coloneqq 200$

$DT_isenthalp_H2(P_i,T_i,P_f) =$	("P_i(bar)"	"P_f(bar)"	"T_i(K)"	"T_f(K)"	"DT(K)")
D1_Isenunap_112(1_1,1_1,1_1) =	200	1	300	307.172	-7.172)

Download free eBooks at bookboon.com

Click on the ad to read more

Function for Isentropic temp drop for Hydrogen:

As a first step, get T when P and s are known:

As a first step, get T when P and s are known:

```
P_{m} := 100 \text{ bar}
S_{m} := 34 \quad \text{kJ/kg.C}
T_{m} := 300 \quad \text{K....guess value}
Given
entropy_H2(P,T) = s
T_{emp_{m}}H2(P,s) := Find(T)
T_{emp_{m}}H2(P,s) = 291.095 \quad \text{K}
```

Now, write the required Mathcad Function:

$$\begin{split} DT_isentr_H2(P_i, T_i, P_f) &\coloneqq & s_i \leftarrow entropy_H2(P_i, T_i) \\ s_f \leftarrow s_i \\ T_f \leftarrow Temp_H2(P_f, s_f) \\ DT \leftarrow T_i - T_f \\ & \begin{pmatrix} "P_i(bar)" & "T_i(K)" & "T_f(K)" & "DT(K)" \\ P_i & P_f & T_i & T_f & DT \end{pmatrix} \end{split}$$

Ex:

 $P_i := 200 \text{ bar}$ $T_i := 300 \text{ K}$ $P_i f_i := 1.013 \text{ bar}$

 $DT_isentr_H2(P_i, T_i, P_f)_{1.4} = 251.374$

Note: Along similar lines, Mathcad Functions are written for properties of Argon, Methane, Fluorine and Oxygen, based on NIST data.

Use of these Functions is illustrated in Prob. 3.3.10.

Prob. 3.3.4 Write Mathcad Functions to determine temperature drop on isentropic expansion for various gases.

For isentropic expansion from initial pressure P_i and initial temp T_i to a final pressure of P_f, we have:

$$\frac{\mathbf{T}_{\mathbf{f}}}{\mathbf{T}_{\mathbf{i}}} = \left(\frac{\mathbf{P}_{\mathbf{f}}}{\mathbf{P}_{\mathbf{i}}}\right)^{\frac{\mathbf{k}-1}{\mathbf{k}}}$$

where k is the ratio of sp. heats for the gas concerned, i.e. k = cp/cv

T_f is the final temp.

 $DT = (T_i - T_f)$ is the temp drop.

Now, for various gases, the ratios of sp. heats are given:

Ref: http://www.engineeringtoolbox.com/specific-heat-capacity-gases-d_159.html

Gas or Vapor	Formula		<u>Specif</u>	<u>ïc Heat</u>	Ratio of Specific Heats	Individual Gas constant - R -		
	, onnaid	c _p (KJ/(kg K))	c _v (kJ/(kg K))	c _p (Btu/(lb _m °F))	c _v (Btu/(lb _m °F))	$\kappa = c_p / c_v$	c _p - c _v (KJ/(kg K))	c _p - c _v (ft lb∉/(lb _m °R)
Acetone		1.47	1.32	0.35	0.32	1.11	0.15	
Acetylene	C ₂ H ₂	1.69	1.37	0.35	0.27	1.232	0.319	59.34
Air		1.01	0.718	0.24	0.17	1.40	0.287	53.34
Alcohol	C ₂ H ₅ OH	1.88	1.67	0.45	0.4	1.13	0.22	
Alcohol	CH₃OH	1.93	1.53	0.46	0.37	1.26	0.39	
Ammonia	NH ₃	2.19	1.66	0.52	0.4	1.31	0.53	96.5
Argon	Ar	0.520	0.312	0.12	0.07	1.667	0.208	
Benzene	C ₆ H ₆	1.09	0.99	0.26	0.24	1.12	0.1	
Blast furnace gas		1.03	0.73	0.25	0.17	1.41	0.3	55.05
Bromine		0.25	0.2	0.06	0.05	1.28	0.05	
Butatiene						1.12		
Butane	C4H10	1.67	1.53	0.395	0.356	1.094	0.143	26.5
Carbon dioxide	CO2	0.844	0.655	0.21	0.16	1.289	0.189	38.86
Carbon monoxide	CO	1.02	0.72	0.24	0.17	1.40	0.297	55.14
Carbon disulphide		0.67	0.55	0.16	0.13	1.21	0.12	
Chlorine	Cl ₂	0.48	0.36	0.12	0.09	1.34	0.12	
Chloroform		0.63	0.55	0.15	0.13	1.15	0.08	
Coal gas		2.14	1.59					

Combustion products		1		0.24				
Ethane	C ₂ H ₆	1.75	1.48	0.39	0.32	1.187	0.276	51.5
Ether		2.01	1.95	0.48	0.47	1.03	0.06	
Ethylene	C ₂ H ₄	1.53	1.23	0.4	0.33	1.240	0.296	55.08
Nonochlorodifluoromethane, R-22						1.18		
Helium	He	5.19	3.12	1.25	0.75	1.667	2.08	386.3
Hexane						1.06		
Hydrochloric acid		0.795	0.567					
Hydrogen	H ₂	14.32	10.16	3.42	2.43	1.405	4.12	765.9
Hydrogen Chloride	HCI	0.8	0.57	0.191	0.135	1.41	0.23	42.4
Hydrogen Sulfide	H ₂ S			0.243	0.187	1.32		45.2
Hydroxyl	OH	1.76	1.27			1.384	0.489	
Krypton		0.25	0.151					
Methane	CH ₄	2.22	1.70	0.59	0.45	1.304	0.518	96.4
Methyl Chloride	CH ₃ Cl			0.240	0.200	1.20		30.6
Natural Gas		2.34	1.85	0.56	0.44	1.27	0.5	79.1
Neon		1.03	0.618			1.667	0.412	
Nitric Oxide	NO	0.995	0.718	0.23	0.17	1.386	0.277	
Nitrogen	N ₂	1.04	0.743	0.25	0.18	1.400	0.297	54.99
Nitrogen tetroxide		4.69	4.6	1.12	1.1	1.02	0.09	
Nitrous oxide	N ₂ O	0.88	0.69	0.21	0.17	1.27	0.18	35.1
Oxygen	O2	0.919	0.659	0.22	0.16	1.395	0.260	48.24
Pentane						1.07		

Download free eBooks at bookboon.com

Click on the ad to read more

62

Propane	C ₃ H ₈	1.67	1.48	0.39	0.34	1.13	0.189	35.0
Propene (propylene)	C ₃ H ₆	1.5	1.31	0.36	0.31	1.15	0.18	36.8
Water Vapor Steam 1 psia. 120 – 600 ⁰F		1.93	1.46	0.46	0.35	1.32	0.462	
Steam 14.7 psia. 220 – 600 ºF		1.97	1.5	0.47	0.36	1.31	0.46	
Steam 150 psia. 360 – 600 °F		2.26	1.76	0.54	0.42	1.28	0.5	
Sulfur dioxide (Sulphur dioxide)	SO ₂	0.64	0.51	0.15	0.12	1.29	0.13	24.1
Xenon		0.16	0.097					

Of course, k varies with temp. For example, see below:

Ref: <u>http://en.citizendium.org/wiki/Specific_heat_ratio</u>

Specific heat ratio of various gases ^{[1][2][3]}								
Gas	°C	k		Gas	°C	k		
	-181	1.597			20	1.40		
	-76	1.453		Dry	100	1.401		
	20	1.41		Air	200	1.398		
H ₂	100	1.404			400	1.393		
	400	1.387		CO ₂	0	1.310		
	1000	1.358			20	1.30		
	2000	1.318			100	1.281		
He	20	1.66			400	1.235		
N	-181	1.47		$\rm NH_3$	15	1.310		
N ₂	15	1.404		со	20	1.40		
Cl ₂	20	1.34			-181	1.45		
Ar	-180	1.76			-76	1.415		
	20	1.67		0-	20	1.40		
	-115	1.41		02	100	1.399		
CH4	-74	1.35			200	1.397		
	20	1.32			400	1.394		

.....

Now, the Mathcad Function is written:

 $DELTAT_isentr(P_i, T_i, P_f, k_gas) :=$

$$\begin{bmatrix} \frac{k_gas-1}{k_gas} \\ T_f \leftarrow T_i \cdot \left(\frac{P_f}{P_i}\right)^{k_gas} \\ DELTAT \leftarrow T_i - T_f \\ \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ P i & P f & T i & T f & DELTAT \end{pmatrix}$$

Ex: For various gases: k_air := 1.40 k_Ar := 1.667 k_CO2 := 1.289 k_He := 1.667 k_CH4 := 1.304 k_N2 := 1.4 k_Ne := 1.667 k_O2 := 1.395 k_H2 := 1.405 P_i := 20 bar P_f := 1.013 bar T_i := 300 K

Then, from the Mathcad Function written, we get:

$$\begin{split} & \text{DELTAT_isentr}(P_i, T_i, P_f, k_air) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 127.938 & 172.062 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_N2) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 127.938 & 172.062 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_O2) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 128.919 & 171.081 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_CO2) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 153.703 & 146.297 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_CH4) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 153.703 & 146.297 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_CH4) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 149.665 & 150.335 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_Ar) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 90.949 & 209.051 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_Ar) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 90.949 & 209.051 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_Ar) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 90.949 & 209.051 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_Ar) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 90.949 & 209.051 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_Ar) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 90.949 & 209.051 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_Ar) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 90.949 & 209.051 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_He) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ & 20 & 1.013 & 300 & 90.949 & 209.051 \end{pmatrix} \\ & \text{DELTAT_isentr}(P_i, T_i, P_f, k_He) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DELTAT(K)" \\ &$$

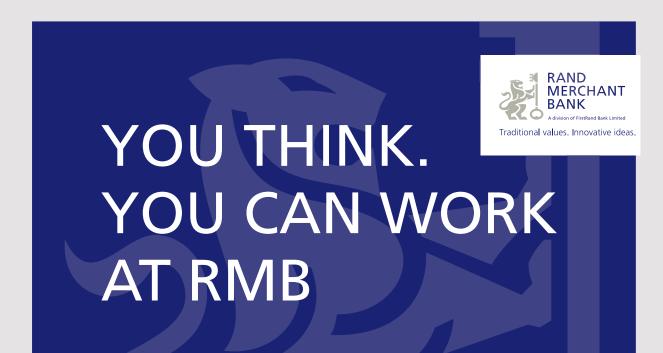
Download free eBooks at bookboon.com

64

Plot DELTAT for N2, H2 and He as P_i varies from 10 bar to 100 bar final pressure being 1.013 bar:

P_f := 1.013 bar

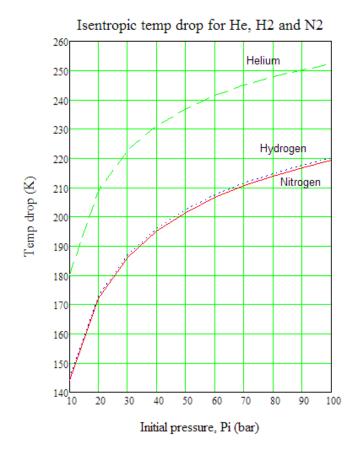
P_i := 10,20..100 define a range variable


DELTAT_isentr(P_i, T_i, P_f, k_N2)1.4

144.041
172.062
186.057
195.048
201.53
206.528
210.556
213.904
216.753
219.222

LIAI_ise
144.946
173.028
187.034
196.024
202.501
207.493
211.513
214.855
217.697
220.159

 $DELTAT_isentr(P_i, T_i, P_f, k_H2)_{1,4} \quad DELTAT_isentr(P_i, T_i, P_f, k_He)_{1,4}$


179.982
209.051
222.671
231.079
236.966
241.401
244.906
247.772
250.176
252.233

Rand Merchant Bank uses good business to create a better world, which is one of the reasons that the country's top talent chooses to work at RMB. For more information visit us at www.rmb.co.za

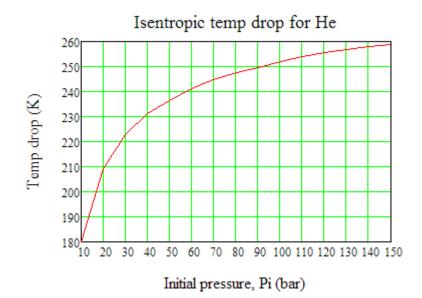
Rand Merchant Bank is an Authorised Financial Services Provider

Prob. 3.3.5 Write Mathcad Functions to determine temperature drop on isentropic expansion for helium using the NIST data.

Recollect: we have the Mathcad Function:

Ex:

 $P_i := 200 \text{ bar}$ $T_i := 300 \text{ K}$ $P_f := 1.013 \text{ bar}$

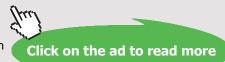

 $DT_isentr_He(P_i, T_i, P_f)_{1,4} = 263.53$

Plot the temp drop for various initial pressures:

<u>T_i</u>:= 300 K <u>P_f</u>:= 1.013 bar

P_i := 10,20.. 150 define a range variable

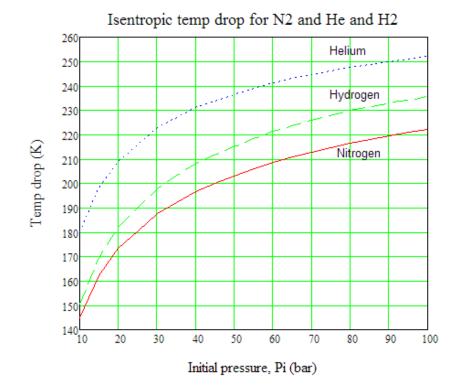
P_i =	:	DT_isentr_H	Ie(P_i,T_i,P_f) _{1,4}
10		180.199	
20		209.129	
30		222.717	
40		231.016	
50		236.424	
60		241.263	
70	1	244.69	
80	1	247.592	
90	1	249.8	
100	1	252.008	
110	1	253.813	
120		255.493	
130		256.708	
140		257.923	
150		258.973	


Prob. 3.3.6 Write Mathcad Functions to determine temperature drop on isentropic expansion for Nitrogen and Hydrogen using the NIST data.

Again, recollect that we have Mathcad Functions for N2 and H2:

And,

Discover the truth at www.deloitte.ca/careers


Now, plot the temp drops for isentropic expansion fron various starting pressures to a final pressure $P_f = 1.013$ bar:

P_i := 10,20.. 100 define a range variable

We get:

P_i =	DT_isentr_N2(P_i, T_i, P_f)1,4	DT_isentr_He(P_i, T_i, P_f) _{1,4}	DT_isentr_H2(P_i,T_i,P_f)1,4
10	144.863	180.199	150.55
20	173.212	209.129	181.896
30	187.511	222.717	197.936
40	196.809	231.016	208.315
50	203.011	236.424	215.076
60	208.739	241.263	221.52
70	212.775	244.69	225.746
80	216.598	247.592	229.972
90	219.439	249.8	232.86
100	222.279	252.008	235.745

And, now plot the results:

269.159 30.841

Prob. 3.3.7 Write Mathcad Function to determine temperature drop on isenthalpic expansion for Nitrogen using the NIST data.

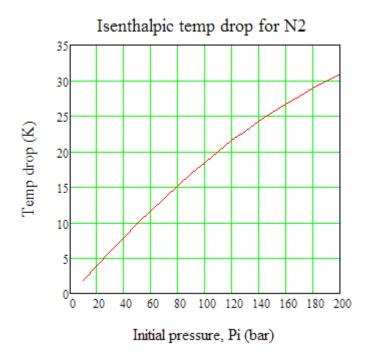
Function for Isenthalpic temp drop for N2:

$$\begin{split} DT_isenthalp_N2(P_i, T_i, P_f) &\coloneqq & h_i \leftarrow enthalpy_N2(P_i, T_i) \\ h_f \leftarrow h_i \\ T_f \leftarrow Temp_N2(P_f, h_f) \\ DT \leftarrow T_i - T_f \\ & \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DT(K)" \\ P_i & P_f & T_i & T_f & DT \end{pmatrix} \\ Ex: \\ P_f &\coloneqq 1 & bar & T_i &\coloneqq 300 & K & P_i &\coloneqq 200 \\ DT_isenthalp_N2(P_i, T_i, P_f) &= \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DT(K)" \\ 200 & 1 & 300 & 269159 & 30.841 \end{pmatrix} \end{split}$$

1 300

200

Now, plot the temp drops for various starting pressures, final pressure being $P_f = 1.013$ bar:


P_i:= 10,20..200define a range variable

 $P_{\text{AAAAAAAA}} := 1$ bar $T_{\text{AAAAAAAA}} := 300$ K

We get:

P_i =			
			0
10		0	1.888
20		1	3.953
30		2	5.97
40		3	7.935
50		4	9.82
60		5	11.705
70		6	13.473
80		7	15.24
90		8	16.879
100	$DT_isenthalp_N2(P_i, T_i, P_f)_{1,4} =$	9	18.517
110	÷,*	10	20.022
120		11	21.526
130		12	22.896
140		13	24.266
150		14	25.495
160		15	26.724
170		16	27.822
180		17	28.919
190		17	29.88
200			
		19	30.841

And, now plot the results:

Prob. 3.3.8 Write Mathcad Functions to determine temperature drops on isenthalpic expansion for Helium and Hydrogen using the NIST data. For helium starting temp is 20 K and for hydrogen starting temp is 80 K. Final pressure for each case is 1.013 bar.

Note: For H2 and He the Max. inversion temps are 202 K and 40 K respectively, and, the temp before isenthalpic expansion should be below these value for each gas.

Again, recollect that we have Mathcad Functions for He and H2:

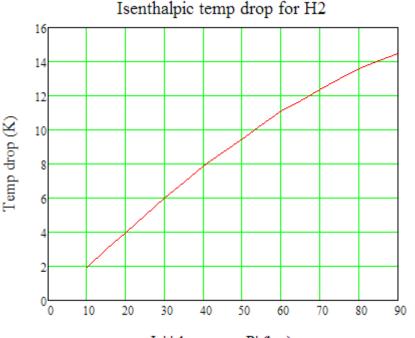
Function for Isenthalpic temp drop for Hydrogen:

$$DT_isenthalp_H2(P_i, T_i, P_f) := \begin{bmatrix} h_i \leftarrow enthalpy_H2(P_i, T_i) \\ h_f \leftarrow h_i \\ T_f \leftarrow Temp_H2(P_f, h_f) \\ DT \leftarrow T_i - T_f \\ \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "DT(K)" \\ P_i & P_f & T_i & T_f & DT \end{pmatrix}$$

Ex:
$$T_i := 150 \quad K \qquad P_f := 1 \qquad bar \qquad P_i := 200$$

$$\begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "DT(K)" \\ & "DT(K)" & "T_i(K)" & "T_i(K)" & "DT(K)" \end{pmatrix}$$

 $DT_isenthalp_H2(P_i, T_i, P_f) = \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "T_f(K)" & "DT(K)" \\ 200 & 1 & 150 & 148.918 & 1.082 \end{pmatrix}$


Now, plot the temp drop for various initial pressures:

We get:

1	P_i =	DT_isentha	$h_{1,4}$
	10	1.923	
	15	2.984	
	20	4.027	
	25	5.022	
	30	6.018	
	35	6.948	
	40	7.877	
	45	8.68	
	50	9.483	
	55	10.289	
	60	11.102	
	65	11.728	
	70	12.354	
	75	12.98	
	80	13.607	
	85	14.05	
	90	14.493	

Now, plot the results:

Initial pressure, Pi (bar)

Mathcad Function for isenthalpic temp drop for helium:

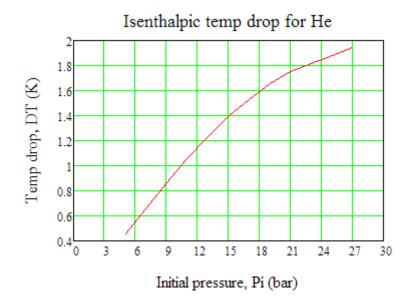
Function for Isenthalpic temp drop for helium:

$$\begin{split} DT_isenthalp_He(P_i,T_i,P_f) &\coloneqq & h_i \leftarrow enthalpy_He(P_i,T_i) \\ h_f \leftarrow h_i \\ T_f \leftarrow Temp_He(P_f,h_f) \\ DT \leftarrow T_i - T_f \\ & \begin{pmatrix} "P_i(bar)" & "P_f(bar)" & "T_i(K)" & "DT(K)" \\ P_i & P_f & T_i & T_f & DT \end{pmatrix} \end{split}$$

Ex:

 $\underline{T}_{i} := 30 \quad K \quad \underline{P}_{f} := 1 \quad \text{bar} \quad \underline{P}_{i} := 20 \quad \text{bar}$ $DT_{isenthalp} = \begin{pmatrix} "P_{i}(bar)" & "P_{f}(bar)" & "T_{i}(K)" & "T_{f}(K)" & "DT(K)" \\ 20 & 1 & 30 & 29.499 & 0.501 \end{pmatrix}$

Now, plot temp drop for various starting pressures:


T_i = 20 K P_f = 1.013 bar

P_i = 5,7..27 ...define a range variable

We get:

P_i =	DT_isentł	halp_He(P_i,T_i,P_f)1,4
5	0.452	
7	0.66	
9	0.867	
11	1.057	
13	1.23	
15	1.402	
17	1.531	
19	1.659	
21	1.755	
23	1.818	
25	1.882	
27	1.945	

And, now plot the results:

Prob. 3.3.9 Write Mathcad Functions to determine Ideal work of liquefaction for Nitrogen, Hydrogen and Helium, starting from initial pressure and temp of 1.013 bar (= 1 atm) and 300 K respectively.

Write a Mathcad Function to determine Ideal (or minimum) work of liquefaction for N2:

$$\begin{split} W_ideal_LiqN2(P1,T1) &:= & s1 \leftarrow entropy_N2(P1,T1) \\ & sf \leftarrow SFSATP(P1) \\ & h1 \leftarrow enthalpy_N2(P1,T1) \\ & hf \leftarrow HFSATP(P1) \\ & Wideal \leftarrow T1 \cdot (s1 - sf) - (h1 - hf) \end{split}$$

Ex: P1 := 1.013 bar T1 := 300 K

W_ideal_LiqN2(P1,T1) = 771.028 kJ/kg

Write a Mathcad Function to determine Ideal (or minimum) work of liquefaction for H2:

$$\begin{split} & W_ideal_LiqH2(P1,T1) \coloneqq \\ & s1 \leftarrow entropy_H2(P1,T1) \\ & sf \leftarrow SFSATP(P1) \\ & h1 \leftarrow enthalpy_H2(P1,T1) \\ & hf \leftarrow HFSATP(P1) \\ & Wideal \leftarrow T1 \cdot (s1 - sf) - (h1 - hf) \end{split} \\ \\ & \mathsf{Ex:} \quad P1 \coloneqq 1.013 \text{ bar} \quad T1 \coloneqq 300 \ \mathsf{K} \end{split}$$

W ideal LiqH2(P1,T1) = 1.21×10^4 kJ/kg

Write a Mathcad Function to determine Ideal (or minimum) work of liquefaction for He:

Brain power

By 2020, wind could provide one-tenth of our planet's electricity needs. Already today, SKF's innovative know-how is crucial to running a large proportion of the world's wind turbines.

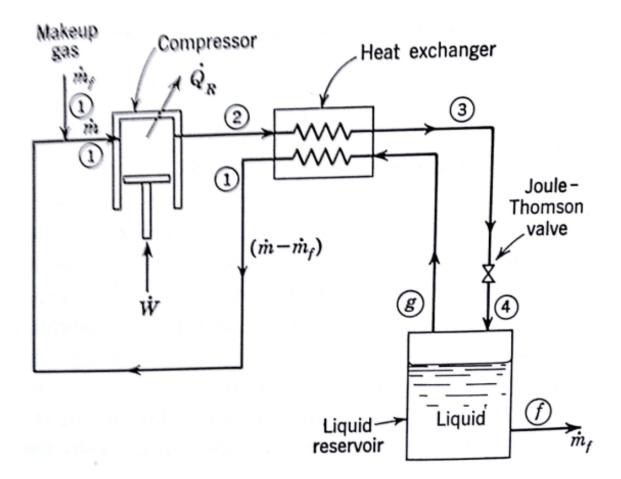
Up to 25 % of the generating costs relate to maintenance. These can be reduced dramatically thanks to our systems for on-line condition monitoring and automatic lubrication. We help make it more economical to create cleaner, cheaper energy out of thin air.

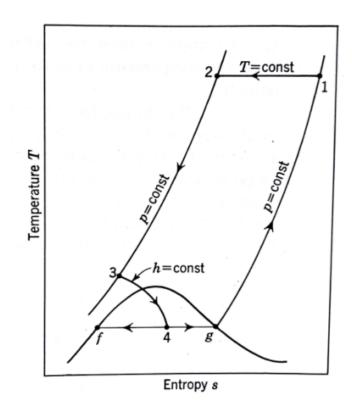
By sharing our experience, expertise, and creativity, industries can boost performance beyond expectations. Therefore we need the best employees who can meet this challenge!

The Power of Knowledge Engineering

Plug into The Power of Knowledge Engineering. Visit us at www.skf.com/knowledge

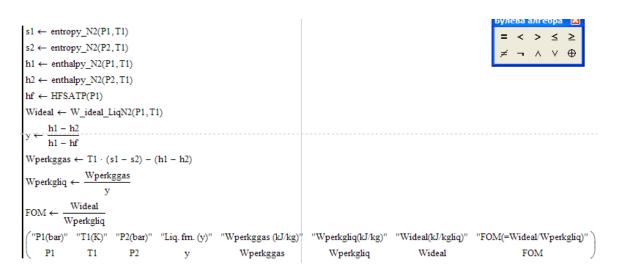
SKF


Download free eBooks at bookboon.com


Click on the ad to read more

```
 \begin{split} W\_ideal\_LiqHe(P1,T1) &:= & s1 \leftarrow entropy\_He(P1,T1) \\ sf \leftarrow SFSATP(P1) \\ h1 \leftarrow enthalpy\_He(P1,T1) \\ hf \leftarrow HFSATP(P1) \\ Wideal \leftarrow T1 \cdot (s1 - sf) - (h1 - hf) \end{split} \\ \\ Ex: & \underline{P1} := 1.013 \text{ bar } \underbrace{T1} := 300 \text{ K} \\ & W\_ideal\_LiqHe(P1,T1) = 6.841 \times 10^3 \text{ kJ/kg} \end{split}
```

Prob. 3.3.10 Write Mathcad Functions to determine liquefaction fraction, y, work required per kg of gas compressed, work required per kg liquefied, Figure of Merit (FOM = Wideal / Work per kg liqid) for simple Linde-Hampson cycle for Nitrogen. Take the initial pressure and temp of 1.013 bar (= 1 atm) and 300 K respectively and the final pressure is 200 bar. Plot y, Wperkgliq and FOM as final pressure varies from 50 bar to 200 bar.


Compare these parameters for N2, Ar, CH4, F2 and O2 as P2 varies from 50 bar to 200 bar, with P1 = 1.013 bar, T1 = 300 K.

First, Mathcad program:

Ideal_LHcycle_N2(P1,T1,P2) :=

Output of the program gives: P1, T1, P2, y, Wperkggas, Wperkhliq, Wideal and FOM.

Ex: P1 := 1.013 bar T1 := 300 K P2 := 200 bar

Ideal_LHcycle_N2(P1,T1,P2) =

("P1(bar)"	"T1(K)"	"P2(bar)"	"Liq. fm. (y)"	"Wperkggas (kJ/kg)"	"Wperkgl	iq(kJ/kg)"	"Wideal(kJ/kgliq)"	"FOM(=Wideal/Wperkgliq)	"
1.013	300	200	0.074	472.259	6.377	× 10 ³	771.028	0.121	5
i.e.									
y :=	Ideal_L	.Hcycle_i	N2(P1,T1,F	²²⁾ 1,3	i.e.	y = 0	.074		
Wper	kggas :=	= Ideal_L	.Hcycle_N2	(P1,T1,P2) _{1,4}	i.e.	Wperk	ggas = 472.259	kJ/kg	
Wperk	gliq := I	deal_LH	cycle_N2(P)	1,T1,P2) _{1,5}	i.e.	Wperk	gliq = 6.377 × 10) ³ kJ/kg	
Wideal	:= Idea	l_LHcyc	le_N2(P1,T	1,P2) _{1,6}	i.e.	Wideal	l = 771.028 k	J/kg	
FOM :	= Ideal_	LHcycle_	_N2(P1,T1,	P2) _{1,7}	i.e.	FOM =	• 0.121		

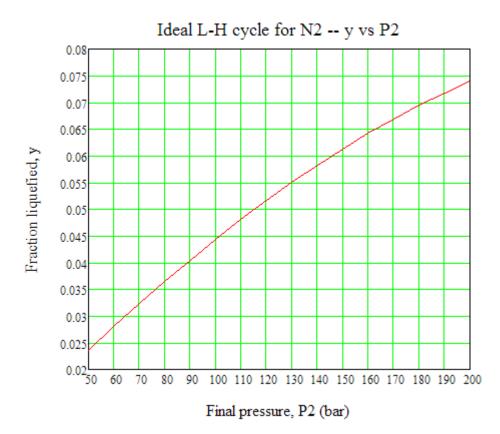
To plot y as the pressure P2 varies from 50 to 200 bar:

P2 := 50,60..200 ...define a range variable P1 := 1.013 bar T1 := 300 K

With us you can shape the future. Every single day.

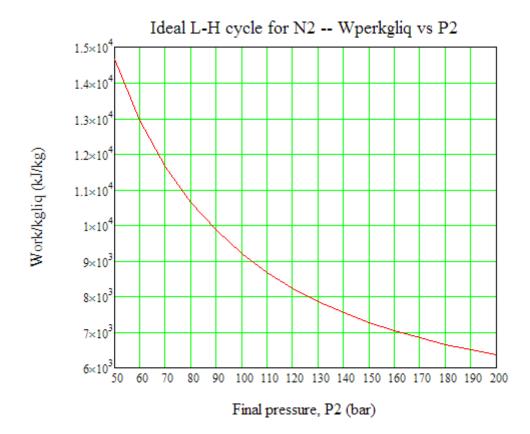
For more information go to: www.eon-career.com

Your energy shapes the future.



Click on the ad to read more

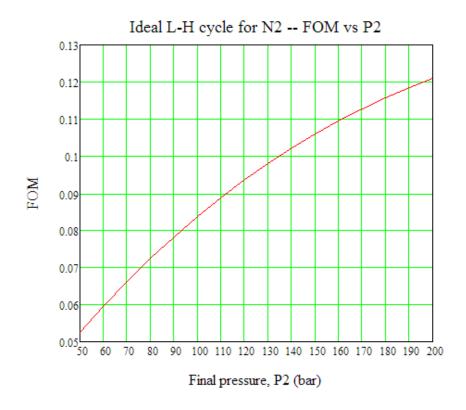
Download free eBooks at bookboon.com


79

P2 =	Ideal_LHcycle_N2(P1,T1,P2)1,3
50	0.024
60	0.028
70	0.032
80	0.037
90	0.041
100	0.044
110	0.048
120	0.052
130	0.055
140	0.058
150	0.061
160	0.064
170	0.067
180	0.069
190	0.072
200	0.074

To plot Wperkgliq vs P2:

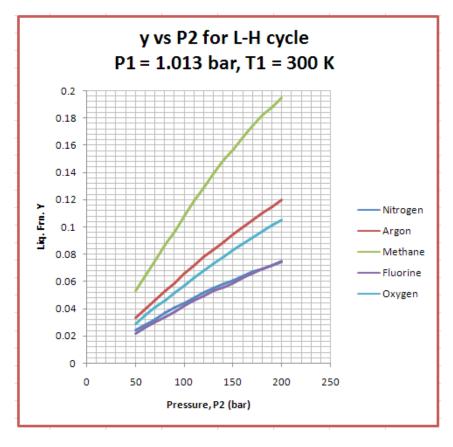
72	Ideal LHcycle	_N2(P1,T1,P2)1,5
P2 =		
50	1.466.104	
60	1.294·10 ⁴	
70	1.164.104	
80	1.064.104	
90	9.848·10 ³	
100	9.2·10 ³	
110	8.678·10 ³	
120	8.23·10 ³	
130	7.864·10 ³	
140	7.539·10 ³	
150	7.275·10 ³	
160	7.035·10 ³	
170	6.839·10 ³	
180	6.658·10 ³	
190	6.513·10 ³	
200	6.377·10 ³	


To plot FOM vs P2:

P2 =		Ideal_LHo	wcle_N2(P1,T1,P2)1,7
50		0.053	
60		0.06	
70		0.066	
80		0.072	
90	1	0.078	
100		0.084	
110		0.089	
120		0.094	
130		0.098	
140		0.102	
150		0.106	
160		0.11	
170		0.113	
180		0.116	
190		0.118	
200		0.121	

Download free eBooks at bookboon.com

Click on the ad to read more


Now, compare the results for y, Wperkgiq and FOM for N2, Ar, CH4, F2 and O2 as P2 varies from 50 bar to 200 bar, with P1 = 1.013 bar, T1 = 300 K:

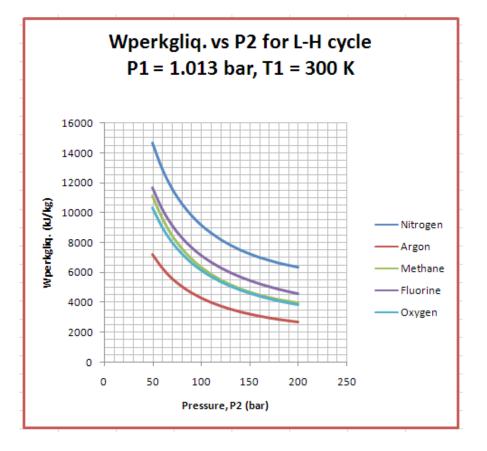
Similar Mathcad programs are written for these fluids, and the results are summarized below:

1 - 1.015 .001	,11-30010,12	aries from 50 bar to 200	501		
P2 (bar)	y N2	y_Ar	у СН4	y_F2	y 02
50	0.024	0.033	0.053	0.022	0.029
60	0.028	0.04	0.064	0.026	0.035
70	0.032	0.046	0.075	0.03	0.041
80	0.037	0.053	0.087	0.034	0.046
90	0.041	0.059	0.097	0.038	0.052
100	0.044	0.066	0.108	0.042	0.057
110	0.048	0.072	0.119	0.046	0.063
120	0.052	0.078	0.129	0.049	0.068
130	0.055	0.083	0.139	0.053	0.073
140	0.058	0.089	0.149	0.056	0.078
150	0.061	0.095	0.157	0.059	0.083
160	0.064	0.1	0.166	0.063	0.088
170	0.067	0.105	0.174	0.066	0.092
180	0.069	0.11	0.182	0.069	0.097
190	0.072	0.115	0.188	0.072	0.101
200	0.074	0.12	0.195	0.075	0.105

Variation of Liq. Fraction, y:

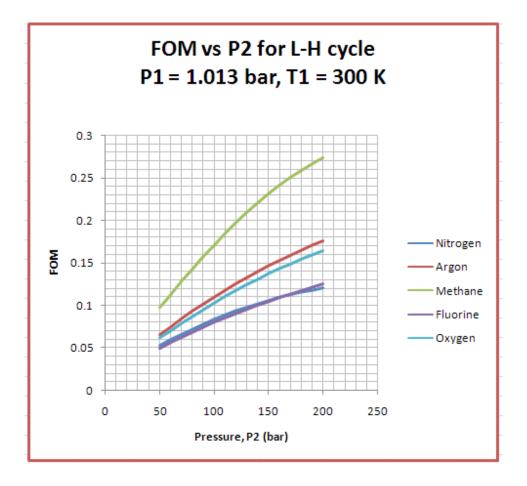
And, the plot:

Variation of Wperkgliq.:


P2 (bar)	Wperkgliq(kJ/kg)-N2	Wperkgliq(kJ/kg)-Ar	Wperkgliq(kJ/kg)-CH4	Wperkgliq(kJ/kg)-F2	Wperkgliq(kJ/kg)-O2
50	1.47E+04	7.23E+03	1.11E+04	1.17E+04	1.03E+04
60	1.29E+04	6.33E+03	9.65E+03	1.03E+04	9.04E+03
70	1.16E+04	5.63E+03	8.49E+03	9.18E+03	8.03E+03
80	1.06E+04	5.11E+03	7.64E+03	8.35E+03	7.28E+03
90	9.85E+03	4.68E+03	6.94E+03	7.69E+03	6.66E+03
100	9.20E+03	4.33E+03	6.38E+03	7.16E+03	6.16E+03
110	8.68E+03	4.04E+03	5.92E+03	6.71E+03	5.75E+03
120	8.23E+03	3.79E+03	5.53E+03	6.33E+03	5.40E+03
130	7.86E+03	3.59E+03	5.22E+03	6.00E+03	5.10E+03
140	7.54E+03	3.41E+03	4.94E+03	5.72E+03	4.84E+03
150	7.28E+03	3.25E+03	4.72E+03	5.47E+03	4.62E+03
160	7.04E+03	3.11E+03	4.52E+03	5.25E+03	4.42E+03
170	6.84E+03	3.00E+03	4.36E+03	5.06E+03	4.26E+03
180	6.66E+03	2.89E+03	4.22E+03	4.88E+03	4.10E+03
190	6.51E+03	2.80E+03	4.10E+03	4.72E+03	3.97E+03
200	6.38E+03	2.72E+03	4.00E+03	4.58E+03	3.85E+03

ENGLISH OUT THERE

Click to hear me talking before and after my unique course download


And, the plot:

Variation of FOM:

P2 (bar)	FOM_II-N2	FOM_II-Ar	FOM_II-CH4	FOM_II-F2	FOM_II-02
50	0.053	0.066	0.098	0.049	0.062
60	0.06	0.075	0.113	0.056	0.07
70	0.066	0.085	0.129	0.062	0.079
80	0.072	0.094	0.143	0.068	0.087
90	0.078	0.102	0.158	0.074	0.095
100	0.084	0.11	0.171	0.08	0.103
110	0.089	0.118	0.185	0.085	0.111
120	0.094	0.126	0.198	0.09	0.118
130	0.098	0.133	0.21	0.095	0.125
140	0.102	0.14	0.221	0.1	0.131
150	0.106	0.147	0.232	0.104	0.138
160	0.11	0.153	0.242	0.109	0.144
170	0.113	0.159	0.251	0.113	0.149
180	0.116	0.165	0.259	0.117	0.155
190	0.118	0.171	0.267	0.121	0.16
200	0.121	0.176	0.274	0.125	0.165

And, the plot:

Prob. 3.3.11 In the above problem, let the HX be not 100% efficient, i.e. the warm end temp difference $\Delta T = 5 \text{ deg}$ (i.e. low pressure gas exits the HX at 295 K), heat losses to the system, qleak = 6 kJ/kg, and the isothermal efficiency of compressor is eta_iso = 0.6. Then, find the liquefaction fraction, y, work required per kg of gas compressed, work required per kg liquefied, Figure of Merit (FOM = Wideal / Work per kg liqid) for simple Linde-Hampson cycle for Nitrogen. Take the initial pressure and temp as 1.013 bar (= 1 atm) and 300 K respectively and the final pressure is 200 bar. Plot y, Wperkgliq and FOM as final pressure varies from 50 bar to 200 bar.

Solution:

```
We have: P_1 := 1.013 bar T_1 := 300 K P_2 := 200 bar eta_iso := 0.6

q_leak := 6 kJ/kg

q_loss_HX = (h_1 - h_1_prime)
```

where h_1 is the enthalpy at point 1, h_1_prime is the enthalpy at point 1_prime, i.e. exit of low pressure stream in the HX. $h_1 := enthalpy_N2(P_1, T_1)$

 h_1 _prime := enthalpy_N2(P_1, T_1 - 5)

 $h_2 := enthalpy_N2(P_2, T_1)$

 $h_f := HFSATP(P_1)$

 $s_1 := entropy_N2(P_1, T_1)$

 $s_2 := entropy_N2(P_2, T_1)$

Therefore:

q_loss_HX := h_1 - h_1_prime i.e. q_loss_HX = 5.205 kJ/kg

Now, applying the I Law to all components of the system, excepting the compressor, we get:

 $y_realLH := \frac{h_1 - h_2 - q_leak - q_loss_HX}{h_1 - h_f - q_loss_HX}$

i.e. y_realLH = 0.049fraction liquefied ... Ans.

Work required per kg of gas compressed:

W_per_kg_gas :=
$$\frac{T_1 \cdot (s_1 - s_2) - (h_1 - h_2)}{eta iso}$$

i.e. W_per_kg_gas = 787.099 kJ/kggas Ans.

Work required per kg of liquid:

i.e. $W_per_kg_{liq} = 1.613 \times 10^4$ kJ/kgliquid Ans.

Also: W_per_lit_liq := W_per_kg_liq · 0.808 where density of LN2 = 0.808 kg/lit

i.e. $W_per_lit_liq = 1.303 \times 10^4$ kJ/litre of liquid Ans.

W_ideal := W_ideal_LiqN2(P_1,T_1)Ideal or min. work of liquefaction for N2

i.e. W_ideal = 771.028 kJ/kgliq Therefore: FOM_realLH := $\frac{W_ideal}{W_per_kg_liq}$ i.e. FOM_realLH = 0.048FOM of real L-H cycle ... Ans.

Plot y_realLH, W_per_kg_liq and FOM_realLH against P_2, assuming that all other parameters remain the same:

To plot the results, first write the required parameters as functions of P_2:

$$s_{m}^{2}(P_{2}) := entropy_N2(P_{2}, T_{1})$$

$$h_{2}^{2}(P_{2}) := enthalpy_N2(P_{2}, T_{1})$$

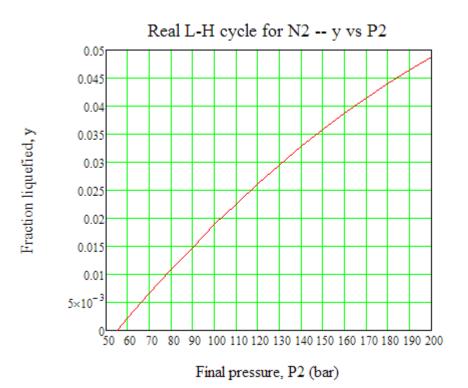
$$y_{m}^{2}(P_{2}) := \frac{h_{1} - h_{2}(P_{2}) - q_{1}eak - q_{1}oss_{HX}}{h_{1} - h_{f} - q_{1}oss_{HX}}$$

$$W_{per_{kg}} gas(P_{2}) := \frac{T_{1} \cdot (s_{1} - s_{2}(P_{2})) - (h_{1} - h_{2}(P_{2}))}{eta_{1}so}$$

W per kg liq(P_2) :=
$$\frac{W_per_kg_gas(P_2)}{y_realLH(P_2)}$$

FOM realLH(P_2) :=
$$\frac{W_ideal}{W_per_kg_liq(P_2)}$$

Now, we can plot the results as P_2 varies from 50 bar to 200 bar:

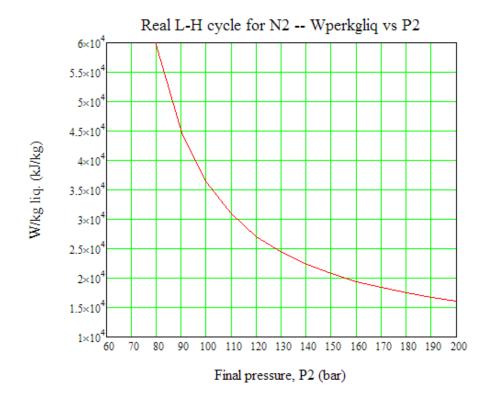

P_2 := 50,60.. 200 ... define a range variable

y_realLH vs P_2:

P_2 =	$y_realLH(P_2) =$
50	-2.3·10 ⁻³
60	2.281·10 ⁻³
70	6.576·10 ⁻³
80	0.011
90	0.015
100	0.019
110	0.023
120	0.026
130	0.029
140	0.033
150	0.036
160	0.039
170	0.041
180	0.044
190	0.046
200	0.049

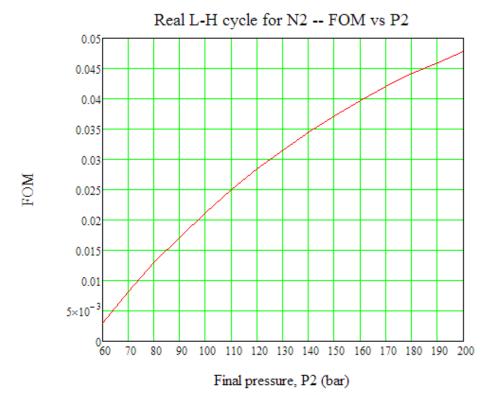
Note that at pressures P2 less than 50 bar, the fraction liquefied, y is -ve. i.e. At pressures P2 < 50 bar, there is no liquefaction.

Now, plot the result:



Download free eBooks at bookboon.com

Click on the ad to read more


W_per_kg_liq vs P_2:

P_2 =	W_per_kg_liq(P_2)
50	-2.503·10 ⁵	
60	2.656·10 ⁵	
70	9.537·10 ⁴	
80	5.965·10 ⁴	
90	4.477·10 ⁴	
100	3.618·10 ⁴	
110	3.09·10 ⁴	
120	2.71·10 ⁴	
130	2.443·10 ⁴	
140	2.231·10 ⁴	
150	2.073·10 ⁴	
160	1.939·10 ⁴	
170	1.837·10 ⁴	
180	1.746·10 ⁴	
190	1.676.104	
200	1.613.104	

FOM vs P_2:

P_2 =	FOM_realLH(P_2	2)
50	-3.08.10-3	
60	2.903·10 ⁻³	
70	8.085·10 ⁻³	
80	0.013	
90	0.017	
100	0.021	
110	0.025	
120	0.028	
130	0.032	
140	0.035	
150	0.037	
160	0.04	
170	0.042	
180	0.044	
190	0.046	
200	0.048	

Prob. 3.3.12 If in a Linde-Hampson system, nitrogen gas is compressed from 1.013 bar to 200 bar with an overall effcy of compressor = 0.75, and the gas leaves the compressor at 300 K, find the efficiency of HX to get a liquid yield of 0.04. Also find the work required per unit mass liquefied [1].

Also, plot Liq. yield, y and FOM against eta_HX.

First, write a Mathcad Function to find the desired quantities:

Real_LHcycle_N2(P1,T1,P2,eta_HX,eta_comp) :=

 $s1 \leftarrow entropy_N2(P1,T1)$ $s2 \leftarrow entropy_N2(P2,T1)$ h1 ← enthalpy_N2(P1,T1) $h2 \leftarrow enthalpy N2(P2,T1)$ $Tf \leftarrow TSAT(P1)$ $T1_prime \leftarrow T1 - (1 - eta_HX) \cdot (T1 - Tf)$ $h1_prime \leftarrow enthalpy_N2(P1,T1_prime)$ $hf \leftarrow HFSATP(P1)$ Wideal ← W_ideal_LiqN2(P1,T1) $y \leftarrow \frac{h1_prime - h2}{h1_prime}$ h1_prime - hf Wperkggas $\leftarrow \frac{T1 \cdot (s1 - s2) - (h1 - h2)}{r}$ eta_comp Wperkgliq $\leftarrow \frac{Wperkggas}{y}$ У Wideal \rightarrow MOT Wperkgliq . "P1(bar)" "T1(K)" "P2(bar)" "eta_HX" "Liq. fm. (y)" "Wperkgliq(kJ/kg)" "Wideal(kJ/kgliq)" "FOM(=Wideal/Wperkgliq)" P1 T1 P2 eta_HX y Wperkgliq Wideal FOM Ex: P1 := 1.013 bar T1 := 300 K eta_HX := 0.95 eta_comp := 0.75

We get:

Real_LHcycle_N2(P1,T1,P2,eta_HX,eta_comp) =

 "P1(bar)"
 "T1(K)"
 "P2(bar)"
 "eta_HX"
 "Liq. fm.
 (y)"
 "Wperkgliq(kJ/kg)"
 "Wideal(kJ/kgliq)"
 "FOM(=Wideal/Wperkgliq)"

 1.013
 300
 200
 0.95
 0.049
 1.295 × 10⁴
 771.028
 0.06

i.e.

```
\label{eq:liqFm_y} \begin{split} \text{LiqFm_y} &= \text{Real\_LHcycle\_N2(P1,T1,P2,eta\_HX,eta\_comp)}_{1,4} & \text{LiqFm\_y} = 0.049 \\ \\ \hline & \text{Wperkgliq} \coloneqq \text{Real\_LHcycle\_N2(P1,T1,P2,eta\_HX,eta\_comp)}_{1,5} & \text{Wperkgliq} = 1.295 \times 10^4 & \text{kJ/kg} \\ \hline & \text{FOM} \coloneqq \text{Real\_LHcycle\_N2(P1,T1,P2,eta\_HX,eta\_comp)}_{1,7} & \text{FOM} = 0.06 \end{split}
```

Now, find the value of eta_HX required to get a yield of 0.04, use the 'Solve block' of Mathcad:

We have:

P1 := 1.013 bar T1 := 300 K eta_comp := 0.75 P2 := 200 bar

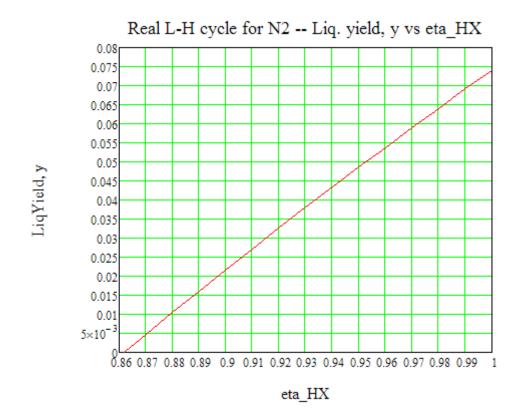
eta_HX := 1trial value

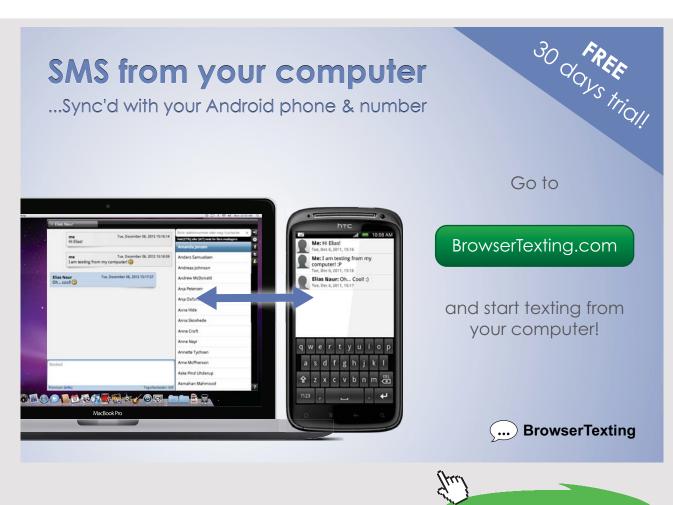
Given

Real_LHcycle_N2(P1,T1,P2,eta_HX,eta_comp)_1.4 = 0.04

Find(eta_HX) = 0.934

i.e. eta_HX = 0.934 = 93.4% to get a value of y = 0.04...Ans.

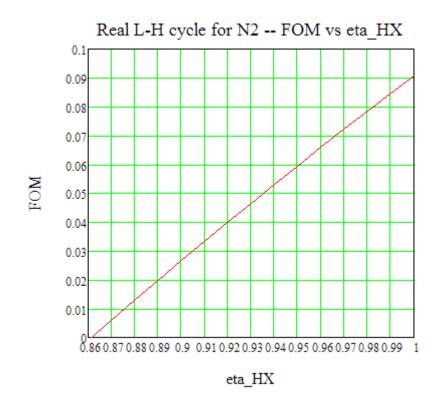

Plot y and FOM against eta_HX, other factors remaining the same:


P1 := 1.013 bar T1 := 300 K eta_comp := 0.75 P2 := 200 bar

eta HX := 0.85,0.86.. 1define a range variable

eta_HX	У	FOM		
0.85	-6.756·10 ⁻³	-8.273·10 ⁻³		
0.86	-9.335·10 ⁻⁴	-1.143·10 ⁻³		
0.87	4.822·10 ⁻³	5.905·10 ⁻³		
0.88	0.011	0.013		
0.89	0.016	0.02		
0.9	0.022	0.027		
0.91	0.027	0.033		
0.92	0.033	0.04		
0.93	0.038	0.047		
0.94	0.043	0.053		
0.95	0.049	0.06		
0.96	0.054	0.066		
0.97	0.059	0.072		
0.98	0.064	0.078		
0.99	0.069	0.085		
1	0.074	0.091		

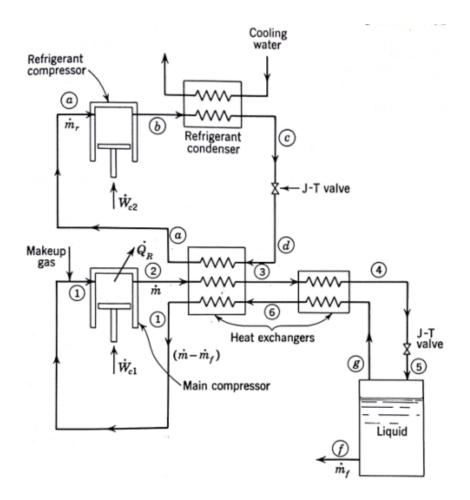
Note that at values of eta_HX < 0.86, the liquid yield is zero.

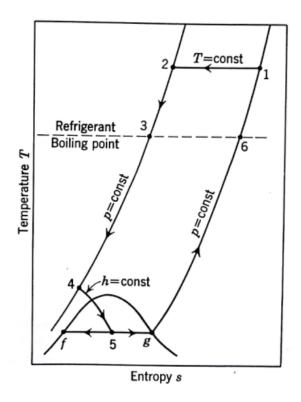


Download free eBooks at bookboon.com

Click on the ad to read more

97

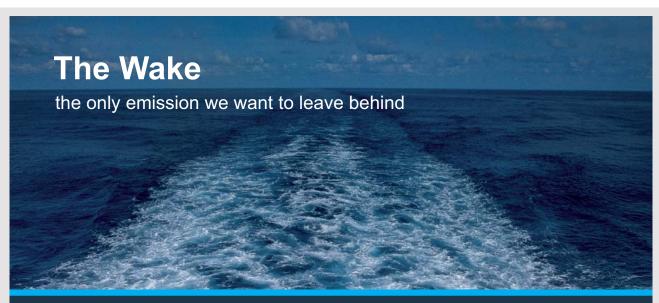



Prob. 3.3.13 Write Mathcad Functions to determine liquefaction fraction, y, work required per kg of gas compressed, work required per kg liquefied, Figure of Merit (FOM = Wideal / Work per kg liqid) for pre-cooled Linde-Hampson cycle for Nitrogen, including the adiabatic work of the refrigeration system. Take the initial pressure and temp of 1.013 bar (= 1 atm) and 300 K respectively and the final pressure is 200 bar. For the refrigerant circuit using F_12 , we have:

refrigerant flow rate ratio = r (= m_r / m):

h_a = 204.5 kJ/kg, h_b = 242.1 kJ/kg and h_c = 55.9 kJ/kg.

Also, plot y, Wperkgliq and FOM as final pressure varies from 50 bar to 200 bar.


First, write the Mathcad Function:

Precooled_LHcycle_N2(P1,T1,P2,Refrigratio_r,h_a,h_b,h_c) :=

```
s1 \leftarrow entropy_N2(P1,T1)
s2 \leftarrow entropy_N2(P2,T1)
h1 \leftarrow enthalpy_N2(P1,T1)
h2 \leftarrow enthalpy_N2(P2,T1)
hf \leftarrow HFSATP(P1)
Wideal \leftarrow W_ideal_LiqN2(P1,T1)
y \leftarrow \frac{h1 - h2}{h1 - hf} + Refrigratio_r \cdot \frac{h_a - h_c}{h1 - hf}
Wperkggas \leftarrow T1 · (s1 - s2) - (h1 - h2) + Refrigratio_r · (h_b - h_a)
Wperkgliq \leftarrow \frac{Wperkggas}{Wperkgliq}
            Wideal
FOM \leftarrow \frac{1}{Wperkgliq}
  "P1(bar)" "T1(K)" "P2(bar)" "Liq.fn. (y)" "Wperkggas (kJ/kg)" "Wperkgliq(kJ/kg)" "Wideal(kJ/kgliq)" "FOM(=Wideal/Wperkgliq)"
   P1
               T1
                           P2
                                       · · · ·
                                                          Wperkggas
                                                                                    Wperkgliq
                                                                                                             Wideal
                                                                                                                                           FOM
```

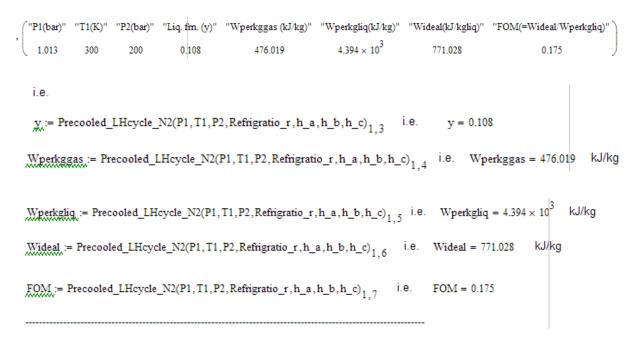
Now, solve the problem:

P1 := 1.013 bar T1 := 300 K P2 := 200 bar Refrigratio_r := 0.1 h_a := 204.5 kJ/kg h_b := 242.1 kJ/kg h_c := 55.9 kJ/kg

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758.

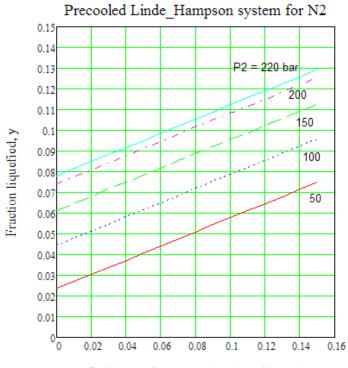


Download free eBooks at bookboon.com

Click on the ad to read more

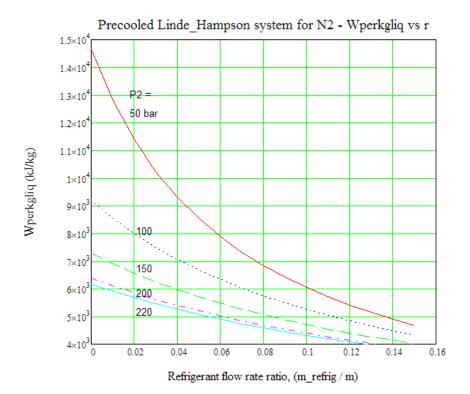
 $Precooled_LHcycle_N2(P1,T1,P2,Refrigratio_r,h_a,h_b,h_c) =$

Now, to calculate for Refrigratio_r = 0 to 0.15, for P2 = 50, 100, 150, 200 1nd 220 bar:


P1 := 1.013 bar <u>T1</u> := 300 K <u>h a</u> := 204.5 kJ/kg <u>h b</u> := 242.1 kJ/kg <u>h c</u> := 55.9 kJ/kg

Refrigratio_r := 0,0.01.. 0.15define a range variable

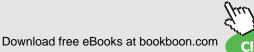
And, the results:


Refrigratio_r	P2 = 50	100	150	200	220	bar
0	0.024	0.044	0.061	0.074	0.07	78
0.01	0.027	0.048	0.065	0.077	0.08	31
0.02	0.03	0.051	0.068	0.081	0.08	35
0.03	0.034	0.055	0.072	0.084	0.08	38
0.04	0.037	0.058	0.075	0.088	0.09	92
0.05	0.041	0.062	0.078	0.091	0.09) 5
0.06	0.044	0.065	0.082	0.095	0.09	99
0.07	0.048	0.068	0.085	0.098	0.10)2
0.08	0.051	0.072	0.089	0.101	0.10)5
0.09	0.054	0.075	0.092	0.105	0.10)9
0.1	0.058	0.079	0.095	0.108	0.11	12
0.11	0.061	0.082	0.099	0.112	0.11	16
0.12	0.065	0.086	0.102	0.115	0.11	19
0.13	0.068	0.089	0.106	0.119	0.12	23
0.14	0.072	0.092	0.109	0.122	0.12	26
0.15	0.075	0.096	0.113	0.125	0.12	29

Now, plot the results:

Refrigerant flow rate ratio, (m_refrig / m)

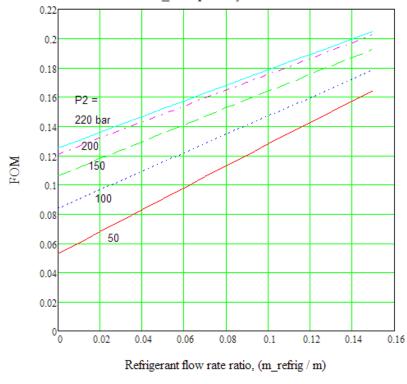
Similarly,


TURN TO THE EXPERTS FOR SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do business reviews of existing subscription businesses and we develope acquisition and retention strategies.

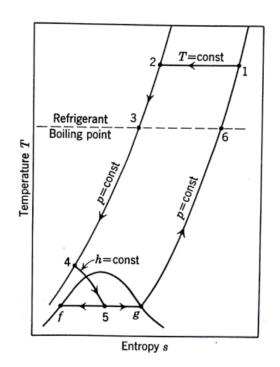
Learn more at linkedin.com/company/subscrybe or contact Managing Director Morten Suhr Hansen at mha@subscrybe.dk


SUBSCRYBE - to the future

Click on the ad to read more

And,

Precooled Linde_Hampson system for N2 - FOM vs r



Prob. 3.3.14 Write Mathcad Function to determine liquefaction fraction, y, work required per kg of gas compressed, work required per kg liquefied, Figure of Merit (FOM = Wideal / Work per kg liqid) for pre-cooled Linde-Hampson cycle for Hydrogen, including the adiabatic work of the pre-cooling refrigeration system. Take the initial pressure and temp of 1.013 bar (= 1 atm) and 300 K respectively and the final pressure is 200 bar. Pre-cooling is with LN2 at a temp of 70K, and we have:

At 70 K, for LN2: hfg = 208 kJ/kg, WperkgliqN2 = 4500 kJ/kgliqN2

Find: LN2flow rate ratio = r (= mf / mH2)

Also, plot y, Wperkgliq and FOM as final pressure varies from 50 bar to 200 bar.

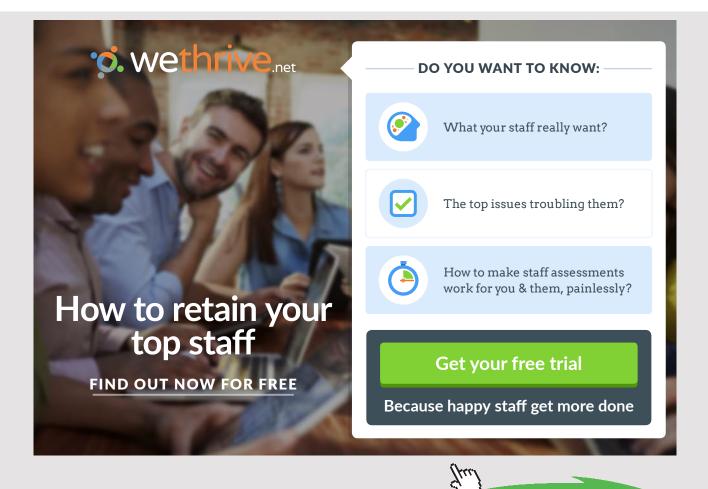
Mathcad Function for the ideal system, when efficiencies of compressor and heat exchangers are 100%, and *only* the latent heat of boiling LN2 is used in pre-cooling:

```
Precooled_LHcycle_H2(P1,T1,P2,T3,hfg_LN2,WperkgliqN2) :=
```

```
s1 \leftarrow entropy_H2(P1,T1)
s2 \leftarrow entropy_H2(P2,T1)
h1 \leftarrow enthalpy_H2(P1,T1)
h2 \leftarrow enthalpy_H2(P2,T1)
h3 \leftarrow enthalpy_H2(P2,T3)
h6 \leftarrow enthalpy_H2(P1,T3)
hf \leftarrow HFSATP(P1)
Wideal ← W_ideal_LiqH2(P1,T1)
      h6 – h3
       h6 – hf
\mathbf{r} \leftarrow \frac{\mathbf{y} \cdot (\mathbf{h1} - \mathbf{hf}) - (\mathbf{h1} - \mathbf{h2})}{\mathbf{y} \cdot (\mathbf{h1} - \mathbf{h2})}
                 hfg_LN2
Wperkggas \leftarrow T1 · (s1 - s2) - (h1 - h2) + r · (WperkgliqN2)
Wperkgliq \leftarrow \frac{Wperkggas}{Wperkggas}
                         y
              Wideal
FOM \leftarrow
            Wperkgliq
  "Liq. fm (y)" "Fraction r = m_LN2/m_H2" "Wperkggas(kJ/kg)" "Wperkgliq(kJ/kg)" "Wideal(kJ/kg)"
                                                                                                                                        "FOM"
        у
                                                               Wperkggas
                                                                                           Wperkgliq
                                                                                                                      Wideal
                                                                                                                                         FOM
                                    f
```

Ex: P1 := 1.013 bar T1 := 300 K P2 := 120 bar T3 := 70 K hfg_LN2 := 208 kJ/kg WperkgliqN2 := 4500 kJ/kg

We get:


Precooled_LHcycle_H2(P1, T1, P2, T3, hfg_LN2, WperkgliqN2) =

("Liq. fm (y)"	"Fraction r = m_LN2/m_H2"	"Wperkggas(kJ/kg)"	"Wperkgliq(kJ/kg)"	"Wideal(kJ/kg)"	"FOM"
0.222	4.493	2.622×10^{4}	1.183×10^{5}	1.21×10^4	0.102

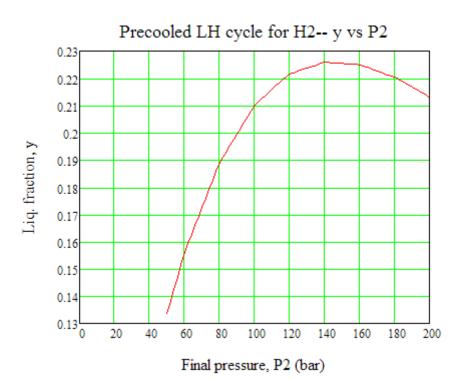
Thus:

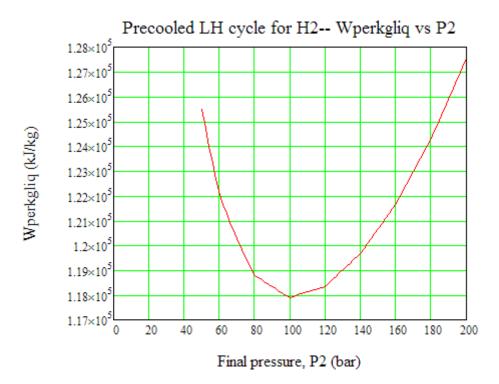
Liq. Fraction = y = 0.222; Wperkgliq = 1.183 * 10^5 kJ/kg; FOM = 0.102, and

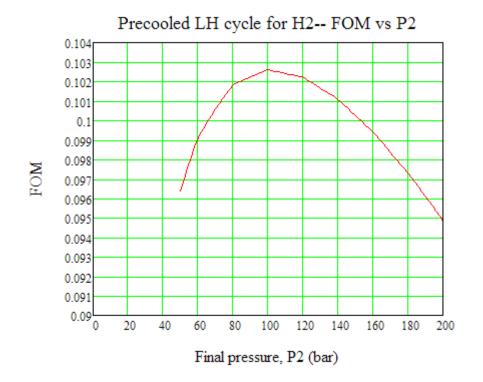
LN2 required for pre-cooling = 4.493 kg per kg of H2 compressed.

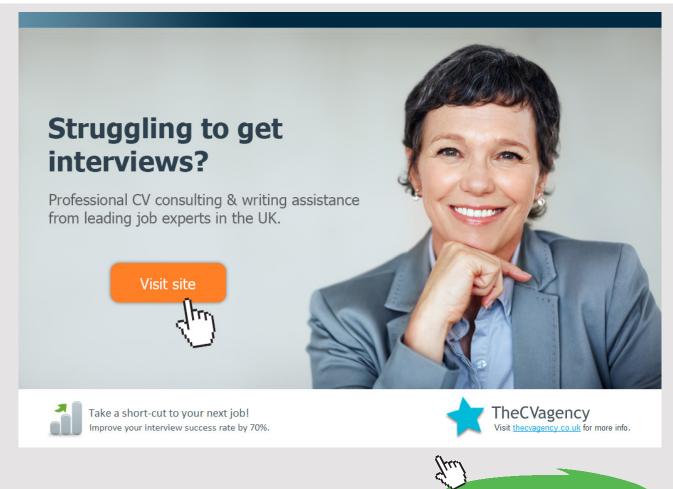
Also, we have:

$\label{eq:record_linear} Fraction_y \coloneqq Precooled_LHcycle_H2(P1,T1,P2,T3,hfg_LN2,WperkgliqN2)_{1,0}$	Fraction_y = 0.222
$\label{eq:ratio} Fraction_r := Precooled_LHcycle_H2(P1,T1,P2,T3,hfg_LN2,WperkgliqN2)_{1,1}$	$Fraction_r = 4.493$
$Wperkggas := Precooled_LHcycle_H2(P1,T1,P2,T3,hfg_LN2,WperkgliqN2)_{1,2}$	Wperkggas = 2.622×10^4
$Wperkgliq := Precooled_LHcycle_H2(P1,T1,P2,T3,hfg_LN2,WperkgliqN2)_{1,3}$	Wperkgliq = 1.183×10^5
$Wideal := Precooled_LHcycle_H2(P1,T1,P2,T3,hfg_LN2,WperkgliqN2)_{1,4}$	Wideal = 1.21×10^4
$FOM := Precooled_LHcycle_H2(P1, T1, P2, T3, hfg_LN2, WperkgliqN2)_{1,5}$	FOM = 0.102


Now, to plot y, Wperkgliq and FOM against P2:

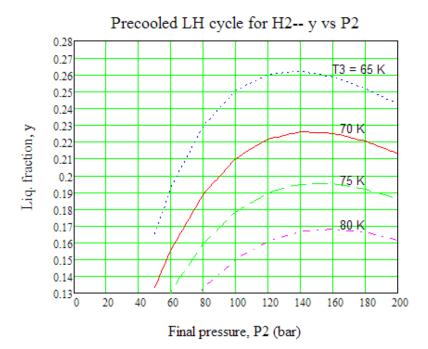

P2 := 50,60..200 ...define a range variable


We get:


P2 (bar)=		у	Wperkgliq= kJ/kg	FOM
50	[0.134	1.255·10 ⁵	0.096
60		0.156	1.221·10 ⁵	0.099
70		0.173	1.203·10 ⁵	0.101
80		0.189	1.188 [.] 10 ⁵	0.102
90		0.2	1.183 [.] 10 ⁵	0.102
100		0.21	1.179 [.] 10 ⁵	0.103
110		0.216	1.181·10 ⁵	0.102
120		0.222	1.183·10 ⁵	0.102
130		0.224	1.19·10 ⁵	0.102
140		0.226	1.197·10 ⁵	0.101
150		0.225	1.207·10 ⁵	0.1
160		0.225	1.217·10 ⁵	0.099
170		0.223	1.23·10 ⁵	0.098
180		0.22	1.243·10 ⁵	0.097
190		0.217	1.259·10 ⁵	0.096
200		0.213	1.275·10 ⁵	0.095

Now, plot the results:

Download free eBooks at bookboon.com

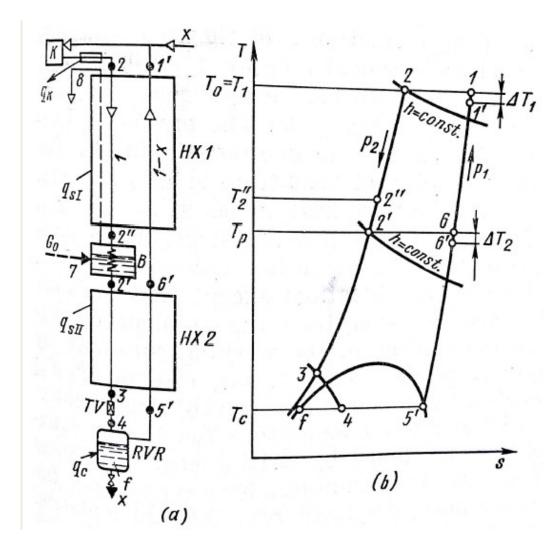

Click on the ad to read more

Effect of changing T3 on y:

P2 (bar)	T3 = 80 K	75 K	70 K	65 K
50	0.165	0.134	0.112	0.093
60	0.193	0.156	0.131	0.109
70	0.211	0.173	0.145	0.121
80	0.23	0.189	0.16	0.133
90	0.24	0.2	0.169	0.142
100	0.251	0.21	0.179	0.15
110	0.255	0.216	0.184	0.156
120	0.26	0.222	0.19	0.161
130	0.261	0.224	0.192	0.164
140	0.262	0.226	0.195	0.167
150	0.26	0.225	0.195	0.167
160	0.259	0.225	0.195	0.168
170	0.255	0.223	0.193	0.167
180	0.252	0.22	0.192	0.166
190	0.247	0.217	0.189	0.164
200	0.242	0.213	0.186	0.162

Values of y at various pressures for different values of T3:

Now, plot the results:



Note: Liquid fraction y is a maximum at about 140 bar, i.e. approximately the inversion pressure. Also, the pre-cooling temp strongly affects the liquid fraction y.

Prob. 3.3.15 Now, consider a practical LN2 pre-cooled, Linde_Hampson liquefaction cycle for Hydrogen: Let the HX1 and HX2 have less than 100% effectiveness, i.e. warm end temp difference for HX1 = Δ T1 = 15 deg. And warm end temp difference for HX2 = Δ T2 = 3 deg. Let the external heat leaks be q_leak1 = 6 kJ/kg and q_leak2 = 6 kJ/kg. Take the initial pressure and temp of 1.013 bar (= 1 atm) and 300 K respectively and the final pressure is 200 bar. Isoth. effcy of compressor = eta_iso = 0.6 Pre-cooling is with LN2 at a temp of 70K, and we have: At 70 K, for LN2: hfg = 208 kJ/kg, WperkgliqN2 = 4500 kJ/kgliqN2 Find: LN2flow rate ratio = G0 (= mLN2 / mH2gas) Also, plot y, Wperkgliq, COP and FOM as final pressure varies from 50 bar to 200 bar.

Schematic diagram and the T-s diagram for liquefaction of H2 with LN2 pre-cooling is shown below [29]:

Note: In the above fig. x is the liquid fraction of H2 compressed.

Here, LN2 at 70 K (i.e. at a low pressure Psat of 0.38545 bar) is used for pre-cooling; the Nitrogen vapor passes through the first HX so that the sensible heat of vapor is also utilized.

Thus, the total cooling provided by Nitrogen stream is: (h8 - h7) kJ/kg of N2. Enthalpy h8 is at P = 0.38545 bar and T = 300 K, and h7 = hf = enthalpy at Tsat = 70 K and quality = 0.


See the Tables below (from NIST data):

For Nitrogen (NIST data):

Liquid Phase Data

Data on Saturation Curve

Temperature (K)	Pressure (bar)	Density (kg/m3)	Volume (m3/kg)	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	Entropy (J/g*K)	Cv (J/g*K)	Cp (J/g*K)	Sound Spd. (m/s)	Joule- Thomson (K/bar)	Viscosity (Pa*s)	Therm. Cond. (W/m*K)	Surf. Tension (N/m)	Phase
65.000	0.17404	859.60	0.0011633	-147.05	-147.03	2.4834	1.1634	2.0034	976.36	-0.039833	0.00028011	0.17315	0.011789	liquid
70.000	0.38545	838.51	0.0011926	-137.02	-136.97	2.6321	1.1297	2.0145	925.74	-0.037947	0.00021988	0.16184	0.010589	liquid
75.000	0.76043	816.67	0.0012245	-126.92	-126.83	2.7714	1.0981	2.0311	875.28	-0.035506	0.00017675	0.15087	0.0094170	liquid
80.000	1.3687	793.94	0.0012595	-116.75	-116.58	2.9028	1.0691	2.0555	824.36	-0.032322	0.00014505	0.14020	0.0082740	liquid

Download free eBooks at bookboon.com

Click on the ad to read more

Vapor Phase Data

Data on Saturation Curve

Temperature (K)	Pressure (bar)	Density (kg/m3)	Volume (m3/kg)	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	Entropy (J/g*K)	Cv (J/g*K)	Cp (J/g*K)	Sound Spd. (m/s)	Joule- Thomson (K/bar)	Viscosity (Pa*s)	Therm. Cond. (W/m*K)	Phase
65.000	0.17404	0.91308	1.0952	47.474	66.536	5.7690	0.75174	1.0633	163.20	3.8268	4.5084e-06	0.0063374	vapor
70.000	0.38545	1.8960	0.52743	50.769	71.098	5.6045	0.75805	1.0816	168.42	3.2837	4.8792e-06	0.0067968	vapor
75.000	0.76043	3.5404	0.28245	53.838	75.316	5.4667	0.76649	1.1080	172.95	2.8707	5.2557e-06	0.0072706	vapor
80.000	1.3687	6.0894	0.16422	56.622	79.099	5.3487	0.77733	1.1449	176.72	2.5490	5.6413e-06	0.0077802	vapor

Isobaric Data for P = 0.38545 bar

Temperature (K)	Pressure (bar)	Density (kg/m3)	Volume (m3/kg)	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	Entropy (J/g*K)	Cv (J/g*K)	Cp (J/g*K)	Sound Spd. (m/s)	Joule- Thomson (K/bar)	Viscosity (Pa*s)	Therm. Cond. (W/m*K)	Phase
70.000	0.38545	838.51	0.0011926	-137.02	-136.97	2.6321	1.1297	2.0145	925.74	-0.037947	0.00021988	0.16184	liquid
70.000	0.38545	838.51	0.0011926	-137.02	-136.97	2.6321	1.1297	2.0145	925.74	-0.037947	0.00021988	0.16184	liquid
70.000	0.38545	1.8960	0.52742	50.769	71.098	5.6045	0.75805	1.0816	168.42	3.2837	4.8792e-06	0.0067968	vapor
80.000	0.38545	1.6470	0.60716	58.417	81.819	5.7477	0.75092	1.0647	180.82	2.4697	5.5790e-06	0.0078737	vapor
90.000	0.38545	1.4578	0.68597	65.978	92.418	5.8726	0.74745	1.0560	192.28	1.9519	6.2643e-06	0.0089258	vapor
100.00	0.38545	1.3085	0.76426	73.492	102.95	5.9835	0.74559	1.0509	203.00	1.5973	6.9348e-06	0.0099350	vapor

120.00	0.38545	1.0870	0.91998	88.450	123.91	6.1746	0.74385	1.0458	222.79	1.1469	8.2320e-06	0.011851	vapor
140.00	0.38545	0.93018	1.0751	103.36	144.80	6.3356	0.74314	1.0433	240.87	0.87499	9.4738e-06	0.013662	vapor
160.00	0.38545	0.81314	1.2298	118.25	165.65	6.4749	0.74280	1.0420	257.64	0.69385	1.0664e-05	0.015389	vapor
180.00	0.38545	0.72236	1.3843	133.12	186.48	6.5975	0.74263	1.0412	273.36	0.56489	1.1808e-05	0.017045	vapor
200.00	0.38545	0.64987	1.5388	147.99	207.30	6.7072	0.74255	1.0407	288.20	0.46857	1.2909e-05	0.018637	vapor
220.00	0.38545	0.59064	1.6931	162.85	228.11	6.8064	0.74252	1.0404	302.31	0.39401	1.3971e-05	0.020171	vapor
240.00	0.38545	0.54132	1.8473	177.71	248.92	6.8969	0.74253	1.0402	315.78	0.33464	1.4997e-05	0.021654	vapor
260.00	0.38545	0.49961	2.0016	192.57	269.72	6.9802	0.74260	1.0401	328.69	0.28630	1.5990e-05	0.023090	vapor
280.00	0.38545	0.46388	2.1557	207.43	290.53	7.0573	0.74275	1.0402	341.10	0.24620	1.6953e-05	0.024484	vapor
300.00	0.38545	0.43292	2.3099	222.30	311.33	7.1290	0.74301	1.0403	353.07	0.21242	1.7888e-05	0.025839	vapor
320.00	0.38545	0.40584	2.4640	237.17	332.14	7.1962	0.74343	1.0407	364.62	0.18359	1.8797e-05	0.027161	vapor

Thus, for Nitrogen, h8 = 311.33 kJ/kg at T = 300 K, P = 0.38545 bar; and, h7 = hf at 70 K =

-137.97 kJ/kg.

We have, by data:

Then:

$h1 := enthalpy_H2(P1,T1)$	i.e.	$h1 = 3.958 \times 10^3$	kJ/kg
h1_prime := enthalpy_H2(P1,T1_prime)	i.e.	$h1_prime = 3.744 \times 10^3$	kJ/kg
$h2 := enthalpy_H2(P2, T2)$	i.e.	$h2 = 4.015 \times 10^3$	kJ/kg
h2_prime := enthalpy_H2(P2,T2_prime)	i.e.	h2_prime = 762.861	kJ/kg
$s1 := entropy_H2(P1,T1)$	i.e.	s1 = 53.495	kJ/kg.K
s2 := entropy_H2(P2,T1)	i.e.	s2 = 33.75	kJ/kg.K
h6 := enthalpy_H2(P1,T6)	i.e.	h6 = 978.702	kJ/kg
h6_prime := enthalpy_H2(P1,T6_prime)	i.e.	h6_prime = 947.133	kJ/kg
hf := HFSATP(P1)	i.e.	hf = -0.396	kJ/kg
hg := HGSATP(P1)	i.	e. hg = 448.18	kJ/kg
h5_prime := hg	i.e.	h5_prime = 448.18	kJ/kg

For N2: h8 := 311.33 kJ/kg at T = 300 K, P = 0.38545 bar

h7 := -137.97 kJ/kg = hf at 70 K for LN2

For liq. fraction, x: Applying I Law to the (HX2 + JT valve + liquid reservoir) taken together:

 $h2_prime + q_leak2 = x \cdot hf + (1 - x) \cdot h6_prime$

i.e.
$$x = \frac{(h6_prime - h2_prime) - q_leak2}{(h6_prime - hf)}$$

Therefore:

$$LiqFraction_x := \frac{(h6_prime - h2_prime) - q_leak2}{(h6_prime - hf)}$$

i.e. LiqFraction_x = 0.188 ...Ans.

For LN2 fraction G0: Applying I Law to (HX1 + LN2 cooler):

 $h^2 + G_0 \cdot h^7 + (1 - x) \cdot h_0 prime + q_leak_1 = h_2 prime + (1 - x) \cdot h_1 prime + G_0 \cdot h_0^2$

i.e.
$$G0 \cdot (h8 - h7) = x \cdot (h1_{prime} - h6_{prime}) + h2 + h6_{prime} - h1_{prime} + q_{leak1}$$

i.e. $G0 := \frac{x \cdot (h1_prime - h6_prime) + h2 + h6_prime - h1_prime + q_leak1}{h8 - h7}$...kg of LN2/kg H2 compressed

i.e. G0 = 2.724 ...kg of LN2/kg H2 compressed ... Ans.

Therefore, LN2 requirement per kg of liquid H2, adding 25% extra to account for losses:

 $m_{LN2} := \frac{1.25 \cdot G0}{LiqFraction_x} \qquad ...kg of LN2/kg H2 liquefied.$

i.e. m_{LN2} = 18.095 ...kg of LN2/kg H2 liquefied ... Ans.

Download free eBooks at bookboon.com

Click on the ad to read more

Work requirement per kg of H2 compressed, with isoth effcy = 0.6:

$$\frac{\text{Wperkggas}}{\text{eta_iso}} = \frac{\text{T1} \cdot (\text{s1} - \text{s2}) - (\text{h1} - \text{h2})}{\text{eta_iso}} + 1.25 \cdot \text{G0} \cdot \text{WperkgliqN2} \quad \text{kJ/kggas compressed}$$

i.e. Wperkggas = 2.529 × 10⁴ kJ/kggas compressed,... includes 25% extra LN2 for losses

Work requirement per kg of H2 liquefied, with isoth effcy = 0.6:

i.e. Wperkgliq = 1.344×10^5 kJ/kggas liquefied.... Ans.

Coeff of Performance, COP:

$$COP := \frac{\text{LiqFraction}_x \cdot (h1 - hf)}{\frac{\text{T1} \cdot (s1 - s2) - (h1 - h2)}{\text{eta}_i so} + 1.25 \cdot \text{G0} \cdot \text{WperkgliqN2}}$$

i.e. COP = 0.029 ...Ans.

Ideal or min. work of liquefaction:

Wideal := W_ideal_LiqH2(P1,T1) kJ/kgliqH2

i.e. Wideal = 1.21×10^4 kJ/kgliqH2

Figure of Merit, FOM:

$$FOM := \frac{Wideal}{Wperkgliq}$$
i.e. FOM = 0.09 ...Ans.

Plot LiqFraction_x, Wperkgliq, COP and FOM against P2:

First, write the relevant quantities as Functions of P2:

Figure of Merit, FOM:

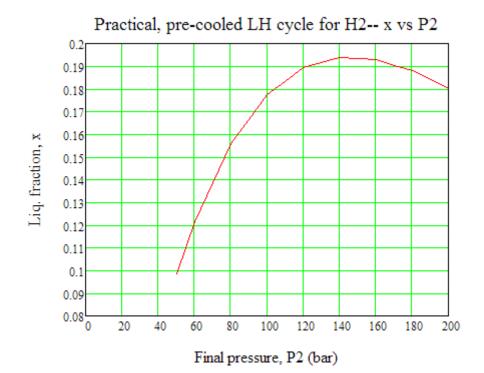
FOM(P2, T6) := Wideal Wperkgliq(P2, T6)

i.e. FOM(P2,T6) = 0.09

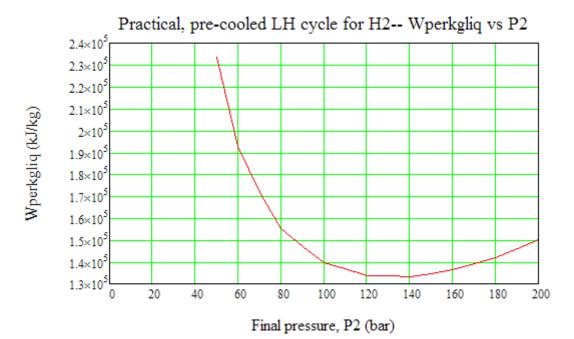
Now, plot the various quantities:

P2 := 50,60.. 200 ... define a range variable

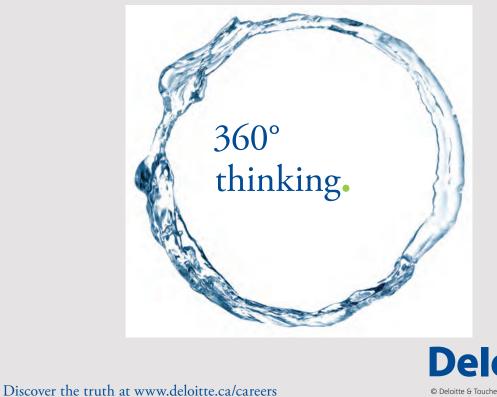
Rand Merchant Bank uses good business to create a better world, which is one of the reasons that the country's top talent chooses to work at RMB. For more information visit us at www.rmb.co.za


Thinking that can change your world

Rand Merchant Bank is an Authorised Financial Services Provider

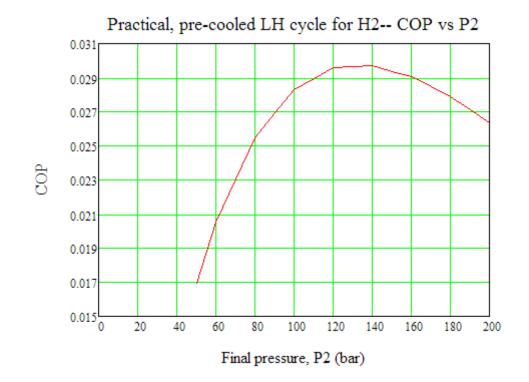

LiqFraction vs P2:

P2 =	LiqFraction_x(P2, T6)
50	0.098
60	0.122
70	0.139
80	0.156
90	0.167
100	0.177
110	0.183
120	0.189
130	0.192
140	0.194
150	0.193
160	0.193
170	0.19
180	0.188
190	0.184
200	0.18

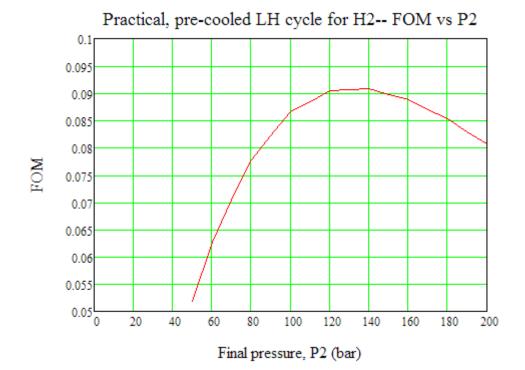

Wperkgliq vs P2:

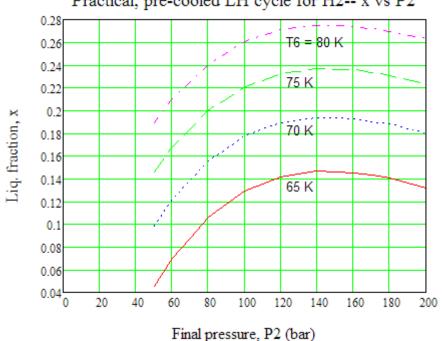
P2 =	Wperkgliq(P2, T6)
50	2.335·10 ⁵
60	1.928·10 ⁵
70	1.718·10 ⁵
80	1.554·10 ⁵
90	1.471·10 ⁵
100	1.398·10 ⁵
110	1.367·10 ⁵
120	1.338·10 ⁵
130	1.336·10 ⁵
140	1.333·10 ⁵
150	1.347·10 ⁵
160	1.362·10 ⁵
170	1.39·10 ⁵
180	1.419·10 ⁵
190	1.459·10 ⁵
200	1.501·10 ⁵




COP vs P2:

P2 =	COP(P2, T	6)
50	0.017	
60	0.021	
70	0.023	
80	0.025	
90	0.027	
100	0.028	
110	0.029	
120	0.03	
130	0.03	
140	0.03	
150	0.029	
160	0.029	
170	0.028	
180	0.028	
190	0.027	
200	0.026	

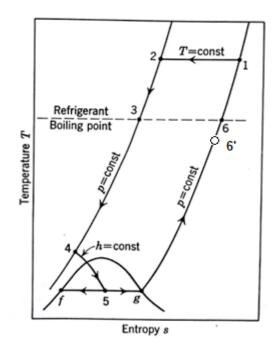



FOM vs P2:

P2 =	FOM(P2,	T6)
50	0.052	
60	0.063	
70	0.07	
80	0.078	
90	0.082	
100	0.087	
110	0.088	
120	0.09	
130	0.091	
140	0.091	
150	0.09	
160	0.089	
170	0.087	
180	0.085	
190	0.083	
200	0.081	

Also plot the effect of pre-cooling temp (T6) on Liq. fraction:

P	2 (bar)	T6 = 65K	70K	75K	80K
	50	0.045	0.098	0.146	0.189
	60	0.07	0.122	0.168	0.21
	70	0.088	0.139	0.184	0.225
	80	0.106	0.156	0.2	0.241
	90	0.118	0.167	0.211	0.251
	100	0.129	0.177	0.221	0.26
	110	0.135	0.183	0.227	0.266
	120	0.142	0.189	0.232	0.271
	130	0.144	0.192	0.234	0.273
	140	0.146	0.194	0.236	0.275
	150	0.146	0.193	0.236	0.275
	160	0.145	0.193	0.235	0.274
	170	0.143	0.19	0.233	0.272
	180	0.14	0.188	0.231	0.27
	190	0.136	0.184	0.227	0.266
	200	0.132	0.18	0.224	0.263



Practical, pre-cooled LH cycle for H2-- x vs P2

Click on the ad to read more

Prob. 3.3.16 In a LN2 pre-cooled Linde-Hampson system for H2, the lower heat exchanger (between the LN2 bath and the LH2 receiver) has an effectiveness of 0.9. The high pressure stream enters the HX at 60.8 bar and 70 K, and the low pressure stream enters the HX at 1.013 bar and sat. vapor conditions. Determine the liquid yield 'y' for this system [1]. Also, plot y as final pressure varies from 50 bar to 200 bar.

Data:

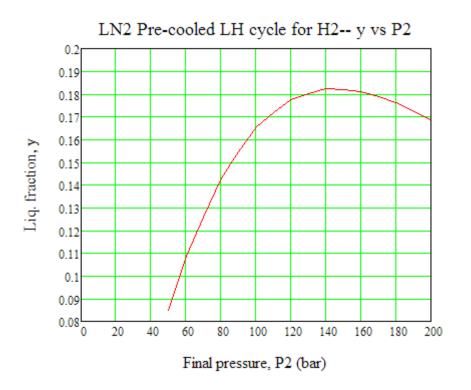
P1 := 1.013 bar _____ := 300 K ____ P2 := 60.8 bar T3 := 70 K T6 := 70 K ε := 0.9effectiveness of HX2 Tsat := TSAT(P1) i.e Tsat = 20.314 Kwarm end temp difference of HX2 $\Delta T := (1 - \varepsilon) \cdot (T3 - Tsat)$ i.e. ∆T = 4.969 Κ T6 prime := T6 - Δ T K i.e. T6 prime = 65.031 K Now, we have: i.e. h3 = 824.57 kJ/kg $h3 := enthalpy_H2(P2, T3)$ kJ/kg $h6 := enthalpy_H2(P1, T6)$ i.e. h6 = 978.702h6_prime := enthalpy_H2(P1,T6_prime) i.e. h6_prime = 926.417 kJ/kg hf := HFSATP(P1)i.e. hf = -0.396kJ/kg

We have, for liquid yield, y:

 $y := \frac{h6_prime - h3}{h6_prime - hf}$ i.e. y = 0.11 ...Ans.

To plot y against P2, assuming that effectiveness of HX remains the constant at ε = 0.9:

First, write the relevant quantities as functions of P2:


h6_prime(P2) := enthalpy_H2(P1,T6_prime)

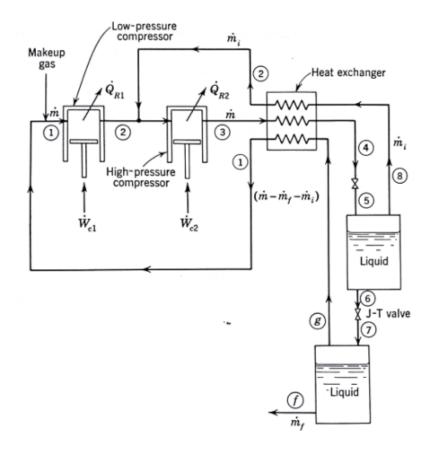
 $h_3(P_2) := enthalpy_H_2(P_2, T_3)$

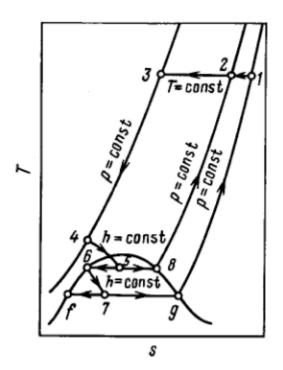
 $y(P2) := \frac{h6_prime(P2) - h3(P2)}{h6_prime(P2) - hf}$

P2:= 50,60.. 200 ...define a range variable

P2 =	y(P2) =
50	0.085
60	0.108
70	0.126
80	0.143
90	0.154
100	0.166
110	0.172
120	0.178
130	0.18
140	0.182
150	0.182
160	0.181
170	0.179
180	0.176
190	0.172
200	0.168

Find the pressure at which liquid yield will be 0.15:


Use the 'Solve block' of Mathcad:


P2 := 50 ...trial value Given y(P2) = 0.15 Find(P2) = 86.017pressure at which yield will be 0.15 Ans.

Note: Observe the ease with which Mathcad performs this 'trial and error' calculation.

Prob. 3.3.17 Write a Mathcad Function to determine liquefaction fraction, y, work required per kg of gas compressed, work required per kg liquefied, Figure of Merit (FOM = Wideal / Work per kg liqid) for Linde dual pressure system, for Nitrogen. Take the initial pressure and temp of 1.013 bar (= 1 atm) and 300 K respectively and the final pressure is 200 bar. Intermediate pressure is 50 bar, and intermediate pressure flow ratio is = $m_i / m = 0.8$. Plot y, Wperkgliq and FOM as final pressure varies from 50 bar to 200 bar. Also, plot the Wperkgliq against P2 for intermediate flow ratio I = 0.5, 0.6, 0.7 and 0.8.

Mathcad Function:

Linde_DualPressure_system(P1, P2, P3, T1, Ratio_i) :=

$$\begin{split} \mathfrak{s}1 &\leftarrow \mathsf{entropy_N2(P1,T1)} \\ \mathfrak{s}2 &\leftarrow \mathsf{entropy_N2(P2,T1)} \\ \mathfrak{s}3 &\leftarrow \mathsf{entropy_N2(P3,T1)} \\ \mathfrak{h}1 &\leftarrow \mathsf{enthalpy_N2(P1,T1)} \\ \mathfrak{h}2 &\leftarrow \mathsf{enthalpy_N2(P2,T1)} \\ \mathfrak{h}3 &\leftarrow \mathsf{enthalpy_N2(P3,T1)} \\ \mathfrak{h}f &\leftarrow \mathsf{HFSATP(P1)} \\ \mathsf{Wideal} &\leftarrow \mathsf{W_ideal_LiqN2(P1,T1)} \\ \mathsf{y} &\leftarrow \frac{\mathfrak{h}1 - \mathfrak{h}3}{\mathfrak{h}1 - \mathfrak{h}f} = \mathsf{Ratio_i} \cdot \frac{\mathfrak{h}1 - \mathfrak{h}2}{\mathfrak{h}1 - \mathfrak{h}f} \\ \mathsf{Wperkggas} &\leftarrow [\mathsf{T1} \cdot (\mathfrak{s}1 - \mathfrak{s}3) - (\mathfrak{h}1 - \mathfrak{h}3)] - \mathsf{Ratio_i} \cdot [\mathsf{T1} \cdot (\mathfrak{s}1 - \mathfrak{s}2) - (\mathfrak{h}1 - \mathfrak{h}2)] \\ \mathsf{Wperkgliq} &\leftarrow \frac{\mathsf{Wperkggas}}{\mathsf{y}} \\ \mathsf{FOM} &\leftarrow \frac{\mathsf{Wideal}}{\mathsf{Wperkgliq}} \\ \begin{pmatrix} "\mathsf{Liq}.\,\mathsf{fm}.\,\mathsf{y}" \quad "\mathsf{Wperkggas} \ (kJ/kg)" \quad "\mathsf{Wperkgliq} \ (kJ/kg)" \quad "\mathsf{Wideal} \ (kJ/kg)" \quad "\mathsf{FOM}" \\ \mathsf{y} & \mathsf{Wperkggas} \quad \mathsf{Wperkgliq} \end{array} \end{split}$$

Now, apply this Function for the problem:

Ex:
$$P1 := 1.013$$
 bar $P2 := 50$ bar $P3 := 200$ bar
 $T1 := 300$ K Ratio_i := 0.8

 $Linde_DualPressure_system(P1,P2,P3,T1,Ratio_i) = \begin{pmatrix} "Liq. frn. y" "Wperkggas (kJ/kg)" "Wperkgliq (kJ/kg)" "Wideal (kJ/kg)" "FOM" \\ 0.055 195.852 3.548 \times 10^3 771.028 0.217 \end{pmatrix}$

Thus, we have:

$LiqFraction_y := Linde_DualPressure_system(P1, P2, P3, T1, Ratio_i)_{1,0}$	$LiqFraction_y = 0.055$
Wperkggas := Linde_DualPressure_system(P1, P2, P3, T1, Ratio_i) _{1,1}	Wperkggas = 195.852
Wperkglig := Linde_DualPressure_system(P1, P2, P3, T1, Ratio_i) _{1,2}	Wperkgliq = 3.548×10^3
Wideal := Linde_DualPressure_system(P1, P2, P3, T1, Ratio_i)	Wideal = 771.028
FOM := Linde_DualPressure_system(P1, P2, P3, T1, Ratio_i) _{1,4}	FOM = 0.217

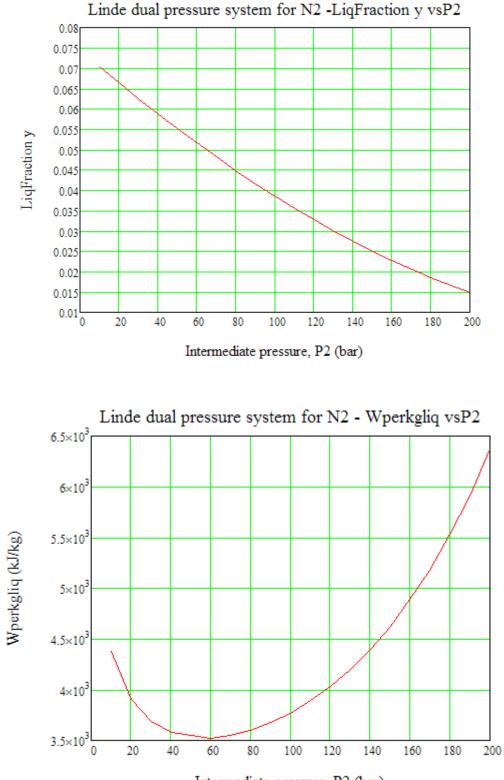
Brain power

By 2020, wind could provide one-tenth of our planet's electricity needs. Already today, SKF's innovative know-how is crucial to running a large proportion of the world's wind turbines.

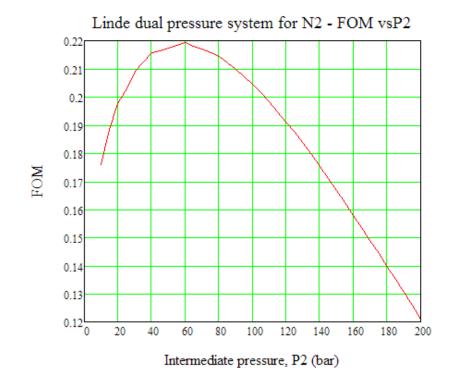
Up to 25 % of the generating costs relate to maintenance. These can be reduced dramatically thanks to our systems for on-line condition monitoring and automatic lubrication. We help make it more economical to create cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity, industries can boost performance beyond expectations. Therefore we need the best employees who can meet this challenge!

The Power of Knowledge Engineering


Plug into The Power of Knowledge Engineering. Visit us at www.skf.com/knowledge

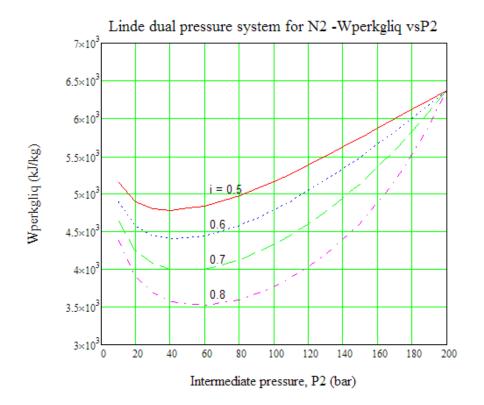
SKF


Download free eBooks at bookboon.com

130

To plot LiqFraction_y against P2:

Intermediate pressure, P2 (bar)



Plot Wperkgliq against P2 for Ratio_i = 0.5, 0.6, 0.7 and 0.8:

P2 (bar)	i = 0.5	i = 0.6	i = 0.7	i = 0.8		
10	5.154·10 ³	4.9·10 ³	4.643·10 ³	4.383·10 ³		
20	4.894·10 ³	4.573·10 ³	4.243·10 ³	3.903·10 ³		
30	4.802·10 ³	4.446·10 ³	4.074·10 ³	3.685·10 ³		
40	4.78·10 ³	4.402·10 ³	4.001·10 ³	3.574·10 ³		
50	4.809·10 ³	4.422·10 ³	4.003·10 ³	3.548·10 ³		
60	4.841·10 ³	4.443·10 ³	4.004·10 ³	3.518·10 ³		
70	4.908·10 ³	4.51·10 ³	4.061·10 ³	3.553·10 ³		
80	4.98·10 ³	4.583·10 ³	4.126·10 ³	3.594·10 ³		
90	5.069·10 ³	4.68·10 ³	4.222·10 ³	3.674·10 ³		
100	5.166·10 ³	4.787·10 ³	4.33·10 ³	3.768·10 ³		
110	5.271·10 ³	4.908·10 ³	4.46·10 ³	3.89·10 ³		
120	5.383·10 ³	5.041·10 ³	4.606·10 ³	4.034·10 ³		
130	5.499·10 ³	5.182·10 ³	4.768·10 ³	4.202·10 ³		
140	5.623·10 ³	5.337·10 ³	4.951·10 ³	4.402·10 ³		
150	5.743·10 ³	5.492·10 ³	5.142·10 ³	4.622·10 ³		
160	5.873·10 ³	5.663·10 ³	5.361·10 ³	4.888 [.] 10 ³		
170	5.996·10 ³	5.831·10 ³	5.584·10 ³	5.177·10 ³		
180	6.128·10 ³	6.014·10 ³	5.839·10 ³	5.531·10 ³		
190	6.249·10 ³	6.187·10 ³	6.089·10 ³	5.907·10 ³		
200	6.377·10 ³	6.377 [.] 10 ³	6.377·10 ³	6.377·10 ³		

Wperkgliq (kJ/kg)

Now, plot the results:

With us you can shape the future. Every single day.

For more information go to: www.eon-career.com

Your energy shapes the future.

Prob. 3.3.18 In a Linde dual pressure system, for Nitrogen, the gas is compressed from an initial pressure and temp of 1.013 bar and 300 K respectively to a final pressure is 200 bar. Find out the intermediate pressure P2, if the intermediate pressure flow ratio is = m_i / m = 0.7 and the liquefied fraction, y = 0.065 [1].

Solution:

 P1 := 1.013
 bar
 P3 := 200
 bar

 T1 := 300
 K
 Ratio i := 0.7 LigFraction v := 0.065

We find the intermediate pressure very easily by using the 'Solve block' of Mathcad and the Mathcad Function for Linde dual pressure system written above:

Note that LiqFraction_y is given as:

```
LiqFraction_y := Linde_DualPressure_system(P1, P2, P3, T1, Ratio_i)_1_0
```

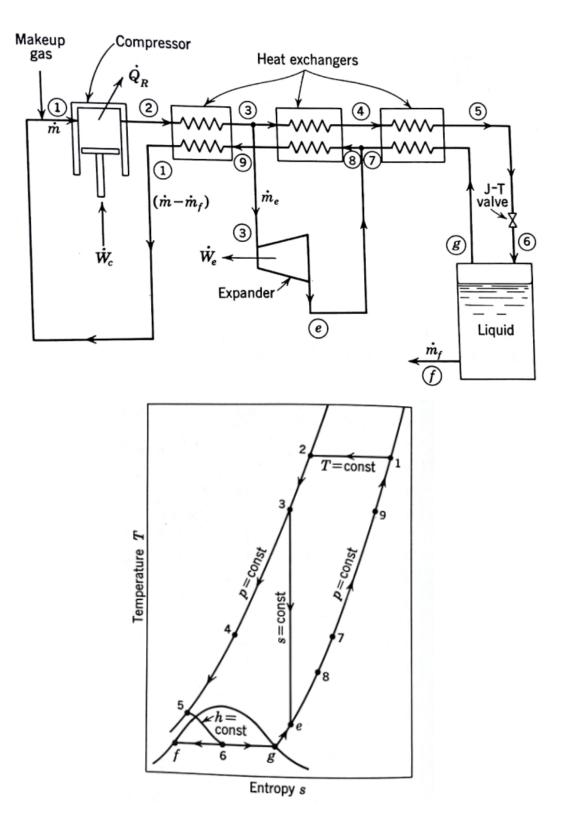
Start with a trial value for P2:

P2 := 50 bar trial value

Given

Linde_DualPressure_system(P1, P2, P3, T1, Ratio_i) 1.0 = 0.065

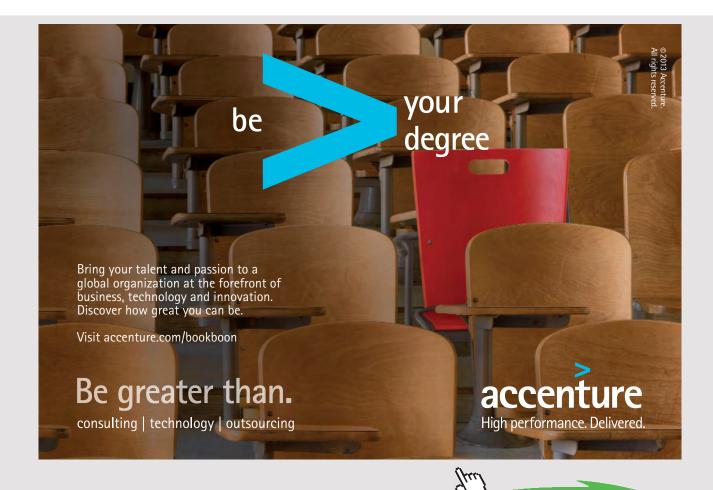
Find(P2) = 27.147


i.e. Intermediate pressure, P2 = 27.147 bar...Ans.

Prob. 3.3.19 (a). Write a Mathcad Function to calculate liquid yield and FOM of an Ideal Claude system.

(b). Then, determine the liquid yield, work output of expander per unit mass compressed, net work requirement of the system per unit mass liquefied, and the FOM assuming that the expander work is utilized to aid in the compression. Data for the Claude system is given below: Nitrogen is the working fluid, the system operates from 1.013 bar (1 atm) and 295 K to 50 bar. At 50 bar and 270 K, 60% of the main flow is diverted to the reversible adiabatic expander. The remainder flows through the heat exchangers and expands through the expansion valve to 1.013 bar [1].

Also plot the liq. Fraction y and net work required per unit mass liquefied against expander flow rate ratio from P2 = 30 bar to 70bar, other parameters remaining the same.


Following figures show the schematic diagram and the T-s diagram for Claude system:

Solution:

First, write the Mathcad Function for Ideal Claude system for N2:

IdealClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x) :=

Download free eBooks at bookboon.com

Click on the ad to read more

```
s1 \leftarrow entropy_N2(P1,T1)
 s2 \leftarrow entropy_N2(P2,T1)
s3 \leftarrow entropy_N2(P2,T3)
se ← s3
h1 \leftarrow enthalpy_N2(P1,T1)
h2 \leftarrow enthalpy_N2(P2,T1)
h3 \leftarrow enthalpy_N2(P2,T3)
he \leftarrow enthalpy_N2_Ps(P1, se)
hf \leftarrow HFSATP(P1)
Wideal \leftarrow W_ideal_LiqN2(P1,T1)
y \leftarrow \frac{h1 - h2}{h1 - hf} + FlowRatio_x \cdot \frac{h3 - he}{h1 - hf}
Wnet_perkggas \leftarrow [T1 · (s1 - s2) - (h1 - h2)] - FlowRatio_x · (h3 - he)
Wnet_perkgliq \leftarrow \frac{Wnet_perkggas}{v}
                          y
FOM \leftarrow \frac{Wideal}{Wnet_perkgliq}
Wexp_perkggas \leftarrow FlowRatio_x \cdot (h3 - he)
 ("LiqFraction-y" "Wexp_perkggas(kJ/kg)" "Wnet_perkggas(kJ/kg)" "Wnet_perkgliq(kJ/kg)" "Wideal(kJ/kg)" "FOM"
               Wexp_perkggas Wnet_perkggas Wnet_perkgliq Wideal FOM
         у
```

Now, solve the problem:

Data:

P1 := 1.013 bar P2 := 50 bar T1 := 295 K T3 := 270 K

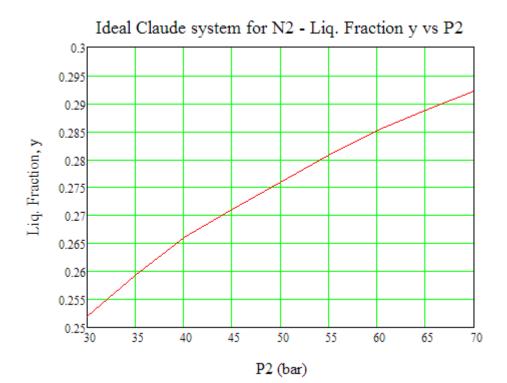
FlowRatio x := 0.6

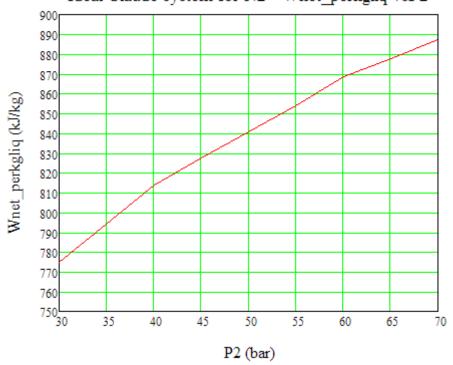
And, we get:

```
IdealClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x) =
```

	"LiqFraction-y"	"Wexp_perkggas(kJ/kg)"	"Wne	t_perkggas(kJ/kg)"	"Wnet_perkgliq(kJ/kg)"	"Wideal(kJ/kg)"	"FOM"	١
1	0.276	107.59		231.969	840.655	751.023	0.893)

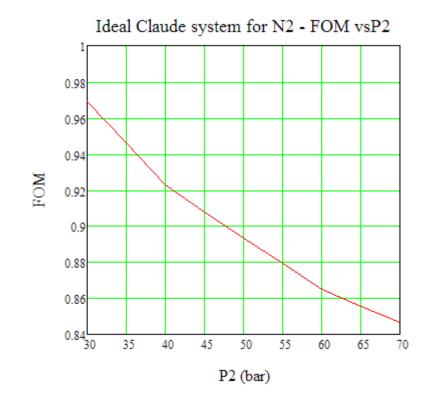
i.e.


LigFraction v := IdealClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x)_{1,0} LigFraction_y = 0.276


Work of expander per kg gas compressed in compressor =

Wexp_perkggas := IdealClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x) _{1,1}	Wexp_perkggas = 107.59
Wnet_perkggas := IdealClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x) _{1,2}	Wnet_perkggas = 231.969
Wnet_perkgliq := IdealClaudeSystem_N2(P1,P2,T1,T3,FlowRatio_x) _{1,3}	Wnet_perkgliq = \$40.655
Wideal := IdealClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x) _{1,4}	Wideal = 751.023
FOM := IdealClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x) _{1,5}	FOM = 0.893

To plot LiqFraction-y and Wnet_perkgliq for various P2:


P2 := 30,35..70 ...define a range variable

Ideal Claude system for N2 - Wnet_perkgliq vsP2

Prob. 3.3.20 In an Ideal Claude system for Nitrogen, the system operates from 101.3 kPa (1 atm) and 293 K to 4.05 MPa. At 4.05 MPa and 240 K, fraction 'x' of the main flow is diverted to the reversible adiabatic expander. Remainder flows through the heat exchangers and expands through the expansion valve to 101.3 kPa. Determine the expander flow rate ratio (x) for a liquid yield of 0.2.[1].

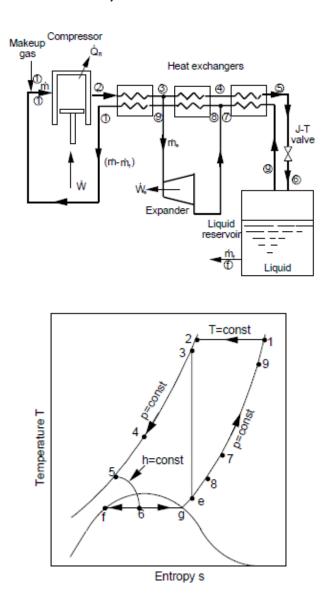
Data:

P1 := 1.013 bar P2 := 40.5 bar T1 := 293 K T3 := 240 K x := 0.2 ...liq. fraction

FlowRatio_x is to be found out:

Use the 'Solve Block' of Mathcad, along with the Function written above:

```
FlowRatio_x := 0.2 ...trial value


Given

y = IdealClaudeSystem_N2(P1,P2,T1,T3,FlowRatio_x)<sub>1,0</sub>

Find(FlowRatio_x) = 0.499
```

i.e. Flow ratio through the expander is = 0.499...Ans.

Prob. 3.3.21 In an Ideal Claude system for hydrogen, the system operates from 101.3 kPa (1 atm) and 293 K to 4.05 MPa. At 4.05 MPa and 180 K, fraction 'x' = 50% of the main flow is diverted to the reversible adiabatic expander. Remainder flows through the heat exchangers and expands through the expansion valve to 101.3 kPa. Determine the liquid yield, work per unit mass liquefied (assuming that the expander work is utilized in compression), and the FOM of the system. [1].

First, write the Mathcad Function:

IdealClaudeSystem_H2(P1, P2, T1, T3, FlowRatio_x) :=

```
s1 \leftarrow entropy_H2(P1,T1)
s2 \leftarrow entropy_H2(P2,T1)
s3 \leftarrow entropy_H2(P2,T3)
se ← s3
h1 \leftarrow enthalpy_H2(P1,T1)
h2 \leftarrow enthalpy_H2(P2,T1)
h3 \leftarrow enthalpy_H2(P2,T3)
he \leftarrow enthalpy_H2_Ps(P1, se)
hf \leftarrow HFSATP(P1)
Wideal \leftarrow W_ideal_LiqH2(P1,T1)
y \leftarrow \frac{h1 - h2}{h1 - hf} + FlowRatio_x \cdot \frac{h3 - he}{h1 - hf}
Wnet_perkggas \leftarrow [T1 \cdot (s1 - s2) - (h1 - h2)] - FlowRatio_x \cdot (h3 - he)
Wnet_perkgliq \leftarrow \frac{\text{Wnet_perkggas}}{\text{Wnet_perkggas}}
                               v
               Wideal
FOM \leftarrow \frac{1}{Wnet\_perkgliq}
Wexp_perkggas \leftarrow FlowRatio_x \cdot (h3 - he)
  .
"LiqFraction-y" "Wexp_perkggas(kJ/kg)" "Wnet_perkggas(kJ/kg)" "Wnet_perkgliq(kJ/kg)" "Wideal(kJ/kg)" "FOM"
                                                                                                                       Wideal
                                                                                                                                          FOM
          v
                          Wexp_perkggas
                                                          Wnet_perkggas
                                                                                        Wnet_perkgliq
```


Now, solve the problem:

P1 := 1.013 bar P2 := 40.5 bar T1 := 293 K T3 := 180 K

FlowRatio_x := 0.5

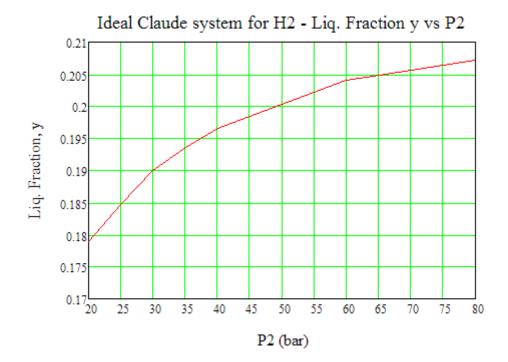
Then, from the Function written above:

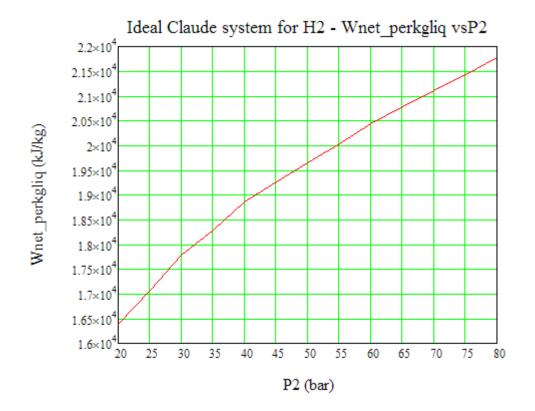
IdealClaudeSystem_H2(P1, P2, T1, T3, FlowRatio_x) =

("LiqFraction-y" "Wexp_perkggas(kJ/kg)" "Wnet_perkggas(kJ/kg)" "Wnet_perkgliq(kJ/kg)" "Wideal(kJ/kg)" "FOM" 0.197 775.942 3.716 × 10³ 1.889 × 10⁴ 1.172 × 10⁴ 0.621 i.e.

```
LiqFraction_y := IdealClaudeSystem_H2(P1, P2, T1, T3, FlowRatio_x) LiqFraction_y = 0.197
```

Work of expander per kg gas compressed in compressor =	
Wexp_perkggas := IdealClaudeSystem_H2(P1, P2, T1, T3, FlowRatio_x) _{1,1}	Wexp_perkggas = 775.942
Wnet_perkggas := IdealClaudeSystem_H2(P1, P2, T1, T3, FlowRatio_x) _{1,2}	Wnet_perkggas = 3.716×10^3
Wnet_perkgliq := IdealClaudeSystem_H2(P1,P2,T1,T3,FlowRatio_x) _{1,3}	Wnet_perkgliq = 1.889×10^4
Wideal := IdealClaudeSystem_H2(P1, P2, T1, T3, FlowRatio_x) _{1,4}	Wideal = 1.172×10^4
FOM := IdealClaudeSystem_H2(P1, P2, T1, T3, FlowRatio_x) _{1,5}	FOM = 0.621

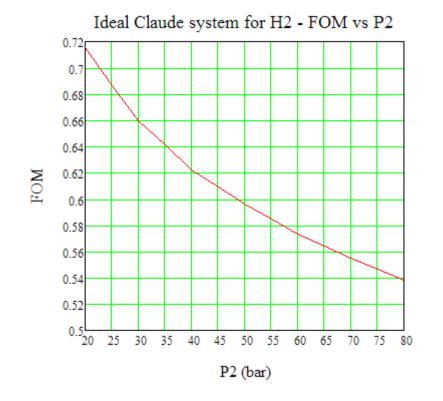

Plot y, Wperkgliq and FOM for P2 = 20 to 80 bar:


P2 := 20,25.. 80define a range variable

We get:

P2 (bar) L	iqFractio. y	n	Wperkgliq (kJ/kg)	FOM
20		0.1788		1.638·10 ⁴	0.716
25		0.1846	_	1.708·10 ⁴	0.686
30		0.1901		1.778·10 ⁴	0.659
35		0.1936		1.829·10 ⁴	0.641
40		0.1965		1.885 [.] 10 ⁴	0.622
45		0.1984		1.926·10 ⁴	0.609
50		0.2003		1.965·10 ⁴	0.597
55		0.2023		2.004·10 ⁴	0.585
60		0.204		2.045·10 ⁴	0.573
65		0.2048		2.078·10 ⁴	0.564
70		0.2056		2.111 [.] 10 ⁴	0.555
75		0.2064		2.144·10 ⁴	0.547
80		0.2072		2.177·10 ⁴	0.539

And, plot the results:

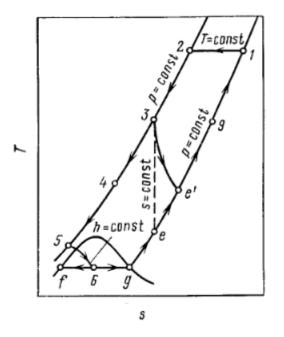

Join American online LIGS University!

Interactive Online programs BBA, MBA, MSc, DBA and PhD

Special Christmas offer:

- enroll by December 18th, 2014
- start studying and paying only in 2015
- save up to \$ 1,200 on the tuition!
- Interactive Online education
- visit <u>ligsuniversity.com</u> to find out more!

Note: LIGS University is not accredited by any nationally recognized accrediting agency listed by the US Secretary of Education. More info <u>here</u>.



Prob. 3.3.22 Data for a Claude system is given below:

Nitrogen is the working fluid, the system operates from 101.3 kPa (1 atm) and 293 K to 70 bar. At 70 bar and 270 K, 40% of the main flow is diverted to the reversible adiabatic expander. Remainder flows through the heat exchangers and expands through the expansion valve to 101.3 kPa. Assume that the expander has an adiabatic effcy of 80% and a mech. effcy of 90%. Compressor has an overall effcy of 75% and all heat exchangers are 100% effective. After compression, air is after-cooled to 293 K. Determine the liquid yield, work output of expander per unit mass compressed and the net work requirement of the system per unit mass liquefied, assuming that the expander work is utilized to aid in the compression. [1].

When the efficiencies of compressor and expander are less than 100%, with the effectiveness of heat exchangers remaining 100%:

Temp-entropy diagram for this case is:

And, summary of formulas applicable is given below: Compressor work per unit mass of gas liquefied:

$$-\frac{W_{c}}{m_{f}} = \frac{1}{y\eta_{c0}} [T_{1}(s_{1}-s_{2})-(h_{1}-h_{2})],$$

Actual enthalpy change across the expander:

$$h_3 - h'_e = \eta_{ad} (h_3 - h_e).$$

Liquid yield:

.

$$y = \frac{h_1 - h_2}{h_1 - h_f} + x \eta_{ad} \frac{h_3 - h_e}{h_1 - h_f}.$$

Net work requirement per unit mass compressed, when expander work is utilized:

$$\dot{W}/\dot{m} = -\dot{W}_{e}/\dot{m} - x\eta_{e}(h_3 - h'_e)$$

Or,

$$-\frac{\dot{W}}{\dot{m}} = \frac{T_1(s_1 - s_2) - (h_1 - h_2)}{\eta_{c0}} - x\eta_{e0}(h_3 - h_e),$$

Mathcad Function:

ActualClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x, eta_exp_adiab, eta_exp_mech, eta_comp_overall) :=

 $s1 \leftarrow entropy_N2(P1,T1)$ $s2 \leftarrow entropy_N2(P2,T1)$ $s3 \leftarrow entropy N2(P2,T3)$ se ← s3 $h1 \leftarrow enthalpy_N2(P1,T1)$ $h2 \leftarrow enthalpy N2(P2,T1)$ $h3 \leftarrow enthalpy N2(P2,T3)$ he ← enthalpy N2 Ps(P1, se) $hf \leftarrow HFSATP(P1)$ Wideal ← W ideal LiqN2(P1,T1) $eta_exp_overall \leftarrow eta_exp_adiab \cdot eta_exp_mech$ $y \leftarrow \frac{h1 - h2}{h1 - hf} + FlowRatio_x \cdot eta_exp_adiab \frac{h3 - he}{h1 - hf}$ Wcomp_perkgliq $\leftarrow \frac{1}{y \cdot \text{eta_comp_overall}} \cdot [T1 \cdot (s1 - s2) - (h1 - h2)]$ Wnet_perkggas $\leftarrow \frac{[T1 \cdot (s1 - s2) - (h1 - h2)]}{eta_comp_overall} - FlowRatio_x \cdot eta_exp_overall \cdot (h3 - he)$ Wnet_perkgliq $\leftarrow \frac{Wnet_perkggas}{v}$ $FOM \leftarrow \frac{Wideal}{Wnet_perkgliq}$ Wexp_perkggas \leftarrow FlowRatio_x \cdot (h3 - he) "LiqFraction-y" "Wnet_perkggas(kJ/kg)" "Wnet_perkgliq(kJ/kg)" "Wideal(kJ/kg)" "FOM" Wnet_perkggas Wnet_perkgliq Wideal FOM y

Now, solve the problem:

 P1 := 1.013 bar
 P2 := 70 bar
 T1 := 293 K
 T3 := 270 K

 FlowRatio x := 0.4
 eta_comp_overall := 0.75

 eta_exp_adiab := 0.8
 eta_exp_mech := 0.9

And, we get:

ActualClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x, eta_exp_adiab, eta_exp_mech, eta_comp_overall) =

("LiqFraction-y" "Wnet_perkggas(kJ/kg)" "Wnet_perkgliq(kJ/kg)" "Wideal(kJ/kg)" "FOM" 0.173 436.477 2.522 × 10³ 743.005 0.295

i.e.

Liq. Fraction, y = 0.173...Ans.

Wnet_perkg of gas compressed = 436.477 kJ/kg...Ans.

Wnet_perkg of liquid = 2522 kJ/kg...Ans.

ideal = 743.005 kJ/kg of liq....Ans.

Figure of Merit = FOM = Wideal / Wnet_perkg of liquid = 0.295...Ans.

Plot liq. yield and FOM against adiab. effcy of expander:

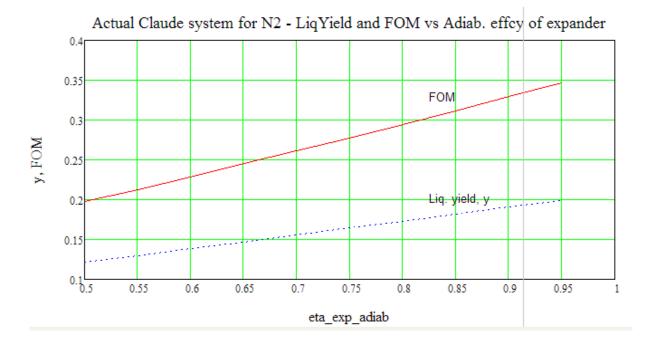
Download free eBooks at bookboon.com

Click on the ad to read more

We have:

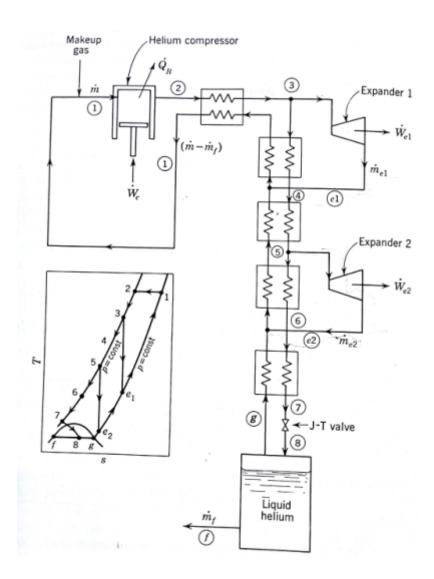
LigFraction v := ActualClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x, eta_exp_adiab, eta_exp_mech, eta_comp_overall)

And,


FOM := ActualClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x, eta_exp_adiab, eta_exp_mech, eta_comp_overall)

eta_exp_adiab := 0.5, 0.55.. 0.95 ...define a range variable

We get:


eta_exp_	adiab	У		FOM
0.5		0.121		0.197
0.55		0.13		0.213
0.6		0.139		0.229
0.65		0.147		0.245
0.7		0.156		0.261
0.75		0.164		0.278
0.8		0.173	-	0.295
0.85		0.182		0.312
0.9		0.19		0.329
0.95		0.199		0.347

Now, plot the results:

"Prob. 3.3.23 Write a Mathcad Function to calculate various parameters of interest for an Ideal Collins liquefier with two expanders, with the expander works being (and not being) utilized in compression.

(b) An Ideal two – expander Collins helium liquefaction system has expander flow rate ratios of x1 = 0.25 and x2 = 0.5. Helium gas enters the compressor at 101.3 kPa and 300 K and is compressed to 1.42 MPa. The condition of the gas at the inlet to the first expander is 1.42 MPa and 60 K and the condition of the gas at the inlet to the second expander is 15 K and 1.42 MPa. Both expanders are reversible and adiabatic. Determine the liquid yield, work per unit mass liquefied, and the Figure of Merit, assuming that: (a) expander work is not utilized in compression, (b) expander work is utilized in compressing the gas. [1]."

First, write the Mathcad Function:

Ideal_Collins_cycle(P1, P2, T1, T3, T5, x1, x2) :=

```
s1 \leftarrow entropy_He(P1,T1)
 s2 \leftarrow entropy_He(P2,T1)
s3 \leftarrow entropy_He(P2,T3)
s5 \leftarrow entropy\_He(P2,T5)
 sel ← s3
 se2 ← s5
sf \leftarrow SFSATP(P1)
h1 \leftarrow enthalpy_He(P1, T1)
h2 \leftarrow enthalpy_He(P2, T1)
h3 \leftarrow enthalpy_He(P2,T3)
h5 \leftarrow enthalpy_He(P2, T5)
hf \leftarrow HFSATP(P1)
he1 ← enthalpy_He_Ps(P1, se1)
he2 \leftarrow enthalpy_He_Ps(P1, se2)
\mathbf{y} \leftarrow \frac{\mathbf{h1} - \mathbf{h2}}{\mathbf{h1} - \mathbf{hf}} + \mathbf{x1} \cdot \frac{\mathbf{h3} - \mathbf{he1}}{\mathbf{h1} - \mathbf{hf}} + \mathbf{x2} \cdot \frac{\mathbf{h5} - \mathbf{he2}}{\mathbf{h1} - \mathbf{hf}}
 Wperkggas_noexpwork \leftarrow T1 · (s1 - s2) - (h1 - h2)
Wperkgliq_noexpwork ← Wperkggas_noexpwork
                                     У
 Wideal \leftarrow T1 \cdot (s1 - sf) - (h1 - hf)
                                Wideal
FOM_noexpwork \leftarrow \frac{1}{Wperkgliq_noexpwork}
 Wperkggas_withexpwork \leftarrow T1 · (s1 - s2) - (h1 - h2) - x1 · (h3 - he1) - x2 · (h5 - he2)
W perkgliq_with expwork \leftarrow \frac{W perkggas_with expwork}{W perkggas_with expwork}
                                            y
                                  Wideal
FOM_with expwork \leftarrow \frac{\dots}{W perkgliq_with expwork}
  "LiqFm.(y)" "Wideal(kJ/kgliq)" "Wperkgliq_noexpwork(kJ/kg)" "Wperkgliq_withexpwork(kJ/kg)" "FOM_noexpwork" "FOM_withexpwork"
                    Wideal
                                         Wperkgliq_noexpwork
                                                                             Wperkgliq_withexpwork FOM_noexpwork FOM_withexpwork
        v
```

Now, solve the problem:

Data:

P1 := 1.013 bar T1 := 300 K P2 := 14.2 bar T3 := 60 K T5 := 15 K

x1 := 0.25 x2 := 0.5

And, using the Function written above:

Ideal_Collins_cycle(P1,P2,T1,T3,T5,x1,x2) =

	("LiqFm.(y)"	"Wideal(kJ/kgliq)"	"Wperkgliq_noexpwork(kJ/	/kg)" "Wperkgliq_withexpwork(kJ/kg)"	"FOM_noexpwork"	"FOM_withexpwork"	Ì
1	0.044	6.841×10^{3}	3.767 × 10 ⁴	3.601 × 10 ⁴	0.182	0.19	

i.e. we have:

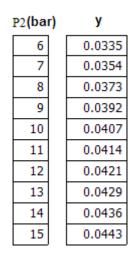
```
LiqFm_y := Ideal_Collins_cycle(P1,P2,T1,T3,T5,x1,x2)_{1,0} LiqFm_y = 0.044

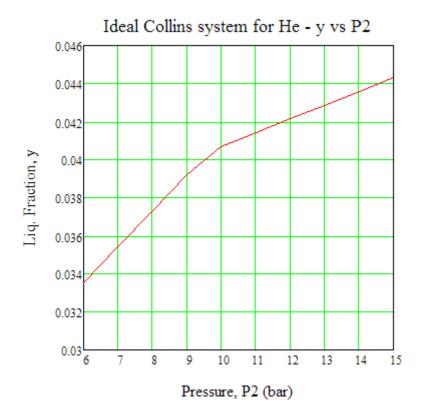
Wperkgliq_noexpwork := Ideal_Collins_cycle(P1,P2,T1,T3,T5,x1,x2)_{1,2} Wperkgliq_noexpwork = 3.76^{7} \times 10^{4}


Wperkgliq_withexpwork := Ideal_Collins_cycle(P1,P2,T1,T3,T5,x1,x2)_{1,3} Wperkgliq_withexpwork = 3.601 \times 10^{4}

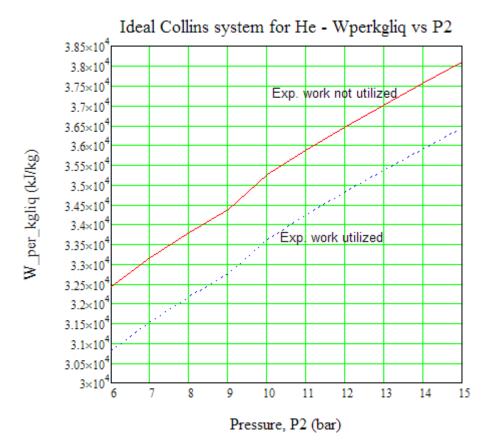
FOM_noexpwork := Ideal_Collins_cycle(P1,P2,T1,T3,T5,x1,x2)_{1,4} FOM_noexpwork = 0.182

FOM_withexpwork := Ideal_Collins_cycle(P1,P2,T1,T3,T5,x1,x2)_{1,5} FOM_withexpwork = 0.19
```


Thus:


a) When Expander work is utilized in compression: Liquid yield = y = 0.044 = 4.4%...Ans.
Work per unit mass liquefied = 36010 kJ/kg...Ans.
Figure of Merit = 0.19...Ans.

b) When Expander work is *not utilized* in compression: Liquid yield = y = 0.044 = 4.4%...Ans.
Work per unit mass liquefied = 37670 kJ/kg...Ans.
Figure of Merit = 0.182...Ans.


Now, plot y, Wperkgliq and FOM for P2 = 6 bar to 15 bar:

Work per kg liquid:

	Wperkgliq(kJ/kg) Exp. work not utilized	Wperkgliq(kJ/kg) Exp. work utilized
P2 (ba r)	
6	3.243.104	3.082.104
7	3.315·10 ⁴	3.153·10 ⁴
8	3.38.104	3.218·10 ⁴
9	3.438·10 ⁴	3.275·10 ⁴
10	3.525·10 ⁴	3.362·10 ⁴
11	3.586·10 ⁴	3.422·10 ⁴
12	3.645·10 ⁴	3.48·10 ⁴
13	3.701·10 ⁴	3.536.104
14	3.756-104	3.59·10 ⁴ -
15	3.809 [.] 10 ⁴	3.643·10 ⁴

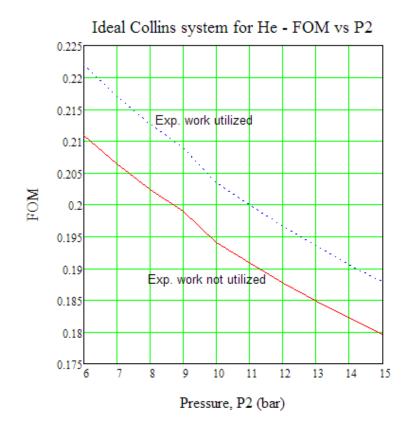
FOM:

	FOM Exp. work not utilized	FOM Exp. work utilized
P2 (bar)		
6	0.211	0.222
7	0.206	0.217
8	0.202	0.213
9	0.199	0.209
10	0.194	0.203
11	0.191	0.2
12	0.188	0.197
13	0.185	0.193
14	0.182	0.191
15	0.18	0.188

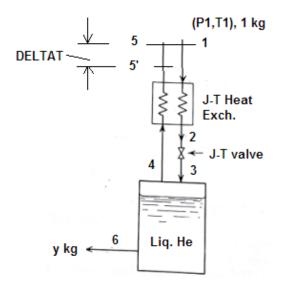
Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758.



Download free eBooks at bookboon.com


156

Click on the ad to read more

Prob. 3.3.24 Write a Mathcad Function to find the liquid yield for Linde Hampson system when the temperatures at the top of the J_T heat exchanger, effectiveness of J-T HX are known. Then, plot Liquid yield, y vs P1 (i.e. the high pressure) for temperatures at the top of the J_T HX, T1 = 6, 10, 15 and 20 K, with eta_HX = 0.9, 0.95 and 1.

Fig. below shows the final stage of a Helium liquefier, i.e. the J_T Heat exchanger, J-T valve, and the liquid reservoir.

We write the Mathcad Function for liquid yield, y, with the notations used in the above fig:

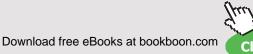
Mathcad Function:

To plot LiqYield, y vs P1 for T1 = 6, 10 and 15 K, at eta_HX = 0.9, 0.95 and 1.0:

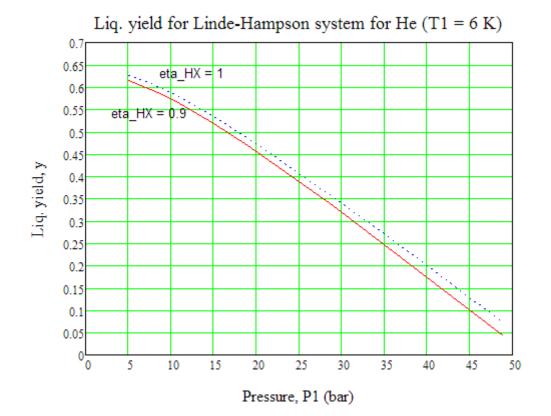
P1 := 5,10..50define a range variable

T1 = 6 K:

P1 (bar)	y (eta_HX = 1)	y (eta_HX = 0.9)
5	0.627	0.615
10	0.588	0.575
15	0.534	0.519
20	0.473	0.456
25	0.407	0.388
30	0.34	0.32
35	0.27	0.247
40	0.2	0.175
45	0.129	0.101
50	0.057	0.027

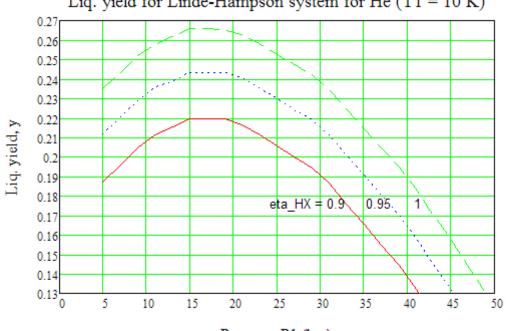

TURN TO THE EXPERTS FOR SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation and business development within subscription businesses.


We innovate new subscription business models or improve existing ones. We do business reviews of existing subscription businesses and we develope acquisition and retention strategies.

Learn more at linkedin.com/company/subscrybe or contact Managing Director Morten Suhr Hansen at mha@subscrybe.dk

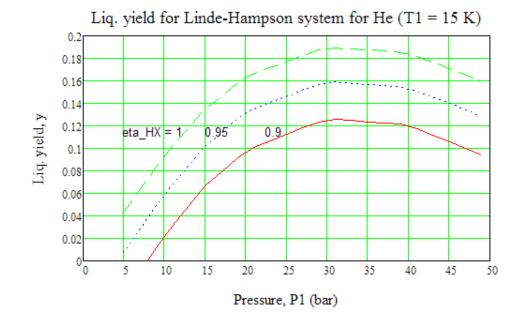
SUBSCRYBE - to the future

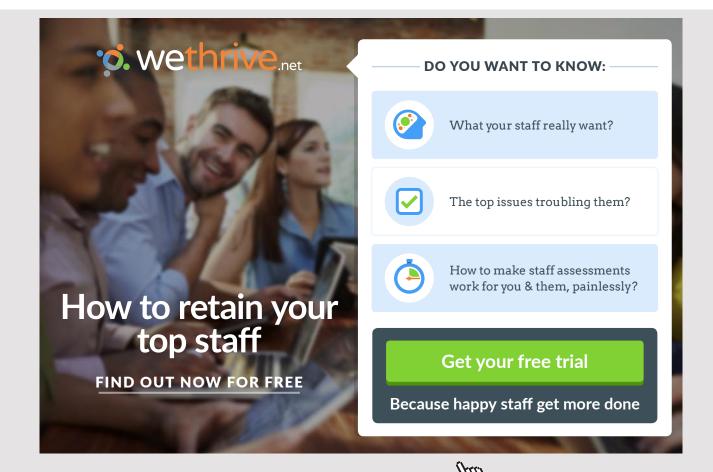


Click on the ad to read more

T1 = 10 K:

P1 (bar)	y (eta_HX = 1)	y (eta_HX = 0.95)	y eta_HX = 0.9)
5	0.235	0.212	0.187
10	0.256	0.233	0.209
15	0.266	0.243	0.22
20	0.266	0.243	0.219
25	0.252	0.23	0.206
30	0.239	0.216	0.192
35	0.215	0.191	0.165
40	0.19	0.165	0.139
45	0.157	0.131	0.104
50	0.124	0.098	0.069




Liq. yield for Linde-Hampson system for He (T1 = 10 K)

Pressure, P1 (bar)

T1 = 15 K:

y P1 (bar) (eta_HX = 1) (e		y (eta_HX = 0.95)	y (eta_HX = 0.9)
5	0.043	7.282 [.] 10 ⁻³	-0.032
10	0.093	0.059	0.022
15	0.135	0.102	0.067
20	0.164	0.132	0.098
25	0.177	0.146	0.112
30	0.19	0.159	0.126
35	0.187	0.157	0.124
40	0.185	0.154	0.121
45	0.171	0.14	0.106
50	0.157	0.125	0.091

Download free eBooks at bookboon.com

Click on the ad to read more

Prob. 3.3.25 Determine the inside heat transfer coeff (hc) and friction factor (f) for flow of nitrogen gas at 150 K and 101.3 kPa inside a 12 mm inside dia smooth tube that is coiled in a 600 mm dia helix. The tube wall has a temp of 160 K and the mass flow rate of nitrogen gas is 30 g/s.

Also, plot the variation of hc and f as m_dot varies from 10 g/s to 70 g/s [1].

First, write Mathcad Functions to determine the properties of Nitrogen gas at 1 atm (i.e. 1.013 bar), using the data from NIST [28]:

For Gaseous N2 at 1.013 bar (1 atm.)...data from NIST:

T(K) rho(kg/m^3) cp(kJ/kg.K) mu(Pa.s) k_t(W/m.K)					
	(77.353	4.6111	1.1239	5.44E-06	0.0075045`
	85	4.1493	1.0975	5.96E-06	0.0082869
	95	3.6778	1.0781	6.63E-06	0.0093508
	105	3.3074	1.0669	7.29E-06	0.010377
	115	3.0074	1.0598	7.94E-06	0.01136
	125	2.7587	1.0552	8.57E-06	0.012306
	135	2.5488	1.0519	9.19E-06	0.013223
	145	2.3692	1.0495	9.80E-06	0.014113
	155	2.2136	1.0477	1.04E-05	0.014981
	165	2.0774	1.0464	1.10E-05	0.015829
	175	1.9572	1.0453	1.15E-05	0.016659
	185	1.8502	1.0445	1.21E-05	0.017471
	195	1.7545	1.0438	1.27E-05	0.018267
	205	1.6682	1.0432	1.32E-05	0.019048
	215	1.59	1.0428	1.37E-05	0.019816
11AT_N2 :=	225	1.5189	1.0424	1.42E-05	0.020569
	235	1.4539	1.0421	1.48E-05	0.02131
	245	1.3943	1.0419	1.53E-05	0.022039
	255	1.3394	1.0417	1.58E-05	0.022757
	265	1.2887	1.0415	1.62E-05	0.023463
	275	1.2416	1.0414	1.67E-05	0.024159
	285	1.1979	1.0413	1.72E-05	0.024846
	295	1.1572	1.0413	1.77E-05	0.025523
	305	1.1192	1.0414	1.81E-05	0.026192

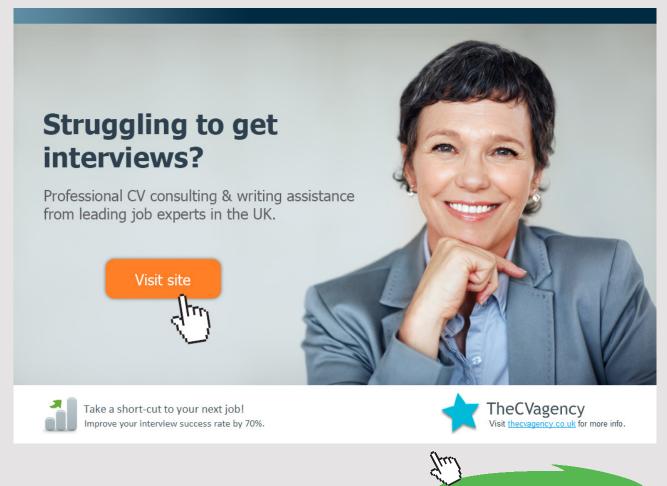
315	1.0836	1.0415	1.86E-05	0.026852	
325	1.0502	1.0416	1.90E-05	0.027505	
 335	1.0188	1.0419	1.95E-05	0.028151	-
345	0.98919	1.0421	1.99E-05	0.02879	
355	0.96128	1.0425	2.03E-05	0.029422	
365	0.93491	1.0429	2.08E-05	0.030049)

Now, write individual properties in separate vectors:

temp1AT_N2 := M1AT_N2^{$\langle 0 \rangle$} rho1AT_N2 := M1AT_N2^{$\langle 1 \rangle$}

 $cp1AT_N2 := M1AT_N2^{2}$ $mu1AT_N2 := M1AT_N2^{3}$

thcond1AT_N2 := M1AT_N2 $\langle 4 \rangle$



Now, write Mathcad Functions, using simple linear interpolation:

Ex: $rho_1AT_N2(T) := linterp(temp1AT_N2, rho1AT_N2, T)$ $rho_1AT_N2(150) = 2.291$ kg/m^A3 $cp_1AT_N2(T) := linterp(temp1AT_N2, cp1AT_N2, T)$ $cp_1AT_N2(150) = 1.049$ kJ/kg.K $mu_1AT_N2(T) := linterp(temp1AT_N2, mu1AT_N2, T)$ $mu_1AT_N2(150) = 1.01 \times 10^{-5}$ Pa.s = kg.s/m^A2 kt_1AT_N2(T) := linterp(temp1AT_N2, thcond1AT_N2, T) kt_1AT_N2(150) = 0.015 W/m.K Prandtl_1AT_N2(T) := $\frac{1000 cp_1AT_N2(T) \cdot mu_1AT_N2(T)}{kt_1AT_N2(T)}$ Prandtl_1AT_N2(150) = 0.728

For Gaseous N2 at 200 bar:

TK) rho	(kg/m^3) cp(kJ/l	kg.K) mu((Pa.s) k_t(W/m.K)
	135	625.99	0.9211	5.66E-05	0.082752
	145	583.32	0.90281	4.84E-05	0.073266
	155	540.2	0.88732	4.19E-05	0.065293
	165	497.78	0.87375	3.68E-05	0.058773
	175	457.44	0.86147	3.28E-05	0.053562
	185	420.37	0.85014	2.98E-05	0.049462
	195	387.25	0.83965	2.75E-05	0.046275
	205	358.22	0.83007	2.59E-05	0.043824
	215	333.01	0.82146	2.48E-05	0.041959
	225	311.17	0.81386	2.40E-05	0.040553
	235	292.2	0.80722	2.34E-05	0.039498
1 (2000 A D 202	245	275.62	0.80146	2.31E-05	0.038697
M200BAR_N2 :=	255	261.03	0.79647	2.29E-05	0.038018
	265	248.11	0.79216	2.28E-05	0.037755
	275	236.58	0.78843	2.27E-05	0.037616

Download free eBooks at bookboon.com

Click on the ad to read more

 285
 226.23
 0.78519
 2.28E-05
 0.037573

 295
 216.88
 0.78239
 2.29E-05
 0.037607

 305
 208.39
 0.77996
 2.30E-05
 0.037702

 315
 200.63
 0.77786
 2.32E-05
 0.037847

 325
 193.52
 0.77606
 2.34E-05
 0.038034

 335
 186.96
 0.77451
 2.36E-05
 0.038254

 345
 180.9
 0.77321
 2.39E-05
 0.038504

 355
 175.27
 0.77123
 2.41E-05
 0.038778

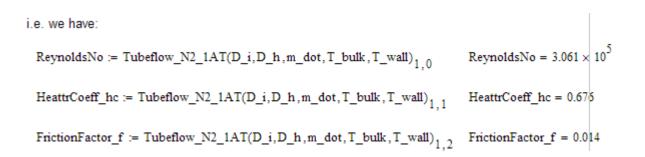
 365
 170.02
 0.77125
 2.44E-05
 0.039073

Now, write individual properties in separate vectors:

temp200B_N2 := M200BAR_N2⁽⁰⁾ rho200B_N2 := M200BAR_N2⁽¹⁾ cp200B_N2 := M200BAR_N2⁽²⁾ mu200B_N2 := M200BAR_N2⁽³⁾ thcond200B_N2 := M200BAR_N2⁽⁴⁾

And, now write the Functions:

Ex:

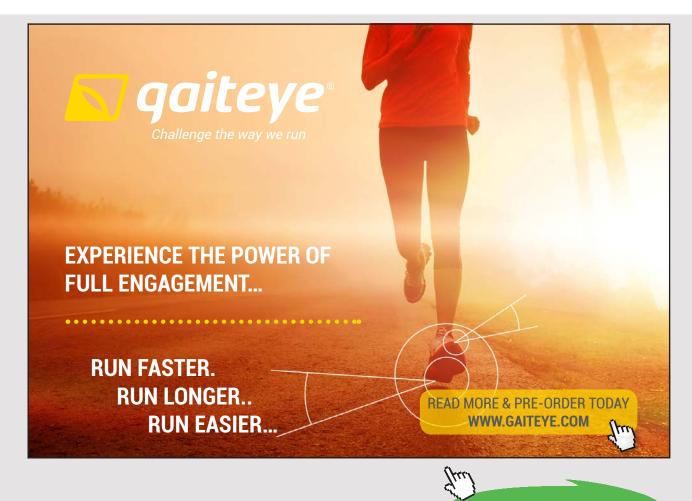

Now, write the required Function for turb. Flow through a tube:

 $Tubeflow_N2_1AT(D_i,D_h,m_dot,T_bulk,T_wall):=$

$$\begin{aligned} &\operatorname{Ac} \leftarrow \frac{\operatorname{m} \cdot \underline{D}_{-i}^{2}}{4} \\ &\operatorname{G} \leftarrow \frac{\operatorname{m}_{-dot}}{\operatorname{Ac}} \\ &\operatorname{mu} \leftarrow \operatorname{mu}_{-1} \operatorname{AT}_{-N2}(T_{-bulk}) \\ &\operatorname{Re} \leftarrow \frac{\operatorname{G} \cdot \underline{D}_{-i}}{\operatorname{mu}} \\ &\operatorname{retum} \ \text{"Re less than 2300... use laminar flow relations" if } \operatorname{Re} < 2300 \\ &\operatorname{retum}^{-1} 2300 < \operatorname{Re} < 3000 \\ &\operatorname{Im} \leftarrow \frac{\operatorname{G} \cdot \underline{D}_{-i}}{\operatorname{mu}} \\ &\operatorname{Tm} \leftarrow \frac{(T_{-bulk} + T_{-wall})}{2} \\ &\operatorname{cp} \leftarrow \operatorname{cp}_{-1} \operatorname{AT}_{-N2}(\operatorname{Tm}) \\ &\operatorname{mu} \leftarrow \operatorname{mu}_{-1} \operatorname{AT}_{-N2}(\operatorname{Tm}) \\ &\operatorname{mu} \leftarrow \operatorname{mu}_{-1} \operatorname{AT}_{-N2}(\operatorname{Tm}) \\ &\operatorname{Rel} \leftarrow \frac{\operatorname{G} \cdot \underline{D}_{-i}}{\operatorname{mu}} \\ &\operatorname{Pr} \leftarrow \operatorname{Prandtl}_{-1} \operatorname{AT}_{-N2}(\operatorname{Tm}) \\ &\operatorname{Rel} \leftarrow \frac{\operatorname{G} \cdot \underline{D}_{-i}}{\operatorname{mu}} \\ &\operatorname{Pr} \leftarrow \operatorname{Prandtl}_{-1} \operatorname{AT}_{-N2}(\operatorname{Tm}) \\ &\operatorname{jH} \leftarrow 0.023 \cdot \operatorname{Rel}^{-0.2} \cdot \left(1 + 3.5 \cdot \frac{\underline{D}_{-i}}{\underline{D}_{-h}}\right) \\ &\operatorname{Im} \leftarrow \frac{jH}{2} \cdot \operatorname{cp} \cdot \operatorname{G} \\ &\operatorname{Pr}^{-3} \\ &\operatorname{f} \leftarrow 0.00560 + 0.5 \cdot \operatorname{Rel}^{-0.32} \\ &\operatorname{Im} \operatorname{Rel} \qquad \operatorname{fm} \\ &\operatorname{Im} \qquad \operatorname{fm} \\ &\operatorname{Im} \\ &\operatorname{$$

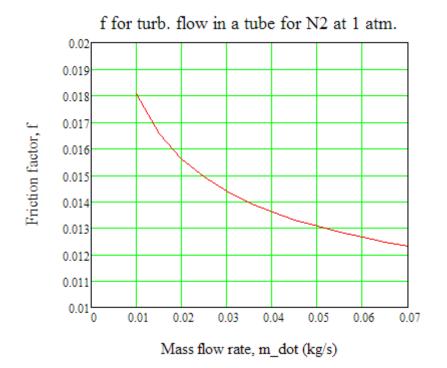
And, using the Function written above, we get:

$$Tubeflow_N2_1AT(D_i, D_h, m_dot, T_bulk, T_wall) = \begin{pmatrix} "Reynolds No." "hc (kJ/kg.K)" "f" \\ 3.0607 \times 10^5 & 0.6761 & 0.0144 \end{pmatrix}$$


Thus:

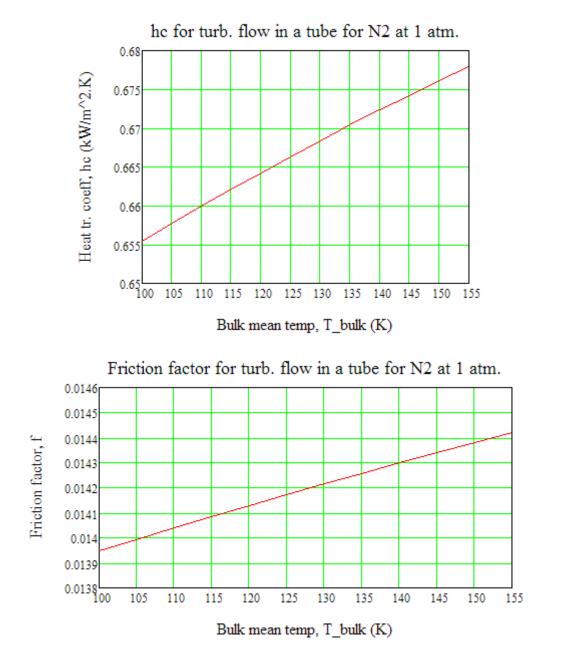
Heat transfer coeff. $h_c = 676 \text{ W/m}^2.\text{K...Ans.}$

Friction factor, f = 0.014...Ans.


Now, plot the variation of hc and f as m_dot varies from 10 g/s to 70 g/s, other factors remaining the same:

m_dot := 0.01,0.015..0.07 ...define a range variable

hc						
m _	dot (kg/s)	(kW/m^2	2.K)	f	
	0.01		0.281		0.0181	
	0.015		0.388		0.0166	
	0.02		0.489		0.0156	
	0.025		0.584		0.0149	
	0.03		0.676		0.0144	
	0.035		0.765		0.014	
	0.04		0.851		0.0136	
	0.045		0.935		0.0133	
	0.05		1.017		0.0131	
	0.055		1.098		0.0128	
	0.06		1.177		0.0126	
	0.065				0.0125	
	0.07		1.332		0.0123	



And, plot the variation of hc and f as T_bulk varies from 100 K to 155 K, other factors remaining the same:

D_i := 0.012 m D_h := 0.6 m m_dot := 0.03 kg/s T_wall := 160 K T_bulk := 100,105..155 ...define a range vriable

T_bulk (K) (F		hc W/m^2.I	f		
	100		0.655		0.0139
	105		0.658		0.014
	110		0.66		0.014
	115		0.662		0.0141
	120		0.664		0.0141
	125		0.666		0.0142
	130		0.668		0.0142
	135		0.67		0.0143
	140		0.672		0.0143
	145		0.674		0.0143
	150		0.676		0.0144
	155		0.678		0.0144

"Prob. 3.3.26 A circular tube is constructed of copper ($k_t = 50$ W/m.K), has circular pin fins protruding from its outer surface. The circular tube has an outer dia of 25 mm. The pin fins are 1.25 mm in dia and 12.5 mm long. There are 2000 fins/m length of tube, and the fins are also of copper. The outside heat transfer coeff is 35 W/m^2.K and the tube temp is 100 K. Determine the fin effectiveness and the overall surface effectiveness.[1]."

Data:

$$D_o := 0.025 \text{ m} d_f := 0.00125 \text{ m} L_f := 0.0125 \text{ m} k_f := 50 \text{ W/m.K}$$

 $L_c := 1 \text{ m} N_f := 2000 \text{ fins/m length} h_o := 35 \text{ W/m^2.K} T_o := 100 \text{ K}$

Calculations:

Fin parameter, M:

$$\begin{split} \mathbf{P} &\coloneqq \pi \cdot \mathbf{d_f} \qquad \text{m... perimeter of fin} \\ \mathbf{A_c} &\coloneqq \frac{\pi \cdot \mathbf{d_f}^2}{4} \qquad \text{m^2.... cross-sectional area of fin} \end{split}$$

$$M := \sqrt{\frac{h_o \cdot P}{k_f \cdot A_c}} \qquad i.e. \qquad M = 47.329 \qquad 1/m \dots \text{ fin parameter}$$

Therefore, fin effectiveness, n.f:

$$\eta_{\mathbf{f}} := \frac{\tanh(\mathbf{M} \cdot \mathbf{L}_{\mathbf{f}})}{\mathbf{M} \cdot \mathbf{L}_{\mathbf{f}}}$$

i.e. $\eta_f = 0.898$ fin effectiveness ... Ans.

To calculate Overall surface area effectiveness:

- $A_sf := \pi \cdot d_f \cdot L_f$ m^2 surface area of one fin
- i.e. $A_sf = 4.909 \times 10^{-5}$ m^2 surface area of one fin

Total fin surface area, A_f:

$$A_f := A_sf \cdot N_f m^2$$

i.e. $A_f = 0.098$ m²....total fin surface area

Total prime area, Ap:

$$A_{p} := L \cdot \pi \cdot D_{o} - N_{f} \cdot \frac{\pi \cdot d_{f}^{2}}{4} \qquad m^{2}$$

i.e. $A_p = 0.076$ m²....total prime area

Then, Overall surface area effectiveness:

 $A_o := A_p + A_f$ m^2 sum of total prime area and fin area

i.e. $A_0 = 0.174$ m² sum of total prime area and fin area

$$\eta_{o} \coloneqq 1 - \left(\frac{A_{f}}{A_{o}}\right) \cdot \left(1 - \eta_{f}\right) \qquad ... \text{Overall surface area effectiveness}$$

i.e. $\eta_o = 0.942$ Overall surface area effectiveness.... Ans.

Thus:

Fin effectiveness = 0.898 ... Ans.

Overall surface area effectiveness = 0.942...Ans.

Prob. 3.3.27 Determine the overall heat transfer coeff in the previous problem if the inside dia of the tube is 22mm and is plain. Base the overall heat transfer coeff on the total outside surface area (i.e. fin area plus the prime area). Determine the total heat transfer rate if the tube is 15m long. The inside fluid temp is 140 K and the outside fluid temp is 106 K. The inside convective heat transfer coeff is 225 W/m^2.K. [1].

Rand Merchant Bank uses good business to create a better world, which is one of the reasons that the country's top talent chooses to work at RMB. For more information visit us at www.rmb.co.za

hinking that can change your world

Rand Merchant Bank is an Authorised Financial Services Provider

Data:

 $\eta_{oh} := 0.9423$...overall surface effectiveness ... calculated earlier

Calculations:

Total fin surface area, A_f:

$$A_{f} = A_{sf} N_{f}$$
 m²

Total prime area, Ap:

$$A_{\text{exp}} := L \cdot \pi \cdot D_{o} - N_{f} \cdot \frac{\pi \cdot d_{f}^{2}}{4} \qquad m^{2}$$

i.e. A_p = 1.176 m^2....total prime area

Then, total heat transfer area on the outside:

 $A_{oh} := A_p + A_f$ m^2 sum of total prime area and fin area

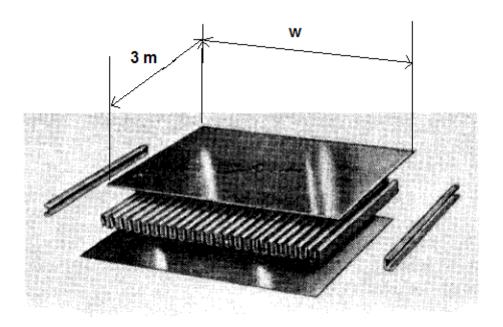
i.e. $A_{oh} = 1.274$ m^A2 sum of total prime area and fin area

And, total heat transfer area on the inside:

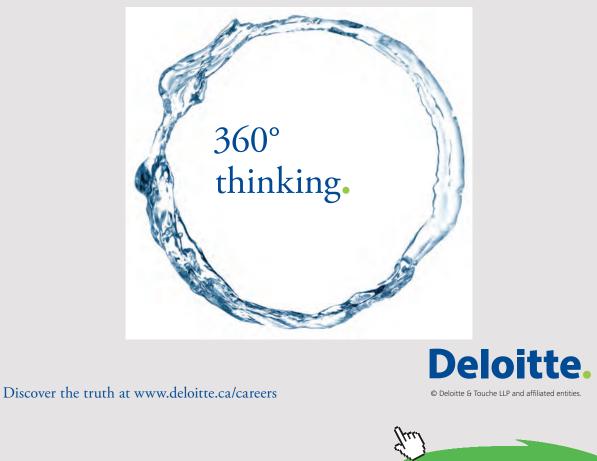
$$A_{oc} := \pi \cdot D_i \cdot L \qquad m^2$$

i.e. A_{oc} = 1.037 m^2 heat tr. area on the inside

Therefore, overall heat transfer coeff. U based on total outer area:


 $U_{oh} := \left(\frac{1}{\eta_{oh} \cdot h_o} + \frac{A_{oh}}{A_{oc}} \cdot \frac{1}{h_i}\right)^{-1}$ W/m^2.K ... overall heat tr coeff based on total outer i.e. $U_{oh} = 27.947$ W/m^2.K ... overall heat tr coeff based on total outer area .. Ans.

And, total heat transfer rate:


 $\mathsf{Q}_{tot} \coloneqq \mathsf{U}_{oh} \cdot \mathsf{A}_{oh} \cdot \left(\mathsf{T}_i - \mathsf{T}_o\right) \qquad \qquad \mathsf{W}_{\cdots} \text{ total heat transfer rate}$

i.e. $Q_{tot} = 1.21 \times 10^3$ W... total heat transfer rate ... Ans.

Prob. 3.3.28 A plate – fin heat exchanger is constructed using straight fins, 7.87mm (0.31 in) high, 0.15mm (0.006 in) thick, with 492 fins/m (12.5 fins/in) width. The equivalent dia for the flow passage is 3mm (0.1181 in), the free-flow area for the exchanger is 0.07 m² (0.7535 ft²), and the exchanger length is 3 m (9.84 ft). The fluid flowing is helium gas, which enters at 300 K and 3.0 MPa and leaves at 100 K. The mass flow rate of helium gas is 0.35 kg/s. The heat exchanger is constructed of aluminium (k_t = 150 W/m.K). Determine the convective heat transfer coeff. for this surface and the fin effectiveness. [1].

First, write Mathcad Functions to determine the properties of Helium gas at 30 bar, using the data from NIST [28]:

Click on the ad to read more

For Gaeous Helium at 30 bar:

TK) rho(kg/m^3) cp(kJ/kg.K) mu(Pa.s) k_t(W/m.K)						
-						
M30BAR_He :=	10	132.32	5.2889	4.74E-06	0.035304	
	20	67.692	6.2401	4.66E-06	0.036063	
	30	44.319	5.7472	5.40E-06	0.041155	
	40	33.343	5.5135	6.16E-06	0.046542	
				6.89E-06		
	60	22.566	5.3284	7.60E-06	0.057131	
	70	19.473	5.2875	8.27E-06	0.062261	
	80	17.138	5.2611	8.91E-06	0.067275	
	90	15.31	5.2431	9.53E-06	0.072176	
	100	13.837	5.2305	1.01E-05	0.076969	
	110	12.625	5.2214	1.05E-05	0.081663	
	120	11.609	5.2147	1.11E-05	0.086262	
	130	10.745	5.2097	1.17E-05	0.090772	
	140	10.001	5.2058	1.22E-05	0.095201	
	150	9.3543	5.2028	1.28E-05	0.099552	
	160	8.7859	5.2004	1.33E-05	0.10383	
	170	8.2828	5.1985	1.38E-05	0.10804	
	180	7.8342	5.197	1.43E-05	0.11219	
	190	7.4318	5.1958	1.49E-05	0.11627	
	200	7.0688	5.1948	1.54E-05	0.1203	
	210	6.7395	5.194	1.58E-05	0.12428	
	220	6.4396	5.1934	1.63E-05	0.1282	
	230	6.1653	5.1928	1.68E-05	0.13208	
	-240	5:9133	5:1924	1.73E-05	0.13591	
	250	5.6812	5.192	1.78E-05	0.13969	
	260	5.4665	5.1917	1.82E-05	0.14344	
	270	5.2675	5.1914	1.87E-05	0.14714	
	280	5.0825	5.1912	1.91E-05	0.15081	
	290	4.91	5.1911	1.96E-05	0.15443	
	300	4.7489	5.1909	2.00E-05	0.15803	
	310	4.598	5.1908	2.05E-05	0.16159	
	320	4.4563	5.1907	2.09E-05	0.16511	
	330	4.3232	5.1906	2.14E-05	0.16861	
	340	4.1977	5.1906	2.18E-05	0.17208	
	350	4.0794	5.1905	2.22E-05	0.17551	
	360	3.9675	5.1905	2.27E-05	0.17892	

Now, extract the separate data vectors:

thcond30B_He := M30BAR_He^{$\langle 4 \rangle$}

And, now write the Functions:

Now, solve the problem:

Data:

$$t_{\mathbf{f}} := 0.00015 \quad \text{m} \quad \underline{L}_{\mathsf{M}} := \frac{0.00787}{2} \quad \text{m} \dots \text{ divided by 2, since fin is supported at two ends}$$

$$\underbrace{N_{\mathsf{M}} := 492 \quad \text{fins/m width} \quad \underline{L}_{\mathsf{M}} := 3 \quad \text{m} \dots \text{ length of HX}}_{\mathsf{D}_{\mathbf{e}} := 0.003 \quad \text{m} \dots \text{ equiv. dia of flow passage}}$$

$$A_{\mathbf{ff}} := 0.07 \quad \text{m}^{A}2 \dots \text{ free flow area for the HX}}_{\mathsf{T}_{\mathsf{M}} := 300 \quad \mathsf{K} \quad \underbrace{T}_{\mathsf{M}} := 100 \quad \mathsf{K}}_{\mathsf{M}}$$

$$\mathbf{m}_{\mathsf{dot}} := 0.35 \quad \text{kg/s} \dots \text{ mass flow rate of He} \quad \mathbf{P1} := 30 \quad \text{bar} \dots \text{ pressure of helium gas}}$$

$$\underbrace{k_{\mathsf{f}_{\mathsf{M}}} := 150 \quad \text{W/m.K} \dots \text{ th. cond. of fin material, viz. Al}$$

Calculations:

$$\underset{M}{\underline{G}} := \frac{mdot}{\underline{A_{ff}}} \qquad kg/m^2.s \ \ mass \ velocity$$

$$T_b := \frac{(T_i + T_o)}{2}$$
 K mean bulk temp of He

i.e. $T_b = 200$ K mean bulk temp of He

Properties of Helium gas at 30 bar, and temp Tb:

- $rho := rho_{30}B_{He}(T_b) \quad rho = 7.069 \qquad kg/m^3$
- $cp := cp_30B_He(T_b)$ cp = 5.195 kJ/kg.K
- $mu := mu_{30B}He(T_b) \qquad mu = 1.54 \times 10^{-5} \qquad Pa.s = kg.s/m^2$
- $k_t := kt_{30B}He(T_b)$ $k_t = 0.12$ W/m.K
- $Pr := Prandtl_{30B}He(T_b)$ Pr = 0.665

Reynolds No.:

$$\frac{\text{Re}}{\text{mu}} = \frac{\text{G} \cdot \text{D}_{\text{e}}}{\text{mu}} \qquad \text{i.e.} \quad \text{Re} = 974.026 \quad \dots \text{Reynolds No.}$$

Download free eBooks at bookboon.com

180

Click on the ad to read more

Colburn j factor:

Ue the relation given in Ref.[1]

 $jH := 0.0291 \cdot Re^{-0.24}$ i.e. $jH = 5.58 \times 10^{-3}$

Now, we have:

 $jH = \frac{h_c}{G \cdot cp} \cdot Pr^{\frac{2}{3}}$

Therefore, heat transfer coeff. hc:

$$h_{c} := \frac{jH \cdot G \cdot cp \cdot 1000}{\frac{2}{Pr^{3}}}$$

i.e. h_c = 190.236 W/m^2.K Ans.

To find fin effectiveness, nf:

- i.e. $A_c = 4.5 \times 10^{-4}$ m^2 ... cross-sectional area of fin

Fin parameter, M:

$$M_{c} := \sqrt{\frac{h_{c} \cdot P}{k_{f} \cdot A_{c}}} \qquad i.e. \qquad M = 130.041 \qquad 1/m \dots \text{ fin parameter}$$

Then, fin effectiveness is given by:

$$\mathfrak{M}_{\mathbf{f}} := \frac{\operatorname{tanh}(\mathbf{M} \cdot \mathbf{L}_{\mathbf{f}})}{\mathbf{M} \cdot \mathbf{L}_{\mathbf{f}}}$$

i.e. $\eta_f = 0.921$ fin effectiveness ... Ans.

Plot hc and fin effectiveness as mass flow rate of helium varies from 0.2 kg/s to 0.8 kg/s, other quantities remaining unchanged:

Write the relevant quantities as functions of mdot:

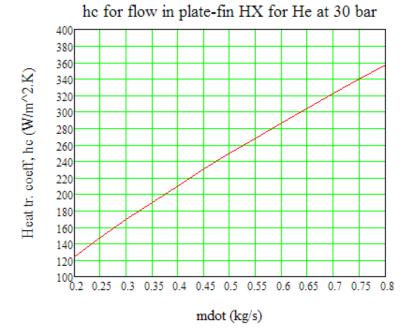
$$\underbrace{G(mdot) := \frac{mdot}{A_{ff}}} \qquad kg/m^{2}.s \dots mass velocity \qquad G(mdot) = 5$$

$$\underbrace{Re(mdot) := \frac{G(mdot) \cdot D_{e}}{mu}} \qquad i.e. \qquad Re(mdot) = 974.026$$

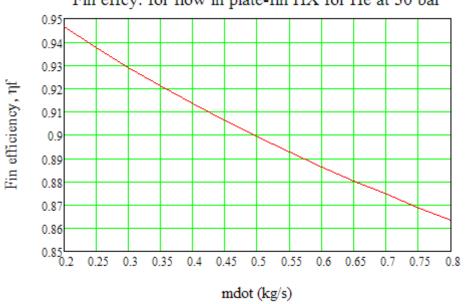
 $jH(mdot) := 0.0291 \cdot \text{Re(mdot)}^{-0.24}$ i.e. $jH(mdot) = 5.58 \times 10^{-3}$

$$\frac{h_{c}(mdot) := \frac{jH(mdot) \cdot G(mdot) \cdot cp \cdot 1000}{\frac{2}{Pr^{3}}} \qquad i.e. \qquad h_{c}(mdot) = 190.236$$

Fin parameter, M, and effectiveness, η f:


$$\underset{\scriptstyle \mbox{(mdot)}}{\mbox{(mdot)}} \coloneqq \sqrt{\frac{h_c(mdot) \cdot P}{k_f \cdot A_c}} \qquad \qquad \mbox{i.e.} \qquad M(mdot) = 130.041$$

$$\underset{M_{f}}{\eta_{f}}(\text{mdot}) \coloneqq \frac{ \tanh \left(M(\text{mdot}) \cdot L_{f} \right) }{M(\text{mdot}) \cdot L_{f}}$$
 i.e. $\eta_{f}(\text{mdot}) = 0.921$


Now, plot hc and ηf against mdot:

mdot := 0.2, 0.25.. 0.8 ...define a range variable

mdot =		$h_c(mdot) =$	η _f (mdot) =	-
0.2		124.332	0.947	
0.25		147.311	0.937	
0.3		169.205	0.929	
0.35		190.236	0.921	
0.4		210.555	0.913	
0.45		230.272	0.906	
0.5		249.47	0.899	
0.55		268.211	0.893	
0.6		286.547	0.886	
0.65		304.519	0.88	
0.7		322.163	0.874	
0.75		339.506	0.869	
0.8		356.573	0.863	

Fin effcy. for flow in plate-fin HX for He at 30 bar

Prob. 3.3.29 Write a Mathcad Function to calculate the NTU, effectiveness, heat transferred etc for a Counter-flow heat exchanger.

Gaseous nitrogen enters the warm end of a counter-flow HX at 20.27 MPa and 295 K at a mass flow rate of 1.25 kg/s. Gaseous nitrogen enters at the cold end of the HX at 80 K. For the warm stream, the sp. heat is 1.296 J/g.K and the sp. heat for the cold stream is 1.08 J/g.K. The mass flow rate of cold stream is 1.125 kg/s. The overall heat transfer coeff is 150 W/m^2.K and the heat transfer area on which U is based is 72.9 m^2. Determine the heat exchanger effectiveness, exit temp of cold stream and the heat transfer rate. [1].

Mathcad Function:

 $CounterflowHX(m_c,m_h,cp_c,cp_h,Th1,Tc1,A,U) :=$

$$C_h \leftarrow m_h \cdot cp_h$$

$$C_c \leftarrow m_c \cdot cp_c$$
if $C_c < C_h$

$$C_min \leftarrow C_c$$

$$Cmax \leftarrow C_h$$

$$NTU \leftarrow \frac{U \cdot A}{Cmin}$$

$$C_R \leftarrow \frac{Cmin}{Cmax}$$

 $\varepsilon \leftarrow \frac{1 - \exp[-\text{NTU} \cdot (1 - \text{C}_R)]}{1 - \text{C}_R \cdot \exp[-\text{NTU} \cdot (1 - \text{C}_R)]}$ Tc2 $\leftarrow \varepsilon \cdot (\text{Th1} - \text{Tc1}) + \text{Tc1}$ Q $\leftarrow \text{C}_c \cdot (\text{Tc2} - \text{Tc1})$ Th2 $\leftarrow \text{Th1} - \frac{\text{Q}}{\text{C}_h}$ if $C_h < C_c$ $Cmin \leftarrow C_h$ $Cmax \leftarrow C_c$ $NTU \leftarrow \frac{U \cdot A}{Cmin}$ $C_R \leftarrow \frac{Cmin}{Cmax}$ $\varepsilon \leftarrow \frac{1 - \exp[-\text{NTU} \cdot (1 - \text{C}_R)]}{1 - \text{C}_R \cdot \exp[-\text{NTU} \cdot (1 - \text{C}_R)]}$ Th2 \leftarrow Th1 - \varepsilon \cdot (Th1 - Tc1) $Q \leftarrow C_h \cdot (Th1 - Th2)$ $Tc2 \leftarrow Tc1 + \frac{Q}{C_c}$ if $C_h = C_c$ $\text{NTU} \leftarrow \frac{\text{U} \cdot \text{A}}{\text{C}_{h}}$ $C_R \leftarrow 1$ $\varepsilon_{-R} \leftarrow 1$ $\varepsilon \leftarrow \frac{NTU}{1 + NTU}$ $Th2 \leftarrow Th1 - \varepsilon \cdot (Th1 - Tc1)$ $Q \leftarrow C_{-h} \cdot (Th1 - Th2)$ $Tc2 \leftarrow Tc1 + \frac{Q}{C_{-c}}$ $("C_{-R}" "NTU" "Effectiveness" "Th2(K)" "Tc2(K)" "Q(W)")$ $C_{-R} NTU \quad \varepsilon \qquad Th2 \qquad Tc2 \qquad Q$

Now, solve the problem:

Data:

Download free eBooks at bookboon.com

And, apply the Function written above:

$CounterflowHX(m_c,m_h,cp_c,cp_h,Th1,Tc1,A,U) =$								
		"Effectiveness"						
0.75	9	0.9714	138.3636	288.8485	2.5375 × 10 ⁵			
i.e.								
CapRati	CapRatio := CounterflowHX(m_c,m_h,cp_c,cp_h,Th1,Tc1,A,U)_{1,0} CapRatio = 0.75							
NTU :=	Counter	flowHX(m_c,m_h	.,cp_c,cp_	h,Th1,Tc1	,A,U) _{1,1}	NTU = 9		
EFF :=	Counterf	lowHX(m_c,m_h	,cp_c,cp_h	,Th1,Tc1	A,U) _{1,2}	EFF = 0.9714		
$Th2 := CounterflowHX(m_c, m_h, cp_c, cp_h, Th1, Tc1, A, U)_{1,3} \qquad Th2 = 138.364 K$								
$Tc2 := CounterflowHX(m_c, m_h, cp_c, cp_h, Th1, Tc1, A, U)_{1,4} \qquad Tc2 = 288.849 K$								
Q := Co	unterflow	vHX(m_c,m_h,cp	_c,cp_h,T	h1,Tc1,A	,U) _{1,5}	$Q = 2.5375 \times 10^5$ W		

Brain power

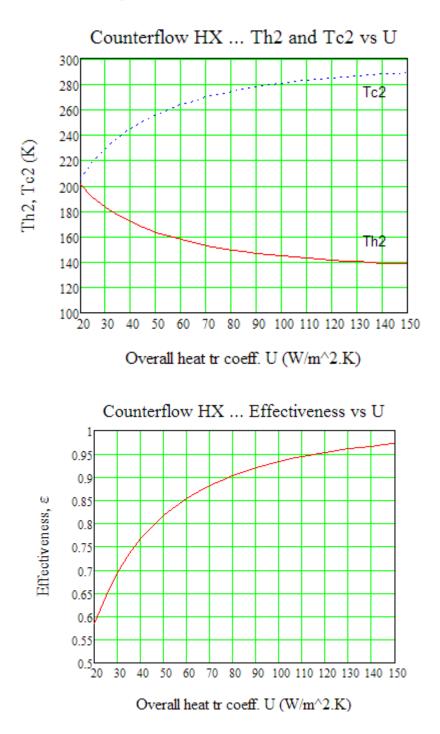
By 2020, wind could provide one-tenth of our planet's electricity needs. Already today, SKF's innovative know-how is crucial to running a large proportion of the world's wind turbines.

Up to 25 % of the generating costs relate to maintenance. These can be reduced dramatically thanks to our systems for on-line condition monitoring and automatic lubrication. We help make it more economical to create cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity, industries can boost performance beyond expectations. Therefore we need the best employees who can meet this challenge!

The Power of Knowledge Engineering

Plug into The Power of Knowledge Engineering. Visit us at www.skf.com/knowledge


SKF

Download free eBooks at bookboon.com

Click on the ad to read more

Plot the exit temps of hot and cold fluids, and effectiveness of HX as the overall heat transfer coeff. U varies from 20 to 150 W/m^2.K:

U := 20,25..150define a range variable

Prob. 3.3.30 (a) Write a Mathcad Function to calculate the NTU, effectiveness, heat transferred etc for a Parallel flow heat exchanger.

(b) Determine the heat exchanger effectiveness, exit temp of cold stream and the heat transfer rate for the Problem 3.3.29 if the HX is parallel flow type. [1].

Mathcad Function for Parallel flow HX:

ParallelflowHX(m c,m h,cp c,cp h,Th1,Tc1,A,U) := $C_h \leftarrow m_h \cdot cp_h$ C_c ← m_c·cp_c if C_c < C_h $Cmin \leftarrow C_c$ $Cmax \leftarrow C_h$ $\frac{U \cdot A}{Cmin}$ NTU \leftarrow Cmin Cmax $C_R \leftarrow$ $\varepsilon \leftarrow \frac{1 - \exp[-\text{NTU} \cdot (1 + \text{C}_R)]}{1 + \text{C}_R}$ $\text{Tc2} \leftarrow \varepsilon \cdot (\text{Th1} - \text{Tc1}) + \text{Tc1}$ $Q \leftarrow C_c \cdot (Tc2 - Tc1)$ $Th2 \leftarrow Th1 - \frac{Q}{C_h}$ if $C_h < C_c$ $Cmin \leftarrow C_h$ $Cmax \leftarrow C_c$ $\text{NTU} \leftarrow \frac{\text{U} \cdot \text{A}}{\text{Cmin}}$ $C_R \leftarrow \frac{Cmin}{Cmax}$ $\varepsilon \leftarrow \frac{1 - \exp[-NTU \cdot (1 + C_R)]}{1 + C_R}$ $Th2 \leftarrow Th1 - \varepsilon \cdot (Th1 - Tc1)$ $Q \leftarrow C_h \cdot (Th1 - Th2)$ $Tc2 \leftarrow Tc1 + \frac{Q}{C_c}$

 $\begin{aligned} \text{if } C_h &= C_c \\ NTU \leftarrow \frac{U \cdot A}{C_h} \\ C_R \leftarrow -1 \\ \varepsilon &\leftarrow \frac{1}{2} \cdot (1 - \exp(-2 \cdot NTU)) \\ Th2 \leftarrow Th1 - \varepsilon \cdot (Th1 - Tc1) \\ Q \leftarrow C_h \cdot (Th1 - Th2) \\ Tc2 \leftarrow Tc1 + \frac{Q}{C_c} \\ \\ \begin{pmatrix} "C_R" \ "NTU" \ "Effectiveness" \ "Th2(K)" \ "Tc2(K)" \ "Q(W)" \\ C_R \ NTU \ \varepsilon \ Th2 \ Tc2 \ Q \end{pmatrix} \end{aligned}$

Now, solve the problem:

Data:


 $\underline{m}_{cc} := 1.125 \text{ kg/s} \quad \underline{m}_{h} := 1.25 \text{ kg/s} \quad \underline{Th1} := 295 \text{ K} \quad \underline{Tc1} := 80 \text{ K}$ $\underline{cp}_{cc} := 1080 \text{ J/kg.K} \quad \underline{cp}_{h} := 1296 \text{ J/kg.K} \quad U := 150 \text{ W/m^2.K}$ $\underline{A}_{c} := 72.9 \text{ m^2}$

With us you can shape the future. Every single day.

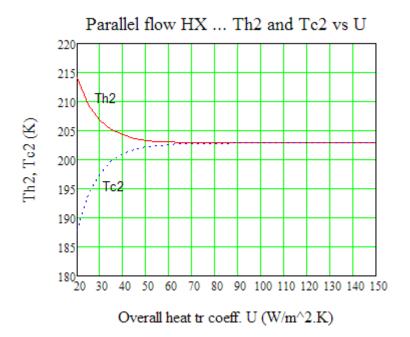
For more information go to: www.eon-career.com

Your energy shapes the future.

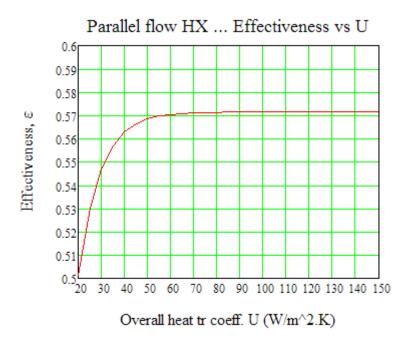
189

And, using the Function written above:

 $ParallelflowHX(m_c,m_h,cp_c,cp_h,Th1,Tc1,A,U) =$

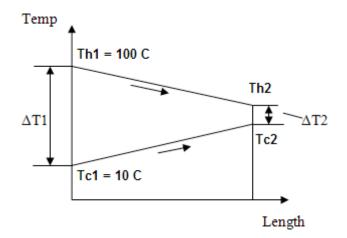

 "C_R"
 "NTU"
 "Effectiveness"
 "Th2(K)"
 "Tc2(K)"
 "Q(W)"

 0.75
 9
 0.5714
 202.8572
 202.8571
 1.4927 × 10⁵


i.e.

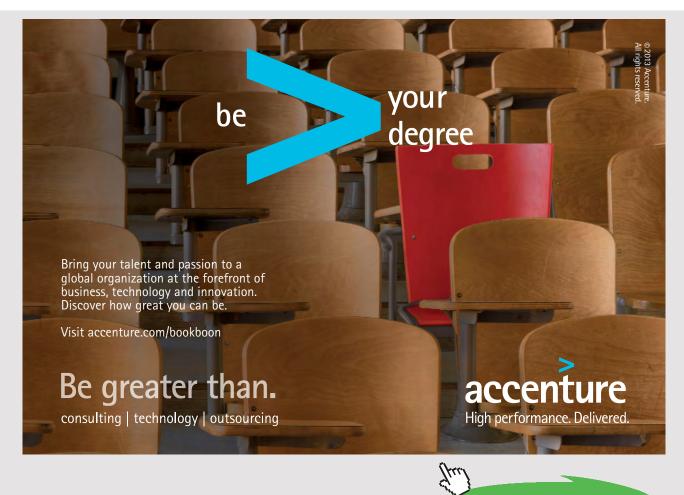
Plot the exit temps of hot and cold fluids, and effectiveness as the overall heat transfer coeff varies from 20 to 150 W/m^2.K:

U:= 20,25.. 150define a range variable



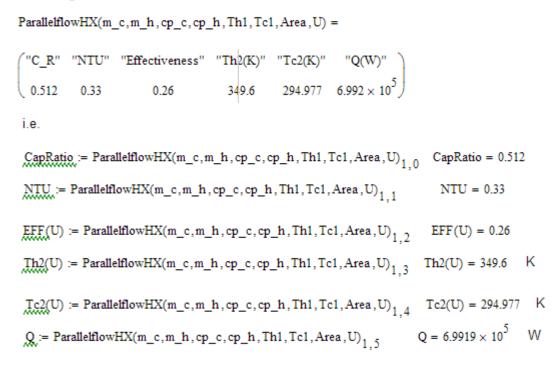
Download free eBooks at bookboon.com

Note: Effectiveness and heat transfer are more for a Counter-flow HX.


Prob. 3.3.31 Oil at 100 C (cp = 3.6 kJ/kg.K) flows at a rate of 8.3 kg/s and enters in to a parallel flow HX. Cooling water (cp = 4.2 kJ/kg.K) enters the HX at 10 C at a rate of 13.9 kg/s. The HX has an effectiveness of 0.26. If the overall heat transfer coeff is 1000 W/m^2.K, find the area required for the HX. Also, find the outlet temperatures of both the fluids.

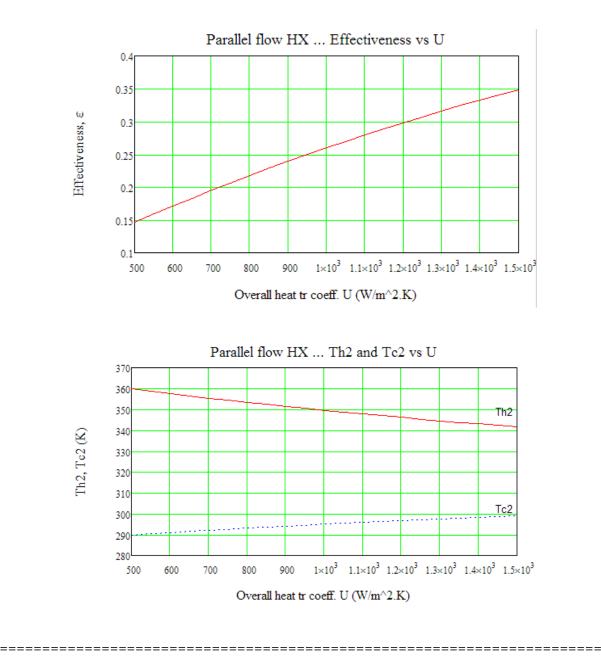
Download free eBooks at bookboon.com

Use the Mathcad Function for Parallel flow HX, already written above, with the 'Solve block' of Mathcad to easily determine the Area required:


Data: <u>m_cc</u> = 13.9 kg/s <u>m_h</u> = 8.3 kg/s <u>Th1</u> = 373 K <u>Tc1</u> = 283 K <u>cp_cc</u> = 4200 J/kg.K <u>cp_h</u> = 3600 J/kg.K U = 1000 W/m^2.K <u>g_c</u> = 0.26 Solve Block: <u>A</u> = 1 ...guess value Given ParallelflowHX(m_c,m_h, cp_c, cp_h, Th1, Tc1, A, U)_{1,2} = 0.26 Area := Find(A) i.e. Area = 9.869 m^2 area required ... Ans.

Download free eBooks at bookboon.com

Click on the ad to read more


Now, with this Area entered, apply the Mathcad Function for parallel flow HX, to get exit temps of fluids etc.:

Plot the exit temps of hot and cold fluids, and effectiveness as the overall heat transfer coeff varies from 500 to 1500 W/m^2.K:

U =	EFF(U) =	Th2(U) =	Tc2(U) =
500	0.146	359.847	289.732
600	0.171	357.588	290.888
700	0.195	355.439	291.988
800	0.218	353.395	293.034
900	0.239	351.45	294.03
1.103	0.26	349.6	294.977
1.1.103	0.28	347.84	295.877
1.2·10 ³	0.298	346.166	296.734
1.3·10 ³	0.316	344.573	297.549
1.4·10 ³	0.333	343.058	298.325
1.5·10 ³	0.349	341.617	299.062

U = 500,550...1500define a range variable

Prob. 3.3.32. A Linde concentric tube HX is to be constructed from a 25 mm ID tube having a 2.5 mm wall thickness concentric to a 62.5 mm inside dia tube. Nitrogen at 10.13 MPa and 300 K enters the smaller tube, and air at 101.3 kPa and 85 K enters the larger tube and leaves at 289 K. The mass flow rate of high pressure stream is 0.25 kg/s, and the mass flow rate of low pressure stream is 0.233 kg/s. The mean sp. heat of high pressure stream is 1.747 kJ/kg.K, and the mean sp. heat of low pressure stream is 1.044 kJ/kg.K. If the concentric tube is wound in a 450 mm dia helix and heavily insulated, determine the length of concentric tubing required for this heat exchanger.

Mathcad Solution:

Data:

<pre>d_i_h := 0.025 minside dia of high pressure stream flow tube</pre>
$d_o_h := 0.03$ moutside dia of high pressure stream flow tube
<pre>d_i_c := 0.0625 minside dia of low pressure stream flow tube</pre>
D_h = 0.45 m dia of helix
P1 := 100 bar high pressure flow
P2 := 1.013 bar low pressure flow
Th1 = 300 K Tc1 = 85 K Tc2 = 289 K
m_h := 0.25 kg/s m_c := 0.233 kg/s

sp.h.:= 1747 J/kg.K sp.c.:= 1044 J/kg.K

Calculations:

$$\underbrace{\mathbb{Q}}_{m_{c}} := m_{c} \cdot cp_{c} \cdot (Tc2 - Tc1)$$
 i.e. $Q = 4.962 \times 10^{4}$ W ... heat transfer
 Therefore: $\underbrace{Th2}_{m_{c}} := Th1 - \frac{Q}{m_{c}h \cdot cp_{c}h}$ i.e. $Th2 = 186.38$ K
 $T_{avg_{c}hot} := \frac{(Th1 + Th2)}{2}$ i.e. $T_{avg_{c}hot} = 243.19$ K
 $T_{avg_{c}cold} := \frac{(Tc1 + Tc2)}{2}$ i.e. $T_{avg_{c}cold} = 187$ K

To find heat tr coeff h_h for high pressure stream:

$$A_i_h := \frac{\pi \cdot d_i_h^2}{4}$$
i.e. $A_i_h = 4.909 \times 10^{-4}$ m^2 ... cross-sectional area
of high pressure flow $G_h := \frac{m_h}{A_i_h}$ i.e. $G_h = 509.296$ kg/s.m^2 mass velocity $mu_h := mu_100B_N2(T_avg_hot)$ i.e. $mu_h = 1.81 \times 10^{-5}$ Pa.s $rho_h := rho_100B_N2(T_avg_hot)$ i.e. $rho_h = 146.167$ kg/m^3 $Pr_h := Prandtl_100B_N2(T_avg_hot)$ i.e. $Pr_h = 0.824$...Prandtl No. $Re_h := \frac{G_h \cdot d_i_h}{mu_h}$ i.e. $Re_h = 7.036 \times 10^5$...Reynolds No. of high
pr stream

Since Re_h > 3000, we have:

$$jH_h := 0.023 \cdot Re_h^{-0.2} \cdot \left(1 + \frac{3.5 \cdot d_i h}{D_h}\right)$$

i.e. $jH_h = 1.86 \times 10^{-3}$...Colburn j factor

Now, we have:

$$jH_h = \left(\frac{h_h}{cp_h \cdot G_h}\right) \cdot Pr_h^{\frac{2}{3}}$$
 ...by definition

Therefore: heat tr coeff h_h on high pressure side:

To find heat tr coeff h_c for low pressure stream:

$$A_i_c := \frac{\pi}{4} \cdot \left(d_i_c^2 - d_o_h^2\right) \quad i.e. \quad A_i_c = 2.361 \times 10^{-3} \quad m^{A}2 \dots cross-sectional area of low pr. flow$$

$$G_c := \frac{m_c}{A_i_c} \quad i.e. \quad G_c = 98.683 \quad kg/s.m^{A}2 \dots mass velocity$$

$$mu_c := mu_100B_N2(T_avg_cold) \quad i.e. \quad mu_c = 1.801 \times 10^{-5} \quad Pa.s$$

$$rho_c := rho_100B_N2(T_avg_cold) \quad i.e. \quad rho_c = 229.042 \quad kg/m^{A}3$$

$$Pr_c := Prandtl_100B_N2(T_avg_cold) \quad i.e. \quad Pr_c = 1.076$$

$$Re_c := \frac{G_c\cdot(d_i_c - d_o_h]}{mu_c} \quad i.e. \quad Re_c = 1.781 \times 10^{5} \quad ...Reynolds No. of low pressure stream$$

Since Re_c > 3000, we have:

$$jH_c := 0.023 \cdot \text{Re}_c^{-0.2} \cdot \left[1 + \frac{3.5 \cdot (d_i_c - d_o_h)}{D_h}\right]$$

i.e. $jH_c = 2.567 \times 10^{-3}$...Colburn j factor

Therefore: heat tr coeff h_c on low pressure side:

$$h_c := \frac{jH_c}{\frac{2}{Pr_c^3}} cp_c \cdot G_c$$
 i.e. $h_c = 251.875$ W/m^2.K... heat tr. coeff. of high pressure stream

Therefore, Overall heat tr coeff, U, based on area on high pressure side:

$$\mathbf{U} := \left(\frac{1}{\mathbf{h}_{\mathbf{h}}\mathbf{h}} + \frac{\mathbf{d}_{\mathbf{i}}\mathbf{h}}{\mathbf{d}_{\mathbf{o}}\mathbf{h}\cdot\mathbf{h}_{\mathbf{c}}\mathbf{c}}\right)^{-1}$$

i.e. U = 260.424 W/m^2.K ... Overall heat tr coeff.

To find the area and length of HX: Use the Function for Counterflow HX, already written, along with the 'Solve block' of Mathcad:

$$C_c := m_c \cdot cp_c$$
 i.e. $C_c = 243.252$
 $C_h := m_h \cdot cp_h$ i.e. $C_h = 436.75$

Therefore: cold fluid is the min. fluid.

Therefore, effectivenesss:

 $\underset{\text{MW}}{\varepsilon} \coloneqq \frac{\text{Tc2} - \text{Tc1}}{\text{Th1} - \text{Tc1}} \qquad \qquad \text{i.e.} \qquad \varepsilon = 0.949$

Now, use the 'Solve block':

A:= 1 ...guess value

Given

 $CounterflowHX(m_c, m_h, cp_c, cp_h, Th1, Tc1, A, U)_{1,2} = 0.949$

$$Area := Find(A)$$

i.e. Area = 4.689 m^2 heat transfer area of HX

Therefore:

$$\underline{\mathbf{L}} := \frac{\text{Area}}{\pi \cdot \mathbf{d} \ \mathbf{i} \ \mathbf{h}} \qquad \text{m...length of tube}$$

i.e. L = 59.7 m...length of tube ... Ans.

With this Area entered, apply the Mathcad Function for Counterflow HX again:

 $CounterflowHX(m_c, m_h, cp_c, cp_h, Th1, Tc1, Area, U) =$

 $\begin{pmatrix} "C_R" "NTU" "Effectiveness" "Th2(K)" "Tc2(K)" "Q(W)" \\ 0.557 5.0198 0.949 186.3608 289.035 4.9632 \times 10^4 \end{pmatrix}$

Thus:

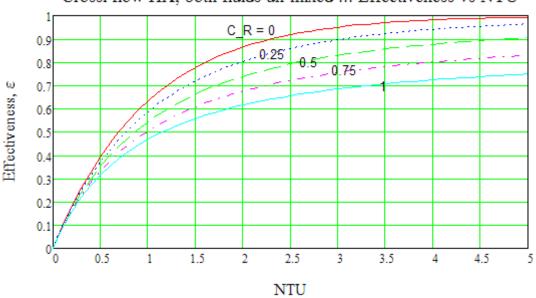
Overall heat transfer coeff. = U = 260.424 W/m^2.K...Ans.

Length of tube in HX = L = 59.7 m...Ans.

Heat transfer in HX = Q = 49632 W...Ans.

Prob. 3.3.33. Write an EES Function to find the effectiveness of a Cross-flow HX, with both the fluids un-mixed, as a function of NTU and Capacity Ratio, C_R. Then, plot the Effectiveness vs NTU graphs for different values of Capacity ratios.

Mathcad Function:


CrossFlowHX_bothUnmixed_epsilon(NTU,C_R) :=

```
return (1 - exp(-NTU)) if C_R = 0
otherwise
A \leftarrow \frac{NTU^{0.22}}{C_R} \cdot \left(exp\left(-C_R \cdot NTU^{0.78}\right) - 1\right)1 - exp(A)
```

To plot the epsilon – NTU graphs:

NTU	$C_R = 0$	$C_R = 0.25$	$C_R = 0.5$	$C_R = 0.75$	C_R = 1
0	0	0	0	0	0
0.5	0.393	0.372	0.352	0.333	0.315
1	0.632	0.587	0.545	0.505	0.469
1.5	0.777	0.719	0.662	0.608	0.558
2	0.865	0.803	0.739	0.675	0.615
2.5	0.918	0.859	0.791	0.722	0.655
3	0.95	0.896	0.828	0.755	0.684
3.5	0.97	0.922	0.856	0.781	0.706
4	0.982	0.941	0.877	0.8	0.723
4.5	0.989	0.954	0.893	0.816	0.737
5	0.993	0.964	0.905	0.828	0.749

EFFECTIVENESS

Crossl flow HX, both fluids un-mixed ... Effectiveness vs NTU

Prob. 3.3.34. Hot exhaust gases which enter a finned tube, cross flow HX at 300 C and leave at 100 C, are used to heat pressurized water at a flow rate of 1 kg/s from 35 C to 125 C. The exhaust gas sp. heat is approx. 100 J/kg.K and the overall heat transfer coeff based on the gas side surface area is $U = 100 \text{ W/m}^2$.K. Determine the required gas side surface area A using the NTU method. (Ref: Incropera)

Solution:

Use the Mathcad Function for a cross flow HX with both fluids un-mixed, written above:

Data:

 $m_c c := 1$ kg/s $cp_c c := 4197$ J/kg.K $cp_h t := 1000$ J/kg.K U := 100 W/m².K Tc1 := 35 C Tc2 := 125 C Th1 := 300 C Th2 := 100 C

Therefore:

$$Q := m_c \cdot cp_c \cdot (Tc2 - Tc1)$$
 i.e. $Q = 3.777 \times 10^5$ W... heat transfer rate

And:
$$\underline{m} \underline{h} := \frac{Q}{cp \underline{h} \cdot (Th1 - Th2)}$$
 i.e. $\underline{m} \underline{h} = 1.889$ kg/s... mass flow rate of hot fluid

Then:

$$\underline{C_cc} := \underline{m_c} \cdot \underline{cp_c} \qquad \text{i.e.} \qquad \underline{C_c} = 4.197 \times 10^3 \quad \text{W/K....} \text{ capacity rate of cold fluid}$$
$$\underline{C_h} := \underline{m_h} \cdot \underline{cp_h} \qquad \text{i.e.} \qquad \underline{C_h} = 1.889 \times 10^3 \quad \text{W/K....} \text{ capacity rate of hot fluid}$$

Therefore, hot fluid is the 'minimum' fluid.

i.e. $C_R := \frac{C_{min}}{C_{max}}$ i.e. $C_R = 0.45$ capacity ratio

Since hot fluid is minimum fluid, we can find the effectiveness as:

 $\underset{\text{MW}}{\varepsilon} = \frac{\text{Th1} - \text{Th2}}{\text{Th1} - \text{Tc1}} \qquad \text{i.e.} \quad \varepsilon = 0.755 \qquad \text{...effectiveness of HX}$

Now, to find the area required for HX:

First, find the NTU by using the Mathcad Function for cross flow HX with both fluids un-mixed, along with the 'Solve block'. Then, find the area from: $NTU = U * A / C_{min}$

```
NTU := 1 .... guess value
```

Given

```
CrossFlowHX_bothUnmixed_epsilon(NTU, C_R) = \varepsilon
```

Find(NTU) = 2.024

Therefore:

$$A := \frac{NTU \cdot C_min}{U}$$

i.e. A = 38.226 m^2 area of HX ... Ans.

To plot Tc2 vs Th1 for given U values, other quantities remaining the same:

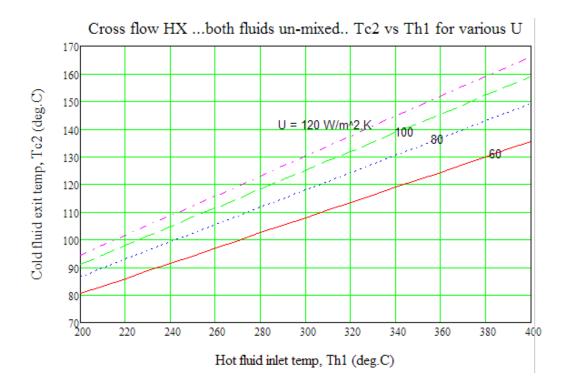
First, write Tc2 as a function of U and Th1:

$$\underbrace{NTU}_{C \min}(U) := \frac{U \cdot A}{C \min}$$

 $\varepsilon(U) := CrossFlowHX_bothUnmixed_epsilon(NTU(U), C_R)$

$$\underline{\text{Th2}}(U, \text{Th1}) := \text{Th1} - \varepsilon(U) \cdot (\text{Th1} - \text{Tc1})$$

 $m_c \cdot cp_c \cdot (Tc2 - Tc1) = m_h \cdot cp_h \cdot (Th1 - Th2)$...by heat balance


 $\frac{\text{Tc2}(U,\text{Th1})}{\text{m_c} \cdot \text{cp_c}} \coloneqq \frac{\text{m_h} \cdot \text{cp_h} \cdot (\text{Th1} - \text{Th2}(U,\text{Th1}))}{\text{m_c} \cdot \text{cp_c}} + \text{Tc1} \quad ...\text{Tc2} \text{ as a function of U and Th1}$

Ex: Tc2(100,300) = 125.002verified with the Tc2 in the stated problem

	Values of Tc2 (C)									
Th1 (C)	U = 60 W/m^2.K	U = 80 W/m^2.K	U = 100 W/m^2.K	U = 120 W/m^2.K						
200	80.402	86.612	91.039	94.29						
220	85.905	92.868	97.832	101.477						
240	91.408	99.123	104.624	108.664						
260	96.911	105.379	111.417	115.85						
280	102.415	111.635	118.209	123.037						
300	107.918	117.891	125.002	130.224						
320	113.421	124.147	131.795	137.41						
340	118.924	130.403	138.587	144.597						
360	124.428	136.659	145.38	151.784						
380	129.931	142.915	152.172	158.97						
400	135.434	149.171	158.965	166.157						

Now, tabulate the results:

And, plot the results:

Prob. 3.3.35. Write a Mathcad Function to find the effectiveness of a Cross-flow HX, with one fluid mixed, and the other un-mixed, as a function of NTU and Capacity Ratio, C_R. Then, plot the Effectiveness vs NTU graphs for different values of Capacity ratios.

Mathcad Function:

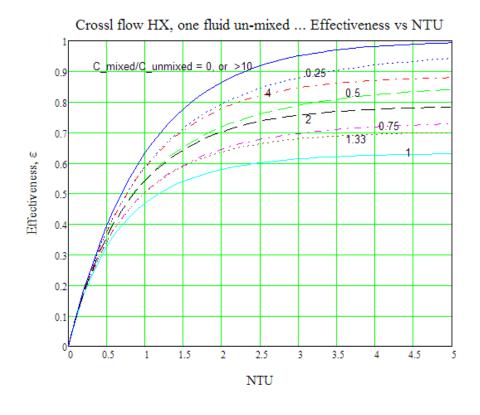
CrossFlowHX_OneMixed_epsilon(NTU,C_mixedbyC_unmixed) :=

return
$$(1 - \exp(-NTU))$$
 if C_mixedbyC_unmixed = $0 \lor C_mixedbyC_unmixed \ge 10$
if C_mixedbyC_unmixed $\le 1 \land C_mixedbyC_unmixed > 0$
 $\begin{bmatrix} C_R \leftarrow C_mixedbyC_unmixed \\ return \ 1 - \exp\left[\frac{-1}{C_R}(1 - \exp(-C_R \cdot NTU))\right] \end{bmatrix}$
if (C_mixedbyC_unmixed > 1 \land C_mixedbyC_unmixed < 10)
 $\begin{bmatrix} C_R \leftarrow \frac{1}{C_mixedbyC_unmixed} \\ \frac{1}{C_R} \cdot [1 - \exp[-C_R \cdot (1 - \exp(-NTU))]] \end{bmatrix}$
Ex:
NTU := 5 C_mixedbyC_unmixed := 0.5

CrossFlowHX_OneMixed_epsilon(NTU,C_mixedbyC_unmixed) = 0.8405

"_____"

To plot the Effectiveness-NTU graphs:


First, compute the Parametric Table:

EFFECTIVENESS									
NTU	C_ R = 0	C_R = 0.25	C_R = 0.5	C_R = 0.75	C_R = 1				
0	0	0	0	0	0				
0.5	0.393	0.375	0.358	0.341	0.325				
1	0.632	0.587	0.545	0.505	0.469				
1.5	0.777	0.714	0.652	0.594	0.54				
2	0.865	0.793	0.718	0.645	0.579				
2.5	0.918	0.844	0.76	0.677	0.601				
3	0.95	0.879	0.789	0.697	0.613				
3.5	0.97	0.903	0.808	0.71	0.621				
4	0.982	0.92	0.823	0.718	0.625				
4.5	0.989	0.933	0.833	0.724	0.628				
5	0.993	0.942	0.841	0.728	0.63				

EFFECTIVENESS									
NTU	C_R = 1.33	C_R = 2	$C_R = 4$	C_R = 10	C_R = 100				
0	0	0	0	0	0				
0.5	0.341	0.357	0.375	0.393	0.393				
1	0.503	0.542	0.585	0.632	0.632				
1.5	0.588	0.644	0.706	0.777	0.777				
2	0.636	0.702	0.778	0.865	0.865				
2.5	0.663	0.736	0.82	0.918	0.918				
3	0.679	0.756	0.846	0.95	0.95				
3.5	0.689	0.768	0.861	0.97	0.97				
4	0.694	0.776	0.87	0.982	0.982				
4.5	0.698	0.78	0.876	0.989	0.989				
5	0.7	0.783	0.88	0.993	0.993				

Note that for (C_mixed/C_unmixed) values greater than 10, the effectiveness values remain the same.

Now, plot the results:

Download free eBooks at bookboon.com

Prob. 3.3.36. Write Mathcad Functions to find the Exergy of mass flow for N2, He and H2.

Mathcad Function for N2:

This function returns the specific availability of N2 in kJ/kg as a function of

T [K], P [bar], V [m/sec], Z [m], and 'dead state' P0 (bar), T0 (K)

Exergy_massflow_N2(T,P,V,Z,T0,P0) :=

return 0 if $T = T0 \land P = P0$ g ← 9.81 $h \leftarrow enthalpy_N2(P,T)$ $s \leftarrow entropy_N2(P,T)$ $h0 \leftarrow enthalpy_N2(P0, T0)$ $s0 \leftarrow entropy_N2(P0, T0)$ $(h - h0) - T0 \cdot (s - s0) + \frac{V^2}{2 \cdot 1000} + \frac{g \cdot Z}{1000}$ $\underline{\mathbf{T}}:= 450 \quad \mathsf{K} \quad \mathbf{T0}:= 300 \quad \mathsf{K} \quad \underline{\mathbf{V}}:= 0 \qquad \mathbf{Z}:= 0 \qquad \underline{\mathbf{P}}:= 200 \quad \text{bar} \qquad \mathbf{P0}:= 1.013 \quad \text{bar}$ Ex:

Then:

Exergy_massflow_N2(T,P,V,Z,T0,P0) = 496.874 kJ/kg exergy of mass flow

Mathcad Function for He:

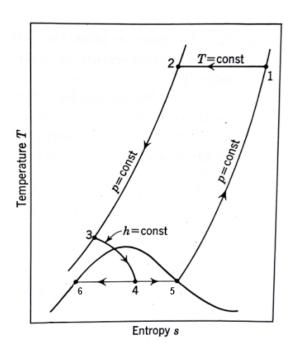
This function returns the specific availability of He in kJ/kg as a function of

T [K], P [bar], V [m/sec], Z [m], and 'dead state' P0 (bar), T0 (K)

Ex: $\underline{T}_{M} := 350$ K T0 := 300 K $\underline{V}_{M} := 0$ Z := 0 $\underline{P}_{M} := 200$ bar P0 := 1.013 bar Then:

Exergy_massflow_He(T,P,V,Z,T0,P0) = 3.375×10^3 kJ/kg exergy of mass flow

Mathcad Function for H2:


This function returns the specific availability of H2 in kJ/kg as a function of

T [K], P [bar], V [m/sec], Z [m], and 'dead state' P0 (bar), T0 (K)

```
Exergy_massflow_H2(T,P,V,Z,T0,P0) := 

\begin{bmatrix} \text{return 0 if } T = T0 \land P = P0 \\ g \leftarrow 9.81 \\ h \leftarrow \text{enthalpy}_H2(P,T) \\ s \leftarrow \text{entropy}_H2(P,T) \\ h0 \leftarrow \text{enthalpy}_H2(P0,T0) \\ s0 \leftarrow \text{entropy}_H2(P0,T0) \\ (h - h0) - T0 \cdot (s - s0) + \frac{V^2}{2 \cdot 1000} + \frac{g \cdot Z}{1000} \\ \hline \\ Ex: \quad \underline{T}_{c} := 350 \quad \text{K} \quad T0 := 300 \quad \text{K} \quad \underline{Y}_{c} := 0 \quad \underline{Z} := 0 \quad \underline{P}_{c} := 200 \quad \text{bar} \quad P0 := 1.013 \quad \text{bar} \\ \hline \\ \text{Then:} \\ \\ Exergy_massflow_H2(T,P,V,Z,T0,P0) = 6.752 \times 10^3 \quad \text{kJ/kg .... exergy of mass flow} \\ \end{bmatrix}
```

Prob.3.3.37. Make an exergy analysis for a simple Linde-Hampson system using Nitrogen as the working fluid. The system operates between 101.3 kPa and 300 K at point 1 and 20 MPa at point 2. The system may be assumed reversible, except for the expansion through the expansion valve.

Solution:

To determine the liquid yield, the work per unit mass compressed, the work per unit mass liquefied, and the figure of merit for a simple Linde-Hampson system. Then, determine the exergetic effcy of the cycle. Also, determine the exergy losses in the compressor (assuming the isothermal effcy of compressor as 70%), expansion valve and the heat exchanger.

Mathcad Function:

```
ExergyAnalysis_SimpleLindeHampson_N2(P1, T1, P2, P0, T0, V, Z) :=
```

 $y \leftarrow Ideal_LHcycle_N2(P1,T1,P2)_{1,3}$ Wperkggas \leftarrow Ideal_LHcycle_N2(P1, T1, P2)_{1 4} Wperkgliq ← Ideal_LHcycle_N2(P1, T1, P2) Wideal ← Ideal_LHcycle_N2(P1, T1, P2) 1 6 FOM \leftarrow Ideal_LHcycle_N2(P1, T1, P2)_{1.7} ef1 \leftarrow Exergy_massflow_N2(T1,P1,V,Z,T0,P0) ef2 ← Exergy_massflow_N2(T1,P2,V,Z,T0,P0) $h6 \leftarrow HFSATP(P1)$ $h5 \leftarrow HGSATP(P1)$ $T5 \leftarrow TSAT(P1)$ $h4 \leftarrow h6 + (1 - y) \cdot HFGSATP(P1)$ $h3 \leftarrow h4$ $T3 \leftarrow Temp_N2(P2,h3)$ ef3 \leftarrow Exergy_massflow_N2(T3, P2, V, Z, T0, P0) $s6 \leftarrow SFSATP(P1)$ $s5 \leftarrow SGSATP(P1)$ $s4 \leftarrow s6 + (1 - y) \cdot SFGSATP(P1)$ ef3 \leftarrow Exergy_massflow_N2(T3, P2, V, Z, T0, P0) $s0 \leftarrow entropy N2(P0, T0)$ $h0 \leftarrow enthalpy_N2(P0, T0)$ $ef4 \leftarrow (h4 - h0) - T0 \cdot (s4 - s0)$ $ef5 \leftarrow (h5 - h0) - T0 \cdot (s5 - s0)$ $ef6 \leftarrow (h6 - h0) - T0 \cdot (s6 - s0)$ W_rev ← ef6 - ef1 W_act ← Wperkgliq $eta_{II_cycle} \leftarrow \frac{vv_{xc}}{W_{act}}$ "y" "Wperkgliq(kJ/kg)" "eta_II" "ef1(kJ/kg)" "ef2(kJ/kg)" "ef3(kJ/kg)" "ef4(kJ/kg)" "ef5(kJ/kg)" ef3 ef4 y Wperkgliq eta_lI_cycle ef1 ef2 ef5 $\underline{T1} := 300 \quad \mathsf{K} \quad \underline{T0} := 300 \quad \mathsf{K} \quad \underline{V} := 0 \quad \underline{Z} := 0$ Ex:

P1 := 1.013 bar P0 := 1.013 bar P2 := 200 bar

Applying the above written Function, we get:

("у"	"Wperkgliq(kJ/kg)"	"eta_II"	"ef1(kJ/kg)"	"ef2(kJ/kg)"	"ef3(kJ/kg)"	"ef4(kJ/kg)"	"ef5(kJ/kg)"
0.074	6.377×10^{3}	0.121	0	472.259	550.956	237.157	194.455

i.e.

$$\begin{split} & \text{LigFraction } \mathbf{y}(P2) \coloneqq \text{ExergyAnalysis} \text{SimpleLindeHampson} \text{N2}(P1, T1, P2, P0, T0, V, Z)_{1,0} \quad \text{LiqFraction } \mathbf{y}(P2) = 0.074 \\ & \text{Wperkgliq}(P2) \coloneqq \text{ExergyAnalysis} \text{SimpleLindeHampson} \text{N2}(P1, T1, P2, P0, T0, V, Z)_{1,1} \quad \text{Wperkgliq}(P2) = 6.377 \times 10^3 \\ & \text{Wperkggas}(P2) \coloneqq \text{Wperkgliq}(P2) \cdot \text{LiqFraction} \mathbf{y}(P2) \quad \text{Wperkggas}(P2) = 472.259 \\ & \text{eta}_\text{II}(P2) \coloneqq \text{ExergyAnalysis}_\text{SimpleLindeHampson} \text{N2}(P1, T1, P2, P0, T0, V, Z)_{1,2} \quad \text{eta}_\text{II}(P2) = 0 \\ & \text{ef1} \coloneqq \text{ExergyAnalysis}_\text{SimpleLindeHampson} \text{N2}(P1, T1, P2, P0, T0, V, Z)_{1,3} \quad \text{ef1} = 0 \\ & \text{ef2} \coloneqq \text{ExergyAnalysis}_\text{SimpleLindeHampson} \text{N2}(P1, T1, P2, P0, T0, V, Z)_{1,4} \quad \text{ef2} = 472.259 \\ & \text{ef3} \coloneqq \text{ExergyAnalysis}_\text{SimpleLindeHampson} \text{N2}(P1, T1, P2, P0, T0, V, Z)_{1,5} \quad \text{ef3} = 550.956 \\ & \text{ef4} \coloneqq \text{ExergyAnalysis}_\text{SimpleLindeHampson} \text{N2}(P1, T1, P2, P0, T0, V, Z)_{1,6} \quad \text{ef4} = 237.157 \\ & \text{ef5} \coloneqq \text{ExergyAnalysis}_\text{SimpleLindeHampson} \text{N2}(P1, T1, P2, P0, T0, V, Z)_{1,6} \\ & \text{ef5} \coloneqq \text{ExergyAnalysis}_\text{SimpleLindeHampson} \text{N2}(P1, T1, P2, P0, T0, V, Z)_{1,6} \\ & \text{ef4} \coloneqq 237.157 \\ & \text{ef5} \coloneqq \text{ExergyAnalysis}_\text{SimpleLindeHampson} \text{N2}(P1, T1, P2, P0, T0, V, Z)_{1,7} \\ & \text{ef5} \coloneqq 194.455 \\ \end{array}$$

Note: Exergetic effcy = eta_II = 0.121...Ans.

Exergy losses in components:

Exergy loss in compressor (of isoth. effcy. = 70%):

 $\frac{\text{Wperkggas}(P2)}{0.7} := \frac{\text{Wperkgliq}(P2) \cdot \text{LiqFraction}_y(P2)}{0.7} \quad \text{i.e.} \quad \text{Wperkggas}(P2) = 674.656 \quad \text{kJ/kg}$

Writing an exergy balance for the compressor:

 $ef1 + Wperkggas(P2) = ef2 + \Delta e_{comp}$ where Δe_{comp} is the exergy loss in compressor

Therefore: $\Delta e_{comp} := ef1 - ef2 + Wperkggas(P2)$

i.e. Δe_{comp} = 202.397 kJ/kg Ans.

Exergy loss in Heat Exchanger:

Writing an exergy balance for the HX:

 $ef2 + (1 - LiqFraction_y(P2)) \cdot ef5 = ef3 + (1 - LiqFraction_y(P2)) \cdot ef1 + \Delta e_{HX}$

where Δe_{HX} is the exergy loss in HX

Then: $\Delta e_{HX} := ef2 + (1 - LiqFraction_y(P2)) \cdot ef5 - [ef3 + (1 - LiqFraction_y(P2)) \cdot ef1]$

i.e. $\Delta e_{HX} = 101.357$ kJ/kg Ans.

Exergy loss in Expansion valve:

Writing an exergy balance for the Expansion valve:

 $ef3 = ef4 + \Delta e_{EV}$ where Δe_{EV} is the exergy loss in Expn. valve

i.e. $\Delta e_{EV} := ef3 - ef4$

i.e. $\Delta e_{\rm EV} = 313.799$ kJ/kg Ans.

Thus:

Liquid yield, y = 0.074 kg liq. / kg gas compressed...Ans.

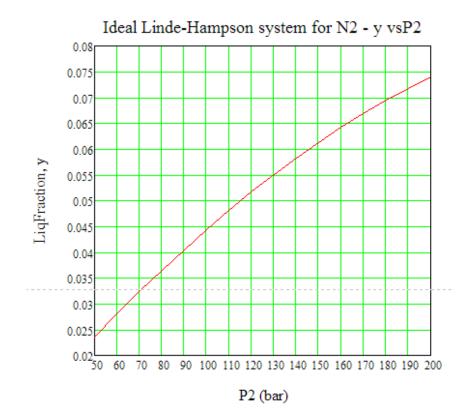
Work per kg gas compressed = Wperkggas = 472.26 kJ/kg...Ans.

Work per kg liquid = Wperkgliq = 6377 kJ/kg...Ans.

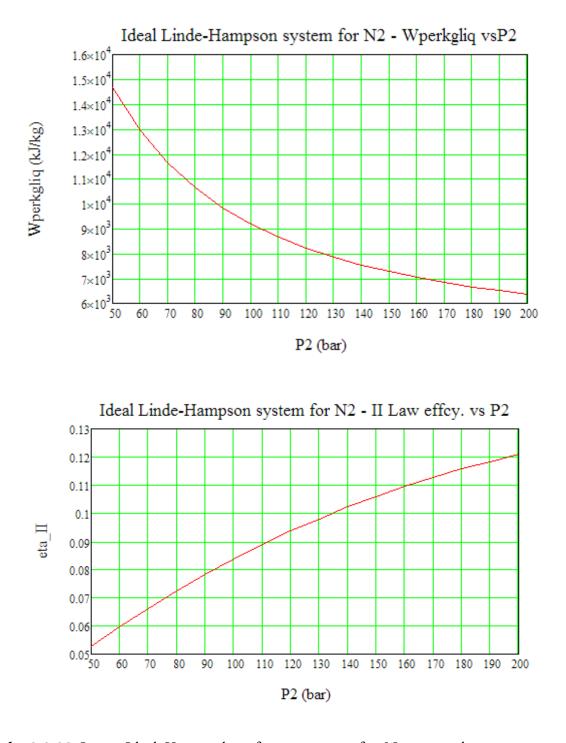
Exergetic effcy (or, second law effcy) of cycle = $\eta II = 0.121$ (= FOM)...Ans.

Exergy losses in compressor (assuming its isoth. effcy is 70%) = $\Delta ecomp = 202.34 \text{ kJ/kg...Ans.}$

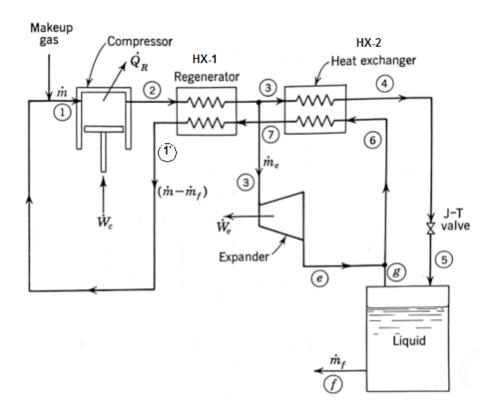
Exergy losses in Heat Exchanger = $\Delta eHX = 101.36 \text{ kJ/kg...Ans.}$


Exergy losses in Expansion Valve = $\Delta eEV = 313.8 \text{ kJ/kg...Ans.}$

Plot y, Wperkgliq, and η_{II} against P2, other parameters remaining constant:


First, compute the Parametric Tables:

P2(bar)	LiqFrn. y	Wperkgliq(kJ/kg)	eta_II
50	0.024	14658.82	0.053
60	0.028	12937.815	0.06
70	0.032	11635.667	0.066
80	0.037	10635.615	0.072
90	0.041	9847.853	0.078
100	0.044	9199.645	0.084
110	0.048	8678.198	0.089
120	0.052	8229.691	0.094
130	0.055	7863.717	0.098
140	0.058	7539.095	0.102
150	0.061	7275.096	0.106
160	0.064	7035.384	0.11
170	0.067	6839.269	0.113
180	0.069	6658.036	0.116
190	0.072	6512.775	0.118
200	0.074	6376.562	0.121


Now, plot the results:

Download free eBooks at bookboon.com

Prob. 3.3.38 In an Ideal Kapitza liquefaction system for Nitrogen, the system operates from 101.3 kPa (1 atm) and 300 K to 5.0 MPa. At 5.0 MPa and 250 K, 50% of the main flow is diverted to the reversible adiabatic expander. Remainder flows through the heat exchanger and expands through the expansion valve to 101.3 kPa. Determine the liquid yield and the work per unit mass liquefied, assuming that the expander work is utilized in the compression process. Make an exergy analysis.

Note: Calculation formulas for y, Wperkggas, Wperkgliq, Fom etc. are the same as for Ideal Claude cycle.

Data:

 P1 := 1.013 bar
 P2 := 50 bar
 T1 := 300 K
 T3 := 250 K

 FlowRatio x := 0.5
 T0 := 300 K
 V := 0
 Z := 0
 P0 := 1.013 bar

Then, using the Function for Ideal Claude cycle, written above:

IdealClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x) =

"LiqFraction-y"	"Wexp_perkggas(kJ/kg)"	"Wne	t_perkggas(kJ/kg)"	"Wnet_perkgliq(kJ/kg)"	"Wideal(kJ/kg)"	"FOM"	١
0.212	81.787		263.723	1.243×10^{3}	771.028	0.62)

i.e.

Wexp_perkggas := IdealClaudeSystem_N2(P1, P2, T1, T3, FlowRatio_x)_1_1 Wexp_perkggas = \$1.787

Wnet_perkggas := IdealClaudeSystem_N2(P1,P2,T1,T3,FlowRatio_x)_{1,2}Wnet_perkggas = 263.723Wnet_perkgliq := IdealClaudeSystem_N2(P1,P2,T1,T3,FlowRatio_x)_{1,3}Wnet_perkgliq = 1.243×10^3 Wideal := IdealClaudeSystem_N2(P1,P2,T1,T3,FlowRatio_x)_{1,4}Wideal = 771.028FOM := IdealClaudeSystem_N2(P1,P2,T1,T3,FlowRatio_x)_{1,5}FOM = 0.62

Further:

 $s1 := entropy_N2(P1,T1)$ i.e. s1 = 6.844 kJ/kg.K $h1 := enthalpy_N2(P1,T1)$ i.e. h1 = 311.192 kJ/kg $s2 := entropy_N2(P2,T1)$ i.e. s2 = 5.658 kJ/kg.K $s3 := entropy_N2(P2,T3)$ i.e. s3 = 5.45 kJ/kg.K se := s3 ...for isentropic expansion $he := enthalpy_N2_Ps(P1,se)$ i.e. he = 80.254 kJ/kg Alternatively:

he := enthalpy_N2(P2,T3) - Wexp_perkggas FlowRatio_x i.e. he = 80.254 kJ/kg i.e. Tg = 77.166 K Tg := TSAT(P1)T5 := Tg Tf := Tg $h5 := HFSATP(P1) + (1 - y) \cdot HFGSATP(P1)$ i.e. h5 = 34.668kJ/kg h4 := h5for isenthalpic expansion in the expansion valve i.e. T4 = 130.785 K $T4 := Temp_N2(P2, h4)$ i.e. Te = 80.149 K Te := Temp N2(P1,he) h2 := enthalpy_N2(P1,T1) i.e. h2 = 311.192 kJ/kg i.e. hg = 76.974 kJ/kg hg := HGSATP(P1)h3 := enthalpy_N2(P2,T3) i.e. h3 = 243.827 kJ/kg

By heat balance at the mixer, where the exit of expander and the sat vapor from the liquid reservoir are mixed:

 $h6 := \frac{(1 - FlowRatio_x - y) \cdot hg + FlowRatio_x \cdot he}{1 - y}$

i.e. h6 = 79.056 kJ/kg

By heat balance on HX-2:							
$(1 - FlowRatio_x) \cdot (h3 - h4) = (1 - y)$	· (h7 -	• h6)					
i.e. we get:							
$h7 := h6 + \frac{(1 - FlowRatio_x) \cdot (h3 - h4)}{1 - y}$	<u>0</u>	i.e.	h7 = 211.804	t kJ/kg			
Then:							
$T7 := Temp_N2(P1,h7)$	i.e.	T7 = 204.607	К				
T6 := Temp_N2(P1,h6)	i.e.	T6 = 79.069	К				
By heat balance on HX-1:							
$h2 - h3 = (1 - y) \cdot (h1_prime - h7)$							
i.e. $h1_prime := h7 + \frac{h2 - h3}{1 - y}$							
i.e. h1_prime = 297.314 kJ/kg							
Also, we have:							
s0 := entropy_N2(P0,T0)	i.e.	s0 = 6.844	kJ/kg.K				
h0 := enthalpy_N2(P0,T0)	i.e.	h0 = 311.192	kJ/kg				
$s5 := SFSATP(P1) + (1 - y) \cdot SFGSATP$	P(P1)	i.e. s5	= 4.866	kJ/kg.K in two-phase region			
hg:= HGSATP(P1)	i.e.	hg = 76.974	kJ/kg				
sg := SGSATP(P1)	i.e.	sg = 5.415	kJ/kg.K				
Exergies: efl.:= Exergy_massflow_N2(T1,P1,V,Z,T0,P0) i.e. ef1 = 0 kJ/kg							
ef1_prime := Exergy_massflow_N2(T1_p							

ef2 := Exergy_massflow_N2(T1,P2,V,Z,T0,P0)	i.e. ef2 = 345.509 kJ/kg
ef3 := Exergy_massflow_N2(T3,P2,V,Z,T0,P0)	i.e. ef3 = 350.952 kJ/kg
ef4 := Exergy_massflow_N2(T4,P2,V,Z,T0,P0)	i.e. ef4 = 507.667 kJ/kg
$ef_{5}^{5} := (h_{5} - h_{0}) - T_{0} \cdot (s_{5} - s_{0})$	i.e. ef5 = 316.803 kJ/kg
ef6 := Exergy_massflow_N2(T6,P1,V,Z,T0,P0)	i.e. ef6 = 190.617 kJ/kg
ef7 := Exergy_massflow_N2(T7,P1,V,Z,T0,P0)	i.e. ef7 = 20.211 kJ/kg

Download free eBooks at bookboon.com

Exergy losses in components:

Exergy loss in compressor (of isoth. effcy. = 70%):

Wperkggas :=
$$\frac{T1 \cdot (s1 - s2) - (h1 - h2)}{0.7}$$
 i.e. Wperkggas = 508.184 kJ/kg

Writing an exergy balance for the compressor:

ef1 + Wperkggas = ef2 +
$$\Delta e_{comp}$$
 where Δe_{comp} is the exergy loss in compressor

Therefore: $\Delta e_{comp} := ef1 - ef2 + Wperkggas$

i.e. $\Delta e_{comp} = 162.675$ kJ/kg Ans.

Exergy loss in Heat Exchanger, HX-1:

Writing an exergy balance for the HX-1:

 $ef2 + (1 - y) \cdot ef7 = ef3 + (1 - y) \cdot ef1_prime + \Delta e_{HX1} \qquad \qquad where \Delta e_{HX1} is the exergy loss in HX-1$

Then: $\Delta e_{HX1} := ef2 + (1 - y) \cdot ef7 - [ef3 + (1 - y) \cdot ef1_prime]$

i.e. $\Delta e_{HX1} = 10.232$ kJ/kg Ans.

Exergy loss in Heat Exchanger, HX-2:

Writing an exergy balance for the HX-2:

 $(1 - FlowRatio_x) \cdot ef3 + (1 - y) \cdot ef6 = (1 - FlowRatio_x) \cdot ef4 + (1 - y) \cdot ef7 + \Delta e_{HX2}$

...where Δe_{HX} is the exergy loss in HX-2

Then: $\Delta e_{HX2} := [(1 - FlowRatio_x) \cdot ef3 + (1 - y) \cdot ef6] - [(1 - FlowRatio_x) \cdot ef4 + (1 - y) \cdot ef7]$

i.e. $\Delta e_{HX2} = 55.889$ kJ/kg Ans.

Exergy loss in Expander:

Writing an exergy balance for the Expander:

 $ef3 = ef_e + \Delta e_{EXP}$ where Δe_{EXP} is the exergy loss in Expander

i.e. $\Delta e_{EXP} := ef3 - ef_e$

i.e. $\Delta e_{EXP} = 163.574$ kJ/kg Ans.

Exergy loss in Expansion valve:

Writing an exergy balance for the Expansion valve:

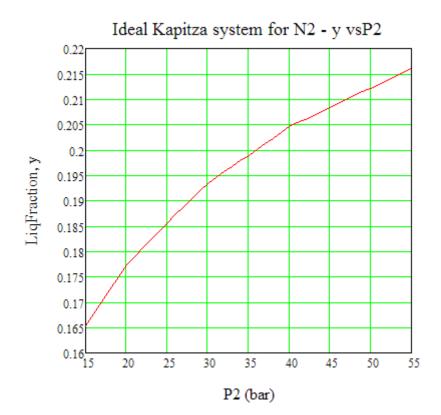
 $ef4 = ef5 + \Delta e_{EV}$ where Δe_{EV} is the exergy loss in Expn. valve

i.e. $\Delta e_{EV} := ef4 - ef5$

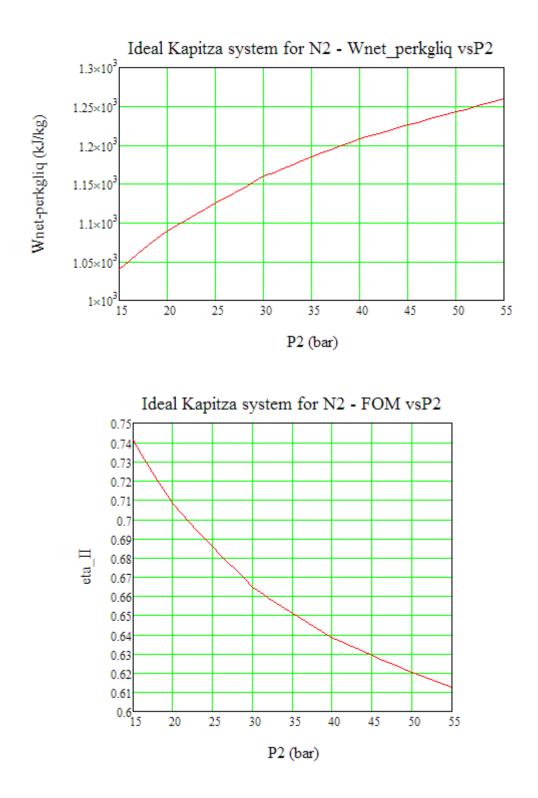
i.e. $\Delta e_{EV} = 190.864$ kJ/kg Ans.

Note: Exergy losses in compressor, expander and expansion valve are the major ones.

Plot y, Wperkgliq, eta_II against P2:


Write the required quantities as functions of P2: $y(P2) := IdealClaudeSystem_N2(P1,P2,T1,T3,FlowRatio_x)_{1,0}$ y(P2) = 0.212Wnet_perkgliq(P2) := IdealClaudeSystem_N2(P1,P2,T1,T3,FlowRatio_x)_{1,3} Wnet_perkgliq(P2) = 1.243×10^3 Wideal := IdealClaudeSystem_N2(P1,P2,T1,T3,FlowRatio_x)_{1,4} Wideal = 771.028 FOM(P2) := IdealClaudeSystem_N2(P1,P2,T1,T3,FlowRatio_x)_{1,5} FOM(P2) = 0.62 P2 := 15,20...55define a range variable

Download free eBooks at bookboon.com


We get:

P2 =	y(P2) =	Wnet_perkgliq(P2)	FOM(P2) =
15	0.165	1.04·10 ³	0.741
20	0.177	1.089·10 ³	0.708
25	0.186	1.125.103	0.685
30	0.193	1.16·10 ³	0.665
35	0.199	1.185 [.] 10 ³	0.651
40	0.205	1.208·10 ³	0.638
45	0.208	1.226·10 ³	0.629
50	0.212	1.243·10 ³	0.62
55	0.216	1.259·10 ³	0.612

Now, plot the results:

Download free eBooks at bookboon.com

Note: FOM is also equal to eta_II

Download free eBooks at bookboon.com

3.5 REFERENCES

- 1. Randall F Barron, Cryogenic Systems, McGraw Hill, 1985.
- 2. Thomas Flynn, Cryogenic Engineering, 2nd Ed. Marcel Dekker, 2005.
- 3. Russel B Scot, Cryogenic Engineering, D. Van Nostrand Co. Inc., 1959.
- 4. GuglielmoVentura and Lara Risegari, Art of Cryogenics Low temp experimental techniques, Elsevier, 2008.
- 5. White G.K., Experimental techniques in low temp physics, Oxford: Clarendon Press, 2nd Ed. 1968.
- 6. S. W Van Sciver, Helium cryogenics, International cryogenics monograph series, Chapter 2, Springer Science + Business media.
- 7. https://en.wikipedia.org/wiki/Joule%E2%80%93Thomson_effect
- 8. http://faculty.wwu.edu/~vawter/physicsnet/topics/Thermal/vdWaalEquatOfState.html
- 9. J.M. Pfotenhauer, University of Wisconsin, Madison, USPAS Cryogenics Short Course, Boston, 2010.
- 10. http://www.uigi.com/new_cryo_plants.html
- 11. http://www.air-separation-plants.com/gaspipeline-large.pdf
- 12. http://www.linde-engineering.com/en/process_plants/air_separation_plants/index.html
- 13. http://www.peiyangchem.com/
- 14. https://en.wikipedia.org/wiki/Cryogenic_nitrogen_plant
- 15. https://en.wikipedia.org/wiki/Cryogenic_oxygen_plant
- 16. http://www.linde-kryotechnik.ch/1259/1260/1308/1309.asp
- 17. https://en.wikipedia.org/wiki/Industrial_gas
- 18. http://www.cryogenics.nist.gov/MPropsMAY/materialproperties.htm
- 19. http://plotdigitizer.sourceforge.net/
- 20. *Patxi Duthil*, Materials Properties at low temp. (PPT) in CERN Accelerator School, 2013.
- 21. *M. Thirumaleshwar*, Software Solutions to Problems on Heat Transfer Radiation Heat Transfer Part-I, <u>www.bookboon.com</u>, 2014.
- 22. Kays and London, Compact Heat Exchangers, 2nd Ed., McGraw Hill, 1964
- 23. Yunus Cengel, Heat and Mass Transfer, 3rd Ed., McGraw Hill Co.
- 24. Incropera and DeWitt, et al. Fundamentals of Heat and Mass Transfer, 6th Ed., McGraw Hill Co.

- 25. Sonntag, Borgnakke, Van Wylen. Fundamentals of Thermodynamics, 5th Ed. John Wiley & Sons, 1999.
- 26. *M. Thirumaleshwar* Software Solutions to problems on Thermodynamics, Bookboon.com
- 27. Meiros Huang & Kurt Gramoll, Thermodynamics Exergy Analysis, Ref: <u>http://www.ecourses.ou.edu/cgi-bin/ebook.cgi?doc=&topic=th&chap_sec=07.0</u>
- 28. http://webbook.nist.gov/chemistry/fluid/
- 29. A. Arkharov et al. Theory and Design of Cryogenic systems, Mir Publishers, Moscow, 1981.