bookboon.com

g™

J§]
T

i

24, i

Download free books at

bookbooncom

Paul P. Debono

PaulOS F020: An RTOS for
the C8051F020

Download free eBooks at bookboon.com

PaulOS F020: An RTOS for the C8051F020

15t edition

© 2015 Paul P. Debono & bookboon.com

ISBN 978-87-403-1047-4

Peer reviewed by Prof. Victor Buttigieg, University of Malta

Download free eBooks at bookboon.com

http://bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Contents

Contents

Preface 7
Acknowledgements 9
Dedications 10
List of Figures 11
List of Tables 12
1 C8051F020 Basics 13
1.1 Introduction 14
1.2 Memory Types 15
1.3 Program/Data Memory (Flash) 16
1.4 External Data Address Space (XRAM) 17
1.5 Register Banks 20
1.6 Bit Memory 21

RAND
MERCHANT
BANK

Adivision of FirstRand Bank Limited

Y O | l T I I I N K Traditional values. Innovative ideas.
]

YOU CAN WORK
AT RMB

Rand Merchant Bank uses good business to create a better world, which is one of the reasons that the country’s top talent chooses to
work at RMB. For more information visit us at www.rmb.co.za

Thinking that can change your world

Rand Merchant Bank is an Authorised Financial Services Provider

Ny

4 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.rmb.co.za

PaulOS F020:

An RTOS for the C8051F020 Contents
1.7 Special Function Register (SFR) Memory 23
1.8 SFR Descriptions 28
2 PaulOS F020: a co-operative RTOS 43
2.1 Description of the RTOS Operation 44
2.2 PaulOS_F020.C System Commands 47
23 Descriptions of the commands 49
24 PaulOS_F020_Parameters.h header file 62
2.5 Example using PaulOS_F020 RTOS 64
3 Master - Slave RTOS 67
3.1 Multi-controller RTOSs 67
3.2 Master 71
3.3 Slave 74
4 Programming Tips and Pitfalls 78
4.1 RAM size 78
4.2 SFRs 78
43 Setup faults 79
44 Serial ports (UARTO0 and UART1) 80

360°
thinking

Deloitte

Discover the truth at WWW.dClOitte,CalcareerS © Deloitte & Touche LLP and affiliated entities.

ey

5 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.deloitte.ca/careers

PaulOS F020:

An RTOS for the C8051F020 Contents
4.5 Interrupts 81
4.6 RTOS pitfalls 84
4.7 C Tips 84
Appendix A: PaulOS_F020.C Source Listing 86
Al PaulOS_F020_Parameters.h 86
A2 PaulOS_F020.h 89
A3 Startup_PaulOS_F020.A51 100
A4 PaulOS_F020.c 105
A5 C8051F020.H 154
Appendix B Further Examples 172
B.1 Timer 0 in Mode 3 (split timer) and Timer 1 as a baud rate generator 172
B.2 UARTO0 and UART1 180
B.3 Clock 190
Bibliography 200
Index 201
Endnotes 203

T WANT 70 CHANGE DIRECTION,

AND THE WORLD

3)l

GOT-THE-ENERGY-TO-LEAD.COM

We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

WE

o AR
The energy to lead

6 Click on the ad to read more
Download free eBooks at bookboon.com

http://www.got-the-energy-to-lead.com

Preface

This text book is intended to be used as a reference book for those whose work requires familiarity with
micro-controllers and real-time operating systems (RTOSs). Ideally it should be used in conjunction with
my previous books (Debono, 2013a, 2013b) and with the C8051F020 data sheet (Silicon Labs, 2003b),
where various simple RTOSs were fully explained. This book deals particularly with a modified version
of the PaulOS co-operative RTOS so as to be able to work with the C8051F020 device, with its increased

number of timers and interrupts.

It would be helpful if the reader has already got some familiarity with personal computers and has taken
introductory courses in digital devices and some experience with assembly language programming. It is

assumed that the reader is familiar with binary and hexadecimal numbers.

Learning to write programs is like learning to ride a bicycle in that reading alone is not enough. Hands-
on practical experience is essential. Therefore, to enhance the usefulness of this book as a learning
tool, the reader is encouraged to test some of the example programs given throughout this book using
easily available free software, such as the latest version of the KEIL IDE (Simplicity Studio from

http://www.silabs.com). The Silicon driver program SiC8051F_pVision.exe, which is also available from

the Silicon Labs site should be installed so that the program would be downloaded on the development

board once it is compiled for debugging.

The book is structured into 4 chapters and appendices with full source code listings of the PaulOS_F020

RTOS and a number of example programs. A brief outline of the contents of each chapter is given below:

Chapter 1:

This chapter describes the C8051F020 micro-controller and explains its internal organisation and lists
the special function registers used to set the mode of operation of the various peripherals which are

present on this versatile mixed-signal (Analogue and Digital) micro-controller device.

Download free eBooks at bookboon.com

http://www.silabs.com

Chapter 2:

The PaulOS_F020 co-operative RTOS is described here. This is the ‘flagship’ RTOS which we regularly
use during the year with our students. It is heavily used also for their final year theses and it has been
regularly refined to reflect the changes and upgrading requested by the students as they became more
and more familiar with the performance and limitations of this co-operative RTOS. In this RTOS, each
task is free to run for as long as it wishes. The task itself can control when to give up the processor time
to allow other tasks to run. The modified version, based on the PaulOS for the basic 8051 described in
(Debono, 2013a) now runs on the much faster Silicon Labs C8051F020 at over 20 million instructions per
second (MIPS), is ideally suited for small project applications and for getting important familiarisation

with the techniques (and pit-falls) encountered when using an RTOS on such a device.

Chapter 3:

This chapter deals with multi-processor applications running under RTOS. An example is given of a
serial network of boards where each Slave board runs its own PaulOS RTOS but each RTOS itself is

synchronised with the other slave boards by means of serial transmissions originating from the Master.

Chapter 4:

In this chapter we discuss some programming tips and common pitfalls which should be avoided when
programming such micro-controllers. It would be a good idea to read and understand this chapter before

attempting to write the first program.

Appendices:

Finally in the appendices we can find the full program source code listings (C language format) of the
C8051F020 version of the PaulOS RTOS described in chapter 2.

Whilst hoping that you will find this book useful, please feel free to contact me if you have any queries

or suggestions. (e-mail: pawlu.debono@yahoo.co.uk)

Download free eBooks at bookboon.com

mailto:pawlu.debono@yahoo.co.uk

Acknowledgements

I would like to acknowledge the assistance given by my students who helped me test some of the examples

and pointed out some mistakes and omissions.

I am also very grateful for the contributions made by my son Luke who proof read the first draft. I

would also like to thank my nephew Conrad Micallef for his suggestions and constructive comments.

Finally I am deeply grateful to Prof. Ing. Victor Buttigieg who kindly accepted to review the final version

of the book. He also put forward valuable and much appreciated suggestions.

PAUL DEBONO

Download free eBooks at bookboon.com

Dedications

To

my wife Maria for being so supportive and patient with me and to my two sons Neil and Luke for

their continuous encouragement, and to my grand-daughter baby Mila for her adorable smile.

Download free eBooks at bookboon.com

List of Figures

Figure 1-1 The C8051F020TB Development Board 13
Figure 1-2 C8051F020 System Overview 14
Figure 1-3 SYSCLK initialisation routine 28
Figure 1-4 WDTCN: Watchdog Timer Control register 29
Figure 1-5 Routine used to disable the watchdog timer 30
Figure 1-6 Routine to Enable the watchdog timer, with a 47.4ms interval 31
Figure 1-7 RTOS task used to ‘feed’ the watchdog every 40ms 32
Figure 1-8 Part of the main program showing priority allocation for the watchdog feeder task 33
Figure 1-9 Lower Port I/O Functional Block Diagram 35
Figure 1-10 XBRO: Port I/O Crossbar Register 0 36
Figure 1-11 XBRI: Port I/O Crossbar Register 1 37
Figure 1-12 XBR2: Port I/O Crossbar Register 2 38
Figure 1-13 PO 39
Figure 1-14 POMDOUT 40
Figure 1-15 PIMDIN 41
Figure 2-1 RTOS Task states diagram 46
Figure 2-2 Part listing of a periodic task 56
Figure 2-3 Example of a stand-alone ISR, interrupting the RTOS and executing immediately
when the interrupt occurs 62
Figure 3-1 Networked micro-controllers using the UARTSs to synchronise their RTOSs 67

Figure 3-2 Serial communication between Master and two Slaves to synchronise the RTOSs 70
Figure 3-3 Listing of the UARTO0 9-bit mode initialisation routine for the Master 71
Figure 3-4 Part of the Master RTOS Tick Interrupt routine, showing the add-ons required for
multi-board operations 74
Figure 3-5 Listing of the UARTO initlisation routine for the Slaves. Note that the serial interrupt
enable bit is set. 75
Figure 3-6 Part of the RTOS_Timer_Int routine for the Slaves, running under Serial
interrupt. This code could hang up if no data is received. 76

Figure 3-7 Part listing of the RTOS_Timer_Int slave routine showing the timeout

modification during data reception 76
Figure 3-8 OS_PAUSE_RTOS() and OS_RESUME_RTOS() modification for the slave

RTOS since it uses the serial interrupt as the tick generator. 77
Figure 4-1 Screen shot of the Target Options setup 78
Figure 4-2 UARTO: Serial initialisation routine, not under interrupt control 80

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Contents

Table 1-1 C8051F020 memory map 16

Table 1-2 C8051F020 Internal Data Address Space 19

Table 1-3 C8051F020 Special Function Registers (SFRs)-DIRECT addressing ONLY 26

Table 1-4 Priority Crossbar decode table (and use of XBR0, XBR1 and XBR2) 36

Table 1-5 Interrupt Summary 43
bookboon.com

Corporate eLibrary

See our Business Solutions for employee learning

Click here

Management Time Management

Problem solving I Self-Confidence I Effectiveness

Project Management I Goal setting I Coaching

12 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/bbg-elibrary-2015

PaulOS F020:
An RTOS for the C8051F020 C8051F020 Basics

1 C8051F020 Basics

This chapter describes the C8051F020 micro-controller and explains its internal organisation and the
way its special function registers can be used to setup the various peripherals. Many web pages, books
(see bibliography list) and tools are available for the 8051 developer, and many of them are free! This
chapter will assist the reader in mastering basic 8051 programming (using both assembly language and
C language) and should eliminate the need to have an additional book specifically on the 8051. The use
of the C8051F020 datasheet/manual (Silicon Labs, 2003b) and (Chew & Gupta, 2005) in conjunction
with this book is highly recommended whilst following the source code examples listed throughout
the book. Other good reference books are (Huang, 2009) and (Schultz, 2004) which also deal with the

Silicon Labs C8051 family of micro-controllers in some of their chapters.

When using the KEIL IDE as stated in the Preface section, the Silicon Labs uV3/uV4 driver program
SiC8051F_uVision.exe, which is freely available from the Silicon Labs site should be installed. This
would enable the compiled program to be downloaded on the development board via the JTAG once

the debug tab is pressed.

Lately, a new software package from Silicon Labs (http://www.silabs.com) is also available. The ‘Simplicity

Studio’ application program provides one-click access to design tools, documentation, software and
support resources for EFM32, EFM8, 8051, Wireless MCUs and Wireless SoCs.

At the University we use the Silicon Labs development boards shown in Figure 1-1. At the time of writing,

it is one of a series of super-charged versions of the 8051 family from Silicon Labs.

Figure 1-1 The C8051F020TB Development Board

Further details, manuals, integrated development packages and example programs can be found at the

Silicon Labs site, http://www.silabs.com.

13

Download free eBooks at bookboon.com

http://www.silabs.com
http://www.silabs.com

1.1 Introduction

Despite its relatively old age, the 8051 (developed by Intel Corporation in the early 1980s) is one of the most
popular micro-controllers in use today. Many derivative micro-controllers have since been developed that
are based on and compatible with the 8051. Thus, the ability to program an 8051 is still an important

skill for anyone who plans to develop products that will take advantage of most micro-controllers.

The various sections of the first chapter will explain such a derivative, the Silicon Laboratories C8051F020
micro-controller. The sections in these chapters are targeted at students and readers who already have
some knowledge of the basic 8051 micro-controller and are attempting to move on to something more
powerful and learn to program the C8051F020 multi-signal device. The appendices provide a useful
reference tool that will assist both the novice programmer as well as the experienced professional

developer, since they provide a wide range of programs complete with source code.

Throughout this book, it is therefore assumed that the reader has got some amount of programming

knowledge in C and that he has a basic understanding of the hardware.

The C8051F020 is a 64 or 100-pin IC as shown in Figure 1-2.

OO OO O]

ANALOG PERIPHERALS DIGITAL 1/0
TEMP uarTo |[I N rort 0
SEE2R /10/12-bit| BoART1

PGA 100ksps| | SmBus

SPI Bus
ADCII

. Timer 0
§ 8-bit Timer 1
= BCiDE Timer 2
< ADC| B — Port 5
Timer 3
Timer 4 Port6

VOLTAGE Port7
COMPARATORS 64 pin

Port 1

Port 2
Port 3

CROSSBAR

External Memory Interface

Port4

8051 CPU 64KB
(25MIPS) ISP FLASH
22 DEBUG CLOCK SANITY
INTERRUPTS | CIRCUITRY CIRCUIT |CONTROL

Figure 1-2 C8051F020 System Overview

We shall now deal with the internal organisation of the C8051F020 micro-controller.

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 C8051F020 Basics

1.2 Memory Types

The C8051F020 has three types of memory and each type has to be addressed in a different way. To
effectively program the device it is therefore necessary to have a basic understanding of these memory
types and how to address them, especially when programming directly in assembly language. The memory
types found on the C8051F020 are illustrated Table 1-1 and they are classified as the Data Memory
(RAM) which is itself organised in two separate areas, namely the Internal Data Address Space which
is identical with all the basic 8052/8032 devices, and External Data Address Space which has 4096 bytes
present on-chip with the ability to have extra additional storage space added externally. Then there is the
Program Code/Data Memory (Flash). Addresses throughout this book are shown suffixed either with
a lower case h (i.e. OFh) or with a upper case H (i.e. 0FH) or pre-fixed with a ‘0x’ (i.e. 0xFF) to signify

that they are hexadecimal numbers.

(]
B By 2020, wind could provide one-tenth of our planet's

ra I n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can
eet this challenge!

T@f Power of Knowledge Engineering

'-r?a-.i

Plug into The Power of Knowlé: ngineering.
Visit us at www.skf.com/know1edg.\¢.

AL

15 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.skf.com/knowledge

PROGRAM/DATA MEMORY DATA MEMORY (RAM)

(FLASH) INTERNAL DATA ADDRESS SPACE
0x1007F | Scratchpad Memory OxFF Upper 128 RAM Special Function
0x10000 (DATA only) (Indirect Addressing Register's

OXFFFF AESERVED 0x80 Only) (Direct Addressing Only)
OxFEOO Ox7F
OxFDFF (Direct and Indirect
Addressing) Lower 128 RAM
0x30 (Direct and Indirect
FLASH Ox2F i
Bit Addressable Addressing)
0x20
(In-System Ox1F General Purpose
Programmable in 512 0x00 Registers
Byte Sectors) —
EXTERNAL DATA ADDRESS SPACE
0x0000
OXFFFF
Off-chip XRAM space
0x1000

ROl XRAM - 4096 Bytes

{accessable using MOVX
0x0000 instruction)

Table 1-1 C8051F020 memory map

1.3 Program/Data Memory (Flash)

The flash memory is the part of memory that holds the actual code or program that is to be executed.
This memory is limited to 64KB but being a flash memory, code can be re-written to it many times, so

as to change/update the program.

Also because it is a flash memory;, it can also be used to store data which needs to be updated and stored
for re-use. For example you might need to store some settings (variables), which although they can be
varied whilst running the program, you would still need to store their value, so that when the program
runs again (after having been switched off), it would start off again using those previously updated and
stored values. Example routines of writing to and reading from flash memory are widely available on

the internet and these can be easily integrated in your project.
In the IDE, this memory would be denoted by the ‘CODE’ keyword, and apart from storing the code

(program) you can/should use this memory area also to store fixed constants so as not to waste valuable
RAM and XRAM.

Download free eBooks at bookboon.com

1.4 External Data Address Space (XRAM)

As an obvious opposite of Internal RAM, the C8051F020 also supports what is called External Data
Address Space (XRAM). This is accessible using the MOVX assembly code instruction. For example,
to increment an Internal RAM location by 1 (such as INC R1) requires only one instruction which is
executed in one instruction cycle. To increment a 1-byte value stored in External RAM requires four

assembly language instructions, namely:

MOV DPTR, #ADDRESS (2 instruction cycles)

MOVX A, @DPTR (2 instruction cycles)
INC A (1 instruction cycle)
MOVX @DPTR, A (2 instruction cycles)

These are executed in seven instruction cycles and in this case, external memory is seven times slower!

What External RAM loses in speed and flexibility it gains in quantity. While the Internal RAM is limited
to 128 bytes (256 bytes with an 8032/8052), the 8051 supports an External RAM of up to 64KB.

Modern devices now also have this so-called external RAM actually residing physically on the same
chip, but it is still referred to as external (or XDATA) RAM and as such it is still compatible with the
basic 8051 in this respect.

1.4.1 Internal Data Address Space (RAM)

The on-chip internal memory data address space can be Directly or Indirectly addressable, or both.
Internal RAM is usually used to store variables, where the lower 128 bytes can be addressed in both
modes (Direct and Indirect), while the upper 128 bytes, address range 80H to FFH can be only accessed
by the Indirect Addressing. The Special Function Register (SFR) memory, which also lies in the address
range 80H to FFH, can only be accessed by Direct addressing, so as to enable these locations to be
discriminated from the other RAM bytes with the same address. It is used to store the system SFRs
which control the mode of operation of the various built-in peripherals. The layout of the C8051F020’s
internal memory is presented in the memory map shown in Table 1-2 which is identical with that of
the basic 8051 except of course that it now has more SFRs since this device is much more capable that

the basic 8051, with a much larger list of peripherals.

The C8051F020 has a bank of 256 bytes of Internal RAM. This Internal RAM is found on-chip on the
device itself so it is the fastest RAM available, and it is also the most flexible in terms of reading, writing,
and modifying its contents. Internal RAM is volatile, so that when the device is reset or powered off

this memory is lost.

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 C8051F020 Basics

The 256 bytes of internal ram is subdivided as shown on the memory map in Table 1-2. The first eight
bytes (00h-07h) are referred to as register bank 0. By manipulating certain SFR bits (in the PSW special
function register), a program may choose to use register banks 1, 2, or 3. These alternative register banks,
each bank having a set of 8 registers RO to R7, are located in internal RAM occupying addresses 08h
through 1Fh. We will discuss register banks in more detail in section 1.5. For now it is sufficient to know

that they are part of the internal RAM.

Bit Memory is also another part of internal RAM, which as the name implies is able to store and
manipulate bit variables. We will say more about the bit memory area later (see section 1.6), but for
now we just have to keep in mind that the bit memory actually resides in internal RAM, ranging from
address 20h through address 2Fh.

The 80 bytes that remain in Direct and Indirectly addressable Internal RAM, from address 30h through
address 7Fh, and the other 128 Indirectly addressable bytes may be used to store any user variables
that need to be accessed frequently or at high-speed during the execution of the program. This area is
also utilised by the micro-controller as a storage area for the operating stack, which is always accessed

indirectly using the Stack Pointer (SP) SER to store the address of the location to be read/written.

With us you can
shape the future.
Every single day.

For more information go to:
www.eon-career.com

Your energy shapes the future.

e-on

18 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.eon-career.com

PaulOS F020:

An RTOS for the C8051F020 C8051F020 Basics
Hex Byte Hex Notes
Address Bit

Address
FFH
Used as
a STACK
Area
and to store
user variables
80H
7FH
Used as
a STACK
Area
and to store
user variables
30H
2FH TF TE 7D 7C 7B TA 79 78
2EH 77 76 75 74 73 72 71 70 Bit
2DH 6F 6E 6D 6C 6B 6A 69 68 Addressable
2CH 67 66 65 64 63 62 61 60
2BH 5 | 5 | 50 | 5¢c | 5B | 5a | 59 | 58 Section
2AH 57 56 55 54 53 52 51 50 (Bit Addresses
29H 4F | 4E | 4D | 4C | 4B | 4A | 49 | 48 shown
are in hex)
28H 47 46 45 44 43 42 41 40
27H 3F 3E 3D 3C 3B 3A | 39 38
26H 37 36 35 34 33 32 31 30
25H 2F 2E 2D 2C 2B 2A | 29 28
24H 27 26 25 24 23 22 21 20
23H 1F 1E 1D 1C 1B 1A 19 18
22H 17 16 15 14 13 12 11 10
21H 0F OE 0D 0]e} 0B 0A | 09 08
20H 07 06 05 04 03 02 01 00
1FH Register Bank 3 Bank is
18H (RO = R7) Selected
17H Register Bank 2 Using
10H (RO - R7) RSO0 and RS1
In the PSW
OFH Register Bank 1 Register.
08H (RO - R7) See
07H Register Bank 0 SFRs.
00H (RO = R7)

Table 1-2 C8051F020 Internal Data Address Space

19

Download free eBooks at bookboon.com

The stack is used automatically by the processor in order to save the return addresses when functions
and subroutines are called by the program either directly or indirectly via an interrupt in the case of an
Interrupt Service Routine (ISR). It is also used to store some temporary values of registers or variables
until they are retrieved again when needed. It should be noted, as illustrated in the memory map of Table
1-2, the area used for the stack is also shared with any user variables stored in ‘DATA If more stack space
is required, the variables can be moved to XDATA' area either when declaring the variable or by setting
the global default in the “Target Option’ tab of the IDE as explained in (Debono, 2013a, pp. 174,175,180).

1.5 Register Banks

This device uses eight so-called R registers which are used in many of its instructions. These R registers
are numbered from 0 through 7 (R0, R1, R2, R3, R4, R5, R6, and R7) and are generally used to assist in
manipulating values and moving data from one memory location to another. For example, to add the

value of R4 to the Accumulator, we would execute the following instruction:

ADD A, R4

Thus if the Accumulator (A) contained the value 6 and R4 contained the value 3, the Accumulator would

contain the value 9 after this instruction was executed.

However, as the memory map of Table 1-2 shows, register R4 is really part of Internal RAM. Specifically,
R4 (of bank 0) is located at address 04h. Thus the above instruction accomplishes the same thing as the

following operation:

ADD A, 04h

This instruction adds the value found in Internal RAM address 04h (the contents of location 04h) to the
value of the Accumulator, leaving the result in the Accumulator. Since R4 is really residing in Internal
RAM address 04h, the above instruction has therefore effectively accomplished the same thing as the
ADD A, R4 instruction.

But we must be careful since as the memory map shows, the 8051 has four distinct register banks. When
the 8051 is first booted up, register bank 0 (addresses 00h through 07h) is used by default. However,
our program may instruct the 8051 to use one of the alternate register banks; i.e., register banks 1, 2, or
3. In this case, R4 will no longer be in Internal RAM address 04h but somewhere else. For example, if
our program instructs the 8051 to use register bank 3, register R4 will now be located at Internal RAM
address 1Ch (see Table 1-2).

The concept of register banks adds a great level of flexibility to the 8051, especially when dealing with
interrupts, where we can allocate a specific register bank to a particular interrupt, so as not to corrupt
other main program information stored in another bank of registers. However we must always remember

that the register banks really reside in the first 32 bytes of Internal RAM.

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 C8051F020 Basics

1.6 Bit Memory

The C8051F020, being a communications and control oriented micro-controller, gives the user the ability

to access a number of bit variables. These variables may only take the value of either a 1 or a 0.

There are 128 bit variables available to the user (see Table 1-2); individually have an address 00h through
7Fh. We may make use of these variables with assembly language commands such as SETB bit address

and CLR bit address. For example, to set bit number 24 (hex) to 1 we would execute the instruction:

SETB 24h

It is important to note that the Bit Memory area is really a part of the Internal RAM. In fact, the 128 bit
variables occupy the 16 bytes of Internal RAM from address 20h through address 2Fh. Thus, if we write
the value FFh to Internal RAM address 20h we have effectively set bits 00h through 07h to 1 with just

one instruction. For example we can use:

MOV 20h, #0FFh

21 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/accentureCZintl

This is equivalent to the following 8 instructions, where we are setting the bits one at a time:

SETB 00h
SETB 01h
SETB 02h
SETB 03h
SETB 04h
SETB 05h
SETB 06h
SETB 07h

To use bit variables in C, there is a special operator bit which is used to declare a bit variable. The bit
type may be used for variable declarations, argument lists, and function-return values. A bit variable is

declared like other C data types. For example:

static bit ready_flag = 0; /* bit variable */

Another possibility would be to declare a byte variable in the bit addressable area, and then we also have

the capability to name and address the individual bits of this variable. For example:

char bdata Alarm; /* Alarm is declared as a one byte variable, residing in the */
/* bit addressable area (bdata). */

sbit fire= Alarm”0; /* bit 0 of variable Alarm, is named ‘fire’ and can be used */
/* as a normal bit variable */

sbit smoke = Alarm”1; /* bit 1 is named ‘smoke’ */

As illustrated in Table 1-2, the bit memory is not a new type of memory but it is just a subset of Internal
RAM. Since the 8051 provides special instructions to access these 16 bytes (or 128 bits) of memory on a
bit by bit basis it is useful to think of it as a separate type of memory. However, since it is just a subset of
Internal RAM then we must remember that any operations performed on the Internal RAM can change

the values of these bit variables.

Download free eBooks at bookboon.com

Bit variables 00h through 7Fh are mainly intended for user-defined bit variables used in the program.
These are not the only bit variables available on the 8051. Other bits in certain SFRs (those which have
their address ending with a 0 or an 8) can also be addressed individually as explained in the next section.
These bits variables have an address of 80h or higher and are actually used to access certain Special
Function Registers (SFRs) on a bit-by-bit basis so as to program and control certain peripherals of the
8051. For example, if output lines P0.0 through P0.7 are all cleared (0) and we want to turn on the P0.0

output line (set bit 0 of port 0 to logic 1) we may either execute:

MOV PO, #01h orin C: PO=1;

or

ORL PO, #01h ; logically OR PO with 00000001 binary or in C: PO|=1;

or

SETB 80h orin C: PO 1=1; //**
or even

SETB P0.0 ; the assembler knows that P0.0 = 80h orin C: PO 1=1; //**

** assuming that that you declare in C the following:
sbit PO_1 = P0"0; // name bit 0 of port PO as PO_1
or sbit P0"1 = 0x80;

All these instructions listed above accomplish the same thing, although there are some slight differences.
Using the SETB or the ORL command will turn on (set to 1) the P0.0 line without affecting the status
of any of the other PO output lines. The MOV command effectively would indeed turn on (1) the P0.0
line but it would also turn off (0) all the other seven output lines (P0.1 to P0.7) which in some cases,
may not be what is actually required. Hence caution has to be taken to ensure that we use the correct

and most efficient method when setting or clearing bits.

Naturally, if no bit variables are required this bit-addressable area can be used to store other variables

(bytes, integers etc). It is not restricted to storing just bits!

1.7 Special Function Register (SFR) Memory

Special Function Registers (SFRs) reside in areas of internal memory that control specific functionality
of the C8051F020 chip, as shown in Table 1-3. For example, eight SFRs permit access to the 8 I/O port
P0-P7. Another two SFRs (SBUF0 and SBUF1) allow a program to read from or write to its two serial
ports which are called UARTO0 and UART1 (Universal Asynchronous Receiver/ Transmitter). Other SFRs
allow the user to set the serial baud rates, control and access timers, ADC, DAC etc. and also configure

the 8051’s interrupt system.

Download free eBooks at bookboon.com

When programming, we may get the illusion that the SFRs are Internal Memory. This is because they
are directly addressable. For example, if we want to write the value 1 to Internal RAM location 50 hex

we would execute the instruction:

MOV 50h, #01h

Similarly, if we want to write the letter ‘A’ to its UARTO0 we would write this value to the SBUF0 SFR,
which has an SFR address of 99 Hex. Thus, to write the value ‘A, which has an ASCII code of 65 decimal;

to the serial port we would execute the instruction:

MOV 99h, #41h or MOV SBUFO, #41h or MOV SBUFO, ‘A’

When using this method of memory access (called direct addressing mode), any instruction that has an
address of 00h through 7Fh refers to an Internal RAM memory address while any instruction with an
address of 80h through FFh refers to an SFR control register. Quoting from the KEIL uV4 IDE online

user manual:

........ The Cx51 Compiler provides access to SFRs with the sfr, sfr16, and sbit data types.
SERs are declared in the same fashion as other C variables. The only difference is that the type specified

is sfr rather than char or int. For example:

sfr PO = 0x80; /* Port-0, address 80h */
sfr P1=0x90; /* Port-1, address 90h */
sfr P2 = 0xAO; /* Port-2, address OAOh */
sfr P3 = 0xBO; /* Port-3, address 0BOh */

........ end of quote.

PO, P1, P2, and P3 are the SFR name declarations. Names for sfr variables are defined just like other C

variable declarations. Any symbolic name may be used in an sfr declaration.

The address specification after the equal sign (‘=") must be a numeric constant. Expressions with operators

are not allowed. Classic 8051 devices support the SFR address range 0x80-0xFE.

The Cx51 Compiler is a ‘big endian’ compiler in the sense that it stores the variables with the high byte
occupying the lowest memory address. However, since the 8051 has some SFRs (such as TL2 and TH2)
stored in ‘little endian’ format, the Keil compiler provides the sfr16 data type to access two consecutive
8-bit SFRs as a single 16-bit SFR in Tittle endian’ style.

Download free eBooks at bookboon.com

ms-its:C:\Keil\C51\hlp\c51.chm::/c51_le_sfr.htm

PaulOS F020:
An RTOS for the C8051F020 C8051F020 Basics

Access to 16-bit SFRs using sfr16 is possible only when the low byte immediately precedes the high byte
(little endian) and when the low byte can be written last without affecting the functionality of the device.
Certain devices might require the low byte to be written first when setting up the particular peripheral.

The low byte is used as the address in the sfr16 declaration. For example:

sfr16 T2REG = 0xCC; /* comprising the 2 SFRs TL2 at 0CCh, TH2 at 0CDh */
sfr16 RCAP2 = OxCA; /* RCAP2L at 0CAh, RCAP2H at 0CBh */

Elsewhere in the program, we can then write and execute:

T2REG = 0x1234; /* resulting in TH2=0x12, TL2=0x34 with TL2 written last */
RCAP2 = 0x5678; /* resulting in RCAP2H=0x56, RCAP2L=0x78 with RCAP2L written last */

The sbit type defines a bit within a special function register (SFR) or any variable in the bit addressable

area. It is used in one of the following ways, taking an SFR as an example:

sbit name = sfr-name A bit-position;

sbit name = sfr-address A bit-position;

sbit name = sbit-address;

I studied
English for 16 .
years but... .
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

25 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/EOT

where:

is the name of the SFR bit

is the name of the previously-defined SFR
is the position of the bit with the SFR

is the address of the SFR

is the address of the SFR bit.

name
sfr-name
bit-position
sfr-address

sbit-address

1.7.1 SFR Addresses

The C8051F020 is a flexible micro-controller with a relatively large number of peripherals having different
modes of operation. In order to be able to make full use of these different modes or ways of using the
built in peripherals of this versatile micro-controller, our program may inspect and/or change their
operating mode by manipulating the values of some specific SFRs. They are accessed just as if they were
normal Internal RAM. The only difference is that Internal RAM for the 8051 resides from address 00h
through 7Fh whereas the SFR registers exist in the address range of 80h through FFh. Each SER has an
address (80h through FFh) and a name.

Table 1-3 provides a tabular representation of the 8051’s SFRs, their name, and their address in
hexadecimal. Although the address range is from 80h through FFh, thus offering 128 possible addresses,
there are 6 locations which are not used. Moreover, reading data from these empty addresses will in
general return some meaningless random data while writing data to these addresses will have no effect
at all. In fact the actual memory cell of these free locations might not be physically present on the chip.
These free locations are reserved for future enhanced and upgraded versions of this family of micro-
controllers, and certain versions (such as the C8051F040) need much more SFRs than can be fitted in

128 bytes. These therefore make use of more than one 128-byte page of SFRs thus having to switch SFR

pages in order to set the correct SFR

F8 SPIOCN PCAOH |PCAOCPHO|PCAOCPHI |PCAOCPH2 | PCAOCPH3 [PCAOCPH4| WDTCN
FO B SCON1 SBUF1 SADDRI1 TL4 TH4 EIP1 EIP2
E8 | ADCOCN PCAOL |PCAOCPLO | PCAOCPL1 | PCAOCPL2 | PCAOCPL3 |PCAOCPL4| RSTSRC
EO ACC XBRO XBR1 XBR2 RCAP4L RCAP4H EIE1 EIE2
D8 | PCAOCN | PCAOMD |PCAOCPMO|PCAOCPMI|PCAOCPM2|PCAOCPM3 |PCAOCPMA4
DO PSW REFOCN DACOL DACOH DACOCN DACIL DACIH | DACICN
C8 T2CON T4CON RCAP2L | RCAP2H TL2 TH2 SMBOCR
CO0 | SMBOCN | SMBOSTA | SMBODAT | SMBOADR | ADCOGIL | ADCOGTH | ADCOLTL | ADCOLTH
B8 I SADENO | AMXO0CF | AMXO0SL | ADCOCF PIMDIN ADCOL ADCOH
BO P3 OSCXCN | OSCICN P740UT FLSCL FLACL
A8 IE SADDRO | ADCICN | ADCICF | AMXISL P3IF SADEN1 | EMIOCN
A0 P2 EMIOTC EMIOCF | POMDOUT | PIMDOUT | P2MDOUT | PAMDOUT
98 SCONO SBUFO0 SPIOCFG | SPIODAT ADCI1 SPIOCKR | CPTOCN CPTICN
90 Bl TMR3CN | TMR3RLL | TMR3RLH | TMR3L TMR3H B
88 TCON TMOD TLO TL1 THO TH1 CKCON PSCTL
80 PO SP DPL DPH P4 P5 P6 PCON

0(8) 19) 2(4) 3(B) 4(C) 5(D) 6(E) 7(F)

(bit addressable)

Table 1-3 C8051F020 Special Function Registers (SFRs)-DIRECT addressing ONLY

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 C8051F020 Basics

We should therefore stick to the rule that any user developed software should not write anything to
these unimplemented locations, since they may be used in future products to invoke new features. All
unimplemented addresses in the SFR range (80h through FFh) are considered invalid and writing to or

reading from these non-existent register locations may produce undefined values or behaviour.

1.7.2 SFR Types

In this section we shall only mention some special SFRs which are appreciably different from the basic
8051 SFR. The standard 8051 SFRs are still available and work in exactly the same way even on this

device, and details about these ‘old’ SFRs can be found in an earlier book (Debono, 2013a).

In general, as mentioned in Table 1-3 itself, some SFRs are used to control the operation or the
configuration of some aspect of the 8051. For example, TCON and TMOD control the timers while
SCONO controls serial port (UARTO0) operations.

The other SFRs can be thought of as auxiliary SFRs in the sense that they do not directly configure the
8051 but obviously the 8051 cannot operate without them. For example, once the serial port UARTO
has been configured using SCONO, the program may read or write data characters or bytes to the serial

port using the SBUFO register.

DUKE

= THE FUQUA
SCHOOL
OF BUSINESS

Learn More »

27 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/fuqua

The SFRs whose address has an asterisk (*) in the Table 1-3 above, are special SFRs that may also be
accessed via bit operations (i.e., using the SETB and CLR instructions). The other SFRs cannot be
accessed using bit operations but have to be handled using byte operations. As we can see, all SFRs
whose addresses are divisible by 8 (having an address ending with a Oh or an 8h) can be accessed with

bit operations, meaning that they are bit-addressable.

1.8 SFR Descriptions

As already mentioned in section 1.7.2 the basic 8051 SFRs were all fully described in a previous book
(Debono, 2013a) and will not be covered here. Instead we shall mainly deal here with some important
new SFRs specific to the C8051F020. For a full description of all the SFRs, such as those dealing with
the ADC, DAGC, etc it would be best to consult the manual/data sheet (Silicon Labs, 2003b).

1.8.1 System Clock (OSCXCN, OSCICN) registers

SFRs OSCXCN and OSCICN are used to select and configure the system clock. The routine listed in Figure
1-3 SYSCLK initialisation routine sets the system clock to use a 22.1184MHz crystal as its clock source.

void SYSCLK_Init (void)
{

unsigned int i; // delay counter

OSCXCN = 0x67; // start external oscillator with 22.1184MHz crystal

for (i=0; i < 256; i++) ; // wait for oscillator to start

while ({(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle, not need if in simulator mode
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock detector

}

Figure 1-3 SYSCLK initialisation routine

Note that the

while (((OSCXCN & 0x80)) ;

is a delay instruction, waiting for the crystal oscillator to settle is not required if running the KEIL IDE
in simulation mode and in certain cases the simulation would hang on this line if the simulation is not
emulating the oscillator function perfectly. It could be conditionally compiled by defining SIMULATOR

in the C51 Target tab when running in simulation mode and then using:

Download free eBooks at bookboon.com

#ifndef SIMULATOR
while (I(OSCXCN & 0x80)) ;
#endif

Thus the oscillator will be tested only when running on the actual board (without the SIMULATOR

definition) and the test will be ignored when running in simulation mode.

1.8.2 Watchdog Timer (WDT)

The micro-controller has a programmable Watchdog Timer (WDT) which runs off the system clock.
An overflow of the WDT forces the micro-controller into the reset state. Before the WDT overflows,
using certain commands as explained in section 1.8.2.2 the application program must restart it so as the

WDT starts counting again from zero.

WDT is useful in preventing the system from running out of control, especially in critical applications. If
the system experiences a software or hardware malfunction which prevents the software from restarting
the WDT, then the WDT will overflow and cause a controller reset. After a reset, the WDT is automatically
enabled and starts running at the default maximum time interval which is 524 ms for a 2 MHz system

clock or approximately 47ms in the case of a 22.1184 MHz clock.

The WDT consists of a 21-bit timer running from the programmed system clock. A WDT reset is
generated when the period between specific writes to its control register exceeds the programmed limit
as given in equations (1-1) and (1-2). The WDT may be enabled or disabled by software as explained
in section 1.8.2.1 and in section 1.8.2.2. It may also be locked to prevent accidental disabling. Once
locked, the WDT cannot be disabled until the next system reset. It may also be permanently disabled.
The watchdog features are controlled by programming the Watchdog Timer Control Register (WDTCN),
details of which are shown in Figure 1-4, which is taken from (Silicon Labs, 2003, p. 131).

R'W R'W R'W R'W R'W R'W R'W R'W Reset Value
Xxxxx111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0 SFR Address:
OxFF

Bits7-0: ' WDT Control
Writing 0XAS both enables and reloads the WDT.
Writing 0xDE followed within 4 system clocks by 0XAD disables the WDT.
Writing OXFF locks out the disable feature.
Bit4: Watchdog Status Bit (when Read)
Reading the WDTCN.[4] bit indicates the Watchdog Timer Status.
0: WDT is inactive
1: WDT is active
Bits2-0: Watchdog Timeout Interval Bits
The WDTCN.[2:0] bits set the Watchdog Timeout Interval. When writing these bits, WDTCN.7 must
be set to 0.

Figure 1-4 WDTCN: Watchdog Timer Control register

Download free eBooks at bookboon.com

1.8.2.1 Disabling the WDT

This is usually disabled at the very beginning of the main program so as not to give time for the watchdog
timer to overflow and reset the micro-controller. In certain cases, if there are a lot of initialisations
being done in the Startup.a51 code (which is actually executed even before the main() function in
the application program), the ‘disable_watchdog’ code would even need to be written directly in the
Startup.a51 so as to be executed right at the beginning, immediately after a reset or switch-on. As seen in
Figure 1-5 the interrupts are disabled immediately in the ‘disable_watchdog’ code so that nothing
interferes with this process. The two write instructions to the WDTCN register should be made within
4 clock cycles of each other as suggested in (Silicon Labs, 2003, p. 130) and the interrupts are enabled

before exiting the routine.

void DISABLE_Watchdog (void)
{

EA =0;
WDTCN = 0xDE;
WDTCN = 0xAD;
EA=1;

}

Figure 1-5 Routine used to disable the watchdog timer

1.8.2.2 Enabling and Setting WDT Interval

Bits 2-0 of WDTCN, treated as a 3-bit binary number, control the watchdog timeout interval (WDTTI).

The time interval is given by the following equation:

WDTI = 43+WDTCN[2—0] X TSYSCLK (1_1)

where T, is the system clock period or the reciprocal of the system clock frequency SYSCLK.

Hence we may also write the time interval equation as:

43+WDTCN[2—0]
WDTl = ————— (1-2)

SYSCLK
Fora 22.1184 MHz system clock, the interval range that can be programmed up to a maximum of 47.4 ms,
with the lower three bits WDTCN|[2-0] set to 111 binary (equivalent to 7 decimal) as shown in equation
(1-3). When the watchdog timeout interval bits are written to the WDTCN register, the WDTCN.7 bit
must be held at logic 0. The programmed interval may be read back by reading the WDTCN register.
After a reset, WDTCNJ[2-0] reads 111b.

3+7 410

= =474 1-3
SYSCLK ~ 22.1184x 106 ms (1-3)

WDTI =

Download free eBooks at bookboon.com

With this information, we can therefore write our routine to enable the watchdog timer, which is listed
in Figure 1-6. Assuming that we are using a 22.1184MHz oscillator, then this initialisation routine would
set the watchdog timer to overflow and thus causing a micro-controller reset every 47.4ms unless the

watchdog timer itself is reset by ‘feeding’ the watchdog before overflowing.

// Enables the watchdog timer

//

void ENABLE_Watchdog (void)

{
EA =0;
// set bit 7 to 0 in order to write count and
// set WDTCN[2.0] to 111b giving a WDT timeout interval = (4(3+7)) x Tsysclock
// This would give the maximum timeout interval.
// At 22.1184 MHz, this would be equal to 47.4 ms
WDTCN = 0x07; // set the timeout interval bits
WDTCN = 0xA5; // enable WDT
EA=1;

}

Figure 1-6 Routine to Enable the watchdog timer, with a 47.4ms interval

The watchdog timer would have to be reset to start counting up again from 0, before giving it a chance
to overflow. This is done by means of the FeedWDT’ task shown in Figure 1-7running under the PaulOS
RTOS, which is a periodic function, executing every 40ms (which is less than the 47.4ms WDT interval).
The PaulOS RTOS would be fully explained in chapter 2, but the commands and functions are the same
as in the earlier book (Debono, 2013a).

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 C8051F020 Basics

/¥
Task ‘FeedWDT”

— created as Task 0 to give it highest priority when RTOS sorts the ‘ready’ tasks
— as explained in section 2.3.3

— Periodicity must be less than 47.4 ms as calculated above in the

— ENABLE_Watchdog function to avoid WDT reset

*/

void FeedWDT_Task (void)

{

OS_PERIODIC_A(0,0,40); /* Execute every 40 ms */
while(1) // endless loop
{

WDTCN = 0xA5; // reloads WDT

OS_WAITP(); // wait for the periodic interval

}

Figure 1-7 RTOS task used to ‘feed’ the watchdog every 40ms

Join American online

Interactive Online programs

Special Christmas offer:

enroll by December 18th, 2014
start studying and paying only in 2015 §
save up to $ 1,200 on the tuition! '
Interactive Online education

visit to find out m@

vVvyvVvyyVvyy

Note: LIGS University is not accredited by a
nationallgl recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

32 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/LIGS

In order to give it preferential treatment, this task is allocated a task number of 0 and the priority sorting
is enabled in the OS_RTOS_GO(1) command as shown in the partial listing shown in Figure 1-8. Thus
if there are other tasks ready to execute, Task 0 would be selected instead of the normal first in-first out

selection if no priority sorting was implemented.

void main (void) {
DISABLE_Watchdog();
SYSCLK_Init();
SetUpUART(0, 115200, 1); /* Set up UART 0, at 115200 baud using Timer 1 */
PORT_Init();

OS_INIT_RTOS(0); /¥ initialise RTOS, variables and stack */

OS_CREATE_TASK(0, FeedWDT_Task); /* CREATE task0, 0 being the highest priority */
OS_CREATE_TASK(1, Blink_Task);

OS_CREATE_TASK(2, Clock_Task);

ENABLE_Watchdog();

OS_RTOS_GO(1); /¥ Start multitasking, with priority sorting */
while (1)

e

}

Figure 1-8 Part of the main program showing priority allocation for the watchdog feeder task

In the example above, if the periodicity of Task 0 is set to be greater than 47.4ms, then the WDT would
overflow and cause a system reset, since WDT would not be restarted in time to count from zero

before overflowing.

1.8.3 Crossbar Decoder (XBRO, XBR1 and XBR2)

The user controls which digital functions are assigned to any IC pins' which can then be accessed by the
user. This flexibility is limited only by the number of pins available on the IC. The Port pins on Port 1
can be used as Analogue Inputs to ADCI. The Priority Crossbar Decoder, or “Crossbar’, allocates and
assigns Port pins on Port 0 through Port 3 to the digital peripherals (UARTs, SMBus, PCA, Timers, etc.)
on the device using a priority order. The Port pins are allocated in order starting with P0.0 and continue
through P3.7 if necessary. The (Silicon Labs, 2003b) manual is used as a reference for this section and
all the figures and tables from section 1.8.3 to section 1.8.7 are taken from it. The digital peripherals
shown in Figure 1-9 are assigned Port pins in a priority order which is listed in Table 1-4, with UARTO
having the highest priority and CNVSTR having the lowest priority.

Download free eBooks at bookboon.com

Again using (Silicon Labs, 2003b), the Crossbar assigns Port pins to a peripheral if the corresponding
enable bits of the peripheral are set to logic 1 in the Crossbar configuration registers XBR0, XBR1, and
XBR2, shown in Figure 1-10, Figure 1-11 and Figure 1-12. For example, if the UARTOEN bit (XBR0.2)
is set to logic 1, the TX0 and RX0 pins will be mapped to P0.0 and P0.1 respectively. Because UART0
has the highest priority, its pins will always be mapped to P0.0 and P0.1 when UARTOEN is set to logic
1. If a digital peripheral’s enable bits are not set to logic 1, then its ports are not accessible at the Port
pins of the device. Also note that the Crossbar assigns pins to all associated functions when a serial
communication peripheral is selected (i.e. SMBus, SPI, UART). It would be impossible, for example, to
assign TX0 to a Port pin without assigning RX0 as well. Each combination of enabled peripherals results

in a unique device pin-out.

Once the Crossbar registers have been properly configured, the Crossbar is enabled by setting XBARE
(XBR2.6) to logic 1. Until XBARE is set to logic 1, the output drivers on Ports 0 through 3 are explicitly
disabled in order to prevent possible contention on the Port pins while the Crossbar registers and other

registers which can affect the device pin-out are being written.

The output drivers on Crossbar-assigned input signals (like RX0, for example) are explicitly disabled;
thus the values of the Port Data registers and the PnMDOUT registers have no effect on the states of

these pins.
Highest | | uarTO 2 XBRO, XBR1, POMDOUT, PIMDOUT,
Priority | XBR2, PIMDIN P2MDOUT, PAMDOUT
: 4 Registers Registers
i SPI
i
: 5 External
- [e Priority P
J 2 Decoder o
i - 7 8 PO —{. X POO | Highest
| o « man NS
’(T) : > ells PO 7
= X | S N Il
S 1 |
k=1l Cormptr. 2 &] ;
=} Qutputs ”| Digital _v '
g > Crossb P ——@—X P10 !
<, { 8 * |
8, » < &—> 110 o :
= T0,T1, Cells _°._& P17 1
i T2 TEX 8 = :
: T4 T4EX |« :Ii H |
i ANTO, v !
i
! INT1 5 P2 3 <] P20 :
! —~-@—> IO . i
I Cells g P27 :
Lowest | /SYSCLK S }
Priority 1 CNVSTR H A
o ! I
s P3 X Pao |
— 3 : |
' <+.—> l{e} e , Lowest
> Cells P37 I Priority
P | (Po.oro7) ! X e
| [&—
— 8
P
P10P17
ik T o
Latches 8 Interface f\r?cu:
(EMIF) P
P2
(P2.0-P2.7)
— 1%
P2 | P3.oP3ny

Figure 1-9 Lower Port I/O Functional Block Diagram

Download free eBooks at bookboon.com

PO P1 P2 P3 Crosshar Register Bits
PINIOfO 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7
TX0 -
UARTOEN: XBR0.2
RX0 .
SCK . .
MISO - .
SPIOEN: XBRO0.1
MOSI . .
NSS - -
SDA . . - .
SMBOEN: XBR0.0
SCL - . - -
TX1
UART1EN: XBR2.2
RX1 s
CEX0 s 8
CEX1 s 5 8
CEX2 . . 'y s 8 8 5 PCAOME: XBRO.[5:3]
CEX3 . . s 8 5 5 5 5 8
CEX4 . . s 5 5 &5 5 5 8
ECI ® 5 5 5 5 5 5 85 8 5 8 8 8 8 s ECIOE: XBRO.6
CPO s 5 5 8 8 5 5 5 5 5 5 5 8 B 8 8 8 CPOE: XBR0.7
CP1 s 8 % 5 5 5 5 5 5 5 5 8 5 B B S B W CP1E: XBR1.0
T0 ® 8 &5 & 5 & 5 5 5 5 5 5 5 5 5 S 5 5B TOE: XBR1.1
/INTO ® & & & 8 & 5 & 5 5 5 5 & 8 5 8 B 5 8 b INTOE: XBR1.2
™ ® 5 & & 5 &5 5 5 5 5 5 % 5 B B 8 B B 8 6 T1E: XBR1.3
/INT1 ® & 5 5 & 5 5 5 5 5 5 5 5 8 5 5 B B B 8 B INT1E: XBR1.4
T2 ® & & & & 5 5 5 5 5 5 5 5 8 5 5 B S 8 8 8 8 T2E: XBR15
T2EX ® 8 5 5 8 5 5 5 8 5 5 5 5 8 5 8 B S B B BB T2EXE: XBR1.6
T4 ® 8 8 8 8 8 8 5 5 8 5 5 B B S B B 5 5 5 8 8 8 8. T4E: XBR2.3
T4EX s % 5 8 5 5 5 8 5 8 5 5 5 5 B B B 5 5 6 5 B S 8 T4EXE: XBR2.4
SYSCLK|# ® ® # # & & # & & 5 & 5 & & & & & 5 5 & & & & & SYSCKE: XBR1.7
CNVSTR|s ® # # # o # »# & 5 5 5 5 % % & & % % » % 5 & » . CNVSTE: XBR2.0
2 Q (o B ool Gl =y R, i Tv |
L K £ oI o -
SS353553gg3%1€9% 258z 8¢s
Yyggzzzz:zzzzlss52cda= 085833845
€ = L << L L < GRLGE EEl s St O RO CIC G C G G
| AINT Inputs/Non-ruxed Addr H [Muxed Addr H/Non-muxed Addr L Muxed Data/Non-muxed Data]

BUSINES"}
SCHOO!

FINANCIAI. TIMES

-
-
-
-

MASTER IN MANAGEMENT A%

Because achieving your dreams is your greatest challenge. IE Business School's Master in Management taught
in English, Spanish or bilingually, trains young high performance professionals at the beginning of their career
through an innovative and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as Rio de Janeiro, Shanghai or San Francisco.

Because you change, we change with you.

www.ie.edu/master-management mim.admissions@ie.edu

Download free eBooks at bookboon.com

http://s.bookboon.com/IE

0: CP0 unavailable at Port pin.

1: CPO routed to Port pin.
Bit6: ECIOE: PCAO External Counter Input Enable Bit.

0: PCAQ External Counter Input unavailable at Port pin.

1: PCAO External Counter Input (ECI0) routed to Pott pin.
Bits5-3: PCAOME: PCAO Module I/O Enable Bits.

000: All PCAO I/O unavailable at Port pins.

001: CEXO0 routed to Port pin.

010: CEX0, CEX1 routed to 2 Port pins.

011: CEX0, CEX1, and CEX2 routed to 3 Port pins.

100: CEX0, CEX1, CEX2 and CEX3 routed to 4 Port pins.

101: CEX0, CEX1, CEX2, CEX3 and CEX4 routed to 5 Port pins.

110: RESERVED.

111: RESERVED.
Bit2: UARTOEN: UARTO I/O Enable Bit.

0: UARTO I/O unavailable at Port pins.

1: UARTO TX routed to P0.0, and RX routed to P0.1.
Bitl: SPIOEN: SPI0 Bus I/O Enable Bit.

0: SPI0 /O unavailable at Port pins.

1: SPI0 SCK, MISO, MOSL, and NSS routed to 4 Port pins.
Bit0: SMBOEN: SMBus0 Bus I/O Enable Bit.

0: SMBus0 I/O unavailable at Port pins.

1: SMBus0 SDA and SCL routed to 2 Port pins.

CPOE ECIOE PCAOME UARTOEN| SPIOEN | SMBOEN
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
BitT: CPOE: Comparator 0 Output Enable Bit.

Reset Value
00000000
SFR Address:
0xEl

Figure 1-10 XBRO: Port I/O Crossbar Register 0

R'W R'W R'W R'W RW R/W R'W RW Reset Value
SYSCKE | T2EXE T2E INTIE TIE INTOE TOE CPIE 00000000
Bit7 Bit6 Bits Bitd Bit3 Bit2 Bitl Bit0 SFR Address:
0xE2
Bit7: SYSCKE: /SYSCLK Output Enable Bit.

0: /SYSCLK unavailable at Port pin.
1: /SYSCLK routed to Port pin.
Bit6: T2EXE: T2EX Input Enable Bit.
0: T2EX unavailable at Port pin.
1: T2EX routed to Port pin.
Bit5: T2E: T2 Input Enable Bit.
0: T2 unavailable at Port pin.
1: T2 routed to Port pin.
Bitd: INTIE: /INTI1 Input Enable Bit.
0: /INT1 unavailable at Port pin.
1: /INT1 routed to Port pin.
Bit3: T1E: T1 Input Enable Bit.
0: T1 unavailable at Port pin.
1: T1 routed to Port pin.
Bit2: INTOE: /INTO Input Enable Bit.
0: /INTO unavailable at Port pin.
1: /INT1 routed to Port pin.
Bitl: TOE: TO Input Enable Bit.
0: TO unavailable at Port pin.
1: TO routed to Port pin.
Bit0: CP1E: CP1 Output Enable Bit.
0: CP1 unavailable at Port pin.
1: CP1 routed to Port pin.

Figure 1-11 XBR1: Port I/O Crossbar Register 1

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 C8051F020 Basics
R'W RIW RW R/W RIW RIW R/W R/W Reset Value
WEAKPUD| XBARE = T4EXE T4E UARTIE | EMIFLE | CNVSTE | 00000000
Bit7 Bit6 Bit5 Bitd Bit3 Bit2 Bitl Bit SFR Address:
0xE3
Bit7: WEAKPUD: Weak Pull-Up Disable Bit.

0: Weak pull-ups globally enabled.
1: Weak pull-ups globally disabled.
Bit6: XBARE: Crossbar Enable Bit.
0: Crossbar disabled. All pins on Ports 0, 1, 2. and 3. are forced to Input mode.
1: Crossbar enabled.
Bit5: UNUSED. Read = 0. Write = don't care.
Bit4: T4EXE: TAEX Input Enable Bit.
0: TAEX unavailable at Port pin.
1: TAEX routed to Port pin.
Bit3: T4E: T4 Input Enable Bit.
0: T4 unavailable at Port pin.
1: T4 routed to Port pin.
Bit2: UARTI1E: UART1 IO Enable Bit.
0: UART1 I/O unavailable at Port pins.
1: UART1 TX and RX routed to 2 Port pins.
Bitl: EMIFLE: External Memory Interface Low-Port Enable Bit.
0: P0.7. P0.6. and P0.5 functions are determined by the Crossbar or the Port latches.
1: If EMIOCF.4 = 0" (External Memory Interface is in Multiplexed mode)
P0.7 (/WR). P0.6 (/RD). and P0.5 (ALE) are ‘skipped’ by the Crossbar and their output
states are determined by the Port latches and the External Memory Interface.
1: If EMIOCF.4 = *1" (External Memory Interface is in Non-multiplexed mode)
P0.7 (/WR) and P0.6 (/RD) are *skipped’ by the Crossbar and their output states are
determined by the Port latches and the External Memory Interface.
Bit0: CNVSTE: External Convert Start Input Enable Bit.
0: CNVSTR unavailable at Port pin.
1: CNVSTR routed to Port pin.

Figure 1-12 XBR2: Port I/O Crossbar Register 2

SMS from your computer

...oync'd with your Android phone & number

Go to

me T, Docambes DG, 2992 X161
!

BrowserTexting.com

ma Pur. Srieenber G JE12 150658
L teting Freem my computer! &

Andreas johnaon
Dl N Pom. Coemente: 04, 2043 151727 Andrew McDonaid
Oh_coell @

Ana Petersen

and start texting from
your computer!

Anne Waye

Annese Tychwen

Arme McPherson

Ak i Linderup

Asmakan Mahmood

(...) BrowserTexting

37 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.browsertexting.com/

1.84 Input/Output ports and pin outs allocation

The C8051F020/1/2/3 devices have a wide array of digital resources which are available through the four
lower I/O Ports: PO, P1, P2, and P3. As described in (Silicon Labs, 2003, pp. 162-181) each of the pins
on PO, P1, P2, and P3, can be defined as a General-Purpose I/O (GPIO) pin or can be controlled by a
digital peripheral or function (like UARTO or /INT1 for example), as shown in Figure 1-9. These pages
of the Silicon Labs manual cover a very important section which should be fully understood by the user
so as to be able to configure the device and its peripherals properly. There are also software aids which
are also freely supplied by Silicon Labs where you select the devices that you want to use, and the correct
register configurations are displayed, ready to copy and paste on to your program. The Simplicity Studio
package, for example provides one-click access to design tools, documentation, software and support
resources for EFM32, EFM8, 8051, Wireless MCUs and Wireless SoCs devices.

1.8.4.1 Configuring the Output Modes of the Port Pins

The output drivers on Ports 0 through 3 remain disabled until the Crossbar is enabled by setting XBARE
(XBR2.6) to logic 1. The output mode of each port pin can be configured as either Open-Drain or Push-
Pull; the default state is Open-Drain.

In the Push-Pull configuration, writing logic 0 to the associated bit in the Port Data register will cause
the Port pin to be driven to GND, and writing logic 1 will cause the Port pin to be driven to VDD. In
the Open-Drain configuration, writing logic 0 to the associated bit in the Port Data register will cause

the Port pin to be driven to GND, and logic 1 will cause the Port pin to assume a high-impedance state.

The Open-Drain configuration is useful to prevent contention between devices in systems where the
Port pin participates in a shared interconnection in which multiple outputs are connected to the same

physical wire (like the SDA signal on an SMBus connection).

The output modes of the Port pins on Ports 0 through 3 are determined by the bits in the associated
PnMDOUT registers (see Figure 1-14 giving the register related to Port 0. Similar registers are available
for the other ports). For example, logic 1 in POMDOUT.7 will configure the output mode of P0.7 to
Push-Pull; logic 0 in POMDOUT.7 will configure the output mode of P0.7 to Open-Drain. All Port pins
default to Open-Drain output.

The PnMDOUT registers control the output modes of the port pins regardless of whether the Crossbar
has allocated the Port pin for a digital peripheral or not. The exceptions to this rule are that the
Port pins connected to SDA, SCL, RX0 (if UARTO is in Mode 0), and RX1 (if UART1 is in Mode 0)
are always configured as Open-Drain outputs, regardless of the settings of the associated bits in the
PnMDOUT registers.

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020

C8051F020 Basics

RW RW R'W R'W R'W R'W R'W R'W Reset Value
P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 PO.1 P0.0 11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0 SFR Address:
(bit addressable) 0x80
Bits7-0: P0.[7:0]: Port0 Output Latch Bits.

(Write - Output appears on I/O pins per XBR0. XBR1. XBR2. and XBR3 Registers)
0: Logic Low Output.

1: Logic High Output (open if corresponding POMDOUT.n bit = 0).

(Read - Regardless of XBRO. XBR1. XBR2. and XBR3 Register settings).

0: PO.n pin is logic low.

1: PO.n pin is logic high.

Note: P0.7 (/WR). P0.6 (/RD). and P0.5 (ALE) can be driven by the External Data Memory Interface.

Figure 1-13 PO

R'W R'W R'W R'W R'W R'W R'W R'W Reset Value
| | | 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0 SFR Address:
0xA4
Bits7-0: POMDOUT.[7:0]: Port0 Output Mode Bits.
0: Port Pin output mode is configured as Open-Drain.
1: Port Pin output mode is configured as Push-Pull.
Note: SDA, SCL. and RX0 (when UARTO is in Mode 0) and RX1 (when UART1 is in Mode 0) are always
configured as Open-Drain when they appear on Port pins.

Figure 1-14 POMDOUT

1.8.4.2 Configuring Port Pins as Digital Inputs

A Port pin is configured as a digital input by setting its output mode to “Open-Drain” and writing a

logic 1 to the associated bit in the Port Data register. For example, P0.7 is configured as a digital input
by setting POMDOUT.7 to logic 0 and P0.7 to logic 1. If the Port pin has been assigned to a digital
peripheral by the Crossbar and that pin functions as an input (for example RX0, the UARTO receive

pin), then the output drivers on that pin are automatically disabled.

R'W R'W R'W R'W R'W R'W R'W R'W Reset Value
| \ 11111111
Bit7 Bit6 BitS Bit4 Bit3 Bit2 Bitl Bit0 SFR Address:
0xBD
Bits7-0: PIMDIN.[7:0]: Port 1 Input Mode Bits.
0: Port Pin is configured in Analog Input mode. The digital input path is disabled (a read from the
Port bit will always return ‘0°). The weak pull-up on the pin is disabled.
1: Port Pin is configured in Digital Input mode. A read from the Port bit will return the logic level at
the Pin. The state of the weak pull-up is determined by the WEAKPUD bit (XBR2.7).
Figure 1-15 PIMDIN

39

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 C8051F020 Basics

1.8.4.3 Weak Pull-ups

By default, each Port pin has an internal weak pull-up device enabled which provides a resistive connection
(about 100 kQ) between the pin and VDD. The weak pull-up devices can be globally disabled by writing
logic 1 to the Weak Pull-up Disable bit, (WEAKPUD, XBR2.7). The weak pull-up is automatically
deactivated on any pin that is driving logic 0; that is, an output pin will not contend with its own pull-
up device. The weak pull-up device can also be explicitly disabled on a Port 1 pin by configuring the

pin as an Analogue Input.

1.8.5 Additional External Interrupts (IE6 and IE7)

In addition to the external interrupts /INT0 and /INT1, whose Port pins are allocated and assigned by
the Crossbar, P3.6 and P3.7 can be configured to generate edge sensitive interrupts; these interrupts are
configurable as falling- or rising-edge sensitive using the IE6CF (P3IF.2) and IE7CF (P3IE3) bits. When
an active edge is detected on P3.6 or P3.7, a corresponding External Interrupt flag (IE6 or IE7) will be
set to logic 1 in the P3IF register (See Fig). If the associated interrupt is enabled, an interrupt will be

generated and the CPU will vector to the associated interrupt vector location.

The Wake

the only emission we want to leave behind

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo.
Power competencies are offered with the world’s largest engine programme — having outputs spanning
from 450 to 87,220 kW per engine. Get up front!

Find out more at www.mandieselturbo.com

Engineering the Future — since 1758.

MAN Diesel & Turbo

40 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.mandieselturbo.com

PaulOS F020:
An RTOS for the C8051F020 C8051F020 Basics

1.8.6 IE, EIET and EIE2 (Interrupt Enable)

The Interrupt Enable SFRs are used to enable and disable specific interrupts. Since this controller has 21
interrupt sources, apart from the reset, there are three separate registers available to handle the interrupt
enabling system and these are the IE, EIE1 and EIE2 SFRs. The bits controlling the interrupts are listed
in the Enable flag column of Table 1-5.

1.8.7 IP (Interrupt Priority)

The Interrupt Priority SFRs are used to specify the relative priority of each interrupt. Three SFRs (IP, EIP1
and EIP2) are available to handle the priority settings as shown in Table 1-5. On the 8051, an interrupt
can be of any one of two types. It may either be of a low (0) priority or a high (1) priority.

An interrupt may only interrupt other interrupts of lower priority.

For example, if we configure the 8051 so that all interrupts are of low priority except the serial interrupt,
the serial interrupt will always be able to interrupt the system, even if another interrupt (at a low priority
setting) is currently executing its service routine. However, if a serial interrupt service routine is executing
then no other interrupt will be able to interfere with the serial interrupt service routine since the serial

interrupt has the highest priority.

The priority order column is used to discriminate between interrupts with the same high/low priority

setting which happen to occur exactly at the same time?.

TURN TO THE EXPERTS FOR
SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation
and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do
business reviews of existing subscription businesses and we develope acquisition and

retention strategies.

Learn more at linkedin.com/company/subscrybe or contact
Managing Director Morten Suhr Hansen at mha@subscrybe.dk

SUBSCRYBE - fofle fufur

41 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/Subscrybe

b
i E
s] el
Interrupt | Priority i 2 |Enable Priority
Interrupt Source Mot Ord Pending Flag % Flag Pt
P g
= -
2 e o | Always Always
FReset 00000 Top [MNone NiA | N/A Enabled Hishest
External Interrapt O (/TNTO)} (0003 0 IEQ (TCOM.1) Y Y |EX0(IE.0) | P30 (IP0)
Tmmer 0 Overflow =000B 1 TFO (TCOM_5) ¥ Y |ETO(IE.1} |FTO(P1)
External Interrapt 1 (TNT1} 00013 2 IE1 (TCON.3) ¥ Y |[EXI(IED) [FX1(IPY)
Tmer 1 Overflow (=001B 3 TF1 (TCOM_T) Y Y |(ETI{IE3) |PT1(IP3)
RID (SCONO0_0) .
;] r r
UARTO 0=0023 4 TI0 (SCONO.1) Y ESO(IE4) |PSO(IP4)
Tmmer 2 Overflow (or EXF2Y) | Ox002B £y TF2 (T2CON.T) Y ET2(IE.5) |PT2(IF5)
Senal Penpherz] Interface 0=0033 & SPIF(SPIOCN.T) | Y piing pining
e : g ¥ # (EIEL.O) (EIP1.0)
i - ESMBO PEMBO
ShBus Interface =003B 7 SI(SMBOCH.3) Y (EIEL1) (EIP1.1)
ADOWINT - EWADCO |[PWADCO
AT T E ¥
ADCO Window Comparator 00043 -] (ADCOCN.2) Y (EIE1.2) (EIP1.2)
-
s ok el 2 EPCAD PPCAD
Programmable Counter Array | O=x004B] CCFn Y F13 P13
(PCAOCN 1) (FIELS) ((ETPL3)
]] > . CPOFIF ECPOF PCPOF
Comparator 0 Falling Edge 000353 10 (CPTOCN 4) (EIE1 4) (EIP1.4)
; e, 2 CPORIF ECPIR PCPOR
Comparator 0 Fising Edge 0x005B 11 (CPTOCN 5) (EIE1 5) (EIP1.5)
- CP1FIF ECPIF PCPIF
.) o
Comparator 1 Falling Edze 00063 12 (CPTICN 4) (EIEL6) (EIP1.6)
e CPIRTF ECPIR PCPIF
Comparator 1 Fising Edge 0x006B 13 (CPTICN 5) (EIE1.7) EIPLT)
T 3 Overflow 0=0073 14 TF3 (TMR3CH.T) s s
B = AL (EIE2.0) |(EIP2.0)
3 : : ADOINT A EADCO PADCO
. g ¥
ADC0 End of Conversion (=007B 15 (ADCOCN.5) Y (EIE21) EP21)
ET4 PT4
Tmmer 4 Overflow (=0083 16 TF4 (T4CON.T) (EIE2.2 (EIP222
: . ADIINT EADCI PADC1
; g o 7
ATMC]1 End of Conversion (=0053B 17 (ADCICN.5) (EIE2 3) (EIP2 3)
External Int t 6 (=0093 18 IE6 (P3IF.5) i o
e R ' : (EIE2.4) |(EIP2.4)
EX7 7
=
External Interrupt 7 (=009B 19 IE7 (P3IF.6) (EIE2.5) (EIP2 5)
: 3 " RI1 (SCON1._0)
UART1 0=00A3 20 TI1 (SCONL1) ESl P51
2 :] : = ETILVLD EXVLD PXVLD
External Crystal O5C Feady 0=00AB 21 (OSCXCN.T) (EIE2.7) (EIP2T)

Table 1-5 Interrupt Summary

Download free eBooks at bookboon.com

2 PaulOS F020: a co-operative
RTOS

The PaulOS (PAULs Operating System) F020 is the same co-operative RTOS as described in (Debono,
2013a) but with some modifications in order to work with the Silicon Laboratories C8051F020 micro-
controller. This RTOS can easily be modified to accommodate other types of devices from the wide range of
mixed-signal microcontroller units (MCUs) produced by Silicon Labs. Mainly it would involve checking

the availability of the timers and interrupts present on the device and modifying the RTOS accordingly.

This is the main RTOS which we regularly use during the year with our students. It is also heavily used
for the students’ final year theses and it has therefore been regularly refined to reflect the changes and
upgrading requested by the students as they became more and more familiar with the performance and
limitations of this co-operative RTOS. In this RTOS, each task is free to run for as long as it wishes.
The task itself controls when to give up the processor time to allow other tasks to run by issuing certain

operating system (OS) commands to cause it to go to the WAIT state.

The idea for writing an RTOS for the 8051 had been brewing in my mind for quite some time, prompted
by the desire to provide a simple RTOS for student use. It was further given a boost after coming across
a book on C and the 8051 (Schultz, 1999)*.This RTOS is a direct adaptation of my previous PaulOS
assembly language program, re-written in C so as to make it more versatile and more easily portable
to other micro-controllers. In fact it was even successfully ported to the Intel 8086 microprocessor and
other micro-controllers. The main task of translating it from assembly to C was undertaken years ago
as a final year engineering degree thesis (Blaut, 2004), then a student under my supervision. It was
further developed and improved throughout the years by myself, thanks also to input and suggestions
from other students taking my study-units during their degree program, into the version shown here. I
consider this RTOS as providing a good basis to the study of a real-time operating system for the 8051

family of micro-controllers.

Naturally there are some memory space and speed penalties to pay for the versatility obtained with an
RTOS written in C rather than directly in assembly language. However the improvements are more than
worth the penalties, especially as far as student understanding of the RTOS is concerned. In the next
paragraph we now list once again the RTOS commands, including the improvements, mainly achieved
with the use of MACROS which are listed in section 2.3.14. The full source program can be found in
appendix D.

Download free eBooks at bookboon.com

2.1 Description of the RTOS Operation

The PaulOS_F020 RTOS is a co-operative RTOS and hence, as explained in the RTOS chapter (Debono,
2013a), each task has to take the initiative to give up its own time so as to allow other tasks to run. It
has to be kept in mind that this OS is running on an 8051-based micro-controller which can only run
one program (or task) at a time and hence this task swapping RTOS only gives the impression of having
tasks running simultaneously or concurrently. In actual fact we can only have one task actually running,
and at the time that the RTOS is doing its own checks, no tasks at all would be running. This time ideally
should be kept as short as possible.

The operation of the RTOS is as follows:

Each task, when created, would have its own memory area in external memory where there would be
stored all the registers (R, A, B, DPTR, PSW), stack area (including the return address of the task or
function). Once a change of task is required, the RTOS would take care to swap the relevant registers
and stack areas so that the micro-controller would have the correct data for the new task in its own
internal RAM.

Figure 2-1 RTOS Task states diagram

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 PaulOS F020: a co-operative RTOS

The RTOS tick-timer can be chosen by the user who can select from the different timers available on
the controller. Once set, at every timer overflow, an interrupt call is made to the main RTOS tick timer
interrupt service routine. This is the most important routine in the RTOS program since at every interrupt
the RTOS has to check the status of all the tasks so as to be able to decide whether a task can be moved
from the Waiting queue on to the Ready queue (see Figure 2-1) or whether a task swap is required if
the main() was running is required. The RTOS achieves this by counting down the parameter variables
holding the individual waiting time required for those tasks in the waiting queue. When anyone of
these timeout parameters reaches 0, it means that the time to move on has arrived. Once again, being a
co-operative RTOS, the scheduler cannot swap tasks on its own accord. Only the main() code can be
forced to give up its time, so that if at any time whilst the main() code is running, there is a task which

moves into the Ready queue, then that task takes over.

On the other hand, when one of the OS commands which forces a task change is encountered in a task
then it is only at that instance that a task swap is initiated by the RTOS. The currently running task is
then usually marked as being in the Waiting queue (waiting for one or two ticks say) and the first task
in the Ready queue takes over, with its stack and registers environment being copied into the working

area. The environment of the old task is copied to the external memory store area for later retrieval.

DO YOU WANT TO KNOW:

What your staff really want?

The top issues troubling them?

How to make staff assessments
work for you & them, painlessly?

How to retain your
top staff

FIND OUT NOW FOR FREE

Because happy staff get more done

45 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/performancereviewpro-bookboonlp

The idea behind the PaulOS RTOS is that any task (a function or a routine in a program, which is
normally an endless loop) can be in any one of three states as shown in Figure 2-1, Running, Waiting

(for some event or time delay) or Ready (to execute) state.

RUNNING

A task can be RUNNING, (obviously in the single 8051 environment, there can only be one task which
is actually in the running state). If there are no tasks which are ready to execute, then the RTOS will
set the main() function as the running task, which in most case would be actually doing nothing, just
putting the micro-controller in the idle or sleep state so as to conserve power. This will be interrupted
at any time by the RTOS, taking it out of the idle mode, as soon as a task becomes ready to run and the

RTOS then executes the swap.

WAITING

A task can be in the WAITING (sometimes also referred to as SLEEPING) queue. Here a task could be

waiting for any one of the following time delays or events to occur:

« aspecified amount of time delay, selected by the user with OS_WAITT (or OS_WAITT_A(min,
sec, msec)) command.

« an OS_DEFER command which is actually just the normal OS_WAITT(..) with 2 ticks as the
parameter, i.e. OS_WAITT(2) - wait for 2 ticks.

« aspecified amount of time delay, selected by the user with OS_PERIODIC (or OS_PERIODIC_
(min, sec, msec)) command. The actual task is placed in the waiting queue when the OS_WAITP
(wait for periodic interval) is encountered.

o a specified interrupt to occur within a specified time, selected by the user with the
OS_WAITI command.

o a signal from some other task within a specified timeout, selected by the user with the
OS_WAITS(ticks) (or OS_WAITS_A(min, sec, msec)) command.

« a signal from some other task indefinitely, selected by the user with the OS_WAITS(0)
command.

 a never-ending waiting period. A task could be put in a state to wait indefinitely, effectively
behaving as if the task did not exist. This is specified by the OS_KILL_IT command.

Download free eBooks at bookboon.com

READY

It can also be in the READY QUEUE where it would be waiting for its turn to execute. This can be
visualised in Figure 2-1 which shows how the tasks can move from one state to another. The RTOS,
when permitted to do so, will select the top task (first in - first out) from this queue to execute instead
of the currently running task, which would then be placed in the waiting queue. This RTOS also has the
capability, if it is enabled, to sort the tasks in the Ready Queue according to their task number, so as to
place the task with the lowest number (highest priority) at the top of the queue, so that it would be the
chosen task to run at the first opportunity. This is further explained when discussion the OS_RTOS_

GO(priority) command in section 2.3.3.
The RTOS itself always resides in the background, and comes into play:

« Atevery RTOS TIMER interrupt (usually when Timer 2 or Timer 0 overflows, say every one
millisecond) so as to update the waiting time left for any tasks.

o At any other device interrupt from other timers, UARTs, ADCs etc or external inputs so as
to check whether it needs to move to the ready queue any tasks which were waiting for such
events or interrupts.

o Whenever an RTOS system command is issued by the main program or tasks, to perform that

system command.

The RTOS which is effectively supervising and scheduling all the other tasks then has to make a decision
whether it has to pause the current task and resume a new one or whether it can let the current task
run on. There could be various reasons for changing tasks, as explained further on, but in order to do
this task swap smoothly, the RTOS has to save all the environment of the presently running task and
substitute it with the environment of the next task which is about to run. This is accomplished by saving
all the BANK 0 registers, the ACC, B, PSW, and DPTR registers. The STACK and the stack pointer SP
too have to be saved since the task might have pushed some data on the stack (apart from the address
at the point that the task was interrupted, where it has to return to after the interrupt). This is the crux
of the PaulOS F020 RTOS.

2.2 PaulOS_F020.C System Commands

We now list and explain all the 14 PaulOS_F020 RTOS system commands. These are first listed or
grouped according to whether or not they take any parameters. The list is then repeated, this time sorted

according to whether the command causes a task swap or not.

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 PaulOS F020: a co-operative RTOS

The following RTOS system calls do not receive any parameters:

o OS_DEFER (void); /1 Stops current task and passes control to next task in queue
o OS_KILL_IT (void); /I Kills a task - sets it waiting forever

o OS_RUNNING_TASK_ID(void); // Returns the task number of the currently executing task
e« OS_SCHECK (void); /I Checks if running task’s signal bit is set, returns a bit value

/1 of 1 if signal is already present.
e« OS_WAITP (void); /| Waits for end of tasks periodic interval, set by
// the OS_PERIODIC command.

The following RTOS system calls do receive parameters:

e« OS_CREATE_TASK (uchar tasknum, uint taskadd); // Creates a task

o OS_INIT_RTOS (uchar blank); // Initialises RTOS variables, parameter blank is not used at all
« OS_PERIODIC (uint ticks); /] Tasks run periodically every number of ticks

o OS_RESUME_TASK (uchar tasknum);// Resumes a task which was previously KILLed

o OS_RTOS_GO (uchar prior); /1 Starts the RTOS with priorities if required

o OS_SIGNAL_TASK (uchar tasknum); // Signals a task

o OS_WAITI (uchar intnum); /! Waits for an event (interrupt) to occur

o OS_WAITS (uint ticks); /] Waits for a signal within a number of ticks

e OS_WAITT (uint ticks); /] Waits for a timeout defined by number of ticks

Struggling to get
interviews?

Professional CV consulting & writing assistance
from leading job experts in the UK.

N Take a short-cut to your next job!

= Improve your interview success rate by 70%.

TheCVagency

Visit thecvagency.co.uk for more info.

48 Click on the ad to read more
Download free eBooks at bookboon.com

http://thecvagency.co.uk

The list of commands can also be grouped as those which cause a change of task, might cause a change

of task and those which do not cause a task swap.

The following RTOS system calls force a task change after executing this command:

o OS_DEFER (void); /] Stops current task and passes control to next task in queue
e OS_KILL_IT (void); // Kills a task - sets it waiting forever

o OS_WAITI (uchar intnum); // Waits for an event (interrupt) to occur

e OS_WAITT (uint ticks); /] Waits for a timeout defined by number of ticks

o« OS_WAITP (void); /! Waits for the end of the task’s periodic interval

The following RTOS system call might force a task change after executing this command:

o OS_WAITS (uint ticks); /] Waits for a signal within a number of ticks

If the signal is already present when the command is issued, then no task swap is made, otherwise a

task change is performed.

The following RTOS system calls do not force a task change, and the task using any of these commands

would continue to run after executing the command:

o OS_CREATE_TASK (uchar tasknum, uint taskadd); // Creates a task

e OS_INIT_RTOS (uchar blank); /! Initialises all RTOS variables, parameter not
/] actually used
o OS_PERIODIC (uint ticks); /] Tasks run periodically every number of ticks
o OS_RESUME_TASK (uchar tasknum);// Resumes a task which was previously KILLed
o OS_RTOS_GO (uchar prior); /] Starts the RTOS with priorities if required
o OS_RUNNING_TASK_ID(void); // Returns the task number of the currently running task
e OS_SCHECK (void); /] Checks if running task’s signal bit is set

o OS_SIGNAL_TASK (uchar tasknum); // Signals a task

2.3 Descriptions of the commands

The F020 version of this RTOS provides some variations from the previous basic PaulOS RTOS, described
on (Debono, 2013a, page 200). The detailed description of the commands is once again being give here,
which would completely describe the PaulOS F020 RTOS. The complete source program can be found
in the Appendix A and examples are given at the end of this chapter which should make it easier to
understand. The variables mentioned in the explanations of the various RTOS commands can all be

found in the Appendix A listings.

Download free eBooks at bookboon.com

231 OS_INIT_RTOS(0)

This system command must be the first command to be issued in the main program in order to initialise
the RTOS variables and parameters. It is called from the main program and takes an unsigned char
parameter just for the sake of keeping the same format as that used in the previous basic PaulOS RTOS.
The parameter as such is not used in the OS_INIT_RTOS function, and is therefore normally given a

value of zero. An example of the syntax used for this command is:

OS_INIT_RTOS(0);

which would initialise all the required RTOS system parameters.
This system command performs the following operations:

o Clears the external memory area which is going to be used to store the stack of each task.

o Sets up the Interrupt Enable registers, depending on the TICK_TIMER parameter set in the
parameter header file.

« Selects edge triggering on the external interrupts. This can be amended if a different triggering
is required by changing directly the default initialisation in the RTOS source code listing found
in Appendix A or by re-setting the correct triggering mode after having initialised the RTOS
so as to override the default value. This is done by setting the correct bit value for ITO and IT1
residing in the TCON SFR.

» Loads the Ready Queue with the main idle task number, so that initially only the main task
will execute.

o [Initialises all tasks as being not waiting for a timeout.

o Sets up the Stack Pointer (SP) variable of each task to point to the correct location in the stack
area of the particular task. The stack pointer, initially, is made to point to an offset of 14 bytes
above the base of the stack [(MAIN_STACK - 1) + NOOFPUSHES + 2] since NOOFPUSHES
in this case is 13. The first 13 locations would initially all contain a zero. This is done so as to
ensure that when the first RET instruction is executed after transferring the stack from external
RAM on to the internal RAM, the SP would be pointing correctly to the address of the task
to be started. This is seen in the QSHFT routine, where before the last RET instruction, there
is the Pop_Bank0_Reg macro which effectively pops 13 registers. The RET instruction would

then read the correct address to jump to from the next 2 locations.

Download free eBooks at bookboon.com

23.2 OS_CREATE_TASK(Task No:, Task Name)

This system command is used in the main program for each task to be created. It takes two parameters,
namely the task number (the first task is normally numbered as task 0), and the task address, which in
the C environment, would simply be the name of the procedure or function. An example of the syntax

used for this command is:

OS_CREATE_TASK(0, MotorOn);

This would create a task, numbered 0 which would refer to the MotorOn() procedure or function.

This system command performs the following operations:

 Places the task number in the next available location in Ready Queue, meaning that this task
is ready to execute. The location pointer in Ready Queue is referred to as READYQTOP in
the program, and is incremented every time this command is issued.

+ Loads the address of the start of the task at the bottom of the stack area in external ram allocated
to this task. The SP for this task would have been already saved, by the INIT_RTOS command,

pointing to an offset 13 bytes above this, so as to compensate for the pops.

233 OS_RTOS_GO(Priority)

This system command is used only ONCE in the main program, when the RTOS would be required to

start supervising the processes. It takes one Priority bit parameter.

The Priority bit parameter (0 or 1) if set to 1, implies that those tasks placed in the Ready Queue (meaning
those tasks which are ready to execute, just waiting for the currently running task to give up its place),
would be sorted in descending order before the RTOS selects the next task to run. A task number of 0 is
taken to mean by this RTOS as the highest priority task, and would obviously be given preference during
the sorting. The main() task or function is automatically given the highest task number (thus meaning

the lowest priority) by this RTOS, so as all the other tasks in the Ready Queue would be sorted above it.
An example of the syntax used for this command is:

OS_RTOS_GO(1);
This would start the RTOS ticking with priority enabled. The tick time interval is determined by the

parameter TICKTIME set in the parameters header file (say 1ms, 5ms or 10ms). This value would then

become the basic reference unit for other system commands which use any timeout parameter.

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 PaulOS F020: a co-operative RTOS

The RTOS would also be required to execute ‘ready-tasks’ sorting prior to any task change, since the

priority parameter was set to 1.

Depending on which timer is being used to generate the ticktime, this system command performs the

following operations:

+ Loads the variable DELAY (LO and HI bytes), with the number of BASIC_TICKS required to
obtain the required ticktime delay.

 Sets the PRIORITY bit according to the priority parameter supplied.

« Loads the reload values of the tick timer in use with the calculated value in order to obtain
the required delay between timer overflow interrupts. The value used depends on the crystal
frequency used on the board. Stores the reference time signal parameter in GOPARAM
and TICKCOUNT.

o Starts the timer.

+ Enables interrupts.

o Sets the timer overflow interrupt flag, thus causing the first interrupt immediately, and hence

the timer counter registers are then loaded with the correct values in the timer ISR.

If the system is using a different clock setting, the values would be adjusted accordingly by the RTOS.

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...

52 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/Gaiteye

234 OS_RUNNING_TASK_ID()

This system command is used by a task to get the number of the task itself. It returns an unsigned

character (1 byte) value and the same task continues to run after executing this system command.

An example of the syntax used for this command is:

X' = OS_RUNNING_TASK_ID(); /* where X would be an unsigned character */

23.5 OS_SCHEK()

This system command is used by a task to test whether there was any signal sent to it by some other task.

o It returns a bit value of:
o 0 if Signal is not present
o 1 if Signal is present
o If the signal was present, the signal flag (bit) is also cleared before returning to the calling task.

The same task continues to run, irrespective of the returned value.

An example of the syntax used for this command is:

X = OS_SCHEK(); /* where X would be a bit-type variable */

or one may use it as in the following example to test the presence of the signal bit:

if (OS_SCHEK() == 1)
{
/* do these instructions if a signal was present */

}

23.6 OS_SIGNAL_TASK(Task No:)

This system command is used by a task to send a signal to another task. If the other task was already
waiting for a signal, then the other task is placed in the Ready Queue and its waiting for signal flag is
cleared. The task issuing the OS_SIGNAL_TASK command continues to run, irrespective of whether the
called task was waiting or not waiting for the signal. If we need to halt the task after the OS_SIGNAL_
TASK command to give way to other tasks, we must use the OS_DEFER() system command after the
OS_SIGNAL_TASK command.

Download free eBooks at bookboon.com

This system command performs the following operations:

o It first checks whether the called task was already waiting for a signal.

o If the called or signalled (the intended destination task of the signal) task was not waiting, it
sets its waiting for signal (SIGW) flag and exits to continue the same task.

o If the signalled task was already waiting, it places the called task in the Ready Queue and it
clears both the waiting for signal (SIGW) and the signal present (SIGS) flags.

o Italso sets a flag (TINQFLAG) to indicate that a new task has been placed in the Ready Queue.
This flag is used by the RTOS_TIMER_INT routine (every half a millisecond) in order to be
able to decide whether there has to be a task change. It then exits the routine to continue the

same task.

An example of the syntax used for this command is:

OS_SIGNAL_TASK(1); // send a signal to task number 1

OS_DEFER(); // give CPU time to other tasks, if necessary

23.7 OS_PERIODIC(Ticks) or OS_PERIODIC_A(min, sec, msec)

This command initialises the task so as to make it repeat periodically every certain number of ticks.
This number is given as a parameter in the command. It is used at the beginning of a task, outside of
the endless loop, as shown in the next sub-section 2.3.8. An example of its usage is also given in that

same sub-section.

The command OS_PERIODIC_A(min, sec, msec) is a macro which makes the command OS_

PERIODIC(ticks) more user-friendly. It is explained in section 2.3.14.

We now deal with the commands that do perform a voluntary (co-operative) change of task:

238 OS_WAITP()

This command sets the task waiting for the preset periodic interval (set previously by the OS_

PERIODIC(ticks) command. The task goes into a waiting state and the next ready task takes over.

If the interval has already passed when this command is executed, then the task would continue to
execute. This is not normally the case, and only happens when there is a programming logic or algorithm
mistake, since it would generally mean that the task is actually taking longer to execute than the requested

periodic interval between executions.

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 PaulOS F020: a co-operative RTOS

It performs the following operations:

« Saves task environment in preparation for the expected task swap.

o If the periodic interval has not yet passed, as is generally the case, it sets the periodic interval
flag to indicate that it is waiting for the periodic interval and issues a voluntary task change.

« Ifhowever the periodic interval has already elapsed (this is usually due to bad programming, in
cases where the code of the task itself takes a longer time to execute than the required periodic

interval), then it clears the periodic interval flag and exits.

Such a command is used in a task, in conjunction with the OS_PERIODIC() or OS_PERIODIC_A(min,

sec, ms) command and an example of its usage is shown below in Figure 2-2:

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

\7\‘ PDF components for PHP developers

www.setasign.com

55 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/Setasign

OS_PERIODIC(50); // declare task as wishing to execute every 50 ticks
// or OS_PERIODIC_A(0,0,300);; // declare task with a periodicity of 300ms
while(1) // repeat forever
{
// code to be executed every 50 ticks

// which should not take longer than

// 50 ticks to execute.
OS_WAITP(); // wait for the periodic interval to pass
}

Figure 2-2 Part listing of a periodic task

2.3.9 OS_WAITI(Interrupt No:)

This system command is called by a task to sleep and wait for an interrupt to occur. Another task, next in
line in the Ready Queue would then take over. If the interrupt never occurs, then the task will effectively
sleep for ever. This is one way of writing Interrupt Service Routines under PaulOS RTOS control. ISRs

can also be written in such a way as to run independently, as describe in section 2.3.15.

If required, this command can be modified to allow another timeout parameter to be passed, so that if the
interrupt does not arrive within the specified timeout, the task would still resume execution. A timeout
of 0 would on the other hand still leave the task forever waiting for the interrupt. The modification
required to the RTOS source listing would be similar to the OS_WAITS command, and the operation
would then be as explained further down in sub-section 2.3.10.

This system command performs the following operations:

o It sets the bit which corresponds to the interrupt number passed on as a parameter.

o It then calls the QSHFT routine in order to start the task next in line.

An example of the syntax used for this command is:

OS_WAITI(0); // wait for an interrupt from external int O

The task would then go into the sleep or waiting mode and a new task would take over.

Download free eBooks at bookboon.com

2.3.10 OS_WAITS(Timeout) or OS_WAITS_A(min, sec, msec))

This system command is called by a task to sleep and wait for a signal to arrive from some other task.
If the signal is already present (previously set or signalled by some other task), then the signal is simply
cleared and the task continues on. If the signal does not arrive within the specified timeout period, the
task resumes just the same. However, a timeout number of 0 would force the task to keep on waiting
for a signal indefinitely. If the signal does not arrive, then the task never resumes to run and effectively
the task is killed.

This system command performs the following operations:

o It first checks whether the signal is already present.
o If the signal is present, then it clears the signal flag, exits and continues running.
o If the signal is not present, then:
o It sets its own waiting for signal (SIGW) flag.
o It also sets the waiting for timeout variable according to the supplied parameter.

o It then jumps to the QSHFT routine in order to start the task next in line.

An example of the syntax used for this command is:

OS_WAITS(50);

// wait for a signal within 50 units or ticks, the value of the unit depends on
// the TICKTIME parameter used.

// or OS_WAITS_A(0,0,250);

// wait for a signal within 250ms

If for example, the TICKTIME was set to 10 milliseconds in the header file, an OS_WAITS(50) would

then imply waiting for a signal to arrive within 500 milliseconds.

Or you can use:

OS_WAITS(0); // this would wait for a signal for ever

In both examples, if the signal is not already present, the task would then go into the sleep or waiting

mode and a new task would take over.

The OS_WAITS_A(min, sec, msec) is a macro which makes the command OS_WAITS(ticks) more user
friendly. It is explained in section 2.3.14.

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 PaulOS F020: a co-operative RTOS

23.11 OS_WAITT(Timeout) or OS_WAITT_A(min, sec, msec))

This system command is called by a task to sleep and wait for a specified timeout period. In the case of
OS_WAITT(timeout) the timeout period is in units whose value depends on the TICKTIME parameter
used. Valid values for the timeout period are in the range of 1 to 65535. A value of 0 is reserved for the
OS_KILL_IT command, meaning permanent sleep, and therefore it is not allowed for this command. The
OS_WAITT system command therefore performs the required check on the parameter before accepting
the value. If by mistake a value of 0 is given as a timeout parameter, then it is automatically changed to
a 1. Once the timeout period passes, the task which had issued this command would be moved from

the waiting to the ready queue.
This system command performs the following operations:
o If the parameter is 0, then set it to 1, to avoid permanent sleep.

« Save the correct parameter in its correct place in the TTS table.

o Jump to the QSHFT routine in order to start the task next in line.

RAND
MERCHANT
BANK

Adivision of FirstRand Bank Limited

Y O | l T I I I N K Traditional values. Innovative ideas.
]

YOU CAN WORK
AT RMB

Rand Merchant Bank uses good business to create a better world, which is one of the reasons that the country’s top talent chooses to
work at RMB. For more information visit us at www.rmb.co.za

Thinking that can change your world

Rand Merchant Bank is an Authorised Financial Services Provider

58 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.rmb.co.za

An example of the syntax used for this command is:

OS_WAITT(60);

// Wait for a timeout for 60 units, the value of the unit depends on
// the TICKTIME parameter used.

// or OS_WAITT_A(0,1,0);

// Wait for 1 second

If for example, the command TICKTIME was set to 10, the reference unit would be 10 milliseconds,
and OS_WAITT(60) would then imply waiting or sleeping for 600 milliseconds. The task would then go
into the sleep or waiting mode for 600ms and a new task would take over. After 600ms it would move

to the ready queue.

The OS_WAITT_A(min, sec, msec) is a macro which makes the command OS_WAITT(ticks) more
user-friendly by specifying the timeout in familiar minutes, seconds and milliseconds rather than in

ticks. It is further explained in section 2.3.14.

23.12 OS_KILL_IT()

This system command is used by a task in order to stop or terminate the task. As explained earlier in
OS_WAITT, this is simply the command OS_WAITT with an exceptionally allowed timeout value of 0.

The task is then placed permanently waiting and never resumes execution.

This system command performs the following operations:

o First it clears any waiting for signal or waiting for interrupt flags, so that that task would
definitely never restart.

« Then it sets its timeout period in the TTS table to 0, which is the magic number the RTOS
uses to define any non-timing task.

o Then it sets the INTVLRLD and INTVLCNT to 0, again implying that it is not a periodic task.

o Finally it jumps to the QSHFT routine in order to start the task next in line.

An example of the syntax used for this command is:

OS_KILL_IT();

/* The task simply stops to execute (waits forever) and a new task (or main() would take over.*/

Download free eBooks at bookboon.com

23.13 OS_DEFER()

This system command is used by a task in order to hand over processor time to another task. The task is

simply placed in the Waiting Queue to wait for two ticks while a new task (if ready) resumes execution.

This system command performs the following operations:

o It sets its timeout period in the TTS table to 2, which is the magic number the RTOS uses to
describe any non-timing task.
o It places the task in the Waiting Queue.

« It then flows on to the QSHFT routine in order to start the task next in line.

An example of the syntax used for this command is:

OS_DEFER();
/* The task simply stops execution and is placed in the Waiting Queue.*/

/* A new task would then take over. ¥/

2.3.14 Enhanced event-waiting and other add-on MACROS

OS_WAITT, OS_WAITS and OS_PERIODIC functions are easily modified to make them accept absolute
time, in minutes, seconds and milliseconds rather than ticks as a parameter. These macros (#define
statements) perform the same functions of the OS_WAITT, OS_WAITS and OS_PERIODIC calls but
rather than a tick parameter, they accept absolute time values as three parameters in terms of minutes,
seconds and milliseconds, thus making the commands more user-friendly. This difference is denoted
by the _A suffix (the A standing for Absolute) — e.g. OS_WAITT_A(0, 0, 300) would cause a task to
wait for 300ms and is the absolute-time version of OS_WAITT(x), where x would have to be calculated
depending on the TICKTIME value chosen to give the required number of ticks equivalent to a 300ms

delay. These macro-commands make the conversion from absolute time to ticks.

The range of possible values (65535 TICKTIMES) accepted is listed below, showing the maximum time
in minutes:seconds.milliseconds:
Using a minimum TICKTIME of 1ms:

Range from 0:00.001 to 1:05.535 in steps of 1ms.

Using a TICKTIME of 10ms:
Range from 0:00.010 to 10:55.350 in steps of 10ms.

Using a maximum TICKTIME of 50 ms:
Range from 0:00.050 to 54:36.750 in steps of 50ms

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 PaulOS F020: a co-operative RTOS

If the conversion from absolute time to ticks results in 0 (all parameters being 0 or overflow) this result
is only accepted by OS_WAITS(ticks) by virtue of how the OS_WAITT(ticks), OS_WAITS(ticks) and
OS_PERIODIC(ticks) calls were written. In the case of the OS_WAITT(ticks) and OS_PERIODIC(ticks)

calls, the tick count would automatically be changed to 1 meaning an interval of 1 ticktime.

OS_WAITT_A(M,S,ms) // Absolute OS_WAITT for minutes, seconds and milliseconds
OS_WAITS_A(M,S,ms) // Absolute OS_WAITS for minutes, seconds and milliseconds
OS_PERIODIC_A(M,S,ms) // Absolute OS_PERIODIC for minutes, seconds and milliseconds
OS_PAUSE_RTOS() // Disable the RTOS. Can be used at the start of a stand-alone ISR
OS_RESUME_RTOS() // Re-enable the RTOS. Can be used at the end of a stand-alone ISR
OS_CPU_IDLE()) /1 Sets the uC in idle mode in PCON SER. This is usually used

// in the main program endless loop after initialising and starting the
/I RTOS. CPU wakes up at every interrupt, timers still running
OS_CPU_DOWN() /1 Sets the pC in power-down mode in PCON SFR

360°
thinking

Deloitte

Discover the truth at WWW.dClOittC,CalcareerS © Deloitte & Touche LLP and affiliated entities.

61 Click on the ad to read more
Download free eBooks at bookboon.com

http://www.deloitte.ca/careers

2.3.15 Stand-alone Interrupt Service Routines

In the PaulOS_F020 RTOS, a simple method of having one or more stand-alone interrupt service routines
(ISRs) which would run whenever some interrupt is generated has been included. All we have to do is to
set to ‘1’ the corresponding interrupt in the PaulOS_F020_Parameters.H file. For example if we intend
to have an ISR running under the EXT 0 (i.e. INTO0) interrupt (and not under RTOS control as a task
with an OS_WAITI(0) command), then we have to make sure to set to ‘1’ the corresponding #define
statements in PaulOS_F020_Parameters.H file.

#define STAND_ALONE_ISR_00 1 // EXTO - set to 1 if using this interrupt as a stand alone ISR

Then as shown in Figure 2-3 the INTO ISR itself also includes the commands OS_PAUSE_RTOS() when
starting the ISR and then OS_RESUME_RTOS() at the end in order to resume the RTOS before exiting
the ISR. This would ensure that the RTOS does not interfere with the stand-alone ISR. It is also best to

use register banks 2 or 3 for these ISRs.

void ISR_EXTO (void) interrupt 0 using 2 // using register bank 2
{

OS_PAUSE_RTOS() // Disable the RTOS, used in a stand-alone ISR
/* Our service routine code goes in here */
/* Our service routine code goes in here */
/* Our service routine code goes in here */
OS_RESUME_RTOS() // Re-enable the RTOS, before exiting the stand-alone ISR
}

Figure 2-3 Example of a stand-alone ISR, interrupting the RTOS and executing immediately when the interrupt occurs

24 PaulOS_F020_Parameters.h header file

This is the RTOS parameters header file. We would mainly just need to set the TICK_TIMER, TICKTIME
and NOOFTAKS parameters to reflect out particular application program. If we intend to use some
stand-alone ISR, then that particular interrupt has to be selected (set to ‘1’) in this header file as explained

earlier on in section 2.3.15.

Note that the C8051F020.h used in these programs is a modified version of the standard C8051F02x
header file. A complete listing is given in (A.5 C8051F020.H) which includes extra sfr16 declarations*
and name definitions of individual bits of all the SFRs, even those that are not bit addressable. With
these extra definitions, these ‘non-addressable’ bits can be set or cleared using bit-wise OR and bit-wise
AND. Using the standard header file, certain instructions would not work since the named bit or SFR

would not have been pre-defined.

Download free eBooks at bookboon.com

#ifndef PaulOS F020 Parameters H
#define _PaulOS_F020 Parameters H

/*

KA A A AR A A A A A A AR AR A A A AR AR A AR A A A AR A A A AR A A A AR R A A A AR A A AR A A A AR A K

RTOS KERNEL HEADER FILE

*

*

* PaulOS_F020_ Parameters.H
*

* For use with PaulOS F020.C - Co-Operative RTOS written in C
* based on PaulOS by Ing. Paul P. Debono

* for use with the 8051 family of micro-controllers

*

o Igillle : PaulOS F020 Parameters.H

* Revision : 10

* Date : Revised for C8051F020 February 2015

* By : Paul P. Debono

*

*

University Of Malta

*

KAk kA A hkhk kA Ak kA dkhk kA Ak hkhkhk Ak k kA khkhk kA hkhkhk ok hkkhkhk Ak k kA kkhkhkhkh ko hkhkhkhrkhk kA rkhkhkhkrhkhkhkhkrrkhkkhkrkhkkkxxk

*/

/*
R
£3 DATA TYPE DEFINITIONS

R R R R R R I R I I I

*/

#define TICK TIMER 2 // Set to 0,1,2 or 3, make sure not to clash with UART baud rate
timer

#define TICKTIME 1 // Length of RTOS basic tick in ms - refer to the RTOS timing definitions
// suitable values are: 1, 2, 4, 5, 8, 10, 20, 25

#define NOOFTASKS 65 // Number of tasks used in application

#define STACKSIZE 0x0F // Number of bytes to allocate for the stack
// There is usually no need to change this parameter

/*

Kk hkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkh bk hkhk ko bk hk ko h ko bk ok ko h ko bk ko hk ok hkh ko hk ko hkhh ok ko hkhkhk ok ko bk ok hkhk ko bk ko hkhkhk bk ko hkhkhkhkdkhkhkhhkhhkhk bk hkhkhkkhkhkkhkkdkkxk
*/

/* Interrupt routines running as TASKS or as STAND-ALONE ISRa */

#define STAND ALONE_ ISR 00 O // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 01 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 02 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 03 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 04 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 05 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 06 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 07 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 08 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 09 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 10 O // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 11 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 12 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 13 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 14 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 15 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 16 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE_ ISR 17 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 18 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 19 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 20 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 21 0 // set to 1 if using this interrupt as a stand alone ISR
/*
hhkhkhkkhkhhkhkhhkhhkhkhhkhhkhkhhkhhkhkhhkhkhkhkhhhhkhhhkhkhkhkhkhhkhkhhkhhkhkhhkhhkhkhhkhkhkhkhkhkhhkhkhkdhhkhkhkhkhhkdkhkhkhhkhkhkhkhkhkhkrkhkhkkhkkhkkkx*k
*/

#endif

Download free eBooks at bookboon.com

2.5 Example using PaulOS_F020 RTOS

Finally, we now present an example to show the use of the RTOS in a simple program. This example
using the PaulOS_F020 RTOS is partly taken from the Blinky example included with the KEIL IDE. It
is implemented here with the modifications required in order to use the PaulOS_F020 RTOS. One task
blinks the LED and a second task which keeps displaying the time every second via UARTO.

// AUTH: PD
// DATE: 21 FEB 15

// This program flashes the green LED on the C8051F020 target board
// and send Clock time via UARTO
// Target: C8051F02x

//

//

[[== e e e e e e e e e e e e e e S S S S S e e eSS S e e e e oo s
// Includes

] f] == e e e e e e e e e S e e S S S S S S S S S eSS
#include "C8051F020.h" /* special function registers for C8051F020 7
#include "DualUarts.h" /* Uarts header file */

#include "PaulOS F020.h" /* PaulOS system calls definitions wY

#include <stdio.h>
#include <stdlib.h>

[[= e e e e e e e e e e e e e 5 5 S S S S S S S S e

// Global CONSTANTS

[mmmmm e e e e e e e e e e e e e e D D B S S S S S oS S S S oo o=

bit sio port = 0; /* SIO port to use (0 = UARTO, 1 = UART1) */

sbit LED = P1%6; // green LED: 'l' = ON; '0O' = OFF

struct time { /* structure of the time record w/
unsigned char hour; /* hour */
unsigned char min; /* minute W/
unsigned char sec; /* second */

}i

struct time ctime = { 12, 0, O }; /* storage for clock time values */

[mmmmmmm e e s e e e o e e e e e e e e 8 0 5 5 0 D D S S e S S DD

// Function PROTOTYPES

]] === e e e e e e e e e e e e e e e e e S S S S S S S e S e S e e e e

void SYSCLK Init (void);
void PORT Init (void);
void DISABLE Watchdog (void);

// This routine initializes the system clock to use the 22.1184MHz crystal
// as its clock source.
//

void SYSCLK Init (void)
I

Download free eBooks at bookboon.com

unsigned int 1i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal

for (i=0; i < 256; i++) ; // wait for oscillator to start
#ifndef SIMULATOR
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
#endif // not required during simulation
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

1 | — e e e e S S S
// DISABLE Watchdog
e R
//
// Disables the watchdog timer
//
void DISABLE Watchdog (void)
{
EA = 0;
WDTCN = OxDE;
WDTCN = O0xAD;
EA = 1;
}
[== e S e S S S S e C S S S S ST e S e T s S See e
// PORT_Init
e e
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO = 0x04; // Enable UART 0
XBR1 = 0x00;
XBR2 = 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
P1MDOUT |= 0x40; // enable P1.6 (LED) as push-pull output
}
/*
R I b b ik e R S S S i b b b b e e I S 2 I I b b kb e S S S I I I h R e e e S S S b b b b b b e e S S b b b b b h e S S S b b b b R b b S
&y

/**/
/% Task 0 'Blink' */
/**/
void BlinkTask (void)
{

O0S PERIODIC A(0,0,500); /* Repeat every 500 ms */
while (1)

{
LED = !LED;
0S WAITP();

/**/

/* Task 1 'clock' */

I hhkhkhkkhkhkhkrkrxhhkhkhkhhhhhhkhhkhkhkhhhkhhkhkhkrrrrrhhkrhhhkhhhhhkhkhhhhhkhkhkhkhkhkrrxrrkrrhkhkhhhhkkkkk /

Download free eBooks at bookboon.com

void clock (void)

{

O0S_PERIODIC A (0,1,0); /* Repeat every 1 second */
while (1) { /* clock is an endless loop &
if (++ctime.sec == 60) { /* calculate the second &y
ctime.sec = 0;
if (++ctime.min == 60) { /* calculate the minute =/
ctime.min = 0;
if (++ctime.hour == 24) { /* calculate the hour 2/
ctime.hour = 0;
}
}
}
printf ("Clock Time: %02bu:%02bu:%02bul\r", /* display time Y/
ctime.hour, ctime.min, ctime.sec);
0S WAITP(); /* wait for 1 second */
}
}
] [== e e e e e e e 0 0 0 S S S S S S S 5 5 S S e e S S e
// MAIN Routine
]] == e e e e e e e e e

void main (void) {
DISABLE Watchdog ()
SYSCLK Init ();
SetUpUART (0, 115200, 1); /* Set up UART 0, at 115200 baud using Timer 1 */

PORT Init ();

OS_INIT RTOS (0); /* initialise RTOS, variables and stack */
OS_CREATE TASK(0,BlinkTask) ; /* CREATE task 2/
OS_CREATE TASK(1,clock);

0S_RTOS_GO(0) ; /* Start multitasking, no priorities */
while (1)

{
#ifndef SIMULATOR
0S CPU IDLE(); /* Go to idle mode if doing nothing, to conserve energy */
#else

#endif

The LED blinking is handled by Task 0 or the ‘BlinkTask™ routine. Note that ant task has to be written
as an endless routine. In this case, the task is declared as a periodic task with the OS_PERIODIC_A()
command which is outside the endless loop and is thus executed only one at the beginning. In the
‘while(1)” endless loop the LED is simply toggled on/off and then the task placed in the waiting queue
waiting for the periodic interval to pass by issuing the OS_WAITP() RTOS command.

The second task is the ‘clock’ task which also runs periodically every one second. The endless loop
handles the updating of the seconds, minutes and hours and sends the ‘Clock Time:” string via UARTO.
The actual UARTO setup is not listed here but can be found in appendix B.2 UART0 and UART1.

The ‘main’ routine disables the watchdog timer, initialises the system clock, the UARTO and the RTOS.

It then creates the task and then starts the multi-tasking by starting the RTOS. The main program then
simply loops in the idle state.

Download free eBooks at bookboon.com

3 Master - Slave RTOS

3.1 Multi-controller RTOSs

A number of micro-controllers can be networked together, each of them running its own RTOS but at
the same time they would all be synchronised together. One controller would be acting as the master
and all the others would be the slaves. The transmit pin from the master would be connected to all the
receive pins of the slaves, while the transmit pins from the slaves would be connected to the master
receive pin (normally via a diode). The drawing shown in Figure 3-2 represents the case where we have

two slaves connected to the master. The number of slaves can be increased as required.

Ground Ground Ground
Master Slave 1 Slave I
T il T30 R0 TiD R0

Al L
: x

Figure 3-1 Networked micro-controllers using the UARTSs to synchronise their RTOSs

Serial transmission between the master and the slave micro-controllers is used to synchronise the separate
RTOSs running on the slaves with the RTOS running on a master board. The UART has a special mode
dedicated for such board networking. Modes 2 (the baud rate is determined by the oscillator frequency)
and 3 (the baud rate is determined by the timer overflows) of the UART provide asynchronous, full-
duplex multiprocessor communications using 11 bits which are made up of 1 start bit, 8 data bits, 1
programmable additional 9" bit and a stop bit. Mode 3 is used more frequently since the baud rate can
be easily programmed to one of the standard baud rates by loading the timer with the correct register

reload value. For this explanation we shall use UART0 (UART1 does not support mode 2).

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Master - Slave RTOS

The 9™ bit can be set to ‘1’ or ‘0’ by programming bit TB8 in register SCONO. Moreover, another bit
in SCONO, called SM20, when set enables multiprocessor communications in modes 2 or 3. The slave
boards would normally be programmed in mode 3 with UARTO interrupt enabled. When SM20 is set to
‘1, the receiver interrupt flag RI0 will only be set if the received 9" bit was a ‘1’ This particular behaviour
is what makes this mode ideal for multiprocessor communications and in particular in our case for
synchronising the RTOSs. Usually a 9 bit of 1 indicates an address byte and a 0 would indicate a data

byte. The network protocol is best explained in the following points:

« The master and the slaves would all be programmed in mode 3 at the same baud rate.

o All the slaves would initially be set up so as to have their SM20 set to 1 so as to be in the so-
called address listening mode and with their serial UARTO interrupt enabled. With this set up,
all the slaves would have their RI0 set (meaning a serial interrupt request) only if and when
they receive a character with the 9" bit set to 1.

o The master UART0 SM20 bit would be cleared to 0 and it would not be running under
serial interrupt.

o FEach slave would have a different address, stored in some variable.

o The master directs the activities of the slaves and therefore initiates the transmission.

+ The master would set its 9" bit to 1 and starts the networking protocol by sending an address,

normally of the first slave in the loop.

h\
‘
I WANT 70 CHANGE DIRECTION,

» AND THE WORLD

GOT-THE-ENERGY-TO-LEAD.COM

We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

RWE

-9
The energy to lead

68 Click on the ad to read more
Download free eBooks at bookboon.com

http://www.got-the-energy-to-lead.com

« All the slaves would receive this address and all would be requesting a serial interrupt. Their
own serial ISR would then check and compare the received address byte with their own
stored address.

o Only the slave whose address agrees with the received address would then clear its own SM20 bit
to 0. From now on, its RI0 would still be set even if the received 9" bit is 0. If the serial interrupt
is still left enabled, then only this particular slave would be ‘serially interrupted’ with any received
bytes from now on, even though the received 9™ bit of the data bytes would 0. The other slaves
would still be expecting and address with a 9™ bit set to 1.

o In most protocols, the addressed slave would normally then send an acknowledgement byte
to the master as an 11-bit character with a 9" bit set to 0.

o+ The master can then send any required data bytes to this slave, always with the 9" bit cleared
(=0) so that the other non-addressed slaves would not be getting any serial interrupt requests.

o A special pre-arranged end-of-message character, such as a ‘¢’ or ‘€’ would be sent by the
master at the end of the data transmissions, or else a previously agreed number of data bytes
would be sent.

o Once the addressed slave receives the end-of-message character or the agreed number of data
bytes, it would then set its SM2 back to 1 ready for the next address byte sent by the master.

o The master can then restart the sequence by sending the next slave address (again with the
9t bit set to 1).

For our particular case of RTOS synchronisation, some slight modification of the above protocol is made.
The master RTOS would be running under its own timer generated ticks. Its own RTOS timer interrupt
routine would have some additional code so as to send and receive bytes (or messages) to/from the slaves
over a serial link. The slaves on the other hand would have their tick interrupt routine tied to the serial
interrupt. As shown in the messaging sequence in Figure 3-2, this is a slightly different adaptation of
the method described by (Pont, 2002, chapter 27) in the excellent book on time-triggered applications.
At every master tick, the master would send an address of a slave (the slave address number changing
at every tick). All the slaves would receive this address and their own UART setup would generate an
interrupt which would be used as their RTOS tick generator routine. Hence all the slaves would have
their own RTOSs synchronised with each other but they would be running one byte late relative to the
master since the serial interrupt occurs after a byte is received, whereas the master’s tick is generated

before it transmits the address.

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Master - Slave RTOS

In the RTOS synchronisation protocol which could be changed as required according to the application,
we also opt to disable serial interrupts in the addressed slave at this point. This is because the serial
interrupts are being interpreted as the tick synchronisation pulse and only messages which could
interrupt all the slaves would be treated as such. The same slave would clear its SM20 bit and then send
an acknowledgement to the master (always as an 11-bit character with the 9" bit set to 0) and the slave
would then stay waiting for further data transmissions from the master. The master, after receiving this
acknowledgement from the addressed slave would then send a data byte or more to this same slave as
required by the application (bit 9 still 0). After the agreed number of data bytes are sent, the addressed
slave would revert back to the address listening mode by setting its SM20 bit back to 1. The periodic
interval between the ticks must be long enough to enable all serial transmissions of the 3 bytes to take
place and leave additional free time for the slave (and master) to do some other work connected with
other tasks in the application in-between ticks. All these serial transmissions would be made using the
11-bit byte master-slave operation mode of the UART as described above and in (Debono, 2013a, p. 107).

More detailed explanations of this protocol are given in the following sections of this chapter.

Slave tick (from UART) Slave tick (from UART)
Tick Ack Tick Ack
message message message m g m g r g
(Address — S1) (from S1) (Data for S1) (Address - S2) (from 82) (Data for 82)
* Master tick (from timer) " Master tick (from timer)

Figure 3-2 Serial communication between Master and two Slaves to synchronise the RTOSs

bookbooncom

Corporate eLibrary

See our Business Solutions for employee learning

Click here

Management Time Management

Problem solving I Self-Confidence I Effectiveness

Project Management I Goal setting I Coaching

70 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/bbg-elibrary-2015

3.2 Master

The UARTO initialisation routine for the Master board is listed in Figure 3-3

/****'k***~k~k****'k*********'k***/
/* Initialise the F020 8051 UART for multi-processor comms operations */

/* For the MASTER, it will not run under interrupt control */

void mp UART Master init (unsigned long baudrate)

{
ESO = 0; /* Disable Serial Interrupt */

/* For baud rates 1200 to 460800 use Timer 1 as the baud rate generator */
/* We use the 22.1184 MHz Crystal */

/* Setup serial port control register SCONO 0xDA, not under interrupt control */
/* Mode 3: 9-bit UART, using timer 1 */
/* SM00=1, SM10=1, SM20 = 0, RENO = 1, TB80 = 1, RB80 = 0, TIO = 1, RIO = 0 */

/*1 1011010 = DA hex */

// A very fast baud rate might create problems when receiving data from the slaves,
// if we are using the diodes at the TxD pins of the slaves.
// Depends on diode quality. Length of cable also becomes critical.

/* For the MASTER program, TB80 will be set to 1 when sending an address,
and set to 0 when sending data.

*
SCONO = 0xDA; // SCONO: mode 1, 9-bit UART, see above
TMOD &= O0xO0F;
TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSTEMCLK/baudrate/16UL); // set Timerl reload value for baud rate
TL1 = TH1;
TR1 = 1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMOD0O0 = 1

#message "Using Timer 1 for F020 UARTO baud rate generator as the RTOS slave tick"
#message "UARTO running in 9-bit multi-processor comms mode,”
#message “baud parameter in PaulOS F020 Master Parameters.h"

}

/**‘k‘k***‘k‘k***‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k***************************/

Figure 3-3 Listing of the UARTO 9-bit mode initialisation routine for the Master

The baud rate for the multi-processor communication serial port is usually set at a high baud rate so
as not to waste much time in the transmission or reception of the address and data bytes. The Master
UARTO would not be running under serial interrupt control and transmission is immediately started

whenever an address or data is loaded into SBUFO.

Download free eBooks at bookboon.com

The add-ons required in the Master RTOS tick-timer interrupt routine (executed for Timers 0, 1, 2 or 3
overflows depending on the TICK_TIMER selected) in order to handle this protocol are listed in Figure
3-4. These add-ons perform the sending of the Address (with bit 8 [meaning the 9 bit] set to 1) which
causes a serial interrupt in ALL the slaves, thus triggering the RTOS interrupt routine in the slaves. This
is the RTOS synchronising signal which would be received simultaneously by all the slaves. The master
then waits for the acknowledgement from the addressed slave within a set timeout, marking it as dead
if no acknowledgement is received. On receiving this acknowledgement, the master sends a byte of data
(with bit 8 [meaning the 9 bit] set to 0) to the addressed slave which can contain any information as
required by the application. This data byte will not cause any interrupt in any slave, because of the fact

that the 9th bit is set to zero whenever sending data.

The sequence would then be repeated for the next slave and so on until it will loop back to the initial

slave number to repeat the ‘polling’ ad infinitum.

/*
kA Ak hk kA Ak kA Ak hk kA Ak hkhk Ak k kA hhkhk kA dk kA kk kA khk kA vk kA dkk kA vk hkhkhkrhkhkkhkrkhk kA rkhkkkx %

*

* Function name : RTOS Timer Int

*

* Function type : Scheduler Interrupt Service Routine
*

*

Description : This is the RTOS scheduler ISR. It generates system ticks and calculates

any remaining

* waiting and periodic interval time for each task.
*

* Arguments : None

*

* Returns : None

*

Khhkhk kA rhkhk kA rhkhk kA rhkhk kA rhkhk kA rhkhkhkhkrhkhkhkhkrhkhhkhkrhkhkhkhkrhkhhkhkrhkhkhkhkrhkhkhkhkrhkhkhkhkrhkhkhkhkrhkhkkxkk*k
=Y

#if (TICK TIMER == 0) /* If Timer 0 is used for the scheduler */

void RTOS Timer Int (void) interrupt 1 using 1
{

uchar data k,s; /* Timer 0 is used, s is the slave address
variable*/

ulong data t; /* used for acknowledge timeout period */

uchar data * idata qg; /* for scheduling. */

bit data On_Q;

THO = BASIC TICK / 256; /* Timer registers reloaded w/

Download free eBooks at bookboon.com

TLO = BASIC TICK % 256;

#elif (TICK TIMER == 1) /* If Timer 1 is used for the scheduler */
void RTOS Timer Int (void) interrupt 3 using 1
{

uchar data k,s; /* Timer 1 is used =/
ulong data t; /* used for acknowledge timeout period */
uchar data * idata g; /* for scheduling. =/

bit data On_Q;

TH1 = BASIC TICK / 256; /* Timer registers reloaded */
TL1 = BASIC TICK % 256;

#elif (TICK TIMER == 2) /* If Timer 2 is used for the scheduler */
void RTOS Timer Int (void) interrupt 5 using 1
{

uchar data k,s; /* Timer 2 is used */
ulong data t; /* used for acknowledge timeout period */
uchar data * idata g; /* for scheduling. */

bit data On Q;
TF2 = 0; /* Timer 2 interrupt flag is cleared */
#elif (TICK TIMER == 3) /* If Timer 3 is used for the scheduler */

void RTOS Timer Int (void) interrupt 14 using 1
{

uchar data k,s; /* Timer 3 is used */
ulong data t; /* used for acknowledge timeout period */
uchar data * idata qg; /* for scheduling. Y

bit data On Q;

TMR3CN &= ~TF3; /* Timer 3 interrupt flag is cleared */
#endif
// start of Master/Slave add-ons

// Master sends address (0 to NOOFSLAVES which is stored in parameters master.h,
// incremented each time)

// Master receives ACK from the addressed slave

// Master sends a byte of data to this slave

/***‘k‘k‘k**‘k‘k‘k**‘k*************/
// Add-on to send address to slaves - reply expected within timeout, for this version

// s range is from 0 to (NOOFSLAVES - 1)
// TB80 initially set to one, when UARTO was initialised

while (!TIO0) {} // wait for any previous transmission to finish just in case.
// TI0O = 1, means ready to load new character in SBUF0 for Tx
TB80 = 1; // set bit 8 (9th bit), for address transmission
TIO = 0; // clear TI0 since we are going to transmit
SBUF0 = s; // send slave address
// TB80 will be set to one, once the transmission is ready
while (!TIO) {} // wait for transmission to finish.

VAR R R A AR SR R R RS RS R SRRt Rt R R et R R R Rt R R Rt

VAR R R A A RS SR R R RS RS R SRR Rt R R et R R Rt R Rt

// Add-on to receive acknowledgement from addressed slave
// If no acknowledgement is received within timeout period, then mark it with an * as dead

t = 1000UL;
while ((!RIO0) && (t !'= 0)){t--;} // wait a while for acknowledgement within
// timeout period
1f(RI0O == 1) // RI0O = 1, means received character in SBUFO
{
RIO = 0; // clear RIO
ack[s] = SBUFO; // read acknowledgement from slave, stored in array
} // sorted and used also in application program
else if (t==0) // no acknowledgement received within timeout period

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Master - Slave RTOS

ack[s] = "*'; // hence mark it as dead

/*‘k‘k*‘k*‘k‘k*‘k*‘k‘k*‘k*‘k‘k*‘k*‘k‘k*‘k*‘k‘k*‘k*‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k**************************/

/*‘k‘k*‘k*‘k‘k*‘k*‘k‘k*‘k*‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k**************************/

// Add-on to send data to addressed slave

TB8O = O; // set bit 8 (9th bit), for data transmission

// thus no interrupt will be generated on slaves, with their SM2 set to 1
TIO = 0; // clear TIO0 since we are going to transmit
SBUFO = NetworkData[s]; // send slave some data, stored in the application program

// TB80 will be set to one, once the transmission is ready
s = (++s)S$NOOFSLAVES; // prepare address for next slave
/‘k***‘k*****‘k****‘k****‘k*‘k**‘k*‘k**‘k****‘k*‘k**‘k****‘k*‘k**‘k*‘k**‘k*‘k*********************/

// end of Master/Slave add-ons

Figure 3-4 Part of the Master RTOS Tick Interrupt routine, showing the add-ons required for multi-board operations

A value of ack[s] equal to *” would then be recognised by some task in the Master program to mean

that the particular slave is not responding and can be acted upon accordingly.

33 Slave

The UARTO initialisation routine for the Slaves board is listed in Figure 3-5 which is very similar to the
Master setup routine. However the Serial UARTO would in this case be running under serial interrupt
control and an interrupt would be called whenever an address (with its 9th bit set to 1) is received
into SBUFO.

(]
B By 2020, wind could provide one-tenth of our planet's

ra I n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can
eet this challenge!

T»@f Power of Knowledge Engineering

74 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.skf.com/knowledge

/* Initialise the F020 8051 UART for multi-processor comms operations */
/* Uses timer 1 as the baud rate generator - under interrupt control for the SLAVE */

void mp UART Slave init (unsigned long baudrate)
// Set up internal UART under interrupt control
{

/* For baud rates 1200 to 460800 use Timer 1 as the baud rate generator */
/* We use the 22.1184 MHz Crystal */

/* Using Timer 1 for standard baud rate generation */

/* Setup serial port control register SCON = 0xF0 */

/* Mode 3: 9-bit UART var. baud rate */

/* SM00=1, SM10=1, SM20=1, RENO = 1, TBSO = RB80 = TIO = RIO = 0 */
/* 11110000 =F0 hex, under interrupt control */

// A faster baud rate might create problems when receiving data from the slaves,
// since we are using the diodes at the TxD pins of the slaves.
// Depends on diode quality. Length of cable becomes critical.

/* For the SLAVE program, SM2 will be set to 1 when expecting an address,
and set to 0 when expecting data.

=
SCONO = 0xFO; // SCONO: mode 1, 9-bit UART, see above
TMOD &= 0x0F;
TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSTEMCLK/baud rate/16UL) ; // set Timerl reload value for baud rate
TL1 = TH1;
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMODO0 = 1
ESO = 1; /* Enable Serial Interrupts */

#message "Using Timer 1 for F020 UARTO baud rate generator”
#fmessage “UARTO serial interrupt is used as the slave tick generator"

}

/***‘k*****‘k*****‘k*****‘k*****‘k*****‘k*****‘k*****‘k*****‘k*****‘k********************/

Figure 3-5 Listing of the UARTO initlisation routine for the Slaves. Note that the serial interrupt enable bit is set.

This serial interrupt would be acting as the main Tick interrupt for the slaves, and thus all the slaves

would be initiating their RTOS_Interrupt routine at the same time, whenever any address is received. This

routine, part of which is listed in Figure 3-6 would first check whether the address received corresponds

to this particular slave. If the address is different, then the ISR would move on to the normal RTOS

house-keeping chores.

If however, the address is its own, then an acknowledgement is sent to the Master and data is then

received from the Master. As it is written, if the connection is lost and no data is received, the program

hangs up, waiting for this never-coming data!

Download free eBooks at bookboon.com

// Add-on for ticks arriving via UARTO from Master
#elif (TICK TIMER == 999) /* If Serial Receiver Interrupt is used for the scheduler */
void RTOS Timer Int (void) interrupt 4 using 1
{
uchar data k;
uchar data * idata g;
bit data On Q;

if ((RIO == 1) && (RB8O == 1)) // react to reception of an address
{
RIO = 0; // reset the receiver interrupt flag
RxAddress = SBUFO; // read received address
if (RxAddress == MyAddress) // If master is polling this slave
{

SM20 ESO = 0;

// disable serial interrupt and set SM20 to 0
// so that although RI0O would still be set when data from Master is received

// no interrupt will be generated in any other slave
TIO = 0; // Set transmitter busy
// send acknowledgement to Master, value declared in user program
// wait for transmission to finish

SBUF0 = MyAck;
while (!TIO) {}

// now receive incoming data from Master

while (!RIO) {} // wait for incoming data from Master

// RI0O = 1, means received data character in SBUF0
RIO = TIO = 0; // Clear all serial interrupts flags

MyData = SBUFO; // Read Data, used in application program
SM20 = ESO = 1;

// Prepare for next address tick,
}

#endif

enabling serial interrupts once again

Figure 3-6 Part of the RTOS_Timer_Int routine for the Slaves, running under Serial interrupt. This code could hang up if no data is received

A timeout check can be added if required to eliminate this hang-up possibility, as adopted in the Master

source code and shown in Figure 3-7 Part listing of the RTOS_Timer_Int slave routine showing the
timeout modification during data reception Figure 3-7.

// now receive incoming data from Master

// If no data is received within timeout period, then mark it with an ~ as

‘data not wvalid’
t = 1000UL;
while (('RI0) && (t !'= 0)){t--;} // wait a while for data arrival within
// timeout period

if (RIO == 1) // RIO = 1, means received character in SBUFO
{

RI0O = TIO = O; // clear RIO

MyData = SBUFO; // Read Data,

used in application program
SM20 = ESO = 1;

// Prepare for next address tick, enabling serial interrupts once again
}

else 1if (t==0)
MyData = '~';

// nothing received within timeout period
// hence mark it as invalid data

Figure 3-7 Part listing of the RTOS_Timer_Int slave routine showing the timeout modification during data reception

A value of MyData equal to ‘~” would then be recognised by some other task to mean that the data
received is invalid and can be acted upon accordingly.

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Master - Slave RTOS

Finally, in the RTOS Macros section of the slave header file PaulOS_F020_Slave.H, the following should
be added:

#elif (TICK TIMER == 999)
#define OS PAUSE RTOS () ESO
#define OS RESUME RTOS () ESO

0x00
0x01

Figure 3-8 OS_PAUSE_RTOS() and OS_RESUME_RTOS() modification for the slave RTOS since it uses the serial interrupt as the tick generator.

so that the ‘pause’ and ‘resume’ OS commands will disable and enable the UARTO interrupt. Use of the
OS_PAUSE_RTOS() command will naturally cause some temporary loss of synchronisation with the

other slaves since the serial ISR would be delayed.

With us you can
shape the future.
Every single day.

For more information go to:
www.eon-career.com

Your energy shapes the future.

e-on

77 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.eon-career.com

PaulOS F020:
An RTOS for the C8051F020 Programming Tips and Pitfalls

4 Programming Tips and Pitfalls

In this final chapter we discuss some programming tips and common pitfalls which should be avoided

when programming such micro-controllers.

4.1 RAM size

The C8051F020 development target board has 64KB of flash memory (On-chip ROM) for code and
constants and a 4K of RAM (On-chip XRAM). Thus the KEIL IDE should be setup as shown in Figure

4-1 to make use of this on board memory.

Device Target | Output | Listing | User | C51 | A51 | BL51 Locate | BL51 Misc | Debug | Utiites |
Silicon Laboratories, Inc. C8051F020
Ral (MHz): |22.1184 [V Use On-chip ROM ((x0-0xFFFF)
Memory Model: lSmaIl: variables in DATA L]
Code Rom Size: ICompact: 2K functions, 64K progran _ﬂ [V Use On-chip XRAM (0x0-0xFFF)
Operating system: lNone L]
i~ Off-chip Code memory |~ Off-chip Xdata memory -
Start: Size: Start: Size:
Eprom I I Ram I I
Eprom I I Ram | I
Eprom I l Ram | |
A~ on 1 AN e N

Figure 4-1 Screen shot of the Target Options setup

4.2 SFRs

SERs are used to control the way the 8051 peripherals functions. Not all the addresses above 80h are
assigned to SFRs. However, this area may not be used as additional RAM memory even if a given address
has not been assigned to an SFR. Free locations are reserved for future versions of the micro-controller
and if we use that area, then our program would not be compatible with future versions of the micro-
controller, since those same locations might be used for special additional SFRs in the upgraded version.
Moreover, certain unused locations may actually be non-existent, in the sense that the actual cells for
that memory would not form part of the memory mask when being manufactured, and hence even if

we do write the code to use these locations, no actual data would be stored!

78

Download free eBooks at bookboon.com

It is therefore recommended that we do not read from or write to any SFR addresses that have not been
actually assigned to an SFR. Doing so may provoke undefined behaviour and may cause our program
to be incompatible with other 8051 derivatives that use those free addresses to store the additional SFRs

for some new timer or peripheral included in the new derivative.

If we write a program that utilizes the new SFRs that are specific to a given derivative chip (and which
therefore were not included in the standard basic 8051 SFR list), our program will not run properly on
a standard 8051 where those SFRs simply did not exist. Thus, it is best to use non-standard SFRs only
if we are sure that our program will only have to run on that specific micro-controller. If we happen
to write code that uses non-standard SFRs and subsequently share it with a third-party, we must make
sure to let that party know that our code is using non-standard SFRs and can only be used with that

particular device. Good remarks, notes and warnings within the program source listing would help.

4.3 Setup faults

The setup during the initialisation is very critical and basically we would need to initialise the system
clock, watchdog timer, crossbar registers, any input/output ports and whether we need to use them for
digital or for analogue signals. And then of course, any timers, serial ports, ADC, DAC, SPIs etc would
need to be initialised if they are going to be required in our application program. We now list some

common faults which are easily made during this setup process.

4.3.1 System Clock Setup

The System clock should be setup and initialised at the start of your program. Forgetting to set it up is a
common fault and also checking for the clock stabilisation during a simulation run can cause problems

in cases where the simulation of the clock is not well implemented as mention in section 1.8.1.

4.3.2 Watchdog Timer Setup

Forgetting to disable the watchdog timer or disabling it late is a common fault with beginners to this
device. The effect would be for the micro-controller to keep on resetting itself while executing the few

initial commands in the main program.

433 Crossbar Setup

Another very common fault with newcomers to this device is setting the wrong configuration of the
crossbar SFRs: XBR0, XBR1 and XBR2. Consulting the manual and reviewing the examples would help
a lot to enable the user to become familiar with the initialisations required, and at which pins to expect

the input or output signal to be available. (See Table 1-4, Figure 1-10, Figure 1-11 and Figure 1-12)

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Programming Tips and Pitfalls

44 Serial ports (UARTO and UARTT1)

To use the ‘printf” command, the on-board serial port or UART0 must be correctly setup at the required
baud rate. It is generally necessary to initialise at least the following four SFRs: SCON0, PCON, SCONO,
and TMOD. This is because SCONO on its own does not fully control the serial port. However, in most
cases the program will need to use one of the timers to establish the serial port baud rate. In this case,
it would be necessary to configure Timer 1 by setting TH1, TL1 and TMOD. Another bit PCON.7
(known also as SMODOO bit, but we should note that PCON is not a bit-addressable register), can be set
to double the baud rate. In this case therefore, we would also need to program bit 7 of register PCON.

This is shown in the example of Figure 4-2.

e e
// UARTO_ Init
A e eSS
//
// Configure the UARTO using Timerl, for <baud rate> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD &= OxOF; // clear Timer 1 control bits only
TMOD |= 0x20; // TMOD: set Timer 1: mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for required baud rate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMOD00 = 1
TIO =1; // Indicate TX0 ready to transmit

}

Figure 4-2 UARTO: Serial initialisation routine, not under interrupt control

80 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/accentureCZintl

A common mistake is to forget to set TIO to ‘1’ This indicates that the transmitter is ready to transmit.
Failing to do so, the serial transmission would never start since the UART would think that it is still busy

with some previous transmission. The TIO bit would then be cleared in the putchar() routine.

Moreover, if the serial handling routine is to run under interrupt control, then the appropriate interrupt
enable bits (ES and EA in the IE SFR) and sometimes even the interrupt priority bit (PS in the IP SFR)
have also to be set. This would bring to six the number of SFRs which we may need to set in order to

use the UART in interrupt mode.

Taking UARTO as an example, this time the TIO0 flag is initialized to 0 if using serial interrupt routines to
transmit characters stored in some software buffer. Once SBUFO is loaded directly with the first character
to be transmitted, the transmission would start, with the start bit, followed by eight bits 0 to 7 of the data,
any parity bit (usually none), followed by the stop bit. TI0 would then be set to 1 automatically when
this first character transmission is done and the ISR routine is then triggered which would continue to
send any remaining characters in the software buffer (TI0 would need to be reset to 0 every time in the
ISR code).

If however we are not using serial interrupt routines to transmit data, TI0 would be intialised to 1 in

the first place, since it is usual practice to start the ‘putchar()’ routine with:

while (T10==0); /] wait for the transmitter to be ready (TI0=1)
SBUFO0 = ¢; /1 store character in SBUFO0 and start transmitting character

/1 ' TI0 would be automatically set to 1 once transmission is done

A more thorough example is given in the serial routines in Appendix B.2 UART0 and UART1. The

example in the appendix gives the option to setup any one of the two available UARTS.

4.5 Interrupts

Some common problems encountered with interrupts when using assembly language are addressed here:

Forgetting to protect the PSW register: If we write an interrupt handler routine in assembly language, it
is a very good idea to always save the PSW SFR on the stack and restore it when our interrupt service
routine (ISR) is complete. Many 8051 instructions modify the bits within PSW. If our ISR does not
guarantee that PSW contains the same data upon exit as it had upon entry, then our program is bound
to behave rather erratically and unpredictably. Moreover it will be tricky to debug since the behaviour

will tend to vary depending on when and where in the execution of the program, the interrupt happened.

Download free eBooks at bookboon.com

Forgetting to protect a Register: We must protect all our registers as explained above. If we forget to
protect a register that we will use in the ISR and which might have been used in some other part of our
program, very strange results may occur. If we are having problems with registers changing their value
unexpectedly or having some arithmetic operations producing wrong answers, it is very likely that we

have forgotten to protect some registers.

Forgetting to restore protected values: Another common error is to push registers onto the stack to protect
them, and then we forget to pop them off the stack (or we pop them in the wrong order) before exiting
the interrupt. For example, we may push ACC, B, and PSW onto the stack in order to protect them
and subsequently pop only PSW and ACC off the stack before exiting. In this case, since the value of
register B was not restored (popped), an extra value remains on the stack. When the RETT instruction
is then executed at the end of the ISR, the 8051 will use that value as part of the return address instead
of the correct value. In this case, the program will almost certainly crash. We must always ensure that

the same number of registers are popped off the stack and in the right order:

PUSH PSW
PUSH ACC
PUSH B

POP B
POP ACC
POP PSW
RETI

Using the wrong register bank: Another common error occurs when calling another function or routine
from within an ISR. Very often the called routine would have been written with a particular register bank
in mind, and if the ISR is using another bank, there might be problems when referring to the registers
in the called routine. If we are writing our own routine, then in the ISR we could save the PSW register,
change the register bank and then restore the PSW register before exiting from the called routine.
However, particularly if we are using the C compiler, we might be using functions and procedures pre-
written in the compiler and which we do not have any control on, and therefore can result in program

not functioning as intended.

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Programming Tips and Pitfalls

This problem is particularly serious when using pre-emptive RTOSs, such as SanctOS or MagnOS
described in (Debono, 2013a), where a forced change of task might occur, switching from task A (which
was using for example using register bank 1) on to task B which uses say bank 2. For the case of co-
operative RTOSs (such as PaulOS), we would be in control where the task changes occur and we would

be able to take the necessary precautions.

Using RET instead of RETI: Remember that ISRs in assembly language are always terminated with the
RETTinstruction. Itis easy to inadvertently use the RET instruction instead. However the RET instruction
will not end our interrupt smoothly. Usually, using RET instead of RETI will cause the illusion of the
main program running normally, but the interrupt will only be executed once. If it appears that the

interrupt mysteriously stops executing, we must verify that RETI is being used.

Certain assemblers contain special features which will issue a warning if the programmer fails to protect

registers or commit some other common interrupt-related errors.

The above are all taken care of by the compiler when using C as the programming language.

Common problems in C or assembly language:

*I studied
English for 16 :
years but... .
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

83 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/EOT

Forgetting to re-start a timer: We might turn off a timer to re-load the timer register values or to read
the counter in an interrupt service routine (ISR) and then forget to turn it on again before exiting from

the ISR. In this case, the ISR would only execute once.

Forgetting to clear the interrupt flag: Certain interrupt are not cleared automatically when the ISR is called.
For example, when using Timer 2 interrupts, the Timer 2 overflow flag TF2 is not cleared automatically
when the ISR is serviced. We have to clear it in the ISR software. The same problem occurs if we forget
to clear the RIx or the TIx flags when using the Serial Interrupt. In this case, the ISR keeps on being
called repeatedly. Other devices may also exhibit this non-clearing flag situation and should therefore

be taken care of when they are used.

4.6 RTOS pitfalls

The PaulOS_F020 co-operative RTOS is a robust and secure RTOSs which we have used extensively
throughout the years with our students. This is mainly due to the fact that being a co-operative RTOS,
the task changes occur when we want them since there cannot be any forced pre-emptive task changes.
However there can still be hidden problems. We should take special care when handling global variables
which are accessible to all the tasks. We have to make sure that these variables are allowed to be
manipulated only when we want them to. Otherwise it might happen that a task starts with one value of a
global variable, then it goes on to a wait state, and when it later on resumes to run, it might end up using

the wrong value of the same variable simply because it was modified in the mean time by another task.

The same problem exists in the RTOS with register banks and tasks which use the same functions which

are non re-entrant.

4.7 CTips

o We should always try to keep functions (or tasks) as simple as possible.

« Use the correct required types for the variables; do not use int type if we really need byte or
bit type. Naturally, the corresponding conversion character (%c, %bu, %d etc) should then be
used with ‘printf’ or ‘scanf’ commands.

« Use signed or unsigned types correctly.

o Use specified locations for storing pointers by using declarations such as:

char data * xdata str; /* pointer stored in xdata, pointing to char stored in data */
int xdata * data numtab; /* pointer stored in data, pointing to int stored in to xdata */

long code * idata powtab; /* pointer stored in idata, pointing to long stored in code */

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Programming Tips and Pitfalls

o In order to improve the performance during code execution or to reduce the memory size
requirement for our code, we should analyse the generated list files and assembly code so as
to determine which routines can be improved in speed or reduced in size.

« We should always try to minimize the variable usage.

o Set the NUMBER_OF_TASKS, TICKTIME and TICK_TIMER definitions in the PaulOS_
F020_Parameter.h header file to correspond to your application program. This is often a
common mistake to make.

+ Ensure that if you are using interrupts, make sure that they are enabled.

o Remember that the timer used for the RTOS tick timer cannot be used also for say the baud
rate generation of a UART.

o Remember to use the correct ISR parameter in PaulOS_F020_Parameter.h header file when

you are using a stand-alone ISR.

DUKE

= THE FUQUA
SCHOOL
OF BUSINESS

i

BUSINESS HAPPENS

qua.duke.edu/globalml

Learn More »

85 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/fuqua

Appendix A: PaulOS_F020.C
Source Listing

This is the program source listing for the C version of PaulOS RTOS. It consists of:

o The header file PaulOS_F020_Parameters.h
o The header file PaulOS_F020.h

o The start-up file Startup_PaulOS_F020.A51
o The main source program PaulOS_F020.C
o The modified C8051F020 header file

Al PaulOS_F020_Parameters.h

#ifndef _PaulOS_F020_Parameters H

#define _PaulOS_F020_Parameters_H_

/*

B e R

* RTOS KERNEL HEADER FILE
* PaulOS_F020_ Parameters.H
* For use with PaulOS_F020.C — Co-Operative RTOS written in C based on PaulOS

* by Ing. Paul P. Debono

* for use with the 8051 family of micro-controllers

* File : PaulOS FO020_ Parameters.H

* Revision : 10

* Date : Revised for C8051F020 February 2015
* By : Paul P. Debono

*

* University Of Malta

ROk gk kb b kb bk kb kb b bk b b b b b bk bk bk bk b b b b b b b b b b b bk b b b i

*/

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

/*
RAR Rk kb bk kb e kb kb bk kb kb b bk b b bk b b b e b b b b b b kb b b b b b b e b b b b b b b b b b b b e b bk kb b b b b b b b b b b b bk ki

* DATA TYPE DEFINITIONS

R SRR EEEEEEEEEEEEE R

*/

#define TICK TIMER 2

// Set to 0, 1, 2 or 3, making sure tick timer does not to clash with UART baud rate timer

#define TICKTIME 1 // Length of RTOS basic tick in ms — refer to the RTOS timing definitions

// suitable values are: 1, 2, 4, 5, 8, 10, 20, 25

#define NOOFTASKS 65 // Number of tasks used in the application

#define STACKSIZE 0x0F // Number of bytes to allocate for the stack

// There is usually no need to change this parameter

/*

Rk ki kb kb b b bk b b b kb b h bk b b b kb b b b b R b R b R b b b b b b b b b b b b b R b R R

*/

/* Interrupt routines running as TASKS or as STAND-ALONE ISRs */

#define STAND ALONE ISR 00 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 01 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 02 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 03 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 04 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 05 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 06 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 07 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 08 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 09 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 10 O // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 11 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 12 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 13 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 14 0 // set to 1 if using this interrupt as a stand alone ISR

#define STAND ALONE ISR 15 0 // set to 1 if using this interrupt as a stand alone ISR

87

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

#define STAND ALONE ISR 16 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 17 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 18 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 19 0 // set to 1 if using this interrupt as a stand alone ISR
#define STAND ALONE ISR 20 O // set to 1 if using this interrupt as a stand alone ISR

#define STAND ALONE ISR 21 0 // set to 1 if using this interrupt as a stand alone ISR

/*
*/
#endif
Join American online
Interactive Online programs
Special Christmas offer:
» enroll by December 18th, 2014
» start studying and paying only in 2015
» save up to $ 1,200 on the tuition!
» Interactive Online education
> visit to find out ma@

Note: LIGS University is not accredited by an
nationallg' recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

—

88 Click on the ad to read more
Download free eBooks at bookboon.com

http://s.bookboon.com/LIGS

PaulOS F020:
An RTOS for the C8051F020

A2 PaulOS_F020.h

#ifndef PaulOS _F020 H

#define _PaulOS_F020_H

/*

Appendix A: PaulOS_F020.C Source Listing

RR AR R R R S I S I b S E E E E S b R I E S b S b b b b E b b h E E E E E b E E E E S b b b E b I E E 3 S b h b b b b b E h E I E b b b b b I E b 3 h b b

* For use with PaulOS F02

* by Ing. Paul P. Debono

RTOS KERNEL HEADER FILE

Paulos_F020.H

0.C — Co-Operative RTOS written in C based on PaulOS

* for use with the 8051 family of micro-controllers

* File : PaulOS F020.H
* Revision : 10
* Date : Revised for C8051F020 February 2015

* By : Paul P.

Debono

B. Eng. (Hons.) Elec.

University Of Malta

AR RS SRS S SRS SRS RS EE SRR RS

*/

/*

ROk kb bk kb e kb bk bk bk b b ik kb kb b b b bk b b bk b b b b b b b bk b b bk b e b bk kb b b b b b b b b b b kS ki i

DATA TYPE DEFINITIONS

AR R RS SRS SRS SRR RS EEE RS R R RS

*/

typedef unsigned char uch
typedef unsigned int uint

typedef unsigned long ulo

ary

7

ngy;

#include “PaulOS_F020_Parameters.H”

89

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

/*

RAR Rk kb bk kb e kb kb bk kb kb b bk b b bk b b b e b b b b b b kb b b b b b b e b b b b b b b b b b b b e b bk kb b b b b b b b b b b b bk ki

*/

/*
Rk kb kb Sk kb b b bk b b b b b b b bk b b R I

* FUNCTION PROTOTYPES

RAR Rk kb bk kb e kb bk bk b b bk b b bk b b b b b e b b bk b b b b b kb e e b b b b b b b b bk b e b bk kb b b b b b b b b b bk bk ki

* The following RTOS system calls do not receive any parameters:

void 0S DEFER (void); // Stops current task and passes control to next task in queue
void OS_KILL IT (void); // Kills a task — sets it waiting forever

bit OS_SCHECK (void); // Checks if running task’s signal bit is set

void 0S_WAITP (void); // Waits for end of task’s periodic interval

uchar 0OS RUNNING TASK ID(void); // Returns the number of the currently executing task

/* The following commands are simply defined as MACROS below

0S_CPU_IDLE () Set the microprocessor into a sleep mode (awakes every interrupt)

0OS_CPU_DOWN () Switch off microprocessor, activated again only by a hardware
reset

0OS_PAUSE RTOS () Disable RTOS, used in a stand-alone ISR

0OS_RESUME RTOS () Re-enable RTOS, used in a stand-alone ISR

/*

* The following RTOS system calls do receive parameters:

void OS INIT RTOS (uchar blank);// Initialises RTOS variables, parameter is not actually used
void OS RTOS GO (uchar prior); // Starts the RTOS running with priorities if required
void OS SIGNAL TASK (uchar task); // Signals a task
void OS WAITI (uchar intnum); // Waits for an event (interrupt) to occur
void OS WAITT (uint ticks); // Waits for a timeout period given by a defined

// number of ticks
void OS WAITS (uint ticks); // Waits for a signal to arrive within a given number of ticks

void OS PERIODIC (uint ticks); // Sets task to behave periodically every given number of ticks

20

Download free eBooks at bookboon.com

void OS_CREATE TASK (uchar task, uint taskadd); // Creates a task

void OS RESUME TASK (uchar task); // Resumes a task which was previously killed

/* The following commands are simply defines as MACROS below
OS_WAITT A (M,s,ms) Absolute OS WAITT() for minutes, seconds and milliseconds
O0S WAITS A(M,s,ms) Absolute OS WAITS() for minutes, seconds and milliseconds
0S_ PERIODIC A(M,s,ms) Absolute OS PERIODIC() for minutes, seconds and milliseconds

*/

/*
RAR AR R h b E S E E S S b h b h b h E E h h S b h h E h b b b b b b b h b b b h h S b E b E b 3 E b h b b b h b b E b b b b b b b b b b b b b E b E b b b h b E 3k 3 b b b

* RTOS USER DEFINITIONS

RARAE kb kb kb kb kb b h kb b b b bk b kb b b b b b b b b b kb b bk b b b b b b b b b b b g b b b b b bk ik b b b b b b b b b b b b b b b b i

*/
#define SYSCLOCK 22118400UL // 22.1184 MHz crystal
#define CPU 5120 // set to 8051F020 (denoted by 5120)

/* Stack variable points to the start pointer in hardware stack and */

/* should be defined in Startup PaulOS_F020.A51 */

BUSINES"}
SCHOO!

FINANCIAI. TIMES

-
-
-
-
-
-
-
-
-
-
-

= ' . - —
MASTER IN MANAGEMENT Al AR N

Because achieving your dreams is your greatest challenge. IE Business School's Master in Management taught
in English, Spanish or bilingually, trains young high performance professionals at the beginning of their career
through an innovative and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as Rio de Janeiro, Shanghai or San Francisco.

Because you change, we change with you.

in YouTube K3

Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/IE

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

extern idata unsigned char MAINSTACK[STACKSIZE];
/*
KAk Ak hk ko kA A Ak Ak Ak kA Ak k Ak hkhk Ak A Ak Ak hk Ak A Ak kA hhk kA Ak kA hhhhk Ak A hkhkhhk Ak khkkhhhk bk hk Ak khkhhkhhkhhkhkhkhkhkhkhkhkhkrhkhkhkhkhkhkrhkkhxkk

*/

/*
Rk kb bk bk kb b b b b b b b b kb h Rk b b bk b R b b b b b R b R R R b R b b b b b b b b b b R

* RTOS MACROS

AR R R RS ES S S S SRS S S S EEE SRR RS

*/

#define OS_CPU_IDLE () PCON |= IDLE // Sets the microprocessor in idle mode
#define OS_ CPU_DOWN () PCON |= STOP // Sets the microprocessor in power-down mode
#if (TICK_TIMER == 0)

#define OS_PAUSE RTOS () ETO = 0

#define OS_RESUME_ RTOS () ETO = 1

#elif (TICK TIMER == 1)

#define OS_PAUSE RTOS () ET1l = 0

#define OS_RESUME_RTOS () ET1 = 1

#elif (TICK TIMER == 2)

#define OS_PAUSE RTOS () ET2 = 0

#define OS _RESUME RTOS () ET2 = 1

#elif (TICK_TIMER == 3)

#define OS_PAUSE RTOS () EIE2 "= ET3

#define OS_RESUME_ RTOS () EIE2 |= ET3

#endif

/*

R R R R R R R R R R R R R R R R R R SRR EE R R R R R R R R R R R R R R R RS SRR

*/

/*

RAR Ak kb kb b e kb kb bk b b b b b b b b b b b kb b b b b b b b bk b kb b b b e e b b b b b b b bk b e b bk kb b b b b b b b b b b kg kO

* RTOS TIMING DEFINITIONS

R EEEEEEEEEEEEEE R R R R R R R EEEEE R R R R R R R R R R R R R R R R R R R

92

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

*/

/* Timers used for this RTOS use the system clock divided by 12 */

/* that is they count up once every 0.542535 micro seconds */
/* For 1 msec, count = SYSCLK/12/1000 = 1843.2 */
#define MSEC10 18432UL // In theory 1843.2 counts represent 1 msec assuming an

// 22.1184 MHz crystal.
#define CLOCK ((TICKTIME * MSEC10)/10) // i.e. approx. 35 — However respecting the
// condition
#define BASIC TICK (65535 — CLOCK + 1) // above, max. acceptable TICKTIME = 25 msecs.
// Hence all suitable values are: 1, 2, 4, 5, 8, 10, 20, 25
// For reliable time-dependent results a value of 10 or

// above is recommended depending upon the application

#define NOT_TIMING 0

// An indefinite period of waiting time in the RTOS is given by a value of 0

#define NO_INTERRUPT OxFF

/*

Rk bk kb b b b b b b b b b b b b b b b b bk b S S R b I

*/

/*

R R

* COMPILE-TIME ERROR TRAPPING

Rk bk kb bk b b b b b b b b b b b b bk b S S R b I

*/

#if (CPU != 5120)
#error Invalid CPU Setting

#endif

#1if (NOOFTASKS > 254)
#error Number of tasks is out of range. The ReadyQ can store up to 254 tasks

#endif

#1f 0 // set to one if you need the following checks to be done

#if (CPU == 5120) /* C8051F020 Silabs processor */

#if ((MAINSTACK + STACKSIZE) > 0x100)

#error Internal RAM Space exceeded. Please recheck the MAINSTACK and STACKSIZE definitions

93

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
#endif
#elif (CPU == 8051)

#if ((MAINSTACK + STACKSIZE) > 0x80)

#error Internal RAM Space exceeded. Please recheck the MAINSTACK and STACKSIZE definitions
#endif

#endif

#endif

#if ((TICKTIME * SYSCLOCK / 12000) > 65535)
#error Tick time value exceeds valid range of the timer counter setting

#endif

o

#if ((TICKTIME * SYSCLOCK / 12000) < 65535) && ((1000 % TICKTIME) != 0)
#error Undesirable TICKTIME setting. Suggested: 1, 2, 4, 8, 10, 20, 25, 40, 50 ms

#endif

#1f (CLOCK > 65535)
#error Timer counter setting exceeded valid range. Please recheck the TICKTIME and MSEC definitions

#endif

/*

R R R R R R R R R R R R R R R R R R SRR R R R EEE R R R R R R R R R R R R

*/

/*
hokkhkhkkhkhkhhhkhkhkkhkhkkhkkhkhkkhkhkkh Ak hkhkkhkhkkh Ak hkhkkhhkkh kA khkhkkhkhkkh kA khkhkkhkhkk kA kkhkkhkkkkk k& kk*
* TASK-RELATED DEFINITIONS

Kk k ok ok k ok ok ok ok ok k ok ko ok ko ok ko ok k ok ok ko ok ok ko ok k ok ok ks ok ok ok ok ko ok ko ok ok ok ok ok ok ok ok ko ok ok ok ok ok k ok ok ko k ok ok k k ok ko k ok ok k ok ok ok k ok Kk ok Xk
*/

// Interrupt names

#define IEO_INT 0
#define TFO_INT 1
#define IE1_INT 2
#define TF1_INT 3
#define UARTO_INT 4
#define TF2_INT 5
#define SPIF_INT 6
#define SI_INT 7
#define ADOWIN_INT 8

24

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
#define PCA_ INT 9
#define CPOFIF INT 10
#define CPORIF_INT 11
#define CP1FIF INT 12
#define CP1RIF_INT 13
#define TF3_INT 14
#define ADOINT INT 15
#define TF4_INT 16
#define ADIINT INT 17
#define IE6_INT 18
#define IE7_INT 19
#define UART1_INT 20
#define XTLVLD INT 21
#define SIGS_Flag 0x80
#define SIGW_Flag 0x40
#define SIGV_Flag 0x20

#define IDLE TASK NOOFTASKS

// Main endless loop in application given a task number equal to NOOFTASKS

SMS from your computer

...oync'd with your Android phone & number

Go to

me T, Docambes DG, 2992 X161
!

BrowserTexting.com

™ Tur. vteesber 0 A2 18058 | Anders Samusisen
Lo trwting Freem my computer! @

Andreas jotedon
[Tos. Dot 06, 2053 15177 Andrew MeDonald
Oh_coclli@

Anja Peterien

e " and start texting from

Anna Shivhede

your computer!

Anne Waye

Annese Tychwen

Arme McPherson
Ak i Linderup

Asmakan Mahmood

b ¢ B SO

(...) BrowserTexting

95 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.browsertexting.com/

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

/*

RAR Rk kb bk kb e kb kb bk kb kb b bk b b bk b b b e b b b b b b kb b b b b b b e b b b b b b b b b b b b e b bk kb b b b b b b b b b b b bk ki

*/

/*
Rk kb kb Sk kb b b bk b b b b b b b bk b b R I

* ENHANCED EVENT-WAITING ADD-ON MACROS

RAR Rk kb bk kb e kb bk bk b b bk b b bk b b b b b e b b bk b b b b b kb e e b b b b b b b b bk b e b bk kb b b b b b b b b b bk bk ki

* These macros perform the same functions of the WAITT, WAITS and PERIODIC

* calls but rather than ticks

* they accept absolute time values as parameters in terms of days, hours, minutes, seconds
* and milliseconds

* This difference is denoted by the A suffix — eg. WAITT A() 1is the absolute-time

* version of WAITT ()

* Range of values accepted:

Using a minimum TICKTIME of 1 msec: 1 msec — 1 min, 5 secs, 535 msecs
* Using a recommended TICKTIME of 10 msec: 10 msecs — 10 mins, 55 secs, 350 msecs

* Using a maximum TICKTIME of 50 msec: 50 msecs — 54 mins, 36 secs, 750 msecs

* If the conversion from absolute time to ticks results in 0 (all parameters being 0 or
* overflow) this
* result is only accepted by WAITS() by virtue of how the WAITT(), WAITS() and PERIODIC()

* calls were

* written. In the case of the WAITT() and PERIODIC() calls the tick count would automatically
* be changed to 1 meaning an interval of e.g. 50 msecs in case the TICKTIME is defined to be

* 50 msecs

* Liberal use of parentheses is made in the following macros in case the arguments might

* be expressions.

Kok kKKK KKK A KKK KA KA KKK A KA KA KA KKK AT A KKK A KA XK A I AKX A KA XK A I AKX KA T AKX A KA XK AT A KK XA KA XK A KKK
*/

#define OS_WAITT A(M,S,ms) OS WAITT((uint) ((60000* (##M) + 1000* (##S) + (##ms))/TICKTIME))
#define OS_WAITS A(M,S,ms) OS WAITS((uint) ((60000* (##M) + 1000* (##S) + (##ms))/TICKTIME))

#define OS_PERIODIC A (M,S,ms) OS PERIODIC ((uint) ((60000* (##M)+1000* (##S)+ (##ms))/TICKTIME))

26

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

/*

RAR Rk kb bk kb e kb kb bk kb kb b bk b b bk b b b e b b b b b b kb b b b b b b e b b b b b b b b b b b b e b bk kb b b b b b b b b b b b bk ki

*/

/*

* Other functions used internally by the RTOS:

*/
void QShift (void); // Task swapping function
void RTOS Timer Int (void); // RTOS Scheduler ISR

void Xtra Int (uchar task_intflag); // Function used by ISRs other than the RTOS Scheduler

#if (!STAND ALONE ISR 00)

void Xtra Int 0 (void); // External Interrupt 0 ISR
#endif

#if ((TICK TIMER != 0) && (!STAND ALONE ISR 01))

voild Xtra Int 1 (void); // Timer 0 ISR

#endif

#if (!STAND ALONE ISR 02)

void Xtra Int 2 (void); // External Interrupt 1 ISR
#endif

#if ((TICK TIMER != 1) && (!STAND ALONE ISR 03))

void Xtra Int 3 (void); // Timer 1 ISR

#endif

#if (!STAND ALONE ISR 04)

void Xtra Int 4 (void); // Serial Port ISR
#endif

#if ((TICK TIMER != 2) && (!STAND ALONE ISR 05))
void Xtra Int 5 (void); // Timer 2 ISR
#endif

#if (!STAND ALONE ISR 06)
void Xtra Int 6 (void);

#endif

97

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

#if (!STAND ALONE ISR 07)
voild Xtra Int 7 (void);

#endif

#1if (! STAND ALONE_TI SR_O 8)
void Xtra Int 8 (void);

#endif

#if (!STAND ALONE_ ISR 09)
void Xtra Int 9 (void);

#endif

#if (!STAND ALONE ISR 10)
voild Xtra Int 10 (void);

#endif

#if (!STAND ALONE ISR 11)
void Xtra Int 11 (void);

#endif

The Wake

the only emission we want to leave behind

S el

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo.
Power competencies are offered with the world’s largest engine programme — having outputs spanning
from 450 to 87,220 kW per engine. Get up front!

Find out more at www.mandieselturbo.com

Engineering the Future — since 1758.

MAN Diesel & Turbo

28 Click on the ad to read more
Download free eBooks at bookboon.com

http://www.mandieselturbo.com

PaulOS F020:
An RTOS for the C8051F020

#if (!STAND ALONE ISR 12)
vold Xtra Int 12 (void);

#endif

#if (!STAND ALONE ISR 13)
void Xtra Int 13 (void);

#endif

#if ((TICK_TIMER != 3)
void Xtra Int 14 (void);

#endif

#if (!STAND ALONE ISR 15)
voild Xtra Int 15 (void);

#endif

#if (!STAND ALONE ISR 16)
void Xtra Int 16 (void);

#endif

#if (!STAND ALONE ISR 17)
void Xtra Int 17 (void);

#endif

#if (!STAND ALONE ISR 18)
vold Xtra Int 18 (void);

#endif

#if (!STAND ALONE ISR 19)
void Xtra Int 19 (void);

#endif

#if (!STAND ALONE_ ISR 20)
void Xtra Int 20 (void);

#endif

#if (!STAND ALONE ISR 21)
vold Xtra Int 21 (void);

#endif

Appendix A: PaulOS_F020.C Source Listing

(ISTAND ALONE ISR 14))

// Timer 3 isr

29

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

/*

RAR Rk kb bk kb e kb kb bk kb kb b bk b b bk b b b e b b b b b b kb b b b b b b e b b b b b b b b b b b b e b bk kb b b b b b b b b b b b bk ki
*/

#endif

A3 Startup_PaulOS_F020.A51

SNOMOD51

; This file is part of the C51 Compiler package
; Copyright (c) 1988-2002 Keil Elektronik GmbH and Keil Software, Inc.
; modified by Paul Debono in order to

; handle the C8051F020 micro-controller, running the PaulOS RTOS
; Startup PaulOS F020.A51: This code is executed after processor reset.
; To translate this file use A51 with the following invocation:

; A51 Startup PaulOS F020.A51

; To link the modified Startup PaulOS F020.0BJ file to your application use the

; following BL51 invocation:
; BL51 <your object file list>, Startup_ PaulOS F020.0BJ <controls>
; User-defined Power-On Initialization of Memory

; With the following EQU statements the initialization of memory

; at processor reset can be defined:

; ; the absolute start-address of IDATA memory is always 0
IDATALEN EQU 100H ; the length of IDATA memory in bytes.
XDATASTART EQU 0H ; the absolute start-address of XDATA memory
XDATALEN EQU 4096 ; the length of XDATA memory in bytes.
PDATASTART EQU OH ; the absolute start-address of PDATA memory
PDATALEN EQU OH ; the length of PDATA memory in bytes.

100

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

; Notes: The IDATA space overlaps physically the DATA and BIT areas of the
; 8051 CPU. At minimum the memory space occupied from the C51

; run-time routines must be set to zero.

; Reentrant Stack Initilization

; The following EQU statements define the stack pointer for reentrant

; functions and initialized it:

; Stack Space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.

IBPSTACKTOP EQU OFFH+1 ; set top of stack to highest location+l.
; Stack Space for reentrant functions in the LARGE model.
XBPSTACK EQU 0 ; set to 1 if large reentrant is used.

XBPSTACKTOP EQU OFFFFH+1; set top of stack to highest location+l.

; Stack Space for reentrant functions in the COMPACT model.

TURN TO THE EXPERTS FOR
SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation
and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do
business reviews of existing subscription businesses and we develope acquisition and

retention strategies.

Learn more at linkedin.com/company/subscrybe or contact
Managing Director Morten Suhr Hansen at mha@subscrybe.dk

SUBSCRYBE - fofle fifur

101 Click on the ad to read more
Download free eBooks at bookboon.com

http://s.bookboon.com/Subscrybe

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
PBPSTACKTOP EQU OFFFFH+1; set top of stack to highest location+l.

; Page Definition for Using the Compact Model with 64 KByte xdata RAM

; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used
; in the linker invocation.

’

PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.
PPAGE EQU 0 ; define PPAGE number.

PPAGE_SFR DATA OAQH ; SFR that supplies uppermost address byte
; (most 8051 variants use P2 as uppermost address byte)

; Standard SFR Symbols

ACC DATA OEOH
B DATA 0OFOH
SP DATA 81H
DPL DATA 82H
DPH DATA 83H

NAME 7?C_STARTUP

?C_C51STARTUP SEGMENT CODE

?STACK SEGMENT IDATA

#include “PaulOS F020 Parameters.h”

RSEG ?STACK

MAINSTACK: DS STACKSIZE

EXTRN CODE (?C_START)
PUBLIC ?C_STARTUP

PUBLIC MAINSTACK

102

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020

CSEG
?C_STARTUP: LJMP

RSEG
STARTUP1:

IF IDATALEN <> 0

MOV

CLR

IDATALOOP: MOV

DJINZ

ENDIF

IF XDATALEN <> 0

MOVR6, # (HIGH

MOV
MOV
IF (LOW (XDATALEN))
ELSE
MOV
ENDIF
CLR
XDATALOOP: MOVX
INC
DJINZ
DJINZ
ENDIF

IF PPAGEENABLE <> 0

ENDIF

IF PDATALEN <> 0
MOV
MOV
CLR

PDATALOOP: MOVX

INC

DJINZ

ENDIF

AT O

STARTUPL

?C_C51STARTUP

RO, #IDATALEN — 1
A
@RO, A

RO, IDATALOOP

DPTR, #XDATASTART
R7, #LOW (XDATALEN)
<> 0

(XDATALEN)) +1
R6, #HIGH (XDATALEN)
A

@DPTR, A

DPTR

R7,XDATALOOP

R6, XDATALOOP

MOV PPAGE_SFR, #PPAGE
RO, #LOW (PDATASTART)

R7, #LOW (PDATALEN)

A

@RO, A

RO

R7, PDATALOOP

103

Download free eBooks at bookboon.com

Appendix A: PaulOS_F020.C Source Listing

PaulOS F020:

An RTOS for the C8051F020

IF IBPSTACK <> 0

EXTRN DATA (?C_IBP)

MOV

ENDIF

IF XBPSTACK <> 0

EXTRN DATA (?C_XBP)

MOV
MOV

ENDIF

IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)
MOV

ENDIF

MOV

?C_IBP, #LOW IBPSTACKTOP

?C_XBP, #HIGH XBPSTACKTOP

?C_XBP+1, #LOW XBPSTACKTOP

?C_PBP, #LOW PBPSTACKTOP

SP, #2STACK-1

Appendix A: PaulOS_F020.C Source Listing

; This code is required if you use L51 BANK.A51 with Banking Mode 4

How to retain your
top staff

FIND OUT NOW FOR FREE

104

DO YOU WANT TO KNOW:

What your staff really want?

The top issues troubling them?

How to make staff assessments
work for you & them, painlessly?

Get your free trial

Because happy staff get more done

Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/performancereviewpro-bookboonlp

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

; EXTRN CODE (?B_SWITCHO)
; CALL ?B_SWITCHO ; init bank mechanism to code bank 0

LJMP ?C_START

END

A4 PaulOS_F020.c

/*
ER R R R R R R EE R R R RS SRR

* PaulOS_F020.c RTOS KERNEL SOURCE CODE

* Co-Operative RTOS written in C by Ing. Paul P. Debono:

* For use with the Silicon Labs C8051F020 family of micro-controllers

* Notes:

* Timer to use for the RTOS ticks is user selectable: Timer 0, 1, 2, or 3

* Assign the correct values to ‘TICK TIMER’, ‘CPU’, ‘MAINSTACK'

* and ‘NOOFTASKS’ in PaulOS_F020.H

* If it 1is noticed that timing parameters are not being met well — the system’s TICKTIME
* can be modified by changing the value ‘TICKTIME’ in PaulOS F020.H — please adhere to the

* conditions mentioned in PaulOS F020.H

* File : PaulOS_F020.C

* Revision : 10

* Date : FEBRUARY 2015

* By : Paul P. Debono

*

* University Of Malta

Rk b kS kb bk b b b b b bk b b b R b Sk R

*/

105

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

/*
RAR Rk kb bk kb e kb kb bk kb kb b bk b b bk b b b e b b b b b b kb b b b b b b e b b b b b b b b b b b b e b bk kb b b b b b b b b b b b bk ki

* INCLUDES

R R R R R R R EEE R R R R R R R R RS SRR

*/

#include “C8051F020.h” /* special function registers definitions for the C8051F020 */
#include “PaulOS_F020.h” /* RTOS system calls definitions */

/*

RR AR R h b E S E S S b h b h S E E E h h E S b E h E h b b b b b b b b h b b b b E b b h b E b h E b b b b b h b b b b b b b b b b b b b b h b b E b E b b b b b 3 h b 3 b b b

*/

/*

Kok Kk ok kK K K K K Kk ko ok ok ok ok ok kK K K ok o ok ok ok ok ok ok R kK ko ok ok ok ok kR K ko ok kR ok kR R Rk ko ok ko ok ok ok ok ok ok kK K K
* STRUCTURE DEFINITIONS

Kok Kk ok kK K K K K K K ko ko ok ok ok ok ok kK K Kk K K ko ok o ok ok ok ok ok ok kK K kK Kk ko o ok ok ok ok ok ok ok K kK kK Kk ko ok ok ok ok ok ok ok kK K kK Kk ko k kR ok ok ok ok ok ok kK K K
*/

struct task param

{
uchar stackptr;
uchar flags;
uchar intnum;
uint timeout;
uint interval count;
uint interval reload;
char stack[STACKSIZE];
bi

struct task param xdata task[NOOFTASKS + 1];

/*
RAR Rk kb kb b ek bk kb kb kb b b b bk bk b b b b b b b e ek kb b b b b e e b b b b b b b b b kb e b bk kb b b b b b b b b b b kg kO i

* GLOBAL VARIABLES

R R R R R R R R R R R R R R R R R R SRR EE R R R R R R R R R R R R R R R RS SRR

*/

bit bdata IntFlag; // Flag indicating a task waiting for an interrupt was found
bit bdata TinQFlag; // Flag indicating that a task timed out

bit bdata Priority; // Flag indicating whether priority is enabled or disabled

106

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
uchar data * data ReadyQTop; // Address of last ready task

uchar data Running; // Number of current task

uchar data ReadyQ[NOOFTASKS + 2]; // Queue stack for tasks ready to run

/*

Rk kb kb Sk kb b b bk b b b b b b b bk b b R I

*/

/*

R EEEEEEEEEEEEEEEEEEEEEEEEEE R

* FUNCTION DEFINITIONS

Rk kb bk kb b b bk b kb b b b b b bk b b R b i

*/

/*

ER R R R R R R R R R R R R R R R R RS EE R R R R R R R R R R R RS SRS

* Function name: OS_INIT_RTOS

*

* Function type: Initialisation System call

Struggling to get
interviews?

Professional CV consulting & writing assistance
from leading job experts in the UK.

". Take a short-cut to your next job!
@h U Improve your interview success rate by 70%.

TheCVagency

Visit thecvagency.co.uk for more info.

107 Click on the ad to read more
Download free eBooks at bookboon.com

http://thecvagency.co.uk

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
*

* Description : This system call initialises the RTOS variables, task SPs and enables any

* required interrupts

*

* Arguments : 0 parameter required but not used here,

* just to keep compatibility with the other basic PaulOS command

*

*

* Returns : None

RR AR R h b E S E S S b h b h S E E E h h E S b E h E h b b b b b b b b h b b b b E b b h b E b h E b b b b b h b b b b b b b b b b b b b b h b b E b E b b b b b 3 h b 3 b b b

*/

void OS INIT RTOS (uchar TickTimer)
{
uchar xdata 1i,73;
TickTimer = TickTimer;
/* parameter not used here, Jjust to keep compatibility with basic PaulOS */
#if (TICK TIMER == 0)
#message “Using Timer 0 as the tick timer” // compile time message

IE &= O0x7F;

IE |= 0x02; /* Set up 8051 IE register, using timer 0 */
IP = 0x02; /* Assign scheduler interrupt high priority */
#elif (TICK_TIMER == 1)

#message “Using Timer 1 as the tick timer”

IE &= Ox7F;

IE |= 0x08; /* Set up 8051 IE register, using timer 1 */
IP = 0x08; /* Assign scheduler interrupt high priority */
#elif (TICK TIMER == 2)

#message “Using Timer 2 as the tick timer”

IE &= Ox7F;

IE |= 0x20; /* Set up 8051 IE register, using timer 2 */
IP = 0x20; /* Assign scheduler interrupt high priority */
#elif (TICK _TIMER == 3)

#message “Using Timer 3 as the tick timer”

EIE2 |= 0x01; /* Set up 8051 IE register, using timer 3 */
EIP2 = 0x01; /* Assign scheduler interrupt high priority */
#endif
108

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

Running = IDLE TASK; /* Set idle task as the running task */
for (i = 0; 1 < NOOFTASKS; i++)

{

task[i].timeout = NOT TIMING; /* Initialise task timeouts, */
task[i].intnum = NO_ INTERRUPT; /* not waiting for any interrupt. */
task[i].interval count = NOT TIMING; /* periodic interval count */
task[i].interval reload = NOT_ TIMING; /* and reload variables. */
ReadyQ[i] = IDLE_TASK; /* Fill the READY queue with */

} /* with the idle task */

ReadyQ[NOOFTASKS] = IDLE TASK;

ReadyQ[NOOFTASKS + 1] = IDLE_ TASK;

ReadyQTop = ReadyQ; /* Pointer to last task made to point to */

/* base of the queue. */

for (i = 0; 1 < NOOFTASKS + 1; i++)

task[i].stackptr = MAINSTACK + 2; /* Initialise task SP values */
task[i] .flags = 0; /* Initialise task status bytes */
for (j=0; J<STACKSIZE; Jj++) task[i].stack[j] = 0; /* clear all ext. stack area */

/*
Rk ke h h b kb b Sk kb b b bk b b b b b R b bk R I

*/

/*

Kk ok ok ok ok ok ok ok ok ok Ak A ok ok ok A ok A ok Ak Ak ko k

* Function name: OS_CREATE TASK

* Function type: Initialisation System call

* Description : This system call is used in the main program for each task to be created
* for use in the application.
*
* Arguments : taskRepresents the task number (lst task is numbered as 0).
*
* taskadd Represents the task’s start address, which in the C
* environment, would simply be the name of the procedure
109

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

* Returns : None

*

R SRR EEEEEEEEEEEEE R

*/

void OS_CREATE_TASK (uchar tasknum, uint taskadd)

{

ReadyQTop++; /* Task is added to next available */
ReadyQTop = tasknum; / position in the READY queue. */
task[tasknum] .stack[0] = taskadd % 256;

task[tasknum] .stack[1l] = taskadd / 256;

/*

B R R I R R R R R R R

*/

/*

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...

110 Click on the ad to read more
Download free eBooks at bookboon.com

http://s.bookboon.com/Gaiteye

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

Rk kb kb kb b bk b b b bk b h Rk b b b kb R b b b b R b R R R b R b b b b b R b b b b b R

* Function name: OS_RTOS GO

* Function type: Initialisation System call

* Description : This system calls is used to start the RTOS going such that it supervises

the application processes.

* Arguments : prior Determines whether tasks ready to be executed are sorted

* prior to processing

* or not. If prior = 0 a FIFO queue function is implied,
* if prior = 1 the

* queue 1is sorted by task number in ascending order, as a
* higher priority is

i associated with smaller task number (task 0 would have
* the highest

* priority), such that the first task in the queue, which
* would eventually

* run, would be the one with the smallest task number

* having highest priority.

*

* Returns : None

Rk ki kb kb b kb kb b kb b b h R b b b bk b R b b b R b R b R R R b b b b bk R b b b b R R

*/

void OS _RTOS GO (uchar prior)
{
if (prior == 1) /* Checks if tasks priorities */

Priority = 1; /* are to be enabled */

else

Priority = 0;

#if (TICK_TIMER == 0)
/* Configure Timer 0 in 16-bit timer mode for the 8051 */

/* THO and TLO are loaded in the TF0 RTOS Tick ISR */

TMOD &= O0xFO; /* Clear TO mode control, leaving T1 untouched */
TMOD |= 0x01; /* Set TO mode control */
111

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
CKCON &= OxFO; /* Use sysclk/12 (TOM = 0) */
TRO = 1; /* Start timer 0 */
TFO = 1; /* Cause first interrupt immediately */
#elif (TICK TIMER == 1)
/* Configure Timer 1 in 16-bit timer mode for the 8051 */

/* TH1 and TL1 are loaded in the TF1 RTOS Tick ISR */

TMOD &= O0xOF; /* Clear T1 mode control, leaving TO untouched */

TMOD |= 0x10; /* Set Tl mode control */

CKCON &= O0xES8; /* Use sysclk/12 (T1M = 0) */

TR1 = 1; /* Start timer 1 */

TFl = 1; /* Cause first interrupt immediately */
#elif (TICK_TIMER == 2)

RCAP2 = BASIC TICK; /* Configures Timer 2 in 16-bit auto-reload mode */

CKCON |= 0xDS8; /* Use sysclk/12 (T2M=0) */

T2CON = 0x84; /* TR2 = TF2 = 1, causes first interrupt immediately */
#elif (TICK TIMER == 3)

TMR3CN = 0x00; // Stop timer 3, clear TF3 use SYSCLK/12 as timer base

TMR3RL = BASIC TICK; /* Configures Timer 3 in 16-bit auto-reload mode */

TMR3 = OxFFFF; /* Causes immediate overflow, (reload immediately) */

EIE2 |= ET3; /* Enable Timer 3 interrupts */

TMR3CN |= TR3; /* Start Timer 3 using sysclk/12 (TR3=1, TF3=T3M=T3XCLK=0) */
#endif

TinQFlag = 1; /* Signals scheduler that tasks have been */

/* added to the queue. */

EA = 1; /* Interrupts are enabled, starting the RTOS */

/*

RAR AR R h b I S E E S S b b h S E E E h b S b E E E h b b b b b b b E b b b b h h b E b E b h E b b b b h b 3h E h b b b b b b b b b b b b b E b E b b b b b 3 Sh 3k 3 b b b 3 3

*/

/*

AR R RS S S S S SRS S S SRS S S S SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR RS

112

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

* Function name: OS_RUNNING TASK_ID

* Function type: Inter-task Communication System call

* Description : This system call is used to check to get the number of the

* current task.

*

* Arguments : None

*

* Returns : Number of currently running task from which it must be called

*

Rk kb kb kb kb b b b b b bk bk b h Rk b b bk b b b b b b Rk R b R R R R b b b b b b b b b R R
*/

uchar OS RUNNING TASK ID(void)
{

return (Running);

/*

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

\7\‘ PDF components for PHP developers

www.setasign.com

113 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/Setasign

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

Rk kb kb kb b bk b b b bk b h Rk b b b kb R b b b b R b R R R b R b b b b b R b b b b b R

* Function name: OS_SCHECK

* Function type: Inter-task Communication System call

* Description : This system call is used to check if the current task has its signal set.

* It tests whether there was any signal sent to it by some other task.
*

* Arguments : None

*

* Returns : 1 if its signal bit is set, 0 if not set

RAR Rk kb kb b ek b b b bk b kb b b b kb b b b b b e b b b e e b b kb b b b kb e b b b b b b b b b b kb e b bk kb b b b b b b b b b b b b bk ki

*/

bit OS_SCHECK (void)

{
EA = 0;
if (task[Running].flags & SIGS Flag) /* If a signal is present it’s cleared */
{

task[Running] .flags &= ~SIGS Flag; /* and a 1 is returned. */

return 1;

else /* If a signal is not present, 0 is returned */

EA = 1;

return 0;

/*

R R R R R R R R R R R R R R R R R R SRR EE R R R R R R R R R R R R R R R RS SRR

/*

Rk kb kb kb b b b kb b b b b b h R b b b b ik b b R b b b R b R b R R b b b b b b R

* Function name: OS_ SIGNAL TASK

*

114

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

* Function type: Inter-task Communication System call

* Description : This system call is used to send a signal to another task.

* Arguments : task Represents the task to which a signal is required to be sent.

* Returns

None

AR R R RS ES S S S SRS S S S EEE SRR RS

*/

void OS_SIGNAL TASK (uchar tasknum)

{

EA

if (task[tasknum].flags & SIGW_Flag)

{

else

EA

/*

task[tasknum] .flags &= ~SIGS_Flag; /* If a task has been waiting */
task[tasknum] .flags &= ~SIGW Flag; /* for a signal, the task no */
task[tasknum].timeout = NOT TIMING; /* longer has to wait and is */

ReadyQTop++; /* added to the READY queue. */

*ReadyQTop = tasknum;

TinQFlag = 1;

EA = 1;

/* If it was not waiting, its */
task[tasknum] .flags |= SIGS Flag; /* signal sent bit is set */
1;

RAR ARk kb kb b ek b bk bk b b b b b bk kb kb kb b e b b b kb b b b b b e e b b b b b b b b bk b b b bk kb b b b b b b b bk kg k3

*/

/*

Rk kb bk kb b bk b b b bk b b b b b b b bk b S R b e R

* Function name: OS_WAITS

*

* Function type: Event-Waiting System call

115

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

* Description : This system call causes a task to wait for a signal to arrive within a given
number of RTOS ticks. If the signal is already present, the task continues

to execute.

* Arguments : ticks Represents the number of ticks for which the task will wait for

a signal to

* arrive. Valid range for this argument is 0 to

* 4294967295. A value of 0 means waiting forever for a
* signal to arrive.

*

* Returns : None

RAR Rk kb kb b ek b b b bk b kb b b b kb b b b b b e b b b e e b b kb b b b kb e b b b b b b b b b b kb e b bk kb b b b b b b b b b b b b bk ki

*/

RAND
MERCHANT
BANK

Adivision of FirstRand Bank Limited

Y O | l T I I I N K Traditional values. Innovative ideas.
]

YOU CAN WORK
AT RMB

Rand Merchant Bank uses good business to create a better world, which is one of the reasons that the country’s top talent chooses to
work at RMB. For more information visit us at www.rmb.co.za

Thinking that can change your world

Rand Merchant Bank is an Authorised Financial Services Provider

116 Click on the ad to read more
Download free eBooks at bookboon.com

http://www.rmb.co.za

PaulOS F020:
An RTOS for the C8051F020

void 0OS WAITS

{

EA

if

else

/*

(uint ticks)

(task[Running] .flags & SIGS Flag) /* If signal
task[Running] .flags &= ~SIGS Flag; /*
EA = 1; /*

/*

Appendix A: PaulOS_F020.C Source Listing

already sent it clears the */

signal and the task */

*/

continues to run.

If signal is not present */

task[Running] .flags |= SIGW Flag; /* the task is sent in the */
task[Running].timeout = ticks; /* waiting state, by causing */
QShift () ; /* a task switch. */

Rk ki kb kb kb b kb kb bk b b b h Rk bk bk b R b b b b b b R R R R b b b b b b b b b b R R

*/

/*

RAR AR R h b E S E E S S b h b h S h E E b E S b E h E h b b b b b b b h b b b h h b h b b E b S E b b b b E E b b b b b b b b b b b b b b b h E b E b b b b b I b b b b b

* Function name:

* Function type:

* Description

* Arguments

* Returns

0S_WAITT

Event-Waiting System call

given

by a defined number of RTOS ticks.

This system call causes a task to go in the waiting state for a timeout period

ticks for which the task will

A zero waiting time

since a zero effectively kills the

ticks Represents the number of
wait. Valid range for
this parameter is 1 to 4294967295.
parameter is set to 1
by the RTOS itself,
task, making it wait forever.
None

117

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

RAR Rk kb bk kb e kb kb bk kb kb b bk b b bk b b b e b b b b b b kb b b b b b b e b b b b b b b b b b b b e b bk kb b b b b b b b b b b b bk ki

*/

void OS WAITT (uint ticks)

{
EA = 0;
if (ticks == 0)
ticks = 1; /* Task’s timeout variable is updated */
task[Running].timeout = ticks; /* and the task then enters the */
QShift(); /* waiting state. */
}
/*

ER R R R R R R R R R R R R R R R R RS EE R R R R R R R R R R R RS SRS

*/

/*

RAR ARk kb b kb bk kb b b bk bk b b b b b b kb bk b e b b b b b kb b b b b b e e b b b b e b b b b b b e b bk ki b b bk b b b b b b b b b g b ik

* Function name: OS_WAITP

* Function type: Event-Waiting System call

*

* Description : This system call is used by a task to wait for the end of its periodic
* interval. If the interval has already passed, the task continues to

* execute.

*

* Arguments : None

*

* Returns : None

*

R R R R R R R R R R R R R R R R R R SRR EE R R R R R R R R R R R R R R R RS SRR

*/

118

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

void 0S WAITP (void)

{

EA

I
o

if ((task[Running].flags & SIGV_Flag)==SIGV_Flag)/* If the periodic */

{

task[Running] .flags &= ~SIGV_ Flag; /* interval time has elapsed, the */
EA = 1; /* task continues to */
} /* execute. */

else
/* Else the task */

task[Running].flags |= SIGV Flag; /* enters the waiting */

QShift () ; /* state. */

/*

Rk ki kb kb kb b b b b b b kb b b h R b bk kb b b R b b b R b R b R R b R b b b b b b b b R

*/

360°
thinking.

Deloitte.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiiated entities.

119 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.deloitte.ca/careers

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

/*

RAR Rk kb bk kb e kb kb bk kb kb b bk b b bk b b b e b b b b b b kb b b b b b b e b b b b b b b b b b b b e b bk kb b b b b b b b b b b b bk ki

* Function name: OS PERIODIC

* Function type: Event-Waiting System call

* Description : This system call causes a task to repeat its function every given number of
* RTOS ticks.

*

* Arguments : ticks Represents the length of the periodic interval in terms

* of RTOS ticks, after

* which the task repeats itself. Valid range for this

* parameter is 1 to 4294967295.

*

* Returns : None

Rk kb b Sk kb kb b b bk b kb b b b b b kb R b I

*/

void OS PERIODIC (uint ticks)

{

EA = 0;

if (ticks == 0)
ticks = 1; /* at least 1 tick time is required */
task[Running].interval reload = ticks; /* Task’s periodic interval count */
task[Running].interval count = ticks; /* and reload variables are */
EA = 1; /* initialised. */

/*

AR R RS EESE SRS S S SRS E S SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR RS

*/

/*

Rk kb kb kb b b b kb b b b b b h R b b b b ik b b R b b b R b R b R R b b b b b b R

* Function name: OS WAITI

*

120

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

* Function type: Event-Waiting System call

* Description : This system call causes a task to wait for a given event (interrupt).
* It identifies

* for which interrupt the task has to wait. Once identified — the task’s
* appropriate flag is set and the task is set in the waiting state by

* causing a task swap — the task

* would wait indefinitely for the interrupt as its timeout

* variable would be set to 0

* (NOT_TIMING) either during initialisation of the RTOS or

* after expiry of its timeout

* period due to other prior invocations of wait-inducing system calls.
*

* Arguments : intnum Represents the interrupt number associated with the given
* interrupt for

* which the calling task intends to wait

*

* Returns : None

RAR ARk kb b kb bk kb b b bk bk b b b b b b kb bk b e b b b b b kb b b b b b e e b b b b e b b b b b b e b bk ki b b bk b b b b b b b b b g b ik

*/

void OS_WAITI (uchar intnum)

{

EA

Il
o

switch (intnum)
{

#if (!STAND ALONE ISR 00)

case 0: /* Interrupt number 0 */
task[Running].intnum = IEO INT; /* Task made to wait for */
QShift (); /* external interrupt 0 */
break;
#endif
#if ((TICK TIMER != 0) && (!STAND ALONE ISR 01))
case 1: /* Interrupt number 1 */
task[Running].intnum = TFO_INT; /* Task made to wait for */
QShift () ; /* timer 0 interrupt */
break;
#endif
121

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

#if (!STAND ALONE ISR 02)

case 2: /* Interrupt number 2 */
task[Running].intnum = IE1_ INT; /* Task made to wait for */
QShift () ; /* external interrupt 1 */
break;
#endif
#if ((TICK TIMER != 1) && (!STAND ALONE ISR 03))
case 3: /* Interrupt number 3 */
task[Running].intnum = TF1 INT; /* Task made to wait for */
QShift () ; /* timer 1 interrupt */
break;
#endif

#if (!STAND ALONE_ ISR 04)

case 4: /* Interrupt number 4 */
task[Running].intnum = UARTO_ INT; /* Task made to wait for */
QShift(); /* serial port interrupt */
break;
#endif

W [

I WANT TO CHANGE DIRF.CTION

5 AND THE WORLD,.

GOT-THE-ENERGY-TO-LEAD.COM

We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

WE

o AR
The energy to lead

122 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.got-the-energy-to-lead.com

PaulOS F020:
An RTOS for the C8051F020

#if ((TICK TIMER != 2) && (!STAND ALONE ISR 05)

case 5:
task[Running].intnum = TF2 INT;
QShift();
break;

#endif

#if (!STAND ALONE ISR 06)
case 6:
task[Running].intnum = SPIF_ INT;
QShift ();
break;

#endif

#if (!STAND ALONE ISR 07)
case 7:
task[Running].intnum = SI INT;
QShift();
break;

#endif

#if (!STAND ALONE ISR 08)
case 8:
task[Running].intnum = ADOWIN INT;
QShift ();
break;

#endif

#if (!STAND ALONE ISR 09)
case 9:
task[Running].intnum = PCA INT;
QShift();
break;

#endif

#if (!STAND ALONE ISR 10)
case 10:
task[Running].intnum = CPOFIF_ INT;
QShift ();
break;

#endif

123

Appendix A: PaulOS_F020.C Source Listing

)
/* Interrupt number 5 */
/* Task made to wait for */

/* timer 1 interrupt */

/* Interrupt number 6 */

/* Task made to wait for */
/* serial peripheral interface */
/* Interrupt number 7 */
/* Task made to wait for */

/* SMBus interface */

/* Interrupt number 8 */

/* Task made to wait for */

/* ADCO Window comparator */

/* Interrupt number 9 */

/* Task made to wait for */

/* Programmable Counter Array */
/* Interrupt number 10 */
/* Task made to wait for */

/* comparator 0 Falling Edge */

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020

#if (!STAND ALONE ISR 11)
case 11:
task[Running].intnum = CPORIF_ INT;
QShift () ;
break;

#endif

#if (!STAND ALONE ISR 12)
case 12:
task[Running].intnum = CP1FIF INT;
QShift();
break;

#endif

#if (!STAND ALONE ISR 13)

case 13:

task[Running].intnum = CP1RIF INT;

QShift () ;
break;
#endif
#if ((TICK TIMER != 3) && (!STAND ALONE ISR 14)
case 14:
task[Running].intnum = TF3_ INT;
QShift();
break;
#endif

#if (!STAND ALONE ISR 15)
case 15:
task[Running].intnum = ADOINT INT;
QShift () ;
break;

#endif

#if (!STAND ALONE ISR 16)
case 16:
task[Running].intnum = TF4 INT;
QShift();
break;

#endif

124

Appendix A: PaulOS_F020.C Source Listing

/* Interrupt number 11 */
/* Task made to wait for */

/* comparator 0 Rising Edge */

/* Interrupt number 12 */
/* Task made to wait for */

/* comparator 1 Falling Edge */

/* Interrupt number 13 */
/* Task made to wait for */

/* comparator 1 Rising Edge */

/* Interrupt number 14 */
/* Task made to wait for */

/* timer 3 interrupt */

/* Interrupt number 15 */

/* Task made to wait for */

/* ADCO end of conversion */
/* Interrupt number 16 */
/* Task made to wait for */

/* timer 4 interrupt */

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

#if (!STAND ALONE ISR 17)

case 17: /* Interrupt number 17 */
task[Running].intnum = ADIINT INT; /* Task made to wait for */
QShift(); /* ADCl end of conversion */
break;
#endif

#if (!STAND ALONE ISR 18)

case 18: /* Interrupt number 18 */
task[Running].intnum = IE6 INT; /* Task made to wait for */
QShift () ; /* external interrupt 6 */
break;
#endif

#if (!STAND ALONE ISR 19)

case 19: /* Interrupt number 19 */
task[Running].intnum = IE7_ INT; /* Task made to wait for */
QShift(); /* external interrupt 7 */
break;
#endif
bookboon.com

Corporate eLibrary

See our Business Solutions for employee learning

Click here

Management Time Management

Problem solving I Self-Confidence I Effectiveness

Project Management I Goal setting I Coaching

125 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/bbg-elibrary-2015

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

#if (!STAND ALONE ISR 20)

case 20: /* Interrupt number 20 */
task[Running].intnum = UART1 INT; /* Task made to wait for */
QShift () ; /* UART1 interrupt */
break;
#endif

#if (!STAND ALONE ISR 21)
case 21: /* Interrupt number 21 */
task[Running].intnum = XTLVLD INT; /* Task made to wait for */
QShift () ; /* External Crystal Osc. Ready interrupt */
break;

#endif

default:

EA = 1;

break;

/*
R R R R R R R R R R EE R R R R R R R R R R RS SRS

*/

/*

RAR ARk kb b kb b ek bk kb kb kb b b b bk kb b b b e b b b e e b kb b b b b b b e b b b b b b b b b bk b e b bk kb b b b b b b b b b b bk ki

* Function name: OS DEFER

* Function type: Task Suspension System call

* Description : This system call is used to stop the current task in order for the next
* task in the queue to execute. In the meantime
* the current task is placed at the end of the queue.
*
* Arguments : None
*
* Returns : None
*
126

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

Rk kb kb kb b bk b b b bk b h Rk b b b kb R b b b b R b R R R b R b b b b b R b b b b b R

*/

void OS DEFER (void)

{

EA = 0;

task[Running].timeout = 2; /* Task added to the waiting */
/* queue, for 2 tick times, prior to */

QShift () ; /* causing a task switch *x/

/*
Rk ik ki kb bk kb b b b b b b b b b b h Rk b b b kb R b b b b R b R R R b b b b b R b b b b b R

*/

/*

RR AR R h b E S E E S S b b h b S h E E h b b b E Ak E h b b b b b b b E b b b b h S h h b E b h JE h h b b b h b h E b b b b b b b b b b b b E b E h E b b b b b 3 h 3k b b b b

* Function name: OS_KILL_IT

* Function type: Task Suspension System call

* Description : This system call kills the current task, by putting it permanently waiting,
* such that it never executes again. It also clears any set waiting signals
* which the task might have.

*

* Arguments : None

*

* Returns : None

Rk ki kb kb kb b b b b b bk b h Rk b b bk b R b b b R b R b R R R R b b b b b b b b b R R

*/

void OS KILL IT(void)

{
EA = 0;
task[Running] .flags = 0; /* Task 1is killed by clearing its flags */
task[Running].intnum = NO INTERRUPT;

task[Running] .timeout = NOT TIMING; /* setting it to wait forever */

127

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
task[Running].interval count = 0; /* Task’s periodic interval count is set to zero*/
QShift () ; /* and then cause a task switch. */

}

/*

Rk gk kb b kb b bk b bk bk b b b b b b b b b kb bk bk b b b i

*/

/*

R EEEEEEEEEEEEEEEEEEEEEEEEEE R

* Function name: OS_RESUME TASK

* Function type: Inter-task Communication System call

* Description : This system call is used to resume another KILLed task.

*

* Arguments : task Represents the task to which is to be restarted.
*

* Returns : None

(]
B By 2020, wind could provide one-tenth of our planet's

ra I n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can
eet this challenge!

rﬁf Power of Knowledge Engineering

ey

Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/knowledge

128 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.skf.com/knowledge

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

RAR Rk kb bk kb e kb kb bk kb kb b bk b b bk b b b e b b b b b b kb b b b b b b e b b b b b b b b b b b b e b bk kb b b b b b b b b b b b bk ki

*/

void OS_RESUME TASK (uchar tasknum)

{

EA = 0;
if (task[tasknum].interval reload != 0)
/* if task was a KILLed periodic task */
task[tasknum].interval count = 1; /* resume periodic task otherwise */
else
task[tasknum] .timeout = 1; /* resume normal waiting task after 1 tick */
task[Running] .timeout = 2; /* Place the current task waiting for the */
QShift () ; /* next 2 ticks in the waiting state, thus */

/* giving up its time for other tasks. */

}
/*

Rk kb kb kb b b b b b b b b bk b h Rk b b b kb b b b b b b b b R R R R R b b b b R b b b b R

*/

/*

RR AR R h b Ik S b E S b b b h S E E h b b b E h E h b b b b b b b h b b b h h S b E b E b S E b b b b b b b E b b b b b b b b b b b b b b h E b b b h b h b b b b b

* Function name: QShift

* Function type: Context Switcher (Internal function)

* Description : This function is used to perform a context switch i.e. task swapping
*

* Arguments : None

*

* Returns : None

RR AR R h b E I b E I S S b b b h S h E E I b E b b E h E h b b b b b b E b b b h h S E b b E b S JE b h b b b E b b b b b S b b b b b b

*/

void QShift (void) using 1

{

129

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020
uchar data i, temp;

uchar idata * idata internal;

uchar data * idata gtask;

uchar data * idata gptr;

TinQFlag = 0;

task[Running] .stackptr =

internal = MAINSTACK;

task[Running] .stack[i++] =
}
while (internal<=temp) ;
gtask = ReadyQ;
gptr = ReadyQ + 1;
while (gtask <= ReadyQTop)
{

*gtask++ = *gptr++;

}

temp = SP; /*

Appendix A: PaulOS_F020.C Source Listing

Current task’s SP 1is saved

/* Current

* (internal++) ;

/* READY queue is shifted down */

/* by one position

ReadyQTop--;/* Pointer to last task in queue is decremented */

if (ReadyQTop < ReadyQ) /* Ensure

ReadyQTop = ReadyQ; /*
if (Priority == 1) /*
{

/*
gptr = ReadyQTop; /*
while (gptr > ReadyQ) /*
{

/*

/*

/*

aptr--;

if (*gptr > *(gptr + 1))

{

that this pointer is never */
below the start of the READY queue

If task priorities are enabled */

the queue is sorted such that */
the highest priority task */
becomes the running task, i.e.
the one having the smallest */
task number. */

Just one scan through the list */

temp = *gptr;
*gptr = *(gptr + 1);
*(gptr + 1) = temp;

130

Download free eBooks at bookboon.com

*/

*/

task’s USED stack area is saved

*/

*/

*/

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

/* The first task in the READY queue */
Running = ReadyQ[0]; /* becomes the new running task */
/* The new running task’s stack */
/* area 1s copied to internal RAM */
temp = task[Running].stackptr;
internal = MAINSTACK;
/* The new running task’s USED stack area is copied to internal RAM */
i=0;
do {
*(internal++) = task[Running].stack[i++];
}

while (internal<=temp);

SP = task[Running].stackptr; /* The new running task’s SP is restored */

/* such that the new task will execute. */

With us you can
shape the future.
Every single day.

For more information go to:
WWw.eon-career.com

Your energy shapes the future.

131 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.eon-career.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

/*
RAR Rk kb bk kb e kb kb bk kb kb b bk b b bk b b b e b b b b b b kb b b b b b b e b b b b b b b b b b b b e b bk kb b b b b b b b b b b b bk ki

*/

/*

Rk kb kb Sk kb b b bk b b b b b b b bk b b R I

* Function name: Xtra Int 0

* Function type: Interrupt Service Routine

* Description : This is the external 0 interrupt ISR whose associated interrupt no. is O.
*

* Arguments : None

*

* Returns : None

Rk kb b Sk kb kb b b bk b kb b b b b b kb R b I

*/

#if (!STAND_ALONE_ ISR 00)
void Xtra Int 0 (void) interrupt 0 using 1
{
EA = 0;
Xtra Int (IEO_INT); /* Passes EXTOW for identification purposes */
}

#endif

/*

Rk kb bk kb kb kb b b bk b kb b b b b b ik b S R

* Function name: RTOS_Timer Int

* Function type: Scheduler Interrupt Service Routine

* Description : This is the RTOS scheduler ISR. It generates system ticks and calculates
* any remaining waiting and periodic interval time for each task.
*
* Arguments : None
*
132

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

* Returns : None

*

AR R RS EESE SRS S S SRS S S SR E RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS R R RS

*/

#if (TICK TIMER == 0) /* If Timer 0 is used for the scheduler */
void RTOS Timer Int (void) interrupt 1 using 1
{

uchar data k; /* Timer 0 is used */

uchar data * idata g; /* for scheduling. */

bit data On_Q;

THO = BASIC TICK / 256; /* Timer registers reloaded */

TLO = BASIC TICK % 256;

#elif (TICK TIMER == 1) /* If Timer 1 is used for the scheduler */
void RTOS Timer Int (void) interrupt 3 using 1
{

uchar data k; /* Timer 1 is used */

uchar data * idata gq; /* for scheduling. */

bit data On_Q;

TH1

BASIC_TICK / 256; /* Timer registers reloaded */

TL1 = BASIC TICK % 256;

#elif (TICK TIMER == 2) /* If Timer 2 is used for the scheduler */
void RTOS Timer Int (void) interrupt 5 using 1
{

uchar data k; /* For the 8032, Timer 2 is used */

uchar data * idata g; /* for scheduling. */

bit data On_Q;

TF2 = 0; /* Timer 2 interrupt flag is cleared */

#elif (TICK TIMER == 3) /* If Timer 3 is used for the scheduler */
void RTOS Timer Int (void) interrupt 14 using 1
{

uchar data k; /* For the 8032, Timer 2 is used */

uchar data * idata g; /* for scheduling. */

bit data On Q;

TMR3CN &= ~TF3; /* Timer 3 interrupt flag is cleared */

133

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020

#endif

for (k = 0; k < NOOFTASKS; k++)

{

if (task[k].interval count != NOT TIMING)

{

task[k].interval count--;

Appendix A: PaulOS_F020.C Source Listing

/* Updates the tasks’ */

/* periodic intervals. */

if (task[k].interval count == NOT_ TIMING)

{

task[k].interval count

if (task[k].flags & SIGV_Flag)

{

task[k].interval reload;

/* If periodic interval */

task[k].flags &= ~SIGV Flag; /* has elapsed and the */

g = ReadyQ;

On_Q = 0;

while (g <= ReadyQTop)

/* task has been waiting */
/* for this to occur, the */
/* task is placed in the */
/* READY queue, if it is */

Download free eBooks at bookboon.com

134

Click on the ad to read more

http://s.bookboon.com/accentureCZintl

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
if (k == *q) /* verified that the task */
/* does not already reside */
{
On Q0 = 1; /* in the queue, as now */
break; /* the task no longer */
/* requires to wait. */
}
qt+;
}
if (On Q == 0)
{
ReadyQTop++;

*ReadyQTop = k;

TinQFlag = 1;

/* If however the task */

/* was not waiting for */

/* this event, the task */

/* is not place in the */

/* the ready queue. */

else
task[k].flags |= SIGV_Flag;
}
}
if (task[k].timeout != NOT_ TIMING)
{

/* Updates the tasks’ */
task[k].timeout--; /* timeout variables. */
if (task[k].timeout == NOT TIMING)

{
ReadyQTop++; /* If a waiting task’s */
ReadyQTop = k; / timeout elapses */
TinQFlag = 1; /* the task is placed */
task([k].flags &= ~SIGW Flag; /* in the ready queue. */

}
/* If the idle task is running, when tasks are */
/* known to reside in the queue, a task switch */

/* is purposely induced so these tasks can run. */

135

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
}
if ((TinQFlag == 1) && (Running == IDLE TASK))
QShift () ;
}
/*

Rk kb b b bk bk b b b b b b kb h b b b b b b b b b b b b b b b R b b b b b b b b R b

*/

/*

R R h E S E Sk I b b b h E E h b E S E h h E h b h b b E b b b h b b b h h b b E E b dE h b b b b E b b h b b b b b b b b b b b b h b E E E E b b b b h b 3h b b b 3

Here are the Interrupt Service routines handlers for ALL the C8051F020 interrupts
Rk kb b bk kb kb b b bk bk kb b b b b b b b b b kb b b b bk R R b b b b b R R

*/

/*

RR R Rk h S E S h I b E b b S h E E E h E b b h h E E b b b b h b b b E h h E h h h h b b E b b E E b b b b h h b b SE b b b b b b b b b b b h b b E E E E b b b b b b b b b 3

* Function name: Xtra Int 1

* Function type: Interrupt Service Routine

* Description : This is the Timer 0 ISR whose associated interrupt number is 1.
*

* Arguments : None

*

* Returns : None

RR R R h E S S h I b E b b h E E E b E b h h h E E b b b b b E b b h b b b b b h E h b E b b dE b b b b b h h b h b b b b b b b b b b b b b b E b E E b b b b b b b b b 3

*/

#if ((TICK TIMER != 0) && (!STAND ALONE ISR 01))

/* Timer 0 interrupt used for RTOS on 8051 */

void Xtra Int 1 (void) interrupt 1 using 1

{
EA = 0;

Xtra Int (TFO_INT); /* Passes TFO_INT for identification purposes */

136

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

#endif
/*

AR R RS E S S S S S S S S SRS EE S S S EEEE RS EE SRS

*/

/*
Rk kb b b bk bk b b b b b b kb h b b b b b b b b b b b b b b b R b b b b b b b b R b

*

* Function name: Xtra Int 2

*

* Function type: Interrupt Service Routine

* Description : This is the external 1 interrupt ISR whose associated int. number is 2.
*

* Arguments : None

*

* Returns : None

*

*/

#if (!STAND ALONE ISR 02)

“I studied
English for 16 -
LJ

years but... »
...1 finally o
learned to 5=
speak it in just
six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

137 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/EOT

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

voild Xtra Int 2 (void) interrupt 2 using 1
{
EA = 0;
Xtra Int (IE1_INT); /* Passes IEl INT for identification purposes */
}
#endif
/‘k
Fhhkhhkhkhkhkhhhhkhh bk hhk bk hk bk h ok bk hkhkhk ko bk ko hk ko bk ko hkh ok h ko hh ok hk ok hh ok bk ok hkhk ok bk ok ok hk ok bk ko bk hk ok hk ko bk hkhkhkhk bk hkhkhkhkhkhhkhkhkhkhhkhkhkhkhhkhkkkkx

*/

/*

Rk kb kb kb b b b b b b b b b b b R b b bk b S S b S

* Function name: Xtra Int 3

* Function type: Interrupt Service Routine

* Description : This is the Timer 1 ISR whose associated interrupt number is 3.
*

* Arguments : None

*

* Returns : None

Rk kb kb kb b b b b b b b b S b b b b b b b S b
*/

#if ((TICK TIMER != 1) && (!STAND ALONE ISR 03))

void Xtra Int 3 (void) interrupt 3 using 1
{
EA = 0;

Xtra Int(TF1 _INT); /* Passes TF1 INT for identification purposes */

#endif
/*

Rk kb kb kb b b b b b b S b b b b b b b S S b I

*/

/*

138

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

Rk ik kb b b bk b b b b b b b b kb R b b b b b b bk b b b b b b R b b b b b b b b b R

* Function name: Xtra Int 4

* Function type: Interrupt Service Routine

*

* Description : This is the serial port ISR whose associated interrupt number is 4.
*

* Arguments : None

*

* Returns : None

*

KAk hkhkhkhkhkhkhkhkhhkhkhkhkhhk bk hk bk h ko bk hk bk hhkhhk bk hkhkhhhk bk hk ok hkhkhkkhhkhkhkhkhhk ok hkhkhh ok hkhkhkhhkhhkhhhkhhkhkhhkhkhkhkkhkhkhkhkhhkhkkhkhhkhkkhkkkhkx
*/
#if (!STAND ALONE_ ISR 04)
void Xtra Int 4 (void) interrupt 4 using 1
{
EA = 0;
Xtra Int (UARTO_INT); /* Passes UARTO INT for identification purposes */
}
#endif
/*
R R EEES S S S S E S SRS RS SRS SRS SRS SRS S SR EER SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS S

*/

/*

AR R RS E S E S S S S S S S S S S S SRR EEE SRS

* Function name: Xtra Int 5

* Function type: Interrupt Service Routine

* Description : This is the Timer 2 ISR whose associated interrupt number is 5.
*

* Arguments : None

*

* Returns : None

AR R RS S S S EEES S S S S S S S SRS E RS EE SRS

139

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
*/
#if ((TICK TIMER != 2) && (!STAND ALONE ISR 05))

void Xtra Int 5 (void) interrupt 5 using 1

{

EA = 0;

TF2 = 0; /* may be cleared in the task itself */

Xtra_ Int(TF2_INT); /* Passes TF2_INT for identification purposes */
}
#endif

/*
Rk kb b bk kb kb b b bk bk kb b b b b b b b b b kb b b b bk R R b b b b b R R

*

* Function name: Xtra Int 6
* Function type: Interrupt Service Routine

* Description : This is the SPI interrupt ISR whose associated interrupt number is 6.

DUKE

= THE FUQUA
SCHOOL
OF BUSINESS

e

=

Learn More »

140 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/fuqua

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
* Arguments : None
* Returns : None

Kk Kk ok kK ok ok kK ok kK ok ok k ok ok ok ok k ko ok k ok ok ko ok k ok ok k ok ok ko ok ok ok ok ok k ok ok ko ok ok ok ok k ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok k ko ok ok ok k kK Kk
*/
#if (!STAND ALONE ISR 06)

void Xtra Int 6 (void) interrupt 6 using 1

{
EA = 0;
Xtra Int (SPIF_INT); /* Passes SPIF_INT for identification purposes */
}
#endif
/*

Kk ko k k ok ok ok ok ok ok ok ok ok ok ok ok A A ok Ak ko k

* Function name: Xtra Int 7

* Function type: Interrupt Service Routine

* Description : This is the SI interrupt ISR whose associated interrupt number is 7.
*

* Arguments : None

*

* Returns : None

R EE R R R R R R R R R R R R R R R R R R R

*/

#if (!STAND ALONE ISR 07)

void Xtra Int 7 (void) interrupt 7 using 1

{
EA = 0;
Xtra Int(SI_INT); /* Passes SI_INT for identification purposes */
}
#endif
/*

R R

141

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

* Function name: Xtra Int 8

* Function type: Interrupt Service Routine

* Description : This is the ADO interrupt ISR whose associated interrupt number is 8.
*

* Arguments : None

*

* Returns : None

R R h S E S S I b h b b b E E E E h E b h b h I E b b b b h E b b b h b b b b b b E b E b b 3E h b b b b b b b h E b b b b b b b b b b b b b h E E E b b b b b b b b b b 3
*/
#if (!STAND ALONE ISR 08)
void Xtra Int 8 (void) interrupt 8 using 1
{
EA = 0;
Xtra Int (ADOWIN INT); /* Passes ADOWIN INT for identification purposes */

#endif

/*

RAR AR R h b E S E E S S b h b h S h E E b E S b E h E h b b b b b b b h b b b h h b h b b E b S E b b b b E E b b b b b b b b b b b b b b b h E b E b b b b b I b b b b b

* Function name: Xtra Int 9

* Function type: Interrupt Service Routine

* Description : This is the PCA interrupt ISR whose associated interrupt number is 9.
*

* Arguments : None

*

* Returns : None

RAR AR R h b I S E E S S b b h S E E E h b S b E E E h b b b b b b b E b b b b h h b E b E b h E b b b b h b 3h E h b b b b b b b b b b b b b E b E b b b b b 3 Sh 3k 3 b b b 3 3

*/

#if (!STAND ALONE ISR 09)
void Xtra Int 9 (void) interrupt 9 using 1

{

142

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

EA = 0;
Xtra Int (PCA_INT); /* Passes PCA INT for identification purposes */
}

#endif

/*
Rk kb kb b b bk b b S R R R I

*

* Function name: Xtra Int 10

*

* Function type: Interrupt Service Routine

* Description : This is the CPO interrupt ISR whose associated interrupt number is 10.
*

* Arguments : None

*

* Returns : None

*

Rk kS kS b b b R R I I

*/

Join American online

Interactive Online programs

Special Christmas offer:

enroll by December 18th, 2014

start studying and paying only in 2015
save up to $ 1,200 on the tuition!
Interactive Online education
visit to find out ma@

vVvyvVvyyVvyy

Note: LIGS University is not accredited by an
nationallg' recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

—

143 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/LIGS

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

#if (!STAND ALONE ISR 10)
void Xtra Int 10 (void) interrupt 10 using 1

{

EA = 0;

Xtra Int (CPOFIF_INT); /* Passes CPOFIF_INT for identification purposes */
}
#endif

/*

R EEEEEEEEEEEEE R

* Function name: Xtra Int 11

* Function type: Interrupt Service Routine

* Description : This is the CPO interrupt ISR whose associated interrupt number is 11.
*

* Arguments : None

*

* Returns : None

R EEEEEEEEEEEEEEEEEEEE R

*/

#if (!STAND ALONE ISR 11)
void Xtra Int 11 (void) interrupt 11 using 1

{

EA = 0;

Xtra Int (CPORIF_INT); /* Passes CPORIF_INT for identification purposes */
}
#endif

/*

R R

* Function name: Xtra Int 12

* Function type: Interrupt Service Routine

144

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
* Description : This is the CP1l interrupt ISR whose associated interrupt number is 12.

*

* Arguments : None

*

* Returns : None

Rk kb b bk b bk b b b bk b b b b b b b b b b b b kb b b b b b Rk b b b b b b b b b b R

*/

#if (!STAND ALONE_ISR 12)
void Xtra Int 12 (void) interrupt 12 using 1

{

EA = 0;

Xtra Int (CP1FIF_INT); /* Passes CPlFIF_INT for identification purposes */
}
#endif

/*

R Rk h E S E S h b h b b b h E E E b E E E h b E b b b b h b b b b h b b b b b E E b E b b E b b b b b h b I h b b b b b b b b b b b b b b E b E E b b E b h b 3k b b b 3

* Function name: Xtra Int 13

* Function type: Interrupt Service Routine

* Description : This is the CPl interrupt ISR whose associated interrupt number is 13.
*

* Arguments : None

*

* Returns : None

R R h E SE I E S h I b b b b b E E S E b E E E h b E E b b b b E b b b h b h b b b b b b E b b dE E b b b b h b S h E b b b b b b b b b b b b b E E E E b b b b b b 3h b b b 3

*/

#if (!STAND ALONE_ ISR 13)
void Xtra Int 13 (void) interrupt 13 using 1

{

EA = 0;

Xtra_ Int (CP1RIF _INT); /* Passes CPIRIF INT for identification purposes */
}
#endif

/*

145

Download free eBooks at bookboon.com

R Sk gk kb bk b kb b b b bk b b b b b b bk bk b b b gk b b b b b b b b b kb b b b b b b b kb b b b b b b b b b b bk bk b b b b b b b b b b b b b kb b i

* Function name: Xtra Int 14

* Function type: Interrupt Service Routine

* Description : This is the Timer 3 interrupt ISR whose associated interrupt number is 14.
*

* Arguments : None

*

* Returns : None

Rk gk bk kb kb kb b b kb b b b b b b bk kb kb b b b b b b b b b kb b bk bk b b kb b b kb b b b b b b b b bk bk b b b b b b b b b b b b bk b b i

*/

-~

BUSINES"}
SCHOO!

FINANCIAI. TIMES

-
-
-
-
-
-
-
-
-
-
-

-_.I
3
-
vee:
-
—
sanc
sem

g
P - ' ‘-; l‘ ‘ A-h_
MASTER IN MANAGEMENT A48 - {! 4
Because achieving your dreams is your greatest challenge. IE Business School's Master in Management taught
in English, Spanish or bilingually, trains young high performance professionals at the beginning of their career
through an innovative and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as Rio de Janeiro, Shanghai or San Francisco.

Because you change, we change with you.

www.ie.edu/master-management mim.admissions@ie.edu W in YouTube 3

Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/IE

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

#if | (TICK TIMER != 3) && (!STAND ALONE ISR 14))
void Xtra Int 14 (void) interrupt 14 using 1
{
EA = 0;
TMR3CN &= O0x7F; /* may be cleared in the task itself */
Xtra Int(TF3_INT); /* Passes TF3_INT for identification purposes */
}

#endif

/*

R R h E I E I S b b b b b b h E E h b E b b bk E h b b b b b b b b b b b b b b b E b b b b b E b b b b b E b E b b b b b b b b bk b b b b b b b E E b b b b b b b b b b 3

* Function name: Xtra Int 15

* Function type: Interrupt Service Routine

* Description : This is the ADO interrupt ISR whose associated interrupt number is 15.
*

* Arguments : None

*

* Returns : None

R R R dh E E E E I bk b b b b b b b E E E E E h b b b h h b h b b h h b b b b E h b b b E b JE b b dE b b E b h b b b h b b b b b b b b b b b b b b b b E b b h b b b b b 3 3 3

* x

*/

#if (!STAND ALONE ISR 15)
void Xtra Int 15 (void) interrupt 15 using 1

{

EA = 0;

Xtra Int (ADOINT INT); /* Passes ADOINT_ INT for identification purposes */
}
#endif

/*

Rk gk kb b bk bk b b b b bk kb b b b b b b b kb kb b b b b b b b b b b b b kb b bk bk bk b b b b b b b b b b b b bk b b i

* Function name: Xtra Int 16

*

* Function type: Interrupt Service Routine

147

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
*

* Description : This is the Timer 4 interrupt ISR whose associated interrupt number is 16.
*

* Arguments : None

*

* Returns : None

Rk kb b ke b b b e b b b b b b b b b kb b kb b b b b b b b e b b b b b b bk bk e b b b b b b b b b b b b bk bk e b b b b b b b b b b b kb kb ik i

*/

#if (!STAND ALONE ISR 16)
void Xtra Int 16 (void) interrupt 16 using 1

{

EA = 0;

Xtra Int(TF4 INT); /* Passes TF4 INT for identification purposes */
}
#endif

/*

ROk kb kb kb b b b bk kb b b b b b bk kb kb b b b b b e b b bk bk bk kb b kb b bk bk b b b b b b b bk bk b b b b b b b b b b bk ke b b i

* Function name: Xtra Int 17

* Function type: Interrupt Service Routine

* Description : This is the AD1 interrupt ISR whose associated interrupt number is 17.
*

* Arguments : None

*

* Returns : None

ROk kb kb kb kb bk kb b b b b b b bk bk bk kb b b b e b b b kb b b kb b bk b b bk b b b b b b b b b bk bk b b b b b b b b b b b b e b b i

*/

#if (!STAND ALONE ISR 17)
void Xtra Int 17 (void) interrupt 17 using 1

{

EA = 0;

Xtra Int (AD1INT INT); /* Passes ADLINT INT for identification purposes */
}
#endif

148

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

/*
RR Rk kb kb bk b b b b e b kb b b b b b b bk b bk b b b b b b e b bk b e b bk b kb kb b b b b b b b b b b b b bk bk b b b b b e b b b b b b b e ik i

*

* Function name: Xtra Int 18

* Function type: Interrupt Service Routine

* Description : This is the IE6 interrupt ISR whose associated interrupt number is 18.
* Arguments : None

* Returns : None

*

Rk kb kb kb b e b b b b b b b b b b b b bk b e b b b b e b b b b b b bk b b b b b b b b b b b b b b b b e bk bk b b b b b b b b b b b kb b ik i

*/

SMS from your computer

...oync'd with your Android phone & number

Go to

me T, Docambes DG, 2992 X161
!

BrowserTexting.com

™ Tur. vteesber 0 A2 18058 | Anders Samusisen
Lo trwting Freem my computer! @

Andreas jotedon
[Tos. Dot 06, 2053 15177 Andrew MeDonald
Oh_coclli@

Anja Peterien

S " and start texting from

Anna Shivhede

your computer!

Annese Tychwen

Arme McPherson
Ak i Linderup

Asmakan Mahmood

55 ¢ D BRI %

(...) BrowserTexting

149 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.browsertexting.com/

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

#if (!STAND ALONE ISR 18)
void Xtra Int 18 (void) interrupt 18 using 1

{

EA = 0;

Xtra Int (IE6_INT); /* Passes IE6 INT for identification purposes */
}
#endif

/*

Rk kb b bk kb kb b b bk bk kb b b b b b b b b b kb b b b bk R R b b b b b R R

* Function name: Xtra Int 19

* Function type: Interrupt Service Routine

* Description : This is the IE7 interrupt ISR whose associated interrupt number is 19.
*

* Arguments : None

*

* Returns : None

Rk kb b bk b bk b b b b bk b b b b b bk b R bk b b b b b b R R b b b b b b b b b R

*/

#if (!STAND ALONE ISR 19)
void Xtra Int 19 (void) interrupt 19 using 1

{

EA = 0;

Xtra Int (IE7_INT); /* Passes IE7_INT for identification purposes */
}
#endif

/*

R Rk ki kb kb kb bk h h kb b b bk b b b b kb b b b R b b b b Rk b b b b b b b b R R b

* Function name: Xtra Int 20

* Function type: Interrupt Service Routine

* Description : This is the UART1 interrupt ISR whose associated interrupt number is 20.

150

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
* Arguments : None
* Returns : None

RR R Rk h S S I b b b h b E E h I b E h I E b b b E E b b h b b b b b E b b E E b dE b b b b b b b h h E b b b b b b b b b b b E b E E E E h b b b b h 3k b b 3

*/

#if (!STAND ALONE_ ISR 20)
void Xtra Int 20 (void) interrupt 20 using 1

{

EA = 0;

Xtra_ Int (UART1_INT); /* Passes UART1_INT for identification purposes */
}
#endif

/*

AR RS E S S S S S S S S S S S S SRS EE SRS

* Function name: Xtra Int 21

* Function type: Interrupt Service Routine

* Description : This is the XTL interrupt ISR whose associated interrupt number is 21.
*

* Arguments : None

*

* Returns : None

AR RS S S S S S S S S S S S SRS E RS EE SRS

*/

#if (!STAND ALONE ISR 21)
void Xtra Int 21 (void) interrupt 21 using 1

{

EA = 0;

Xtra Int (XTLVLD INT); /* Passes XTLVLD INT for identification purposes */
}
#endif

/*

Rk kb b b bk bk b b b b b b b b b b kb b b b b b b Rk b b b b b b R b b b b b b b

151

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

*/

/*

R EE R

* Function name: Xtra Int

* Function type: Interrupt Handling (Internal function)

* Description : This function performs the operations required by the previous ISRs.
*

* Arguments : task_intflag Represents the flag mask for a given interrupt

* against which the

* byte storing the flags of each task will be

* compared in order to

* determine whether any task has been waiting for
* the interrupt in question.

*

* Returns : None

The Wake

the only emission we want to leave behind

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo.
Power competencies are offered with the world’s largest engine programme — having outputs spanning
from 450 to 87,220 kW per engine. Get up front!

Find out more at www.mandieselturbo.com

Engineering the Future — since 1758.

MAN Diesel & Turbo

152 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.mandieselturbo.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

Rk ik kb b b bk b b b b b b b b kb R b b b b b b bk b b b b b b R b b b b b b b b b R

*/

void Xtra Int (uchar current intnum) using 1
{
uchar data k;
IntFlag = 0;
for (k = 0; k < NOOFTASKS; k ++)
{
if (task[k].intnum == current intnum)
{
task[k].intnum = NO INTERRUPT;

IntFlag = 1;

task[k].timeout = NOT TIMING; /* If it found that a task */
ReadyQTop++; /* has been waiting for the */
ReadyQTop = k; / given interrupt, it no */

} /* longer requires to wait */
} /* and 1is therefore placed */

/* on the READY queue. */

if ((IntFlag == 1) && (Running == IDLE TASK))

{
TinQFlag = 1; /* If tasks are known to now reside in the */
QShift(); /* READY queue while the idle task is */

} /* running, a task switch is purposely */

/* induced, such that these tasks can run. */

else if ((IntFlag == 1) && (Running != IDLE TASK))
{
/* Otherwise, the ISR exits after */
TinQFlag = 1; /* interrupts are re-enabled, */
/* since the RTOS cannot pre-empt task */

EA

I
—
~

else EA = 1; /* Otherwise exit normally */

/*

AR R RS S S S EEES S S S S S S S SRS E RS EE SRS

*/

153

Download free eBooks at bookboon.com

A5 C8051F020.H

#ifndef C8051F020 H_

#define C8051F020 H

; Copyright (C) 2001 CYGNAL INTEGRATED PRODUCTS, INC.
; All rights reserved.

; FILE NAME : C8051F020.H

; TARGET MCUs : C8051F020, ‘F021, ‘F022, ‘F023

; DESCRIPTION : Register/bit definitions for the C8051F02x product family.

; REVISION 1.1

; Extra sfr16 declarations and additional bit definitions have been added to the non-bit-addressable

; SFRs — P. Debono

/* BYTE Registers */

sfr PO = 0x80; /* PORT 0 */

sfr SP =0x81 ; /* STACK POINTER */
sfr DPL = 0x82; /* DATA POINTER - LOW BYTE */
sfr DPH = 0x83; /* DATA POINTER - HIGH BYTE */
sfr P4 = 0x84; /* PORT 4 */

sfr P5 = 0x85; /* PORT 5 */

sfr P6 = 0x86; /* PORT 6 */

sfr PCON = 0x87; /* POWER CONTROL */

sfr TCON = 0x88; /* TIMER CONTROL */
sfr TMOD = 0x89; /* TIMER MODE */

sfr TLO = 0x8A; /* TIMER 0 - LOW BYTE */
sfr TL1 = 0x8B; /* TIMER 1 - LOW BYTE */
sfr THO = 0x8C; /* TIMER 0 - HIGH BYTE */
sfr TH1 = 0x8D; /* TIMER 1 - HIGH BYTE */
sfr CKCON = 0x8E; /* CLOCK CONTROL */
sfr PSCTL = 0x8F; /* PROGRAM STORE R/W CONTROL */
sfr P1 = 0x90; /* PORT 1 */

sfr TMR3CN = 0x91; /* TIMER 3 CONTROL */

sfr TMR3RLL = 0x92; /* TIMER 3 RELOAD REGISTER - LOW BYTE */

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
sfr TMR3RLH = 0x93; /* TIMER 3 RELOAD REGISTER - HIGH BYTE */

sfr TMR3L = 0x94; /* TIMER 3 - LOW BYTE */

sfr TMR3H =0x95 ; /* TIMER 3 - HIGH BYTE */

sfr P7 = 0x96; /* PORT 7 */

sfr SCONO = 0x98; /* SERTAL PORT 0 CONTROL */

sfr SBUFO =0x99 ; /* SERTIAL PORT 0 BUFFER */

sfr SPIOCFG = 0x9A; /* SERTIAL PERIPHERAL INTERFACE 0 CONFIGURATION */
sfr SPIODAT = 0x9B; /* SERIAL PERIPHERAL INTERFACE 0 DATA */

sfr ADC1 = 0x9C; /* ADC 1 DATA */

sfr SPIOCKR = 0x9D; /* SERIAL PERIPHERAL INTERFACE 0 CLOCK RATE CONTROL */
sfr CPTOCN = 0x9E; /* COMPARATOR 0 CONTROL */

sfr CPT1CN = 0x9F; /* COMPARATOR 1 CONTROL */

sfr P2 = 0xA0; /* PORT 2 */

sfr EMIOTC = 0xAl; /* EMIF TIMING CONTROL */

sfr EMIOCF = 0xA3; /* EXTERNAL MEMORY INTERFACE (EMIF) CONFIGURATION */
sfr POMDOUT = 0xA4; /* PORT 0 OUTPUT MODE CONFIGURATION */

sfr PIMDOUT = 0xAS5; /* PORT 1 OUTPUT MODE CONFIGURATION */

sfr P2MDOUT = 0xA6; /* PORT 2 OUTPUT MODE CONFIGURATION */

sfr PBMDOUT = 0xA7; /* PORT 3 OUTPUT MODE CONFIGURATION */

sfr IE = 0xAS; /* INTERRUPT ENABLE */

TURN TO THE EXPERTS FOR
SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation
and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do
business reviews of existing subscription businesses and we develope acquisition and

retention strategies.

Learn more at linkedin.com/company/subscrybe or contact
Managing Director Morten Suhr Hansen at mha@subscrybe.dk

SUBSCRYBE - fofle fufur

155 Click on the ad to read more
Download free eBooks at bookboon.com

http://s.bookboon.com/Subscrybe

sfr SADDRO
sfr ADCICN
sfr ADCICF
sfr AMX1SL
sfr P3IF

sfr SADEN1
sfr EMIOCN
sfr P3

sfr OSCXCN
sfr OSCICN
sfr P740UT
sfr FLSCL

sfr FLACL

sfr IP

sfr SADENO
sfr AMXOCF
sfr AMXO0SL
sfr ADCOCF
sfr PIMDIN
sfr ADCOL
sfr ADCOH
sfr SMBOCN
sfr SMBOSTA
sfr SMBODAT
sfr SMBOADR
sfr ADCOGTL
sfr ADCOGTH
sfr ADCOLTL
sfr ADCOLTH
sfr T2CON
sfr TACON
sfr RCAP2L
sfr RCAP2H
sfr TL2

sfr TH2

sfr SMBOCR
sfr PSW

sfr REFOCN
sfr DACOL

sfr DACOH

= 0xA9;
= 0xAA;
= 0xAB;
= 0xAG;
= 0xAD;
= OxAE;
= 0xAF;
= 0xBO0;
= 0xB1 ;
= 0xB2;
= 0xB5;
= 0xB6;
= 0xB7;
= 0xB8;
= 0xBY;
= 0xBA;
= 0xBB;
= 0xBG;
= 0xBD;
= 0xBE;
= 0xBF;
= 0xC0;
= 0xClI;
= 0xC2;
= 0xC3;
= 0xC4;
= 0xC5;
= 0xC6;
= 0xC7;
= 0xC8;
= 0xC9;
= 0xCA;
= 0xCB;
= 0xCG;
= 0xCD;
= 0xCF;
= 0xDO0;
= 0xD1;
= 0xD2;
= 0xD3;

/* SERIAL PORT 0 SLAVE ADDRESS */
/* ADC 1 CONTROL */

/* ADC 1 ANALOG MUX CONFIGURATION */
/* ADC 1 ANALOG MUX CHANNEL SELECT */

/* PORT 3 EXTERNAL INTERRUPT FLAGS */
/* SERIAL PORT 1 SLAVE ADDRESS MASK */
/* EXTERNAL MEMORY INTERFACE CONTROL */
/* PORT 3 */

/* EXTERNAL OSCILLATOR CONTROL */
/* INTERNAL OSCILLATOR CONTROL */
/* PORTS 4 - 7 OUTPUT MODE */

/* FLASH MEMORY TIMING PRESCALER */
/* FLASH ACESS LIMIT */

/* INTERRUPT PRIORITY */

/* SERIAL PORT 0 SLAVE ADDRESS MASK */
/* ADC 0 MUX CONFIGURATION */

/* ADC 0 MUX CHANNEL SELECTION */

/* ADC 0 CONFIGURATION */

/* PORT 1 INPUT MODE */

/* ADC 0 DATA - LOW BYTE */

/* ADC 0 DATA - HIGH BYTE */

/* SMBUS 0 CONTROL */

/* SMBUS 0 STATUS */

/* SMBUS 0 DATA */

/* SMBUS 0 SLAVE ADDRESS */

/* ADC 0 GREATER-THAN REGISTER - LOW BYTE
/* ADC 0 GREATER-THAN REGISTER - HIGH BYTE
/* ADC 0 LESS-THAN REGISTER - LOW BYTE */
/* ADC 0 LESS-THAN REGISTER - HIGH BYTE */
/* TIMER 2 CONTROL */

/* TIMER 4 CONTROL */

/* TIMER 2 CAPTURE REGISTER - LOW BYTE */
/* TIMER 2 CAPTURE REGISTER - HIGH BYTE */
/* TIMER 2 - LOW BYTE */

/* TIMER 2 - HIGH BYTE */

/* SMBUS 0 CLOCK RATE */

/* PROGRAM STATUS WORD */

/* VOLTAGE REFERENCE 0 CONTROL */
/* DAC 0 REGISTER - LOW BYTE */
/* DAC 0 REGISTER - HIGH BYTE */

Download free eBooks at bookboon.com

*/
*/

sfr DACOCN
sfr DACIL

sfr DAC1H

sfr DAC1ICN
sfr PCAOCN
sfr PCAOMD
sfr PCAOCPMO
sfr PCAOCPM1
sfr PCAOCPM2
sfr PCAOCPM3
sfr PCAOCPM4
sfr ACC

sfr XBRO

sfr XBR1

sfr XBR2

sfr RCAP4L

sfr RCAP4H
sfr EIE1

sfr EIE2

sfr ADCOCN
sfr PCAOL

sfr PCAOCPLO
str PCAOCPL1
sfr PCAOCPL2
sfr PCAOCPL3
sfr PCAOCPL4
sfr RSTSRC

sfr B

sfr SCON1

sfr SBUF1

sfr SADDR1
sfr TL4

sfr TH4

sfr EIP1

sfr EIP2

sfr SPIOCN

sfr PCAOH

sfr PCAOCPHO
sfr PCAOCPH1
sfr PCAOCPH2

= 0xD4;
= 0xD5;
= 0xD6;
= 0xD7;
= 0xDS8;
= 0xD9;
= 0xDA;
= 0xDB;
= 0xDGC;
= 0xDD;
= 0xDE;
= 0xEO;

= 0xEI;
= 0xE2;
= 0xE3;

= 0xE4;
= 0xE5;

= 0xE6;

= 0xE7;

= OxES;

= 0xE9;
= 0xEA;
= OxEB;
= 0xEG;
= 0xED;
= OxEE;
= OxEF;
= 0xFO;
= 0xF1;
= 0xF2;
= 0xF3;
= 0xF4;
= 0xF5;

= 0xF6;

= 0xF7;

= 0xF8§;
= 0xF9;
= OxFA;
= 0xFB;
= 0xFC;

/* DAC 0 CONTROL */

/* DAC 1 REGISTER - LOW BYTE */

/* DAC 1 REGISTER - HIGH BYTE */

/* DAC 1 CONTROL */

/* PCA 0 COUNTER CONTROL */

/* PCA 0 COUNTER MODE */

/* CONTROL REGISTER FOR PCA 0 MODULE 0 */

/* CONTROL REGISTER FOR PCA 0 MODULE 1 */

/* CONTROL REGISTER FOR PCA 0 MODULE 2 */

/* CONTROL REGISTER FOR PCA 0 MODULE 3 */

/* CONTROL REGISTER FOR PCA 0 MODULE 4 */

/* ACCUMULATOR */

/* DIGITAL CROSSBAR CONFIGURATION REGISTER 0 */

/* DIGITAL CROSSBAR CONFIGURATION REGISTER 1 */

/* DIGITAL CROSSBAR CONFIGURATION REGISTER 2 */

/* TIMER 4 CAPTURE REGISTER - LOW BYTE %/

/* TIMER 4 CAPTURE REGISTER - HIGH BYTE */

/* EXTERNAL INTERRUPT ENABLE 1 */

/* EXTERNAL INTERRUPT ENABLE 2 */

/* ADC 0 CONTROL */

/* PCA 0 TIMER - LOW BYTE */

/* CAPTURE/COMPARE REG. PCA 0 MODULE 0 - LOW BYTE */
/* CAPTURE/COMPARE REG. PCA 0 MODULE 1 - LOW BYTE */
/* CAPTURE/COMPARE REG. PCA 0 MODULE 2 - LOW BYTE */
/* CAPTURE/COMPARE REG. PCA 0 MODULE 3 - LOW BYTE */
/* CAPTURE/COMPARE REG.PCA 0 MODULE 4 - LOW BYTE */
/* RESET SOURCE */

/* B REGISTER */

/* SERIAL PORT 1 CONTROL */

/* SERAIL PORT 1 DATA */

/* SERAIL PORT 1 */

/* TIMER 4 DATA - LOW BYTE */

/* TIMER 4 DATA - HIGH BYTE */

/* EXTERNAL INTERRUPT PRIORITY REGISTER 1 */

/* EXTERNAL INTERRUPT PRIORITY REGISTER 2 */

/* SERIAL PERIPHERAL INTERFACE 0 CONTROL */

/* PCA 0 TIMER - HIGH BYTE */

/* CAPTURE/COMPARE REG. PCA 0 MODULE 0 - HIGH BYTE */
/* CAPTURE/COMPARE REG. PCA 0 MODULE 1 - HIGH BYTE */
/* CAPTURE/COMPARE REG.PCA 0 MODULE 2 - HIGH BYTE */

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
sfr PCAOCPH3 = 0xFD; /* CAPTURE/COMPARE REG.PCA 0 MODULE 3 - HIGH BYTE */
sfr PCAOCPH4 = OxFE; /* CAPTURE/COMPARE REG.PCA 0 MODULE 4 - HIGH BYTE */
sfr WDTCN = 0xFF; /* WATCHDOG TIMER CONTROL */

/)(»

16-bit sfr Definitions — enabling 16-bit registers which have consecutive addresses for their low and high byte, to

be loaded with one command, aligning the low and high byte correctly (little endian).

*/

sfr16 DP = 0x82; /I data pointer

sfr16 TMR3RL = 0x92; // Timer 3 reload value
sfr16 TMR3 = 0x94; // Timer 3 counter

sfr16 ADCO = 0xBE; /I ADCO data

sfr16 ADCOGT = 0xC4; /I ADCO greater than window
sfr16 ADCOLT = 0xC6; /I ADCO less than window
sfr16 RCAP2 = 0xCA; /I Timer 2 capture/reload
sfr16 T2 = 0xCC; // Timer 2

sfr16 RCAP4 = 0xE4; // Timer 4 capture/reload
sfr16 T4 = 0xF4; // Timer 4

sfr16 DACO = 0xD2; // DACO data

sfr16 DAC1 = 0xD5; // DAC1 data

DO YOU WANT TO KNOW:

What your staff really want?

The top issues troubling them?

How to make staff assessments
work for you & them, painlessly?

How to retain your
top staff

FIND OUT NOW FOR FREE

Get your free trial

Because happy staff get more done

158 Click on the ad to read more
Download free eBooks at bookboon.com

http://s.bookboon.com/performancereviewpro-bookboonlp

/* BIT Registers */

/* TCON 0x88 */

sbit TF1 =TCON A 7;
sbit TR1 = TCON A 6;
sbit TFO = TCON A 5;
sbit TRO = TCON A 4;
sbit IE1 = TCON ~ 3;
sbit IT1 = TCON A 2;
sbit IE0 =TCON A 1;
sbit ITO = TCON ~ 0;
/* SCONO 0x98 */

sbit SM00 = SCONO A 7;
sbit SM10 = SCONO A 6;
sbit SM20 = SCONO A 5;
sbit RENO = SCONO A 4;
sbit TB80 = SCONO A 3;
sbit RB80 = SCONO A 2;
sbit TIO = SCONO A 1;
sbit RIO = SCONO A 0;
/* IE 0xA8 */

sbit EA =1EAN7;

sbit ET2 =]1E A 5;

sbit ESO =1E N 4;

sbit ET1 =1E A 3;

sbit EX1 =1E A 2;

sbit ET0 =]EAN1;

sbit EX0 =1E A 0;

/* IP 0xB8 */

sbit PT2 =IP A5

sbit PS =1IP A 4;

sbit PT1 =1P A 3;

sbit PX1 =1P A 2;

sbit PTO =P "1,

sbit PX0 =1P A 0;

/* TIMER 1 OVERFLOW FLAG */
/* TIMER 1 ON/OFF CONTROL */
/* TIMER 0 OVERFLOW FLAG */
/* TIMER 0 ON/OFF CONTROL */
/* EXT. INTERRUPT 1 EDGE FLAG */
/* EXT. INTERRUPT 1 TYPE */
/* EXT. INTERRUPT 0 EDGE FLAG */
/* EXT. INTERRUPT 0 TYPE */

/* SERIAL MODE CONTROL BIT 0 */

/* SERTAL MODE CONTROL BIT 1 */

/* MULTTPROCESSOR COMMUNICATION ENABLE
/* RECEIVE ENABLE */

/* TRANSMIT BIT 8 */

/* RECEIVE BIT 8 */

/* TRANSMIT INTERRUPT FLAG */
/* RECEIVE INTERRUPT FLAG */

/* GLOBAL INTERRUPT ENABLE */
/* TIMER 2 INTERRUPT ENABLE */
/* UARTO INTERRUPT ENABLE */
/* TIMER 1 INTERRUPT ENABLE */
/* EXTERNAL INTERRUPT 1 ENABLE */
/* TIMER 0 INTERRUPT ENABLE */

/* EXTERNAL INTERRUPT 0 ENABLE */

/* TIMER 2 PRIORITY
/* SERIAL PORT PRIORITY
/* TIMER 1 PRIORITY

/* EXTERNAL INTERRUPT 1 PRIORITY */
/* TIMER 0 PRIORITY
/* EXTERNAL INTERRUPT 0 PRIORITY */

Download free eBooks at bookboon.com

*/

*/
*/
*/

*/

/* SMBOCN 0xCO0 */

sbit BUSY = SMBOCN * 7; /* SMBUS 0 BUSY */

sbit ENSMB = SMBOCN * 6; /* SMBUS 0 ENABLE */

sbit STA = SMBOCN # 5; /* SMBUS 0 START FLAG */

sbit STO = SMBOCN * 4; /* SMBUS 0 STOP FLAG %/

sbit SI = SMBOCN » 3; /* SMBUS 0 INTERRUPT PENDING FLAG */
sbit AA = SMBOCN A 2; /* SMBUS 0 ASSERT/ACKNOWLEDGE FLAG */
sbit SMBFTE = SMBOCN * 1; /* SMBUS 0 FREE TIMER ENABLE */

sbit SMBTOE = SMBOCN * 05 /* SMBUS 0 TIMEOUT ENABLE */

/* T2CON 0xC8 */

sbit TF2 =T2CON A 7; /* TIMER 2 OVERFLOW FLAG */

sbit EXF2 =T2CON 7 6; /* EXTERNAL FLAG */

sbit RCLKO =T2CON 2 5; /* UART0 RX CLOCK SOURCE */

sbit TCLKO =T2CON 7 4; /* UARTO0 TX CLOCK SOURCE */

sbit EXEN2 =T2CON » 3; /* TIMER 2 EXTERNAL ENABLE FLAG */
sbit TR2 =T2CON A 2; /* TIMER 2 ON/OFF CONTROL */

sbit CT2 =T2CON ~ 1; /* TIMER OR COUNTER SELECT */

sbit CPRL2 =T2CON 2 0; /* CAPTURE OR RELOAD SELECT */
/* PSW */

sbit CY =PSW A 7; /* CARRY FLAG */

sbit AC = PSW A 6; /* AUXILIARY CARRY FLAG */

sbit FO =PSW A 5; /* USER FLAG 0 */

sbit RS1 =PSW A 4; /* REGISTER BANK SELECT 1 */

sbit RSO =PSW A 3; /* REGISTER BANK SELECT 0 */

sbit OV =PSW A 2; /* OVERFLOW FLAG */

sbit F1 =PSW A 1, /* USER FLAG 1 */

sbit P =PSW A 0; /* ACCUMULATOR PARITY FLAG */

/* PCAOCN D8H */

sbit CF = PCAOCN ~ 7; /* PCA 0 COUNTER OVERFLOW FLAG */
sbit CR = PCAOCN ~ 6; /* PCA 0 COUNTER RUN CONTROL BIT */
sbit CCF4 = PCAOCN A 4; /* PCA 0 MODULE 4 INTERRUPT FLAG */
sbit CCF3 = PCAOCN A 3; /* PCA 0 MODULE 3 INTERRUPT FLAG */
sbit CCF2 = PCAOCN ~ 2; /* PCA 0 MODULE 2 INTERRUPT FLAG */
sbit CCF1 = PCAOCN ~ 1; /* PCA 0 MODULE 1 INTERRUPT FLAG */
sbit CCF0 = PCAOCN » 0; /* PCA 0 MODULE 0 INTERRUPT FLAG */

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020

/* ADCOCN E8H */

sbit ADOEN = ADCOCN A 7;
sbit ADOTM = ADCOCN A 6;
sbit ADOINT = ADCOCN A 5;
sbit ADOBUSY = ADCOCN A 4;
sbit ADOCM1 = ADCOCN » 3;
sbit ADOCMO = ADCOCN » 2;

sbit ADOWINT = ADCOCN A 1;
sbit ADOLJST = ADCOCN » 0;

/* SPIOCN F8H */

sbit SPIF = SPIOCN A 7;
sbit WCOL = SPIOCN A 6;
sbit MODF = SPIOCN A 5;
sbit RXOVRN = SPIOCN A 4;
sbit TXBSY = SPIOCN A 3;
sbit SLVSEL = SPIOCN A 2;
sbit MSTEN = SPIOCN A 1;
sbit SPIEN = SPIOCN A 0;

Appendix A: PaulOS_F020.C Source Listing

/* ADC 0 ENABLE */
/* ADC 0 TRACK MODE */
/* ADC 0 CONVERISION COMPLETE INTERRUPT FLAG */
/* ADC 0 BUSY FLAG */
/* ADC 0 START OF CONVERSION MODE BIT 1 */
/* ADC 0 START OF CONVERSION MODE BIT 0 */
/* ADC 0 WINDOW COMPARE INTERRUPT FLAG */
/* ADC 0 RIGHT JUSTIFY DATA BIT */
/* SPI 0 INTERRUPT FLAG */
/* SPI 0 WRITE COLLISION FLAG */
/* SP1 0 MODE FAULT FLAG */
/* SPI 0 RX OVERRUN FLAG */
/* SPT1 0 TX BUSY FLAG */
/* SPI 0 SLAVE SELECT */
/* SPI 0 MASTER ENABLE */
/* SP1 0 SPI ENABLE */

Struggling to get
interviews?

Professional CV consulting & writing assistance
from leading job experts in the UK.

A

-

Take a short-cut to your next job!

| Improve your interview success rate by 70%.

Download free eBooks at bookboon.com

TheCVagency

Visit thecvagency.co.uk for more info.

161 Click on the ad to read more

http://thecvagency.co.uk

/X-
EXTRA: BIT definitions for bits held in SFRs that are not bit-addressable and hence not directly accessible
*/

/* TMOD Bits */

#define TOMO 0x01
#define TOM1 0x02
#define C_TO 0x04
#define GATEQ 0x08
#define TIMO 0x10
#define TIM1 0x20
#define C_T1 0x40
#define GATEL 0x80

/* CKCON Bits */

#define TOM 0x08 /* Timer 0 clock select */
#define TIM 0x10 /* Timer 1 clock select */
#define T2M 0x20 /* Timer 2 clock select */
#define TAM 0x40 /* Timer 4 clock select */

/* PSCTL Bits */

#define PSWE 0x01 /* Program Store Write Enable */
#define PSEE 0x02 /* Program Store Erase Enable */
#define SFLE 0x04 /* Scratch pad Flash memory access enable */

/* TMR3CN Bits */

#define T3XCLK 0x01 /* Timer 3 external clock select */
#define T3M 0x02 /* Timer 3 clock select */

#define TR3 0x04 /* Timer 3 Run control */
#define TF3 0x80 /* Timer 3 overflow flag */

/* P7 Bits */

#define P7_0 0x01
#define P7_1 0x02
#define P7_2 0x04
#define P7_3 0x08
#define P7_4 0x10
#define P7_5 0x20
#define P7_6 0x40

Download free eBooks at bookboon.com

#define P7_7

/* SPIOCFG Bits */
#define SPIFRSO
#define SPIFRS1
#define SPIFRS2
#define BCO
#define BC1
#define BC2
#define CKPOL
#define CKPHA

0x80

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

/* SP10 Frame Size, bit 0 */
/* SPI0 Frame Size, bit 1 */
/* SPIO Frame Size, bit 2 */
/* SPI0 Bit Count, bit 0 */
/* SPIO Bit Count, bit 1 */
/* SPI0 Bit Count, bit 2 */
/* SPI0 Clock polarity */
/* SPI0 Clock phase */

/* SPIODAT Bits, data only no bits*/

/* ADCI Bits, data word register, no bits */

/* SPIOCKR Bits */

#define SCRO
#define SCR1
#define SCR2
#define SCR3
#define SCR4
#define SCR5
#define SCR6
#define SCR7

/* CPTOCN Bits */
#define CPOHYNO
#define CPOHYN1
#define CPOHYPO
#define CPOHYP1
#define CPOFIF
#define CPORIF
#define CPOOUT
#define CPOEN

/* CPT1CN Bits */
#define CPITHYNO
#define CPTHYN1
#define CP1HYPO

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

0x01
0x02
0x04

/* SPI0 Clock Rate */

/* Comparator 0 negative hysteresis control, bit 0 */
/* Comparator 0 negative hysteresis control, bit 1 */
/* Comparator 0 positive hysteresis control, bit 0 */
/* Comparator 0 positive hysteresis control, bit 1 */
/* Comparator 0 Falling Edge Interrupt Flag */

/* Comparator 0 rising Edge Interrupt Flag */

/* Comparator 0 Output state flag */

/* Comparator 0 Enable bit */

/* Comparator 1 negative hysteresis control, bit 0 */
/* Comparator 1 negative hysteresis control, bit 1 */

/* Comparator 1 positive hysteresis control, bit 0 */

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing
#define CP1HYP1 0x08 /* Comparator 1 positive hysteresis control, bit 1 */

#define CP1FIF 0x10 /* Comparator 1 Falling Edge Interrupt Flag */

#define CP1RIF 0x20 /* Comparator 1 rising Edge Interrupt Flag */

#define CP10UT 0x40 /* Comparator 1 Output state flag */

#define CP1EN 0x80 /* Comparator 1 Enable bit */

/* EMIOTC Bits */

#define EAHO 0x01 /* EMIF Address Hold, bit 0 */

#define EAH1 0x02 /* EMIF Address Hold, bit 1 */

#define EWRO0 0x04 /* EMIF /WR and /RD Pulse Width Control, bit 0 */
#define EWRI1 0x08 /* EMIF /WR and /RD Pulse Width Control, bit 1 */
#define EWR2 0x10 /* EMIF /WR and /RD Pulse Width Control, bit 2 */
#define EWR3 0x20 /* EMIF /WR and /RD Pulse Width Control, bit 3 */
#define EASO 0x40 /* EMIF Address setup time, bit 0 */

#define EAS1 0x80 /* EMIF Address setup time, bit 1 */

/* EMIOCF Bits */

#define EALEO 0x01 /* ALE pulse width select, bit 0 */
#define EALE1 0x02 /* ALE pulse width select, bit 1 */
#define EMDO 0x04 /* EMIF operating mode select, bit 0 */

EXPERIENCE THE POWEH

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...

164 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/Gaiteye

#define EMD1
#define EMD2
#define PRTSEL

/* FLSCL Bits */
#define FLWE
#define FRAE
#define FOSE

/* ADCICN Bits */
#define ADCICMO
#define ADC1CM1
#define ADC1CM2
#define AD1BUSY
#define AD1INT
#define ADITM
#define AD1EN

/* ADCICEF Bits */
#define AMP1GNO
#define AMP1GN1
#define AD1SCO
#define AD1SC1
#define AD1SC2
#define AD1SC3
#define AD1SC4

/* SMBOSTA Bits */

/* SMBOADR Bits */
#define GC

#define SLVO
#define SLV1
#define SLV2
#define SLV3
#define SLV4
#define SLV5
#define SLV6

0x08
0x10
0x20

0x01
0x40
0x80

0x02
0x04
0x08
0x10
0x20
0x40
0x80

0x01
0x02
0x08
0x10
0x20
0x40
0x80

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

/* EMIF operating mode select, bit 1 */
/* EMIF Multiplex mode select */
/* EMIF Port Select */

/* Flash Read/Write Enable */
/* Flash Read Always Enable */
/* Flash One shot timer enable */

/* ADCI Start of conversion mode select, bit 0 */
/* ADCI Start of conversion mode select, bit 1 */
/* ADC1 Start of conversion mode select, bit 2 */
/* ADC1 Busy bit */

/* ADC1 Conversion complete interrupt flag */
/* ADCI Track mode bit */

/* ADCI Enable */

/* ADC1 Internal amplifier Gain, bit 0 */

/* ADC1 Internal amplifier Gain, bit 1 */

/* ADC1 SAR Conversion clock period bit 0 */
/* ADC1 SAR Conversion clock period bit 1 */
/* ADC1 SAR Conversion clock period bit 2 */
/* ADC1 SAR Conversion clock period bit 3 */
/* ADC1 SAR Conversion clock period bit 4 */

/* General call address enable */
/* Slave address, bit 0 */
/* Slave address, bit 1 */
/* Slave address, bit 2 */
/* Slave address, bit 3 */
/* Slave address, bit 4 */
/* Slave address, bit 5 */
/* Slave address, bit 6 */

Download free eBooks at bookboon.com

/* TACON Bits */
#define CP_RL4
#define C_T4
#define TR4
#define EXEN4
#define TCLK1
#define RCLK1
#define EXF4
#define TF4

/* SMBOCR */

/* REFOCN Bits */
#define REFBE
#define BIASE
#define TEMPE
#define AD1VRS
#define ADOVRS

/* DACOCN Bits */
#define DACODFO
#define DACODF1
#define DACODF2
#define DACOMDO
#define DACOMD1
#define DACOEN

/* DACI1CN Bits */
#define DAC1DFO
#define DACIDF1
#define DAC1DF2
#define DACOMDO
#define DACOMD1
#define DACOEN

/* PCAOMD Bits */
#define ECF
#define CPSO
#define CPS1
#define CPS2
#define CIDL

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

0x01
0x02
0x04
0x08
0x10

0x01
0x02
0x04
0x08
0x10
0x80

0x01
0x02
0x04
0x08
0x10
0x80

0x01
0x02
0x04
0x08
0x80

/* Timer 4 Capture/Reload select */
/* Timer 4 Counter/Timer Select */
/* Timer 4 Run Control */

/* Timer 4 External Enable */

/* Transmit clock flag for UART 1 */
/* Receive clock flag for UART 1 */
/* Timer 4 External Flag */

/* Timer 4 Overflow Flag */

/* Internal reference buffer enable bit */
/* ADC/DAC Bias generator enable bit */
/* Temperature sensor enable bit */

/* ADC1 Voltage reference select */

/* ADCO Voltage reference select */

/* DACO Data format bits, bit 0 */
/* DACO Data format bits, bit 1 */
/* DACO Data format bits, bit 2 */
/* DACO Mode bits, bit 0 */

/* DACO Mode bits, bit 1 */

/* DACO enable bit */

/* DACI Data format bits, bit 0 */
/* DACI Data format bits, bit 1 */
/* DAC1 Data format bits, bit 2 */
/* DACO Mode bits, bit 0 */

/* DACO Mode bits, bit 1 */

/* DACO enable bit */

/* PCA Counter/Timer Overflow Interrupt enable */
/* PCAO Counter/Timer Pulse Select, bit 0 */

/* PCAO Counter/Timer Pulse Select, bit 1 */

/* PCAO Counter/Timer Pulse Select, bit 2 */

/* PCAO Counter/Timer Idle control */

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020

/* PCAOCPMO Bits */
#define EECFQ
#define PWMO
#define TOGO

#define MATO

#define CAPNO
#define CAPPO
#define ECOMO 0x40
#define PWM160 0x80

/* PCAOCPM1 Bits */
#define EECF1
#define PWM1
#define TOG1
#define MAT1
#define CAPN1
#define CAPP1
#define ECOM1
#define PWM161

Appendix A: PaulOS_F020.C Source Listing

0x01 /* ECCFO Capture/Compare Flag Interrupt enable */
0x02 /* PWMO Pulse Width Modulation Mode enable */
0x04 /* TOGO Toggle Function enable */

0x08 /* MATO0 Match Function enable */

0x10 /* CAPNO Capture negative function enable */

0x20 /* CAPPO Capture positive function enable */

/* ECOMO Comparator function enable */
/* PWM160 16-bit PWM enable */

0x01 /* ECCF1 Capture/Compare Flag Interrupt enable */
0x02 /* PWMI1 Pulse Width Modulation Mode enable */
0x04 /* TOGI Toggle Function enable */

0x08 /* MAT1 Match Function enable */

0x10 /* CAPN1 Capture negative function enable */

0x20 /* CAPPI Capture positive function enable */

0x40 /* ECOM1 Comparator function enable */

0x80 /* PWMI61 16-bit PWM Enable */

This e-book
is made with

SetaPDF

y o
SETASIGN

h ¥ 4

PDF components for PHP developers

www.setasign.com

167 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/Setasign

/* PCAOCPM?2 Bits */
#define EECF2
#define PWM?2
#define TOG2
#define MAT2
#define CAPN2
#define CAPP2
#define ECOM2
#define PWM162

/* PCAOCPM3 Bits */
#define EECF3
#define PWM3
#define TOG3
#define MAT3
#define CAPN3
#define CAPP3
#define ECOM3
#define PWM163

/* PCAOCPM4 Bits */
#define EECF4
#define PWM4
#define TOG4
#define MAT4
#define CAPN4
#define CAPP4
#define ECOM4
#define PWM164

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

/* ECCF2 Capture/Compare Flag Interrupt enable */
/* PWM2 Pulse Width Modulation Mode enable */
/* TOG2 Toggle Function enable */

/* MAT2 Match Function enable */

/* CAPN2 Capture negative function enable */

/* CAPP2 Capture positive function enable */

/* ECOM2 Comparator function enable */

/* PWM162 16-bit PWM enable */

/* ECCF3 Capture/Compare Flag Interrupt enable */
/* PWM3 Pulse Width Modulation mode enable */
/* TOG3 Toggle Function enable */

/* MAT3 Match Function enable */

/* CAPN3 Capture negative function enable */

/* CAPP3 Capture positive function enable */

/* ECOM3 Comparator function enable */

/* PWM163 16-bit PWM enable */

/* ECCF4 Capture/Compare Flag Interrupt enable */
/* PWM4 Pulse Width Modulation Mode enable */
/* TOG4 Toggle Function enable */

/* MAT4 Match Function enable */

/* CAPN4 Capture negative function enable */

/* CAPP4 Capture positive function enable */

/* ECOM4 Comparator function enable */

/* PWM164 16-bit PWM enable */

/* XBRO bits, PORT IO Crossbar Reg 0 */

#define SMBOEN
#define SPIOEN
#define UARTOEN
#define PCAOMEOQ
#define PCAOME1
#define PCAOME2
#define ECIOE
#define CPOE

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

/* SMBus 0 Bus I/O Enable bit */

/* SPIBus 0 Bus I/O Enable bit */

/* UARTO I/O Enable bit */

/* PCAO Module I/O Enable bits, bit 0 */

/* PCAO Module I/O Enable bits, bit 1 */

/* PCAO Module I/O Enable bits, bit 2 */

/* PCAO External Counter Input Enable bit */
/* Comparator 0 Output Enable bit */

Download free eBooks at bookboon.com

/* XBRI bits, PORT IO Crossbar Reg 1 */

#define CPIE
#define TOE
#define INTOE
#define T1E
#define INT1E
#define T2E
#define T2EXE
#define SYSCKE

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

/* CP1 output enable bit */

/* TO input enable bit */

/* /INTO input enable bit */

/* T1 input enable bit */

/* /INT1 input enable bit */

/* T2 input enable bit */

/* T2EX input enable bit */

/* ISYSCLK output enable bit */

/* XBR2 bits, PORT IO Crossbar Reg 2 */

#define CNVSTE

#define EMIFLE

#define UART1E

#define T4E
#define T4EXE
#define XBARE

#define WEAKPUD

0x01
0x02
0x04
0x08
0x10
0x40
0x80

/* External Convert Start enable bit */

/* External Memory Interface low port enable bit */
/* UART1 I/O enable bit */

/* T4 input enable bit */

/* T4EX input enable bit */

/* Crossbar enable bit */

/* Weak pull-up disable bit */

/* 1EI1 bits, Extended Interrupt Enable 1 */

#define ESPI0
#define ESMBO

#define EWADCO

#define EPCAOQ
#define ECPOF
#define ECPOR
#define ECP1F
#define ECP1R

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

/* Enable SPIO interrupt */

/* Enable SMBus0 interrupt */

/* Enable Window Comparison ADCO interrupt */

/* Enable PCAO interrupt */

/* Enable comparator 0 (CP0) Falling edge interrupt */
/* Enable comparator 0 (CPO0) rising edge interrupt */
/* Enable comparator 1 (CP1) Falling edge interrupt */
/* Enable comparator 1 (CP1) Rising edge interrupt */

/* EIE2 bits, Extended Interrupt Enable 2 */

#define ET3
#define EADCO
#define ET4
#define EADC1
#define EX6
#define EX7
#define ES1
#define EXVLD

0x01
0x02
0x04
0x08
0x10
0x20

0x40
0x80

/* Enable timer 3 interrupt */

/* Enable ADCO End of conversion interrupt */
/* Enable timer 3 interrupt */

/* Enable ADCI End of conversion interrupt */
/* Enable External interrupt 6 */

/* Enable External interrupt 7 */

/* Enable UART1 interrupt */

/* Enable External Clock source valid interrupt */

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix A: PaulOS_F020.C Source Listing

/* RSTSRC Bits */

#define PINRSF 0x01 /* Hardware Pin Reset Flag */

#define PORSF 0x02 /* Power-on Reset force and flag */

#define MCDRSF 0x04 /* Missing clock detector flag */

#define WDTRSF 0x08 /* Watchdog Timer reset flag */

#define SWRSEF 0x10 /* Software Reset Force and flag */

#define CORSEF 0x20 /* Comparator 0 (CP0) Reset enable and flag */
#define CNVRSEF 0x40 /* Convert Start Reset source enable and flag */

/* SCONT1 Bits */

#define RI1 0x01 /* UART1 Receive interrupt flag */
#define TI1 0x02 /* UART1 Transmit interrupt flag */
#define RB81 0x04 /* UARTI 9th bit receive */

#define TB81 0x08 /* UART1 Ninth transmit bit */
#define REN1 0x10 /* UART1 Receiver enable */
#define SM21 0x20 /* UART1 Multiprocessor communication enable */
#define TXCOL1 0x20 /* UART1 Transmit Collision bit */
#define SM11 0x40 /* UARTI mode bit */

#define RXOV1 0x40 /* UART1 Receive Overflow bit */
#define SMO1 0x80 /* UART1 mode bit */

#define FE1 0x80 /* UART1 Frame Error bit */

RAND
MERCHANT
BANK

Adivision of FirstRand Bank Limited

Y O | l T I I I N K Traditional values. Innovative ideas.
]

YOU CAN WORK
AT RMB

Rand Merchant Bank uses good business to create a better world, which is one of the reasons that the country’s top talent chooses to
work at RMB. For more information visit us at www.rmb.co.za

Thinking that can change your world

Rand Merchant Bank is an Authorised Financial Services Provider

170 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.rmb.co.za

/* EIP1 Bits */

#define PSPIO 0x01 /* SPIO interrupt priority control */

#define PSMBO 0x02 /* SMBus0 interrupt priority control */

#define PWADCO 0x04 /* ADCO Window comparator interrupt priority control */
#define PPCAO 0x08 /* PCAO interrupt priority control */

#define PCPOF 0x10 /* Comparator 0 (CP0) Falling interrupt priority control */
#define PCPOR 0x20 /* Comparator 0 (CP0) Rising interrupt priority control */
#define PCP1F 0x40 /* Comparator 1 (CP1) Falling interrupt priority control */
#define PCP1R 0x80 /* Comparator 1 (CP1) Rising interrupt priority control */

/* EIP2 Bits */

#define PT3 0x01 /* Timer 3 interrupt priority control */

#define PADCO 0x02 /* ADCO End of Conversion interrupt priority control */
#define PT4 0x04 /* Timer 4 interrupt priority control */

#define PADC1 0x08 /* ADCI End of Conversion interrupt priority control */
#define PX6 0x10 /* External interrupt 6 Priority Control */

#define PX7 0x20 /* External interrupt 7 Priority Control */

#define EP1 0x40 /* UART1 interrupt Priority Control */

#define PXVLD 0x80 /* External Clock Source valid interrupt priority control */

/* PCON bits */

#define IDLE 0x01 /* Idle mode select */

#define STOP 0x02 /* Stop mode select */

#define SSTAT1 0x08 /* UART1 Enhanced status mode select */
#define SMOD1 0x10 /* UART1 Baud Rate doubler enable */
#define SSTATO 0x40 /* UARTO Enhanced status mode select */
#define SMODO 0x80 /* UARTO Baud Rate doubler enable */

#endif // _C8051F020_H_

/* ===

Download free eBooks at bookboon.com

Appendix B Further Examples

We list here some interesting examples for the 8032 microprocessor. Some of them do not use any RTOS
at all, but rely solely on interrupts. Other valuable examples can be found in the application note AN122
for the C8051F02x family (Silicon Labs, 2003a).

B.1 Timer 0 in Mode 3 (split timer) and Timer 1 as a baud rate generator

The first example is a program showing how we can use Timer 0 in the split mode. This is not often
found detailed in most books, probably because nowadays, most of the advanced versions of the 8051
have 4 or more timers available. However, if still using the original 8051, this mode 3 would effectively

increase the number of timers available.

In this example, the two timers from Timer 0 (here labelled as Timer 00 and Timer 000) both run as an
8-bit timer, generating interrupts. The main program checks whether the required number of interrupts

have been generated, and prints a statement accordingly.

Timer 1 is used as a baud rate generator and since Timer 0 is running in mode 3, the only way to switch
on and off this timer 1 is by changing its mode. If timer 1 is set to mode 3, it is stopped. Thus as an
example, we are starting the timer only before printing and switching it off once we are done with the

printing command.
/* TimersMode3.c */

/*
Timer 0 runs in mode 3 mode, thus splitting it into two timers,

which we shall call Timer00 and Timer000

Assuming that we are using a 22.1184MHz clock, then if the timers are using sysclk/12
as their counting pulse:
Timer 00 generates interrupts every 78.125us,

since it 1is set to count 144 times before it overflows

hence 12800 interrupts would be equivalent to 1 second (using TLO, TFO)

Timer 000 generates interrupts every 117.1875us,

since it 1is set to count 216 times before it overflows

hence 25600 interrupts would be equivalent to 3 seconds (using THO, TF1)
Timer 1 is used as the baud-rate generator, switching it on and off

by switching it out of and into its own mode 3. No interrupts available.

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

*/

#include “C8051F020.h”
#include “MySystem.h”

#include <stdio.h>

void SetUp Timer0 M3 (void);
void SetUp Timerl M3 and UARTO (void);

char putchar (char c);

/* Global variables */

bit TO00 FLAG, T000 FLAG; // flags to indicate timer timeouts

/*
* putchar: outputs character, used by the printf command
*/

char putchar (char c) {

while (!TIO0); /* wait for transmitter to be ready */

360°
thinking.

Deloitte.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiiated entities.

173 Click on the ad to read more
Download free eBooks at bookboon.com

http://www.deloitte.ca/careers

PaulOS F020:

An RTOS for the C8051F020

TIO = 0;

return (SBUFO = c);

}
/* _____________________
/* set up Timer 0 mode

/*
/* Assuming 22.1184 MHz
/*
/*
void SetUp Timer0O M3

{

splitting it into two timers,

156.25 microsecond overflow for TFO

78.125 microsecond overflow for TF1

3, GATE Cc/T 0 */

clock */

(void)

(normal Timer 00)

(extra Timer 000)

Appendix B Further Examples

Timer00 and Timer000 */

*/
*/

CKCON &= ~TOM; // set TOM = 0, thus using SYSCLK/12
TMOD &= O0xFO0; // clear Timer 0 control bits only
TMOD |= 0x03; // mode 3 (two split timers), GATE = C/T = 0
TLO = 112; // 256 — 144 = 112 ==> 78.125us for normal Timer 00
THO = 40; // 256 — 216 = 40 ==> 117.1875us for extra Timer 000
TRO = 1; // Timer 00 ON
TR1 = 1; // Timer 000 ON
ETO = 1; // Enable TF0 interrupt, from Timer 00 overflows
ET1 = 1; // Enable TFl interrupt, from Timer 000 overflows
}
2 */
/* Set up timer 1 in mode 2, 8-bit, auto re-load, GATE = C/T = 0 */
/* for 115200 baud rate generator */
/* Assuming 22.1184 MHz clock */
/* Since Timer 0 is in mode 3, then Timer 1 will be switched on and off
by setting it to mode 2 (on) or mode 3 (off) in the application program */
/* Setup also the UARTO */
void SetUp Timerl M3 and UARTO (void)
{
CKCON &= ~T1M; // set TIM = 0, thus using SYSCLK/12
TMOD &= O0xO0F; // clear timer 1 control bits only (momentarily set Tl to mode 0)

174

Download free eBooks at bookboon.com

PaulOS

F020:

An RTOS for the C8051F020

Appendix B Further Examples

TMOD |= 0x30; // set initially to mode 3, i.e. timer off
TH1 = TL1 = OxFF; // set for 115200 or 57600 baud rate (reload value in THI1)
PCON |= 0X80; // SMODO = 1 so as to double the baud rate to 115200 bps
SCONO = 0X52; // 8-bit UART, variable baud rate, receiver disabled,
// transmitter ready TIO = 1
}
2 —— */
/* __ */

// Timer00 Interrupt Service Routine

void TFO ISR (void) interrupt 1 using 1
{
static data unsigned int TFO_OVF; // counts TF0 overflows, from Timer00
TFO_OVE++;
TLO = 112; // reload value
if (TFO_OVF == 12800) // number of interrupts required for a 1 second delay
{
TFO_OVF = 0;
TOO _FLAG = 1;
}
}
2 */

// Timer000 Interrupt Service Routine

void TF1 ISR (void) interrupt 3 using 2
{
static data unsigned int TF1_OVF; // counts TF1 overflows, from Timer000
TF1 OVE++;
THO = 40; // reload value
if (TF1_OVF == 25600) // number of interrupts required for a 3 second delay

TF1 OVF

= 0;

TO00 FLAG = 1;

175

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix B Further Examples
/* __ */
/* __ */

/* Main program */
void main (void)

{

DISABLE Watchdog () ;
SYSCLK_Init ();

PORT Init ();

SetUp Timer0 M3 (); // Timer 0 mode 3 — split timer
SetUp Timerl M3 and UARTO () ; // Timer 1 (off) mode 3,
// 8-bit auto reload value as a baud rate generator

// initially set in mode 3, not running.

EA

Il
—
~

W [

I WANT TO CHANGE DIRF.CTION

5 AND THE WORLD,.

GOT-THE-ENERGY-TO-LEAD.COM

We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

WE

o AR
The energy to lead

176 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.got-the-energy-to-lead.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

while (1)
{
// Timer 1 is switched on and off just to show that we can still control it.

// It 1is switched on only for use as the baud rate generator before the ‘printf’ command

if (T00 FLAG == 1)
{

TOO FLAG = 0;

TMOD = 0x23; // set Timer 1 to mode 2, start it as the baud rate generator
// ready for the ‘printf’ command which follows
// leaving Timer 0 set to mode 3
// This method is used instead of:
//
// TMOD &= O0OxOF; // clear timer 1 control bits only

// (momentarily set Tl to mode 0)

// TMOD |= 0x20; // set to mode 2, i.e. Timer 1 on
// TH1 = OxFF; // set reload value
//

// which would have placed Timer 1 momentarily in mode 0

// and thus possibly modifying the reload value held in TH1
// (and hence the baud rate) before setting it to mode 2

// Hence the need to set the reload value in TH1 every time.

// Thus TMOD = 0x23 is much quicker and neater this time!

printf (“Timer 00: 12800 timeouts every 1 second\n”);
TMOD = 0x33; // set Timer 1 to mode 3 to stop the baud rate generator

// leaving Timer 0 set to mode 3

if (T000 FLAG == 1)
{

TO0O0 FLAG = 0;

TMOD = 0x23; // set Timer 1 to mode 2, start it as the baud rate generator
// ready for the ‘printf’ command which follows
// leaving Timer 0 set to mode 3

printf (“Timer 000: 25600 timeouts every 3 seconds\n”);

TMOD = 0x33; // set Timer 1 to mode 3 to stop the baud rate generator

// leaving timer 0 set to mode 3

177

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

//

//

/* MySystem.h */

#ifndef MYSYSTEM H

#define = MYSYSTEM H

#define SYSCLK 22118400 // SYSCLK frequency in Hz

#fdefine BAUDRATE 115200UL // Baud rate of UART in bps
void DISABLE Watchdog (void);

void PORT_Init (void);

void SYSCLK_Init (void);

void PORT Init (void);

#endif // _ MYSYSTEM H__

/7

// MySystem.c

#include “C8051F020.h”

// SYSCLK_ Init
et

//

// This routine initializes the system clock to use an 22.1184MHz crystal

// as its clock source.

/7

void SYSCLK Init (void)
{
unsigned int i; // delay counter
OSCXCN = 0x67; // start external oscillator with

// 22.1184MHz crystal

178

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

for (i=0; 1 < 300; i++); // wait for oscillator to start
#ifndef SIMULATOR
while (! (OSCXCN & 0x80));// Wait for crystal osc. to settle

/* disable above line if using simulator */

#endif
OSCICN = 0x88; // select external oscillator as SYSCLK
// source and enable missing clock
// detector
}
e

//
// Disables the watchdog timer
//
void DISABLE Watchdog (void)
{
EA = 0;

WDTCN = O0OxDE;

bookbooncom

Corporate eLibrary

See our Business Solutions for employee learning

Click here

Management Time Management

Problem solving I Self-Confidence I Effectiveness

Project Management I Goal setting I Coaching

179 Click on the ad to read more
Download free eBooks at bookboon.com

http://s.bookboon.com/bbg-elibrary-2015

WDTCN = 0xAD;

//
// Configure the Crossbar and GPIO ports, (see page 163 of manual)
//
void PORT Init (void)
{
XBRO = 0x04; // Enable UARTO, UARTOEN=1

// TX0=P0.0 and RX0=P0.1

XBR2 = 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 (P0.0) as a push-pull output
P1MDOUT |= 0x40; // enable Pl.6 (LED) as push-pull output

//

B.2 UARTO and UART1

This package initialises UARTO or UART1 at the required baud rate and uses the specified timer to
generate this baud rate. The function to setup the baud rate is normally called from the main program,
and a routine to do this, such as ‘UART_Selector()’ is included as a remarked routine in the DualUarts.c
program listed below. Its usage in an application program can be seen in appendix B.3 Clock example.
The UART, timer and baud rate are all defined in this ‘UART _selector()’ routine. ‘sio_bit’ should be a

global bit variable in the application program.

Note that the same ‘putchar’ and ‘_getkey’ routines are used for both UARTs. Hence if the application
requires the use of both UARTS, the ‘sio_bit” should be set before using any ‘printf” statement. It should
then be reset whenever you need to print to the other UART. Moreover, another re-named copy of the
‘UART _Selector()’ routine would have to be made so that each one of them would have separate UART,
timer and baud rate definitions, so that both UARTs can be initialised concurrently. The XBR0, XBR2
and PIMDOUT would also have to be modified to reflect the use of both UARTs as shown below:

XBRO = 0x04; // UARTO enabled
XBR2 = 0x44; // Weak pull-up, Crossbar and UART1 enabled
P1MDOUT = 0x05; // P0.0 (TX0) and P0.2 (TX1l) configured as Push-Pull

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

The UARTs initialisation program and header are listed here for reference.

#include “C8051F020.H”
#include <stdio.h> /* prototype declarations for I/O functions */

#include “DualUarts.h”

extern bit sio_port;

/* ‘sio port’ is declared and set in the main program */

/* according to which UART one intends to use (0 = UARTO, 1 = UART1) */

/* It is used here in the ‘putchar’ and ‘' getkey’ routines */

/* If both UARTS are being used, then you would need to set the sio port */
/* bit to the correct UART before issuing the ‘printf’ command */

/* and obviously, both UARTS must be initialised */

/*

// Copy and paste this routine in the main application program

// in order to program the UARTs.

// Moreover, you would need to declare

//

// bit sio port;

//

// as a global variable in the main application program

//

et e
// UART Selector function

[m
//

// Remember to configure XBR0O, XBR2 and PIMDOUT according to which UART you use

//

void UART_ Selector (void)

{

// UARTO can use Timer 1 or Timer 2 as the baud rate generator
// UART1 can use Timer 1 or Timer 4 as the baud rate generator

// set the following #define statements as required:

181

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020

#define UART IN USE 0

#define TIMER FOR UART 1

#define BAUD_RATE 115200UL

#if (UART IN USE == 0)

sio port = 0;

// SIO port to use (0 = UARTO,
SetUpUART (UART_IN USE, BAUD RATE,
#if (TIMER _FOR UART == 1)

#message “Set up UARTO,
#elif (TIMER FOR UART == 2)
#message “Set up UARTO,

#else

Appendix B Further Examples

1 = UART1l), used in DualUarts.c

TIMER FOR UART) ;

at BAUD _RATE bps using Timer 1”

at BAUD RATE bps using Timer 2”

#error “Wrong Timer for UARTO”

#endif

#endif

Brain power

ey

Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/knowlede

By 2020, wind could provide one-tenth of our planet's
electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can
eet this challenge!

Tr)_af Power of Knowledge Engineering

182 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.skf.com/knowledge

PaulOS F020:
An RTOS for the C8051F020

Appendix B Further Examples

#if (UART IN USE == 1)
sio port = 1;
// SIO port to use (0 = UARTO, 1 = UART1), used in DualUarts.c
SetUpUART (UART_ IN USE, BAUD RATE, TIMER FOR UART) ;
#if (TIMER FOR UART == 1)
#message “Set up UART1, at BAUD RATE bps using Timer 17
#elif (TIMER FOR UART == 4)
#message “Set up UART1, at BAUD RATE bps using Timer 4”
#else
#error “Wrong Timer for UART1”
#endif
#endif

*/
2 — */
2
The following putchar function replaces the one in the library.
__ */
char putchar (char c)
{
char d;
if (sio_port == 0)

{ /* UARTO */

while (!TIO);

TIO = 0;

SBUFO0 = c;

}
else /* UART1 */

{

while (! (SCON1 & TI1l)); /* While TI1 = 0 */

SCON1 &= ~TI1l; /* TI1 = 0 */

SBUF1 = c;

}

for (d=0; d<10; d++){;} /* just a delay if needed, depending on receiving device requirement */

183

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

return (c);

}

char getkey (void)
{

char c;

if (sio_port == 0)
{
while (!RIO);
c = SBUFO;

RIO = 0;

else

{

while (! (SCON1 & RI1)); /* While RI1 = 0 */
c = SBUFL1;

SCON1 &= ~RI1; /* RI1 = 0 */

}

return (c);

}

Set up any UART in mode 1, 8-bit, variable baud rate
UART O can use Timers 1 or 2 as the baud rate generator

UART 1 can use Timers 1 or 4 as the baud rate generator

void SetUpUART (unsigned char UART, unsigned long BaudRate, unsigned char Timer)
{
#message “Remember to set XBR0O, XBR2 and P1MDOUT correctly”
if (UART == 1) /* Set up UART 1 */
{
switch (Timer)

{

184

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

// Setup RS232 UART1l in the Silicon Labs chip using Timer 1 or Timer 4

// For UARTO to use timer 1, set it in mode 1, 8-BIT AUTO-RELOAD.

// to generate baud rate. SMODl1 = 0 (divisor 32) and TOM = 1 (use SYSCLK)
// so baud rate formula is

// Baud rate = 22.1184 MHz /(32 * (256 — THI1)

// TH1 = 256 — [22118400/ (32 * BR)]

// = 256 — (691200/BR)

// For 9600 baud THO = 184 = 0xBS8
// For 115.2K baud THO = 250 = OxFA

//
// Similarly for Timer 4

// Serial interrupt is NOT enabled

case 1:
CKCON |= T1M; // TIM = 1, use SYSCLK for timer 1
PCON &= ~SMODI; // SMOD1 = 0, baud rate divide by 2 disabled for UART 1
SCON1 = 0x50; // 8-bit UART variable baud rate, mode 1, REN1 enabled
TMOD &= O0xO0F; // Clear Timer 1 control bits

With us you can
shape the future.
Every single day.

For more information go to:
WWw.eon-career.com

Your energy shapes the future.

185 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.eon-career.com

PaulOS F020:

An RTOS for the C8051F020 Appendix B Further Examples
TMOD |= T1M1; // Set to mode 2
TH1 = - (SYSCLK/32UL/BaudRate) ;
TR1 = 1; // start timer 1
SCON1 |= TI1; // Indicate TX1 ready for UART 1
break;
case 4:
CKCON |= T4M; // T4M = 1, use SYSCLK for timer 4
SCON1 = 0x50; // SCONl: Mode 1, 8-bit UART, enable receiver

T4CON = TCLK1l + RCLK1l; // T4CON: Use T4 for Baud Rate Tx and Rx on UART1

RCAP4 = - (SYSCLK/32UL/BaudRate); // set Timer reload value for baud rate
T4 = RCAP4; // initialise Timer value

T4CON |= TR4; // TR4: T4 Run

SCON1 |= TI1; // TIl: Set TI1 to send first char of UART1

break;

}

else /* Set up UART 0 */

switch (Timer)

// Setup RS232 UARTO in the Silicon Labs chip using Timer 1 or Timer 2
// For UARTO to use timer 1, then set it in mode 1, 8-BIT AUTO-RELOAD.
// to generate baud rate. SMODl1 = 0 (divisor 32) and TOM = 1 (use SYSCLK)
// so baud rate formula is

// Baud rate = 22.1184 MHz /(32 * (256 — TH1))

// TH1 = 256 — [22118400/(32 * BR)]

// = 256 — (691200/BR)

// For 9600 baud TH1 = 184 = 0xB8

// For 115.2K baud TH1 = 250 = OxFA

//

// Similarly if using Timer 2

// Serial interrupt is NOT enabled

CKCON |= TI1M; // TIM = 1, use SYSCLK for timer 1

PCON &= ~SMODO; // SMODO = 0, baud rate divide by 2 disabled for UART 0

186

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

SCONO = 0x50; // 8-bit UART variable baud rate, RENO enabled

TMOD &= O0xO0F; // Clear Timer 1 control bits

TMOD |= TIMl; // Set to mode 2

TH1 = - (SYSCLK/32UL/BaudRate) ;

TR1 = 1; // start timer 1

TIO = 1; // Indicate TX0 ready, for UART 0
break;

case 2:

SCONO = 0x50; // SCON: Mode 1, 8-bit UART, enable receiver

T2CON = 0x34; // T2CON: Use T2 for Baud Rate on UARTO

RCAP2 = -(SYSCLK/32UL/BaudRate); // set Timer reload value for baud rate
T2 = RCAP2; // initialise Timer value

TR2 = 1; // TR2: T2 Run

TIO = 1; // TIO: Set TIO to send first char of UARTO
break;

Header file to be include in the main program when using DualUARTS.c file

#ifndef DUAL UARTS H_

#define DUAL UARTS H

#define SYSCLK (22118400UL)

char putchar (char c¢);

char getkey (void);

void SetUpUART (unsigned char UART, unsigned long BaudRate, unsigned char Timer);

#endif // DUAL UARTS H

187

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix B Further Examples

Or else we may write separate routines for UART0 and UART1 such as:

char putcharU0 (char c)
{

char d;

while (!TIO);
TIO = 0;
SBUFO0 = c;

for (d=0; d<2; d++){;} /* just a delay if needed, since no hand shaking */

return (c);

188 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/accentureCZintl

char putcharUl (char c)
{

char d;

while (! (SCON1 & TI1l)); /* While TI1 = 0 */

SCON1 &= ~TI1l; /* TI1 = 0 */

SBUF1 = c;

for (d=0; d<2; d++){;} /* just a delay if needed, since no hand shaking */

return (c);

// R R R I I I b I b I I I b I b b b b I b b b b b b b b b b I S b b b b 3
// TEXT STRING, TERMINATED WITH A NULL, IS TRANSMITTED THROUGH UARTO
void TX_STRING UO (char *text)
{
while (*text != ‘\0')

putcharU0 (*text++) ;

// hhkhkhkhkhhkhkhkhhhkhkhkhhhkhkhkhhhkhhkrhhkhkhkhkhhkhhkrhkhkhhkhkhkhhkxk*k
// TEXT STRING, TERMINATED WITH A NULL, IS TRANSMITTED THROUGH UART1
void TX STRING Ul (char *text)
{
while (*text != \0')

putcharUl (*text++) ;

With these routines, both UARTs can be setup using the ‘SetUpUART()’ routine for each UARTx.
Then we can easily print a string of text to whichever UART we want by using the corresponding
‘TX_STRING_Ux()’ routine, without the need to use the standard ‘printf’ (which uses ‘putchar()’). We
can of course opt to use the ‘printf” commands with one UART and ‘“TX_SRING_Ux()’ with the other
UART; we are completely flexible to do so.

Download free eBooks at bookboon.com

B.3 Clock

This example is a clock with a blinking LED. It uses 5 tasks, one task keeping track of the seconds, running
periodically every second. It sends a signal to the minute task (which is set waiting for a signal) every
sixty seconds. The minute task itself then signals the hour task every sixty minutes. Another task, the
‘clock_reset’ task waits for an External 0 (/INTO) interrupt. When this falling edge triggered interrupt
happens, the task resets the clock to 23:58:50. The last task simply blinks the LED connected to pin 3.6

every 500ms.

Note the ‘PORT_Init’ task where the UARTO Tx and Rx signals and the /INTO external input signals
are routed to Port 0. The bits to setup can be verified by looking at Figure 1-10, Figure 1-11 and Table
1-4. The ‘UART_Selector()’ routine is used to initialise the required UART as previously explained in
appendix B.2 UARTO0 and UART1.

// Clock.c
e it

// Copyright (C) 2015

//

// RAUTH: PD

// DATE: 21 FEB 15

//

// This program flashes the green LED on the C8051F020 target board, 500ms on, 500ms off
// Example program to demonstrate the use of various PaulOS F020 commands
// Target: C8051F02x

//

//

e EE

// Includes

/) o

#include “C8051F020.h" /* special function registers 8051F020 */
#include “DualUarts.h” /* UARTS functions header file */

#include “PaulOS_F020.h” /* PaulOS_F020 version system calls definitions */

#include <stdio.h>

#include <stdlib.h>

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

enum eTasks {CLOCK SEC, CLOCK MIN, CLOCK HOUR, CLOCK RESET, BLINK};

bit sio port; /* SIO port to use (0 = UARTO, 1 = UART1) */
sbit LED = P1"6; // green LED: ‘1’ = ON; ‘0’ = OFF
sbit INTO = P0"2; // EXTO (/INTO) input pin, routed to this port pin

// in the port initialisation routine

struct time { /* structure of the time record */

unsigned char hour; /* hour */
unsigned char min; /* minute */
unsigned char sec; /* second */
}i

struct time ctime = { 12, 58, 30 }; /* storage for clock time values */

“I studied
English for 16 -
LJ

years but... »
...I finally .
learned to '
speak it in just
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

191 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/EOT

PaulOS F020:

An RTOS for the C8051F020

void SYSCLK Init (void);

void PORT Init (void);

void DISABLE Watchdog

(void) ;

void UART Selector (void);

// SYSCLK Init

Appendix B Further Examples

/e

!/

// This routine initializes the system clock to use an 22.1184MHz crystal

// as its clock source.

/7

void SYSCLK Init (void)

{

unsigned int i;

OSCXCN = 0x67;

for (i=0; i < 256; i++)
#ifndef SIMULATOR
while (! (OSCXCN & 0x80))

#endif

OSCICN = 0x88;

//

7

!/

//
/7

//
//

; //

/7
//
//

// Disables the watchdog timer

//
void DISABLE Watchdog

{

(void)

delay counter

start external oscillator with

22.1184MHz crystal

wait for oscillator to start
SIMULATOR defined in the C51 Target Tab

Wait for crystal osc.to settle

select external oscillator as SYSCLK

source and enable missing clock

detector

192

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

EA

Il
o

WDTCN = O0OxDE;

WDTCN = O0xAD;

EA

Il
=

//

// Configure the Crossbar and GPIO ports
//

void PORT_Init (void)

{

XBRO = 0x04; // Enable UART 0, UARTOEN = 1
// TX0 => P0.0 and RX0 => PO.1
XBR1 = 0x04; // Route INTO to port pins, INTOE = 1

// INTO => P0.2

XBR2 = 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
PIMDOUT |= 0x40; // enable Pl.6 (LED) as push-pull output

//

// Remember to configure XBR0O, XBR2 and PIMDOUT according to which UART you use

//

void UART_ Selector (void)

{

// UARTO can use Timer 1 or Timer 2 as the baud rate generator
// UART1 can use Timer 1 or Timer 4 as the baud rate generator
#define UART_IN USE O

#define TIMER FOR UART 1

#define BAUD RATE 115200UL

193

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

#if (UART_IN USE == 0)
sio port = 0;
/* SIO port to use (0 = UARTO, 1 = UART1), used in DualUarts.c */

SetUpUART (UART_IN_USE, BAUD RATE, TIMER FOR UART) ;

#if (TIMER FOR UART == 1)

#message “Set up UARTO, at BAUD RATE bps using Timer 1”
#elif (TIMER FOR UART == 2)

#message “Set up UARTO, at BAUD RATE bps using Timer 2”
#else

#error “Wrong Timer for UARTO”
#fendif

#endif

#if (UART IN USE == 1)
sio port = 1;
/* SIO port to use (0 = UARTO, 1 = UART1l), used in DualUarts.c */

SetUpUART (UART_IN_USE, BAUD RATE, TIMER FOR UART) ;

DUKE

= THE FUQUA
SCHOOL
OF BUSINESS

e

=

Learn More »

194 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/fuqua

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

#if (TIMER FOR UART == 1)

#message “Set up UART1, at BAUD RATE bps using Timer 1”
#elif (TIMER FOR_UART == 4)

#message “Set up UART1, at BAUD RATE bps using Timer 4”
#else

#error “Wrong Timer for UART1”
#endif

#endif

/**/

/* Task 0 ‘clock sec’ */

/‘k************************/

void clock sec (void)

{

0S_PERIODIC A(0,1,0); /* Repeat every 1 second */
while (1) /* clock is an endless loop */
{
if (++ctime.sec == 60)
{ /* calculate the second */
ctime.sec = 0;

OS_SIGNAL TASK (CLOCK MIN) ;

else printf (“Clock Time: %02bu:%02bu:%02bu\r”, /* display time */
ctime.hour, ctime.min, ctime.sec);

OS WAITP(); /* wait for 1 second */

/‘k************************/

/* Task 2 ‘clock min’ */

/**/

void clock min (void)

{

while (1) /* clock is an endless loop */

{

OS_WAITS(0); /* wait for 1 second */

195

Download free eBooks at bookboon.com

PaulOS F020:

An RTOS for the C8051F020 Appendix B Further Examples

if (++ctime.min == 60)
{ /* calculate the second */
ctime.min = 0;

OS_SIGNAL TASK (CLOCK_ HOUR) ;

else printf (“Clock Time: %02bu:%02bu:%02bu\r”, /* display time */

ctime.hour, ctime.min, ctime.sec);

/**/

/* Task 2 ‘clock hour’ */

/**/

void clock hour (void)

{

while (1) /* clock is an endless loop */

0S WAITS(0); /* wait for 1 second */

if (++ctime.hour == 24)
{ /* calculate the second */
ctime.hour = 0;

}

printf (“Clock Time: $%02bu:%02bu:%02bul\r”, /* display time */

ctime.hour, ctime.min, ctime.sec);

/‘k************************/

/* Task 3 ‘rest clock’ */

/**/

196

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

void clock reset (void)

{

while (1)
{
OS_WAITI(O); // wait for /INTO
ctime.hour = 23;
ctime.min = 59;
ctime.sec = 50;
}
}
/**/
/* Task 4 ‘Blink’ */

/**/

Join American online

Interactive Online programs

Special Christmas offer:

enroll by December 18th, 2014
start studying and paying only in 2015
save up to $ 1,200 on the tuition!
Interactive Online education

visit to find out ma@

vVvyvVvyyVvyy

Note: LIGS University is not accredited by an
nationallg' recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

—

197 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/LIGS

PaulOS F020:
An RTOS for the C8051F020 Appendix B Further Examples

void BlinkTask (void)
{
O0S_PERIODIC A(0,0,500); /* Repeat every 500 ms */

while (1)

LED = !LED;

OS WAITP(); // wait for the periodic interval

}

/**/

/*

Rk kb kb bk b b b b b b b b b R b b b b b b b b b b b R R b b R b b b

*/

void main (void) {

DISABLE Watchdog ();
SYSCLK Init ();

UART Selector (); /* Set up UART */

PORT Init ();

OS_INIT RTOS(TICK TIMER); /* initialise RTOS (Timer 0 interrupt), */

/* variables and stack */

/* CREATE the 5 tasks */
OS_CREATE_TASK (CLOCK_SEC, clock_sec);
0S CREATE TASK (CLOCK MIN, clock min);
0S CREATE TASK (CLOCK_HOUR, clock hour);
OS_CREATE_TASK(CLOCK_RESET,clock_reset);

OS_CREATE_TASK (BLINK,BlinkTask) ;

ITO

1; // fallling edge triggered

EX0 = 1; // enable external 0 (/INTO) interrupt

198

Download free eBooks at bookboon.com

0S RTOS GO(0); /* Start the RTOS */

while (1)
{
#ifndef SIMULATOR
0S CPU_IDLE(); /* Go to idle mode if doing nothing, to conserve energy
*/
#else
#endif

-~

R N |

EHHERN

BUSINES"}
SCHOO!

FINANCIAI. TIMES

s

]

B 1 _
g gl "
MASTER IN MANAGEMENT Al L - "

\

Because achieving your dreams is your greatest challenge. IE Business School's Master inManagement taught
in English, Spanish or bilingually, trains young high performance professionals at the beginning of their career
through an innovative and stimulating program that will help them reach their full potential.

Choose your area of specialization.
Customize your master through the different options offered.
Global Immersion Weeks in locations such as Rio de Janeiro, Shanghai or San Francisco.

Because you change, we change with you.

www.ie.edu/master-management mim.admissions@ie.edu £ W lin YouTube

Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/IE

Blaut, J. (2004). 8051 RTOS. B.Sc. Electrical Engineering Thesis, University of Malta.

Chew, M.T.,, & Gupta, G.S. (2005). Embedded Programming with Field-Programmable Mixed-Signal

Microcontrollers. Silicon Laboratories.

Debono, P.P. (2013a). PaulOS: Part I - An 8051 Real-Time Operating System (1st ed.). bookboon.com.
Debono, P.P. (2013b). PaulOS: Part II - An 8051 Real-Time Operating System (1st ed.). bookboon.com.
Huang, H. (2009). Embedded System Design with the C8051. Stanford, CT, USA: Cengage Learning.

Pont, M.]. (2002). Patterns for Time-Triggered Embedded Systems: Building reliable applications with the
8051 family of microcontrollers. Boston, Ma, USA: Addison-Wesley Longman Publishing Co., Inc.

Schultz, T.W. (1999). C and the 8051 (volume II): building efficient applications. Upper Saddle River, NJ,
USA: Prentice Hall PTR.

Schultz, T.W. (2004). C and the 8051. Pagefree Publishing.

Silicon Labs. (2003a). AN122 - Annotated “C” Examples for the “F02x” Family. Austin, TX, USA: Silicon

Laboratories Inc.

Silicon Labs. (2003b). C8051F020 Data Sheet. Austin, TX, USA: Silicon Laboratories Inc.

Download free eBooks at bookboon.com

Index

A o

addresses 18, 20, 26, 27, 28, 78, 79, 158, 204 on-chip 15,17

area 16, 18, 20, 21, 22, 23, 25, 44, 45, 50, 51, 78, 109, organisation 7, 13, 14
130, 131 OS_CPU_DOWN() 61

OS_CPU_IDLE() 61
OS_CREATE_TASK (uchar tasknum, uint taskadd)

B
bit-addressable 23, 28, 80, 154, 162

48, 49
C OS_CREATE_TASK((uchar tasknum, uint taskadd) 110
code 7,8, 13, 14, 16, 17, 24, 30, 45, 50, 55, 56, 62, 69, OSCXCN 28, 29, 156,178, 179, 192
76,78, 79, 81, 84, 85, 100, 104, 105 OS_DEFER() 53, 54, 60
co-operative 7, 8, 43, 44, 45, 54, 83, 84, 204 OS_INIT_RTOS (uchar blank) 48, 49, 90
Crossbar 33, 34, 35, 36, 37, 38, 39, 40, 79, 168, 169, OS_KILL_IT() 59
180, 193, 204 OS_PAUSE_RTOS() 61, 62,77
C Tips 84 OS_PERIODIC_A (min, sec , msec) 54

OS_PERIODIC(Ticks) 54
OS_RESUME_RTOS() 61, 62,77
OS_RESUME_TASK (uchar tasknum) 48, 49, 129

D
description 28, 49

E OS_RTOS_GO(priority) 47

EIE1 41,157 OS_RUNNING_TASK_ID() 53

EIE2 41,92, 108,112,157, 169 OS_SCHECK 48, 49,90, 114

EIP1 41,157,171 OS_SIGNAL_TASK (uchar tasknum) 48, 49
EIP2 41,108, 157, 171 OS_WALITI (uchar intnum) 48, 49, 90
External 15, 17, 40, 97, 126, 166, 168, 169, 171, 190 OS_WAITP() 32, 54, 56

OS_WAITS_A(M,S,ms) 61, 96

1 OS_WAITS(ticks) 46,57, 61

IE 41, 81, 108, 155, 159 OS_WAITT_A(M,S,ms) 61,96
Internal Data 15,17, 19 OS_WAITT(ticks) 59, 61
interrupts 7, 20, 30, 40, 41, 43, 47, 50, 52, 70, 81, 84,
85,108, 112,136, 153, 172, 175, 204 P
IP 41 81 108. 156. 159 PaulOS_F020 7, 8, 44, 47, 62, 64, 77, 84, 85, 86, 89, 91,
ISR 100, 102, 105, 106, 190
stand-alone — PaulOS_F020 62 OS_WAITP() 54
stand-alone ISR 62
M PaulOS_F020.h 86, 89, 106, 190
mode 3 68,172,174,175,176,177 PaulOS_F020_Parameters.h 62, 86, 102
Mode 3 67,172 PaulOS_F020 RTOS 7, 44, 47, 62, 64

Download free eBooks at bookboon.com

pitfalls 8,78, 84

PORT 33, 154, 155, 156, 157, 159, 168, 169, 176, 178,
180, 190, 192, 193, 198

programming 7, 8, 13, 14, 15, 24, 29, 54, 55, 68, 78, 83

Programming 78, 200

R

RAM size 78

READY 47, 109, 110, 115, 130, 131, 134, 153

register banks 18, 20, 62, 84

running 8, 16, 28, 29, 31, 44, 45, 46, 47, 48, 49, 51, 57,
61, 62, 67, 68, 69, 71, 74, 76, 83, 87, 90, 100, 109,
113,130, 131, 135, 153, 172, 176, 190, 204

S

serial 8,23, 24,27, 34,41, 68, 69, 70,71, 72,74, 75, 77,
79, 80, 81, 122, 123, 139

SFR 17,18, 23, 24, 25, 26, 27, 28, 50, 61, 62, 78, 79, 81,
102, 103, 204

SFRs 17, 19, 23, 24, 25, 26, 27, 28, 41, 62, 78, 79, 80, 81,
154, 162, 204

source listing 56, 79, 86

split timers 174

stand-alone 61, 62, 85, 90

stand-alone ISR 61, 62, 85, 90

Startup_PaulOS_F020.A51 86,91, 100

system clock 28, 29, 30, 66, 79, 93, 178, 192

System Clock 28, 79

System Commands 47

T
tips 8,78

U

UARTO 23, 24, 27, 33, 34, 38, 39, 64, 66, 67, 68, 71, 74,
75,77, 80, 81, 94, 122, 139, 159, 160, 168, 171,
173,174, 176, 180, 181, 182, 183, 185, 186, 187,
188, 189, 190, 191, 193, 194

UART1 23, 38, 66, 67, 80, 81, 95, 126, 150, 151, 169,
170, 171, 180, 181, 182, 183, 185, 186, 188, 189,
190, 191, 193, 194, 195

usage 54, 55, 85, 180

w

waiting 28, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57,
58, 59, 60, 66, 70, 75, 90, 93, 106, 109, 115, 116,
117,118, 119, 121, 127, 129, 132, 134, 135, 152,
153,190

Watchdog Timer 29, 79, 170

Watchdog Timer Setup 79

WDTCN 29, 30, 31, 32, 158, 179, 180, 193

X

XBRO 33, 34, 35, 36, 79, 157, 168, 180, 181, 184, 193

XBRI1 33, 34, 35, 36,79, 157, 169, 193

XBR2 33, 34, 35, 37, 38, 40, 79, 157, 169, 180, 181, 184,
193

Download free eBooks at bookboon.com

Endnotes

1 This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that
the state of a Port I/O pin can always be read from its associated Data register regardless of whether that
pin has been assigned to a digital peripheral or behaves as GPIO.

2 When the interrupts are recognised by the micro-controller at the same time (i.e. simultaneous), a decision
has to be made on which interrupt is to be serviced first. If all these interrupts have the same high/low
priority setting, the controller will follow the fixed priority order column shown in Table 1-5 to determine
which one should run first. If the interrupts are not simultaneous, then the priority order column does not
come into play at all. An interrupt occurring while another interrupt of the same high/low priority setting
is running, will not be allowed to interrupt this running ISR.

3 The main structure for this RTOS came from the book “C and the 8051 - Building Efficient Applications —
Volume II” by Thomas W. Schultz and published by Prentice Hall (0-13-521121-2). In this book, Prof.
Schultz discusses the development of two real-time kernels. The first one is the RTKS which I corrected
and developed into PaulOS co-operative RTOS. The second one is the RTKB which I also corrected,
modified and developed into MagnOS pre-emptive RTOS. Both operating systems, RTKS and RTKB as
written in the book are not fully functional, contain some errors and lack some essential components. I did
correspond with Prof. Schultz and sent him my modifications and final versions of the programs which he
later acknowledged in the 3rd edition of the book “C and the 8051, again published by Prentice-Hall (0-
58961-237-X). So I am particularly grateful to Prof. Schultz for being the catalyst of my increased interest
in RTOSs.

4 16-bit SFR declarations: Some 8051 derivatives have 16-bit SFRs that are created using consecutive
addresses in SFR memory to specify 16-bit values. For example, the C8051F020 uses addresses 0xCC and
0xCD for the low and high bytes of timer/counter 2 respectively. The Cx51 Compiler provides the sfr16
data type to access two 8-bit SFRs as a single 16-bit SFR (see also section 1.7).

Access to 16-bit SFRs using sfr16 is possible only when the low byte address location immediately precedes
the high byte (little endian) and when the low byte is written last. The low byte is used as the address in
the sfr16 declaration. For example:
sfr16 ADCO = 0xBE; /* ADCOL 0BEh, ADCOH 0BFh */
sfr16 T2 = 0xCC; /* TL2 0CCh, TH2 0CDh */
sfr16 RCAP2 = 0xCA; /* RCAP2L 0CAh, RCAP2H 0CBh */
sfr16 RCAP4 = 0xE4; /* RCAP4L 0E4h, RCAP4H 0OE5h */
In this example, ADCO, T2, RCAP2 and RCAP4 are declared as 16-bit SFRs and can b used as for example:
T2 = 0x1234; // equivalent to TH2 = 0x12 and TL2 = 0x34

Download free eBooks at bookboon.com

PaulOS F020:
An RTOS for the C8051F020 Endnotes

Whilst hoping that you found this book useful, please feel free to contact me if you have any queries

or suggestions.

If there is a great demand for porting the RTOS to another family of micro-controllers, I would be

willing to attempt to do so.

Paul Debono

e-mail: pawlu.debono@yahoo.co.uk

SMS from your computer

...oync'd with your Android phone & number

Andreas johesan

T Cooqmemtes 06, 3542 151737 Andrew MeDonald

Go to
= - . - BrowserTexting.com
r:“"m‘h‘mwm;;:-éwu LIS e

Ullay N
Oh_coeliZ)

Anja Peterien

and start texting from
your computer!

(...) BrowserTexting

204 Click on the ad to read more

Download free eBooks at bookboon.com

mailto:pawlu.debono@yahoo.co.uk
http://www.browsertexting.com/

	_Ref419009664
	_Ref337803279
	_Ref119559975
	_Ref119560162
	_Ref419058282
	_Ref414172431
	_Ref419012627
	_Ref413673335
	_Ref414173074
	_Ref414173067
	_Ref414173888
	_Ref414515507
	_Ref414174233
	_Ref419013997
	_Ref414110778
	_Ref414110773
	_Ref414111155
	_Ref414168830
	_Ref414111850
	_Ref414111861
	_Ref414111870
	_Ref414367909
	_Ref419014028
	_Ref354048197
	_Ref311968150
	_Ref413567360
	_Ref338404774
	_Ref414517019
	_Ref323802824
	_Ref413749750
	_Ref414517558
	_Ref413995274
	_Ref414004059
	_Ref414004217
	_Ref414005210
	_Ref414005801
	_Ref414010625
	_Ref414010621
	page1
	_Ref414528313
	_Ref415146126
	_Ref415039725
	Preface
	Acknowledgements
	Dedications
	List of Figures
	List of Tables
	1	C8051F020 Basics
	1.1	Introduction
	1.2	Memory Types
	1.3	Program/Data Memory (Flash)
	1.4	External Data Address Space (XRAM)
	1.5	Register Banks
	1.6	Bit Memory
	1.7	Special Function Register (SFR) Memory
	1.8	SFR Descriptions

	2	�PaulOS F020: a co-operative RTOS
	2.1	Description of the RTOS Operation
	2.2	PaulOS_F020.C System Commands
	2.3	Descriptions of the commands
	2.4	PaulOS_F020_Parameters.h header file
	2.5	Example using PaulOS_F020 RTOS

	3	Master – Slave RTOS
	3.1	Multi-controller RTOSs
	3.2	Master
	3.3	Slave

	4	Programming Tips and Pitfalls
	4.1	RAM size
	4.2	SFRs
	4.3	Setup faults
	4.4	Serial ports (UART0 and UART1)
	4.5	Interrupts
	4.6	RTOS pitfalls
	4.7	C Tips

	Appendix A: PaulOS_F020.C Source Listing
	A.1	PaulOS_F020_Parameters.h
	A.2	PaulOS_F020.h
	A.3	Startup_PaulOS_F020.A51
	A.4	PaulOS_F020.c
	A.5	C8051F020.H

	Appendix B Further Examples
	B.1	Timer 0 in Mode 3 (split timer) and Timer 1 as a baud rate generator
	B.2	UART0 and UART1
	B.3	Clock

	Bibliography
	Index
	Endnotes

