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Preface


Preface
This text is based on lecture courses given by the author, over about 40 years, at Newcastle University, to final-year applied 
mathematics students. It has been written to provide a typical course that introduces the majority of the relevant ideas, 
concepts and techniques, rather than a wide-ranging and more general text. Thus the topics, with their detailed discussion 
linked to the many carefully worked examples, do not cover as broad a spectrum as might be found in other, more wide-
ranging texts on fluid mechanics; this is a quite deliberate choice here. Thus the development follows that of a conventional 
introductory module on fluids, comprising a basic introduction to the main ideas of fluid mechanics, culminating in a 
presentation of complex-variable techniques and classical aerofoil theory. (There are many routes that could be followed, 
based on a general introduction to the fundamentals of the theory of fluid mechanics. For example, the course could then 
specialise in viscous flow, or turbulence, or hydrodynamic stability, or gas dynamics and supersonic flow, or water waves, to 
mention just a few; we opt for the use of the complex potential to model flows, with special application to simple aerofoil 
theory.) The material, and its style of presentation, have been selected after many years of development and experience, 
resulting in something that works well in the lecture theatre. Thus, for example, some of the more technical aspects are 
set aside (but usually discussed in an Appendix). 

It is assumed that the readers are familiar with the vector calculus, methods for solving ordinary and partial differential 
equations, and complex-variable theory. Nevertheless, with this general background, the material should be accessible to 
mathematicians, physicists and engineers. The numerous worked examples are to be used in conjunction with the large 
number of set exercises – there are over 100 – for which the answers are provided. In addition, there are some appendices 
that contain further relevant material, together with some detailed derivations; a list of brief biographies of the various 
contributors to the ideas presented here is also provided.

Where appropriate, suitable figures and diagrams have been included, in order to aid the understanding – and to see the 
relevance – of much of the material. However, the interested reader is advised to make use of the web, for example, to 
find pictures and movies of the various phenomena that we mention.
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1	 Introduction and Basics
We start with a working definition: a fluid is a material that cannot, in general, withstand any force without change of 
shape. (An exception is the special problem of a uniform – inward – pressure acting on a liquid, which is a fluid that 
cannot be compressed, so there is no change of volume.) This property of a fluid should be compared with what happens 
to a solid: this can withstand a force, without any appreciable change of shape or volume – until it fractures! 

We take this fundamental and defining property as the starting point for a simple classification of materials, and fluids 
in particular:

                   materials 

solids                 ?               fluids 

                                                                                                    low density gases 
                     liquids                                    ga ses                          
             (incompressible)                     (compressible) 

     viscous                   inviscid      viscous           inviscid   
      (real)                     (model/        (real)             (model/ 
                                        ideal)                                 ideal) 

(Some materials sit somewhere between solids and fluids; these are usually called thixotropic materials – non-drip paints 
are an example.)

We are interested in fluids, of which there are two main types exemplified by: air – a gas – which is easily compressed 
(until it liquefies), whereas water – a liquid – is virtually incompressible. (The density of water increases by about 0 5%⋅  
under a pressure of 100 atmospheres.)

All conventional fluids are viscous; simply observe the various phenomena associated with the stirred motion of a drink 
in a cup; e.g. after stirring, the motion eventually comes to a halt; also, during the motion, the particles of fluid directly 
in contact with the inner surface of the cup are stationary. 

In this study, we will eventually work, mainly, with a model fluid that is incompressible. This applies even to air – relevant 
to the theory of flight – provided that the speeds are less than about 300mph (which is certainly the situation at take off 
and landing). The rôle of viscosity is important in aerofoil theory, and will therefore be discussed carefully, but it turns 
out that the details of viscous flow are not significant for flight.
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1.1	 The continuum hypothesis

 The first task is to introduce a suitable, general description of a fluid, and then to develop an appropriate (mathematical) 
representation of it. This involves regarding the body of fluid on the large (macroscopic) scale i.e. consistent with the 
familiar observation that fluid – air or water, for example – appears to fill completely the region of space that it occupies: 
we ignore the existence of molecules and the ‘gaps’ between them (which would constitute a microscopic or molecular 
model). This crucial idealisation, which regards the fluid as continuously distributed throughout a region of space, is called 
the continuum hypothesis.

Now, at every point (particle), we may define a set of functions that describe the properties of the fluid at that point:

( , )tu x  – the velocity vector (a vector field)

( , )p tx  – the pressure (a scalar field)

( , )tρ x  – the density (ditto),

where ( , , )x y z=x  is the position vector (expressed in rectangular Cartesian coordinates, but other coordinate systems 
may sometimes be required). Here, t is time and we usually write ( , , )u v w=u , although there may be situations where 
the components are more conveniently written as ix  and iu  ( 1,2,3i = ). Note that both p  and ρ  are defined at a 
point, with no preferred orientation: they are isotropic. Also, we have not included temperature, the variations of which 
may be important for a gas (requiring a consideration of thermodynamics and the introduction of thermal energy). We 
will mention temperature only as a consequence of other properties e.g. pressure and density implies a certain temperature, 
via some equation of state. We assume, for our discussion here, that all the motion occurs at fixed temperature throughout 
the fluid, or that heat transfer between regions of different temperature can be ignored (e.g. it occurs on timescales far 
longer than those associated with the flow under consideration).

In our initial considerations, we shall allow the density to vary, but we will soon revert to the appropriate choice for our 
incompressible (model) fluid: constantρ = . Further, the three functions introduced above are certainly to be continuous 
in both x and t for any reasonable representation of a physically realistic flow. 

Note: This description, which defines the properties of the fluid at any point, at any time – the most common one in 
use – is called the Eulerian description. The alternative is to follow a particular point (particle) as it moves in the fluid, 
and then determine how the properties change on this particle; this is the Lagrangian description. We shall write more 
of these alternatives later.
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We are now in a position to introduce two different ways of describing the general nature of the motion in a given velocity 
field which represents a fluid flow.

1.2	 Streamlines and particle paths

We assume that we are given the velocity field ( , )tu x  (and how any particular motion is generated or maintained is, for 
the moment, altogether irrelevant); the existence of a motion is the sole basis for the following descriptions.

1.2.1 A streamline is an imaginary line in the fluid which everywhere has the velocity vector as its tangent, at any instant 
in time. 

Let such a curve be parameterised by s, and write the curve as ( , )s t=x X ; we give a reminder of the underlying idea 
that we now use.

                                       u                                                                              u 
 
                                            ∆X  
 
                                                                    ( , )s s t+ ∆X  
                                                                     ( , )s t= + ∆X X  
                                X(s,t) 
 
 
 
                                                              O 

We form 
( , ) ( , )s s t s t

s s
+ ∆ − ∆

=
∆ ∆

X X X
, so that, in the limit 0s∆ → , the derivative 

d
ds
X

 is the tangent to the curve 

( , )s t=x X  – a familiar result. Thus our definition of a streamline can be expressed as

d
ds

∝
X u  or 

d
d

k
s
=

X u  or 
d ( , )
d

t
s
=

X u X ,

when we redefine s. In Cartesian components, this is the set of three coupled, ordinary differential equations

d d d, ,
d d d
x y zu v w
s s s
= = =  (all at fixed t)

or, more conveniently, a pair of equations e.g. 

d d,
d d
y v z w
x u x u
= = .
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This set is often expressed in the symmetric form 
d d dx y z
u v w
= = .

Note that, in 2-space (x, y), we simply have 

d
d
y v
x u
=

(because there is no variation, and no flow, in the z-direction).

Example 1

Streamlines. Find the streamlines for the flow )0,,( ytx αα −≡u , where 0>α  is a constant, and that family 
at the instant 1=t .

igure). 

We have (in 2D) 
d
d
y v y y
x u xt xt

α
α

= = − = −  (at fixed t; 0, 0x t≠ ≠ ), and so

d dy xt
y x
= −∫ ∫  i.e. ln ln constantt y x= − + .

Thus ty x C=  (an arbitrary constant), and then at 1t =  we have simply xy C=  (a family of rectangular hyperbolae; 
see figure). 

Comment: Streamlines cannot cross except, possibly, where =u 0  (defining a stagnation point, where the flow is stationary 
or stagnant) because, at such points, the direction of the zero vector is not unique.

1.2.2 A particle path is the path, ( )t=x X , followed by a point (particle) as it moves in the fluid according to the given 
velocity vector i.e.

d
dt

=
X u ;
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this is pure kinematics, determining ( )tX  given ( , )tu X . In component form, we have

d
d
x u
t
= , 

d
d
y v
t
= , 

d
d
z w
t
= ,

and here t is a variable (involved in the integration process).

Example 2 

Particle paths. Find the particle paths for the flow )0,,( ytx αα −≡u , and that path which passes through 
(1,2) at .

Here we have 
d d,
d d
x yxt y
t t

α α= = −  (and 
d 0 constant
d
z z
t
= ⇒ = , so 2D); thus

d dd ; dx yt t t
x y

α α= = −∫ ∫ ∫ ∫  i.e. 21
2ln const.; ln const.x t y tα α= + = − +

which gives 
21

2e ; et tx A y Bα α−= =  and data at 0t =  requires 1, 2A B= = . The path is therefore 

( )21
2( ) e , 2e ,const.t tt α α−=x , when expressed in 3D.
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Note: A steady flow is one for which the velocity field is independent of time, and then the families of streamlines (SLs) 
and particle paths (PPs) necessarily coincide (because

d ( )
ds

=
X u X  and 

d ( )
dt

=
X u X  each define the same set of curves).

Example 3 

Steady flow. All the particles (points) in a fluid move according to x ≡ −( , , )a b ct t te e e2 3
 (written in rect. 

Cart. coords.). Show that this flow field is steady, and then that the families of SLs and PPs coincide.

The PPs are given, and so ( )2 3d e ,2 e , 3 e
d

t t ta b c
t

−= = −
xu ; but these PPs can be expressed as ( ) ( ( ), ( ), ( ))t x t y t z t=x ,  

where ( ) etx t a= , etc., and so eliminating a, b, c we obtain the velocity field ( , 2 , 3 )x y z= −u  for all particles (points) 
in the flow. This velocity field is steady.

Now the SLs are 
d d d

2 3
x y z
x y z
= =

−
 and so for example – other choices are possible – 

2 3 2,x Ay y z B= = ; but the PPs give 
2

2 2 2 3 2 3 6 2 6 3 2e , e et t tax a y y z b c b c
b

−= = = = ,

which is consistent with the representation of the SLs: the two families coincide.

Example 4 

SLs and PPs II. The velocity components of a flow (in 2D) are ( , ) ( )xy ynte ≡ u , where t is time and n is a 
constant. Find the streamlines for this flow and the particle path which passes through (1,1) at t = 0. For what 
value of n will the two families of curves coincide ?

We have, for the PPs, 
d de ,
d d

ntx yu xy v y
t t
= = = = , and so we must solve the second equation first: 

d dy t
y
=∫ ∫  so 

ln const.y t= +  i.e. e et ty A= =  to satisfy the initial condition. Then

(1 )d e
d

n tx x
t

+= : (1 )d e dn tx t
x

+=∫ ∫  so 
(1 )

(1 )1 e 1ln e const.
1 1

n t
n tx

n n

+
+ −

= + =
+ +

;

thus 
(1 )e 1exp
1

n t
x

n

+ −
=  

+  
.
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For the SLs: 
d 1
d e ent nt
y v y
x u xy x
= = =  ( 0, 0x y≠ ≠ ), and so

d e dntx y
x
=∫ ∫  (at fixed t) i.e. ln e const.ntx y= +  or ( )exp entx C y= . 

The two families coincide for steady flow i.e. 0n = .

Comment: In the laboratory, it is sometimes convenient to observe streak lines; these are all the paths through a given 
point, over an interval of time.

1.3	 The material (or convective) derivative

Let us consider some (scalar) property of the fluid, labelled f ; in our representation of a fluid, this will be the pressure, 
or the density or a velocity component. This will, in general, vary in position and time:

( , )f f t= x .

We might be interested in 
f
t

∂
∂

, but a more important aspect of f is how it varies in time when it is associated with a point 

(particle) that is moving in the fluid. So we require 
d
d
f
t

 with 
d
dt

=
X u ; then we have

{ }d d( ( ), )
d d

ff t t f f
t t t t

∂ ∂   = + ⋅∇ = + ⋅∇   ∂ ∂   
XX u ,

and this operator on f is called the material (or convective) derivative (because it gives the rate of change of a material 
point – a point or particle of the material, as it moves, or is ‘convected’, in the fluid); it is usually written as

D
Dt t

∂
≡ + ⋅∇
∂

u .
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Warning: 

Do not think to write ⋅∇u  as ∇⋅u ! Remember that ∇  is a differential operator and so, in the former, it 
operates on whatever follows the ∇ , and this is not u – it is some function e.g. f.

Note: If we apply this operator to the velocity vector – which we might expect is the appropriate representation of the 
acceleration of a fluid particle – then we obtain

D ( )
Dt t

∂
= + ⋅∇
∂

u u u u ,

which is inherently nonlinear. That this is indeed the acceleration follows directly: we have 
d
dt

=
X u  for a particle path, 

and so the acceleration is 
2

2
d d d D( ( ), )

d d Dd
t t

t t t tt
∂

= = + ⋅∇ =
∂

X u X uu X u ,

relating the Lagrangian and Eulerian expressions.
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Example 5 

Acceleration. Find the acceleration vector for a particle (point) which moves according to u ≡ −( , )α αx y , in 
two dimensions, where 0>α  is a constant.

We have , (& 0)u x v y wα α= = − = , so 
D
D

x y
t t x y

α α∂ ∂ ∂
≡ + −
∂ ∂ ∂

; thus

( )2 2D ( , ) ,
D

x y x y x y x y
t t x y x y

α α α α α α α α
   ∂ ∂ ∂ ∂ ∂

= + − = − − =   ∂ ∂ ∂ ∂ ∂   

u u u .

The notion of acceleration can be explored further:

Example 6

Velocity & Acceleration. A particle starts (t = 0) at the point (a, b, c), and moves according to 

( )2( , , ) (1 ) , (1 ) , (1 )x y z a t b t c t= = + + +x .  Find the velocity and acceleration vectors directly; 
determine the velocity field in terms of x, y, z and t (by eliminating a, b and c), and hence show that the 
acceleration is recovered from D Dtu .

We have 2 2
d 2 (1 ), ,
d (1 ) (1 )

b ca t
t t t

 
= + − − =  + + 

x u ; 

correspondingly, 

the acceleration is
2

2 3 3
d 2 22 , ,
d (1 ) (1 )

b ca
t t t

 
=   + + 

x
. 

But we may write 
2 , ,

1 1 1
x y z
t t t

 = − − + + + 
u  for this velocity field i.e. for every point satisfying the given family of PPs; 

this flow field is therefore unsteady.
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Now 
D 2
D 1 1 1

x y z
t t t x t y t z

 ∂ ∂ ∂ ∂
= + − − ∂ + ∂ + ∂ + ∂ 

u u

2 2 2 2 2 2 3 3
2 4 2 2, , 2 , ,

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 )
x x y y z z b ca
t t t t t t t t

   
= − + + + =      + + + + + + + +   

exactly as before.
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1.4	 The equation of mass conservation

A fundamental equation (not usually expressed explicitly in elementary particle mechanics) is a statement of mass 
conservation. We can readily see the need for such an equation: the fluid is, in general, in motion and can produce a 
mixing of regions of different densities. Yet the total amount (mass) of material is presumably conserved; this total can 
change only if matter (material) is created or destroyed – and this will arise only if we allow e.g. the conversion of mass 
into energy! We now derive the equation which ensures that mass is indeed conserved.

Consider an imaginary (finite) volume V, bounded by a surface S, which is completely occupied by fluid; we shall take V 
(and S) to be stationary in our chosen frame of reference (so that fluid will cross S into and out of V). This figure shows 
the configuration schematically:

 

where n is the outward unit normal on S, and ( , )tρ x  and ( , )tu x  are given at every point in V and on S. The total 
mass of all the fluid in V, at any instant in time, is then

( , )d
V

t vρ∫ x ,

where (.)d
V

v∫  denotes the triple integral in x over V. The rate of change of this mass is therefore

d ( , )d d
d

V V
t v v

t t
ρρ ∂

=
∂∫ ∫x

because V is fixed in space. [See the property: ‘differentiation under the integral sign’, discussed in Exercise 10.]
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Further, the net rate at which mass flows out of V across S is described in this figure:

 
 
 
 
 
                                                                                          length is  
                                                                                          = ⋅u n  
                                                                                       per unit time 
 
 
                                                                          S∆  
                                         u 

and so the volume of fluid (out) per unit time is approximately S S×∆ = ⋅ ∆u n , producing a total mass flow rate 
(out), over all S, in the form

d
S

sρ ⋅∫ u n ,

where (.)d
S

s∫ represents the double integral over S. We now impose the condition that the only mechanism that produces 

a change of mass in V is by virtue of material crossing S (into or out of V), thereby excluding the possibility of matter 

(mass) being created or destroyed at any points in V or on S; thus we require

d d
V S

v s
t
ρ ρ∂

= − ⋅
∂∫ ∫ u n .

The choice of sign here is to accommodate the obvious convention that 0
t
ρ∂
>

∂
 requires material to enter V across S.

We now invoke the Divergence (Gauss’) Theorem for the surface integral (where S bounds V), to produce

( ) d 0
V

v
t
ρ ρ∂ +∇ ⋅ = ∂ ∫ u .

However, this result must hold for all Vs (and corresponding Ss), irrespective of shape or size, which implies that the 

limits of the integral (denoted by V) are arbitrary. But ( )
t
ρ ρ∂
+∇⋅

∂
u  is assumed continuous, and so the requirement 

that the integral of this expression always be zero [see the fundamental idea discussed in Exercise 11] gives

( ) 0
t
ρ ρ∂
+∇⋅ =

∂
u
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which is usually expressed [see the identities in Exercise 7] as 

D 0
Dt
ρ ρ+ ∇⋅ =u ,

the equation of mass conservation for a general fluid. Immediately we see that, if constantρ =  ( 0)> , then we obtain

0∇⋅ =u

which is a statement that volume is conserved. Note that the equation of mass conservation requires both ρ and u to be 
differentiable.

In rectangular Cartesian coordinates, 0∇⋅ =u  becomes 0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

; in cylindrical polar coordinates ( , , )r zθ  , 
with ( , , )u v w=u , this reads

1 ( ) 1 0ru v w
r r r zθ
∂ ∂ ∂

+ + =
∂ ∂ ∂

.

A check list of all the relevant equations, written in both rectangular Cartesian coordinates and cylindrical coordinates, 
is given in Appendix 2.
Note: The general definition of an incompressible fluid is that constantρ =  on each fluid particle (allowing different 
constants on different particles), so that D 0

Dt
ρ
= , leaving the same result as above: 0∇⋅ =u . Our usual choice, appropriate 

for a conventional incompressible fluid, is a special solution of this system: constantρ =  everywhere. The equation 
0∇⋅ =u  simply states that volume is conserved (which we could have derived directly, if we wished to limit our 

discussion to incompressible fluids).

Comment: We observe that, in the case where ( )
t
ρ ρ∂
+∇⋅

∂
u  is not continuous, the integral representing mass 

conservation recovers a jump condition defining the relation between flow properties on either side of the discontinuity. 
In the context of a gas, this describes conditions across a shock wave in supersonic flow.

Example 7 
Incompressible flow. A flow is described by the velocity field ),,( zyx γβα≡u ; what relation must exist between 
the constants γβα ,,  for this to represent an incompressible flow ?

We have directly that x y zu v w α β γ∇ ⋅ = + + = + +u  (where subscripts have been used to denote partial derivatives); 
thus 0α β γ+ + =  is the condition for this velocity field to represent an incompressible flow.
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A more interesting example, leading to an important, simple result used in elementary calculations for flow along a pipe, 
is the following:

Example 8 
Pipe flow. An incompressible flow, which is axisymmetric and non-swirling, moves along a circular pipe of 
varying cross-section (radius R(z)). Find the relation between speed along the pipe and its cross-sectional area.

For incompressible flow in cylindrical coordinates, we have

1 1( ) 0v wru
r r r zθ
∂ ∂ ∂

+ + =
∂ ∂ ∂

; then for axisymmetry ( 0θ∂ ∂ ≡ ) and no swirl ( 0v ≡ ), this reduces to 

1 ( ) 0wru
r r z
∂ ∂

+ =
∂ ∂

 (and note that either condition removes this term, but the first also ensures that no functions 

depend on θ). We write this equation as ( ) ( ) 0r zru rw+ =  

and then integrate across the pipe:

[ ]
( )

( )
0

0
( ) d 0

R z
R z

zru rw r+ =∫ .

We now invoke the ‘differentiation under the integral sign’ ( Exercise 10) to express this as

[ ]
( )

( )
0

0

d d 0
d

R z
R z

r Rru rw r Rw R
z =

 
  ′+ − =
 
 
∫

but 0ru =  on 0r = , so this becomes 
( )

0

d( ) d 0
d

R z

r RR u wR rw r
z=

 
 ′− + =
 
 
∫ .
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There are two cases of interest: first, for a viscous fluid, both u and w are zero at the inner surface of the pipe (because 
there can be no flow through the pipe, nor along the pipe), and so the evaluation on ( )r R z=  gives zero. On the other 
hand, we might suppose that the fluid can be modelled as inviscid (zero viscosity – no friction), in which case the fluid 
is allowed to flow along the inside surface of the pipe (but, as before, not through it). In this case, we must have that 
the velocity vector is parallel to the pipe wall i.e. ( ) ( )r Ru w R z=

′= , and again the evaluation on ( )r R z=  is zero.

Thus 
( )

0

d d 0
d

R z
rw r

z

 
  =
 
 
∫  and so 

( )

0
d constant

R z
rw r =∫ , the required result.

In the special case (e.g. a model) in which the velocity profile across the pipe is essentially independent of the radius (r), 
the integral produces the rule: speed×area = constant. This type of flow is usually referred to as uniform across a section, 
as depicted for a real flow which is nearly uniform across a section in the figure.
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1.5	 Pressure and hydrostatic equilibrium

 We now introduce the initial ideas that will, eventually, lead to an equation of motion – the corresponding Newton’s 
Second Law – for a fluid. The first stage is to discuss the forces that act on a fluid; there are three (although we shall put 
one of these aside, for the moment):

•	 force due to pressure (force/area), exerted by the fluid particles nearby
•	 internal friction (viscous forces) due to motion of other particles nearby
•	 external force (body force) that acts more-or-less equally on all fluid particles e.g. gravity.

The first two in this list are internal, local forces; in this discussion, we shall ignore any friction (and, in any event, there 
will be no motion, so friction cannot play any rôle). The pressure, ( , )p tx , is defined at every point in the fluid, and is 
independent of orientation (the fluid is said to be isotropic). Under the action of pressure and a body force – gravity, 
perhaps – the fluid is in equilibrium; we now construct the equation that describes this scenario.

 As before, let us consider an imaginary volume V, surface S, with outward normal n and totally occupied by fluid. Let 
the body force acting on the fluid be ( , )tF x  per unit mass; the pressure (due to the surrounding fluid) acts on S.

                                                                                       
                                                                                                    p S∆n  
               S                                       v 
 
 
                                                                         
                                                                          
 
                                                                            V 
 
                                               
                                      Vρ ∆F  

The total body force acting on all the fluid in V is thus

d
V

vρ∫ F ;

correspondingly, the total pressure force acting on S is

d
S

p s−∫ n .

There are no other forces acting, and there is no motion, so the resultant force on the fluid must be zero (the fluid is in 
equilibrium under the action of these forces) i.e.

d d
V S

v p sρ − =∫ ∫F n 0 .
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(Note that the force, as expressed by the left-hand side, is force on.)

Again, we use the Divergence (Gauss’) Theorem, to give (for the second term)

d d
S V

p s p v= ∇∫ ∫n  (see Exercise 8),

and so we obtain ( )d
V

p vρ −∇ =∫ F 0 .

For this to be valid for all possible choices of V (and associated S), and for a continuous integrand, we require

pρ −∇ =F 0  or p ρ∇ = F ;

this is the equation of hydrostatic equilibrium (because water is a special case!).

Note that the density here, ρ, is not necessarily a constant: we have made no assumptions about ρ or the nature of the 
fluid under discussion.

Example 9 
Hydrostatic equilibrium. Given that the body force is due to (constant) gravity, so that ),0,0( g−≡F , and 
that the pressure 0pp =  on 0=z , find )(zp  for an incompressible fluid (i.e. ρ  = constant) in hydrostatic 
equilibrium.

The governing equation is p ρ∇ = F  i.e. , , (0,0, )p p p g
x y z

ρ
 ∂ ∂ ∂

= − ∂ ∂ ∂ 
, and so 0, 0p p

x y
∂ ∂

= =
∂ ∂

, which gives 

( )p p z= . Then ( )p z gρ′ = − , and so 0p p gzρ= − .

Comment: On the basis of the previous example, if z = 0 is the surface of the ocean, then the pressure increases linearly 
with depth. On the other hand, if z = 0 is the bottom of the atmosphere, then the pressure decreases linearly with height 
(but this is not a good model for the atmosphere – compressibility is important, with ( )p p ρ= ).

In this model, also note that the rate of increase/decrease is very different for water/air, because of the very different 
densities; for example, the pressure drops to about half an atmosphere at a height of about 5 5⋅ km in air, but it increases 
by one atmosphere at a depth of about 10m in water.
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1.6	 Euler’s equation of motion (1755)

 We now take the representation of forces, as developed in §1.5, and let this be the resultant force acting on a fluid that is 
in motion. (Note that, using this system of forces, there is no internal friction – viscosity – which will be included later; 
in the absence of friction, we usually call this model fluid an ideal fluid.)

 The application of Newton’s Second Law, which is required to balance the force against the rate of change of momentum, 
can be done in a very simple-minded way; this is the option we choose in this presentation. A mathematically more 
complete derivation is given in Appendix 3.

 Consider a (small) parcel of fluid, of volume V∆ ; the force acting on this parcel, based on the details given for the case 
of equilibrium, is

( )p Vρ −∇ ∆F  approximately.

This force, according to Newton’s 2nd Law, produces an acceleration (see §1.3) in the form

force = mass×acceleration = 
D( )
D

V
t

ρ∆ u
.
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Thus we obtain the (approximate) equation

D( ) ( )
D

V p V
t

ρ ρ∆ = −∇ ∆
u F ,

where V∆  cancels; cancelling and – notionally – taking the limit to a point (i.e. 0V∆ → ), we obtain

D
D

p
t

ρ ρ= −∇
u F  or 

D 1
D

p
t ρ
= − ∇ +

u F

which is Euler’s equation of motion (1755). [L. Euler (1707-1783), Swiss mathematician, regarded as the ‘father of fluids’.]

When the material derivative is written out, this equation becomes

1 p
t ρ

∂
+ ⋅∇ = − ∇ +

∂
u u u F ,

where, typically for us, we have (0,0, )g= −F  (for constant acceleration of gravity). One component of this equation is

1
1u u u u pu v w F

t x y z xρ
∂ ∂ ∂ ∂ ∂

+ + + = − +
∂ ∂ ∂ ∂ ∂

,

and correspondingly for the other two components.

Comment: We observe that we have 4 (scalar) equations (the three components of Euler and the equation of mass 
conservation) for the 5 unknowns: , , , ,u v w p ρ . This system is closed by prescribing the nature of the fluid e.g.

constantρ =  (incompressibility) or ( )p p ρ=  (for certain gases).

In addition, we require appropriate boundary conditions (and also initial data for unsteady flows). Typically, we expect 
information about the velocity and/or pressure at the boundary of the fluid.
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Example 10

Euler’s equation. Show that the incompressible flow field u ≡ ( ( ), , )u z 0 0  for any u z( ) , where x ≡ ( , , )x y z , 
together with the hydrostatic pressure distribution, is an exact solution of Euler’s equation with F ≡ −( , , )0 0 g . 

We first check that 0∇⋅ =u : ( ) 0 0 0u z
x
∂

+ + =
∂

 (correct); 

then 
1 p

t ρ
∂

+ ⋅∇ = − ∇ +
∂
u u u F  becomes

10. 0. ( ( ),0,0) , , (0,0, )p p pu u z g
t x y z x y zρ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

which is identically satisfied, with const.p gzρ= − +

Another, more physically interesting problem (now in cylindrical coordinates), is provided by the next example.
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Example 11 

Spinning fluid. An incompressible fluid is rotating at constant angular speed, ω , in a cylindrical vessel; it is 
otherwise in equilibrium under the action of (constant) gravity. Show that the surface (which is at constant 
atmospheric pressure) takes the form of a paraboloid.

In cylindrical coordinates ( , , )r zθ , we have (0, ,0)rω=u  (see figure), and so Euler’s equation reduces to 

( )2 1 1(0,0,0) ,0,0 , , (0,0, )p p pr g
r r z

ω
ρ θ

∂ ∂ ∂ + − = − + − ∂ ∂ ∂ 
. Thus

20, ,p p pr g
r z

ρω ρ
θ
∂ ∂ ∂

= = = −
∂ ∂ ∂

which has the solution 2 21
2( , ) const.p r z r gzρω ρ= − + ; but the surface is a surface of constant pressure – 

atmospheric pressure – and so the surface is described by the paraboloid: 2 21
2 constantr gzρω ρ− =  (a parabola in 

( ,r z ) coordinates).

An important final observation, before we move on – and which is explored in Exercise 35 – is the following. The 
governing equations are the same, whether an object is moving at constant speed through a fluid, or the fluid flows at 
this same constant speed past a fixed object. This implies that the situation in the laboratory – flow past an object in a 
wind tunnel, for example – can correspond precisely with the same object flying through the air. This property of the 
equations is called Galilean invariance.
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Exercises 1

1. �Algebra (relevant to gases). Given that at RTp ρ=  a
 find: (a) T in

 and that γρkp =  (where R, k and γ are positive constants with 

21 << γ ), find: (a) T in terms of ρ ; (b) T in terms of p . [Here, p  is pressure, T is temperature and ρ  is density.]

2. More algebra (for gases). Repeat Ex.1 (a), (b), for the more accurate model

    RTbap ρρρ =−+ )1)(( 2  ;  γρkp = ,

where a and b are also positive constants. [This model incorporates the improvement for a gas first introduced by van 
der Waals.]

3. �Approximation. Use the relation between p , ρ  and T given in Ex.2, taking a and b to be small constants, to find an 
approximate expression for p  in terms of T and ρ  , which is correct as far as terms in 2ρ .

4. �Special case (relevant to our fluids). See Ex.1; given that γρkp = , at RTp ρ=  a
 find: (a) T in

 and that T = constant, show that 1=γ  . 
What now is the constant k ? [This is the situation that we shall often encounter in our discussions because we shall 
not entertain the possibility of changes in temperature; such an approach would require a consideration of thermal 
energy and thermodynamics.]

5. �Differential equations I. Solve the differential equation d dy x v u= , given u and v as follows, where a and t are 
constants :

(a) u=ax,  v=2ay; (b) u=-4ay,  v=ax; (c) u=xt,  v=-yt; (d) u=xt,   v=-y.

Now use suitable software (e.g. MAPLE) to plot

(e) �for problem (a), the three curves which pass through (1,1), (1,2) and (1,3), respectively, for 0 3≤ ≤x , all 
on one graph;

(f) �for problem (d), the three curves which pass through (1,1), (2,1) and (3,1), respectively, for 0 5 5⋅ ≤ ≤x , 
all on one graph, for each of t = 0 1 2, , .

6. �Differential equations II. Solve the pair of differential equations d dx t u= , d dy t v= , where t is now a variable, for 
u and v as given in Ex.5, with the conditions

(a) & (c) 0xx = , 0yy =  at 0=t ; (b) 1== yx  at 0=t ; (d) 0xx = , 0yy =  at 1=t .

Now use suitable software (e.g. MAPLE) to plot
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(e) �for problem (a), the three paths ( ( ), ( ))x t y t , with a x y= = =1 1 1 2 30 0, , , , , respectively, for 0 1≤ ≤t  
all on the same graph;

(f) �for problem (d), the three paths ( ( ), ( ))x t y t , with y x0 01 1 2 3= =, , , , respectively, for 0 2≤ ≤t , all on 
the same graph.

7. �Some differential identities. Given that φ (x) is a general scalar function, and that )(xu  and )(xv  are general vector-
valued functions, use any appropriate method to show that

(a) ∇⋅ = ⋅∇ + ∇ ⋅( ) ( ) ( )φ φ φu u u ;

(b) ∇∧ = ∇ ∧ + ∇∧( ) ( ) ( )φ φ φu u u ;

(c) u u u u u u∧ ∇∧ = ∇ ⋅ − ⋅∇( ) ( / ) ( )2 ;

(d) ∇∧ ∧ = ∇ ⋅ − ⋅∇ + ⋅∇ − ∇ ⋅( ) ( ) ( ) ( ) ( )u v u v u v v u v u ,

and in (c) you are advised to consider one component only (if subscript notation is not adopted), since the others follow 
cyclically, and work from the r.h.s to recover the l.h.s.; here, we have used ∧  as an alternative to ×  (for the cross product).

8. �Two integral identities. A volume V is bounded by the surface S on which there is defined the outward normal unit 
vector, n . Given that )(xφ  is a general scalar function, use Gauss’ theorem (the ‘divergence theorem’) to show that
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    ∇ =φ φd dv s
V S

n , 

and, for the vector function u, that 

    ∇ ∧ = ∧u n ud dv s
SV

. 

[In the first, take the vector in Gauss’ theorem to be kφ , and in the second take the vector to be uk ∧ ; k  is an arbitrary 
constant vector in each case.]

9. Another integral identity. A surface S is bounded by the closed curve C. Use Stokes’ theorem to show that 

    φ φd dl n= ∧ ∇ s
SC

, 

where φ  is an arbitrary function. [Use the same idea as in Ex.8.]

10. Differentiation under the integral sign. Given 

∫=
)(

)(

),()(
xb

xa

dyyxfxI ,

show that 

d
d

d d
d

d
d

I
x x f x y y f x b b

x f x a a
xa x

b x
= ∂

∂
+ −

( )

( )
( , ) ( , ) ( , ) ,∫

provided the integral of ∂ ∂f x , and the functions da/dx and db/dx, exist.

[It is helpful to introduce the primitive of ),( yxf  at fixed x: that is ∫= dyyxfyxg ),(),( .]

(a) Verify that this formula recovers a familiar and elementary result in the case : 

( ), ( ) , ( ) constant.f f y b x x a x= = =

(b) Use this result to find d 
d
d

d
x

x y y
x

x
sin + 2

2

3
. 

(c) Use this result to simplify fy 
d
d

d
z

rw r z r
R z

( , )
( )

0

, a, and then simplify further given that t w r zz = −2 2exp . 
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11. Show that, if

 f x dx
a

b

( ) =∫ 0 , 

for arbitrary (i.e. all) values of a and b, then 0)( ≡xf . 

[Hint: you may write ( ) ( )f x g x′= , although other, more general methods of proof are possible.]

12. �Streamlines and particle paths. In the following problems, the velocity components of a flow (represented in rectangular 
Cartesian coordinates ),,( zyx≡x , ),,( wvu≡u  and t  time) are given; find the streamlines in each case, and the 
particle path which passes through ),,( 000 zyx≡x  at t = 0 . (Here, ck,  and ω  are constants.)

(a) u kx v ky w= = − =, , 0 ; (b) u xt v yt w= = − =2 2 0, , ; 

(c) u x t v y w= − = − =, , 0 ; (d) u xt v y w= = − =, , 0 ; 

(e) u x t v y t w= = − =2 0/ , / , ; (f) u xy t v t y w= = =2 0/ , / , ; 

(g) u ky v kx kct w= = − + =, , 0 ; (h) u kx v ky w k x y z= = = − +2 2 2, , ( ) ; 

(i) )sin(),cos(,0 tywtzvu ωω +=+−==  for ω ≠ ±1;

(j) see (i) with ω = 0 .

13. Steady flows I. 

(a) Determine which of the flows discussed in Ex.12 are steady.

Now use suitable software (e.g. MAPLE) to plot

(b) for problem Ex.12(a): the three streamlines which pass through (1,1), (1,2) and (1,3), respectively, for 
0 5 5⋅ ≤ ≤x , all on the same graph;

(c) see (b); the three particle paths, for k = 1 , which pass through (1,1), (2,1) and (3,1), respectively, at t = 0 , 
 for 0 1≤ ≤t  (all on the same graph);

(d) for problem Ex.12(c): the three streamlines, at t = 1 , which pass through (2,1), 2,2) and (2,3), respectively, 
for 1 5 10⋅ ≤ ≤x , all on the same graph;

(e) see (d); the three particle paths which pass through (2,1), (3,1) and (4,1), respectively, at t = 0 , for 0 1≤ ≤t , 
 all on the same graph.

Download free eBooks at bookboon.com



Fluid Mechanics and the Theory of Flight

33 

Introduction and Basics

14. �Steady flows II. A particle (point) in a fluid flow moves according to the rule x ≡ x y zt t t
0 0 0e e eα β γ, , , w

vector and t is time. Find an

 where 
γβα ,,,,, 000 zyx  are constants, x is the position vector and t is time. Find an expression for the velocity vector u. 

Is this a steady flow? Find the streamlines for this flow.

15. �SLs and PPs I. The velocity components of a flow are re 2 32 3 1t x t yα α− −, , w where α > −1 3  is a constant. Find the 
streamlines for this flow and the particle path which passes through (1, 1) at t = 0 . State (without performing a 
calculation) the value of α  for which the families of streamlines and particle paths coincide.

16. SLs and PPs II. See Ex. 15; repeat this for or x yt t2 1 2e eα α, − . 

17. �SLs and PPs III. See Ex. 15; repeat this for or α αt x y t− , 2  w with α ≠ −1 , where the particle path passes through (0, 
1) at t = 0 .

18. �Acceleration of a fluid particle. The velocity vector which describes the motion of a particle (point) in a fluid is 
),( txuu = , so that the particle follows a path defined by 

d
d
x U u x
t

t t t= =( ) ( ( ), ) .

Introduce rectangular Cartesian coordinates and hence show that the acceleration of the particle   

cle
d
d
U
t

 is 
∂
∂

+ ⋅∇ =u
u u

u
t t

( )
D
D

, t the material derivative.

19. �Material derivative I. (a) A fluid moves so that its velocity vector, written in rectangular Cartesian coordinates, is 

is ),,2( ztytxt −−≡u , w
nstant on – moving wi

, where t is time. Show that the following property (function) is constant on – moving with – 
fluid particles :

)exp()2()2exp(),,,( 22222 tzytxtzyxf ++−= .
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What is the constant value of f on a particle? (This will involve arbitrary constants that arise in the integration process.)

(b) Repeat (a) for or 32222 /)),2/(3),2/(,/( tztytxftztytx −+=−−≡u . 

20. �Material derivative II. Find a velocity field, ),,( wvu≡u , for which the property 

)//()/( 22222422 czbykttaxf ++= , w
fluid particles. 

 where a, b, c and k are constants, is constant on fluid particles.

21. �Eulerian vs. Lagrangian description. The Eulerian description of the motion of a fluid is represented by ),( txu , that 
is, the velocity at any point and at any time. The Lagrangian description follows a given particle (point) in the fluid; 
the Lagrangian velocity is ),( 0 txu , where 0xx =  labels the particle at 0=t . 

A particle moves according to the rule 

))exp(),exp(),2exp((),,( 2
0

2
0

2
0 tztytxzyx −−=≡x , 

ngular Cartesian coordinates, where the particle is at 
written in rectangular Cartesian coordinates, where the particle is at ),,( 0000 zyx≡= xx  at time 0=t .

(a) Find the velocity of the particle in terms of 0x  and t  – the Lagrangian description – and then show that 
the velocity field can be written as as )2,2,4( ztytxt −−≡u , w which is the Eulerian description. 

(b) Now obtain the acceleration of the particle from the Lagrangian description. 

(c) Show that the Lagrangian acceleration (that is, following a particle) is recovered from 
D
D

u u u u
t t
=
∂
∂

+ ⋅∇( )

22. �Velocity and acceleration. A particle starts from x ≡ ( , )a b  at t = 0 , and moves according to 

to x x y a t b t≡ = + +( , ) ( ) , ( )1 12 2 . F

d then find an expression for the veloc

 Find the velocity and acceleration directly, and then find an expression for 
the velocity field (by eliminating a and b) and hence show that the acceleration is recovered from D Du t . 

23. Incompressible flow I.(a) Determine which velocity fields given in Ex.12 represent incompressible flows.

(b) Repeat (a) for Ex.19, Ex.20 and Ex.21.

(c) What relation must exist between α β γ, ,  so that the velocity field given in Ex.14 represents an 
incompressible flow ?

24. Incompressible flow II. (a) A velocity field is 

 xu )(rf=  where 222 zyxr ++== x  

and f is a scalar function. Find the most general form of f(r) so that u  represents an incompressible flow.
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(b) With the same notation as in (a), find the conditions necessary on the constants a, b and c which ensure 
that at 

522 /),,( rcxzbxyrax −≡u  r represents an incompressible flow.

(c) Repeat (b) for the velocity field ld )}(/{),,( rxrcrzbryarx ++++≡u . 

25. Incompressible flow III. A flow is represented by the velocity field

u ≡ −
−2

2

2 2

2
xyz

d

x y z

d
y
d

, ,  w

describes an incompressible flow 

 where d x y= +2 2 .

Show that this describes an incompressible flow .

26. �Incompressibility IV. A velocity field is given by y u ≡ f y zt z yt, ,2 2   where t is time; find f x y z t( , , , )  for which 
this flow is incompressible and which satisfies f = 0  on x = 0  for all y, z, t.

27. Mass conservation. Show that 

u ≡ − −( , , )α xt yt zt  and ρ α= − + +x t y z t2 2 2 2 22exp( ) ( ) exp( )

satisfy the equation of mass conservation for one value of the constant α ; what is this value?

28. �Beltrami flow. A Beltrami flow is one for which the vorticity and velocity vectors are everywhere parallel. Write  
ω= ku  (where k is a non-zero constant) and seek a velocity field that is consistent with this equation and of the form 

u ≡ ( ( , , ), ( , , ), ( ))u x y z v x y z w x ,

but it is not necessary to find a general solution – just find any (non-zero) solution.

29. �Pipe flow. A pipe with a rectangular cross-section, )()( xayxa ≤≤− , )()( xbzxb ≤≤− , with its centre-line 
along the x-axis, has a non-swirling, incompressible flow through it. Show that 

 

gh it. Show that  

    u x y
a

a

b

b
d d constant

−−
= , 

ndard result (see §1.4, Examp
and hence recover the standard result (see §1.4, Example 8) for a flow which is uniform across every section.

30. �Branching pipe. A pipe, of cross-sectional area A, branches into two, one of area nA and the other of area mA. The 
speed of an incompressible fluid at area A is u and at area nA it is v; find the speed in the branch of area mA. (Assume 
that the flow is uniform at all sections away from the junction, and that the fluid completely fills both the feed pipe 
and the two branch pipes, without leaks or other branches i.e. mass is conserved.)
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31. Hydrostatic equilibrium I. A fluid in (vertical) hydrostatic equilibrium satisfies

d
d
p
z

g= −ρ  (g constant) ; see Lecture Notes.

(a) Given that γρkp = , where k  and γ  are positive constants, and that 0pp = , 0ρρ =  on 0=z , find 
)(zρ  and )(zp  for 21 << γ . Given, further, that at RTp ρ=  (R

tant. 
 (R constant), find )(zT  – the temperature – 

and deduce that d d constantT z = .

(b) Repeat (a) for 1=γ .

(c) An ocean, in 0≤z , is modelled by the density variation )1(0 zαρρ −= , where α  (presumably small 
!) and 0ρ  are positive constants. Find )(zp , given that 0pp =  on 0=z .

(d) Repeat (c) for )1(0 z−+= αρρ .
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(e) The atmosphere is modelled as a perfect gas, so at RTp ρ=  (R
tant. 

 (R constant), with the temperature gradient 
prescribed according to

     
d
d
T
z

g R z H
z H

=
− ≤ ≤

>
α ,
, ,

0
0

where α  is a positive constant. Given that 0TT =  (with th 1/ 0 <RTgHα ) ) and 0pp =  on 0=z , find )(zT  and 
)(zp  where both these functions are continuous on Hz = . What is the behaviour of your solution for ∞→z ? 

[Comment: Typically, the temperature in the Earth’s atmosphere drops linearly by about 70 0 C in the first 11 km (the 
troposphere), and then remains roughly constant (in the stratosphere) up to about 35 km.]

(f) See (a); find )(zρ  (only) given that g  is replaced by y 2
0 )1/( zg α+  (

ice for g ? 

 ( 0g  and α  positive constants). What is the 
significance of this choice for g ?

32. �Hydrostatic equilibrium II. A fluid is at rest, in hydrostatic equilibrium; the fluid is described p k= ρ , where k is a 
constant, with p p= 0  and ρ ρ= 0  on z = 0 . Determine k and then find p z( ) , given that the body force is that 
associated with constant gravity ( F ≡ −( , , )0 0 g ).

33. �Archimedes’ Principle. A surface S encloses fluid of volume V which contains a solid body of volume Vb  (surface Sb ).  
The fluid exerts a resultant pressure force, R, on Vb , given by y p s

Sb

nd . S. Show that, in hydrostatic equilibrium,

     R n F n= = −p s v p s
S SVb

d d dρ    

and hence deduce that at R F= − ρ dv
Vb

 ( (which is Archimedes’ Principle, if F = g).

34. �Euler’s equation. An incompressible ( ρ  = constant) flow in two dimensions [ ),( zx≡x ], with ),0( g−≡F , satisfies 
Euler’s equation. For this flow, the velocity is ))(,( 0 xwu≡u , where 0u  is a constant, with w = 0 on x = 0 and 
p p= 0  on z = 0. Find the solution for w and p, and show that it contains one free parameter.

35. �Galilean invariance. Consider an incompressible flow which comprises, in part, a uniform flow u u= =0 constant. 
Write u u U= +0  and hence find the appropriate forms taken by the mass conservation and Euler equations, written 
in terms of u0  and U . Now introduce a frame of reference that is moving at the constant velocity u0 , by setting

U U x=  (  , )t , p p t= (  , )x  where  ( ( , , ))x x u= − ≡ − − −0 0 0 0t x u t y v t z w t .

Show that the equations written in terms of U , p  and x  are identical to the original equations of motion.

[This important property is known as ‘Galilean invariance’; it means, for example, that the constant velocity of an object 
moving through a stationary fluid is identical to the constant velocity of the fluid past a stationary object.]

**************************
**************
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2	� Equations: Properties and 
Solutions

We now investigate the governing equations (Euler and mass conservation) in a little more detail. We shall describe some 
general (and important) properties of flows that will be useful in our later work, and that are relevant in certain types of 
studies of fluid motions. We also show how two integrals of the equation of motion can be derived – valid under slightly 
different modelling assumptions – which are quite significant in the application of these ideas to practical problems. 

2.1	 The vorticity vector and irrotational flow

 A concept that permeates much of fluid theory is the notion of vorticity. It is an important property of a fluid flow, both in 
terms of what is observed in real flows and the rôle it plays in allowing theoretical headway. As we shall see, this provides 
a measure of the local spin or rotation exhibited by fluid elements. It is defined by

= ∇ ∧ u (i.e. = curl u or = ∇×u ) 

and one simple observation follows directly. If the flow is restricted to motion and variation in only 2D – (x, y) say – then 
we see that

      ( ) ( ), , ( , , ) , ( , , ), 0 0, 0, x yu x y t v x y t v u
x y z

∂ ∂ ∂= ∧ = −
∂ ∂ ∂

:  

the vorticity possesses a component in only the third (z-) direction! (Note that this is valid for unsteady flows – time 
dependence is permitted, although much of our work will be for steady flows.)

 Vorticity has a simple interpretation, which we will show by examining a flow which is purely 2D; the idea is readily extended 
to 3D (but is then more difficult to represent diagrammatically). Consider the flow in the ( ,x y∆ ∆ ) neighbourhood of a 
general point (x, y), described by some general velocity field:
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Here, we have approximated the velocity components near to (x,y) by invoking the simplest approximation provided by 
Taylor expansions; we assume, of course, that the velocity field allows this approach. The average angular speed, relative 
to the origin (labelled (x, y) here, for any point in the 2D plane) is approximately

1
2

1 ( )
2

yx
x y

u yv x v u
x y

∆ ∆
− = − ∆ ∆ 

,

on noting the sign convention that we have adopted for rotations about the origin. This is one half of the z-component of 
the vorticity vector or = ∇ ∧ u  ( (as given above). We see, therefore, that vorticity measures the local rotation (or spin) 
of fluid elements. We comment that this should not be confused with solid-body rotation (and simple interpretations are 
often misleading!) exhibited by a solid object in rotation. The next example may help to clarify what is, and what is not, 
a flow with vorticity.
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Example 12 
Vorticity. (a) Sketch the flow field )0,0,( yα≡u , where 0>α  is a  constant, and find its vorticity. (b) Describe 
the flow field 

 ( )2 2 2 2( ), ( ) ,0y x y x x y= − + +u . 

 
 

(a) We have , 0u y v wα= = = , and so the velocity field appears as shown in the figure (drawn for 0α >  and 
only in the positive y-direction – for ease of interpretation). There is no apparent (local) spin, yet the vorticity 
is ω (0,0, ) (0,0, )x yv u α= − = − , which represents constant (negative) vorticity around the z-axis. That this 
is reasonable becomes evident when we consider points for larger y as compared with those for smaller: such 
points move in the positive x-direction further than those lower down, resulting in a relative rotation; see figure.

(b) In this case, 

2 2

2 2 2 2 2 2 2 2 2 2
1 2 1 2 0

( ) ( )
x y

x yv u
x y x y x y x y

 
− = − − − + = 

+ + + +  
,
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so the vorticity is zero (but note that it is not defined at the origin). Further, it is easy to check – for example, construct 
xx yy+   – that the flow is circular i.e. the PPs are circles. How can this be? A good analogy is the motion of a gondola 

on a Ferris wheel: the wheel rotates, but each individual gondola does not.

Comment: Almost all real flows possess non-zero vorticity, but many have almost zero vorticity almost everywhere. Indeed, 
a good model, for many flows, is obtained by assuming that at ≡ 0  ( (or or = 0  e except at isolated points or regions).

Regions of a flow field where or = 0  e are called irrotational (for obvious reasons). When this condition holds, we have 
e = = ∇ ∧0 u , w

uch that u ; t
, which implies that there exists an arbitrary scalar function, ( , )tφ x  such that φ= ∇u ; this is called 

the velocity potential. (The existence of ϕ  follows from Stokes’ Theorem; see Exercise 39.) Once we know ( , )tφ x , we 
can obtain u directly.
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Example 13 

Velocity potential. Show that ),,2( 22 yxzxxyz≡u  represents an  irrotational flow, and find its velocity 
potential.

To be irrotational, we require ire = ∇ ∧ =u 0 , w, which here gives

ω 2 2( , 2 2 ,2 2 )x x xy xy xz xz= − − − = 0 , so irrotational.

Now we have 2 22 , ,x y zu xyz v x z w x yφ φ φ= = = = = = , which give, respectively,

2 2 2( , ), ( , ), ( , )x yz F y z x yz G x z x yz H x yφ φ φ= + = + = + ;

together, these imply that 2 constantx yzφ = + , which is the velocity potential.

2.2	 Helmholtz’s equation (the ‘vorticity’ equation)

We now develop an equation that describes how the vorticity evolves in a flow; this equation is then a counterpart to 
Euler’s equation for the velocity field. Some aspects of fluid flow are better described by a vorticity equation, although in 
this discussion of theoretical fluid mechanics we will continue to emphasise the rôle of u rather than ω.

Starting with Euler’s equation: 
D 1
D

p
t ρ
= − ∇ +

u F , we assume that the body force, F, is conservative: = −∇ΩF , for 
some scalar function ( )Ω x ; the minus sign here is simply a convenience, and we could include dependence on time. 
(This ‘conservative’ assumption implies that the work done, in moving from point to point in this force field, depends 
only on the end-points – not on the path between the points.) In addition, we assume that either constantρ =  (as 
required for our incompressible fluid) or ( )p p ρ=  (which is used to model gases).

In this latter case, we write 

1 1 d d,...,... ,...,...
d

p p pp
x x pρ ρ ρ

  ∂ ∂
∇ = =   ∂ ∂   

∫

 
d d,...,...p p

x ρ ρ
   ∂

= = ∇   ∂   
∫ ∫ ;

similarly, in the former case, we simply have 
1 dp pp
ρ ρ ρ

   
∇ = ∇ = ∇   

   
∫ .
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We require one further result: 1
2( ) ( ) ( )∧ ∇∧ = ∇ ⋅ − ⋅∇u u u u u u  (see Exercise 7(c)), and we note that at ∇ ∧ =u . T

These three results, used in Euler’s equation, give

1
2

d
( ) ( )t t

p
ρ

+ ⋅∇ = + ∇ ⋅ − ∧ = −∇ − ∇Ωu u u u u u u

i.e.      1
2

d
t

p
ρ

− ∧ = −∇ ⋅ + + Ωu u u u . 

Finally, we take the curl (i.e. operate ∇∧ ) of this equation:

( ) ( )t∇ ∧ − ∇ ∧ ∧ =u u 0 , 

because ∇∧∇ ≡ 0 , and then (see Exercise 7(d)) we use

( ) ( ) ( ) ( ) ( )∇ ∧ ∧ = ∇ ⋅ + ⋅∇ − ∇ ⋅ − ⋅∇u u u u u , 

where re ( ) 0∇ ⋅ = ∇ ⋅ ∇ ∧ =u  a and we assume incompressibility: 0∇⋅ =u . Thus we obtain

( ) ( )t − ⋅∇ + ⋅∇ =u u 0   or  
D

( )
D t

= ⋅∇ u , 

which is Helmholtz’s equation. [H. von Helmholtz (1821-1894), German philosopher, mathematician, physicist and 
physiologist; also made important contributions to the classification of geometries and the axioms of arithmetic.]

This equation shows that the velocity and vorticity fields are, in general, coupled – which is no surprise. But there is an 
important special case, with far-reaching consequences: suppose that the flow depends on only two spatial variables, x 
and y, say. Then ω and ∇  are mutually orthogonal, which gives 

o spatial vari
es 0⋅∇ ≡ ; t thus

D
D t

= 0 . 

This equation shows that ω does not change on fluid particles (points) as the flow evolves; in particular, the direction of 
ω remains the same: this vector always points in the z-direction. This phenomenon is usually described as the vorticity 
being trapped perpendicular to the plane of the flow.

Comment: This derivation can be generalised, by relaxing some of the simplifications that we have made. Thus, for any 
fluid (i.e. compressible, satisfying the general equation of mass conservation), it can be shown that

1D 1
( )

D
p

t
ρ

ρ ρ ρ
−= ⋅∇ − ∇ ∧ ∇u , 

and then if ( )p p ρ=  this reduces to to 
D
D t ρ ρ

= ⋅∇ u , w which is our equation above, with ω replaced by y ρ . AAll 

this is left as an exercise for the interested reader.
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2.3	 Bernoulli’s equation (or theorem)

This equation is a first (spatial) integral of the equation of motion (Euler’s equation), producing the familiar energy integral 
for a conservative system. To proceed, we use an approach based on the development described for Helmholtz’s equation 
(§2.2). Thus we assume

(a) = −∇ΩF  (conservative);

(b) constantρ =  or ( )p p ρ= , so that 
1 dpp
ρ ρ

 
∇ = ∇ 

 
∫ ;

(c) steady flow – a new condition.

Note that the flow may be rotational – we say nothing about ω – which makes this analysis quite general and powerful.

From §2.2, we immediately have

1
2

d
t

p
ρ

− ∧ = −∇ ⋅ + + Ωu u u u , 

but with the extra requirement that t =u 0  (steady); with this included, we take the dot of the resulting equation with u:

1
2

d
( )

p
ρ

− ⋅ ∧ = − ⋅∇ ⋅ + + Ωu u u u u . 

Here, we have ve ( ) 0− ⋅ ∧ =u u   (because two of the three terms in this triple are the same); also ⋅∇u  is a directional 
derivative, the direction being associated with the velocity field i.e. tangent to the streamlines. Thus we have

1
2

dp
ρ

 
⋅∇ ⋅ + +Ω = 

 
∫u u u 0  so that 1

2
d constantp
ρ

⋅ + +Ω =∫u u  on streamlines;

this is Bernoulli’s equation (sometimes called Bernoulli’s theorem). [D. Bernoulli (1700-1782), one of a family of 10 Swiss 
mathematicians (over four generations); Daniel obtained his doctorate in medicine and was, at various times, a professor 
of botany, anatomy, philosophy and mathematics.]

A special case of this result, which we note is essentially algebraic in all cases, arises for incompressible flow (ρ = constant) 
in the presence of a gravity field ( gzΩ = , g = constant):

1
2 constantp gz

ρ
⋅ + + =u u on streamlines,

and different constants are associated with different streamlines. The terms in this energy integral are, respectively, the 
kinetic energy, the work done by the pressure forces and the potential energy (all per unit mass). We now use this simple 
version of Bernoulli’s equation in two straightforward, but illuminating examples.
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Example 14a 

Bernoulli’s equation for the pitot-static tube.

The pitot-static tube is used on aircraft as the device for measuring the airspeed (although some aircraft use only 
the pitot part of the tube – the central tube – and the static pressure is measured elsewhere on the fuselage). A 
schematic of the combined pitot and static tube is shown in the figure. We assume that the flow is horizontal 
(so the body-force term will play no rôle: the flow is on a line of constant z) and steady, with constant density. 
The oncoming flow is of speed U and pressure 0p , and on a streamline that approaches the inner tube from 
infinity, we obtain 2 0 11

2
p pU gz gz
ρ ρ

+ + = + , because the flow is stationary at the mouth of this part of 
the tube, at a pressure 1p . The flow otherwise passes the exterior of the tube, with no flow possible in or 
out through the ring of holes, recording a pressure 2 0p p= . Thus the resulting pressure difference gives 

2
1 2

1
2

p p Uρ− = ; this pressure difference can be delivered to a speed scale, suitably calibrated (knowing 
ρ) to give a measure of the airspeed.

Download free eBooks at bookboon.com



Fluid Mechanics and the Theory of Flight

46 

�Equations:  Properties and   Solution

Example 14b 

Bernoulli’s equation. A straight pipe through which water ( ρ  =  constant) flows, slopes downwards, dropping 
through a vertical height  of h. At the upper end the cross-sectional area is A, the flow speed is  0u  and the 
pressure is 0p ; at the lower end the area is A/2. Find the  speed and pressure at the lower end. (Assume that 
the flow is uniform  at every section along the pipe.) What is the necessary condition for  this flow to be 
physically realistic ?

The flow is represented in the figure; to proceed, we first use mass conservation in the form: speed×area = constant i.e. 
1

0 2Au Av=  so 02v u= . Now we apply Bernoulli’s equation along a streamline associated with the flow through the pipe:

2 201 1
0 0 12 2

p pu gz v gz
ρ ρ

+ + = + + .

Thus 2 201 1
0 0 1 02 2( ) 4p pu g z z u

ρ ρ
+ + − − = , which gives 23

0 02p p gh uρ ρ= + − .

Any physically realistic flow must have 0p > , for pressure can never be negative (although it is quite usual to take this 
condition, in simple theoretical calculations, to be 0p ≥ , because the pressure can drop to almost zero); thus we require

23
0 02p gh uρ ρ+ > .

N.B. If this condition is not satisfied, so that pressure apparently becomes zero or negative, then the model has broken 
down. In this situation, the fluid will exhibit bubbles of gas coming out of solution: the fluid to be analysed has become 
a mixture (of a liquid and a gas) for which a very different approach is required.
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Comment: In the two previous examples, we have considered the simplest case: ρ = constant, and then 
dp p
ρ ρ

=∫ . 
However, for many gas flows, the temperature hardly changes locally (because the heat diffuses relatively slowly); in 
this situation, called an adiabatic process, it can be shown that p γρ∝ , where γ is a constant (1 2γ< < , and for air 

1 4γ ≈ ⋅ ). [‘Adiabatic’ = ‘not’ + ‘pass’, referring to heat.]

On the other hand, if heat is rapidly diffused, so that the temperature equilibrates everywhere quickly, then T = constant 
throughout; if we then also have a perfect gas, for which p RTρ=  (R constant), we obtain p ρ∝ .

So with p k γρ=  (where k is a constant, normally fixed from knowing the pressure and density at the same point in 
the flow), we have 

2d d 1 d d
d

p p k γρ γρ ρ
ρ ρ ρ

−= =∫ ∫ ∫
 

1

1
k

γργ
γ

−
=

−
 ( 1γ ≠ ) 

 
1

pγ
γ ρ

=
−

.
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Example 15 

Flow of a gas. The flow of a gas (described by p k= ργ ) is described by  Bernoulli’s equation, in the absence 
of body forces; show that  

    Bernoulli’s equation, in th

    u a a2
0
2 22 1= − −( )γ , w

     u is the speed of the flow 

, where a dp d= ρ  is the local speed of sound,  u 
is the speed of the flow and the zero subscript denotes evaluation 

where u = 0. 

Here, we have 1
2 0 constantdp

ρ
⋅ + + =∫u u  and then 1

2 constant
1

pγ
γ ρ

⋅ + =
−

u u , with 

21
2 u⋅ =u u  and 1 2d

d
p pk aγγρ γ
ρ ρ

−= = = ;

thus we obtain 

22
2 01

2 const.
1 1

aau
γ γ

+ = =
− −

 (the value where 0u = ) i.e. 2 2 2
0

2 ( )
1

u a a
γ

= −
−

, as required.

Comment: The speed of sound at normal temperature and pressure i.e. at ground level, is about 760 mph; at 35,000 ft 
(the normal cruising height of most civil aircraft), this speed is about 660 mph. We also note that this final expression, 
when divided by 2a , generates the term u a M= , the Mach number of the flow.

2.4	 The pressure equation

 There is an unsteady counterpart to Bernoulli’s equation, valid under slightly different assumptions about the flow field. 
We start, as in §2.3, with the result used in the derivation of Helmholtz’s equation:

1
2

d
t

p
ρ

− ∧ = −∇ ⋅ + + Ωu u u u

(so constantρ =  or ( )p p ρ=  and = −∇ΩF  i.e. conservative), but now we assume that the flow is irrotational: 
≡ù 0  φ⇒ =∇u . Then, for suitable differentiable functions, we have ( ) ( )t t tφ φ= ∇ = ∇u , and so we obtain

1
2

dp
t
φ

ρ
 ∂

∇ + ⋅ + +Ω = ∂ 
∫u u 0
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which integrates directly to give 

1
2

d ( )p f t
t
φ

ρ
∂

+ ⋅ + +Ω =
∂ ∫u u ,

where ( )f t  is an arbitrary function (of time); this is the pressure equation.

Note: We can always remove the explicit appearance of f here by redefining φ  as ( )df t tφ + ∫  (since φ  is defined only 
via spatial derivatives). The only slight downside of this reformulation is that the use of, and result of using, boundary 
conditions are less obvious.

This equation is so-called because, given the velocity field, which is equivalent to knowing ( , )tφ x , we can find the 
pressure essentially by an algebraic process. (Some texts may refer to this as the ‘unsteady’ Bernoulli equation – which is 
certainly how it appears – but this is a serious misnomer: the pressure equation does not describe energy conservation. 
The equation has an energy-source term, ( )f t , which allows the terms associated with the energy to change in time – 
but that could be one interpretation of ‘unsteady’.)

Special case: If the flow is now taken to be steady, then we obtain

1
2 constantp gz

ρ
⋅ + + =u u , the same constant everywhere;

for Bernoulli’s equation, this gives different constants on different streamlines (§2.3). The difference between these two 
integrals then arises by virtue of the vorticity: Bernoulli holds for rotational flows – different constants on different 
streamlines – but the steady version of the pressure equation is valid for irrotational flow: the same constant everywhere. 
This is an important observation, showing the consequences of rotational versus irrotational flows. 
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Example 16 

Flow out of a container. A vertical container, of cross-sectional area A  over most of its height, reduces to an 
area λA  at the base; across the  base is placed a removable plate. The container is filled to a depth of h0   with 
water ( ρ = constant ) and the plate is then removed, allowing the  water to flow out. Assume that the flow is 
irrotational but unsteady, and  hence find the differential equation for the depth of water, h t( ) , at any  time 
t. (You may assume that the flow is uniform across every section.) 
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Because the flow is uniform across every section, we first apply the rule: speed×area = constant, to give ˆ ( ) ( )Aw t AW tλ=
; see the figure. (In passing, we note that 0∇⋅ =u  is satisfied.) The pressure equation gives

 1
2 ( )p gz f t

t
φ

ρ
∂

+ ⋅ + + =
∂

u u ,

where ( )w t  i.e. ( )zw tφ =  (because any additive function is absorbed into f). Now, at any level in the tank, we have

21
2 ( )pzw w gz f t

ρ
+ + + = ,

and evaluating at the surface: z h= , ˆ ( 0)w w h= = < , 0p p= = atmospheric pressure, 

we obtain 2 01
2 ( )phh h gh f t

ρ
+ + + =  .

Correspondingly, evaluating at the exit, with the plate removed, so that the water is also here open to the atmosphere: 
0z = , 1 ˆw W wλ−= = , 0p p= , to give

2
0

20 0 ( )
2

ph f t
ρλ

+ + + =


 which, together with the previous equation, produce the differential equation for ( )h t :

2 21
2 (1 ) 0hh h ghλ−+ − + =  .

The initial conditions are 0(0)h h= , (0) 0h = ; this equation is discussed further in Exercise 52.
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2.5	 Vorticity and circulation

We now explore the nature and properties of vorticity a little further. First, let us introduce vortex lines (just as we 
considered streamlines): lines which, everywhere, have the vorticity vector as tangent. Often, we are more interested in 
bundles of vortex lines, rather than individual lines; such a bundle is called a vortex tube:

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This is the situation that best describes (and represents) the flow down a plug hole and the flow within a tornado, both 
of which are highly rotational, comprising a bundle of vortex lines.

An important associated property (which plays a significant rôle in aerofoil theory) is the circulation. The circulation is 
defined by 

     ( )
C

K t d= ⋅u l   

hich encloses an o

 

on any simple, closed curve, C, which encloses an oriented surface S (with unit normal pointing in the right-hand-screw 
sense as C is mapped out); see the figure below:
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It is the convention to measure the circulation positive in the counter-clockwise, right-hand screw sense. If the geometry 
is simple, it is possible to calculate the circulation easily and directly, as we now demonstrate.

Example 17 

Circulation. A velocity field, expressed in cylindrical coordinates  ),,( zr θ , is )0,,0( rα≡u , where α  is 
a constant. Find the circulation  around a circle with axis along the z-coordinate. [This flow is called a  line 
vortex - more later.]

For this flow, on a circle of radius R, we have 

 
R θ
α

=u e  and R θθ∆ = ∆l e

where θe  is a unit vector in the direction of increasing θ; both the velocity vector and the (vectorial) element of length 
around the circle are in the same direction. Thus 

 R
R
α θ⋅∆ = ∆u l ,

and so we obtain 
2

0
d 2K

π
α θ πα= =∫ : the circulation is independent of the radius R.

Note: The vorticity for this velocity field is =ù 0 , 0r > , but it is undefined on 0r = .
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We now turn to another aspect of circulation, by finding an alternative – and very illuminating – expression for it: an 
application of Stokes’ Theorem produces

     d d d
C S S

s s⋅ = ∇ ∧ ⋅ = ⋅u l u n n ,  

which is a measure of all the vorticity passing through the surface S, bounded by the curve C. (Consider the nature of 
a tornado, from the broad, slow-moving cloud base, down to the high-speed rotation near the ground. This is a vortex 
tube, and the surface S could be taken either across the broad cloud base or across the narrow tube near the ground. )
We now obtain two important, general results that relate to circulation.
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(a) Circulation along a vortex tube

Consider a vortex tube, and two stations (positions) along it, defined by taking slices across the tube:

 
 
                                                                                              2C  
 
                                      3n  

                                                           V 
 
                                                1C          2n  
                                                      
 
 
                         1n  
                                                              3S                  2S  
 
 
                                 1S     
 

Here, there is a volume V bounded by the surface constructed from 1 2 3S S S S= + +  (the two ends of the region, and 
the section of vortex tube between them). Consider 

(the two en
d

S

s⋅n ; w we apply the Divergence (Gauss’) theorem to give

d d 0
S V

s v⋅ = ∇ ⋅ =n , 

because se ( ) 0∇ ⋅ = ∇ ⋅ ∇ ∧ =u  
f integrals over the three 

 for all u. We now express the surface integral as the sum of integrals over the three 
surfaces that comprise S:

1 2 3

1 2 3d ( ) d d 0
S S S

s s s⋅ + ⋅ − + ⋅ =n n n , 

where we have used the correct directions for the unit normals outward on each part of S. But ω and 3n  are mutually 
orthogonal on 3S , so this integral is zero, leaving

1 2

1 2d d
S S

s s⋅ = ⋅n n  or 1 2K K= ,  
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f 

a 

s 

when we introduce the circulation at the two stations. Thus the circulation along a vortex tube remains constant. In 
particular, if the cross-sectional area of the tube decreases, then en  m must increase in order to maintain the constancy; 
this has important consequences for a tornado: as the area decreases (as observed near the ground) the speed of rotation 
increases dramatically.

(b) Kelvin’s circulation theorem (1869)

This involves the computation of the circulation, K, around a simple, closed contour that always contains the 
same fluid particles i.e. the contour moves with the fluid, as the fluid moves and distorts. This calculation (see 
Appendix 4) leads to the result 

d 0
d
K
t
= : the circulation does not change on the same fluid particles. Thus, 

for example, if the flow is initially irrotational, so that K = 0 for every choice of contour, it will remain so for all 
time. (We must note that this is true only for an inviscid (model) fluid; viscosity changes this picture altogether, 
because one of the actions of viscosity is to generate vorticity.)

2.6	 The stream function

 This is the final, general, property that we discuss here. Let us restrict the motion so that variations occur only in two 
spatial dimensions ((x, y) say), which will often be the situation in the geometries that we discuss. The flow may still be 
unsteady. For an incompressible flow, we have

0x yu v+ = ,

using rectangular Cartesian components (but other systems are possible); let us introduce ( , , )x y tψ  such that yu ψ= 
. 

The equation of mass conservation then becomes

0xy yvψ + =
 and so ( , )xv h x tψ= − +

,

where h is an arbitrary function; we write this last as 

( )( , )dv h x t x
x
ψ∂

= − −
∂ ∫


.
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It is convenient, now, to define ( , , ) ( , )dx y t h x t xψ ψ= − ∫


, to give

 yu ψ=  and xv ψ= − . 

Thus, for arbitrary (twice differentiable) functions ( , , )x y tψ , we have satisfied (‘solved’) the equation of mass conservation 
for a 2D, incompressible fluid (which may be both unsteady and rotational); but what is ψ?

Consider lines ( , , ) ( )x y t k tψ =  at fixed t; we assume that this relation defines ( , )y y x t= , and then we form (all at 
fixed t)

( )d , ( , ), 0
d

x y x t t
x
ψ =  i.e. 

d 0
dx y
y
x

ψ ψ+ =  or 
d
d

y

x

y v
x u

ψ
ψ

= − = .

But this last statement is the definition, in 2D, of the streamlines (defined at an instant in time); see (§1.2.1). Thus lines 
( , , ) ( )x y t k tψ = , at fixed t, are the streamlines; consequently, we call ψ the stream function.

Note: In plane polar coordinates, we have the equation of mass conservation ( 0∇⋅ =u ) in the form

( ) 0vru
r θ
∂ ∂

+ =
∂ ∂

 and so we define 
1u
r

ψ
θ

∂
=

∂
, v

r
ψ∂

= −
∂

.

Correspondingly, in cylindrical coordinates with axi-symmetry, we have

1 ( ) 0wru
r r z
∂ ∂

+ =
∂ ∂

 and so here we define 
1u
r z

ψ∂
=

∂
, 

1w
r r

ψ∂
= −

∂
.

We now explore two simple examples that involve the stream function.

Example 18 

Stream function I. Given that ),( yx αα −≡u , where α  is a constant, find  the stream function, ψ .

We first check that 0x yu v∇⋅ = + =u , which follows directly, so ψ exists; thus ,y xu x v yψ α ψ α= = = − = −  and 
so xyψ α=  is the stream function (and remember that any additive constant is irrelevant).
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Example 19 
Stream function II. A simple model for a vortex is described by  ),0( rK−≡u , expressed in plane polars, 
where K is a constant; find  ),( θψ r .

Here, we require ( ) 0rur vθ∇ ⋅ = + =u , which is clearly true, so ψ exists; thus

1 0, r
Ku v

r rθψ ψ= = = − = −  and so lnK rψ = −  is the stream function.

Comment: Let us now suppose that this 2D flow is also irrotational, then we obtain

(0,0, ) (0,0, )x y xx yyv u ψ ψ= − = − − =ù 0 ;

thus ψ satisfies Laplace’s equation. On the other hand, suppose, first, that the 2D flow is irrotational, then 
en φ= ∇ ∧ = = ∇u 0 u  i.e.  ( , , 0)x yφ φ φ= ∇ =u ; s see §2.1. Then, if the flow is also incompressible ( 0∇⋅ =u ), 

we obtain

0xx yyφ φ+ =  ( 2 0φ∇ = ) – Laplace’s equation again.
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In summary, therefore, we have, for two dimensional, incompressible, irrotational flow

x yu φ ψ= =  and y xv φ ψ= = − ,

which are the Cauchy-Riemann relations relating φ  and ψ. Thus there is a (differentiable) function ( , )w Z t  such that 

( , ) ( , , ) i ( , , )w Z t x y t x y tφ ψ= +  (where iZ x y= + ),

and then the techniques of complex analysis become available. We shall return to this later, and make considerable use 
of this important idea. 

2.7	 Kinetic energy and a uniqueness theorem

 In this final section of the chapter, we introduce the total kinetic energy of the fluid. Although this is of some importance 
in more general studies of fluids, we use it here only as a device for developing the notion of uniqueness. We define the 
kinetic energy as

1 d
2

V
T vρ= ⋅∫ u u ,

and, if the reader has met the classical kinetic energy of a particle, it is evident that this takes the familiar form: 21
2 mv . 

In the fluid, this is defined for the (finite amount of) fluid in the volume V, bounded by the surface S, at any instant in 
time. To proceed (particularly with our view to describing uniqueness), let us assume that the flow is irrotational; thus 

φ= ∇u , and then we choose to write

1 ( )d
2

V
T vρ φ= ⋅∇∫ u .

Further, we suppose that the flow is also incompressible, in which case we have

[( ) ] ( ) ( )ρφ ρφ ρφ ρ φ∇ ⋅ = ∇ ⋅ + ⋅∇ = ⋅∇u u u u

because 0∇⋅ =u  and constantρ = . (Both irrotationality and incompressibility can be ignored in more general 
discussions of the energy in a flow.) We use this result in our version of the kinetic energy, and then use the Divergence 
(Gauss’) theorem:

1 1 1( )d ( )d d
2 2 2

V V S
T v v sρ φ ρφ ρφ= ⋅∇ = ∇⋅ = ⋅∫ ∫ ∫u u u n .

In this expression for T, we see that the energy is now determined by the values of ϕ and u on the boundary S, replacing 
the evaluation throughout V. The crucial observation for us is that an evaluation throughout a region has been replaced 
by an evaluation on the boundary of the region. This idea provides us with a (mathematical) basis for a fundamentally 
important result: uniqueness.
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The issue, now, is the following. Suppose that we have some fluid flow – here, simplified to be both irrotational and 
incompressible – and some suitable boundary conditions: what form should the boundary conditions take (if any exist at 
all) that will guarantee that the solution is unique? That is, so that there is just one solution of the complete problem. We 
must hope that our studies are particular examples of unique flows (although there are many problems in fluids which 
oscillate between two or more different solutions: some solutions based on suitable models can lead to non-uniqueness).

Consider a general incompressible, irrotational flow, with some given conditions – yet to be determined – on the boundary 
of the flow field. Let the totality of the field be the volume V, with a boundary S. Suppose that there are two possible flows 
satisfying the equations and boundary conditions; let these flows be designated 1 1φ= ∇u  and 2 2φ= ∇u . We aim to 
show that the only possibility is 1 2≡u u  everywhere, which is uniqueness of the velocity field. Define 1 2= −U u u  
and 1 2φ φΦ = − , and form (by following the idea above)

2
d d d

V V V S
dv v v s= ⋅ = ⋅∇Φ = Φ ⋅∫ ∫ ∫ ∫U U U U U n .

Any particular problem will be defined by the governing equations (e.g. Euler’s equation and mass conservation) together 
with boundary conditions (and note that initial data does not appear here). With prescribed conditions on the boundary, 
all possible solutions must satisfy this given data so, on S, we have 0⋅ =U n  (if ⋅u n  is given on S) and 0Φ =  (if ϕ 
is given on S). (The more usual is ⋅u n  i.e. we know the normal velocity of the fluid on the boundary, and typically this 
is zero: the boundary is solid and stationary.) We deduce, therefore, that if, on S, either ⋅u n  is given, or ϕ is given – we 
could have one or the other on different parts of S – then we obtain

2
1 20 d d

S V
s v= Φ ⋅ = ⇒ ≡ ⇒ ≡∫ ∫U n U U 0 u u .

Thus the velocity field is unique – there is one, and only one, flow field – and then, from Euler’s equation, we can find 
the corresponding unique pressure field (up to an arbitrary constant, and this can be identified with, for example, the 
constant, background atmospheric pressure).
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Exercises 2

36. Incompressibility & vorticity. For these flows, determine if they are incompressible and find the vorticity vector:

(a) )2,5,43( zxyxz +−−+≡u ; (b) )0,0),(( 222
0 zyau −−≡u  ( u a0 , constants).

37. Vorticity I. An incompressible velocity field, written in cylindrical coordinates ( zr ,,θ ), is

    u ≡
≤ ≤

>

( , , ) ,

( , , ) ,

0 0 0

0 02

ω
ω

r r a

a r r a
   (ω  constant).

(a) Find the vorticity vector for this flow. 

(b) �In the absence of body forces (and noting that the flow is steady), use Euler’s equation to find the (continuous) 
pressure which satisfies p p→ 0  as r →∞ . What is the condition which ensures a realistic pressure 
everywhere ? [This is called the Rankine vortex.]

(Remember to use cylindrical coordinates throughout.)

38. Vorticity II. Repeat Ex. 37 for the velocity field

u ≡
≤ ≤

>

( , , ) , ,

( , , ) , .

0 0 0

0 0

2

2
ω
ω

r a r a

a r r a
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39. �Velocity potential I. Given that ω 0u =∧∇= , write this out in component form (in (x,y,z) coordinates) and hence 
deduce that the general solution is φ∇=u  , for arbitrary φ (x,y,z,t). [Hint: Write, for example, u f x= ∂ ∂  and 
integrate; an alternative method is to use an integral theorem.]

40. Velocity potential II. See Ex. 25; show that this flow is irrotational and hence find its velocity potential.

41. �Branching pipe flow. See Ex. 30; the pressure where the area is A is p0 ; find the pressure in the two branches of the 
pipe. [Hint: Consider two separate streamlines, one into each branch (and ignore body forces).]

42. �Another pipe flow. A pipe varies in cross-sectional area, from 9A to A to 3A. A fluid of constant density flows uniformly 
through the pipe, with speed u0  at area 9A; find the speeds at areas A and 3A. The pipe is placed horizontally, and the 
pressure is p0  at area 9A; find the pressures at areas A and 3A, and state the condition for all pressures to be positive.

43. �Raising water. Water (so incompressible) flows along a horizontal pipe, which has a contraction to area A and then 
enlarges to area nA further along, at which point the water is delivered at atmospheric pressure. Given that the flow is 
steady, and uniform across every section, show that a side tube connected to the pipe at the contraction can raise water 
(at atmospheric pressure) from a depth of f )1)(2/( 222 −− ngAQ , w, where Q is the volumetric flow rate along the tube.

44. �Flow in an inclined pipe. A straight pipe of varying cross-sectional area, slopes downwards, dropping through a vertical 
height of h; through it flows an incompressible (constant density) fluid under gravity. At the upper, the area of the 
pipe is A0 , the speed is u0 and the pressure is p0 ; the flow is assumed to be uniform across every section. At the 
lower end the area is A1 ; find the speed and pressure in the flow here.

At a general position, which is at a vertical height z above the lower end where the area is A z( ) , find the speed, u z( )
, of the flow; now use Bernoulli’s equation to find an expression for d dp z  and show that this gives a local maximum 
for p z( )  if AA A′′ < ′3 2 ((at this point).

45.� Maximum flow along a river. A uniform (i.e. no variation of speed, u, with depth), steady flow moves along a horizontal 
channel – a river or canal – of unit width and depth h. The bottom streamline has a ‘total head’ H which is constant; this 
is the constant in Bernoulli’s equation, with the pressure measured relative to the atmospheric pressure at the surface. 
Use the vertical component of the hydrostatic pressure equation to find the pressure (in terms of h) that appears in 
Bernoulli’s equation. Now show that there is a maximum mass flow rate ( m uh= ρ ), given by m

g
H

=
ρ 8

27

3
, and that 

this occurs when u gh= .

46. �Hydraulic jump. Suppose that a flow of water suffers a dramatic change in depth (as occurs, for example, in the flow 
that has passed over a weir; see also the flow from a tap into a basin). Let the depth, at any position, be h and the 
speed in the flow (independent of depth) is correspondingly u. The mass conservation and Euler’s equations (written 
in non-dimensional form) imply that the change in the values of hu  and of hu h2 1

2
2+  are zero across the change 

in depth (usually called a jump). If the conditions on one side are h h= 0 , u u= 0 , deduce that, on the other side 
of the jump where h Hh= 0 , then either H = 1  (no jump) or r H F= − + +1

2
21 1 8  w with F u h= >0 0 1 . 

Finally, using this information, deduce that the change in energy (given by the change in 1
2

3 2hu uh+ ) is negative: 
energy is lost through the jump. 
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�[F is the Froude number, named after W. Froude (1810-79), naval engineer.] 

47. �Flow of a gas. The local speed of sound in a gas is given by y ρddp/  (= a),  

ts) and write the spe

 where )(ρp  describes the gas; we take 
γρkp =  (k, γ  constants) and write the speed at any station as u. Use Bernoulli’s equation (in the absence of body 

forces) to show

(a) that =







−

+
ργ

γ pu
12

1 2  constant; (b) and then that 
1

2
2
0

2

)1(
2
11

−







 −+= M

a
a γ  , 

where M = u/a is the (local) Mach number, and the zero subscript denotes evaluation where u = 0. 

Now find corresponding expressions for (c) 0ρρ  and (d) 0pp . Given, further, that RTp ρ=  (
[E. M ach (

 (R constant), 
find an expression for (e) 0TT .

[E. Mach (1838-1916), Austrian physicist and philosopher.]

48. �Expanding gas. (a) A vessel contains a gas which is maintained at the pressure np0 , which is then allowed to escape 
through a small-diameter pipe into the atmosphere (pressure p0 ). The gas is described by γρkp =  (k, γ  constants) 
with 0ρρ =  at pressure 0p ; find the density at pressure np0 . Ignore body forces and assume that the speed of 
the gas inside the vessel is negligible; hence show that the speed of efflux of the gas is ( )1

1
2 /)1(

0

0 −
−

= − γγ

ργ
γ npu  .

(b) Given, further, that RTp ρ=  (
[E. M ach (

 (R constant), find an expression for the temperature (T) of the escaping 
gas in terms of 0T , the temperature inside the vessel, and M = u/a (see Ex. 47). Explain the significance of this 
result. [This is called the Joule-Thomson effect.]

49. �Subsonic/supersonic flow. A gas flows horizontally (so the body force – gravity – can be ignored) along a variable-area 
pipe. At any station, the density is ρ , the (uniform) speed is u and the area is A; mass conservation then requires 
that at =uAρ  constant. The gas is described by γρkp =  (k, γ constants). Treat ρ , p and u as functions of A; find 
expressions for d dρ A  from both the mass conservation and Bernoulli’s equations, then eliminate d dρ A  to show 
that at M

u
A

u
A

2 1− =d
d

, w

A > 0), deduce that (a)

 where M is the (local) Mach number (see Ex. 47). For u > 0 (and A > 0), deduce that (a) 
the speed in the pipe decreases as A increases provided M < 1 (as expected ?); (b) the speed increases as A increases 
if M > 1 !

[This is the basis for the production of supersonic flow (M > 1) in the laboratory.] 

50. �Incompressibility. See Ex. 47 (d) (and (b)); show that, for small M, we have (approximately) 
p u p
ρ ρ0

2 0

0

1
2

+ = , 
which is the incompressible result. 

[For air under normal conditions, we find from this result that compressibility effects produce an error of only about 
2 % in Bernoulli’s equation even at 300 mph.] 
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51. �Lift from a simple aerofoil. Use Bernoulli’s equation, in the absence of body forces, to find the lift (per unit span) on a 
two-dimensional aerofoil which is placed parallel to the oncoming stream (speed u0  and pressure p0 , at infinity). 
The aerofoil has a chord (the distance from leading to trailing edge) c, and is so shaped that the speed of the flow on 
the lower surface is u u= =0  constant. On the upper surface, the corresponding speed increases linearly from u0  
at the leading edge to ku0  ( k > 1 ) at a distance c 4  from the leading edge; thence it decreases linearly, returning 
to the value u0  at the trailing edge. Assume that the thickness of the aerofoil may be ignored, and hence show that 
the lift per unit span is  is 1

6 0
2 1 2ρu c k k− + . .

52.� Solution for vertical container. The equation taken from Example 16 is 

hh h gh h  + + = −1
2

2 1
2

2 2λ ,

for which we seek a solution ( ) ( )h f h2 = . Hence find the equation relating h  and h; in the case λ = 1 3 , find 
h t( )  and show that the vessel empties in the time t h

g
= π 0

2
, where h h( )0 0=  and ( )h 0 0= .

53. �Oscillating pressure. The radius of a sphere immersed in an infinite ocean of an incompressible (density ρ ), inviscid 
fluid varies according to the equation r r a nt= +0 cos , where r0  (> 0 ), a and n are constants. The fluid moves 
radially, in the absence of body forces; the pressure in the fluid at infinity is p0 . Assume that the velocity potential 
for the motion of the fluid is given by φ = F t r( ) , find F t( )  (by considering the motion at the surface of the 
sphere) and then use the pressure equation to find the pressure on the sphere at any instant in time. Hence show that 
the maximum pressure attained is is p p n a a r a= + +0

2 3
2

1
10 0

2ρ  ( (given that r a0 5≤ ).
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54. �Collapse of a spherical cavity. A flow is produced by the formation, and then collapse, of a spherical cavity in an 
incompressible (density ρ ), irrotational fluid, which is at rest at infinity where the pressure is p0 . We are given the 
existence of the cavity, with an initial radius of a which always maintains an internal pressure p1  (< p0 ). As the cavity 
collapses, the fluid motion is purely radial with radial speed throughout the fluid u r= ∂ ∂φ , where φ = F t r( ) . 
First evaluate on the surface of the cavity, which enables F t( )  to be determined in terms of the radius of the cavity, 
r r t= 0( ) . Ignore body forces and then show that the pressure equation gives

1 1
20

0
2 0 0

2
0 1

r t
r

r
t

r
t

p pd
d

d
d

d
d

− + =
ρ ρ

. 

Hence show that this equation can be integrated to give

d
d
r
t

p p a
r

0
2

0 1

0

3
2

3
1= − −( )

ρ
. 

55. �Streamlines & equipotential lines. A line (surface) on which =),,( zyxf constant has f∇ as its normal. For two-
dimensional, incompressible, irrotational flow there exists both a stream function, ψ , and a velocity potential, φ . 
By considering the form of )()( φψ ∇⋅∇ , deduce that lines =φ constant (equipotential lines) are everywhere 
orthogonal to the streamlines.

[Hint: write in terms of the velocity components.]

56.� Circulation I. See Ex. 37; find the circulation for this (model) vortex for (a) r a≤ ; (b) r a> . Sketch the graph of 
this circulation, for 0 ≤ < ∞r .

57. Circulation II. Repeat Ex. 56 for the problem given in Ex. 38.

58.� Kelvin’s circulation theorem. A simple, closed contour, C(t), associated with fluid particles in a flow, is described by 
)0,sin,sincos(),( sastasats λ+=x , for 0≥t , where a and λ  are constants and π20 ≤≤ s  maps out C. 

Find u(s,t) and state what happens to the points labelled by s = 0, π=s . Show that )0,0,( yλ=u . Introduce the 
circulation, K(t), evaluate it for this flow and confirm that K is independent of t.

59. �Hill’s spherical vortex. Assume an incompressible flow, described in cylindrical polar coordinates with axisymmetry; 
thus the stream function, ψ ( , )r z , generates the velocity components u r z= 1ψ , w r r= − 1ψ . Write

ψ ( , )

,

, ,
r z

Ar a r z r z a

Br

r z
Ur r z a

=

− − ≤ + ≤

+
− + >

2 2 2 2 2 2

2

2 2 3 2
2 2 2

0

1
2
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where A, B and U are constants. [The term in B is a dipole at the centre.]

(a) �Find u and w, and then the vorticity, in the region 0 2 2≤ + <r z a . Choose A so that the vorticity 
attained as r a→  is ω  (= constant); what is the vorticity at r = 0 ?

(b) �Find u and w in the region r z a2 2+ > ; what is the flow at infinity i.e. as r z2 2+ → ∞ ? [If the flow 
at infinity is given as zero, then the vortex will move at the speed you have just found.]

(c) Find the vorticity in the region r z a2 2+ > .

(d) �Determine B so that ψ  is continuous at the surface of the sphere (where r z a2 2 2+ = ); now find the 
condition which ensures that the velocity on the sphere is continuous.

(e) Use some appropriate software (e.g. MAPLE) to plot the streamlines. To do this, take a normalized form:

ψ = − −1
2

2 2 21r r z  for r z2 2 1+ ≤ ; ψ = + −
−1

3
2 2 2 3 2

1r r z  for r z2 2 1+ > , 

and select e.g. ψ = n 64  ( n = 0 1 8, , ..., ) inside, and ψ = −n 50  ( n = 0 1 15, , ..., ) outside. Then, to plot a 
section through the vortex ring, use − ≤ ≤1 1r  inside, and − ⋅ ≤ ≤ ⋅1 5 1 5r , − ≤ ≤2 2z , outside.

[This exact solution corresponds closely to that seen in a ring vortex e.g. a smoke ring.]

**********************************
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3	 Viscous Fluids
Any study of fluid mechanics that aims to cover all the physical and mathematical aspects of the subject must include a 
discussion of viscous flow. In the final analysis, it is these ideas that underpin the subject, and enable a very detailed and 
accurate study of real flows. The important new ingredient – viscosity – leads to a new governing equation: the Navier-Stokes 
equation; this is the viscous counterpart of Euler’s equation. It is beyond the scope of this text to provide a mathematically 
complete derivation of this equation – which would involve a discussion of stresses and the use of the tensor calculus 
– but we can outline the thinking behind the equation. (The interested reader will be able to find derivations, based on 
physical and/or mathematical principles, in other, more advanced texts.) We shall then look at some important properties 
and conclusions that follow from this equation.

3.1	 The Navier-Stokes equation

In any study of elementary partial differential equations, one of the three standard equations that are introduced is, 
usually, that of heat conduction (and the methods of separation variables and similarity solutions will also probably be 
discussed). This equation takes the form

2

2
u uk
t x

∂ ∂
=

∂ ∂
 (in 1D) or, more generally, 2

tu k u= ∇ ,

describing how heat diffuses through a material, where u is temperature and k is the thermal conductivity. Now consider a 
stationary fluid, which sits in a half space, 0y >  say, bounded by a solid wall (interpreted as a flat plate here) on 0y =  
for x−∞ < < ∞ ; the boundary (plate) is brought into motion, and this motion continues for all time, by moving it in 
the x-direction:

   y                     fluid                                                            fluid 
                                                             then 
    x 

The fluid, being viscous, ‘sticks’ to the surface of this moving plate as it moves; the internal friction (viscosity) of the fluid 
then ensures that this effect diffuses in the y-direction through the fluid away from the plate. As time increases, more of 
the fluid is brought into motion; indeed, as time increases indefinitely, all the fluid will tend towards the motion of the 
plate. The diffusive process that brings this about, when viewed on the molecular level, is identical to the processes that 
are involved in the diffusion of heat: the molecules vibrate and interact (collide). On this basis, we can expect that the 
type of term in the governing equation, describing viscous action in a fluid on the macroscopic scale, should mimic that 
which appears in the equation of heat conduction i.e.
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2
tu k u= ∇   would become  2

tu uρ µ= ∇ . 
         temperature                      velocity component 
 thermal conductivity               coefficient of friction  

(In this simple statement, we have used the form equivalent to mass×acceleration = the force (friction).) Now, for our 
description of a fluid, we must incorporate this idea into Euler’s equation:

1( )t p
ρ

+ ⋅∇ = − ∇ +u u u F ,

which then becomes 21( )t p µ
ρ ρ

+ ⋅∇ = − ∇ + + ∇u u u F u ,

where μ is the coefficient of Newtonian viscosity, and we usually write ν µ ρ= , the kinematic viscosity. (We shall 
consider ρ and μ to be constants throughout the applications that we discuss here.) Our new equation of motion is the 
Navier-Stokes equation, developed by C.L.M.H. Navier (1785-1836) and G.G. Stokes (1819-1903), in the period 1823-1845, 
with some contributions from Poisson (1831) and very significant input from Saint-Venant (1843). More advanced texts 
should be consulted if a mathematically complete derivation is preferred. The first component of this equation, written 
in rectangular Cartesian coordinates, is

2 2 2
12 2 2

1u u u u p u u uu v w F
t x y z x x y z

ν
ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

.

We should note that the higher order of this equation – now two, whereas Euler is one – requires an additional spatial 
boundary condition; this is the ‘no-slip’ condition at a solid boundary.

In this chapter, we will first construct a few simple, exact solutions of the Navier-Stokes (NS) equation (which are 
easily generated, and provide some tests for the relevance and accuracy of the equation). Then we will see how we can 
approximate the equation for the description of more complicated flows (which will be relevant to an important aspect 
of flow around wing sections).

3.2	 Simple exact solutions

All these examples of simple, exact solutions of the NS equation can be treated as worked examples; they provide the 
basis for some of the exercises at the end of this chapter. We reiterate that, throughout our introductory studies here, we 
take both ρ and μ to be constants; we will obtain the vorticity in each case, to show the rôle of viscosity in the generation 
of vorticity. 

(a) Plane Poiseuille flow (Poiseuille 1840, 1841)

This is steady flow between two parallel, fixed planes; there is no body force and the motion is solely in the x-direction; 
the motion is maintained by a constant pressure gradient constantp x α∂ ∂ = = . The motion is such that 

0, ( )v w u u y= = = :
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                                                                              y b=
    y 
                                                         u(y) 
                    x 

                                                                              y b= −

The Navier-Stokes equation then reduces to 
2

2
10 p u

x y
ν

ρ
∂ ∂

= − +
∂ ∂

 or u α α
ρν µ

′′ = = ; thus 

21( )
2

u y y Ay Bα
µ

= + + ,

where A and B are the arbitrary constants of integration. The no-slip boundary conditions require ( ) ( ) 0u b u b= − = ; 
thus the solution is

2 2( ) ( )
2

u y b yα
µ

= − − .

Note that ( ) 0u y ≥  (where u is defined in the region between the plates) provided that 0α <  i.e. the pressure is higher 
to the left, and lower to the right, driving the flow from left to right (as common sense predicts). The figure shows a sketch 
of this velocity profile, which is parabolic here.

The vorticity for this flow field is (0, 0, ) 0, 0,yu y
α
µ

= − = − , w

walls (where the viscous action

 which is zero on the centre line, and a maximum at the 
walls (where the viscous action is strongest, by virtue of the no-slip boundary condition). Note that this solution does 
not exist if the viscosity is zero, because then the term which produces this profile ( yyu ) is absent from the equation.

(b) Couette flow (Couette, about 1890)

This is again steady flow between two parallel planes (although it is convenient to label them slightly differently here); 
one of the planes (the upper one, say) is moving at constant speed in the x-direction, and the other is fixed. There is no 
body force and no pressure gradients. The motion is described, exactly as before, with the velocity components given by 

0, ( )v w u u y= = = :
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                                                         constantu U= =                   
                                                                                y h=

y                                          u(y) 

                                           0u =                                         0y =
              x 

This time (cf. the previous example) we are left with simply 0 yyuν= , and so

( )u y Ay B= +  with (0) 0u =  and ( )u h U= ;
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the solution is therefore the linear profile ( ) yu y U
h

= . 

The vorticity for this flow is  is (0, 0, )U h= − , a
iscosity! This flow ex i

 a constant independent of viscosity! This flow exists, therefore, as an 
inviscid, rotational flow.

(c) Impulsively started plate (Stokes’ first problem, 1851)

The fluid exists in 0y > , x−∞ < < ∞ , bounded by the plane 0y =  which starts impulsively from rest, instantaneously 
reaching a constant speed u U= . There are no body forces and no pressure gradients; the solution is described by 

0, ( , )v w u u y t= = =  with 
on 0
0 as

U y
u

y
=

= → →∞
 for all finite time.

 

                       fluid 0u ≡                                                  fluid 
y  
                                                                                                                               U 
        x 
                           0t ≤                                                        0t >

The NS equation now reduces to t yyu uν= , and the relevant solution takes a similarity form (cf. one of the classical 
solutions of the 1D heat conduction equation); thus we seek a solution 

( , ) ( )nu y t f yt=  for some constant n.

This then gives 

1 2( ) ( )n nnyt f t fη ν η− ′ ′′=  where nytη = , or 1 2nnt f t fη ν− ′ ′′= ;

so we choose, for 0t > , 1 2n = − : 

2( ) exp( 4 )df Aη η ν η= −∫ .
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The requirement that u (i.e. f ) 0→  as y →∞  for 0t >  gives (for a relabelled A)

2( ) exp( 4 )d
y t

f Aη η ν η
∞

= −∫ ,

and then u U=  on 0y =  for 0t >  is satisfied if 2

0
exp( 4 )dU A η ν η

∞
= −∫ . We introduce 2x η ν= , and use 

2 1
20

exp( )dx x π
∞

− =∫ , to write the solution as

2

2

2( , ) exp( )d
y t

Uu y t x x
ν

π

∞
= −∫ .

For this flow, the vorticity takes a more complicated form:

( )20, 0, exp 4
U

y t
t

ν
πν

= − , 

which shows how the vorticity changes in both space and time, decaying very rapidly away from the surface of the plate.

(d) Oscillating flat plate (Stokes’ second problem 1851)

This is the same geometry as in (c), but now the plate, for all time, is oscillated according to 

cos on 0 for all time
0 as

U t y
u

y
ω= =

→ →∞

where U and ω are constants. The neatest way to solve this problem is to seek a solution in the form 

( )i( , ) e t yu y t A ω λ+= ℜ  (denoting the real part);

it is sufficient simply to write u as this expression, without the addition of the real part, at this stage. (The equation, being 
linear, will give both the real and imaginary parts as zero, and then we use one of these, as appropriate.) Thus, from 

t yyu uν= , we obtain

2iω νλ=  and so 
1 (1 i)
2

ωλ
ν

= ± + ;

but we must satisfy the condition that the flow be undisturbed at infinity, and so we select the minus sign here. Our 
solution is therefore

2 (1 i) 2i( , ) e e e cos
2

y ytu y t A A t yω ν ω νω ωω
ν

− + −   = ℜ = −       
,
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where, now, A is some real constant. The condition on 0y =  yields, immediately, A U= ; the final solution is therefore

( )( , ) e coskyu y t U t kyω−= −  where 2k ω ν= .  

This describes a disturbance that decays exponentially away from the oscillating plate, the disturbance propagating into 
0y >  as a wave with speed 2kω ων= .

The vorticity for this flow is wave-like and decays away from the plate:

( )0,0, {cos( ) sin( )}e kyUk t ky t kyω ω −= − − − . 

(e) Flow through a pipe (Hagen, 1839; Poiseuille, 1840)

This final example is the axi-symmetric version of (a), above. Thus we have steady flow along the pipe, in the absence 
of body forces, but with a constant pressure gradient in the z-direction: 

p
z

α∂
=

∂
. The solution that we seek is then 

described by 0, ( )u v w w r= = =  (there is no dependence on θ : axi-symmetric); from the NS equation (in cylindrical 
coordinates – see Appendix 2) we obtain

2

2
1 d 1 d0

dd
p w w
z r rr

ν
ρ

 ∂
= − + +  ∂  

,

with the boundary condition 0w =  on the inside wall of the pipe, say at r a= . (This is only one condition; the second 
arises by imposing boundedness of the function w, as we shall see.) Thus we obtain

( )rw rα
µ

′ ′ =  and so 21
2

rw r Aα
µ

′ = +  and then 21( ) ln
4

w r r A r Bα
µ

= + + .

But the solution is defined for 0 r a≤ ≤ , which requires the lnr term to be absent – this is undefined on 0r =  – and 
so we are left with

21( )
4

w r r Bα
µ

= +

which, with the boundary condition on r a , gives 

2 2( ) ( )
4

w r a rα
µ

= − − .

This profile is again parabolic, so in ( , )r z -coordinates it is identical to the profile found in (a), which then produces 
a paraboloid-shaped profile for the axisymmetric flow down the pipe. We also note that the same condition on the 
pressure gradient applies, in order to drive the flow along the pipe in the sense of increasing z. The vorticity, in cylindrical 
coordinates ( , , )r zθ , is 

(0, ( ), 0) (0, 2 , 0)w r rα µ′= − = − . 
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Comment: A useful exercise is to apply this velocity profile to the problem of flow through a pipe; see Example 8. In that 
calculation, we found that

( )

0
( , )d constant

R z
rw r z r =∫ ,

and now we choose to use a profile 2 2
2

( ) ( )U zw R r
R

= −  for given ( )R R z=  (which describes how the radius of 

the pipe changes with distance along the pipe). This corresponds to the form used in Example 8, but now for a parabolic 

profile; U(z) is the maximum speed along the pipe, attained on the centre line. Integration then gives directly:

( )2 2 4 21 1 1
2 2 4 40

constant
R zU r R r UR

R
 − = =  ,

which is simply (maximum speed)× area = constant; cf. the earlier result.
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3.3	 The Reynolds number

In order to initiate this important investigation, and to introduce a fundamental idea and property of the Navier-Stokes 
equation, we make some very general observations about the possible scales (sizes) associated with various flows. We are 
given

2D 1( )
D t p

t
ν

ρ
= + ⋅∇ = − ∇ + + ∇

u u u u F u ,

and we suppose that we are considering a general class of problems that are characterised by typical scales:

•	 a typical speed, U, of the flow past an object
•	 a typical dimension (size), d, of the object (normally measured in the direction of the flow).

We use these (constant) scales to define non-dimensional variables. That is, rather than use standard measurement scales 
– metres or centimetres, or miles per hour or the kilometres per second – we use the scales specifically associated with 
the problem. The resulting equations will then be equally applicable to an aircraft, a bird or swimming protozoa. 

To proceed, we define new variables according to

2, , ,dd U t t p U p
U

ρ= = = =x x u u
  

,

where the combination d U  gives a typical time for the flow to go past the object, and the definition for p is based on 
the structure of Bernoulli’s equation. The variables with the circumflex are now non-dimensional, with e.g.

( , ) ( , ) ,Ut U t U t
d d

 = =  
 

xu x u x u
  

.

The new non-dimensional variables are now used in the NS equation to give
2 2 2

2
2

1( )U U U Up
d t d d d

ρ ν
ρ

∂
+ ⋅∇ = − ∇ + + ∇

∂
u u u F u
      
 ,

where ∇


 denotes the gradient operator expressed in the new variables. Rearranging this equation gives

2
2

D
D

dp
t dUU

ν 
= −∇ + + ∇ 

 

u F u
   
 ,

where 2
d

U
 
 
 

F  is a non-dimensional version of the body force (which will not be important in our discussions, but if 

gravity were to be retained, for example, then this generates the Froude number). The important non-dimensional number 

for us is dUν , which is usually written as

e
dU UdR ρ
ν µ

= = ;

this is the Reynolds number, introduced by Reynolds in 1883. [Osborne Reynolds, 1842-1912, British engineer and physicist; 
gave the first analysis of turbulent flow; also made contributions to the study of vortex motions and the theory of propellers.]
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This property of the equations – the appearance of the Reynolds number – is often called dynamical similarity: the equation 
and solutions do not depend on the individual values of U, d and ν, but on the combination exhibited by this number. 
Even if the values of these three constants are very different for very different flows, the flows are intrinsically the same if 
the value of eR  is the same: the flows are then dynamically similar. (Reynolds demonstrated that the value of eR  is the 
fundamental parameter that describes the transition from laminar to turbulent flow.)

For problems that are usually considered under the umbrella of fluid mechanics, there is a significant range of eR  values e.g.

•	 smallest swimming protozoa: approximately 210−

•	 blood flow in aorta: about 310
•	 large civil aircraft: about 810
•	 large ocean-going liner: about 910 .

For us, when we consider flow over the wing of an aircraft, we shall be working with very large Reynolds numbers – 
typically about 810 . With this number written in the NS equation, and in the absence of the body force term (which is 
unimportant for the flow over a wing, as we explain later), we obtain

2D 1
D e

p
t R
= −∇ + ∇

u u ,

and we have taken the opportunity to dispense with the circumflex: all variables hereafter will be non-dimensional. (This 
last manoeuvre is simply to make it easier to write the equations and variables.) We now see that, for very large eR , 
there is a great temptation – at least in order to generate a suitable approximate solution – to neglect the viscous terms. 
If this is a reasonable manoeuvre, then it is good news: we will have reverted to the Euler equation, which is far simpler 
to work with than the Navier-Stokes equation. However, if we do use this model, then the no-slip boundary condition 
can never be imposed – yet this is a property of any flow of a physically realistic fluid. How is this paradox overcome?

We shall describe the essential features of this type of problem in fluid mechanics. We find that the viscous contribution 
– and so the importance of the viscous terms in the equation – is relevant only very close to a solid boundary. Away 
from this boundary, the flow is very accurately described by an inviscid (Euler) theory. (In the context of aerofoil theory, 
this means that there is a very thin layer, over the surface of the wing, where the rôle of viscosity is important, but then 
a small distance away from the surface of the wing, inviscid theory is sufficiently accurate.)

The mathematical (and physical) idea that is at the heart of this approach is the concept of a ‘boundary layer’. This has 
important consequences for our current problem in fluid mechanics, but it also provides the basis for a related analysis 
of a large class of differential equations.
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3.4	 The (2D) boundary-layer equations

We now provide a discussion of the important work developed by Prandtl (and published in 1904) which explains the 
mathematical difficulty and how to overcome it. [Ludwig Prandtl, 1875-1953, German applied mathematician who was 
trained in solid mechanics; nowadays, he is regarded as the ‘father of modern fluid mechanics’; introduced the notion of 
a boundary layer and also developed the ‘lifting line’ theory for aerofoils.] First, we comment that the body force – gravity 
– is unimportant in these flows: the variation of pressure, due to gravity, over the vertical dimension of a wing (not more 
than a metre or so), is altogether negligible. We shall therefore ignore the body force hereafter. Thus in two dimensions, 
and written in non-dimensional variables, we have the set of governing equations

1( )t x y x e xx yyu uu vu p R u u−+ + = − + + ;

1( )t x y y e xx yyv uv vv p R v v−+ + = − + + ;

0x yu v+ = .
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We now consider the simplest problem that exhibits the difficulties that we want to explore: steady, uniform flow over a 
flat plate. (It is straightforward, although slightly more involved, to extend this approach to the problem over a general 
curved surface; we shall comment on this later.) So we have

           y 
                                 1u =

                                                                                                 x 

and we remember that the choice of non-dimensional variables means that the speed of the flow past the plate is unity in 
this system. If we ignore the viscous terms i.e. take the limit eR →∞  in the NS equation, then the exact solution is simply

1, 0, constantu v p= = = ,

and the constant pressure is the background, ambient pressure (prescribed at infinity, say). Of course, this solution does 
not satisfy the no-slip boundary condition on the surface of the plate. (For simplicity, we shall discuss only the fluid 
above and on the upper surface of the plate; we could consider a corresponding calculation for the lower-half plane and 
the under-surface of the plate. Consistent with this interpretation of the problem, we shall ignore the existence of a front 
edge to the plate; this is certainly absent if we regard the plate as infinitesimally thin. The analysis that we describe here, 
based on scalings, can be extended to allow for a plate of non-zero thickness and a suitable neighbourhood at the front 
of the plate – and also a corresponding description for the flow that leaves the rear of a finite plate.)

Prandtl realised that, for large eR , both physically and as a property of the differential equations, there is a ‘thin’ layer on 
the surface of the plate, where the viscous contribution, and the relevant terms, are important. For the equations valid in 
this thin layer, the correct, no-slip boundary condition can then be imposed. For this to be possible, the term 1

e yyR u−  
must be retained (and of the same size as other, appropriate, terms in the equations, so that a balance exists even for 

eR →∞ ). This is accomplished by introducing a scaled variable: 

1

e
y Y

R
= ,

so that, for example, we now treat ( , , ) ( , , )eu u x Y t u x y R t= = . (It is fairly routine, and more general, to assume 
that some scaling exists, based on a general power of eR , and to seek it; in this introductory discussion, we shall simply 
use the form that is appropriate for this problem.) The interpretation of the scaling is that, for any reasonable value of 
Y – we normally express this as O(1) – then, as eR →∞ , we have that the (essentially physical) y as very small (and 
so we have a ‘thin layer’ on the plate).

To proceed, we make the following observation. The equation of mass conservation, as we know (see §2.6), implies the 
existence of a stream function; let us write

,y xu vψ ψ= = − ,
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and then the scaling on y gives e Yu R ψ= . However, u cannot possibly be large, because we know that the speed of the 

flow away from the plate is 1, and it should be zero on the surface of the plate (so we expect a solution [0,1]u∈ ). This 

difficulty is easily overcome by redefining – scaling – ψ according to 
1

eR
ψ = Ψ , which then implies that we must scale 

v: 
1

e
v V

R
= . A small v is to be expected because, on the surface of the plate, we have v = 0 and it is, therefore, nearly 

zero very close to the plate i.e. when described in terms of Y. Note, however, that v is not governed by the viscosity of the 

fluid; 0v =  is simply a no-flow-through-a-solid-boundary condition. Also observe that there is no scaling associated 

with x (at least, away from the front edge of the plate, and with no end to the plate i.e. it is semi-infinite); the important 

variation is away from the plate, in the y-direction. Thus we scale the original (non-dimensional) equations according to

1

e
y Y

R
= , 

1

e
v V

R
= ,

and hereafter treat u, V and p as functions of x, Y and t. Thus we obtain

1 1 21 ( )t x e Y x e xx e e YY
e

u uu V R u p R u R R u
R

− −+ + = − + + ;

( )
2

21 11 1 1 1 1
t x e Y e Y e xx e e YY

e e e e e
V uV R VV R p R V R R V

R R R R R
− − 

+ + = − + +  
 

and 
1 0x e Y

e
u R V

R
+ = .

These simplify to give 

1
t x Y x e xx YYu uu Vu p R u u−+ + = − + + ;

( ) 2
1 1 1

t x Y Y xx YY
e ee

V uV VV p V V
R RR

+ + = − + + ,

and 0x Yu V+ = .

In these equations, we now take the limit eR →∞ ; this procedure generates a reduced set of equations, being the first 
approximation valid in this thin layer:

t x Y x YYu uu Vu p u+ + = − + ; 0Yp = ; 0x Yu V+ = .

We observe that the dominant viscous term, YYu , now appears as an O(1) term, balanced by other O(1) terms in the 
first equation; also note that the pressure is independent of Y in this region.
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These are the Prandtl boundary-layer equations, valid in a thin layer close to the surface of the plate; this layer, quite 
naturally, is called the boundary layer. These constitute a first approximation, appropriate to the boundary layer, valid for 

eR →∞ ; correspondingly, outside the boundary layer, the first approximation is simply the equations based on Euler:

t x y xu uu vu p+ + = − ; t x y yv uv vv p+ + = − ; 0x yu v+ = .

Comment: It is important to appreciate that the demarcation between the boundary layer and the outer flow is not provided 
by a well-defined line. Rather, the solution of the boundary-layer problem merges into the solution of the outer-flow 
problem as Y →∞ ; correspondingly, the solution to the outer-flow problem merges into that in the boundary layer as 

0y → . Since WWII, there has been a vast amount of analytical work done on many aspects of boundary-layer theory, 
to the extent that we know a lot about the higher-order corrections to this basic solution-structure, and in many different 
scenarios. These include the behaviour in the region where the boundary layer leaves the plate (and becomes a wake), 
and the prediction of boundary-layer separation.
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The leading-order approximation, for eR →∞ , for both the boundary-layer and outer flows, is appropriate for any curved 
plate (although the higher-order correction terms are different, for various shapes of plate). That is, the presentation given 
above holds for any plate, provided that x is measured along the plate, and y is always at right angles to it:

       U(x,t)                
     y 
                     x 

Now let us suppose that the flow, away from the plate, is described by ( , )u U x t= ; thus the problem for the boundary-
layer equations must satisfy the boundary conditions:

( , )u U x t→  as Y →∞ ; 0u V= =  on 0Y =  in 0x > .

(Note that the front edge of the plate is excluded here: 0x ≠ .)

Now we evaluate the first Prandtl equation (which, we see, is a version of the component of NS in the x-direction) as 
Y →∞  to give

( )x t xp U UU→− + .

But the Prandtl equations include the condition: 0Yp = , so the pressure does not vary across the boundary layer; thus 
( )x t xp U UU= − +  throughout the boundary layer. The full boundary-layer problem can therefore be written

t x Y t x YYu uu Vu U UU u+ + = + + ; 0x Yu V+ = ,

with ( , )u U x t→  as Y →∞ ; 0u V= =  on 0Y =  (all in 0x > ).

Note that any unsteadiness in the boundary layer will be driven, in this model, by any time dependence on the flow in the 
region away from the plate i.e. as given by ( , )U x t . Consequently, a steady boundary layer is associated with ( )U U x= .

3.5	 The flat-plate boundary layer

We complete the discussion (as relevant to this introduction to these ideas) by examining the details for the constant-
speed, steady-flow over a semi-infinite flat plate:

           y 
                                 1u =

                                                                                           x 
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The problem for this specific geometry is then

x Y YYuu Vu u+ = ; 0x Yu V+ = ,

with 1u →  as Y →∞  ( 0x > ); 0u V= =  on 0Y =  in 0x > .

An exact solution was found by Blasius (in 1908) by constructing a similarity solution for the stream function. So first 
we write Yu = Ψ , xV = −Ψ  (which therefore ensures that the equation of mass conservation is satisfied), which gives

Y xY x YY YYYΨ Ψ −Ψ Ψ = Ψ .

We seek a solution in the form ( , ) ( )x Y x f ηΨ =  where 2Y xη =  (and the 2 is merely an algebraic convenience); 
this solution has the property that any scale length cancels: there is no scale length for a semi-infinite plate! (It was this 
observation that prompted Blasius to write the solution in this form.) It is clear that this solution is valid only on the 
plate, because we must use 0x > .

Thus we have 1
2Y f ′Ψ =  and 1 1

2 4x f x Yf x′Ψ = − , which leads to the equation for f:

1 1 1 1 1 1 1 1
2 4 4 8 2 4 4 8

f f Y f Y f ff f f
x x x xx x x x
′ ′ ′′ ′′′   ′ ′′ ′− − − − =      

.

This simplifies, in 0x > , to give 

0f ff′′′ ′′+ = ;

the boundary conditions are: 

0u =  on 0Y =  ( 0x > ) so (0) 0f ′ = ;

0V =  on 0Y =  ( 0x > ) so (0) 0f = ;

1u →  as Y →∞ ( 0x > ) so 2f ′ →  as η →∞ .
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Sadly, this problem cannot be solved analytically, but a numerical solution is quite easily computed; a typical velocity profile 
through the boundary layer (for steady, laminar flow) is shown in the figure. We also provide an indication, based on 
experimental data, of just how accurate this theory is for reproducing the behaviour of the flow in the laminar boundary-
layer on a flat plate. The solid line is the obtained from the (numerical) solution of the equation for ( )f η , and the points 
(dots) are experimental results (based on the work of Nikuradse) for various Reynolds number.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Corporate eLibrary
See our Business Solutions for employee learning

Click here

Management

CoachingMotivationGoal setting

Problem solving

Time Management

Project Management

http://s.bookboon.com/bbg-elibrary-2015


Fluid Mechanics and the Theory of Flight

84 

Viscous Fluids

Exercises 3

60. �Simple viscous flow I. See §3.2 (a) & (b); consider the flow u u y= ( ) , v w= = 0 , between two infinite planes (
y = 0 , y h= > 0 ). The plane y = 0  is stationary and the other is moving at the constant speed u u= 0 ; there is, 

in addition, a constant pressure gradient, ∂ ∂ =p x α  and no body forces. Determine u y( ) .

61.� Simple viscous flow II. See §3.2 (a); consider the flow between two stationary, infinite planes ( y = 0 , y h= > 0 ) in 
the presence of the constant pressure gradient ∂ ∂ =p x λ , but with the additional requirement that gyp ρ∂∂ −=
(= constant), being the only body force present. Find both u(y) and p(x,y), given that p p= 0 = constant on x = y = 0.

62.� Cross flow. See Ex. 60 and §3.2 (b); the flow is between the two planes, one of which is stationary and the other moving 
(all according to Ex. 60); there is no pressure gradient and no body forces. In this case there is a constant cross-flow: 
v v= − 0  (= constant). Find u y( ) . [This is possible if the two planes are porous.]

63.� Suction. An incompressible, viscous fluid occupies the region y > 0  on one side of an infinite flat plate 0y = .The 
plate is moving at the speed u u t= 0( )  in the x-direction, and fluid is being sucked through the plate with a constant 
speed v V= − ; there is no variation in the x-direction, no body forces, no pressure gradients and no motion at infinity 
i.e. 0u →  as y →∞ . Show that the Navier-Stokes equation implies

 u Vu ut y yy− =ν .

Find appropriate solutions for u y t( , )  in the cases: (a) u0 1= ; (b) u t
0 = eα  (α > 0  constant).

64. �Axisymmetric axial Couette flow. Cf. §3.2 (e); consider axisymmetric flow of a viscous fluid, in the absence of any 
pressure gradients or body forces, between two concentric circular cylinders. The outer cylinder, r = R, is fixed, and 
the inner one, Rr λ=  ( 10 << λ ), is moving in the axial direction with a constant speed 0ww = ; find w(r).

65. �Vertical cylinders. Co-axial circular cylinders, of radii a and b (b a> ) are placed with their axis vertical; an 
incompressible, viscous fluid occupies the annular region between them. The outer cylinder is fixed, and the inner 
one is constrained to move vertically downwards with the constant speed w0 . Seek a solution which describes steady 
motion under (constant) gravity, with pressure constant everywhere in the fluid and all streamlines parallel to the axis 
of the cylinders, and hence show that the speed downwards, w r( )  satisfies

w r w grr r+ − =−1 0ν .

Hence find the relevant solution for w r( ) . 

66.� Two rotating cylinders. An incompressible, viscous fluid is circulating between two infinitely long cylinders; the outer 
one (which is hollow) is of radius a and is rotating about its axis with an angular speed ω . The other cylinder, which 
has the same axis as the first, is of radius 1

2 a  and is rotating at the angular speed −2ω . Show that the fluid is at rest 
at a distance a 2  from the axis of the cylinders. Also find the pressure difference in the fluid at the two surfaces 
of the cylinders.
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67.� Vorticity I. Sketch the vorticity for the flows discussed in §3.2 (c) and (d), and, for each, this could be in y at fixed t, 
and then in t at fixed y.

68. Vorticity II. Find the vorticity for each of the flows found in Ex. 60, 61, 62, 63, 64.

69.� Suction. In a conventional boundary layer, show that a solution of Prandtl’s equation in a region where the variation 
in x is small (i.e. assume that the derivatives with respect to x are zero) is 

V V= − =0 constant; t; u Y u V Y( ) = − −
0 1 0e , 

where u u→ 0  (constant) as Y →∞ . (This is a special case of boundary-layer control, by using suction; this solution 
is usually called the ‘asymptotic suction profile’.) Now show that this solution is an exact solution of the full Navier-
Stokes and mass conservation equations, in the absence of body forces and for constant pressure.

70. �Boundary-layer growth. A viscous fluid (of constant speed u U= 0  at infinity) flows steadily over a flat, y = 0 , x ≥ 0 ; 
write down Prandtl’s boundary-layer equations for this problem (see §3.4). Let the thickness of the boundary layer 
be represented by h x( )  (so that u U= 0  and uY = 0  on Y h x= ( ) ); show that

d
d

d
x

u U u Y u
Y

h x

Y
( )

( )
− = −

∂
∂ =

0
0 0

. 

Suppose that at u U
Y
h

= 0 2
sin

π
, 0

ayer flow, and hence

 0 Y h≤ ≤ , is a reasonable approximation for a boundary-layer flow, and hence 
find h x( ).

71. Blasius equation. Given the Blasius problem for f ( )η :

f f f′′ + ′′′ = 0  with f f( ) ( )0 0 0= ′ = , ′ →f 2  as η→∞

(where η = Y x2  and ψ η= x f ( ) ), consider the following.

(a) �This problem possesses a group property; to see this, transform f f→λ , η η λ→  (where λ  is a non-
zero arbitrary parameter). What is the new problem? How might this be useful in a numerical solution of 
the problem which ‘shoots’ from some initial conditions?

(b)� Show that the order of the equation can be reduced by introducing ′ =f g f( ) .

(c) �Show that the solution f a F= − +2η η( )  (a constant, which can be found only from a numerical 
solution), with η→ ∞ , is consistent with the Blasius equation. Find the equation for F and, under the 
assumption that F (and ′F ) approach zero as η→ ∞ , approximate the equation for F and then integrate 
it, to show that

′ ≈ −
∞

F A y yexp( )2 d
η

 (

2

 (A is an arbitrary constant).
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(d) �Show that the solution f B C≈ +η η2 5 , for η→ 0 , is consistent with the Blasius equation for a particular 
relation between the constants B and C; find this relation.

72. �Boundary layer generated by a sink. A sink is located at x y= = 0 , generating the flow U x m x( ) = −  ( m > 0  
constant) outside the boundary layer (which exists on y = 0  in x > 0 ).

(a) Show that Prandtl’s boundary-layer equation can be written as

uu Vu m x ux Y YY+ = − +2 3
.

(b) �Seek a solution in the form u
m
x

f= − ( )η , V
mY
x

f= − 2 ( )η  where η =
Y m

x
; confirm that the equation 

of mass conservation is satisfied and, from the equation obtained in (a), that

′′ − + =f f 2 1 0 .

State the boundary conditions that f must satisfy.

(c) �Show that the relevant solution is f a( ) ( )η η= − +1 3 22sech , where a is the (positive) solution 
of cosh( )a 2 3= .
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73. �Boundary layer with variable suction. The Prandtl boundary-layer equations can be used to describe the flow in 
a boundary layer for which the exterior flow is u U x xm→ =( )  (as Y →∞ ) and for which there is suction 
V x V x m( ) ( )= − −

0
1 2  on Y = 0  in x > 0  (where V0  is a positive constant).

(a) Show that Prandtl’s boundary-layer equation can be written as

uu Vu mx ux Y
m

YY+ = +−2 1
.

(b) Seek a solution for which the stream function takes the form

ψ η= +x fm( ) ( )1 2
 where η = −Yx m( )1 2

,

and hence show that f ( )η  satisfies

( )21
2 ( 1) 1 0f m f f m f′′′ ′′ ′+ + + − = .

State the boundary conditions that f must satisfy.

(c) In the case m = −1 3 , integrate the equation for f ( )η  to obtain

′ + = + +f f A B1
6

2 1
6

2η η ,

where A and B are arbitrary constants. Now show that the substitution f = ′6φ φ  reduces the equation to a linear, 
second order equation for φ .

************************************
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4	� Two dimensional, incompressible, 
irrotational flow

We now return to our earlier theme, based on the Euler equation; however, we shall make clear, particularly in the context 
of aerofoil theory, the rôle of viscosity. There are many aspects of fluid mechanics that can be studied e.g. boundary-layer 
theory, stability of flows, turbulent flow, gas dynamics and shock waves, vortex dynamics, statistical mechanics, and much 
more. We choose to follow the route that develops the application of complex-variable theory leading to classical (two 
dimensional) aerofoil theory. It will become clear that the methods that we present result in very powerful techniques for 
the construction, in general, of models for fluid flows. Although there are many ideas that we shall touch upon, our main 
aim is to lay the foundations for the theory of aerofoils and then to describe the ideas that underpin the generation of lift.

4.1	 Laplace’s equation

 In this brief discussion of a simple problem involving a fluid flow, we show how standard and familiar methods might 
be used – and then explain why such methods are not likely to be useful for more realistic flows. Let us suppose that we 
have a 2D flow which is incompressible and irrotational, then a velocity potential exists which satisfies Laplace’s equation:

2 0φ∇ =  or 0xx yyφ φ+ =  with ( , )x yφ φ=u .

For simple geometry, and a simple flow configuration, elementary methods for the solution of partial differential equations 
can be employed; to see what can be done, consider this example.

Example 20 

Laplace’s equation. A (2D) box, ax ≤≤0 , by 20 ≤≤ , has three solid  walls along x = 0, y = 0, y = 2b; it is 
open on x = a ( by 20 ≤≤ ) where  fluid flows in and out, symmetrically about y = b. Find ),( yxφ  for this  
flow field, given φ x u y= ( )  across the opening. 
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The geometry here is 

 
                                                                    0yφ =  
 
                                 2b 
 
                   
                      0xφ =                                                                   ( )x u yφ =  
 
                                                                      
                                   0                                                              a 
                                                                    0yφ =  

 

We seek a solution in the familiar form: separation of variables i.e. 

( , ) ( ) ( )x y X x Y yφ =  and so 0X Y XY′′ ′′+ = .

We set 2 0Y Yλ′′ + =  (and then 2 0X Xλ′′ − = ), with the boundary conditions

(0) (2 ) 0Y Y b′ ′= = ; this is a standard eigenvalue problem, the solution of which is routine (eventually leading to the 
need for a Fourier representation of ( )u y ).

This example shows that, in principle, such problems can be solved, but only if the geometry is particularly simple. What 
if the shape is more general – perhaps the shape of a section through a wing? We need a better way of tackling these 
problems. This, as we shall see, leads to a very powerful technique that enables quite accurate and sophisticated models 
of flows to be constructed.
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4.2	 The complex potential

From §2.6 (which describes two dimensional, incompressible, irrotational flow), we have

x yu φ ψ= =  and y xv φ ψ= = − ,

which are the Cauchy-Riemann relations for the two functions ϕ and ψ. These conditions guarantee that the function 
iφ ψ+  is a differentiable function of the single complex variable iZ x y= +  i.e.

( , ) i ( , ) ( ) ( i )x y x y w Z w x yφ ψ+ = = +  and ( )w Z′  exists.

(We choose to use upper-case z here because, sometimes, we use z as one of the variables in the definition of the complex 
variable e.g. a problem involving the vertical coordinate (rather than y) and x would give rise to iZ x z= + . Although 
this possibility is not likely to be encountered in our work here, it is wise to become familiar with this slight change of 
notation.)

Comment: All of the ideas and techniques work for unsteady flow, so we could allow ( , )w Z t , enabling some quite 
complicated problems in unsteady flow can be handled; we shall, in our discussions here, restrict ourselves to steady flows.
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The function w is called the complex potential. From it we may obtain both the velocity potential and the stream function 
but, in practice, it is more usual and helpful to extract the stream function (because this not only generates the velocity 
field – as does the velocity potential – but it also gives the streamlines). An important property of w follows immediately: 
take the partial x-derivative of the definition (or the y-derivative – it gives the same result; you should check this) to give

d( i ) i ( )
dx x

w w Z w Z
x x Z x
ϕ ψ φ ψ∂ ∂ ∂ ′+ = + = = =

∂ ∂ ∂
.

But we have i ix x u vφ ψ+ = − , and so

( ) iw Z u v′ = − :

the complex velocity. Thus the conventional derivative of the complex function w enables the velocity components to be 
obtained directly. (Do take note of the negative sign here; it is one of the common errors to work with ( ) iw Z u v′ = + !)

The representation of ( )w Z′  as the complex velocity leads to two different ways of discussing, describing and constructing 
flow fields; in our presentation of these ideas, we shall make use of both. The two approaches are

•	 given a flow field, identify u and hence obtain w(Z)
•	 introduce (invent) any w(Z), find ψ and then describe the flow field.

Although the more natural approach is likely to be the former, the latter can be used simply by combining some elementary 
functions (that represent some simple flows) and so invent more complicated flow fields. 

4.3	 Simple (steady) two-dimensional flows

We construct some simple flows, represented by suitable complex potentials, using – as appropriate – either one or other 
of the approaches mentioned above. Each one of these simple flows should be regarded as a ‘building block’; individually, 
they are not very interesting or important, but in combination they provide the basis for the construction of more 
complicated and realistic flows.

Download free eBooks at bookboon.com



Fluid Mechanics and the Theory of Flight

92 

�Two d imensional,  incompressible, i rrotational  flo

(a) Uniform stream (or flow)

Consider a flow which is a constant speed (U), in a fixed direction (given by the angle, α, relative to the positive x-axis); 
the flow exists throughout the plane: 

 
                              y 
 
 
                                                           speed  U 
                                                                   
 
 
                                                        
                                   α 
                                                                                
                                                                        x 

Thus we have ( cos , sin )U Uα α=u , and so 

id i cos i sin e
d

w u v U U U
Z

αα α −= − = − = ;

this gives immediately that 

i( ) ew Z U Zα−= ,

and the constant of integration is altogether irrelevant. (The real part of the constant contributes to ϕ, which defines, via 
derivatives, the velocity components; correspondingly, the imaginary part of such a constant merely adds a constant to 
ψ – and ψ = constant is the definition of the stream lines.)

This is our first complex potential. Thus, for example, given any ( )w Z AZ= , we can interpret the complex constant to 
define a flow field: ( )A U=  is the speed of the flow throughout the plane, and arg( ) ( )A α− =  gives its direction 
(and note the sign here).

(b) A source (or sink) [sometimes called a ‘line’ source/sink]

This flow field, in particular, is rarely used in isolation, but it will eventually be important. This represents a flow which, 
in the 2D plane, issues out from (or disappears into) a point in the plane; at this point there is a singularity! This means 
that, taking the whole plane, mass is not conserved – although it is conserved everywhere except at the singularity. This 
indicates that, if this flow field is to be useful, then the singularity must not appear in the flow field; this apparent paradox 
can be overcome (as we shall see) and practical use made of this ‘model’ flow field.
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Consider a purely radial flow outwards/inwards from the origin; we will, later, allow this point of creation/destruction to 
be at any point in the plane:

                                                               y 
 
 
                                                                                              U 
 
 
                                                                       r 
                                                                       θ 
                                                                                                         x 
 
 
 
 
 

Let the speed at a radius r be U (and we have drawn here the case of a source: the flow is outwards); we define this flow 
to be such that the mass flow rate (out) is a constant:

2 constantrU mπ = = .

(Think of flow crossing the surface of a circular cylinder: (2 1)r Uπ × × , i.e. per unit length of the cylinder, together 
with the area×speed rule; see Example 8.) But cosu U θ=  and sinv U θ= , and so we get

id i cos i sin e
d

w u v U U U
Z

θθ θ −= − = − = .

Thus i i
i

d 1 1e e
d 2 2 2e

w m m mU
Z r Zr

θ θ
θπ π π

− −
−

= = = = ,

which gives ( ) log
2
mw Z Z
π

= .

Again, we ignore the constant of integration (for the same reason as before). Note that we have written ‘log’ here; we could 
write ‘Log’, but that simply changes the additive constant, which we have just ignored.
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The strength is m; for 0m > , we have a source, and for 0m <  a sink: the flow is inwards towards the origin. (The 
terminology ‘line’ refers to an imaginary line at right angles to the plane, at the point of the source/sink, along which we 
can think of the flow appearing/disappearing in the three-dimensional analogue of this flow.) This potential is undefined 
at the origin, as is ( )w Z′ ; at this point we therefore have a singularity. At every other point in the plane, w(Z) exists 
(and it is unique provided that we remain on one Riemann sheet).

Note: If the source/sink is moved to oZ Z= , we have:

 
 
                                                       Zₐ 
                                
                                              
                                      Zₒ                                  
                                                      Z 
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and then we write log log( )a oZ Z Z= − , where aZ  is the coordinate measured from the singularity, as used in our 
derivation (and o aZ Z Z= + ; see figure). Thus for a source/sink, of strength m at oZ Z= , the complex potential is 

( ) log( )
2 o
mw Z Z Z
π

= − .
Example 21

Source + sink. Write down the complex potential for the flow generated  by a source of strength m at z = a (a 
real) and a sink of the same strength  at z = ia. What is the velocity of the flow at the origin ?

This complex potential is obtained by simply adding the two complex potentials that describe, separately, the source and 
the sink:

( ) log( ) log( i )
2 2
m mw Z Z a Z a
π π

= − − − .

We now form

d 1 1 ( i )
d 2 i

w m u v
Z Z a Z aπ

 = − = − − − 
which, at 

the origin, gives

i (1 i)
2
mu v

aπ
− = − +  so ,

2 2
m mu v

a aπ π
= − = . 

Note that, in this example, mass is conserved globally.
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(c) Line (or point) vortex

This is a flow which moves (axi-symmetrically) in concentric circles about a fixed point, which we take to be at the origin: 

                                                 V 
 
     K 
                                             r 
 
                                            θ 
 
 
 
 
 
 
 

It is defined so that the circulation is the same constant at all radii, and so the circulation on any radius is 

d 2 constant
C

rV Kπ⋅ = = =u l  ( (see Example 17).

Thus we have

id i sin i cos i e
d

w u v V V V
Z

θθ θ −= − = − − = −

and so

 i i
i

d 1 1i e i e i i
d 2 2 2e

w K K KV
Z r Zr

θ θ
θπ π π

− −
−

= − = − = − = − ,

which gives ( ) i log
2
Kw Z Z
π

= − .

If the vortex is at 0Z Z= , then the potential becomes 0( ) i log( )
2
Kw Z Z Z
π

= − − .

Note that the singularity in this potential is identical to that for a source/sink; the important difference is that, here, 
the multiplicative constant is pure imaginary – for the source/sink it is pure real. (Observe the sign: for anti-clockwise 
circulation, K is positive and the sign is minus.)
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Comment: The complex potential derived here could have been obtained directly from that for the source/sink. To do 
this, notice that the component, V, is essentially U rotated through 2π ; so we may construct 

i i( 2) ie e i eU V Vθ θ π θ− − + −→ = − , and then use V from above.

Example 22 

Two line vortices. A line vortex, of strength K, is placed at z a=  (a real  and positive), and one of strength 
−K  is at z a= − . Show that the pair  necessarily move, or that they must sit in a suitable uniform flow in 
order  for them to remain fixed in the coordinate frame.

The complex potential that represents these two line vortices is

 
                                
                                 K−                              K  
 
                               •                                  •  
 
 
 

i i( ) log( ) log( )
2 2
K Kw Z Z a Z a
π π

= − − + + ,

and then

d i 1 1
d 2

w K
Z Z a Z aπ

 = − + − 
. 

This expression, as expected, is undefined at Z a= ± ; however, it is instructive to examine the behaviour of this 
function close to these two singularities.

Set Z a δ= + , then 
d i 1 1 i sing.
d 2 2 4

w K K
Z a aπ δ δ π

 = − → + + 
 as 0δ →  (where ‘sing.’ denotes the term associated 

with the singularity at Z a=  (as just mentioned)).

Now set Z a δ= − + , then 
d i 1 1 ising.
d 2 2 4

w K K
Z a aπ δ δ π

 = + → + + 
 as 0δ → .
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                                 K−                              K  
 
                               •                                  •  
 
 
 
                                            4K aπ  

Thus, in addition to the flow field near the centre of each line vortex, generated by the singularity there, we have a uniform-
flow contribution: 

4
Kv

aπ
= −  i.e. the vortices move – the flow is time dependent! – and this induced motion of a pair of 

vortices is readily produced in the laboratory. In order to fix the line vortices in our coordinate frame, we must introduce 
a uniform stream to cancel this motion: 
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Example 23 

A row of vortices. Write down the complex potential for a row of line  vortices, each of strength K, situated at 
z a a na= ± ± ±0 2, , , ...,  (a real  and positive). Now let n →∞ , use the identity

     sin
π πz
a

z
a

z

n an
= −

=

∞
∏ 1

2

2 2
1

   (Mittag-Leffler),

and hence find the resulting potential for an infinite row of vortices.

We have

 
                                                                                                     K 
                                 •             •             •             •             •  
                               2a−        a−                            a            2a 

and so the complex potential for this row of line vortices is

i i i( ) log log( ) log( ) .....
2 2 2

i ilog( ) log( )
2 2

K K Kw Z Z Z a Z a

K KZ na Z na

π π π

π π

= − − − − +

− − − +

 

2 2 2 2 2 2 2i log ( )( 4 )....( )
2
K Z Z a Z a Z n a
π

 = − − − − 

 

2 2 2

2 2 2 2
i log 1 1 .... 1
2 4
K Z Z ZZ

a a a n a
π

π

     
= − − − −               

to within an additive constant.
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We now let n →∞ , and use the given (Mittag-Leffler) identity, to produce the complex potential for the infinite row 
of line vortices:

i( ) log sin
2
K Zw Z

a
π

π
  = −     

.

This result can be used to obtain the complex potential for two rows of line vortices as described in the next example (and 
this configuration has important applications). 

Example 24 

Von Kármán street vortex. Two infinite rows of vortices (as developed in  Example 23) are placed: strength 
K at ( , ), ( , ), ( , ), ...0 2 4b a b a b± ± ;  strength −K  at ( , ), ( , ), ...± − ± −a b a b3 , for a > 0 , b > 0 . Write 
down the  complex potential for this flow and find the speed at which that the  pattern of vortices moves (cf. 
Example 22).

The configuration is shown in the figure; the two (infinite) rows of vortices are now shifted versions of those used in 
Ex.23, with a spacing replacing a by 2a, and the two rows are a distance 2b apart.

 
                                                                                                     K 
                                 •             •             •  b           •             •  
                              4a−        2a−                          2a           4a 
 
 
                                         •            •       b−   •            •            K−  
 
                                      3a−         a−             a           3a  
 

The complex potential for this system is then

i ( i ) i ( i )( ) log sin log sin
2 2 2 2
K Z b K Z a bw Z

a a
π π

π π
 −   − +    = − +            

,

where the first term is generated by a shift of ib, and the second by ia b− . Now we have

i ( i ) i ( i )cot cot
4 2 4 2

dw K Z b K Z a b
dZ a a a a

π π− − +   = − +   
   

,

and then near i 2Z b na= ±  we obtain

i ( 2 i )i (sing.) cot
4 2
K na a bu v
a a

π ± − − − = +  
 

.
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The singular term is the expected contribution to the complex velocity – note the previous Example – and the other term 
can be written

( 2 i )cot cot i tan i i tanh
2 2

na a b b b b
a a a a

π π π π π± − −       = − + = − = −       
       

.

Thus the second row moves, to the right, with a speed tanh( )
4
Ku b a
a

π= ; the corresponding calculation near 
i (2 1)Z b n a= − ± +  gives exactly the same speed for the first row i.e. the action of each row on the other is to move 

the whole configuration, at this speed, to the right; cf. Example 22.
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This example is relevant to the flow behind ‘bluff ’ bodies, where there is a regular shedding of vortices, producing an 
‘avenue’ of vortices moving downstream with the flow. The spacing of the vortices, and their speed, can be used (with 
the formula above) to determine the strength of the vortices being shed; a typical flow patern is shown in the figure (the 
von Kármán street vortex):

 

This pattern is part of the reason why flags flutter in a moderately strong breeze: the flag pole acts as the bluff body, around 
which vortices are shed; the flag then, more-or-less, follows the flow induced behind the pole.

(d) Dipole

In this, our final ‘building block’ that we shall need, we construct a complex potential essentially as a mathematical 
exercise – we invent a w(Z) – and then examine the nature of the flow field that it represents. Here, we take a suitable 
limit of a source and a sink, of equal strengths (so mass, globally, is conserved). Consider a source of strength m at the 
point ieZ a α= , for given real constants a and α; a sink of equal strength (and so labelled m− ) is placed at the origin.

 

 
                                                                                   m 
 
                                                                                
                                                             a 
                                                         
 
 
                                                      α 
                                               
                                           -m 

The complex potential for this flow is constructed by adding the two separate potentials:
i

i e( ) log( e ) log log 1
2 2 2
m m m aw Z Z a Z

Z

α
α

π π π

 
= − − = −  

 
.
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We now let 0a → , at fixed α, for any i0, eZ a α≠ ; this means that the source moves down the fixed straight line 
towards the sink at the origin. If we take this limit in the obvious way, then we obtain

( )
ie( ) log 1 log 1 0

2 2
m a mw Z

Z

α

π π

 
= − → =  

 
,

which is the expected result: the source and sink cancel out, leaving nothing at all. We therefore choose to take the limit 
in a special way: we let 0a → , under the conditions already laid down, but also such that am remains fixed. Thus the 
strength increases as the distance between the source and sink decreases. To perform this limit, we first use the Maclaurin 
expansion of the log function:

2i i ie e 1 e( ) log 1 ...
2 2 2
m a m a aw Z

Z Z Z

α α α

π π

     = − = − −            

 

i i2 i

2
( )e 1 e e( ) .....

2 2 22
am aam

Z ZZ

α α αµ
π ππ

= − − → −

where amµ = , which is fixed. This new potential is called a dipole (and we will explain why shortly); it is of strength 
μ and orientation (inclination) α. It is clearly undefined at the origin; if it is positioned at 0Z Z=  (where it will again 
be undefined), it becomes

( )
2 ( )

w Z
Z Z

= − .

So what is this new flow field that we have generated? For example: what are its streamlines?

To explore this aspect, we choose to write the potential (placed at the origin, for convenience) in terms of the polar 
representation: ieZ r θ= . The potential then becomes

{ }i( )1 1i e cos( ) i sin( )
2 2

w
r r

α θµ µφ ψ α θ α θ
π π

−= + = − = − − + − ,

and so ( , ) sin( )
2

r
r

µψ θ α θ
π

= − − ;
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the streamlines are therefore described by the curves

sin( )r k α θ= − , 

where k is constant, with different constants on different streamlines. These curves are the set of all circles with the line 
θ α=  as the tangent at the origin:
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This set of curves is typically associated with the field lines of a bar magnet: a dipole magnet. (A discussion of these curves 
can be found in Exercise 77.)

We observe that, with 0µ >  and a given inclination α (which is π/4 in the figure above), the relative positions of the 
source and sink imply that the flow is out at the top and in at the bottom, the path of the flow following the circles around.

Example 25 

Source in a stream. Write down the complex potential for a uniform flow  (speed U parallel to the x-axis) past 
a source of strength m at the origin.  Find the position of the stagnation point in this flow.

The flow is depicted in the figure; the complex potential for the uniform flow plus the source is then

              U 
                              m 
 
 
 

( ) log
2
mw Z UZ Z
π

= + .

Thus 
d 1
d 2

w mU
Z Zπ
= + , which is zero (for a stagnation point) where 

2
mZ
Uπ

= − .

The stream function can also be obtained: set ieZ r θ= , then

i (cos i sin ) (ln i )
2
mw Ur rφ ψ θ θ θ
π

= + = + + + ;

thus ( , ) sin
2
mr Urψ θ θ θ
π

= + = constant on SLs. The SL that passes through the stagnation point requires the choice: 
constant = 2m . Some of the details of the curves represented by sin

2 2
m mUr θ θ
π

+ =  are discussed in Exercise 79; 
this curve has solutions θ π=  and another branch which passes through the stagnation point at right angles to the real 
axis, generating a special ‘bluff ’ body. 
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The result of this calculation has an important interpretation. The boundary of the ‘bluff ’ body, which separates the flow 
around the source from the external flow, can be regarded as the boundary defining the shape of a solid object. For both 
a solid object and a streamline (which this is), the boundary conditions are the same (for inviscid flow): flow along and 
no flow through/across. Thus we have a uniform flow past a specific shape, as shown below:

This idea provides a basis for modelling flows past objects. Further, we see that the source – which is a singularity in 
the plane – now appears only in the region occupied by the solid object (it is at the origin inside the body); the region 
where the flow (fluid) exists does not contain any singularities. A more complete representation of this flow is given in 
the figure below.
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Example 26 

Dipole in a stream. Write down the complex potential for a uniform flow  (speed U parallel to the x-axis) past 
a dipole of strength µ−  (< 0)  situated at the origin, its alignment also being along the x-axis (i.e.  0=α ). 
Find the position(s) of the stagnation points and hence determine  the shape of the streamlines that pass through 
the point(s). Describe and  interpret the flow field.

The flow is depicted in the figure; the complex potential for the uniform flow past the dipole – and note the change of 
orientationthat leads to µ−  for μ – is therefore

 
                         U                   
 
 
 
                                              µ−  

 
( ) 1 1( )
2 2

w Z UZ UZ
Z Z

µ µ
π π
−

= − = + .

Thus 2
d 1
d 2

w U
Z Z

µ
π

= − , and so the stagnation points are at

 
2

Z
U
µ
π

= ± . We introduce ieZ r θ=  to give

i (cos i sin ) (cos i sin )
2

w Ur
r

µφ ψ θ θ θ θ
π

= + = + + − ,

and so the stream function becomes ( , ) sin sin sin
2 2

r Ur Ur
r r

µ µψ θ θ θ θ
π π

 = − = − 
 

.

The streamlines are lines constantψ = , and those through the stagnation points ( 0, ; 2 )r Uθ θ π µ π= = =  
require 0ψ =  i.e. sin 0

2
Ur

r
µ θ
π

 − = 
 

. These streamlines are therefore all solutions of this equation, namely, 
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0 ( ); ( ); 2 ( )r r r Uθ θ π µ π θ= ∀ = ∀ = ∀ .

Thus we have produced a model for uniform flow past a circle, as depicted in the figure.

Summary: These two examples demonstrate how we can model the flow (e.g. uniform flow) past an object with a specific 
shape. Typically, these shapes are constructed by placing, in the plane, suitable singularities (chosen to generate the shape) 
that appear only inside the region occupied by the object: the flow field remains singularity-free (as it must, for a realistic 
flow). However, we could allow vortices – and point vortices are singular at their centres – in the flow field, because mass 
is still conserved and the resulting circulatory flow often appears in real flows e.g. in the form of vortices shed off a bluff 
body. Even then, singularities can be avoided by choosing to have the vorticity distributed over a (small, finite) region, 
as in the Rankine vortex (Exercise 37).
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4.4	 The method of images

 As a small digression from our main theme, we mention a simple, standard technique for coping with simple boundaries. 
We will suppose that the region where the flow exists is bounded by straight walls (lines); these are solid walls which 
allow flow along them – the fluid is inviscid, remember – but not through them. Thus, as we have seen above, we can 
treat them as special streamlines. For example, we might have a flow in x > 0 with a wall on x = 0:

 
 
 
 
                                                        flow field 
 
 
 
 
 
 
                                            wall 

 

but we proceed by regarding the whole plane, initially, as a flow field; we shall then be able to analyse the flow properties 
in x > 0. (What happens in x < 0 is altogether irrelevant: the flow here is merely used as a device for ensuring that we get 
the right shape of boundary; cf. the singularities inside the shapes in the two previous examples.) The simplest way to 
represent this flow, with the given boundary, is to invoke (mirror) symmetry: we place in x < 0 the mirror image of the 
given flow in x > 0. This does not alter the given flow, and ensures that the boundary – by symmetry – is exactly that: no 
flow across it. We then say that the flow in x < 0 is the image of the flow in x > 0. (The same terminology can be used in 
our two previous examples; thus we say that the image of a uniform flow in a circle is a dipole.) In this case, we then have 
the situation shown in the figure.

 
                       flow                flow 
                    (image)           (given) 
 
 
 
 
 
                                     wall 
                              (streamline) 
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Example 27 

Source with a boundary. A source of strength m is placed at (a,0), 0>a ,  where x = 0 is a boundary. Find the 
complex potential for this flow and confirm that u = 0 on x = 0; (b) find an expression for the streamlines; (c) 
sketch the flow field.

We show the configuration, first without, and then with, the boundary (wall):

 
 
                                     m                                  m                   m 
 
                                  a                                  a−                   a 

and then the complex potential for the two sources can be written as

2 2( ) log( ) log( ) log( )
2 2 2
m m mw Z Z a Z a Z a
π π π

= − + + = −

.

(a) So we have 2 2
d 2
d 2

w m Z
Z Z aπ

 =  
− 

 which, on 0x =  (the wall), gives

2 2
2ii

2
m yu v

y aπ
 

− = −  + 
 0u⇒ = .

(b) In order to address this problem, we need a general result. Suppose that we have

i log[ ( )]
2
mw f Zφ ψ
π

= + = ,

then [ ]2e cos(2 ) i sin(2 ) ( ) ( , ) i ( , )m m m f Z g x y h x yπφ πψ πψ+ = = +  (say);

Since we require ψ (not ϕ), we take the ratio of the real and imaginary parts e.g.

tan(2 ) constanth m
g

πψ= =  on SLs.

Thus we simply need to find the ratio of the real and imaginary parts of the function inside the log term. In this case, we have

2 2 2 2 2( ) 2if Z Z a x y a xy= − = − − +  and so the SLs are 2 2 2
2 const.xy

x y a
=

− −
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This can be expressed as 2 2 2xy x y aλ = − − , where λ is a constant which chooses a streamline.

(c) A simple sketch of the SLs: 

This idea can be extended, as the next example demonstrates.

Example 28 

Source with two boundaries. Find the complex potential for the flow generated by a source of strength m at the point (a, 
b) ( 0,0 >> ba ) with boundaries along x = 0, 0>y , and y = 0, 0>x .

 
                       m                         m 
                                                      
 
 
 
                        m                        m 
 
 
 
 

The source is at 0 iZ a b= +  in the first quadrant; the image system is then three other identical sources, placed so that the 
complete coordinate axes are lines of symmetry; the relevant sections are therefore the walls (boundaries) that we require.
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The complex potential for this system is

0 0 0 0( ) log( ) log( ) log( ) log( )
2
mw Z Z Z Z Z Z Z Z Z
π
 = − + − + + + + 

 ( )( )2 2 2 2
0 0log

2
m Z Z Z Z
π

 = − −  
.

Comment: We shall eventually require a representation of a uniform flow past a more complicated shape e.g. a section 
through a wing, usually called an ‘aerofoil section’:

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

... BrowserTexting

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

SMS from your computer
...Sync'd with your Android phone & number

Go to 

BrowserTexting.com

and start texting from 
your computer!

FREE
 30 days trial!

http://www.browsertexting.com/


Fluid Mechanics and the Theory of Flight

113 

�Two d imensional,  incompressible, i rrotational  flo

It is far from obvious how to generate such a shape, but a first step is based on the complex potential for any flow past a 
circle. Although, in practice, we will be interested in only uniform flows, the mathematical idea here is important: it allows 
us to write the potentials for circles in any flow, even those that contain singularities. These are not of any great physical 
interest, with the possible exception of flows containing vortices, but they often provide useful exercises and also some 
insight into the nature of various flow fields. Then, once we are able to construct potentials for these flows, it becomes 
simply a matter of changing the geometry of the object – and this turns out to be surprisingly straightforward. Note: The 
presence of a circle is equivalent to introducing a circular wall – a boundary – into the flow, or, when we extend to 3D, 
the surface of a circular cylinder, with the plane being a slice across it. The cylinder is, of course, the usual object used in 
the laboratory to test the relevance of any theory associated with the (2D) circle.

4.5	 The circle theorem (Milne-Thomson, 1940)

In order to motivate the general result, we consider the problem of uniform flow past a circle (see Example 26), but with 
the flow coming from a general direction. This is accomplished, based on that example, by ensuring that the flow out 
from the dipole meets the uniform flow head-on:

 
                                                                     alignment 
                                                                 
                                                                      of dipole 
 
                                       dipole      α 
                                                       
                                       inside 
                                       
 
                U 
 
 
 
 

The complex potential is therefore 
2 i

i e( ) e a Uw Z U Z
Z

α
α−= + ,

where we have replaced the strength of the dipole, μ, by the resulting radius of the circle generated: 2a Uµ π=  so 
22 a Uµ π = . Milne-Thomson noticed that this (special) result could be rewritten in the form

2
i i( ) ( e ) ( e ) aw Z U Z U

Z
α α− −= + ,
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where the over-bar denotes the complex conjugate. This suggested, to him, that this was an example of a more general 
result; this led to his circle theorem:

A flow is described by w(Z) = f(Z), where f(Z) is analytic (no singularities) inside and on the circle Z a= . A circle 
Z a=  is now placed in the flow; the complex potential that represents this new flow field is then

2( ) ( ) ( )w Z f Z f a Z= + ,

where the conjugation of f is taken with the argument of this function fixed (and hence the reason for the short over-bar).

We now provide a proof of this theorem.

Proof

The proof comes in two parts. We need to show that the circle is a streamline of the new flow, so there is indeed a circle 
in the flow, and also that the flow outside the circle is essentially what it was before (with distortions, of course). This 
latter point amounts to the requirement that the way in which this flow is generated is not changed: it is the same flow 
field before the insertion of the circle. This, in turn, means that there should be no change to the singularities in the flow 
in Z a> : no singularities must disappear and none should appear. In the case of most interest – a uniform flow – if 
there are no singularities before the circle is inserted, there must be none afterwards.

(a) On Z a= , so that 2ZZ a= , we have 

( )( ) ( ) ( ) ( ) ( ) ( )z aw Z f Z f ZZ Z f Z f Z f Z f Z= = + = + = + ,

which is pure real; thus 0ψ =  on Z a= : the circle is a streamline.

(b) �The given f(Z) is analytic for Z a≤ , then 2( )f a Z  is analytic for 
2a a

Z
≤  (because conjugation changes only the 

relevant signs, not the sizes (distances)). Thus 2( )f a Z  is analytic for  Z a≥ , and so the analyticity outside (and 
on) the circle is not changed: no singularities are added and none are subtracted.

☐

Comment: The flow at infinity, which is likely to be of interest when we are discussing uniform flows past objects, for 
example, is obtained by examining f(Z) alone, as Z →∞ , because this same limit on the f  term corresponds to points 
inside the circle. Thus the behaviour at infinity is exactly that prescribed by the flow before the insertion of the circle. 

Example 29 

Circle theorem. Obtain the complex potential for the flow, generated by a source of strength m situated at (0,b), past the 
circular cylinder z a= , where b > a. Interpret the image system.
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Without the circle, the complex potential for the given flow is ( ) log( i )w Z Z b= − ; since b a>  we may use the 
MT circle theorem, with (.) log(. i )

2
mf b
π

= + . Thus the complex potential for the same flow (due to the source outside 
the circle) past the circle Z a=  is

2
( ) log( i ) log +i

2 2
m m aw Z Z b b

Zπ π

 
= − +   

 
.

In order to interpret this complex potential, we observe that 

2 2 2i ( i )+i ia a bZ Z a bb b
Z Z Z

+ −
= = ,

and so		   ( )
2 2

log +i log i log const.
2 2 2
m a m a mb Z Z

Z bπ π π

   
= − − +      

   
(where the additive constant is irrelevant). The first of these two terms represents a source (of strength m) at 2iZ a b=  , 
which is inside the circle (because b a> ), and the second is a sink, of equal strength, at the origin.
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This figure depicts the flow, generated by a source, around a circle (in the orientation used in the example).

4.6	 Uniform flow past a circle

We start with Example 25 or, rather better in the current context, we use the Milne-Thomson (MT) circle theorem directly 
to construct the complex potential for uniform flow past a circle:

 
 
 
            U 
                                                       a 
                                                   
 
 
 
 
 

Here, the uniform flow is speed U parallel to the x- (real-) axis, past a circle, placed at the origin, of radius a; the complex 
potential is therefore

2
( ) aw Z UZ U

Z
= + .

As we have done before, we choose to work with the polar form of the complex numbers, so we introduce ieZ r θ=  to give
2

i ii e eUaw Ur
r

θ θφ ψ −= + = + .

The imaginary part of this expression then defines ψ as 
2

( , ) sinar U r
r

ψ θ θ
 

= −  
 

, the stream function. 
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But the velocity components, in polar coordinates (r, θ) (see §2.6 and Appendix 2), are 
2 2

2 2
1 , 1 cos , 1 sinr

a aU U
r r r

θψ ψ θ θ
          = − = − − +               

u , r a≥ ,

and then on the circle, r = a, we obtain (0, 2 sin )U θ= −u . This expression for the velocity on the surface of the circle 
demonstrates two properties: (1) the circle is a streamline, because there is flow only around it (i.e. u = 0), as expected; 
(2) at θ =0, π there are stagnation points. In addition, surprisingly, the maximum speed on the circle is 2U, which is twice 
the oncoming free stream! These occur at the positions θ =π/2, 3π/2:

                                                             2U 
      U 
 
 
 
 
 
     U 
 
 
 
                                                             2U 
 
 
 

We now take this investigation one step further by calculating the pressure distribution around the circle. Let us assume 
that there are no body forces, and that the pressure at infinity is 0p ; remember that the flow is incompressible and, we 
have argued, body forces are negligible in the flows that we wish to examine. We apply Bernoulli’s equation to the streamline 
that comes from infinity, goes around the circle and then moves off (to the right) back to infinity; thus we obtain

2 201 1constant ( 2 sin )
2 2

p pU U θ
ρ ρ

+ = = + − ,

where ( )p p θ=  is the pressure on (around) the circle. This result is usually expressed as a pressure coefficient, pC :

20
21

2

1 4sinp
p pC

U
θ

ρ
−

= = − ;
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this describes the pressure around the circle, in a normalised form. We show some typical experimental results, as compared 
with the theoretical predictions (which is the curve that is drawn from 1 down to 3−  and then back up to 1). The other 
curves are based on experimental results, for various Reynolds numbers.

These results show that, typically, the pressure is close to this theoretical prediction only on the front of the circle (circular 
cylinder in the laboratory); on the back face, the pressure deviates significantly. (There is one exception to this: very slow 
flow produces the ideal flow, symmetric fore-and-aft, that was obtained in Example 26.) The deviation occurs because the 
flow separates from the surface of the cylinder, thereby generating a region of turbulent flow in its wake:

4.7	 Uniform flow past a spinning circle (circular cylinder)

As a precursor to our study of aerofoils and, in particular, that model which is needed to describe lift generation, we now 
look at the problem of uniform flow past a spinning circle (circular cylinder). The circle is spinning about its centre, the 
axis of rotation being at right angles to the (2D) flow field; the experimental evidence is that this spinning tends to remove 
the separation phenomenon mentioned above. 

The spin, by virtue of the viscosity of the fluid, induces a circulatory motion in the fluid, which is superimposed on the 
uniform flow past the circle; this motion is what would be generated by a line vortex (at the origin) plus the uniform 
flow. The resulting flow field is therefore a combination both circulation and a uniform flow past the circle. We assume 
that the flow has settled to some steady state, albeit generated by viscous action, and then model the resulting flow by a 
suitable complex potential. This can be constructed, as before, by using the circle theorem – but with care! We know that 
we cannot allow a singularity in the flow, where the circle is to be placed, so we must start with no circulation (which will 
be centred at the origin). This is no surprise: we cannot induce circulation in the laboratory, by spinning, without first 
having the circle in place. When we remember that we may construct complex potentials simply by adding any (suitable) 
combination of simpler potentials, we may follow this recipe: uniform stream + circle + circulation, strictly in this order. 
This allows us to use the circle theorem to put the circle in the uniform stream – but we could just add the three relevant 
potentials, avoiding the use of the MT circle theorem. Thus we obtain

2
( ) i log

2
a Kw Z UZ U Z
Z π

= + + ,
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where we take K > 0 to be the circulation (clockwise) induced in the flow by the spinning action; this potential is to be 
used in Z a≥ .

Note: If the circle (cylinder) is spinning at an angular speed ω, then the fluid on the surface of the circle will be similarly 
rotating; thus the circulation is

2
2

0
d . d 2

C
K a a a

π
ω θ π ω= ⋅ = =∫ ∫u l� d 2 constant

C

rV Kπ⋅ = = =u l  (
2

2

0
d . d 2

C
K a a a

π
ω θ π ω= ⋅ = =∫ ∫u l� ,

since the speed of the flow, at r = a, in the angular (θ) sense, is aω.

As before, we elect to write ieZ r θ= :
2

i ii e e i (ln i )
2

Ua Kw Ur r
r

θ θφ ψ θ
π

−= + = + + + ,

and so 
2

( , ) sin ln
2

a Kr U r r
r

ψ θ θ
π

 
= − +  

 
;

note that r = a is still a streamline, but now associated with the constant ln
2
K aψ
π

= . The velocity field becomes

2 2

2 2
1 1, 1 cos , 1 sin

2r
a a KU U

r rr r
θψ ψ θ θ

π

          = − = − − + −               
u ,

and then stagnation points are where

2 2

2 21 cos 0, 1 sin 0
2

a a Ku U v U
rr r

θ θ
π

   
= − = = − + − =      

   
,

and these occur on r = a (as expected), but only if sin
4

K
aU

θ
π

= − ; this has (real) solutions only for 0 4K aUπ≤ ≤ . 

At equality, the two stagnation points coalesce; for 4K aUπ>  (i.e. sufficiently high spin rates) the solution corresponds 
to one stagnation point on 3 2θ π= , outside the circle! (Some details of this can be found in Exercise 83.) These three 
cases are shown below: 

         

This is altogether amazing – but it is exactly what we find in the laboratory.
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4.8	 Forces on objects (Blasius’ theorem, 1910)

We have seen that, given the velocity field, we can find the pressure (for example, from Bernoulli’s equation); the total 
pressure around an object produces the resultant (pressure) force acting on the object. We develop this idea, and show that 
the methods of complex analysis lead to a very neat and powerful result. Consider an element of a (1D) closed surface, 
C, with inward unit normal n:
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then the total pressure force on this curve is 

d 2 constant
C

rV Kπ⋅ = = =u l  (d
C

p s∫ n� , where d 1 dS s= ×

(and so the force is per unit length out of the plane). But the unit normal can be expressed in terms of the unit vectors 
associated with the two coordinate directions:

cos sinθ θ= −n j i

with 
d cos
d
x
s

θ=  and 
d sin
d
y
s

θ= . Thus the resultant (i.e. total) force is

d 2 constant
C

rV Kπ⋅ = = =u l  (( d d )
C

p x y−∫ j i�  (per unit length);

it is convenient to define the two components of the force as

d
C

X p y= − ∫� d 2 constant
C

rV Kπ⋅ = = =u l  (d
C

X p y= − ∫�  and d
C

Y p x= ∫� d 2 constant
C

rV Kπ⋅ = = =u l  (d
C

Y p x= ∫� .

Similarly, we can define the moment of these forces about the origin:

( d d )
C

M px x py y= +∫� d 2 constant
C

rV Kπ⋅ = = =u l  (( d d )
C

M px x py y= +∫� ,

where the corresponding moment arms are x and y. The configuration therefore takes the form shown below:

 

                                                                                 Y 
 
                                                                                                   X 
 
 
                                                                                              C 
                               M 
 
 
 
 
 
 
 
 

We now introduce a complex force:

i ( d i d ) i (d id ) i d
C C C

X Y p y p x p x y p Z− = − − = − − = −∫ ∫ ∫� � �d 2 constant
C

rV Kπ⋅ = = =u l  (i ( d i d ) i (d id ) i d
C C C

X Y p y p x p x y p Z− = − − = − − = −∫ ∫ ∫� � �d 2 constant
C

rV Kπ⋅ = = =u l  (i ( d i d ) i (d id ) i d
C C C

X Y p y p x p x y p Z− = − − = − − = −∫ ∫ ∫� � � d 2 constant
C

rV Kπ⋅ = = =u l  (i ( d i d ) i (d id ) i d
C C C

X Y p y p x p x y p Z− = − − = − − = −∫ ∫ ∫� � � .
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But on streamlines (and C is a streamline), we have Bernoulli’s equation

1
2 constantp

ρ
⋅ + =u u  (in the absence of body forces),

where we may write 
d i
d

w u v
Z
= − , and so 2 2 d d

d d
w wu v
Z Z

  ⋅ = + =   
  

u u ; thus

1 d d constant
2 d d

w wp
Z Z

ρ   = − +  
  

.

However, we have 
d d
d d

w w
Z Z

  = 
 

 (because, for example, 
d ( ) ( )
d

w f Z f Z
Z

  ′ ′= = 
 

), and so we obtain

1 d di i constant d
2 d d

C

w wX Y Z
Z Z

ρ    − = +   
   

∫� d 2 constant
C

rV Kπ⋅ = = =u l  (1 d di i constant d
2 d d

C

w wX Y Z
Z Z

ρ    − = +   
   

∫� ,

where d 2 constant
C

rV Kπ⋅ = = =u l  ((constant)d 0
C

Z =∫�  (because a constant is an analytic function of Z  – or simply do the integration directly). 
Finally, since iw φ ψ= +  then iw φ ψ= − , and so d d ( d )w w φ= =  on streamlines (where constantψ = ); thus 

d 2 constant
C

rV Kπ⋅ = = =u l  (
2d d d d dd d d dZ

d d d d d
C C C C

w w w w wZ w w
Z Z Z Z Z

        = = =        
        ∫ ∫ ∫ ∫� � � �d 2 constant

C

rV Kπ⋅ = = =u l  (
2d d d d dd d d dZ

d d d d d
C C C C

w w w w wZ w w
Z Z Z Z Z

        = = =        
        ∫ ∫ ∫ ∫� � � �d 2 constant

C

rV Kπ⋅ = = =u l  (
2d d d d dd d d dZ

d d d d d
C C C C

w w w w wZ w w
Z Z Z Z Z

        = = =        
        ∫ ∫ ∫ ∫� � � � d 2 constant

C

rV Kπ⋅ = = =u l  (
2d d d d dd d d dZ

d d d d d
C C C C

w w w w wZ w w
Z Z Z Z Z

        = = =        
        ∫ ∫ ∫ ∫� � � � .

The complex force can therefore be written as the contour integral in the complex plane:
21 di i dZ

2 d
C

wX Y
Z

ρ  − =  
 ∫� d 2 constant

C

rV Kπ⋅ = = =u l  (
21 di i dZ

2 d
C

wX Y
Z

ρ  − =  
 ∫� ;

this is Blasius’ theorem for forces.

A similar argument produces an expression for the moment of these forces about the origin:

21 d dZ
2 d

C

wM Z
Z

ρ
   = ℜ −  

   
∫� d 2 constant
C

rV Kπ⋅ = = =u l  (
21 d dZ

2 d
C

wM Z
Z

ρ
   = ℜ −  

   
∫�  (denoting the real part).

[H. Blasius did this, and the work on the flat-plate boundary layer, for his PhD (supervised by Prandtl); he wrote a book 
on mechanics in 1933.]

The problem of finding the components of the force (and the moment) acting on a body in a flow has become a standard 
exercise in complex integration in the complex plane. This involves the application of Cauchy’s integral theorems, following 
the identification of poles and the evaluation of residues; some eaders may wish to revise this material on complex 
integration at this stage. We present two examples that demonstrate how the standard techniques can be applied; the 
second example here is particularly important, with far-reaching consequences (and also with some direct applications). 

Download free eBooks at bookboon.com



Fluid Mechanics and the Theory of Flight

124 

�Two d imensional,  incompressible, i rrotational  flo

Example 30 

Forces. A source of strength m is situated at the point (b,0), outside the circle z a=  ( )b a> . What force is 
exerted on the circular cylinder? 

[The result of this calculation may surprise.]

The complex potential for this flow is

2
( ) log( ) log

2 2
m m aw Z Z b b

Zπ π

 
= − + −  

 

 
2

log( ) log log constant
2 2 2
m m a mZ b Z Z

bπ π π

 
= − + − − +  

 
,

and so  2
d 1 1 1
d 2

w m
Z Z b ZZ a bπ

 
= + −  − − 

.
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Now the value of the contour integral (in Blasius’ theorem) requires the residues of (d d )w Z at the poles inside the 
contour, C (the circle here), which are at 0Z = , 2Z a b= . Because we automatically generate the form of the relevant 
terms in the Laurent expansion of this function, we need take note of only the terms of the form 01 ( )Z Z− . Thus we write

2 2

2 2 2
d 2 2 2 ....
d ( )4 ( )( ) ( )

w m
Z Z Z bZ b Z a b Z Z a bπ

   = − − +   −  − − −  
,

where the terms omitted are the various squares obtained by squaring the expression – and these cannot contribute to 
the residue. We now ‘read off ’ the residues:

at 0Z = :  
2 2

2 2 2 2
2 2 1

4 2
m m b

b ba b aπ π

   + = +      
;

at 2Z a b= :  
2 2

2 2 2 2 2 2 2
2 2

4 2
m m b b

a b b a b a b aπ π

   − = −   − −   
.

Thus, using the Residue Theorem, we obtain
2 2 2

2 2 2 2 2 2 2
1 1i i .2 i. . 0
2 22 ( )

m b b b m aX Y
b a a b a b b a

ρρ π
ππ

 − = + + − = > − − 
,

which is the value of X, and 0Y = . This result shows that the force on the circle (or per unit length on the circular 
cylinder) is towards the source i.e. it is sucked towards the source, rather than being blown away form it (as we might 
have expected).

Comment: The reason for this rather surprising result comes about because of the nature of a source flow. The speeds 
are very high close to the source, and so the pressures are very low; the speeds further away, near the circle, for example, 
are much lower, producing a higher pressure. This effect is stronger than the acceleration of the flow around the circle, 
thereby producing a lower pressure on the face nearest the source: the circle is pushed towards the source.
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Example 31 

Force on a spinning circular cylinder. Find the force on a spinning circular cylinder (circulation K, clockwise) 
which is placed in the  uniform flow of speed U, moving parallel to the real axis and to the right.

[The result of this calculation is important and fundamental: it constitutes the Kutta-Joukowski theorem (1902, 1906).] 

The complex potential for this flow (see §4.7) is
2

( ) i log
2

a Kw Z UZ U Z
Z π

= + + ,

and then we have 
2

2
d i 11
d 2

w a KU
Z ZZ π

 
= − +  

 
, so 

22 2

2
d i 11
d 2

w a KU
Z ZZ π

    = − +          
.

The only pole inside the circle is at 0Z = , and then the only term that contributes to the residue is of the form 1 Z : 

i2. .
2
KU
π

; thus

1 ii i .2 i. i
2

UKX Y UKρ π ρ
π

− = = − .

The force is therefore 0,X Y UKρ= = : the force on a spinning circle (circular cylinder) is at rightangles to the 
oncoming stream.

This example demonstrates how spinning objects, in a flow, generate a sideways force; this was first observed by Robins 
(1742) and then investigated by Magnus (1853) – and both names have been associated with the phenomenon. The 
application to the propulsion of a ship was developed by Flettner in the mid-1920s. The effect is also very evident in various 
ball games e.g. golf, football and tennis; the cricket ball also uses this property, but many other effects are present in this 
case! Note that the force generated by the circulation and the oncoming stream is at right angles to that stream: motion 
(or flow) in one direction produces a force at right angles to this direction – we may have the basis for lift. Schematically, 
we therefore have a circle with circulation (clockwise) and a flow from left to right; the force is then leftwards, relative 
to the oncoming stream:
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4.9	 Conformal transformations

In our discussions so far, we have developed techniques that enable us to construct models for flows around circles; 
primarily, this involves the application of the Milne-Thomson circle theorem. Once we have the complex potential, we 
can use the Blasius theorems (for forces and the moment) to find the effects of the flow on the circle (circular cylinder). 
The issue that we must now address is: how do we apply these ideas to other shapes? These shapes will be described by 
bounded curves – so no walls that extend to infinity – and should include shapes like aerofoils:

The technique that we develop involves mapping between two complex planes:

aerofoil →  circle (which can be solved) →  aerofoil

-plane       ζ-plane

         iZ x y= +   iζ ξ η= +

with a mapping ( )Z F ζ= . This mapping must be one-to-one, at least in the region occupied by the fluid and the 
boundary of the shape; it is only points in this region which are described by the complex potential – the rest of the 
plane (the interior of the boundary defining the shape) is replaced by a solid body. Then the process involves mapping 
from the ‘physical plane’, which contains the aerofoil, to the auxiliary plane containing the circle; this problem is solved 
completely (whatever that might mean) and then the results are mapped back to the physical plane. Clearly, we need to 
discuss the properties of such a transformation. A suitable transformation must produce the required shape (aerofoil to 
circle to aerofoil), and also generate all the required properties of the flow past the aerofoil e.g. the force and moment. 
First, we will discuss the general notion of such a transformation, and then (in the next chapter) describe the particular 
transformation that possesses all the properties that we require. Then we will describe, in great detail, the properties of 
the relevant tgransformation, whereas here we will approach the issues within a more general framework. 

The transformations that we work with are called ‘conformal’; we describe what this means. Consider three neighbouring 
points in the Z-plane, and the three points that they map to in the ζ-plane; we assume, at the outset, that the points under 
discussion satisfy the one-to-one property.
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         ξ                      2ζ                                               y                                 2Z  
 
 
 
                                                      ( )Z F ζ=  
                          α                              ⇒                                       β 
                                             1ζ                                             Z 
                 ζ                                                                                                        1Z  
 
                                                 η                                                                               x 

We form 

1 1

1 1

( ) ( )Z Z F Fζ ζ
ζ ζ ζ ζ

− −
=

− −
 and 2 2

2 2

( ) ( )Z Z F Fζ ζ
ζ ζ ζ ζ

− −
=

− −
,

and then perform the limiting processes: 1ζ ζ→  and 2ζ ζ→ , at fixed α. (It is assumed that the mapping remains 
one-to-one at every point on the lines between ζ and 1ζ , and between ζ and 2ζ .) The result, provided that ( )F ζ′  
exists and is non-zero, is that

1 2

1 2

1 2

( ) ( ) ( ) ( )( )lim lim
F F F FF

ζ ζ ζ ζ

ζ ζ ζ ζζ
ζ ζ ζ ζ→ →

   − −′= =   − −   
,

i.e.	  

1 2

1 2

1 2

( ) ( ) ( ) ( )
lim lim

F F F F

ζ ζ ζ ζ

ζ ζ ζ ζ
ζ ζ ζ ζ→ →

   − −
=   − −   

.

In particular, as the limit is approached, we have the geometrical property

1 1 2 2arg( ) arg( ) arg( ) arg( )Z Z Z Zζ ζ ζ ζ− − − = − − −

and so  2 1 2 1arg( ) arg( ) arg( ) arg( )Z Z Z Zζ ζ ζ ζ− − − = − − −

or α β= .

Thus, at points where ( )F ζ′  exists and is non-zero, the transformation ( )Z F ζ=  preserves angles; this is the essential 
feature of a conformal transformation. Indeed, even where, exceptionally, angles are not preserved – but they are everywhere 
else in the plane – we still call the transformation ‘conformal’. Points where conformality fails are called branch or critical 
points of the transformation. At these points, either ( )F ζ′  is undefined i.e. its value approaches infinity as the point is 
approached, and so the determination of a direction is impossible; similarly, if ( )F ζ′  is zero at the point, the direction 
is not unique – the determination of angle again fails.
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Note: Smooth curves, where the local angle is π (the tangent), map into smooth curves – the same angle π – away from 
critical points of the transformation. At the critical points, the particular transformation must be examined in order 
to determine what happens at each. We shall see how this is done in the case of the transformation that we use for the 
generation of aerofoil shapes, in Chapter 5.

Example 32 

Conformal transformation. Consider the region 0 ≤ ≤θ α , r ≥ 0  in the ζ -plane, under the transformation 
( )Z F π αζ ζ= = ; find the  corresponding region in the Z-plane.

The two planes are shown here, where the line rζ =  becomes Z rπ α= , and ier αζ =  becomes ieZ r rπ α α π α= = −  . 
Further, any point interior to the ‘wedge’ 

                                  ier αζ =  
 
 
 
             α 
                                          ζ = r 
                                                           ieZ r rπ α π π α= = −             Z rπ α=                                     
              ζ-plane                                                               Z-plane 

region in the ζ-plane, ie , 0r θζ θ α= < < , maps to ieZ rπ α πθ α= , 0 θπ α π< < , which is in the upper half-
plane. Thus the wedge region, and its boundaries, map to the upper half-plane, with the real axis becoming the boundary.

Note: In this previous example, we have 1( )F π απζ ζ
α

−′ = ; if 0 1π α< < , then ( )F ζ′  is undefined at 0ζ = ; 
if 1π α > , then ( )F ζ′  is zero at 0ζ = ; in both cases, conformality fails (and here, as we have seen, the angle at the 
origin changes from α to π). If α π= , the transformation is simply an identity: nothing changes.
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4.10	 The transformation of flows

In the previous section, we considered, briefly, the problem of transforming between shapes; now we examine how this 
same principle – applying a conformal transformation – works for flows represented by a complex potential. We assume 
that the conformal transformations are one-to-one in the region occupied by the flow and the boundary of the object 
placed in the flow; we do not apply the transformation to points inside the boundary i.e. points that are within the solid 
object. Suppose that we have a complex potential w(Z), describing the flow in the Z-plane, and a conformal transformation 
(in the sense developed earlier, so it may contain a finite number of points where conformality fails) represented by 

( )Z F ζ= . The resulting potential in the ζ-plane is then 

( ) { ( )}W w Fζ ζ= ;

we now investigate the properties of this new potential.

(a) Streamlines (and so boundaries of objects)

 A streamline, C, in the Z-plane, is defined by

( ) constantwℑ =  (denoting the imaginary part) on C.
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Let Γ, a curve in the ζ-plane, map into the curve C; then we have

[ ( )] [ ( ( ))] [ ( )] constantCW w F w Zζ ζΓ Γℑ = ℑ = ℑ = ,

and so streamlines map into streamlines.

(b) Flow at infinity

The flow at infinity, in the Z-plane, is obtained by examining the behaviour of w(Z) as Z →∞ ; correspondingly, for 
the flow in the ζ-plane, we examine W(ζ) as ζ →∞ . Thus, if F(ζ) has the property: ( )F ζ ζ≈ , as ζ →∞ , then 
the flows in the two planes, at infinity, are identical i.e.

( ) ( ( )) ( )W w F wζ ζ ζ= ≈  as ζ →∞ .

An example with this property is the transformation

1( )F ζ ζ
ζ

= + ,

which is precisely the form that we shall discuss in the next chapter. We often aim to use transforms that satisfy this 
property. Then the flow past a shape maps into the same flow past a different shape e.g. uniform flow past a circle maps 
to uniform flow past an aerofoil (and vice versa).

(c) Singularities

From what we have seen so far, it must be assumed that singularities (sources, dipoles, etc.) are likely to be important 
in the complex potentials that we discuss (because they will be used to construct the shapes of objects in the flow). Of 
course, we must hope that any singularities do not appear ‘naked’ in the flow field.

Let there be a singularity at 0Z Z=  in the Z-plane, but such that 0Z  does not coincide with a branch point of the 
transformation; let this point map to 0ζ ζ=  in the ζ-plane. For convenience, we write the potential in the Z-plane as

0( ) ( )w Z f Z Z= − ,

then we obtain   0( ) ( ( )) { ( ) ( )}W w F f F Fζ ζ ζ ζ= = −

0 0{( ) ( ) ....}f Fζ ζ ζ′= − +  as 0ζ ζ→ ,

which is allowed since 0( )F ζ′  exists and is non-zero (because 0ζ ζ=  is not a branch point). Thus a singularity maps 
into the same type of singularity but, in general, with a change of strength (by virtue of the factor 0( )F ζ′ ). To see how 
this happens, consider the dipole: 0( ) ( )w Z A Z Z= − , then

0

0 0 0

( )( )
( ) ( ) ....

A FAW
F

ζ
ζ

ζ ζ ζ ζ ζ
′

= ≈
′− + −

 near the singularity
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(at 0ζ ζ=  in the ζ-plane); this is a dipole, but with a strength (and direction) given by 0( )A F ζ′ . 

Comment: An important example arises in the case of a ‘log’ singularity – a line vortex or source/sink – as we now show: 
given 0( ) log( )w Z A Z Z= − , then

0 0 0( ) [( ) ( ) ....] log( ) constantW A F Aζ ζ ζ ζ ζ ζ′= − + ≈ − +

close to the singularity at 0ζ ζ= . Here, the additive constant is the only result of the transformation, and we already 
know that additive constants have no affect on potentials, so we have generated here exactly the same singularity.

(d) Complex velocities

Complex velocities in the two planes transform in the obvious way:

d d ( )
d d
W w F

Z
ζ

ζ
′= ,

which are exceptional only at branch points of the transformation; this turns out to be significant in what we do later.

Example 33 

Transformation of a flow with a source. A source of strength m is situated at ς ς α= =0 aei  ( 0 < <α π ) in the ς
-plane, with a boundary along η = 0  (−∞ < < ∞ξ ). Write down the complex potential for this flow. Now transform 
this under nZζ =  to obtain a corresponding potential in the Z-plane, and interpret this in the case n = 2 .

The complex potential for the flow in the ζ-plane, obtained by using the method of images (§4.4), is

0 0 0 0( ) log( ) log( ) log ( )( )
2 2 2
m m mW ζ ζ ζ ζ ζ ζ ζ ζ ζ
π π π

 = − + − = − −  .

Let ( )1i
0 e

n
Z a α=  and introduce the transformation nZζ =  to give

0 0( ) log ( )( )
2

n n n nmw Z Z Z Z Z
π

 = − −  .

In the case 2n = , this reproduces the complex potential for a source in the first quadrant with the positive axes as 
boundaries (walls); see Example 28.
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Exercises 4

74. Cauchy-Riemann relations & Laplace’s equation. 

(a) �Given w z w x y x y x y( ) ( ) ( , ) ( , )= + = +i iφ ψ , where both φ  and ψ  are real functions, construct ∂ ∂x  and 
∂ ∂y  of this definition and hence recover the Cauchy-Riemann relations.

(b) �Given Laplace’s equation, 
∂

∂
+
∂

∂
=

2

2

2

2 0w
x

w
y

, introduce the ‘characteristic’ variables z x y z x y= + = −i i, , 

transform the equation and hence find the general solution for w. [Cf. d’Alembert’s solution of the wave equation.]

75. �Laplace’s equation: solution. Use the method of separation of variables to find the solution of Laplace’s equation, written 
in polar coordinates. Now use your result to find the solution to the problem of the symmetric flow from infinity 
( +∞→y ) approaching the solid boundary which comprises the wall y = 0, axax −<> , , and the semicircle r 
= a, πθ ≤≤0 . 

76. �Potential function & stream function. (a) Find the velocity field represented by the stream function kxy2=ψ , where 
k is a constant. Now suppose that )( 22 yxk −=φ  is a velocity potential (i.e. satisfies Laplace’s equation) and show 
that it generates the same velocity field as for ψ .

(b) Find a velocity potential,φ , which is a polynomial of degree three in x and y. 
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77. �Dipole. (a) Express the family of curves )sin( αθ −= kr , where α  is a fixed constant and k is the parameter which 
generates the family, in Cartesian coordinates; hence show that each member of the family is a circle with the line 

αθ =  as a tangent at the origin.

[Hint: use sin( ) sin cos cos sinθ α θ α θ α− = − , and then introduce x r= cosθ , y r= sinθ .]

(b) �For α π= / 4 , use suitable software (e.g. MAPLE) to plot the curves r k= −sin( )θ α , 0 ≤ ≤θ π , for 
k n n= = − −( , ... )3 2 3 , all these 7 being on the same graph.

78. �Flow past a circle. See Example 26; the equation for the stream function can be written (in Cartesians) as 
ψ = − +y x y( / ( ))1 1 2 2 , where we have chosen U = µ π/ 2 . [N.B. Can you confirm this? (No need to do it!)] 
Use suitable software (e.g. MAPLE) to plot the streamlines ψ = − −4 3 4, ... , with − ≤ ≤ − ≤ ≤2 2 2 2x y, , all on 
the same graph.

79. �Uniform flow + source. See Example 25; write down the complex potential for a uniform stream past a source. Find 
the equation (expressed in polar coordinates) of the streamline which passes through the stagnation point. Then 

(a) show that one branch of this streamline is πθ = ;
(b) find r at 23,2 ππθ = ; 
(c) show that Umyr 2)(sin ±→=θ as 0→θ .
(d) Use suitable software (e.g. MAPLE) to plot the curves r n= −( / ) / sinπ θ θ4 , n = 4 5 8, .. , for 
0 02 0 98⋅ ≤ ≤ ⋅π θ π  , all 5 on the same graph. 

[This uses the choice m U= 2π  and n = 4 gives the shape of the body; n > 4 then  produces streamlines that represent 
the flow around the body. This plot generates only the upper half-plane; the lower follows by symmetry.] 

80. Complex potential from a velocity field. A velocity field is given by 

u ≡ −
+

+
−

+ +
+

+






U ay

x y
b x y

x y
ax

x y
b xy

x y
1 2

2 2

2 2 2

2 2 2 2 2

2

2 2 2

( )
( )

,
( )

,

here a, b are constants. Find the complex potential (if one exists) and hence interpret the flow field.

81. �Flow past an ellipse. Given the complex potential w z U a z b z a b( ) { ( ) }= ′ − ′ − +2 2 2 1 2 , where 
)(),(),( bababa −=′′  and the positive square root is chosen wherever z is real and greater than 22 ba −  , show 

that this represents uniform flow past the ellipse θθ sin,cos byax == . [Hint: consider the contour 0)( =ℑ w  
and also examine the behaviour of w as ∞→z .]

82. �Uniform flow past a boundary. Given the complex potential, w (z), such that w z2 2 1= − , show that the streamline 
ψ = 1  is the curve y x x2 2 21( )+ = . Hence deduce that w(z) represents a uniform flow past the object whose 
boundary is ψ = 1 .
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Use suitable software (e.g. MAPLE) to plot this shape (ψ = 1) and the streamlines ψ = 05 15 2. , . , , all on the same 
graph, with − ≤ ≤ − ≤ ≤3 3 3 3x y, .

83. �Spinning circular cylinder. See §4.7; find the stagnation points for the uniform flow past a spinning circle (circular 
cylinder) in the case aUK π4> , and show that the solution requires 23πθ =  with only one solution in ar >  , 
i.e. in the flow field, and find r.

84. �Source near a wall. Use suitable software (e.g. MAPLE) to plot the streamlines for the problem of a source in the presence 
of a wall; see Example 27. In particular, plot the curves defined by x y nxy2 2 1 2 0− − + =  for n = − −2 1 2, ... , with 
0 1 2⋅ ≤ ≤x , − ≤ ≤3 3y , all 5 on the same graph.

85. �Source + sink. A source of strength m is placed at (a,0), and a sink of equal strength is at (-a,0), in a fluid which is 
otherwise at rest. Write down the complex potential for this flow, and show that the streamlines are circles. [Hint: 
introduce z = x + iy and use the method developed for Example 27.]

86. �Two sources + sink. (a) Write down the complex potential for a sink of strength 2m at the origin and sources 
each of strength m at )0,( a± . Show that the streamlines of this flow field can be written in the form 

( )x y a x y kxy2 2 2 2 2 2+ = − +( ) , where k is the constant which identifies each streamline.

(b) �Now take the configuration in (a) and let ∞→→ ma ,0 , but such that a m2  remains finite; find the resulting 
complex potential. [Cf. §4.3 for the dipole.]

87. �Source + sink + stream. In a uniform stream of speed U, which moves parallel to the x-axis (in the positive x-direction), 
are placed a source of strength m at (-a,0) and a sink of equal strength at (a,0). Write down the complex potential for 
this flow and find the positions of all the stagnation points.

Now find a general expression for the streamlines and hence show that the streamline which has y = 0 as one branch can 
be written as 

( ) ( ) aymUyayx 22tan222 =−+ π .

88. �Three vortices. Two line vortices, each of strength K, are situated at (±a, 0 ), and another, of strength − 1
2 K , is placed 

at the origin. Show that the fluid at infinity is stationary, and also find the positions of the two stagnation points. Find 
an equation for the streamlines, and hence show that the streamline which passes through the stagnation points meets 
the x-axis at (±b, 0 ), where b is a solution of 

3 3 162 2 2 3b a a b− = . 

89. �Two sources + two sinks. Two sources are placed at )0,( a± , and two sinks are placed at ),0( a± , all four being of 
equal strength. Show that one streamline is the circle which passes through all four points.
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90. �Method of Images I. In these two-dimensional flows, a source of strength m, and a sink of equal strength, are positioned 
as below; in all cases a > 0  (real). The boundary to the flow, and the region of the flow, is given. In each case, use 
the method of images to write down the complex potential for the flow and find the velocity components at the point 
requested. Also provide a rough sketch of the flow field in the region where the flow exists.

(a) �Source at z a= i  and sink at z a= 2i ; boundary is y = 0  and the flow is in y ≥ 0 ; find the velocity components 
at z a= .

(b) �Source at z a= 2  and sink at z a a= + i ; boundary is x = 0  and the flow is in x ≥ 0 ; find the velocity components 
at z = 0 .

(c) �Source at z a=  and sink at z a a= +2 i ; boundary is x = 0  and the flow is in x ≥ 0 ; find the velocity components 
at z = 0 .

(d) �Source at z a= i  and sink at z a a= + i ; boundary is y = 0  and the flow is in y ≥ 0 ; find the velocity components 
at z = 0 .

91. �Method of Images II - source. A source of strength m is situated at the point (a,0), with 0>a , in a fluid which occupies 
the region ∞<<−∞> yx ,0 ,  where the axis x = 0 is a solid boundary. Show that the equation of the streamlines 
is 222 ayxyx =−+ λ ,  whereλ  is the constant parameter which describes the streamline.

92. �Method of Images III - source. Write down the complex potential for the flow which is generated by a source of strength 
m located at (a,0), with 0>a , where the lines 0, ≥±= xxy , are solid boundaries. Give a rough sketch of the 
streamlines.

93. �Method of Images IV - source. Write down the complex potential for the flow which is generated by a source of strength 
m at the point z a= eiα , where 30 πα << , and where z r z r= =, eiπ 3  are solid boundaries. [Hint: look for 
six-fold symmetry.]

94. �Method of Images V - source/sink. A source of strength m is situated at (a,b), and a sink of equal strength is at (
ba −, ), in a flow field which is restricted to the region 0>x ; both a and b are positive and the axis x = 0 is a solid 

boundary. Obtain the complex potential for this flow and hence derive the equation for the streamlines. Confirm 
from your equation that x = 0 is indeed a streamline, and show that another branch of the same streamline is a circle.

95. �Method of Images VI - source/sink. A source of strength m is located at ( ba,2− ), and there is a sink of equal strength 
at (2a,b), where both a and b are positive. Find the equation which describes the streamlines for this flow and show 
that they are circles of radius 22 )(4 ba −+ λ , centre ),0( λ , whereλ  is the constant parameter which identifies 
the streamline; cf. Ex. 85. Find the speed of the flow at the origin.

A flow is generated in exactly the same fashion, but now in the presence of a solid boundary : the axis y = 0, and the flow 
is restricted to the half-plane 0>y . Directly from the appropriate complex potential, deduce the speed of this new flow 
at the origin, and show that it is twice that obtained in the absence of the boundary.

96. �Method of Images VII - vortex. A line vortex of strength K is located at z = ib (where 0>b ) and the axis y = 0 is a 
solid boundary; the flow is restricted to the region 0>y . Find the complex potential for the resulting flow. [Hint: 
take care - mirror image !] Give a rough sketch of the streamlines.
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97. �Method of Images VIII - vortex. A line vortex of strength K is placed at z a= eiα  )20( πα << , with solid 
boundaries along z r z r= =, eiπ 2 . Find the complex potential which describes the flow field in 0,0 >> yx .

98. �Method of Images IX - vortex. A line vortex of strength K is located at (a,0), where 0>a  and x = 0 is a solid boundary; 
the flow is restricted to the half-plane 0>x . Obtain the equation for the streamlines of this flow and show that the 
streamline which passes through the point )0,( aµ  also passes through )0,( µa , where 10 << µ .

99. �Method of Images X - moving vortex. See Ex. 97; now find the complex velocity that describes the motion of the vortex (i.e. 
ignoring the singularity associated with the vortex; cf. Example 22). Write this complex velocity as d d iw z X Y= −   
(where the dot denotes the derivative with respect to time) and hence deduce that the path of the (moving) vortex 
is given by d dY X Y X= − 3 3 . Hence obtain the family of paths X Y− −+ =2 2 constant, and sketch a typical 
path. [Note: The vortex is at z a= eiα only at t = 0.]

100. �Elements of the Circle Theorem. For the following functions, f(z), write down )(zf  and )( 2 zaf  where U, a, b 
and α  are real : 

(a) U ze i− α ; (b) zlog ; (c) log( )z a− i ; (d) i ilog( )z a− ; (e) e ( iiα z a b− − ) .

101. �Simple conformal transformation. Given the conformal transformation z1=ζ  )0( ≠z  show that (a) the region 
interior to 1=z  maps into the exterior of 1=ζ  and (b) find into what the circle 1=z  maps. Then find the 
result of applying the mapping to : (c) the circle of radius b )( a≠ , centre at z a= eiα ; (d) the circle of radius a, 
centre z a= eiα .
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102. �Forces & moment. The complex velocity for a flow is written as the Laurent expansion 
d
d
w
z

U a zn
n

n
= + −

=

∞

∑
1

, where 
an  are complex constants and U  is a real constant. Find the moment (about the origin) of the forces which are 
exerted on a contour which encloses z = 0 . Now apply your result to the uniform flow about a spinning cylinder.

103. �Forces I. Write down the complex potential, w z( ) , for the flow about the circular cylinder z a= , produced by a 
source of strength m at z a= 2 . Show that : 

 (a) the force on the cylinder is ρ πm a2 12  (per unit length), and find its direction; 

 (b) d d dw z z
C

=2 0  where C is the contour z a= 3 , and hence deduce the force on the source.

104. Forces II. See Ex. 103; now find the force on the cylinder when the source is at the general point z na=  ( n > 1 ).

105. �Forces III. Write down the complex potential for the flow about the circular cylinder z a= , generated by a source 
of strength m at ( , )0 2a  and a second source, of strength 2m, at ( , )2 0a . Find the components of the force exerted 
by the flow on the cylinder.

106. �Forces IV. Write down the complex potential for the flow past the circular cylinder z a= , produced by a source 
of strength m at ( , )2 0a  and a second source, of strength km at ( , )−3 0a . Find the force exerted by the flow on the 
cylinder, and show that this is zero if k = − ±

2
7

1 5 2 . 

107. �Uniform flow past a boundary. A uniform flow (speed U parallel to the x-axis) past the circle cz =  is transformed 
according to ζζ 2az += ; show that the resulting potential in the ζ -plane relates to the same flow past a branch 
of the curve 

x y x y c a x y a2 2 2 2 2 2 2 2 42 0+ + − + − + = . 

*******************************
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5	 Aerofoil Theory
In this final chapter, we collect together all the ideas and techniques that we have developed – including the nature of 
viscous flow – and apply them to an introductory discussion of aerofoil theory. In particular, we introduce a simple 
conformal transformation that generates a class of aerofoil shapes from circles; this is then applied to uniform flow past 
a circle (and the same flow past an aerofoil), enabling us to provide a very simple explanation of, and a formula for, the 
lift generated by the aerofoil.

In 1910 – and this should be compared with 17 December 1903, the first flight by the Wright brothers – a Russian 
mathematician, N.E. Joukowski (sometimes transliterated as Zhukovsky) discovered a simple, but powerful, conformal 
transformation. [N.E. Joukowski, 1847-1921; taught analytical mechanics at Moscow University from 1874; made 
contributions to many branches of mechanics; developed the theory of the gyroscope.] This produces aerofoils from 
circles, and otherwise has all the properties that we might expect and hope of a transformation that is of practical use. 
The philosophy that we adopt is then:

aerofoil   →    circle   →    aerofoil

Z-plane     ζ-plane     Z-plane

given  solve  results

but, because we shall be able to confirm that the transformation is conformal and one-to-one, as required, and we already 
know how to formulate and solve the problem for flow past a circle, it is usual to work with only the last two stages here. 
That is, we set-up a suitable problem of flow past a circle (in the ζ-plane), determine the flow characteristics that are 
relevant, and then map this to the Z-plane that contains the aerofoil that we wish to study.

The Joukowski transformation (JT) is

     

2aZ ζ
ζ

= +  ( a real with a > 0);

so  2 2 0Z aζ ζ− + =  or 2 2 21 1
2 4( )Z Z aζ − = −

i.e.  2 21 4
2

Z Z aζ  = ± − 
 

.
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Clearly, from the definition of the JT, we have Z ζ≈  for ζ →∞ , but we must be able to map back again i.e. we require 
a one-to-one mapping. (Note that this condition ensures that the flow at infinity, in the two planes, will be identical.) Now 

Zζ ≈ , as Z →∞ , only if we select the positive sign above; thus we regard the JT, in its entirety, as

2

2 21 4
2

aZ

Z Z a

ζ
ζ

ζ


= + 


 = + −  

 mapping points outside and on.

Finally, we observe that the JT, 
2

( ) aZ F ζ ζ
ζ

= = + , has 
2

2( ) 1 aF ζ
ζ

′ = − ; 

thus we have branch (critical) points of the transformation at 0ζ =  and aζ = ± . (The first point is where the derivative 
is undefined, and the next two are where it is zero.) We now investigate what happens to various circles, in the ζ-plane, 
which are mapped to the Z-plane under the JT.

5.1	 Transformation of circles

The ζ-plane contains the circle, whose position is carefully chosen, particularly with regard to the positions of the branch 
points. It will soon be evident that the branch point at the origin is irrelevant: it will always lie inside the circle (and points 
inside are not mapped); the other two may be on the circle, or inside, but never outside.

(a) Circle ( )b aζ = >

 We set ieb θζ = , and then 0 2θ π≤ ≤  maps out the circle; the JT therefore gives

2
i ie eaZ b

b
θ θ−= +

2 2
cos i sina ab b

b b
θ θ

   
= + + −      
   

,

and so  
2 2

cos , sina ax b y b
b b

θ θ
   

= + = −      
   

,

which is the parametric representation of an ellipse (with semi-axes 2b a b+  and 2b a b− ). Thus the circle, which 
encloses all three branch points, maps into an ellipse (which encircles the points 2a and 2a−  into which the branch 
points map):
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                                     b 
                        
 
                                -a                     a                             -2a                               2a 
 
 
 
 
 
                                       ζ-plane                                                   Z-plane 

The solid lines show the circle and the ellipse, and we note that the resulting curve is smooth: it is conformal everywhere. 
If we select points exterior to the circle – and the dotted circle selects just such a set – then these map to points exterior 
to the ellipse (the dotted ellipse). Thus the region occupied by the boundary of the circle and its exterior map to the 
boundary of the ellipse and its exterior; points inside the circle are not mapped. [It is left as an elementary exercise to 
confirm that, indeed, the ellipse encircles the points 2Z a= ±  i.e. 2 2b a b a+ >  for b a> .]

(b) Circle aζ =

This time the circle passes through the two branch points at aζ = ± ; we set iea θζ = , and so

i ie e 2 cosZ a a aθ θ θ−= + = ;
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this is a flat plate positioned on the real axis (from 2a−  to 2a). Points exterior to the circle follow the discussion above: 
they map to points exterior to the plate (the dotted curves below):

 
 
 
 
                                    a 
                        
 
                       -a                                      a                     -2a                               2a 
 
 
 
 
 
                                       ζ-plane                                                   Z-plane 
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This description of these exterior points enables us to identify points above and below the (infinitesimally thin) plate. 
Consider the circle exterior to aζ = , and allow its radius to approach a; this corresponds to an ellipse which approaches 
the flat plate in the Z-plane. For 0 θ π< <  on the circle in the ζ-plane, the corresponding points in the Z-plane are just 
above the plate; for 2π θ π< < , they are just below. Also note that the plate is flat, so everywhere along its surface, 
conformality occurs – but conformality fails at the front and back (called the leading and trailing edges), where 0,θ π=  
(i.e. aζ = ± ): the branch points.

Note: If we allow b a→  in case (a), then we recover the flat plate, although the curvature changes dramatically at 
0,θ π=  as the limit is completed.

(c) Circle ik rζ − =  for 0k >  (real) and 2 2 2r a k= +

This circle also passes through the two branch points at aζ = ± , but its centre is moved up the imaginary axis, to ikζ =
. Here, we set ii ek r θζ = +  to give

2 2 i
i i

i i i
i ei e i e

i e i e i e
a a k rZ k r k r

k r k r k r

θ
θ θ

θ θ θ

−

−
− +

= + + = + +
+ + − +

,

where, in the second term, we have multiplied top-and-bottom by the conjugate. This then becomes
2

2 2
( i cos i sin )i (cos i sin )

( cos ) ( sin )
a k r rZ k r

r k r
θ θθ θ

θ θ
− + −

= + + +
+ +

which eventually gives – the details are unimportant in the analysis as presented here – the parametric form of the 
resulting curve in the Z-plane:

2 2

2 2 2 2
2 ( sin )cos 2 ( sin ),

2 sin 2 sin
r r k k k rx y
r k kr r k kr

θ θ θ
θ θ

+ +
= =

+ + + +
.

The curve represented by these expressions turns out to be the arc of a circle, but the upper and lower surfaces – interpreted 
as such, following our discussion of the flat plate – are not mapped symmetrically. The upper surface is mapped out as 
θ goes from aζ =  to aζ = −  along the upper arc of the circle in the ζ-plane; the lower arc of the circle – the same 
shape! – in the Z-plane is recovered as θ goes from aζ = −  to aζ =  along the lower arc in the ζ-plane. (This explains 
the complicated structure of the parametric form for what is, apparently, a simple curve.) This is evident in the figure:
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                                    r                                                        2k 
                                              k  
 
                       -a                                      a                  -2a                                       2a 
 
 
 
 
                                       ζ-plane                                                   Z-plane 

The radius of the circle, whose arc is generated in the Z-plane, is k a k+  and the intercept on the imaginary (y-axis) is 
at 2y k= . Like the flat plate, it is smooth – so conformality is evident – along the arc, but conformality fails at the two 
end points (corresponding to aζ = ± , the branch points in the ζ-plane). This is called the cambered plate; it was the 
shape chosen by the Wright brothers for their Wright Flyer I – its lift-generation is far better than for a simple flat plate 
(which does generate lift, but not as much).

(d) Circle ( )a r r aζ − + = >

This time, the circle has its centre moved along the real axis (to ( 0)a rζ = − < ), but with a radius chosen so that the 
circle passes through the branch point at aζ = ; the choice otherwise ensures that the circle encloses the other branch 
point at aζ = − . We set iea r r θζ = − +  and then the calculation follows those described earlier; the result – the 
details are again unimportant – is:

2

2 2
( cos )cos

( cos ) ( sin )
a a r rx a r r

a r r r
θθ

θ θ
− +

= − + +
− + +

,

2

2 2
sinsin

( cos ) ( sin )
a ry r

a r r r
θθ

θ θ
= −

− + +
,
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providing the figures:

 
 
 
                                                                          
                                 r                                      
                                               
 
                         -a                                  a 
 
 
 
 
                                       ζ-plane              

 

 

     -2a                                                                        2a 
                                     Z-planet
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This is a symmetric aerofoil, for which the leading edge – to the left – is round-nosed, and the trailing edge – to the right 
– is sharp; indeed, the shape at the trailing edge is a cusp. This aerofoil shape satisfies conformality everywhere, except at 
the trailing edge; this is consistent with the original circle, which encloses one branch point (cf. the shape of the ellipse 
in (a)) and passes through the other (cf. the flat plate and the cambered plate).

(e) General Joukowski aerofoil

We now combine all the ideas exhibited in the previous examples. We select a circle, in the ζ-plane, which encloses the 
branch point at aζ = −  (resulting in a round nose), which passes through the branch point at aζ =  (producing a sharp 
trailing edge) and which has a centre moved into 0y >  (see (c)) giving a bend (camber) to the aerofoil. Thus the circle is

 
 
 
 
 
                             r                                                                          
                                     • c                                  
                                               
 
                         -a                                  a 
 
 
 
 
                              ζ-plane              

which has a centre at cζ = , where c is a suitable complex number. The resulting general Joukowski aerofoil is then

            -2a                                                                                        2a 
                                             Z-plane 

Other examples of Joukowski aerofoils are shown in Appendix 5.
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5.2	 The flat-plate aerofoil

 The problem that we formulate here is the simplest one under the umbrella of aerofoil theory, in the context of the Joukowski 
transform: uniform flow past a flat plate. To accomplish this, we first consider the problem of a general uniform flow 
(speed U, angle of incidence α) past a circle in the ζ-plane; the circle is to be of radius a, so that the flat plate is obtained 
in the Z-plane. This problem comprises elements that have already been discussed: uniform flow past a circle (§4.6) and 
the transformation to produce a flat plate (§5.1(b)). Because we are familiar with the appropriate problem that we need 
to formulate in the ζ-plane, it is unnecessary, formally, to start with the Z-plane, map to the ζ-plane and then back again: 
we shall start in the ζ-plane and then simply map to the Z-plane.

Thus, in the ζ-plane, we have the flow (see §4.5, 4.6) past a circle, which is placed at the origin, with the flow direction 
given by α which, in the context of aerofoil theory, is called the angle of incidence:

 
                                                                      
                                                                 
                                                                       
 
                                              
                                                       
                                        
                α                                       
 
                U 
 
 
 
 

The complex potential is 
2

i i( ) e e aW U Uα αζ ζ
ζ

−= + ,

obtained, for example, by invoking the Milne-Thomson circle theorem; this circle is of radius a, ensuring that a flat plate 
is generated in the Z-plane. This potential is now transformed, according to 

2 21 4
2

Z Z aζ  = + − 
 

,
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to produce the corresponding potential, ( ) ( ( ))w Z W Zζ= , for the flow in the Z-plane which, we know, contains the 
plate. (Remember that we map only those points outside and on the circle i.e. for aζ ≥ .) It is convenient to write the 
complex potential as

2
( ) (cos i sin ) (cos i sin ) aW Uζ α α ζ α α

ζ

  = − + + 
  

 

2 2
cos i sina aU ζ α ζ α

ζ ζ

     = + − −            
,

and then, in the first bracketed term, we use 2Z aζ ζ= + ; in the second term we use

2 21 4
2

Z Z aζ  = + − 
 

 written in the form 2 22 4Z Z aζ − = − ,

with 2 ( ) 2a Z Zζ ζ ζ ζ ζ− = − − = − . Thus the potential for the flow in the Z-plane becomes

{ }2 2( ) cos i 4 sinw Z U Z Z aα α= − − ;

we note that, for Z →∞ , we obtain ( ) (cos i sin )w Z U Zα α≈ −  which is the same uniform flow at infinity as in 
the ζ-plane – exactly as expected for this transform.
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 Although we could find, for example, the streamlines for this flow – not quite routine, but possible – it is more enlightening 
to construct the complex velocity, and then evaluate this on the plate. Thus we have

2 2
d cos i sin
d 4

w ZU U
Z Z a

α α= −
−

,

which, we note, is defined everywhere away from 2Z a= ± ; on the flat plate where 2cosZ θ=  (where θ takes us 
around the plate; see §5.1(b)) we obtain

d i cos sin cot
d

w u v U U
Z

α α θ= − = − .

This expression is pure real i.e. there is no component of the velocity through the plate: the plate is a streamline. However, 
the x-component of the velocity is undefined at 0,θ π= i.e. at the leading and trailing edges of this flat-plate aerofoil. 
Also, at ,θ α π α= + , we have 0u = ; these two points – one on the upper surface and one on the lower surface – are 
therefore stagnation points of the flow. The resulting flow, represented by the streamlines, is

and the two aspects of the flow just mentioned are clear. The infinite speeds at the ends of the plate are evident by the flow 
having to accelerate around the infinitesimally thin plate, and the two stagnation points are also obvious. 

The flow is clearly symmetric above and below (but reversed); consequently, whatever the pressure distribution is on top, 
it is repeated (in reverse) on the bottom: there can be no lift generated by this flow pattern past the plate. Indeed, by the 
Kutta-Joukowski theorem (Example 31), we know that the lift is zero: in this flow field there is no circulation (K = 0). 
(The anti-symmetry does produce a moment about the centre of the plate, tending to pitch it upwards at the front; more 
of this later.) So what can we do to generate lift?

The flow past a flat plate (with the angle of incidence, α, not too large – say not more than about 10o ), as observed in 
the laboratory, looks rather different; typically, it has the following form:
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This flow has a number of important differences as compared with the theoretical prediction described above. Although 
there is a stagnation point on the lower surface, there is not one on the upper surface. Also, although there is still a high 
speed of the flow around the front of the plate – high, but not infinite, because a real plate has a non-zero thickness and 
a non-zero radius of curvature at the leading edge – the flow at the trailing edge leaves smoothly and with a speed not 
far different from the free-stream speed. This phenomenon can be interpreted like this: the stagnation point that was 
on the upper surface moves to the trailing edge and nullifies the infinite speed that was there. (Clearly, the symmetry 
– reversed – on the upper and lower surfaces is no longer evident, so perhaps we will get lift this time.) How has this 
change come about?

It is the property of viscosity in a real fluid that produces the flow field that is observed in the laboratory. The flow on the 
upper surface, by virtue of the viscous forces, remains attached to that surface, allowing the flow to leave the trailing edge 
smoothly. The effect of viscosity is, therefore, to take the inviscid (ideal) flow and induce a rotation in it, to the extent 
that the stagnation point on the upper surface is moved towards the trailing edge of the plate; this is precisely the effect 
that circulation would generate. (There is NOT a corresponding forward movement of the lower stagnation point, leading 
to a cancellation of the infinite speed there. Remember what happened to the spinning circle (see §4.7): both stagnation 
points moved downwards (and downwards is towards the trailing edge on top, in the geometry of the plate, and away 
from the leading edge on the bottom).) The general phenomenon of fluid sticking to a surface is well-known. Consider 
what happens when pouring a liquid out of a jug; a poorly-designed lip causes the liquid to dribble over and down the 
outside of the jug: the fluid wants to stick to the surface of the jug. A good design forces the liquid to make a clean break 
at the lip, and pour away from the surface. This adhesive property of a real fluid is usually called the Coanda effect (after 
the Romanian aerodynamicist H.-M. Coanda, 1885-1972, who investigated this property of fluids, and designed many 
devices that use this phenomenon). It can happen that the flow over the wing does not remain attached; this occurs when 
the wing stalls. The boundary layer, which is always present in the flow of a viscous fluid, gets pulled away from the surface 
(due to adverse pressure gradients), causing a very turbulent region to appear behind the aerofoil, involving eddies and 
vortex shedding, and resulting in a very significant loss in the lift force:

Download free eBooks at bookboon.com



Fluid Mechanics and the Theory of Flight

152 

Aerofoil Theory

The viscous forces, therefore, are fundamental in the realisation of these flow fields (and, as we shall see, these flows DO 
produce lift on the aerofoils). However, because the Reynolds numbers are so high, the effects on the flow are otherwise 
negligible – if we ignore the generation of drag! The boundary layers are very thin indeed – about 1/10,000th of the length 
of the wing section from leading to trailing edge (usually called the chord of the wing) – and so the flow is barely distorted; 
it is essentially inviscid away from the surface of the wing. 
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So we now address the problem of modelling a flow which, although generated by the presence of viscosity, is essentially 
inviscid. The method is to introduce the circulation that the viscous forces induce in the flow field around the aerofoil; 
by virtue of the Kutta-Joukowski theorem, we may thus expect that lift is generated. (As we have just indicated, although 
we shall be able to describe lift – surprisingly accurately – the neglect of viscosity will mean that we cannot predict the 
drag on the aerofoil.)

5.3	 The flat-plate aerofoil with circulation

We now consider the uniform flow past a circle, with circulation, in the ζ-plane; the potential for this follows directly 
from our discussion in §4.7:

2
i i( ) e e i log

2
a KW U Uα αζ ζ ζ
ζ π

−= + + ,

where the circle, centred at the origin, is of radius a (so that we generate the flat plate), and the circulation is clockwise of 
magnitude K. When we remember that a log singularity generates the same singularity under a conformal transformation 
(and points inside the circle are not mapped), we can represent the two flow fields schematically as: 

  

We have seen that the most useful information is provided by the velocity field, so we find

2
i i

2

2 2

( )

1e e i
2d d d

d d d 1

Z

a KU
w W
Z Z a

α α

ζ ζ

π ζζζ
ζ ζ

−

=

 
− +  

 = =
−
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and it is convenient to multiply this by ζ ζ  to give

2
i i

2

( )

e e i
2d

d

Z

a KU
w
Z a

α α

ζ ζ

ζ
ζ π

ζ ζ

−

=

 
− +  

 =
−

.

The plate corresponds to the evaluation iea θζ = , and then θ takes us around the plate, and we have seen that the 
velocities on the plate are the most revealing aspect of the velocity field. So we examine

( )
( )

i( ) i( )

i iplate

e e i 2d
d e e

Ua Kw
Z a

θ α θ α

θ θ

π− − −

−

− +
=

−

 
2 sin( ) 2

2 sin
aU K

a
θ α π

θ
− +

=

which is pure real (as before and as expected). At this stage we have not chosen K; we do this by imposing the condition 
that ( )w Z′ , as the trailing edge ( 0θ = ) is approached, remains finite. This is called the Kutta condition (introduced by 
Kutta in 1902). [M.W. Kutta, 1867-1944, German mathematician; Lilienthal (and the Wright brothers) thought that curved 
surfaces were better that flat ones for producing lift; Kutta worked on this problem from about 1902.] Here, ( )w Z′  can 
remain finite as 0θ →  only if

2 sin 0
2
KaU α
π

− + =
,

for the denominator is zero in this limit. (This does not guarantee that the limit is finite, but the only possibility of obtaining 
a finite limit is for the numerator to be zero on 0θ = ; the nature of this limit will be discussed below.) Thus we choose

4 sinK aUπ α= ,

which selects the circulation in terms of the free-stream speed (U) and the geometry (a and α).
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Check: We calculate the limit, with the choice of K above:

plate
(sin cos cos sin ) 4( )

sin
U K aw Z θ α θ α π

θ
− +′ =

               
sin cos (1 cos )sin

sin
U Uθ α θ α

θ
+ −

=

 

21
2( ....) cos ( ....) sin

cos
....

U U
U

θ α θ α
α

θ

+ + +
→ =

+
,

which is the required finite limit: the flow leaves the trailing edge with a finite speed.

Finally, from our previous analyses, we know that, in the Z-plane, we have the same flow (uniform speed U, angle of 
incidence α) past the flat-plate aerofoil. Furthermore, the circulation maps to the same circulation in the Z-plane; thus 
the Kutta-Joukowski theorem gives the lift as UKρ  (per unit length out of the plane), and so the lift generated by the 
flat-plate aerofoil, at right angles to the oncoming stream, is

24 sinUK a Uρ π ρ α=  (per unit length).

Here, we have taken the density of the fluid to be ρ; note that the lift is proportional to the square of the speed and to the 
sine of the angle of incidence. Thus the lift increases significantly with speed, and a positive angle of incidence, 0α > , 
is required; for zero angle the lift is zero. For sufficiently large angles – about 10 -15o o  for a flat plate – the wing stalls; 
our current theory fails when this happens (and neither can it predict when this will occur).

The expression for the complex velocity on the plate, using the K above, gives

plate

d 2 [sin( ) sin ]
d 2 sin

w aU
Z a

θ α α
θ

− +
= .

Thus there is a stagnation point where 

sin( ) sinθ α α− = −  (for 0θ ≠ , which is the trailing edge);

this has only one solution: 2θ π α= + , and this is on the under-side of the plate, and further back from the leading edge 
than when circulation was absent; see §5.2. A schematic representation of the effect of the circulation on the stagnation 
points is shown in this figure:
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                                                          K 
                                                                   •  
                            •  
 
                     U 

The resulting flow pattern takes the form shown below, where the first figure shows the orientation in the chosen coordinate 
system, and the second relative to the oncoming (horizontal) stream:

Comment: There is a technical issue that we have somewhat glossed over here. The circle in the ζ-plane, which maps to 
the aerofoil, contains two singularities on its boundary when the mapping is performed (where we have the two branch 
points, aζ = ± ). This indicates that the evaluation of the contour integral, to find the complex force, may not be 
straightforward – perhaps not even defined. First, the integral must be on a contour where we have the complex velocity 
defined, and this must be where the fluid exists; it is a moot point whether this is the case on the circle. Certainly, we 
may elect to use a contour that is strictly in the fluid, but as close as to the circle as we wish. This then ensures that all 
three poles (associated with each branch point) sit inside the contour (and such a contour will map to a closed contour 
that is in the fluid in the Z-plane, but as close as we wish to the flat plate). Indeed, because there are no other poles, we 
could choose any contour that surrounds the circle/plate. This leaves just one critical issue: the residues of the poles at 
the origin and at aζ =  are well-defined – the first is the expected contribution from the circulation, and the second is 
certainly finite by virtue of the Kutta condition – but what of the third? The velocity here is infinite, so the contribution 
to ( )2d dw Z  may not lead to a finite value for the Blasius integral. (We note that, for a realistic aerofoil, this is not 
an issue: such an aerofoil will be round-nosed, with finite speeds everywhere – this third pole will certainly not be on 
the contour.) A detailed evaluation, from first principles (without recourse to the Kutta-Joukowski theorem) is given in 
Appendix 6; this confirms the result given by that theorem. 
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The lift of an aerofoil is usually quoted as a lift coefficient (cf. §4.6):

21
2

2 sin
(4 1)

L
UKC

U a
ρ π α

ρ
= =

×
,

where the term (4 1)a×  is the surface area of the wing: the length of the section – the chord (4a) – times per unit length 
out of the plane. Typically, the maximum, without flaps extended, is about 1 5⋅ , but it can be about 3 0⋅  with flaps and 
slats extended. Most wings, without flaps or slats extended, will stall at about 15o , or a little higher, depending on the 
specific shape of the aerofoil section; see §5.2. 

Comment: There is a corresponding drag coefficient, which measures the total drag (which has a number of different 
contributors) on a wing or, more importantly, on the whole aircraft. The ratio of lift/drag is often quoted; for example, we 
have the following approximate values (relevant to cruising or soaring flight):

Boeing 747    17
Concorde & Space Shuttle  7
Herring gull    10
Sparrow    4
High-performance glider, max  70
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We address one final issue related to the flat-plate aerofoil: what is the line of action of the lift force? That is, along what 
line must the force act (which is the resultant of the pressure distribution around the aerofoil) to produce the moment of 
all the pressure forces? To answer this, we must find the moment of the forces, and Blasius’ moment theorem does that 
for us; see §4.8. This calculation, which follows that for the force quite closely, produces the moment (counter-clockwise) 

cosM aUKρ α= − :

                                                    M 
                                                        
 
 
 
 
 

the details of this, although routine, will not be developed here. We can find a version of this moment by computing 
directly, using the known force: 

                                                    M 
                                                        
                                       α 
                              L 
 
                                             h 
                              ℓ 
 
                                  2a 
 

The lift force, L, passes through a point that is a distance ℓ from the leading edge; this line of action of the force is a 
perpendicular distance h from the centre of the plate (and note that the force is at right angles to the oncoming stream, 
which is at an inclination α). Thus the moment of this force, clockwise, is

hL  where (2 )cosh a α= −   and L UKρ= ,

and so we obtain (2 ) cos cosa UK UKaρ α ρ α− =  i.e. a= .

Thus the line of action of the lift force is a distance a back from the leading edge of the flat plate, a position usually called 
the ¼-chord point i.e. one quarter of the chord from the leading edge. (All aerofoils have the line of action approximately at 
the ¼-chord point, the variation depending on the detailed shape of the aerofoil and the angle of incidence. Consequently, 
all aerofoils – wings – suffer a ‘pitching-up’ moment; this is readily demonstrated when an attempt is made to ‘fly’ a flat 
plate e.g. a sheet of card: it will immediately flip up and rotate backwards!) 
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5.4	 The general Joukowski aerofoil in a flow

Finally, we consider all the ideas and techniques developed thus far, and apply them to the general Joukowski aerofoil placed 
in a uniform stream at a general angle of incidence. Thus we formulate the problem, in the ζ-plane, of the uniform flow 
(speed U), at an angle of α to the positive x-axis, past a circle with circulation. The circle has its centre at a general point 
(ζ = c), but it encloses aζ = −  and passes through ζ = a; see §5.1(e). The circle is iec r θζ = + , and it is convenient 
to associate aζ =  with θ β= −  (and note the choice of sign); the flow configuration is: 

                                                                             K 
 
 
                                                               r 
 
                                                 c 
                                                                       β 
                                    -a                                        a 
                 α 
 
 
                  U 
 
 
 

ζ-plane

Note: Increasing β moves the centre of the circle in the positive y-direction (but keeping all other conditions unchanged), 
and so the curvature (or camber) of the aerofoil will increase.

The complex potential for this flow, with a suitable origin shift and using the radius of the given circle (r), is therefore
2

i i( ) ( )e e i log( )
2

r KW U c U c
c

α αζ ζ ζ
ζ π

−= − + + −
−

;

this is most easily obtained by following the development for the flat plate (§5.3), with the radius r, and then replacing ζ 
by cζ − (to accommodate the origin shift). (We observe that this can be accomplished without bothering to ‘shift’ the 
first term in this expression: the additional term so generated is a constant, which can be ignored – as we know.) From our 
earlier discussions, it is sufficient to impose the Kutta condition in order to find the appropriate choice for the circulation, K.
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The Kutta condition, at Z = 2a (i.e. ζ = a), requires us to find, first,

2
i i

2

2 2

1e e i
2( )d d d

d d d 1

r KU
ccw W

Z Z a

α α
π ζζζ

ζ ζ

− 
− +   −− = =

−
,

and remember that, although the circle used here is of radius r, the JT still involves the parameter a. This is now evaluated 
on the aerofoil (for which iec r θζ = + , and θ is the parameter that now maps out the aerofoil):

( )i i2 i i

2 i 2
aerofoil

e e e i ed 2
d 1 ( e )

KUw r
Z a c r

α θ α θ

θ
π

− − −− +
=

− +
.

The Kutta condition requires that this expression be finite as 2Z a→  i.e. θ β→ −  

(ζ = a), and so the numerator must be zero at this point (for a finite limit to exist; see §5.3). Thus we have the condition

( )i i( 2 ) ie e i e 0
2
KU

r
α α β β

π
− +− + =  or ( )i( ) i( )i e e

2
K U

r
α β α β

π
+ − += − ,

and so 4 sin( )K Urπ α β= + .

The lift, via the Kutta-Joukowski theorem, is then 

24 sin( )r Uπ ρ α β+

per unit length out of the plane; this force increases with the square of the speed – as we have seen previously – and with 
the angle of incidence α, and now also with increased curvature (camber) of the aerofoil, which is the effect of increasing 
β. A typical flow pattern for a realistic (Joukowski-type) aerofoil, as obtained in the laboratory, is shown below
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and a MAPLE programme that generates Joukowski aerofoils, and the associated streamlines, is given in Appendix 7.

Comment: An aircraft wing is designed and constructed so that its geometry changes, depending on the conditions of 
flight; there are three main stages: take off, cruising flight, landing. The aim is to have the most efficient (minimum drag) 
configuration during the cruising phase; for this the aerofoil shape is the most streamlined, without flaps or slats (which 
are like forward flaps). However, to reduce speeds at take off and landing, the required lift is to be generated at lower 
speeds – and the normal design requirements are that the lowest speed is in the landing phase. At take off, the flaps are 
extended and lowered, usually to about 30o  (‘ 30o  flap’); this, in the context of our result, means that both r and β are 
increased beyond the normal resting/cruising values. Thus the lift force required to get the aircraft off the ground occurs 
at a lower speed than for the same lift without flaps; of course, the drag is significantly increased so more thrust is needed. 
The same procedure is adopted for landing, but now the flaps are extended further and lowered more (typically about 
60o  flap) and slats – a forward extension and lowering at the leading edge – are often also deployed. This produces the 
required lift at an even lower speed (but with more drag and so higher thrust is required). This describes, in broad outline, 
how our introductory ideas for the generation of lift are incorporated within the design and flight of aircraft.

The classical theory of lift, which does not use any details associated with the rôle of viscosity, gives estimates for the lift 
that are correct to within about 90% (and often considerably better that this). As we have mentioned, our theory does not 
address the issue of drag (and therefore estimates for the thrust required to get the aircraft off the ground). One important 
additional consequence of the neglect of viscosity is that, without a careful analysis of the boundary layer on the wing, 
we cannot predict boundary-layer separation and the onset of the stall.

Concluding comments: We list a few points that provide the start of a more comprehensive study of aerofoils and flight.

(a) The forces on an aircraft are represented schematically by

                pitching-up           lift 
                   moment                                                                      force 
                                                                                                            up/down 
                                                                                                               
                                 
                                      C of G 

which suggests that the rôle of the tail is to counteract the pitching-up moment associated with the lift generated by the 
wings. However, the centre of gravity (C of G) is normally adjusted so that this provides a moment sufficient to pitch the 
aircraft down. (Indeed, this is the essential requirement for an aircraft that is stable: any loss of lift on the wings causes the 
nose to drop, enabling the flow to reattach, so that lift is recovered.) The tail is used, primarily, to produce a downwards 
force that pushes the nose up, thereby ensuring that the angle of incidence is that required to generate the lift. The tail fin 
is to provide lateral stability, although turning requires the use, in addition, of ailerons – which was the main discovery 
made by the Wright brothers.
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(b) Our aerofoil, a Joukowski aerofoil, has one structural draw back: there is a cusp at the trailing edge, and cusps cannot 
be built! There are two comments that we should make about both this and a related issue. The first is quite general: there 
is an extension of the ideas presented here that enable any shape to be represented and analysed in the complex plane 
(although the technical details are, not surprisingly, rather more involved). Thus any shape of aerofoil, with or without 
flaps and slats, can be investigated; in particular, the cusp in our aerofoil shapes can be removed. The second point relates 
specifically to this aspect of our Joukowski aerofoils.

The JT that we used is 2Z aζ ζ= + ; this can be rewritten as
22

2
2 2
2 2

Z a a a a
Z a aa a

ζ ζ ζ
ζζ ζ
 + + + +

= =  − −+ −  
.

In turns out that the related, more general, transform which replaces ‘2’ by ‘ 2 ε− ’ throughout i.e.
2(2 )

(2 )
Z a a
Z a a

εε ζ
ε ζ

−
 + − +

=  − − − 
,

generates, for small ε, virtually identically-shaped aerofoils, but these have an included angle επ  at the trailing edge – not 
a cusp. [This is called a von Kármán-Trefftz transform.]

(c) A fully three-dimensional theory is available, enabling finite wings, with wing tips, to be analysed. This is based on 
the idea of circulation, producing vorticity in the flow – and observed by the vortex shedding at wing tips – the vorticity 
being distributed along a line (or region) that is in the aerofoil section and then leaves it, and moves downstream. [This 
is usually called the ‘horseshoe vortex’ and is an extension of ‘lifting-line’ theory.]

(d) The interaction between the inviscid (complex variable) flow and the viscous boundary layer can be analysed. Because the 
boundary layer is thin – we are dealing with large Reynolds numbers – this has little effect on the flow around the aerofoil. 
The technique is to solve the inviscid-flow problem (using complex variables), and then use this as the exterior flow to a 
boundary layer on a curved plate. This, in turn, is analysed and used as the basis for adjusting (very slightly) the ‘shape’ as 
seen by the exterior flow; this is then further iterated. [The description here is the mathematical idea, which has a robust 
analytical basis; of course, much of this type of calculation can now be done, in its totality, by suitable numerical methods.]
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(e) Finally, we mention that the generation of lift for a supersonic aerofoil is rather different. Those familiar with high-
speed (usually military) aircraft will have observed that the wings are essentially flat and thin – they are not shaped, 
in any fashion, like the aerofoils that we have been discussing here. The pressure difference that gives rise to the lift is 
generated, in supersonic flow, by the property that pressure in the flow changes as it passes through a shock wave. The 
angle of incidence in the supersonic flow produces a suitable shock wave, enabling the flow to change direction (and 
correspondingly, the pressure):

 
 
 
 
 
 
 
 
 
 
 

This figure represents the flow over a supersonic aerofoil; the flow directions are given by the arrows and the two thinner 
lines are the shock waves. Shock waves arise only if the flow turns to decrease the angles in the respective flows; if the 
angle increases, then an ‘expansion fan’ is generated – the grey areas in the figure – but the essential features are the same: 
the angle of the flow changes and the pressure changes. With the appropriate configuration, the pressure underneath is 
greater than that on top, and so lift is generated.

Exercises 5

108. �Joukowski transformation: cambered plate. Analyse the parametric representation of the cambered plate obtained 
from the circle rik =−ζ where k (> 0), with ζζ 2az +=  and r a k2 2 2= + ; see §5.1(c). On the basis of 
this, sketch the graph of this shape, confirming that each branch (upper/lower) is the arc of the same circle, OR use 
suitable software (e.g. MAPLE) to plot the shape produced by this parametric form. 

109. �Symmetric aerofoil. Show that a symmetric aerofoil is obtained from the circle a=ζ  via the transformation 

b
babz
+
−

++=
ζ

ζ
2)(

, ab <<0 . Now show that, for the choice 1<<ab , then the areofoil has the approximate 

parametric representation 

  θθθθθ sin)cos1(2)},coscos1)(({cos2 2 +=−−+= byabax .

Use suitable software (e.g. MAPLE) to plot this shape, with a = 1 and b = 0.1.

110. �Flow past ellipse. Write down the complex potential for the uniform flow (speed U, angle of incidence α , no 
circulation) past the circle c=ζ . Hence use the Joukowski transformation ζζ 2az +=  (0<a<c) to find the 
complex potential for the same flow in the z-plane past the ellipse 
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( ) ( ) 222 4sinhcosh ayx =+ ββ , where )ln( ac=β .

111. �Velocity at trailing edge. Write down the complex potential for the uniform flow (speed U and angle of incidence 
α ) past the flat plate θcos2az =  ( πθ 20 ≤≤ ). Include a general circulation K (clockwise), apply the Kutta 
condition at az 2=  and hence determine the velocity in the flow field for az 2→ .

112. �Symmetric Joukowski aerofoil. A uniform flow, of speed U and angle of incidence α , past the symmetric Joukowski 
aerofoil, is obtained by transforming the circle rc =+ζ  (real c > 0 , r c a− = ) under ζζ 2az += . 
Introduce a circulation, apply the Kutta condition and hence state the lift (per unit span) generated by the aerofoil. 

Further, given that the moment (clockwise) about the origin of this lift force is 

απρ 2sin)(2 222 arraU −+ ,,

show that the resultant lift force acts through a point which approaches the 41 -chord point as 0→c . 

113. An extended Joukowski transformation. Show that the conformal transformation 

2

32

8
9

4
3

2
3

ζζ
ζ aaaz +++=  ,

where a (> 0) is real, possesses a branch point at 23a=ζ . Further, show that the circle 23a=ζ  maps into 
the aerofoil represented by the parametric form 2)cos1( θ+= ax  , θθ sin)cos1( −= ay ; give a rough sketch 
of the shape of this aerofoil.

Now a uniform flow (speed U, angle of incidence α ) past the circle is mapped into the same flow past the aerofoil; 
introduce circulation (K, clockwise), apply the Kutta condition to find that απ sin6 aUK = and hence state the 
lift (per unit span) generated by the aerofoil.

114. �Behaviour near the trailing edge. The circle a=ζ  is mapped into the flat-plate aerofoil under the transformation 
ζζ 2az += . Show that, near az 2= , we have the property d

d
ζ
z

a
z a

=
−

1
2 2

, approximately.

115. �Thin elliptical aerofoil. The circle a)1( εζ += , where 10 << ε  is a parameter, maps into an ellipse under 
the Joukowski transformation ζζ 2az += . Show that the semi-major and semi-minor axes of the ellipse are 
approximately 2a, aε2 , respectively, for small ε .

This ellipse is placed in a uniform flow of speed U and angle of incidence α ; introduce a suitable circulation, K, and 
choose it to satisfy the Kutta condition at the trailing edge. For small ε , find approximations to (a) the circulation, 
K; (b) the lift (per unit span); (c) the position of the stagnation point; (d) the velocity near to the leading edge (

az 2−≈ ). 

***********************************************
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Appendix 1: Biographical Notes

We provide a set of brief biographical notes on the various individuals who have contributed to the development of fluid 
mechanics, and aerofoil theory, and who are mentioned in this text.

Bernoulli, Daniel (1700-1782)

Daniel was a Dutch-born member of the famous Swiss family of about 10 mathematicians (fathers, 
sons, uncles, nephews) – he was the son of Johann and his uncle was Jacob – best known for his 
work on fluid flow and the kinetic theory of gases; his equation for the flow of an inviscid fluid 
first appeared in 1738. He qualified, initially, as a medical doctor, then was appointed a professor 
of mathematics (in St Petersburg), but then moved to anatomy and botany and, eventually, physics! 
It was during this period that he defined the nodes and frequencies of an oscillating system, and 
showed that the movement of strings in musical instruments could be represented as an infinite 
number of harmonic modes. However, his most important work at this time was his analysis of 

fluid motion, culminating in his work Hydrodynamica, which gave us the word ‘hydrodynamics’. In his studies, he also 
made contributions to astronomy and magnetism, and was the first to solve the Riccati equation, but his general and 
main interests were in trigonometry, the calculus and probability. He was a close friend of both Euler and d’Alembert.

Blasius, P.R.H. (1883-1970)

Blasius was a student of Prandtl (in Göttingen 1902-1906) and then, from 1908, a research assistant 
at a hydraulics laboratory in Berlin; from 1912 he became a teacher at a technical college in 
Hamburg – he claimed to have been a scientist for only 6 years, thereafter becoming a teacher. He 
wrote a few papers (in addition to his important two) on various problems in hydraulic engineering 
and aircraft stability, and undergraduate texts on heat transfer and mechanics.

Coanda, Henri (1886-1972)

Coanda was born in Bucharest (Romania), where his father was a professor of mathematics at the 
National School of Bridges and Roads; he claimed that he was always interested in the ‘miracle 
of wind’. Although he graduated as an artillery officer, he was intrigued by the technical aspects 
of flight. He joined a French aircraft company, and also spent three years (1911-1914) with the 
Bristol Aircraft Company, designing a number of early aircraft. Throughout the first and second 
World Wars, he worked in France. The ‘Coanda effect’, in which a flow is attracted to, and remains 
attached to, a nearby solid boundary, was investigated by Coanda between the wars.
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Couette, M.M.A. (1858-1943)

Couette was born, and spent his life, in France. He first obtained a baccalauréat in humanities, and 
then bachelor’s degrees in mathematics (1877) and physics (1879); after this, he studied at the Sorbonne 
under Boussinesq, finally obtaining (1890) his PhD at the Physics Research Laboratory, working on 
the friction of fluids. He was appointed a professor of physics at the Catholic University of Angers, 
and lived there for the rest of his life, but he was poorly paid, so took extra teaching jobs at various 
colleges nearby. He designed a concentric-cylinder viscometer (to measure the viscosity of fluids), 
and demonstrated the correctness of the ‘no-slip’ boundary condition.

Euler, Leonhard (1707-1783)

Euler, a Swiss mathematician (born in Basle), is regarded as the most prolific mathematician 
(ever); his powers of calculation (without the aid of paper) was prodigious – he continued 
to work throughout the years at the end of his life when he was totally blind. (He lost his 
sight in the right eye in about 1733, and in the left about 1768.) He studied under Johann 
Bernoulli, obtaining his master’s degree at the age of 16; because of his age, he was unable 
to find a university post, but by the age of 20 he was appointed to the Naval College in St 
Petersburg (and served as a medical lieutenant in the Russian navy), becoming Professor of 
Physics there in 1730. During this period, he shared rooms with Daniel Bernoulli (who held 
the mathematics chair), and when Daniel returned to Basle, Euler was appointed in his place. 

Euler contributed to all the (classical) fields in pure and applied mathematics: analysis, calculus, trigonometry (where 
he was the first to treat sin, cos, etc., as functions), analytical geometry, series (with convergence), ordinary and partial 
differential equations, number theory, mechanics, celestial mechanics, fluid mechanics, acoustics, optics; he also laid the 
foundations for analytical mechanics He made popular the notation ‘π’ (which had been used first by William Jones in 
1706), and introduced ‘e’, ‘i’ and ‘Σ’, as well as the (now) very familiar notation for a function: ( )f x .

He was not as rigorous in his approach as, say, Gauss or Cauchy, but he had the ability to see structure by intuition or 
by developing new approaches; he could be regarded as one of the foremost mathematicians (just behind Archimedes, 
Newton and Gauss – the big three). 

Flettner, Anton (1885-1961)

Flettner was a German aviation engineer and inventor, specialising in the application of circulatory motion 
in an air flow. He invented the servo tab (fitted to flaps), initially for use on the Graf Zeppelin; while 
working for this company in WWI, he developed remote control and pilotless aircraft, and wire-guided 
ground-to-air missiles. Between the wars, he directed a research institute in Amsterdam. It was during 
this period that he had the idea for a rotating cylinder as the basis for propulsion on ships. He developed 
and built the Baden-Baden which sailed across the Atlantic (1926); a second ship, the Barbara, was built 

and sailed to America (but it was destroyed in a storm). Under moderate wind conditions, his device could out-perform 
a conventional sailing vessel.
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During and after WWII (when he moved to the US), he specialised in helicopter design, although he made his fortune 
with the invention of the rotary ventilator (still used on many vehicles as a non-powered device for ventilation).

Froude, William (1810-1879)

Froude was an English engineer, specialising in hydrodynamics and naval architecture, 
although he started with a first in mathematics from Oxford University (Oriel College). 
He worked with Brunel as a surveyor on the South Eastern Railway, being responsible for 
the section between Bristol and Exeter. He developed the standard methods for laying out 
track transition curves, but he was then encouraged by Brunel to examine the stability of 
ships under steam. Thus he was able to identify the most efficient hull shapes – minimum 
drag with stability – and in the process showed how scale-model results could be used 
with accuracy on the full-scale ship. On the back of his successes, the Admiralty funded 
the construction of the first ship-testing tank – at his home in Torquay!
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Gauss, (J.)K.F. (1777-1855)

Gauss was the pre-eminent German mathematician (and astronomer and physicist) of 
all time, regarded as one of the top three (with Archimedes and Newton, yet his interests 
went far beyond both these). He came from a poor, and ill-educated family, but his 
talents were soon recognised: it is reported that he was correcting his father’s arithmetic 
by the age of 3 and by 8 years he was adding large arithmetical sequences (based on 
new general principles that he had discovered). He received his doctorate (from the 
University of Helmstadt) in 1799, although most of his lectures were at Göttingen. He 
was making fundamental discoveries in mathematics from the age of about 14, although 
much of this was not published (but we know about his work because he kept detailed 
notebooks, which have been thoroughly examined since his death). He had considerable 
knowledge of, and skills in, many languages – he almost became a philologist – and then 

at the age of about 22 he decided to develop his interests in astronomy. Indeed, by 1807 he was Professor of Mathematics at 
Göttingen and also director of its observatory.

His discoveries, many of which were rediscovered by others decades later, would fill many texts. He did fundamental 
work in: number theory (particularly the problem of the distribution of primes), quadratic residues, extended Euclidean 
geometry – the first to do so for 2000 years (and he was then about 20), introduced non-Euclidean geometries, analysed the 
rôle of complex numbers in solving all algebraic equations, found efficient calculation schemes for the motion of celestial 
bodies, complex analysis, elliptic functions, theories of surfaces, topology, conformal mapping, geodesy, mathematical 
physics, electromagnetism, optics – and much, much more. It has been argued that, if he had published at the time of 
discovery, mathematics would have advanced by at least 50 years, during the 19th century, as compared with the actual 
developmental time scales.

Hagen, G.H.L. (1797-1884)

Hagen is credited with the first observation of laminar and turbulent flows, reported in 
1839, and expanded in 1855, and with the measurement of velocity profiles for flows 
through pipes. (The transition from laminar to turbulent flows was explored and developed 
by Reynolds in 1883.) He was born in what is, today, Kaliningrad in Russia, and studied 
mathematics, architecture and civil engineering; he joined his alma mater (University of 
Königsberg), being responsible for projects in hydraulic engineering. Thereafter, he was a 
construction official for the local mercantile community, then harbour inspector and finally 
(from 1830) he worked on constructions in Berlin, also teaching at the university there.
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Helmholtz, H.L.F von (1821-1894)

Helmholtz originally planned to study physics, but his family’s financial position made 
this impossible, so he opted for medicine (for which there was a government stipend 
available). Although he completed his medical studies, he spent most of his time 
studying all the work then currently in print on both physics and mathematics. This 
interest continued even after his appointment as surgeon to the Potsdam regiment 
(which is where he was born). In 1855, he was appointed to the chair of anatomy 
and physiology at the University of Bonn, where he found it difficult to continue his 
work in physics – even though he was gaining a considerable reputation in this area. 
He was able, eventually, to develop his real interests, first at Heidelberg and then at 
Berlin University.

He was the first to suggest the importance of vorticity – he introduced the word – and the rôle of vortex filaments and 
vortex sheets; he was also the first to use the term ‘velocity potential’, and showed its relevance to fluid flows. In short, he 
explained the difference between rotational and irrotational flows. He also introduced the concept of energy conservation, 
as well as making important contributions to the theories of electricity and magnetism; he added to our understanding 
of the physiology of sight and colour vision, and he measured the speed of nerve impulses.

Joukowski, N.E. (or Zhukovsky or Zhukovskii) (1847-1921)

His father was a communications engineer, so it was only natural that he studied in the Faculty 
of Physics and Mathematics at Moscow University, where he chose to specialise in applied 
mathematics. Thereafter, he taught mathematics – mainly mechanics – and also obtained his 
master’s degree (equivalent to a modern doctorate). He moved, first, to the Moscow Technical 
School, and then (in 1882) to Moscow University. He wrote over 200 papers and, perhaps more 
significantly, founded the Russian schools of hydromechanics and aerodynamics; indeed, he is 
often regarded as the ‘father of Russian aviation’.

He began an extensive study of flight dynamics in 1891, visiting Lilienthal and purchasing one of his gliders. His publications 
in 1906 gave the theoretical expressions for lift: the Kutta-Joukowski theorem (because Kutta had produced something 
similar in 1902). During WWI he taught a special course for Russian pilots.

Joukowski also made contributions to general hydrodynamics and hydraulics, analysing shock waves in water pipes, for 
example, and to the design of dams. In addition, he wrote on the theory of pendulums, on the rotation of solid bodies 
and gave the first comprehensive analysis of the gyroscope. 
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Kelvin, Lord (W. Thomson) (1824-1907)

William Thomson was born in Belfast, where his father was a professor of engineering 
but, when William was 8, he father was appointed to a chair in mathematics at Glasgow 
University. He started he studies at this university at the age of 10 – not all that unusual 
at this time, as Scottish universities acted as schools for able students – but he did begin 
degree-level mathematics at the age of 14; he later moved to Cambridge (graduating in 
1845). He was appointed Professor of Natural Philosophy, at Glasgow, at the age of 22, 
and remained there for the rest of his working life. (He had produced some important 
results in electrostatics while an undergraduate, and was awarded a gold medal (age 15) 
for an analysis on the shape of the Earth. By the age of 16 he had mastered Fourier’s 
work on heat transfer and Laplace’s on celestial mechanics.) 

He was the foremost physicist and electrical engineer of his time, pioneering the studies of electrodynamics and 
thermodynamics, and planning and directing the laying of the first transatlantic telegraph cable. He consolidated the 
electrical and magnetic work of Faraday, and developed the theory of heat transfer beyond the work of Fourier and Carnot. 
He introduced the absolute temperature scale and formulated the Second Law of Thermodynamics (also developed by 
Clausius). He worked on hydrodynamical problems with Stokes, between 1847 and 1849, these two exchanging no less 
than 656 letters on the subject over this period.

He was probably the first scientist to make a personal fortune – on the back of his cable work – but he hated vectors! (He 
never used them, and so made many calculations far more cumbersome than they need be.)

Kutta, M.W. (1867-1944)

Kutta was born in Pitschen (Germany), which is now in Poland; his parents died when he was 
young, and so he was brought up by an uncle in Breslau. He studied, first, at the University of 
Breslau, and then at the University of Munich, followed by the appointment as an assistant in the 
mathematics department at the Technische Hochschule in Munich; he spent a year at Cambridge 
and then received a PhD from Munich University (1902) on aerodynamic lift. (His interest in 
flight was sparked by the flights, and experimental observations, made by Lilienthal.) He then 
held a number of professorships, culminating in a post at Stuttgart (Technische Hochschule) 
in 1911; he remained there until he retired in 1935.

His thesis contains the Runge-Kutta method for the numerical solution of differential equations, and in his ‘habilitation’ 
thesis – required for university teaching in Germany – he developed his theory for flight (the Kutta condition, and his 
version of the Kutta-Joukowski theorem). However, he devoted most of his time to teaching mathematical techniques 
and ideas to engineers. Nevertheless, he did some important work on the motion of glaciers; he also maintained a keen 
interest in the history of mathematics.
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Lagrange, J.-L. (1736-1813)

Lagrange was born in Italy (Turin), and he originally had an Italian name, but his family 
had strong French connections, and he generally thought of himself as French (so he would 
often sign his name ‘Lodovico LaGrange’ or ‘Luigi Lagrange); the French regard him as 
French and the Italians as Italian! He studied at the College of Turin, initially specialising 
in Latin – he was not excited by mathematics (and found Euclidean geometry particularly 
boring). But he read Halley (on algebra in optics) and attended some good lectures on 
physics, so decided to devote himself to mathematics. Indeed, he was appointed a professor 
at Turin’s Royal Artillery School at the age of 19. 

He regularly corresponded with Euler and, in 1766, succeeded him as Director of the Berlin Academy, when Euler returned 
to St Petersburg. In 1787 he moved to Paris, as a member of the Académie des Sciences, joining the newly-formed Ėcole 
Normale in 1795, as a full professor. He first important work was on the calculus of variations – but not called that for 
another dozen years (by Euler) – and these techniques he then applied to a number of problems. He also worked on the 
foundations of dynamics, based on the principle of least action, and on the theory of sound. At various times he also worked 
on: the three-body problem, and more general problems of stability in celestial mechanics, probability, fluid mechanics, 
the foundations of calculus, number theory (proving some of Fermat’s unproven theorems). In 1788, his important text 
(started when he was 19) entitled Mécanique Analytique was published, which transformed the study of mechanics into 
a branch of mathematical analysis. He also produced a text on the theory of analytic functions. He was a member of the 
committee that developed and introduced the metric system of weights and measures.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.fuqua.duke.edu/globalmba

BUSINESS HAPPENS HERE.BUSINESS HAPPENS

http://s.bookboon.com/fuqua


Fluid Mechanics and the Theory of Flight

172 

Appendixes

Laplace, P.-S. (1749-1827)

Laplace was born to a poor farming-family in Normandy, and he attended the local 
Benedictine school; in 1766 he entered the University of Caen to study theology, but after 
about a year he decided to move to Paris – his interests in science and mathematics had been 
awakened by one of his teachers. There he met d’Alembert (probably based on a letter of 
introduction) and immediately solved a problem that d’Alembert had proposed; d’Alembert 
was so impressed that he secured a professorship for him at the Ėcole Militaire in Paris and, 
by 1785, he held a senior position in the Académie des Sciences where he worked closely 
with Lagrange. He then started to produce a steady output of quite exceptional mathematical 
papers. 

His first few papers were on determinants, on maxima and minima, and on aspects of the integral calculus, on difference 
equations and differential equations, and on the theory of probability. But then he turned to celestial mechanics and, in 
a sequence of important papers, discussed various aspects of the stability of gravitational orbits. In order to develop his 
arguments, he introduced the potential function for the first time, and then moved on to work with – as we now describe 
them – Laplace coefficients, orthogonal functions and the Laplace Transform. Between 1799 and 1825, he published his 
Mécanique Céleste, in five volumes, his most important work.

Lilienthal, Otto (1848-1896)

Lilienthal was of Swedish parentage, although he was born in Anklam (in the Pomeranian province of Prussia) and, 
while still at school, studied the flight of birds and thought of ways of emulating them. He moved to a technical school 
in Potsdam, and then trained with an engineering company, becoming a professional design engineer; his main work 
involved the design of machines for mining. He also invented a small steam engine, much smaller and lighter than those 
then currently available, which gave him financial freedom to spend time on his investigations into manned flight.

He began experimenting in 1867, in his own time, on the flow of air and how this flowed over shapes to generate lift. 
He eventually developed gliders that would lift him – he was the father of the hang-glider – making over 2,000 flights, 
starting in 1891, learning how best to generate lift and to control his flight. His flights were made, either from natural hills 
(obviously), but also from an artificial hill that he built near Berlin. His main control mechanism was the position of his 
body, but he supported the glider on his shoulders – rather than the modern technique of hanging below the frame – so 
only his lower body could move; there was a tendency for the glider to pitch down, from which recovery was difficult. He 
died in a crash, when he stalled and was unable to recover. The Wright brothers (see below) credited him with providing 
the main inspiration for their decision to design the first aircraft, although they found his technical data of little use (and 
so obtained their own from a wind tunnel they had built).
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Magnus, H.G. (1802-1870)

Born to a wealthy merchant family, Magnus studied (receiving a private education) mainly 
mathematics and physics, graduating from Berlin University with a degree in chemistry and 
physics, and a doctorate (1827) based on his discussion of the properties of tellurium. He spent 
some time in Paris, working with Gay-Lussac and Thénard, returning to the University of Berlin 
as a lecturer in physics and technology, rising to a full professor in 1845. He had a reputation 
as an excellent teacher. His main research interests were in chemistry and physical chemistry, 
and he was, primarily, an experimental scientist rather than a theorist. It was in 1852 that he 
did some experiments, probably prompted by the observations of Robins (see below), on the 
forces exerted on spinning projectiles (from firearms). He confirmed what Robins had noted – 
and Euler had rejected as ‘spurious’ – and so this side force is still, often, referred to as the ‘Magnus effect’. However, any 
explanation for it had to wait until we had the work that was to underpin classical aerofoil theory.

Milne-Thomson, L.M. (1891-1974)

Milne-Thomson first went to Clifton College (in Bristol) and then studied mathematics 
at Cambridge. He taught mathematics at Winchester College (1914) and then (1921) was 
appointed Professor of Mathematics at the Royal Naval College in Greenwich, where he 
remained throughout his working life. He taught various aspects of mathematics, but initially 
specialised in the construction of mathematical tables; this work led to his first text on the 
calculus of finite differences. Then, in 1938, he wrote an important text on hydrodynamics 
(which ran to five editions), and a book on aerodynamics (which had four editions). The 
second edition of ‘theoretical Hydrodynamics’ contains some new material, in particular his 

‘circle’ theorem. After his work on tables, he produced a few papers covering various aspects of hydrodynamics, as well 
as a study of wind-tunnel interference and some contributions to stress analysis.

When he retired in 1956, he moved to the USA, being a visiting professor at a number of American universities, as well 
as, for short periods, in Italy and Australia; he returned to the UK in 1971. 
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Mittag-Leffler, M.G. (1846-1927)

He initially took the surname of his family – Leffler – but when a student, at the age of 
20, changed it to ‘Mittag-Leffler’, Mittag being his mother’s maiden name. He originally 
trained (in Stockholm) as an accountant, but then moved to mathematics, studying at 
Uppsala University (Sweden). He received his doctorate there and then studied for a 
brief period in Paris (from 1873) and Berlin (from 1875); he was appointed to a chair 
at the University of Helsinki in 1876, and then to a chair at Stockholm University 
in 1881, where he stayed for the rest of his life. His is best remembered for his work 
on the analytic representation of meromorphic functions (being a generalisation 
of Weierstrass’ work), for his work on divergent series and for his founding of 
the journal Acta Mathematica (which his wife’s money helped to support). He also 
made contributions to more general aspects of the calculus and limits, to analytical 
geometry and to probability theory. His grand home, in the suburbs of Stockholm (in Djursholm) had one of the 
finest mathematical libraries in the world, at that time. This home, and its library, were bequeathed to the Swedish 
Academy of Sciences in 1916, and it has now become a major mathematical research centre: the Mittag-Leffler Institute.

Navier, C.L.M.H. (1785-1836)

Navier’s father died when he was 8 years old, and his mother left him in Paris in the care of her 
uncle; she returned to her home town. He was encouraged to study at the Ėcole Polytechnique, 
entering in 1802, but he was only barely of the sufficient standard at entry. Nevertheless, within 
a year he was one of the very best in mathematics, where he attended lectures by Fourier; he 
graduated from the Ėcole des Ponts et Chaussées (bridge and road engineering) as one of the top 
students in 1806. He undertook field work away from Paris, but returned to teach mechanics at 
the Ponts in 1819, becoming a professor in 1830.

He specialised in the design of bridges – mainly suspension – but had interests in general engineering, elasticity and 
fluid mechanics, as well as doing some work on Fourier series (prompted by his continuing friendship with Fourier). It 
is evident that Navier did not understand the nature of stresses in fluids, but he did have a grasp of the general principles 
underlying molecular interactions, and used this as the basis to extend Euler’s equation for a fluid. From 1830, he acted 
as a government adviser on science and technology generally, and on road and rail policy.

Pitot, Henri (1695-1771)

Pitot was trained as a hydraulic engineer; he designed the Aqueduc de Saint-Clément (in Montpellier) 
and the extension of the Pont du Gard (in Nîmes). He became a member of the French Academy of 
Sciences in 1724 and was elected a foreign member of the Royal Society in 1740.

His hydraulic engineering work led him to study (1832) the flow at various depths in the river Seine – 
it was thought by many scientists that the speed increased with depth – and invented his ‘pitot tube’ to 
measure the flow speed by using the height of fluid in the pipe. He is also associated with a theorem in 
plane geometry, relating the two sums of lengths of opposite sides of a quadrilateral that is inscribed 
by a circle.
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Poiseuille, J.L.M. (1797-1869)

Poiseuille studied, initially, mathematics and physics at the Ėcole Polytechnique in Paris (1816), 
and then obtained a DSc (1828) with a thesis on the flow through the human aorta. Using 
experiments, he obtained (1838) the relation between pressure gradient and volumetric flow rate 
through a pipe, assuming that the flow is laminar. (Hagen produced something similar, so both 
names are often associated with this law.) He formulated this result as a mathematical law – but 
without relating it in anyway to stresses and viscosity – publishing the results in 1840 and 1846. 
Throughout his work, he was always striving to understand the flow through narrow tubes, with 
the aim of applying his observations to flow through veins and arteries. (The unit associated with 
the coefficient of viscosity, in CGS units, is called the ‘poise’, because ‘poiseuille’ never caught on!)

Poisson, S.D. (1781-1840)

The hope of Poisson’s father was that his son would enter the medical profession – it would 
mean a secure future, but in his studies at the Ėcole Centrale in Fontainebleau he showed 
little interest in the relevant topics, and he lacked manual dexterity. However, he learned 
most other things very quickly, and especially mathematics. He was encouraged to sit the 
entrance examination for the Ėcole Polytechnique in Paris; he came top of his year (1798). 
He studied under Laplace and Legendre, with considerable success (both these teachers 
remained his friends for life), although he was very poor at geometry: his lack of coordination 
made it almost impossible for him to draw figures! He was appointed a deputy professor 
at the Ėcole in 1802, becoming a full professor in 1806 (replacing Fourier). He was also 
appointed a professor of mechanics and worked as an astronomer at the Bureau des Longitudes.

In his early career, he studied various types of differential equation, and their applications e.g. pendulum with resistance, 
and the theory of sound. He also introduced the technique of series expansions to find approximate solutions to problems 
related to perturbed planetary orbits. In addition, he worked on problems of heat transfer and the distribution of electrical 
charge on spheres, on probability theory (developing the notion of random events), on gravitation, on elasticity and stresses. 
Although he did not, it is argued, develop any very specific, deep, new mathematical results, he introduced many ideas 
that we use nowadays e.g. Poisson brackets, Poisson’s equation in potential theory, Poisson distribution.
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Prandtl, Ludwig (1875-1953)

Prandtl was born in Freising, near Munich; he entered the Technische Hochschule in Munich, 
specialising in solid mechanics, leading to a doctorate (1900), although he had to design a 
suction pump for some factory equipment – and so got involved in fluid mechanics. He was 
appointed (1901) a professor of fluid mechanics at what was to become the Technical University 
of Hannover; this is where he developed most of his important results in aerodynamics and 
fluid mechanics. In 1904, he delivered a paper on fluid flow with weak friction, in which he 
introduced the concept of a boundary layer. This was so significant an advance that, later 
the same year, he was appointed director of the Institute for Technical Physics at Göttingen 
University, where he remained until his death. Over the next 40 years or so he and his group 
developed the theory of aerodynamics into the form we use nowadays; he has become known 

as the ‘father of modern fluid mechanics’. His work was based on a rigorous application of mathematical techniques to 
the various problems of fluid flow, which laid the basis for the subject as it is currently used and understood.

Following the early work of Lanchester, he introduced various mathematical tools that enabled the prediction of lift (and 
drag) on realistic, three-dimensional aerofoils, publishing the results towards the end of WWI. In particular, he gave us 
lifting-line theory and a comprehensive theory of thin aerofoils; the rôle of wing-tip vortices was examined, and induced 
drag analysed. Between the wars, he moved on to supersonic flow, developing the first theories of shock waves and 
supersonic flight, including the design of supersonic wind tunnels. He also developed a theory for the corrections to the 
aerodynamic characteristic, due to compressibility, as the flow speed neared sonic – which was important in the design 
of aircraft towards the end of WWII, as aircraft speeds increased. Of his many influential students, we should mention 
Ackeret, Blasius, Busemann, Schlichting, Tollmien, von Kármán.

Reynolds, Osborne (1842-1912)

Reynolds was born in Belfast, but soon moved to Dedham (Essex) where his father had been 
appointed headmaster of the local school there; he was also the Anglican priest in the town. 
Osborne’s initial education was by private tutoring, and then he took an engineering apprenticeship 
(1861), but then entered Cambridge University to study mathematics, graduating as seventh in 
his year (1867). In 1868, he was appointed the first Professor of Engineering at Owens College 
(which would later (1880) become Manchester University); he remained in this chair until his 
retirement in 1905.

His early work was on various aspects of electricity and magnetism, but he soon transferred his interests to hydraulics 
and hydrodynamics, and concentrated solely on fluid dynamics after about 1873. In 1883, he announced his observations 
on the transition from laminar to turbulent flow, introducing at this time his ‘Reynolds’ number. In 1886 he developed a 
theory of lubrication and, in 1889, an insightful model for turbulent flow.

He was regarded as a man with high standards, which he expected of his engineering students – and such a discipline was 
then new at university level. He insisted that all these students should have a sound grounding in mathematics, physics 
and classical mechanics. He developed the applied mathematics course at Manchester, which remains one of the premier 
such courses in the country.
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Robins, Benjamin (1707-1751)

Benjamin’s parents were Quakers and rather poor – his father was a tailor in Bath. There 
is no record of any formal education, but he must have learnt (for himself) both languages 
and mathematics; he showed considerable promise, so his parents sent him to be coached in 
mathematics in London. He was coached by Dr Henry Pemberton who had been impressed 
by his attempts at exercises that he had been set; Pemberton was, at this time, preparing the 
third edition of Newton’s Principia. Robins then read, in English translation, all the classical 
Greek mathematical texts, as well as all the current mathematical works (Newton, Barrow, 
Gregory, Fermat, et al.). In 1727, he had begun to publish important extensions of work done, 
for example, by Newton and Bernoulli; this work was regarded so highly that, in this same 
year, he was elected a Fellow of the Royal Society.

His fame grew to the extent that he attracted many paying students whom he tutored for Cambridge entry. However, 
this was not particularly financially-rewarding, so he gradually moved towards engineering, designing bridges, mills 
and harbours, as well as directing the dredging of rivers (to make them navigable) and draining fens. He also did some 
important work on gunnery and the design of fortifications. In 1741, the Royal Military Academy (in Woolwich) was 
founded; Robins failed to get the position of Professor of Fortifications, and so (in 1842) published his New Principles of 
Gunnery, to show the world that he really should have been appointed! This was based on a course that he had hoped to 
give at the Academy, if he had been appointed; this text soon became the standard work on the theory of artillery and 
projectiles. Indeed, the text was translated into German (by Euler, who gave it much praise), and into French; it became a 
standard text for most of mainland Europe. Here, he described his ballistic pendulum (used for the accurate measurement 
of a projectile’s speed), and his work on the motion, including the effects of air resistance, on projectiles fired into the air. 
Indeed, he introduced the drag law for high-speed motion (proportional to the square of the speed), and recognised the 
effects of spinning: the Magnus effect.

He was appointed Engineer General with the British East India Company in 1749, and was sent to India the next year; 
he died after contracting a severe fever.
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Saint-Venant, A.J.C.B. de (1797-1886)

Saint-Venant was a student at the Ėcole Polytechnique, in Paris, from 1813-1816, and then 
worked as civil engineer, first for the Service des Poudres et Salpêtres (until 1823), and then for 
the Service des Ponts et Chaussées (until 1843). Throughout this period, he worked on various 
mathematical problems, but did not publish them (although he referred to many of them later, 
when disputes arose, and he certainly used much of his own material when he taught); his 
main interests were in mechanics, elasticity and hydrodynamics. He studied at the Collège de 
France, attending classes given by Liouville, and then taught at Ėcole des Ponts et Chaussées; 
he was elected to the Académie des Sciences in 1868.

His most significant work was published in 1843, where he gave a derivation of the Navier-Stokes equation based on 
fluid stresses – two years before Stokes gave a similar analysis – making Navier’s work more mathematically correct. It is 
rather surprising that Saint-Venant’s name is not associated with this fundamental equation, although it is often called the 
Saint-Venant equation in France. He also worked on the analysis of stress in solid bodies, giving the complete solution 
for torsion in non-circular cylinders, and extending work on the bending of beams. One of the mathematical tools that 
he invented and developed was a version of the vector calculus.
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Stokes, G.G. (1819-1903)

Stokes was the youngest of six children; his father was the protestant minister in Skreen 
(County Sligo, Ireland), who ensured that all his children had a religious and general 
education. In 1832 he was sent to Dublin, where he attended school (but not as a 
boarder – the family were too poor for that to be possible, so he lived with an uncle). At 
the age of 16 he then moved to England, studying at Bristol College for two years prior 
to entering Cambridge University in 1837 where he was tutored by William Hopkins 
(one of the most famous tutors at the time). Stokes went on to graduate the top of all 
mathematicians (Senior Wrangler) in 1841 and, following the advice of Hopkins, he 
decided to work on hydrodynamics at Pembroke College where he was immediately 
given a fellowship.

He worked, initially, on the general form of incompressible flow (1842-1843) and then embarked (1845) on the analysis 
of viscous flow, producing the now-accepted complete and comprehensive derivation of the Navier-Stokes equation (two 
years after Saint-Venant had achieved the same!). He developed this work on fluids, in conjunction with studies on the 
aberration of light, on the motion of pendulums (in fluids) and on aspects of geodesy; he was appointed Lucasian Professor 
of Mathematics at Cambridge – Newton’s chair – in 1849. This post, however, was poorly paid, so he also took up the chair 
of Professor of Physics at the School of Mines in London (which was to become, eventually, one of the three founding 
schools of Imperial College). He continued to produce fundamental results in fluid mechanics (e.g. the resistance of flow 
past small spheres) and on the wave theory of light, as well as explaining (and naming) the phenomenon of fluorescence, 
and analysing Fraunhofer lines in the solar spectrum.

After 1857, he became much involved in administration; he was appointed secretary to the Royal Society (1854) and 
the President (1885), Master of Pembroke College in 1902, and served as the MP for Cambridge University 1887-1892.

von Kármán, Theodore (1881-1963)

Theodore was born in Budapest, and was tutored at home by a former student of his father 
– and his father totally dominated the home and his education. When he was 9, he entered 
the Minta Gymnasium, in Budapest, a school set-up by his father and run according to his 
principles for educating bright children. On completion of his studies, he won a prize as the best 
mathematics and science student in all of Hungary. However, his father insisted that he study 
engineering, and so, much as he hated it, he completed his studies in mechanical engineering 
at the Palatine Joseph Polytechnic in Budapest. (His father had a nervous breakdown while 
he was at the polytechnic, but Theodore went on to complete the course.) In 1903 he was 
appointed as an assistant in hydraulics at his old polytechnic, but he was also a consultant 
for a German locomotive manufacturer.
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His interests, at this time, circulated around fluids in general, and also on the compression of structures. In 1906, he 
received a fellowship that allowed him to follow-up his contacts in Germany: he studied at Göttingen (and for a short 
while in Paris), where his was introduced to the problems of flight. However, he first worked on the buckling of plates, 
and received his doctorate for this in 1908; then he joined the staff at Göttingen. In 1911, he analysed the flow behind 
a bluff body – the von Kármán street vortex – and also (with Max Born) looked at the properties of vibrating atoms. In 
1913 he accepted the post of director of the Aeronautical Institute at Aachen, and the Chair of Aeronautics and Mechanics 
at Aachen University. During WWI, when he was called-up by the Austro-Hungarian army, he worked on the design of 
military aircraft; after the war, he returned to Aachen. He then initiated an extensive programme to study general fluid 
flows, and especially resistance, turbulence and the theory of lift generation.

He visited the USA regularly from about 1926, and in 1930 he was invited to be the director of the Aeronautical Laboratory 
at Caltech, where he continued his research, expanding into the theories of supersonic flight. In 1944, he was also appointed 
director of the Jet Propulsion Laboratory at Caltech, which eventually made significant contributions to the American 
space programme.

Wright, Wilbur (1867-1912) and Orville (1871-1948)

The Wright brothers invented, and flew, the first controlled and powered aircraft; 
indeed, from the outset, their aim was to construct a craft that would carry a 
human and be reliably controllable by the pilot. Their father was of English-Dutch 
descent – their mother was German-Swiss – and a bishop in the Church of the 
United Brethren in Christ, first in Millville (Indiana) and then in Dayton, Ohio. 
Wilbur was born in Millville, and Orville in Dayton, but Wilbur was barely able to 
finish his high-school education before the sudden move to Ohio in 1884; Orville 
dropped out of school. A further complication to their lives was the injury to 

Wilbur (accidental during a game of ice hockey) which made him housebound for about four years, during which time 
he cared for his mother who was terminally ill with TB.

However, Orville soon set up a printing business (1889), using a printing press designed and built with the help of Wilbur 
– this occupation helped him to overcome the depression following his accident. They edited and published a number 
of local newspapers, with some success. They then joined the new bicycle craze, opening a bicycle repair and sales shop 
(1892), and then manufacturing and selling their own design of bicycle (1896). This venture was so successful that they 
were able to use the funds generated to support their aeronautical investigations. They followed the flights of Lilienthal, 
through the news reports, and it seems that his death was one of the main events that spurred their aim to construct a 
controllable aircraft. In 1899, Wilbur wrote to the Smithsonian Institute requesting all the relevant background information 
(describing the work of, for example, Cayley, Chanute and Lilienthal). They first followed Lilienthal, despite his tragic 
death using hang-gliders, by designing and building gliders in order to learn how to control flight safely. Throughout their 
approach to solving the ultimate problem of manned flight, they were absolutely systematic and thorough.
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The first task they addressed was where to carry out their flight tests. With the advice of Chanute (from France), and the 
weather data they had obtained from the US Weather Bureau, with specific information from the government meteorologist 
stationed at Kitty Hawk (North Carolina), they chose this location. They made numerous glider flights – many unmanned – 
during 1901-1903, gradually perfecting the control system. The manned flights, which the two brothers shared so that each 
would learn the relevant skills, involved the pilot laying prone across the lower wing – all their craft were biplanes – in the 
centre. Eventually they realised the need, when turning, to require differential lift on the wings, which they accomplished 
by twisting (wing warping); this is equivalent to the modern ailerons. But this alone produced a differential drag that 
caused the glider to rotate about a vertical axis, changing the direction of travel. So they added a fixed vertical tail, but 
then the glider would often not level off, and gradually slide sidewards into the ground. The solution, they found – and 
this was their most important discovery – was to move the tail (making it a rudder) and then to hinge the rudder to the 
warping. In short, they had discovered that directional control was provided by the wing warping (the ailerons), and the 
moveable rudder ensured the correct alignment of the aircraft in the turn and when straightening up.
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In addition to this fundamental breakthrough, they found that the data on aerofoil shapes, and the lift that they generated, 
was not sufficiently accurate or reliable, so they built a small wind tunnel (about 2m long) and, towards the end of 1901, 
conducted numerous, systematic tests on miniature wings and aerofoil shapes. They were able, by balancing forces, to 
measure both the lift and the drag of their models. Furthermore, they also designed, built and tested various types of wooden 
propeller. Finally, they needed a suitable engine to drive the propellers; they contacted several engine manufacturers, but 
none were able to produce the light-weight engine, with sufficient power, that they required. So, with the help of their 
shop mechanic (Charlie Taylor), they designed and built – in six weeks – an engine that satisfied their requirements. 
(Very unusually, the engine block was cast from aluminium – to keep the weight down – which in itself was a novel 
feature.) The resulting complete Wright Flyer (later I) had a wing span of 12.3m, weighed 274kg, with a 12-horsepower 
engine weighing 82kg.

They commenced flight testing on 14 December 1903, at Kill Devil Hills (at the edge of the Kitty Hawk area), but their 
inexperience led to some stalling and minor damage. They had tossed a coin to decide who was to pilot the aircraft first, 
and so it fell to Orville to make the first successful flight (37m and 12 secs) on 17 December; this was followed, on the 
same day by Wilbur (53m) and then Orville (61m). The final flight of the day was by Wilbur (252m and 59secs). After that, 
they made many improvements, and learnt much about how to pilot their craft, so that by November 1904, the Wright 
Flyer II had flown 536m in 40secs, and the Wright Flyer III flew 20 miles, staying aloft for 1/2 hour, in October 1905.

The brothers contacted the US government, and then those of Britain, France and Germany, with the aim of selling the 
idea – and an aircraft – to them, but nothing came of it. (The reason appears to be that the Wrights insisted on a signed 
contract before any demonstration flights had been made!) They did no flying in 1906-1907, as they negotiated with the US 
and European governments, but in May 1906 they were granted a US patent for their flying machine. This led, in 1909, to 
the completion of proving flights for the US Army; they demonstrated a two-seater aircraft that flew for an hour at a speed 
of 64km/h (and landed undamaged!). Their craft exceeded the required specification; they sold an aircraft for $30,000. By 
the end of 1909, they had formed the Wright Company, and then they sold their patents for $100,000, and received one 
third of the shares in a million-dollar stock issue, and a 10% royalty on every aircraft sold. (In 1910, they redesigned the 
Flyer, so that the horizontal elevator was at the rear, and wheels were added, although the skids were retained.)
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Wilbur died in 1912, after contracting typhoid following a trip to Boston. Orville continued as president of the Wright 
Company until 1915, when he sold it, moving to a grand mansion in Oakwood, Ohio. He died in 1948; he had been 
instrumental in the development of controlled, powered flight, and lived to see the dawn of the supersonic age. 
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Appendix 2: Check-list of basic equations

Coordinates 

 Cartesian : x u≡ ≡( , , ) , ( , , )x y z u v w ; 

 Cylindrical polars : x u≡ ≡( , , ) , ( , , )r z u v wθ .

Mass conservation (incomp.) 

 ∇⋅ =u 0 : 
∂
∂

+
∂
∂

+
∂
∂

=
u
x

v
y

w
z

0 ; 

 

Euler’s equation

 

i.e. 

and

Navier-Stokes equation
D
D

u u Ft p= − ∇ + ∇ +1 2
ρ ν

Bernoulli’s equation

  on streamlines; 

Laplace’s equation

 ∇ =2 0φ  : 
∂
∂

+
∂
∂

+
∂
∂

=
2

2

2

2

2

2 0φ φ φ
x y z

 ;

 

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
2

2 2

2

2

2

2
1 1 0φ φ φ

θ
φ

r r r r z
.
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Velocity potential 

Pressure equation
1 d ( )
2

p f t
t
φ

ρ
∂

+ ⋅ + + Ω =
∂ ∫u u  for irrotational flow.

Stream function 

u vx y+ = 0  : u vy x= = −ψ ψ, ; 

 
1 1 0
r

ru
r

vr( ) + =θ  : u
r

=
1ψ θ  , v r= −ψ  .

Vorticity (ω= ∇∧u )

Blasius’ theorem

 for forces :  

 

 for moments : 
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Appendix 3: Derivation of Euler’s equation (which describes an inviscid fluid)

This handout describes how we apply, in a mathematically careful way, Newton’s Second Law to a fluid. In this model we 
take the fluid to be acted on by a body force F (per unit mass) and by a pressure, p, the only internal force (so the fluid 
is assumed to be inviscid i.e. it is frictionless).

We consider an (imaginary) volume V, with a bounding surface S (and outward unit normal n), which is fixed in our 
chosen coordinate system and totally occupied by fluid; the fluid therefore, in general, moves across S, into and out of 
the volume V.
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The total force acting on the fluid in V (see §1.5) is

To apply Newton’s Second Law we must first appreciate that, simply because the fluid is in motion, fluid may cross S and 
enter V, thereby carrying momentum into V. If we compute the rate of change of momentum of the fluid in V (that is, 
the more correct statement of ‘mass× acceleration’), and subtract the rate of change of momentum contributed by the 
fluid entering V, any residual rate of change of momentum can come about due only to the action of forces.

The rate of flow of momentum into V across S is

since u n⋅ ∆s  is the volume flow (out) per unit time, and the mass flux this carries is ρu , the product being the 
momentum carried out; the change of sign then provides the momentum crossing into V.

The total momentum of the fluid in V at any instant is

 

and so the rate of change of momentum is therefore

since V is fixed in our coordinate system.

Thus Newton’s Second Law is written
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This equation is now expressed as a single integral over V, and so we first write 

  that is, in component form.

Then, by Gauss’ theorem, we have for the first component :

 

and similarly for the other two components. (Do not confuse the velocity vector, u , with the first component of this 
vector, u .)

Recombining the three components, we obtain

 

The full equation (*) now reads

 

and expanding the integrand on the left hand side yields

 

The second and third terms inside this integral are , by virtue of the equation of mass conservation. 
Thus we are left with

 

where we have introduced the material derivative.

Finally, if this is to be valid for arbitrary Vs that contain fluid, then we require

as we developed in a rather cavalier fashion in §1.6. This final equation is Euler’s equation, which describes the motion 
of an inviscid fluid.
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Appendix 4: Kelvin’s circulation theorem (1869)

The circulation is defined by ∫ ⋅=
C

dtK lu)( ; the simple closed curve C is defined by the points ),( tsXx = , where 

00 Ss ≤≤  maps out C (just once) and S0  is a constant.

Thus we have 

and now we take d dt  of this equation to give

 

But the curve C moves with the fluid, so ),( t
t

XuX
=

∂
∂

; thus we obtain

 

Further, if F is conservative and the fluid has either ρ  = constant or is barotropic (i.e. p p= ( )ρ ), then the material-
derivative term can be replaced (Euler’s equation) to give

 

if all these functions are single-valued in space (which is certainly the case for a physically realistic flow).

Thus K = constant around any simple closed contour that moves with the fluid; this turns out to be a result with far-
reaching consequences, some of which we shall meet when we consider aerofoil theory.
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Appendix 5: Some Joukowski aerofoils
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Appendix 6: Lift on a flat-plate aerofoil

The force, according to the Blasius Theorem for forces, is

 

 

Now the integrand here is

which has poles at ζ = ±0, a ; because there are no other poles, we may use any contour exterior to the plate (which 
is equivalent to taking a contour in the region where the fluid exists, just around the plate, for example – precisely what 
we need in order to find the force on the plate). The pole at ζ = 0  is an intrinsic element of this problem; the one at 
ζ = a  is accommodated by the Kutta condition i.e. the fluid velocities near here remain finite; the third one, at ζ = −a
, is not removable and so may imply that this special aerofoil cannot lead to a meaningful result. (Note that the aerofoils 
of interest have a rounded nose, so this singularity does not arise.) Let us evaluate this integral directly.

Based on the integrand, and using K aU= 4π αsin :

the residue at ζ = 0  is 

the residue at ζ = a  is 

the residue at ζ = −a  is 
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Thus the complex force becomes

and so X a U= −4 2 2π ρ αsin  and Y a U= 4 2π ρ α αsin cos .

These are the components of the force 4 2π ρ αa U sin  at right angles to the oncoming stream, precisely according to the 
Kutta-Joukowski: the flow at infinity in each plane is the same, as is the logarithmic singularity: the vortex of strength K− .

Comment

Because we may use any contour outside the flat plate – there are no other poles in the flow field – we may take the 
contour to be that approaching infinity: ζ →∞ . In this case, the integrand is written

and then the coefficient of the term ζ −1 is 2
2

U Ke ii− α
π

. Thus we obtain

X Y U aU a U− = × × = − +−i i i i e ii1
2

2 4 4 2 2ρ π α π ρ α α αα sin (sin sin cos )

,

exactly as above.
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Appendix 7: MAPLE program for plotting Joukowski aerofoils

This Maple program generates the streamlines for the complex potential flow which represents the uniform stream past 
a Joukowski aerofoil with circulation. The circle has centre zi0 and radius c, and zi0 can be chosen by selecting a and b; 
you may investigate the effect of changing a and b. The circulation is k, and the program selects this to ensure that the 
velocity at the trailing edge (ut) is finite.

You may wish to interpret the program, and relate it to the theory of the Joukowski aerofoil and the flow around it.
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Answers
All the exercises are numbered sequentially throughout the text. Any calculation that leads to an answer that is not provided 
in the question is given below; all other details are omitted. (We adopt the notation that A, B, … are arbitrary constants.)

1. (a) 1kT
R

γρ −= ; (b) 
1

1 1kT p
R

γ
γ−= .

2. (a) ( )11 (1 )T k a b
R

γρ ρ ρ−= + − ; 

(b) ( )1 1 1 1 1 1 11 (1 )T k p ak p bk p
R

γ γ γ γ γ γ− − −= + − .

3. 2( )p RT bRT aρ ρ≈ + − . 4. k RT= .

5. (a) 2y Ax= ; (b) 2 24x y A+ = ; (c) xy A= ; (d) txy A= .

6. (a) 0eatx x= , 2
0e aty y= ; 

 

(b) cos(2 ) 2sin(2 )x at at= − , 1
2cos(2 ) sin(2 )y at at= + ; 

(c) 
2 2

0etx x= , 
2 2

0e ty y −= ; 
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(d) 
21

2( 1)
0e tx x −= , 1

0e ty y −= .

10. (b) 2 24sin(16 ) 3sin(9 )x x− ; (c) ( ) 23 1
4 e zR R R −′ + .

12. (a) xy A= , 0ektx x= , 0e kty y −= , 0z z= ; 

(b) xy A= , 
2

0etx x= , 
2

0e ty y −= , 0z z= ; 

(c) ( )y x t A− = , 01 ( 1)etx t x= + + − , 0e ty y −= , 0z z= ; 

(d) txy A= , 
21

20e tx x= , 0e ty y −= , 0z z= ; 

(e) 2xy A= , 2x At= , yt B=  (cannot use condition on 0t = ); 

(f) 
4 24 ey tx A= , 

22 1
0 2e tyx At= , 

2 2 2
0y y t= + , 0z z=  (cannot use the given  condition on x at 0t = ); 

(g) 2 2 2x y ctx A+ = + , ( )0 0cos( ) sin( )x x kt y c k kt= + − , 

( )0 0sin( ) cos( )y x kt y c k kt c k= − + − + , 0z z= ; 

(h) 
1

xy
Ax

=
+

, 
2

4
(1 )Axz B

x
+

= , 0

01
xx
kx t

=
−

, 0

01
yy
ky t

=
−

,  2 2
0 0 0(1 ) (1 )z z kx t ky t= − − ;

(i) 2 21 1
2 2sin( ) cos( )y y t z z t Aω ω+ + − = , 

sin( )sin cos
1

ty A t B t ω
ω

= + −
−

, 

cos( )cos sin
1

tz A t B t ω
ω

= − + +
−

;

(j) 2 2( 1)y z A+ − = , 0x x= , 0 0cos ( 1)siny y t z t= − − , 

0 0sin 1 ( 1)cosz y t z t= + + − .
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13. (a), (h), (j) are steady.

14. ( , , )x y zα β γ=u  (so steady),  y Axα β= , z Bxα γ= .

15. 2 2 3y t x Aα= + ,  
1 3

161
1

x t α
α

+ = + + 
,  1 361

1 3
y t α

α
+= +

+
.

16. 2 2e ty x Aα+ = , 
1 e tx α

α
α

=
+ −

, 21 (e 1)ty α α= + − ; steady for 0α = .

17. 1 lny t x t Aα α− = − + , ( 1) e tx tα α −= − + , 1
1

1
y

t α
α

α +
+

=
+ −

.

19. (a) 
2

etx A= , 
2 2e ty B −= , 

2 2e tz C −=  then 2 2 22f A B C= + + .

20. 2u x t= , v y t= − , w z t= − .

21. (b) ( )2 2 22 2 2 2
0 0 04 (1 4 )e ,2 ( 1 2 )e ,2 ( 1 2 )et t tx t y t z t− −= + − + − +x .

22. 
2 2,

1 1
x y
t t

 = − + + 
u , 4

62 ,
(1 )

ba
t

 
=   + 

x .

23. (a) (d), (e), (f) NO – the rest YES; (b) all YES; (c) 0α β γ+ + = .
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24. (a) 3f A r= ; (b) 3a b c= = = ; (c) 1, 0a b c= = = .

26. 4f xyzt= − . 27. 2α = .

28. E.g. ( sin cos , sin cos cos sin ,A kz B kz D kx C kx A kz B kz= + + + −u  sin cos )C kx D kx− + .

30. ( )w u nv m= − .

31. (a) 
1 ( 1)

0 0
0

11 g z
p

γ
γρ ρ ρ
γ

−
 −

= − 
 

, 
( 1)

0 0
0

11p p g z
p

γ γ
γρ
γ

−
 −

= − 
 

, 

0
0

0 0

11pT g z
R p

γρ
ρ γ

 −
= − 

 
, d ( 1)

d
T g
z R

γ
γ
−

= − ;

(b) 0e gz kρ ρ −= , 0e gz kp p −= , 0 0T p Rρ= ;

(c) 21
0 02 ( 2 )p p g z zρ α= + − ; (d) 

3 2
0 0

2 ( )
3

p p g z zαρ  = + − + − 
 

;

(e) 0

0

, 0
,

T gz R z H
T

T gH R z H
α
α

− ≤ ≤
=  − >

; 
( )

( )

1
0 0

1
0 0

0

1 0

1 exp

p gz RT z H
p z Hz Hp gH RT

RT g H

α

α

α

α
α

 − ≤ ≤
= >  −

− −  −  

;

const., 0T p→ →   as z →∞ ;

(f) 

1 ( 1)
0 0

0
0

11
1

g z
p z

γ
ργρ ρ

γ α

−
  −  = −    +   

 (relevant to Newton’s law of gravity).

32. 0 0k p ρ= , 0
0

0
exp gp p z

p
ρ 

= − 
 

.

34. 0 0, ( )w x p p g u zα ρ α= = − +  (α is a free parameter).

36. Both are incompressible and 

37. 

38. 

with 2 23
0 4p aρω> .
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40. 2 2
yz

x y
φ =

+
. 41. 2 21

1 0 2 ( )p p u vρ= + − , 
2

21
2 0 2 2

( )u nvp p u
m

ρ
 −

= + − 
  

.

42. 2
1 0 040p p uρ= − , 2

2 0 04p p uρ= − ; 2
0 040p uρ> .

44. 0
0

1

Av u
A

= , 
2

20
0 02

1

1 1
2

Ap p gh u
A

ρ ρ
 

= + + −  
 

.

47. (c) 
1 ( 1)21

2
0

1 ( 1)M
γρ γ

ρ

− −
 = + −  ; (d) 

( 1)21
2

0
1 ( 1)p M

p
γ γ

γ
− −

 = + −  ; (e) 
121

2
0

1 ( 1)T M
T

γ
−

 = + −  .

48. (b) 
121

0 21 ( 1)T T Mγ
−

 = + −   so T decreases as M increases: refrigeration.

52. 0
0

1 2( ) 1 sin
2 2

gh t h t
h

π  
= + −      

.

53. 2 2 2 23
0 2cos( ) sin ( )p p an R nt a n ntρ  = − −  .

56. (a) 22K rπω= ; (b) 22K aπω= . 

57. (a) 32K r aπω= ; (b) 22K aπω= .

58. ( sin ,0,0)a sλ=u  (= 0 at 0,s π= ) ( ,0,0)yλ= ; 2K a λπ= − .

59. (a) 2 2 22 , 2 ( 2 )u Arz w A a z r= − = − − − , (0, 10 ,0)Ar= −ù ; 

(b) 2 2 5 2
3

( )
Brzu

r z
= −

+
, 

2 2

2 2 5 2
( 2 )

( )
r zw U B

r z
−

= +
+

, (0,0, )U→u  as 2 2r z+ →∞ ;
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60. 0( ) ( )
2

uu y y y h y
h

α
µ

= − − . 61. 0( ) ( ),
2

u y y h y p p x gyα α ρ
µ

= − − = + − .

62. 
0

0
0

1 e( )
1 e

v y

v hu y u
ν

ν

−

−
−

=
−

.

63. (a) e Vyu ν−= ; (b) 2exp 1 1 4
2
Vu t V yα αν
ν

  = − + +    
.
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64. 0 ln( )
ln
ww r R
λ

= . 65. 2 2 2 2
0

ln( )( ) ( )
4 ln( ) 4
g r b gw r b w b a

a bν ν
 = − − − −  

.

66. 
21 ln( )

ln 2
v a r aω  = +  

; 

 ( )
2

2 2 2 21 1
2 2

ln 2 ln( ) ( ) 1 2 ln 2 1 2 (ln ) (ln( ))
ln 2 ln 2 ln 2

a ap a p a a a aρ ω
   − = − + − −   
   

 ( )3 31
22

4 (ln ) (ln( ))
3(ln 2)

a a


+ − 


(and various levels of simplification are possible).

67. (c) 

(d)

68. 

70. 1
0 2

( )
(2 )

xh x
U

π
π

=
−

.
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71. (a) 0ff f′′ ′′′+ = , (0) (0) 0f f ′= = , 22f λ′→  as η →∞ ; any numerical solution, 

using (0) (0) 0f f ′= = , and any (0) 0f ′′ ≠ , will generate some f ′  as η →∞ ;  set this value equal to 
22 λ , determine λ and then rescale the numerical  solution to find the solution to the original problem.

(b) 2( ) 0fg g gg′ ′ ′′+ + = ; (c) (2 ) 0a F F Fη ′′ ′′′− + + = ; (d) 2 30C B= − .

72. (b) (0) 0, 1f f= →  as η →∞ .

73. (b) 02(0) , (0) 0, 1
1

Vf f f
m

′ ′= = →
+

 as η →∞ ; (c) 2( ) 0C Dφ η η φ′′ − + + = .

74. (b) 
2

0w
z z
∂

=
∂ ∂

 so ( ) ( )w F z G z= + . 75. 
4

2
2

1 cos(2 )
2

aU r
r

φ θ
 

= − +  
 

.

76. (a) 2 , 2u kx v ky= = − ; (b) 3 2 3 2( 3 ) ( 3 )A x xy B y x yφ = − + − .

77. (b)
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78.

79. sin
2 2
m mUr θθ
π

+ = ; (c) 

(d)

  

80. 2logw Uz iaU z Ub z= − −  (uniform flow + line vortex &  dipole both at the origin).
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81. cos i sinz a bθ θ= +  then ( ) cosw U aa bb θ′ ′= − .

82.

83. 
241 1

4
r K aU
a aU K

π
π

   = ± −     
.

84.

85. 2 2 2log ; 2
2
m z aw x y a ay

z a
λ

π
− = + − = + 

 so 2 2 2 2( ) (1 )x y a aλ λ+ − = + .

86. (a) 
2 2

2log
2
m z aw

zπ

 −
=   

 
; (b) 2

1
2

w
z

γ
π

→ −  2( )a mγ = .

87. log
2
m z aw Uz

z aπ
+ = +  − 

 with stag. pts. at 2 amz a
Uπ

= ± + .

88. 2 2
i log
4
K zw

z aπ
 =  

− 
 with stag. pts. at i 3z a= ± .
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89. 
2 2

2 2log
2
m z aw

z aπ

 −
=   + 

.

90. (a) 
2 2

2 2
3log , , 0

2 104
m z a mw u v

az aπ π

 +
= = =  + 

;

(b) 
2 2

2 2
4log , 0,

2 2( i )
m z a mw u v

az a aπ π

 −
= = =  − − 

;

(c) 
2 2

2 2log , 0,
2 5( i ) 4
m z a mw u v

az a aπ π

 −
= = =  − − 

;

(d) 
2 2

2 2log , , 0
2 2( )
m z a mw u v

az a aπ π

 +
= = =  − + 

.
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91. ( )2 2log
2
mw z a
π

= − . 92. ( )4 4log
2
mw z a
π

= − .

93. ( )3 3 3i 3 3 3ilog ( e )( e )
2
mw z a z aα α
π

−= − − .

94. 0 0
0

0 0

( )( )log ( i )
2 ( )( )

z z z zmw z a b
z z z zπ

 − +
= = + − + 

,

 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2( ) 2 ( ) 4 4 ( )x x y a b xy x y a b b y x y bλ  − − − + = − − − − + −  .
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95. 
2 ilog

2 2 i
m z a bw

z a bπ
+ − =  − − 

; at 2 2
2 10 : , 0

4
amz u v

a bπ
= = =

+
; 

 new flow 2 2
4 1 , 0

4
amu v

a bπ
= =

+
.

96. 
i ilog
2 i
K z bw

z bπ
− = −  + 

. 

97. 
2 2 2i

2 2 2i
i elog
2 e
K z aw

z a

α

απ −

 −
= −   − 

. 

98. 
i log
2
K z aw

z aπ
+ =  − 

; 
22 2 2 2 2 2 2 2( ) 4 ( )x y a a y x a yλ  + − + = − +  .

99. The complex velocity in addition to the singularity at 0z z=  is 

0 0 0 0 0

d i 1 1 1
d 2 2
w K
z z z z z zπ

 
= + − − +  ; 

2 2 2 3

32 2 2

( )d
d ( )

Y X X YY Y Y
X X XX Y X Y

 − + = = = −
 + 



 .

100. (a) 
2

ie aU
z

α ; (b) log z− ; (c) 
2

log ia b
z

 
+  

 
; (d) 

2
i log ia b

z
 

− +  
 

; 

 (e) 
i

2
e

ia z a b

α−

− +
.
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101. (b) Unit circle, mapped in the reverse direction; 

(c) 1 iea a
b

αζ ζ − −= −  (a circle for a b≠ ); 

(d) 1 iea αζ ζ − −= −  (a straight line).

102. 1
2M ρ= −

21 d dZ
2 d

C

wM Z
Z

ρ
   = ℜ −  

   
∫�( )2

2 12 i 2Ua aπ +  
 and then 0M = .

103. 
1
2( 2 )( )

log
2

z a z amw
zπ

 − −
=  

 
 

; (b) force is equal and opposite to that on the 

 circular cylinder.

104. 
2

2
1 ( 0), 0

2 ( 1)
mX Y
a n n

ρ
π

= > =
−

.

105. 
2 2

log ( i2 )( 2 ) i2 2
2
m a aw z a z a a a

z zπ

   
= − − + −         

; 

 
2 219 13,

102 204
m mX Y

a a
ρ ρ
π π

= = − .

106. 
2 2

log ( 2 )( 3 ) 2 3
2
m a aw z a z a a a

z zπ

   
= − + − +         

; 
2 2 1

2 24 42 6
m k kX
a

ρ
π

 
= − + −  

 
.

109. bζ χ+ = : 
2( ) ,a bz b aχ χ

χ
−

= + − = . 

110. 
2

i ie e cW U Uα αζ
ζ

−= + .

111. 
d cos
d
w U
z

α→  as 0θ → .

112. 24 sinr Uπ ρ α  per unit length; 
2ah r a a

r
= + − →  as → .

113. 26 sina Uπ ρ α  per unit length.
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115. (a) 4 sinK aUπ α≈ ; (b) 24 sinUK a Uρ π ρ α≈ ; 

 (c) stag. pt. at 2 cos 2x a α≈ − , 2 sin 2y aε α≈ − ; (d) 
2 sin0, Uu v α

ε
= ≈ .
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