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Preface

This book gives the solutions to the exercises at the end of each chapter of my book “Essential
Electromagnetism” (also published by Ventus). I recommend that you attempt a particular
exercise after reading the relevant chapter, and before looking at the solutions published here.
Often there is more than one way to solve a problem, and obviously one should use any valid
method that gets the result with the least effort. Usually this means looking for symmetry in the
problem — for example from the information given can we say that from symmetry arguments
the field we need to derive can only be pointing in a certain direction. If so, we only need to
calculate the component of the field in that direction, or we may be able to use Gauss’ law or
Ampere’s law to enable us to write down the result. In some of these exercise solutions the
simplest route to the solution is deliberately not taken in order to illustrate other methods of

solving a problem, but in these cases the simpler method is pointed out.

The solutions to the exercise problems for Each chapter of “Essential Electromagnetism” are

presented here in the corresponding chapters of “Essential Electromagnetism - Solutions”.

I hope you find these exercises useful. If you find typos or errors I would appreciate you
letting me know. Suggestions for improvement are also welcome — please email them to me at

protheroe.essentialphysics@gmail.com.

Raymond J. Protheroe, January 2013
School of Chemistry & Physics, The University of Adelaide, Australia

Download free eBooks at bookboon.com



1 Electrostatics

1-1 The surface of a non-conducting sphere of radius a centred on the origin has surface charge
density o(a,0,$) = ogcosf and is uniformly filled with charge of density pp. Find the

electric field at the origin.

Solution

At the centre of the sphere the electric field due to the volume charge will be zero because
the contribution of a volume element located at r’ will be exactly cancelled by that of an

equivalent volume element at —r’, so we only need to consider the surface charge.

0 ~
B0.0.0) = - [ 123 (fas. (11)
1 2T pm R
:47r50a2/0 /0 o(a,8,¢)(—7)[a® sin HdOdd), (1.2)

1
N 47‘(’60

2m 1
/0 dd)/ldCOSH(ag cosf)(—r). (1.3)

Because of the symmetry of the problem, the electric field at the centre can only be in the

42z direction, and so we only need to find the z-component

2m 1
B(0,0,6) 5 = — / d¢/ dcos 0(c 08 0) (—F) - 7, (1.4)
dmeg Jo —1
1 1
= 47T€027T/1dC089(0'0 cos ) (—cosb), (1.5)
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E(O,Q,qﬁ)-ﬁz—ﬂ deosfcos?d = — 20 (1.6)
€0 .J-1 30
00 ~
E(0,0,0) = — 2% 3. 1.7
(0,0.6) =~ 722 (17)
1-2 A spherically symmetric charge distribution has the following charge density profile
Po (r <a)
p(r,0.6) = : (1-8)
po(rfa)=® (r=a)
where [ is a constant (2 < 8 < 3). Find the electric field and electrostatic potential
everywhere.
Solution

The charge density is spherically symmetric, with no dependence on € or ¢, so the electric

field must be in the radial direction and depend only on 7. This is the ideal case to exploit

Gauss’ law in integral form
b

1
jfE-dsz/pd?’r.
€0

Forr <a
14 T
47T7’2E7~ = ggﬂ_rgp(h E(I‘) = %I‘.
For r > a
2 14 3 1 " N2 B(,N\N=08 3../
dmr°E, = —gmatpy + — [ 4n(r')*poa”(r') " dr,
€03 €0 Ja
14 Arpoa® [(r')2=A7"
= ~rddpy + TPoa {(T) } ’
03 €0 3—-08 1,
4rpoa’ (1 (r/a)3=8 —1
Anr’E, = 2 (= — .
mre by e <3 + 3_5
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Essential Electromagnetism: Solutions Electrostatics

This electric field is due entirely to the charge distribution, and so must be conservative,
and we would expect that V x E = 0 as E is directed radially outward and so has no

circulation. It follows that:

Vir>a) = —%/@ ((r’)l—ﬁaﬁ—B - WT)_Q) dr’, (1.15)
™
R Bp;(cg— gz (3P0 = BB -2 (47

Vir<a) = Via)— 3p—;/arr’dr’, (1.18)
- o~ w4 29
_ (3+28-p)pa’ b2y (1.20)

3(3—=B)(B —2)e0 6o
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1-3 The electric field is given by E(r) = Eycos(z/zy) exp(—r/ro) T, where 2y and ry are con-
stants. Find the charge density.

Solution

In this problem the electric field is given in terms of z and r. We will need to write E in
terms of either Cartesian or spherical coordinates, and then use Gauss’ law in differential

form. Choosing spherical coordinates because E is in the radial direction,

p(r) =eoV - E, (1.21)
10|, rcosf r
= 50E0r—2§ [r cos ( o ) exp ( 7"0)] , (1.22)
eoFo [ (rcos@) ( 7“) 9 . (rcos&) cos f) < r>
= ——%— |2rcos exp | —— | —r“sin exp|—— |+
r 20 To 20 20 7o

9 rcosf r -1

r“ cos exp|—— || — ], (1.23)
20 70 70

_ eoEo cos <rcos0) exp (_ r> [2 tam (rcos@) rcosf r] ’ (1.24)
r 20 T0 20 20 To

1-4 If we had a point charge ¢ at the origin we might choose the reference point to be some
point at an arbitrary distance ry (usually infinity) from the origin. Then if we wish to
find V(r,0,¢) it would be convenient to have the reference point at ro = (rg,6,¢). Al-
though obtaining the potential in this case is trivial, and one would usually just write it
down, obtain the potential by carrying out explicitly the line integral for an appropriately

parameterised curve.

Solution
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path T’

rh .-

r'A) =(ro—N)T; dr' = —d\T; (0<A<rog—7). (1.26)
Then,
V() = / E(r (1.27)
r(A=ro—r)
_ / ¥(N)) - dr, (1.28)
r(A=ro—r) q
= < (=dAT 1.29
/ 471'60(7“0 - )\)2 ( I‘), ( )
= ————5dA 1.
/ 471'60 ’I”o - )\)2 ’ ( 30)
ro—"r
= 1.31
|:47T€0 7"0 - :|0 ’ ( )
q
_ - : 1.32
47T€0[7“0 - ( To — T')] 47T€0(7“0 - 0) ( )
q q
= — . 1.33
dmegr 4dregry ( )

Hence, if we set r9p = oo we get the usual potential for a point charge ¢ at the origin

Vir) = 4:507" (1.34)

10

Download free eBooks at bookboon.com
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1-5 The electric field is given by E(r) = Ejcos(z/zg) exp(—r/ro) T, where 2y and ry are con-
stants. Check whether or not the electric field is conservative. If it is conservative find
the potential, if it isn’t suggest how it may be possible to find the electrostatic part of the

electric field (if present) and the corresponding electrostatic potential V (r).

Solution

First we need to test whether or not the field is purely electrostatic, i.e. whether or not

it is conservative. If V x E = 0 then E is conservative. First write the field in spherical

coordinates
E(r,0,¢) = Egcos(rcosf/z) exp(—r/ro) T (1.35)
and use
1 d 0Ag] . 1] 1 0A, O ~
VXA = [%@m“é)‘a—gﬂ r ;[—smew‘a“’“@ 0
170 04,1 ~
1o - 5] 6 (1.36)

I WANT TO CHANGE DIRECTION

5,AND THE WORLD

3 )l

GOT-THE-ENERGY-TO-LEAD.COM

We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.

RWE

AR
The energy to lead

! Click on the ad to read more

Download free eBooks at bookboon.com


http://www.got-the-energy-to-lead.com

10E, ~

VxE=—79, (1.37)
= B0 exprro) S costrcos0/0) B, (138)
= —% exp(—r/ro) [—sin(r cos 0/ zp)|[—rsin 0/ z] q?), (1.39)
Ey . o
= o exp(—r/rg) sin(rcos 0/zp) sin 0 ¢. (1.40)

Since V x E # 0 the electric field is not purely electrostatic. However, from Exercise 1—3
we see that there is a non-zero charge density p(r, 0, ¢), and so there must be an electrostatic
component of the electric field. This electrostatic field and potential could be computed

from p using Coulomb’s law.

1-6

How much work must be done to assemble: (a) a physical dipole made of charge 4+¢ and
charge —¢q separated by distance d, (b) a physical quadrupole made up of four charges +q,
—q, +q and —q on successive corners of a square of side d, and (c) a physical quadrupole
made up of four charges —q, +¢q, +¢ and —q equally spaced apart by distance d on a
straight line (see diagram below).

a b c
(a) + (b) () g
d _ R . _
@ @ @ )
_ 1 2 3 4
Solution
The work done to bring together a group of N charges is
|
W= Z; @V (ry). (1.41)
1=

DN | =

_ 2
(o2 + ol - - (142)
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i = W3
@V = V3
Vo = V4
@Va = quVy
Hence,
W = —x4
2 " dreod
(c)
i =V,
aV1 = @uVy
Vo = 13
@Va = qV3
Hence,
1 q2
W —
2 % 41 Eod

(T 04T - aka(E2),
o (v2-2)
s (G h) - ek,
o (v2-2).

q 1
47‘(’60 (d +

R S N
2d  3d) 6 4dmwepd’
RO A W S
d 2d)  24wepd’
0 g
347T60d‘

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

1-7 (a) Use Gauss’ law in integral form to find the electric field due to charge density p(r) =

poexp(—r/ro), and (b) check that you obtain the original charge density by taking the

divergence of the electric field you find.
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Solution
Gauss’ law
%SE .S = %Qenc, V.E-= é. (1.53)
(a)
47r?E, = %/Or po exp(—r’ /ro)dx (') dr’, (1.54)
. B, = EIOO% [ro (—e”//m) (2r§ + 2ror’ + (r’)2)};, (1.55)
- 6(’)% (20 — roe™/™ (203 + 2007 +72) | (1.56)
(b)
p=¢eV-E (1.57)
bookbooncom
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1 d P0 _
= o er® { 22 [ = roe I (2 4% | (1.58)
-1
= % [—ro (7’0) (27“8 + 2ror + 7"2) — 1o (2rg + 27")] e*T/TO, (1.59)
= po exp(—r/ro). (1.60)

1-8 An isolated conducting sphere of radius a has net charge ). Find how much work was
done to charge the sphere using two different methods: (a) from the charge on the sphere

and its potential, (b) by finding the energy stored in the electric field.

Solution

From Gauss’ law

)0 (r<a) - = Q/4mepa  (r < a)
Er(r) _{ Q/4megr® (r > a) ’ vir) { Q/4meor  (r > a) ' (1.61)

(a) The work done to bring together a group of N charges, or a continuous charge distri-

bution p(r) is

= — r I'.3’I”. .
W‘zA@m“’”>d (1.62)

We can re-write this for a surface charge density

W= ;/a(r)V(r) ds, (1.63)
S
1 Q@ @ 2
= — 4 1.64
2 4ma? 4mega s (1.64)
Q2
= . 1.
8mega (1.65)

(b) The energy density stored in an electric field is

up(r) = %OE(r) “E(r). (1.66)
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Since the sphere is conducting E = 0 for r < a, and so

w="= E2dr, (1.67)
2 all space
0 2
€0 Q 2
= — —— | 4nred 1.
> | (47T60T2> mredr, (1.68)
_o @ /Oo r=2 dr (1.69)
2 (4meg)? T, ’ '
QQ
= ) 1.70
8mepa ( )
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2 Poisson's and Laplace's equations

2-1 Charge +q is located on the z axis a distance d/2 from a grounded plane conductor in
the z—y plane. Find how much work was done to bring the charge to its current location
using two different approaches: (a) the work done against the electrostatic force if the
image charge were real and there was no grounded conductor, (b) the work done against

the electrostatic force due to the induced surface charge

o(z,9,0) = o RS (2.1)

where z is the height of the charge above the plane.

Solution

(a) The force on charge +q at height +z due to image charge —q at height —z is

F = _ 2.2
(2) drreg (22)2 (2:2)
(0707d/2)
W(s = d/2) = —/ F . dr, (2.3)
(0707m)
2 00
q -2
_ 2.4
167['50 /d/2 ‘ dZ’ ( )
1 ¢
__ ! , 2.
2 47T€0d ( 5)
(2.6)

image charge g -q

(b) From symmetry arguments, the force on charge +¢q at (0,0, z) due to the real surface
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charge density o(r) will be in the z direction,

dF.(z) = dF(z)cos#, (2.7)
- W 7 (2.8)

- 47(;5})%2 % (RZ)3/2 R Zmrdr, (2.9)
dF.(z) = 4;322?6”” (2.10)
" dreo / 7“2 + 22 dr, (2.11)

47r50 [ r2 + 22)2 ]:O ’ (2.12)

F(z) = @ (2.13)

471'80 (2 )2

This is identical to the force on charge +¢ at height +z due to image charge —¢q, and so
the work done will be identical to that calculated in part (a).

2-2 Charge +q is brought near to two orthogonal grounded conducting planes, one correspond-
ing to the xz—2 plane and the other to the y—z plane. The charge is located at (a,b,0).
Find the work done in bringing the charge from infinity to its current location (a) by using
the method of images to find the potential at the location of the real charge, and (b) by

considering the force on the charge as it is brought from infinity.

Solution

(a) At the location of charge +¢ the potential can be calculated as if it were due to the

three image charges as in part (a) of the diagram below,

_q | 1 1 1
V= 4d7eg [ 2a + [(2a)2 + (25)2]1/2 2b:| ) (2.14)
N
IN ey - 4 [ 1 1
V=3 ;qﬁv(“) "~ 16meg [ at (a2 +b)2)1/2 b] : (2.15)
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Note, it is only the real charge that enters into the sum above.

a b
(a) (b) (@.00.0)
vl T
, L
_qo a +q b .
b (ab,0) I (©0,0,0)
0
X 0 a X
+qO O—q

(b) We first calculate the force on charge +q at its final position due to the induced surface
charge on the conductor as if it were due instead to the image charges as in part (a) of

diagram above,

(g [ —gx +q ax by —qy
B2 = ey [(2@2 a1 @) (<a2 et @y bz>1/2> " <2b)2] ’
7> a 1\ . b 1\ .

Fla.b2) = 152 [((cﬂ T 232 ?) X+ (m N b_2) y] - (216)
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Similarly, for the charge at some arbitrary position (z,y, z) the force is

2
_ g x [RPS Yy 1) .

The work done to move a charge from ry = (00, 00,0) to ro = (a,b,0) is W = — f:f F - dr,
and because the electrostatic field is conservative, this is independent of the path taken.

For convenience we split the path into two parts as in part (b) of the diagram above. Then

w=-[ B0 () - / F(z0,0) (~da), (2.18)

s L C ) e [ (i) ] (219

2 o] 00
q 1 1 1
_ 1 _ 2 2.20
16750{{9]}) +[ \/w2+62+$]a}7 (2.20)

q2

1 1 1
— _Z B 2.21
16meg { b (a2 + b)1/2 a} ’ (221)

which is the same as found in part (a).

2-3 Show that the potential outside a long conducting cylinder of radius a in the presence of
a long parallel line charge +\ at distance d is identical to the potential of the line charge
and a parallel image line charge —\ at distance d; from the cylinder’s axis towards the real
line charge (see diagram below). [Hint: draw lines to point P from the two line charges.
Use the cosine rule of triangles to write the two distances in terms of a, d;, d and ¢ and use
the formula the for potential due to a line charge, and superposition, to write a formula

for the potential at P. Finally require that V' does not change if ¢ changes.]

line charge
A

Solution
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Using the cosine law:
p? =a’+d? —2adcos ¢, p3=a®+d? — 2ad;cos . (2.22)

Adding the potentials at P of the real and image line charges,

1
V(a,9) = —5— [(+A) Inp1 + (=A) Inpo], (2.23)
TEQD
1
- In <p2> , (2.24)
27eg p1
11 a®? + d? — 2ad; cos ¢
=— =1 i . 2.2
27ep 2 n<a2+d2—2adcos¢> (2:25)
For this to be constant on the cylinder’s surface, 0V /d¢ = 0, i.e.
2+ d? — 2ad;
Q a” + d; ad; cos ¢ _o, (2.26)
0¢ \ a? + d? — 2ad cos ¢
2ad; sin ¢ (a® + d? — 2ad; cos ¢)2ad sin ¢
- i = (2.27)
(a® + d? — 2ad cos ¢) (a® + d? — 2ad cos ¢)?
2asin ¢ [d;(a® + d* — 2ad cos §) — (a® + di — 2ad; cos ¢)d] 0 (2.28)
(a2 + d? — 2ad cos ¢)? o ’
(—=d)d? + (d* + a*)d; + (—a*d) = 0. (2.29)
The solution of this quadratic equation is
di =a?/d or d; =d. (2.30)

The physical solution is d; = a?/d as d; = d corresponds to the image line charge —\ being
co-located with the real line charge +A — it is nevertheless a solution as V' = 0 on the

cylinder’s surface, as well as everywhere else!
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2-4 Find the capacitance of a two-wire transmission line comprising two identical parallel cylin-
drical conductors of radius a whose axes are separated by distance D (see diagram below).
You may use the result for the potential due to a line charge near a single cylindrical
conductor to find the potential difference by replacing the cylinders by equal but opposite
image line charges, +A and —\ (C m™!). The capacitance of two conductors with potential
difference V' and having charge +¢q on one and —q on the other is C' = ¢/V

Cylinder 1

Cylinder 2

a D

Solution

The potential at A (and conductor 1 surface) due to the image line charges is,

= Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/accentureCZintl

1

Va=-— e [(+A)Inp1 + (=) Inpo], (2.31)
A pP1

=— In(— 2.32

27'['50 . <p2> ’ ( )

A d—a A d—a A d
2meg n(a—di> 2meg n(a—cﬂ/d) 2meg n<a> (233)
Similarly, the potential at B (and conductor 2 surface) due to image line-charge —A\ is

A d

Vg = In{—-]. 2.34

B * 2meg " (a) ( )

Hence the potential difference between the two conductors is

Vea = (VB —Va) = A <d>. (2.35)

TEN a
But d = D — d; and d; = a®/d, so
1
d> —Dd+a®> = 0 (quadratic equation), .. d= §(D + v/ D? — 4a?) (2.36)

since the other solution, d = (D — v/D? — 4a?) is discarded because usually D > a and
d > a.

Hence the potential difference is

(2.37)

VeBa=—1In = —1In
TEQ TEQ

A d A (D +VD? - 4a?)

a a ’
By definition the charge per unit length is A, and the capacitance per unit length (F m~1)
is the charge per unit length divided by the potential difference, so that

c- M _ o ~ T (2.38)

VBA  In (ﬁ(DJr\/m)) In(D/a)’

where the approximate result is valid for D > a.

Download free eBooks at bookboon.com



2-5 A region of space is bounded by three plane conductors as illustrated. Find the potential

everywhere between the conductors.

V(05)=Y, VD=0

V(x,0)=0

Solution

The potential must be finite at * = 0 and drop to zero as * — oo, so we need the negative
exponentials for the functions in z. At x = 0 the potential must be zero at y = 0 and so we
need the sine functions for the functions in y. Furthermore V' (0,b) = 0 requires k = nx /b

so that the solution is
> nm nm
Vie,y) =Y A (——)‘ (—) 2.39
(x,y) nz:o n €Xp ; z | sin ; Yy ( )

The boundary conditions at z = 0 determine the coefficients A,, in this Fourier sine series

Z A, sin (Ey) = V. (2.40)
n=0 b
2 b . /nT
A, = 3 /0 Vo sin (Ty> dy, (2.41)
2 b nr \1°
_2y|_0b (nT 9.42
o[ (), 212
~J 0 n even, (2.43)
| 4Vy/nm 0 odd. '

2-6 Find the potential inside the rectangular region, 0 < x < a, 0 < y< b and 0< z < ¢ with
V(x,y,c) = Vo(x,y), and V=0 on the other 5 sides, where

Vo(z,y) = Vi sin (%) sin (37;1/) : (2.44)
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Solution

The potential for this case is of the form

(x,y,z Z Z ke sinh (g 2) sin (o x) sin (B y) , (2.45)
k=1 I=1
km Im
= B = > and 73 = a? + B2 (2.46)

The potential at z = ¢ may be written
Vo(z,y) = Visin (aqz) sin (Bsy) (2.47)

and so the coefficients in the series are

4V

Ay = ——————
M ab sinh (v ¢)

/ / sin (a1 z) sin (o ) sin (B3y) sin (G y) dz dy, (2.48)

and in this case there is only one non-zero coefficient
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4V . S
Ay = ———— d d 2.4
13 2 sinh (713 C)/o sin (a1 ) :C/O sin® (Bsy) dy, (2.49)
_ ‘4V1 [z sin(2a12)]” LY sin(283y)1° (2.50)
ab sinh (y13¢) | 2 4o 0 2 403 0
. a . b
_ '4V1 x  sin(27z/a) Ly sin(67y/b) (2.51)
ab sinh (y13¢) | 2 dmfa |, 2 127/b |,
4V [a  sin(27) b sin(6m)
_ a_ b_ 2.52
ab sinh (y13¢) |2 A /a } x {2 127/b (2:52)
i
Ay = —————. 2.
13 sinh (713 ¢) (2:53)

sinh <\/ (m/a)? + (31/b)> z>

V(z,y,2) =V
’ 1 sinh (\/(71/@)2 + (37/b)? c)

sin (%) sin (T”) . (2.54)

Actually, we could have written down this answer straight away after recognising that
Vo(z,y) was the product of one of the allowed functions of x having a« = a3 with one of
the allowed functions of y having 8 = B3, from which we obtain immediately the solution

in z with v = 3.

2-7

The potential on a non-conducting sphere of radius a is given by
V =Vp(3cos? 0+ cosf — 1), (2.55)
(a) Find the potential and electric field inside the sphere.

(b) Find the potential and electric field outside the sphere.

(c) Find the surface charge density on the sphere as a function of 6.
Solution

(a) Clearly we have spherical symmetry and no dependence on azimuthal coordinate ¢.

The general solution of Laplace’s equation with axial symmetry is

V(r,0,6) = <Ag ' + B, r*(f“)) Py(cos0). (2.56)
=0
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Since the potential must be finite as » — 0 we must have B, = 0 for all {. Before applying
the boundary condition it will simplify our working if we write it in terms of Legendre

polynomials
V(a,0,¢) = Vo[Pi(cos @) + 2P>(cos 0)]. (2.57)

Then, applying the boundary condition,

Z Ay a’Py(cos ) = Vp[Py(cos §) + 2P5(cos )], (2.58)
=0

and by equating coefficients of P;(cosf) we see that A; = Vp/a and Ay = 2V /a?, giving

2
Vin(r, 6, $) = [ZPl(COS 0) + 2%P2(cos 9)] Vo, (2.59)

. 2
Vi (r,0,¢) = [2 cosf + %(3 cos? 0 — 1)] Vo. (2.60)
The electric field is

~, 10V~ 1 ~
ov ov ov )7 (2.61)

Ein N A ) LoV

(x) <0rr+r 00 Jr7“sin(9 0¢

=— [1 cosf + 2—2(300829— 1)} Vor+ [1sin9+ G—Zcosﬁsine V06. (2.62)
a a a a

(b) Since the potential must tend to zero as r — 0o we must have Ay = 0 for all /. Again,

we write the boundary condition in terms of Legendre polynomials
V(a,0,¢) = Vo[P1(cos @) + 2P(cos 0)]. (2.63)

Then, applying the boundary condition,

> Bra " Py(cos 0) = Vp[Pi(cos 0) + 2Py (cos 0)], (2.64)
£=0
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we see that By = a?Vj and Bo = 243V}, giving

2 3
VOut(r, 9, ¢) = [i—zPl(cos 0) + 2%P2(cos 0)] Vo, (2.65)
a2 a3
VOUul(r. 0, ¢) = {72 cos 6 + r_3(3 cos? 0 — 1)] Vo. (2.66)

The electric field is

oV 10V~ 1 oV~
out _ _ | 2= -7 -z
B (r) = (6rr+r800+rsin98¢ )’ (2.67)
2 3 2 3 R
= {2(1—3 cosf + 3&—4(‘9)(3052 60— 1)} Vor + [a—3 sin 6 + 6a—4 cosfsinf| V0.
r r r r
(2.68)

(c) We use Gauss’ law in integral form for a small section of the sphere of area 65 located

at (a,0,¢) inside an infinitesimally thin gaussian pill box having an upper surface of area
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&S just outside the sphere and a lower surface just inside the sphere. For the upper surface
of the pill box the normal unit vector outwards from the pill box is n = r, whereas for the
lower surface of the pill box the normal unit vector outwards from the pill box is n = —T.

Applying Gauss law in integral form

E(a,0,4) (6ST) + E™(a,0,¢) - (—6ST) = 0(0)5S/eo. (2.69)
Hence,

o(0) = eol EP" (a,0, ) — E;"(a, 0, 9)], (2.70)

= 50% ([2cos6 + 3(3cos? — 1)] + [cos @ + 2(3cos® 6 — 1)]), (2.71)

:50% (3cos® + 15cos* 6 — 5) . (2.72)

2-8 Consider a point charge on the z-axis at z = 7. Find V(r,0,¢) in terms of Legendre

polynomials for r > 7.
Solution

There is no dependence of V' on ¢, so
V(r,0,¢) =Y (Apr™ + Byr~ ") P (cos ). (2.73)

n=0

The diagram shows the geometry for this problem.

X

The boundary condition for this problem will be the potential along the z axis for z > 1/,
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which we can obtain from Coulomb’s law

V(r,0,¢) = 47380 (r—r")71 (2.74)

s -

= e’ Y

(Z) (binomial series). (2.76)
n=0

On the z-axis § = 0 so P,(cosf) = P, (1) =1, and the general solution for the potential is

V(r,0,¢) = i (Anr" + Bnr*("ﬂ)) . (2.77)

n=0

Hence,

i(Anr + Bur " h 4MO —1Z< > (2.78)

n=0 n=0
giving
(r')"q
A, =0, B, = ) 2.79
47TE() ( )
yr— (D p : 2.
V(r>r0¢) = 47T€0 Z ) (cos 0) (2.80)

2-9 The potential on the surface of a sphere is
V(a,,¢) = Vi sinfsin ¢ + Vasin 6 cos 6 sin ¢. (2.81)

Find the potential inside the sphere.
Solution
The solution is of the form

0 l

V(r,0.0) =3 3 (Ao r’ + B ™) Yo (6, 0). (2.82)

=0 m=—¢
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The requirement that V(0, 6, ¢) is finite gives B; = 0 for all £. The boundary condition at

r = a can be re-written in terms of spherical harmonics as follows

V((I, 97 ¢) = ‘/1\/? [Yi71(07 ¢) - Y17—1(07 ¢)] + Vs i_g [Y271(07 ¢) - }/2,—1(97 ¢)] :

(2.83)
Hence, comparing coefficients we find
/2 2
A171 = V1 ?ﬂ- a_l, Al,—l = —Vi ?ﬂ- a_l, (2.84)
_ 2 _, _ 2r o
A271 = VQ 1—5 a -, A27_1 = Vé 15 a -, (285)

giving

2 [or

V(r,0,¢) = V1£\/?[Y171(9, ¢) =Y _1(0,9)] + Vz% 03 [Y21(0,¢) — Yo _1(0,9)],

2
= V1z sin @ cos ¢ + V2T—2 sin 6 cos 6 cos ¢. (2.86)
a a
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3 Multipole expansion for localised charge distribution

3-1 On the surface of a non-conducting sphere of radius a is surface charge density o(a, 0, ¢) =

oo cos® 0. Find the dipole moment of the sphere.

Solution

For a surface charge density o(r) the dipole moment is

p—/a(r)rdS.

In this example, the surface charge density depends only on 6 and so p = p,z where

Py = /U(r)zdS

:/ o(8) z2ma® sin 6 d,
0

1
= / (09 cos® 0) (acos §) 2ma? d(cos 6),
-1

1
5 [cos®0
= 2mwa’og ,
-1

4 3
Py = gﬂa 09-
4 3 ~
p = —ma’ogz.
)

(3.1)
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3—2 The quadrupole potential is

Vouad (1) = 477510r3 /p(r’)(r/)Q; [3(?.?/)2 _ 1} a3y, (3.8)

Show that it can be written as

3 3
1 1
Vauad(r) = Ineqr® 2 Z Z Qij 1T (3.9)

i=1 j=1

where the quadrupole moment tensor is
Qi — / p(x") [3rlr! — 633 ()] dPr'. (3.10)
[This exercise is easy using index notation.]

Solution

The quadrupole potential is

1 / / 21 =~ /2 3.7
Vouad (1) = pr—" /p(r )(r) 5 [3(1‘ T — 1] d’r', (3.11)
_ 1 /p(r’)?“z (7“/)21 [3(/1:/1\_/)2 _ 1] d37’/ (3 12)
dmegrd 2 ’ ‘
_ 1 /p(r/)l [3(1_ . I'/)2 o TZ (T/)Q] d3,,,/ (3 13)
dmeqrd 2 ’ '
1 / 1 ! / nN21 43,/
~ dregrd plr )5 [Bririryrj —riri ()] d*r, (3.14)
1 / 1 I~ AVARSE I
= megr® p(rrirjs [3rir] = &ij (r')*] d°r, (3.15)
1 1
Vauad(r) = Imegr® 2 Qijrir;. (3.16)

Index notation and the Einstein summation convention has been used above, but writing

the summation explicitly we have

3 3
1 1
unad(r) = W 5 ; ]:ZIQU Tz‘rj (317)
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where

Qij = /p(r’) [37”{7“} — 0ij (r’)Z] 3. (3.18)

3-3 A physical quadrupole is made up of four charges lined up along the z axis: -gg at (0,0,—2a),
+qo at (0,0,—a), +qo at (0,0,a) and -go at (0,0,2a). (a) Obtain the quadrupole moment.
(b) Find the potential at r = (b,b,0) for b > a.

Solution
charge # 1 2 3 4
-q +q | +q -q
@ | @ @
-2a -a 0 a 2a z

(a) The quadrupole moment tensor is

Qij = / p(x') [3rir] — 65 (')*] &' (3.19)

~
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For N point charges this becomes

N
k] [k
Qi = an [3rr = o ()2 (3.20)
k=1
where 1, = (r[lk],rgk],rgk]) is postion of charge g.
Since rgk] = rgk] = 0 for all four charges as they are on the z axis, the quadrupole moment

tensor is diagonal with only Q11, Q22 and Q33 being non-zero,

4
QH = qu [3 Xx0x0— (511 (T[k})ﬂ s (3.21)
k=1

= () [-(=20)’] + (+0) [-(—0)’] + (+0) [-(2)*] + (-9)[-(20)’]

(3.22)
Qu1 = 6ga’. (3.23)
Similarly,
Q22 = 6ga”. (3.24)
4
Q33 = qu [3 X 'r:gk] X rz[,)k] — 033 (r[k])Q] , (3.25)
k=1
= (=) [3(=2a)” = (20)*] + (+9) [3(—a)* — (a)’]
+ (+4) [3(a)” = (@)?] + (=q) [3(20)* = (20)°], (3.26)
Qa3 = —12qa”. (3.27)
6qga’® 0 0
Qij = 0 6ga® 0. (3.28)
0 0 —12ga®
(b) The potential for r >> a can be approximated by the quadrupole potential
1 1838
Vauad (r) = Iregrd 2 Z Z Qijriry- (3.29)

i=1 j=1

Only Q11,Q22 and @33 are non-zero, and for r = (b,b,0) the distance from the origin is
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r= \/ib, so that

1 1
Viwad(0,0,0) = ————— =~ [6ga® x bx b + 6ga® xbx b — 12ga® x 0 x 0] ,
quad (b, b, 0) Ireo(v/30)5 2 [6ga qa qa ]
(3.30)
3qa’®
S 3.31
81/ 2e0b3 (8:31)

3-4 Charge —q is located at the origin and charge +q is located at
(x,y,2) = (asin Oy cos ¢g, asin Oy sin ¢g, a cos bp).
(a) Find the the non-zero moments of the multipole expansion of the potential in Cartesian
coordinates, i.e. ¢, p, Q;; (if non-zero), and use these moments in the multipole expansion
in Cartesian coordinates to find the potential at (z,y, z) = (rsinf cos ¢, rsin§ sin ¢, r cos 0)
where r > a.
(b) Find the non-zero moments of the multipole expansion of the potential in spherical

coordinates, i.e.

Qem = / Vi (0, &) p(x')d?r (3.32)

and use these moments in the multipole expansion in spherical coordinates to find the po-

tential at (r,6, ¢) where r > a. Compare the result with that from part (a).
Solution

The net charge (monopole moment) is zero. There are two equal but opposite charges and
so we have an electric dipole moment, and no higher moments.

(a) In Cartesian coordinates

p = (—¢)(0,0,0) + (4q)(asin y cos ¢y, a sin Oy sin ¢y, a cos Oy), (3.33)

= po X (sin Oy cos ¢g, sin Oy sin ¢g, cos Op), (3.34)

where pg = ga. The potential at (z,y,z) = (rsinf cos ¢, rsin@ sin ¢, r cosf) where r > a
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is

Vir) = 4775107«2 p-T, (3.35)
= pr— (sin 6y cos ¢y, sin Oy sin ¢, cos Hy) - (sin O cos ¢, sin O sin ¢, cos ), (3.36)
= pr—— (sin @y cos ¢ sin 6 cos ¢ + sin Oy sin ¢g sin O sin ¢ + cos Oy cos ), (3.37)
- 47TZ:;T2 [sin 6 sin 6 (cos ¢ cos ¢ + sin ¢g sin @) + cos B cos 6] , (3.38)
= Inegr? [sin O sin 0 cos(¢pg — ¢) + cos Oy cos 0] . (3.39)

(a) In spherical coordinates the multipole moments are given by

q@,m = /Yzm(el’(ﬁ/),r/fp(r/)d?)r/. (340)

Writing the charge density using Dirac delta functions in spherical coordinates we have
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6(r —a)d(0 —0p)d(¢p — ¢0).

r2sin 6

p(r) = —qd(r) +q

(3.41)

There will only be dipole (¢ = 1) multipole moments

2 _
Q- 1—/ / / ,/—smeew ao(r )5(2 00)0(9 = ¢0) » 2sin Odr d6 d,
r2sin 6
Q1= aqwsfsm%e (3.42)
2 _ _ —
qlo_/ / / \/—0059 90(r = )30 = 90)(6 = 90) 2 5 g 4 ds,
r2sin 6
q10 = aq/ Z cos bp. (3.43)
27 ™ 00 _ _ —
an =/ / / )2 gingeiey P =200 = 00)0(6 = $0) 2 ;1 g 4 g,
o Jo Jo 8 r2sin6
3 . i
q11 = —aqy/ 5— sinfpe 0. (3.44)
8

The potential for > a will then be the same as in part (a),

q€m _(£+1)Y 4
V(r,0,0) = goz ; 51 tm(0,9); (3.45)

35 7-2 [\/ sin fpe’® \/—smﬁe 0 4 \/—COSHO\/—COSG
0
3 . _ 3 .
+4/ 8781I1906 0,4/ 8—7Tsm06 ¢] , (3.46)

_ %3 0 singei@o—9) 4 5
= 5. [87r sin Oy sin fe + 1 cos By cos 0
+ 3 Ginfsin ee—iwo—@} , (3.47)
8T
[sin Oy sin 6 cos(¢pg — ¢) + cos by cosb)]. (3.48)

 Awegr?
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4 Macroscopic and microscopic dielectric theory

4-1 A dielectric sphere (dielectric constant K) of radius a is placed in an initially uniform
electric field Eg. (a) What are the boundary conditions on V, E and D for this problem.
(b) Find the potential everywhere. (c) Find E, D and P everywhere. (d) Find the dipole

moment of the sphere and the surface polarisation charge density.

Solution

(a) The boundary conditions at the surface of the sphere are that Ej, D and V are
continuous across the boundary. In addition the electric field very far from the sphere

must equal the initial field. Defining this to be in the z-direction,

E(r>a,0,¢) = Eoz, (4.1)
V(r>a,0,¢) = —Epz = —Egrcosf = —EorPi(cosb). (4.2)

Since the potential has not been specified anywhere, we are free for convenience to set
V(0,6,¢) =0.

(b) This is a problem with spherical symmetry but with no dependence on ¢. Hence, we

can write down the form of the potential

V(r,0,6) = (Ag r’ + B, f(”l)) Py(cos0). (4.3)
/=0

So that Vi, is finite inside the sphere (containing r = 0), we must have all Bé“ = 0.
Similarly, so that Vo is finite outside the sphere we must have all A" = 0, except as
needed to give V(r > a,0,¢) = —EorPi(cosf), i.e. A" = —Fj. Hence

Vin(r,0,¢) = Z AR Py(cos 0), (4.4)
=0
Vout (7,0, ¢) = —Egr! Py (cos 0) + Z B (1) py(cos ). (4.5)
£=0

Applying the boundary condition on V at r = a, and remembering that we set V (0,0, ¢) =
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Y AP a'Pi(cosf) = —Ega' Pi(cosf) + Y B a” " Py(cos ), (4.6)
(=0 £=0

Ala = —Epa + B"a ™2 (4.7)
with all other coefficients zero. Hence, we can now write the form of the solution as

Vin(r,0,¢) = A"r cos 6, (4.8)
Vout (1,0, ¢) = —Eqr cos § + B"r =2 cos 6. (4.9)

Next we apply the boundary conditions on E and D at r = a,

1 0V ~
Ej=—-—-— 7] 4.1
I r 08 |,_, (4.10)

AP sin = —Fysinf + BY"a 3 sin 6. (4.11)

LR ELG
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D =—-¢ — r, (4.12)

r=a

—eAM cos ) = g9 Eqcos 0 + 260 B a3 cos 6. (4.13)

Equations 4.7, 4.11 and 4.13 are three equations in two unknowns, but we only need two

equations. Solving Eqs. 4.11 and 4.13 gives

— ; 3e
Bout — E 3 (5 80) , A — _F 0 . 4.14
1 oa (€+ 260) 1 0(€+ 2&_0) ( )
Hence,
3e0 3eo
Vin(r, 6, = —EBy———— 0 = —Ey——=, 4.15
(r,0,¢) O + 250)TCOS O (e + 220) ‘ (4.15)
(e—e0) o
Vout (T, 0, = —FEgrcosf + Epa® ~————r "2 cosb. 4.16
t( ¢) 0 0 (5 + 28()) ( )
(c) The electric field is E = —VV and the displacement field is D = ¢E
ov 10V ~ 1 0V ~
E(r0,¢)=——F—-—0————— ¢. 4.17
(r,9,¢) o o9 r sinf O¢ (4.17)
360
Ein = N Din = 5Ein- 4.18
(€ +2c0) (4.18)
— (8 B 50) 3 = . Y = .
Eouw =Eqg+ ———=a’FEy [2cosf0T +sinf 0| r >, Dgu = coEout- (4.19)
(€ + 2¢9)
The polarisation field inside the dielectric is obtained from P = D — ¢oE giving
3(e —€p)eo
P=(c—¢g)E=—"+— """ 4.20
c—eE= e (1.20)
(d) Since the polarisation field is uniform the dipole moment is
4 4 4 33(e —eo)eo
= -ma’P = -ma’——E,. 4.21
L S N (R P M (421)
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The surface polarisation charge density on the sphere is

3(e — €0)eo

op(a,0,¢) =P -n= (e + 220)

Eycosb. (4.22)

An electret, i.e. a piece of material with a permanent electric polarisation, is in the shape
of a sphere of radius a and has P(r) = Py. (a) Find the surface polarisation charge density
and the dipole moment of the sphere, (b) find V| E, and D everywhere, and (c) sketch the
field lines of E and D.

Solution

(a) We are free to choose the sphere to be polarised in the z direction. Then
opol(@,0,0) = P-n = (Pyz)-T = Pycos§ = PyPi(cosh). (4.23)

As the polarisation is uniform, we can obtain the dipole moment directly from P and the

sphere’s volume

4
p= §7ra3P0 Z. (4.24)

(b) We first need to write down the form of the solution for the potential (inside and outside
the sphere), and then apply the boundary conditions to fix the coefficients in the series for

V.

The form of the solution for the potential is

V(r,0,¢) = Z(Ag * + Byr~ D) Py(cos 6). (4.25)
=0

Examining the angular dependence of o, we realise that the solution will only involve
terms with ¢ < 1, then

Vin(r,0,¢) = Ag + Ayrcos, (4.26)
VOut(r 0, ¢) = Bor~! + Byr~2cos. (4.27)
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The potential must be continuous ar r = a so that

AO = B()a_l, Al = Bla_3. (4.28)

Gauss’ law can be used to provide a boundary condition on E, and for this we will need

the normal (in this case radial) components of the electric field, E, = —0V /or,

En(r,0,¢) = —Aj cosf, (4.29)
E°"(r,0,¢) = Bor~2 + 2B > cos 6. (4.30)

Gauss’ law applied to the a pillbox spanning r = a at (a, 6, ¢) is then,

E%"(a,0,0) — E™(a,0,9) = opoi(a, 0, d) /o, (4.31)
Boa 2+ 2B1a"3 cosf + A; cosf = Py cos /<. (4.32)

From this we see that By = 0, and then from Eq. 4.28 that Ay = 0, and that
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A1 = P0/3€0, Bl = a3P0/3€0. (433)

Hence, the potential is

. P P
Vr0.0) = oreost = 430
3
P
VOUl(r,0,¢) = 7a3500r72c089. (4.35)

The electric field is

ov . 10V ~ 1 oV ~

E(T’G’QS):_EI‘_;EB_rsin967¢¢' (436)
E"(r,0,¢) = — &2 - B (— cosfT + sin9§> (4.37)
T 3€0 380 ’
out CL3P0 -3 ~ . ~
B (r.0,0) = G (2 cosOF + smee) . (4.38)

The electric potential and field outside the sphere is identical to that of a dipole

1 p-T 1 pcosf
Vai = = 4.39
aip(r) dreg 12 dreg 12 ( )
Eqip(r) = pr—: (2 cosOT + sin 5) . (4.40)
and is consistent with p calculated earlier from Py and the volume.
Finally, the displacement field is given by D = ¢gE + P,
. 2
D"(r,0,¢) = gPO, (4.41)
3P R
D (r,0,¢) = %T73 (2 cos 0T + sin 6 0) . (4.42)

(c) To sketch the electric field lines we notice that inside the sphere E is constant and in
the —z direction, and that at the poles |E™| = |E°"|/2, and that outside the sphere it has
a dipole field. Also, electric field lines start on positive charge (either free or polarisation

charge) and end on negative charge (free or polarisation charge).

To sketch the displacement field we notice that inside the sphere D is constant and in the
+2Z direction, at the poles that |D™"| = |D°"|, and that outside the sphere it has a dipole
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field. Also, since there is no free charge present the field lines of D must form closed loops.

@ C difp ) C diie

4-3 The space between two concentric conducting cylinders of radius a and b > a and length

L > b is filled with a dielectric with permittivity €. The inner and outer conductors are
held at potentials V, and V}, respectively. Find: (a) E, D and P everywhere; (b) the po-
larisation surface and volume charge density everywhere, and the net polarisation charge;

(c) the free charge on the inner and outer conductors, and the capacitance.

Solution

conducting
cylinders
length L

(a) We start by solving Laplace’s equation in cylindrical coordinates with no dependence

on ¢ and z

1d dv

——(p— | =0. 4.4
(%) (1.43)

Integrating, we get

av

p— = A, /dV:A @, o, V=Alnp+ B. (4.44)
dp p
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Essential Electromagnetism: Solutions Macroscopic and microspcopic dielectric theory

A and B are integration constants to be determined from the boundary conditions at p = a

and p = b,

Vi=Alna+B, Vy=Alnb+ B. (4.45)

Solving for A and B,

_ (%_Va) — (Va_%) na
A= o ) B =Vt lmr” ) Ina. (4.46)
V(p) = Vot (Vi — V) 200/0). (4.47)

In(b/a)
The electric field will be present only between the inner and outer conductors

dv . WV, —Va)

1.
&° = T e P )

Since the dielectric is linear the displacement and polarisation fields, again only between

the inner and outer conductors, are
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_ o (Va—W) 1.
D=cE = EW ;p, (4.49)
(Vo = W)

P=D-cE = o)y

p. (4.50)

(b) The volume polarisation charge density is

19
W=-V-P = —=—(pP,) = 0. 4.51
Ppol pap(p ») (4.51)

~

The surface polarisation charge density is oo = P - 1,

male) = (e 1pp = (e i L (452)
7o) = €~ 2 15 (B) = — - [ (4.53)

The net polarisation charge is
oot = L X [2ma x apoi(a) + 2b X (b)), (4.54)
— L(e— 50)(3(;/:;’) <QZ“ . QZb) = 0. (4.55)

(c) We obtain the free charge present on the conductors using Gauss’ law from which

or=D-n,
o WVa=Ww) 1. o (Va=W)1 _ (Vo — Vi)
of(a) = 5W PP = 5W o qf(a) = QWLsm, (4.56)
- Va=V) 1 (Va—Vp) 1 _ (Vo —Vp)
of(b) = €W P (=p) = _€W 3 qr(b) = —QWLgm-
(4.57)
Hence, the capacitance is C = q7/(Va — Vj),
21 Le
C= i (4.58)
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4-4 A spherical capacitor is filled with two different dielectrics with permittivities £1 and €9 as
shown in the diagram. The capacitor is charged such that charge +¢ is on the inner con-
ductor. Find: (a) D, E and P everywhere; (b) the polarisation surface and volume charge
density everywhere; (c) the net polarisation charge; (d) the potential difference between
the inner and outer conductor, and the capacitance of the capacitor.

conducting

SEhericaI
shells

Solution

Because of the spherical symmetry we can use Gauss’ law in integral form to find the

displacement field between the conductors

412D, = +q, D(a<r<ec,8,¢) = ﬁqﬂ? (4.59)

The electric field is E = D/,

ﬁi‘\ ((I<T<b)

E(r,@,@z{ 1.t (b<r<ec)

4meor?

(4.60)

The polarisation field is P = D — ¢yE,

P(r6,¢)={ ™\ . (4.61)

Ppol = -V.-P = *77(T2Pr) = 0. (462)

The surface polarisation charge density is opol = P - 11, and each of the two dielectrics will

Download free eBooks at bookboon.com



Essential Electromagnetism: Solutions Macroscopic and microspcopic dielectric theory

have surface polarisation charge at its inner and outer radii. Hence,

ol(a) = ﬁ (1-%)?.(—?) - —ﬁ’aQ (1—%), (4.63)

o) = ﬁ( _3)?.<+f> _ %(1__) (4.64)

o2(b) = # (1 - 2—2) F(-1) = —# (1 - i—;’) : (4.65)

o®)e) = EiicL—g)?«+ﬂ - L%Q(L—g). (4.66)
(c) The net polarisation charge is

tor = dmalolg)(a) + 478 [ol10) + o20)] + dnco(e), (4.67)

O O N T
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(d) The potential difference is V, — V., = — [T E - dr,

b b
q q g (1 1
Vo= - dr = dr = S0, 4.
Vo=V /c 4dmeor? " /C 4deqr? " 4rey <b c> (4.69)
“ q “q g (1 1
- - _ dr = dr = — [ = —=2]. 4.
Va =V /b 4dmeqr? " /b dmeqr? " 47eq <a b> (4.70)

g 11 1) 11 1
Vo= Ve = Am [51 <a b>+52 (b c)] (4.71)

Hence, the capacitance is
1 /1 1 1 /1 1\
C = 4n|—|~-—-=> - —= : 4.72
m [51 (a b) + €2 (b c)] ( )

4-5 A uniform slab of material with permittivity ¢, is suspended parallel to the zy-plane, and

has its lower surface at z = 0 and its upper surface at z = d. Outside the slab there is
a uniform electric field Eg = Ey(sinfpX — cosfyz). (a) Find formulae for E; D and P
in the dielectric, the angle between E in the dielectric and the normal to the surface, and
the surface polarisation charge density at z = 0 and z = d. (b) Find numerical values for
the case of Ey = 1000 V m™!, fy = 45° and ¢, = 2, and include a sketch showing field

directions.
Solution

A field line will bend as in the diagram.

V4
E0 09
€
d
€
0 E; !
0,
0
X
CAN

(a) The component of E parallel to the boundary is unchanged, and since there is no free
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charge the component of D normal to the boundary is unchanged
Eysinfy = E4 sin 61, eoEocos By = 1 Fq cos 0. (4.73)
The electric field is

E1 = E1 sin 012 - E1 COS (91/Z\ (474)
E; = EosinfoX — 2 Ey cos fgz. (4.75)
€1

Hence, from Eqs. 4.75 the magnitude and direction

E; = |sin® 6y + <Z)> : cos? 6, v Ey, f, = arctan <;1] tan 90) ) (4.76)
The displacement and polarisation fileds are

D, = aE1 = &1 Epsinfyx — g9Eycosbyz, (4.77)

P, = (D1 —¢E1) = (61 —¢€0)Epsinfpx — (81_5160)€OE0 cos 0y z. (4.78)
The surface polarisation charge is

opol(z,y,0) = +Pjcosby, opol(z,y,d) = —Pcosb. (4.79)

(b) Substituting for the case of Eg = 1000 V m™!, 6y = 45° and ¢, = 2, i.e. £; = 2¢¢ we
find

0, =634°, E;=791Vm™!, D =140x10"°%Cm2, (

P =7.00x10"? Cm2 (4.81
Opol (2,9, 2=0) = +3.13 x 1077 C m~2, (
Tpol (7, Y, 2=d) = —3.13 x 1077 C m~2. (

4-6 Derive the force on an electric dipole in a non-uniform electric field.

Solution
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Essential Electromagnetism: Solutions Macroscopic and microspcopic dielectric theory

Consider a physical dipole consisting of charge +¢ located at rp,s and charge —¢q located

at Ineg. Its dipole moment is p = gd where d = (rpos — Ineg). It follows that the force is

F = (+0)E(rpos) + (—¢)E(rucg),
— gAE
=q(XAE, +yAE,+zZAE,),
=¢q[xX(d-VE;)+y(d-VE,)+z(d- VE,)],
=q|(d- VE,X) + (d- VE,y) + (d - VE.Z)],
=q(d- VE),
= (¢d - V)E,

F=(p-V)E.

(4.84)
(4.85)
(4.86)
(4.87)
(4.88)
(4.89)
(4.90)

(4.91)
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4-7 The relative permittivities of Nitrogen, Argon and Hydrogen in gas (at 20°C) and liquid

phases are given below.

Element | Ny gas Ar gas Hs gas N liquid Ar liquid Hs liquid
Er 1.000546 1.000517 1.000272 1.45 1.53 1.22

http://www.kayelaby.npl.co.uk/general _physics/2_2/2_2_1.html

Use the Clausius-Mossotti formula to find the electronic polarisability, and compare the
results for the same elements in the liquid and gas phases. [You will need to look up any

constants and the atomic weights and densities required.]
Solution
We need to use the Clausius-Mossotti formula

3¢ (e — 1
_ 4.92
ol N (sr + 2) (4.92)

where N = p/(Aw), p is the density, A is the mean atomic mass, v = 1.66 x 10727 kg and
g0 =8.85 x 10712 F m~1.

Values of density in the liquid and gas phases, and the mean molecular weight have been
looked up in tables of physical/chemical constants and have been added to the table, and
the polarisability calculated using Eq. 4.92.

Element N gas Ar gas Hs gas N» liquid Ar liquid Hs liquid
Er 1.000546 1.000517 1.000272 1.45 1.53 1.22

p (kg m™3) 1.25 1.78 0.089 800. 1393. 67.8

A 14. 39.95 1. 14. 39.95 1.

Qpor (Cm?V~1) | 8.98x1074 1.70x107%0  4.49x10~* 1.01x107%0 1.89x107%0 4.44x10~%

The agreement in ape for the same element between liquid and gas phases is quite good,

the difference being at most 10%.
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5 Magnetic field and vector potential

5-1 Two parallel wires are separated by distance a and carry currents I; and I in the same
direction. Find the force per unit length of wire. Include a diagram showing the direction
of the force. If 1 = I =1 A and ¢ = 1 m, what is the magnitude of the force per unit
length?

Solution

/"B

g
Il N

The force on a circuit in a magnetic field is given by Ampere’s force law

Frnag = j{(Idr x B). (5.1)
For parallel currents as in the diagram, the force on length L of wire 2 is

I
F=LLB, = LI (5.2)

2ma

and is directed towards wire 1 as shown. The force per unit length is

F pohls

— = . 5.3

L 2ma (5-3)
If the wires are 1 m apart and each carry 1 A,

F 4rx 1077 7 1

T = 2 x 10 Nm™*. (5.4)

The amp is defined as the current flowing in two parallel wires 1 m apart such that the

force beween them per unit length is 2 x 1077 N m™".
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Essential Electromagnetism: Solutions Magnetic field vector potential

5-2 Using the equation for the vector potential in terms of the current density find the vector

potential of an infinite straight wire along the z axis carrying current 1.

Solution

We shall consider a long straight current along the z axis (=L < z < L) and obtain the
vector potential for cylindrical coordinate radii p < L, which is a good approximation for

the case L — co. Then

o Idr'

_ ol L dzz (5.6)
A J_p /22 + p?

_ 5 Mol 2, 2 L

=27 - [ln( 224+ p —i—z)] . (5.7)
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L VIP+pP+ L (5.5)
dm VL2 +p?—L
L V1+p2/L2+1 (5.9)
4m V1+p2/L2 -1 ‘
1+p?/2L7 + 1
Z— In ( 1 1 24 512 —_F 1) (1st 2 terms of series expansion)
4— ln ( 2/2L2> (provided p < L) (5.10)
_ ol [In(42%) — 21n(p)] (5.11)
4r
Alr) — _ pol ~ )
(r)=—-2 o In(p) + zC. (C is a constant.). (5.12)

Note that the value of C' has no effect on the magnetic field, and so it is convenient to write
A(r) ==z (uol/2m)In(p).

-3

We can add the gradient of a scalar field U(r) to A(r) without changing B(r). This is
called a gauge transformation. The “gauge” of the vector potential is determined by the
value of V - A. Show that in magnetostatics V - A = V2U(r).

Solution
V.Ar) =V Kﬁ/“‘(]‘;) d3r’> +VU(r)} , (5.13)
- ZL; V. <J(Rf/)> d*r' + VAU (r). (5.14)

We shall show that the integral is zero for a finite current distribution, i.e. for J(r — o0) =
0. We can use the product rule V - (aV) = Va -V +aV -V to expand the integrand

v. <J(]‘_;')> _v (;) ) + %V-J(r’), (5.15)
_v (;) L3(') + 0 (iff. is wr.t. unprimed coords.), (5.16)
S (;) J(r') (VR"=—V'R"=nR"'R). (5.17)
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Next use the same product rule but for primed coordinates V' (aV) = V'a-V +aV’'-V
to get

v (J(]’;/)> =V’ <]1%) Iy + %V’-J(r’), (5.18)
_v @) 30 + 0, (5.19)

since charge conservation in magnetostatics requires V - J = 0.

Then

!/ /
/ V. (J(r )> d*r' = —/ v (J(r ))d3r’, (5.20)
all space R all space R

= 72 o (J(ng>> -ds/, (5.21)

=0, (5.22)

since J(r’ — o00) = 0 for a localised charge distribution. Hence,
V-A(r) = V2U(r). (5.23)

In magnetostatics, it is convenient to choose U(r) such that V - A = 0 (Coulomb gauge).

54

(a) Find the vector potential of the constant magnetic field By = (BY, Bg, BY), (b) check
that the vector potential you find does give the desired magnetic field, (¢) find V - A and
check it is what is expected in magnetostatics. [Hint: first find the vector potential A(*)(r)
of the simpler constant field B?Z by writing down the components of ¥ x A®) in Cartesian

coordinates before appealing to the symmetry of the problem, and then integrating.|

Solution

(a) We first attempt to find A*)(r) which must satisfy

oAy oA 0
— =B 24
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A®)(r) must be symmetrical about the z axis which suggests that

AV 1, 0AP 1
S §Bz, oy T §Bz. (5.25)
Integrating we get
AG = 1o, a@ - Lpo
Hence,
A _Lipgoo g
=3 (Bzxy — Bzyx) . (5.27)
Similarly, or by cyclic permutation of x, y and z above,
1 ~
A®) = B (Bgyﬁ —BY% y) (5.28)
1 ~ ~
AW = (Bys% - Byr3), (5.29)
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so that the vector potential of By = (BY, Bg, BY) is

A = (A(I) + A(y) + A(Z))’ (5.30)
1. - ~
=5 [® (Byz — Bly) +3 (BYx — BYz) + 2z (Bjy — Byz)] (5.31)
1 1
= §B0 Xr = —51' X BO. (532)

This A(r) is not unique — we could add the gradient of any scalar field to A(r) without
changing B(r).

(b) Taking curl of the vector potential found above, this time using index notation,

1
VxA=-2Vx(rx BY), (5.33)
1
[V x Al; = _isijkngklmrlng (5.34)
1 0
= —5CkijCkim V1B, (5.35)
1
= _5(5il5jm — 0im6;0) V1B, (5.36)
1
= —5(5il5jmvj7“139n — 0im0;1V 1 By,), (5.37)
1
= _§(vm7"iB21 — VinBY), (5.38)
1
= =5 (riVmBy, + By Vinri = nVi B = B/Vin), (5.39)
1
= —5(0+ B/ —0-3B)), (5.40)
1 0
= _5(_232‘ ), (5.41)
[V x A]; = B}, (5.42)
V x A =B" (as required). (5.43)

We have used V -B? = 0, V,,7; = 0,5, BY constant, and V - r = 3 used in Eq. 5.39 above.
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(c) the divergence is

V-A:—%V-(prO),

V-

A

1
= —Evi {:‘ijk’r’ng,

1
2
1

eijk(BRVirj +1;ViBY),

—§€kingviTj + 0,

1
—§Bgskijvi7“j,

1
—iBg[V X 1),

0

(because V x r = 0),

and the vector potential is seen to satisfy Coulomb gauge.

(5.44)
(5.45)
(5.46)
(5.47)
(5.48)

(5.49)

(5.50)

5-5 A steady current I flows down a long cylindrical wire of radius b. Find the magnetic field

both inside and outside the wire.

Solution

We define the z axis to correspond the axis of the wire, and point out of the screen/page.

Then assuming the current density is constant inside the wire

J(r) =

I/(xb*)Zz (0<p<b)

0

(p>0)
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Essential Electromagnetism: Solutions Magnetic field vector potential

From symmetry arguments B must be azimuthal, i.e. B(r) = B (p)aﬁ We apply Ampeére’s
law to loops I'1 and I's in the diagram,

fB -dr = NOIencl- (5.52)
I
2mp1B(p1) = ompi —5  (loop T), (5.53)
2mp2B(p2) = pol (loop I'y). (5.54)
1/2762)p (0 < p <b),
(ol /2mp) e (p>b).
56 A semi-infinite solenoid of radius a, has n turns per unit length, extends from z = —oc to

z = 0 along the z axis and carries current [ in the +$ direction. Magnetic flux is confined

to the solenoid, but emerges isotropically from its end at the origin as shown below.

(a) On the cone of half-angle 6 with apex at the origin there is a circular loop (as shown)
with all points on the loop being at distance r > a from the origin. Find the magnetic

flux passing through this loop.

360°
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semi-infinite solenoid

(b) Find the magnetic vector potential at the point (7,6, ¢), and take it’s curl to find the
magnetic field. [The expression for magnetic flux through a loop in terms of the vector

potential may be useful here.]

Solution

a) The magnetic flux emerging from the end of the solenoid is the flux inside the solenoid,

®o = (uonl)(ma?). (5.56)

The flux emerges isotropically from the end of the solenoid at z = 0, so we shall need the

solid angle subtended at the origin by the circular loop, which is

0
0 = 27r/ sin@'dd’ = 2x[—cos#]) = 2n[(—cosf) — (=1)] = 2x(1 — cosb).
0

(5.57)
Then the magnetic flux through the circular loop is
Q 1 1 9
op = E@g = 5(1 —cosf)Py = 5(1 —cos @) (ponl)(ma®). (5.58)

(b) The magnetic flux through the loop is equal to the line-integral of the vector potential

around the loop

7{A LAl = Dp. (5.59)
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From symmetry arguments, since the current around the solenoid is only in the q?b direction,

the vector potential must also be in the 27 direction, and since the loop has radius r sin

Ay(r,0,¢)(2mrsinh) = 5(1 — cos )Py,
1 (1 —cos®)
Ay(r,0,0) = im@o-
(1 cosﬁ) ~
A .
(r,9,¢) = (47rsing) P
Taking the curl,
1 T0 94,1 . 1] 1 04,
B = A -
7 sin {89(51“9 #) - a¢] [sinﬁ 9
1[0 04 4
1 0 10
B rs1n089(smeA¢)r a ;87(741445)0
1 0 (1—cosf) .
- g ®
rsinf 06  (4nr) or + 0,
1 sind
~ rsinf (47r) or
%0
42

po(nlra?)
=T
47r?

0

~

Ay)| 0

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

This field has similar form to the electric field of a point electric charge. Hence, the end

of a semi-infinite solenoid appears as if it were a magnetic monopole of “magnetic charge”

nlma?.

5-7 By taking the curl of the vector potential for a magnetic dipole with moment m located

at the origin, find it’s magnetic field using index notation.

Solution

Download free eBooks at bookboon.com



Essential Electromagnetism: Solutions Magnetic field vector potential

Using index notation,

_ @ r
B(r) = {2V x (m X 7-3) (5.69)
,uo EklnMTn
Bi =12 e, (’”‘T—g) , (5.70)
o Vimyr 1
= 1 e ( i +mlrnvjr—3> : (5.71)
o mVry T\ .
= Eekﬁg’dn |: 7"3] + myry <_37“_4) -ej] , (5.72)
= O (5485 — i) mudjn (—3)r— (5.73)
A ilOjn in0jl 3 miry T 5 )0 .
_ Ko MiOpn — Mjdj; B 3(mirpry — mjrir;)
_ ko ( - - , (5.74)

Ho 3m; —m;  3[mir? — (m-r) 1]

g ( — - ) (5.75)
B =4 (3 DE eZ)_m"). (5.76)
(*

47
3(m-T)r — m)

B(r) = Ho

- (5.77)

s S
g

rff
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5-8 A circular current loop in the zy plane has radius a and is centred on the origin. It carries
current I in the ¢-direction. There is a uniform magnetic field B(r) = By(cos 6z + sin 0y)
present. By integrating the torque dN = r’ x dF on line element dr’ of the current loop
at 1/, find the torque on the entire current loop. Compare your result with the result you
would get by first finding the current loop’s dipole moment, and then applying the formula

for the torque on a magnetic dipole in a magnetic field.

Solution

X

A point on the loop and the corresponding line element on the loop are

r' = a(cospX +sindy), (5.78)
dr' = adp(—sinpX + cos ¢ y). (5.79)

The force on that line element is

dF = Idr' x B, (5.80)
X y z
=1| —adpsing ado cosd 0 (5.81)
0 Bysinf  Bgcosf
= laByd¢(cospcosfX + singcosy — singsinfz). (5.82)
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The torque on the line element is

dN =1’ x (dF), (5.83)

~ ~ ~

X y Z
= acos ¢ asin ¢ 0 (5.84)
laBydg cospcos ITaBydg singpcosd —IaBydeg sin¢sin b
=Ia’B, do |- sin? psin X + cos Psin @sin 0y
+ (cos ¢sin ¢ cos 0 — sin ¢ cos ¢ cos 0) z], (5.85)

= Ia®>Byde (—sin @ sin® $X + cos ¢sin ¢sin 0y). (5.86)

When integrating over ¢ we note that cos ¢ sin ¢ is an odd function and its integral from 0

to 27 will be zero, and so

2
N = —Ia’By sinf X / sin? ¢ d¢ (5.87)
0
1 1 27
= —Ia’Bj sinf X [2¢ ~3 sin ¢ cos ¢ (5.88)
0
= —Ina®By sinf X. (5.89)

Given that the dipole moment is m = Ita® Z, we expect a torque

N —m x B, (5.90)
= —Ima’By sinf X (5.91)

as just found using the force law.
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Essential Electromagnetism: Solutions Magnetism of materials
6 Magnetism of materials

6-1 Derive the following which are needed to obtain the magnetisation currents of a magnetised
object: (a) Identity for V/R™!,

V'R = +R’R. (6.1)
(b) Product rule for V x (aF),
V x (aF) = (Va) x F+aV x F. (6.2)

(c) Corollary to Gauss’ Theorem,

/Vde?’r:—fods. (6.3)
\%4 S
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Solution

(a) First, for the identity for V’R~! we shall start by deriving the more general case,

V'R" = ﬁail (=2 +(y—y)*+ (s — z’)2]"/2
45y [P (= - 2
b (=) =y (= 2 (6.4)
= %2 (@2 + -9+ -V 2@ -2)(-)
+ 55 [@=a)?+—y)+ (=2 2y -y (-
+ 25 (@2 + -y + ="V 2 =), (65)
= —n [X@@-2)+Fy—y)+z(z—2)] R" 2, (6.6)
— _ARR™?, (6.7)
V/'R" = —nR" 'R. (6.8)

Thus, for this exercise,
V'R™' = +R’R. (6.9)

(b) The product rule for V x (aF) is derived as follows using index notation,

[V x (aF)]; = e;xV;(aF}), (6.10)
= eiu(FVia + aV;Fy), (6.11)

— ciju(Va);Fx + agijpV;Fy, (6.12)

[V x (aF)]; = [(Va) x F]; + [aV x FJ,. (6.13)
V x (aF) = (Va)xF + aV xF. (6.14)
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Finally, re-arrange the product rule:

—(Va)xF = aV xF — V x (aF), (6.15)

F x (Va) = aVxF — V x (aF). (6.16)

(¢) We shall prove the corollary to Gauss’ Theorem by applying Gauss’ theorem for the

vector field ¢ x F(r) where c is a constant vector is

/V-(ch) Br = f(ch)-ds. (6.17)
\% S

Then we rearrange the right-hand side using the scalar triple product rule (¢ x F)-dS =
(F x dS) - ¢, and on the left-hand side we can integrate by parts using the product rule
V.-(cxF) = (Vxc)-F — (VxF)-c, giving

/V[(ch)-F—(VxF)~c] d%:yi(deS).c, (6.18)

—| | VxFd| -c = F x dS| -c, (6.19)
fvxped o= [frs

/VVde3r:—j<1iF><dS, (6.20)

as V x ¢ = 0 for ¢ being a constant vector.

6-2

A thin disc of magnetised material is coincident with the xy plane. It is of thickness s and
radius a and has magnetisation M = Mjyz. Find the magnetisation current, and from this
find the magnetic dipole moment of the disc. Compare this with what you would get by
multiplying the disc’s volume by M.

Solution
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6-3

The surface magnetisation current is

~

Kmag = Mxn = M()/Z\Xﬁ = M0¢. (6.21)

The net magnetisation current around the disc’s circumference is Iynag = sKmag = sMo,

and so the dipole moment is
m = (1a®)IyagZ = ma?sM. (6.22)

This is just the volume multiplied by the magnetisation field.

Consider a permanent magnet in the form of a short cylinder of radius a extending along
the z axis from z = —L to z = +L and having uniform magnetisation M = Myz. (a) Find
B and H at all points (0,0, z) on the cylinder’s axis, and plot B(0,0, z) and H(0,0, z) vs.
z. (b) Discuss whether the result obtained in part (a) obeys Ampere’s law for H in integral

form.

[ ]
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Solution

(a) Because the magnetisation field is uniform, there is no magnetisation volume current.
The magnetisation surface current Kpae(r) = M(r) x n is zero on the two ends, and

Kiag(r) = Mo on the cylindrical surface.

The Biot-Savart law gives the magnetic field due to an arbitrary surface current distribu-

tion:

B(r) = %; / [Kmag(r;fs | xR (6.23)

The diagram shows the contribution AB to the magnetic field at (0,0, z) due to the surface
magnetisation current in a small patch of the surface making up part of the strip of thickness
dz" at 2’. The components of AB due to the surface currents in different patches around
the strip which are not in the z direction will cancel each other out. This leaves only a

z-component for the contribution dB, due to the entire strip, so that

Ho (Kmagdz')(2ma)

_ 15
dB(0,0,z) = o 72 cos 'z, (6.24)
wo (Mdz")(2ma) a .
_ Mo a 2
ir R2 R (6.25)
Ma?d?'
dB(0,0,2) = — 1O L 2 (6.26)

2[(z — /)2 + a2]3/2Z'
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Hence, integrating over the entire cylindrical surface,

B(0,0,2) = /L

B(0,0,2)

Now, H = B/uo — M, and so

H(0,0,2) =

B and H are plotted below.

H,(0,0,2)/M, and B,(0,0,2)/u,M,

1.0

o
o

o
&)
————

©
o

L
o

poMa?dz’ .
1 2[(z = 2")2 4 a?]3/27
r L

poM z+ 2 -

2 V(2 + )2+ a? » ’
poM [ z+ L z—L .

2 | VErLZPra® JE-LP+d?|
Mo z+L _ 2—L ~
Mo 2+L _ z—L ~ ~

]
w

(b) Ampere’s law in integral form is

%H ~dr = If,encl,
r
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where I ¢nel. is the net free current through loop I'. Since there are no free currents the
integral must be zero for any closed path. We only know H on the z axis, and at |[r| = oo
where H must be zero because the source of magnetic field, in this case the magnet, is
localised near the origin. But we can construct a closed loop which has as part of it the
entire z-axis as follows: (0,0, —o0) to (0,0, 4+00) to (0,400, +00) to (0, +00, —oo) and back
to (0,0, —00). The integrand is zero except along the z-axis, so in this case Ampere’s law

in integral form is satisfied provided
[e.e]
/ H,(0,0,z)dz = 0. (6.32)

Examining the plot of H, vs. z above, it appears that the integral is indeed zero, as could

easily be checked by numerical integration.
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6-4 A cylindrical rod of radius a and length h > a is permanently magnetised along its length
which coincides with the z direction, i.e. M = Myz. (a) Find the surface magnetisation
current Kpae(r), and use it together with Ampere’s law to find B and H inside and outside
the rod (assume h — o). (b) The rod is now bent into a circle of circumference (h + 2L)
such that there is an air gap of width 2L < a. Plot B and H along the axis of the magnet
in the vicinity of the air gap for the case of a = 0.5 and L = 0.2.

Solution

\_/

(a) The surface magnetisation current density is Kmag(r) = M(r) x n, hence
Kumag(a,6,2) = MozZxp = My ¢. (6.33)

This surface magnetisation current is similar to the current in a tightly-wound solenoid,
and the magnetic field inside the rod can be calculated in the same way using Ampere’s
law 55 B - dr = pglenc. From the symmetry of the problem B inside the rod can only be in

the z direction.

For Amperian rectangular loop T' (see diagram) with one side of length §z inside the rod

at cylindrical radius p; and one outside at cylindrical radius ps

[B(p1,0,2) — B.(p2,0,2)] 0z = poMpdz. (6.34)

That this is independent of ps and applies equally to ps — oo (where B = 0) tells us that
B = 0 outside the rod. Again, since the integral is independent of p; the magnetic field

inside the rod is constant,

B(p< a, ¢7 Z) = MOMO/Z\ = MOM (635)

Download free eBooks at bookboon.com



Finally,

H - (/]Z) M =0 (6.36)

everywhere. Note that this result is for an (unrealistic) infinite magnetised rod, and that

near the two ends of the rod B would be different, and H would be non-zero.

(b) To find B and H on the axis of the magnet near the air gap we can use the information
that h > a and assume the magnet in this region is approximately straight, with its axis
being along the z-axis, and with the air gap extending from z = —L to z = +L. In that
case we can imagine that a short magnet of length 2L has been removed from an infinite

magnetised rod.

Using the principle of superposition, we can get B in the vicinity of the air gap by subtract-
ing the field of the short magnet of length 2L from the field of an infinite straight magnetised
rod with no air gap. For the short magnet we can use the results from Exercise 6-3 for the

magnetic field of the short magnet. Thus,

M, L —L
B(0,0,2) = poMoz — MO0 °t = 7 (6.37)
2 | VEz+L)2+a?2 /(z—L)?+a?
Now, H = B/uo — M, and so
2 4 a z— a
H(0,0,2) = VErDHa /D)l (6.38)
7 _ Mo 2+L . 2—L ~
Moz 2 [\/(Z+L)2+a2 \/<z—L)2+a2] z (sl <L)

B and H are plotted below. Note that the area under the plot of H,(0,0, z) vs. z appears

to be zero in agreement with Ampeére’s law in integral form for the case of no free currents.
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65 Consider a permanently magnetised sphere of radius a with uniform magnetisation M(r) =
Myz. (a) Find the surface magnetisation current density, and use this to find the magnetic
dipole moment of the sphere. Compare this with what you expect given the volume of the
sphere and the magnetisation field. (b) Find B and H at the centre of the sphere.

Solution
z
M
1 B
a
X
Y H
Kmag
(a) The surface magnetisation current density is
Kuag(a,0,2) = Mx 1 = MyZxT = Mysinf . (6.39)

The magnetic dipole moment of the surface magnetisation current distribution is

1

m= f r % Konag (1) dS. (6.40)

From symmetry arguments, the dipole moment must be m = m, z where

1
m, = Z- ;/ aT x (Mysin 6 ¢)2ma?d(cos 6) (6.41)
-1
27ra3M0 1 N ~
= —5 sinfz - (—6)d(cosf) (6.42)
—1
1
= 7m3M0/ sin? 0 d(cos #) (6.43)
~1
1
= 7ra3M0/ (1 — cos? ) d(cos ) (6.44)
~1
4 3
= zma M (6.45)

as expected.
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(b) We can use the Biot-Savart law to obtain the magnetic field at the centre of the sphere

B(0,0,0) = Z—O
I8

Kunag(r') X R
7{ Tds'.

From symmetry, this must be B(0,0,0) = B(0,0,0)z where

_ g0 [P (Mysing ) x (%)

B(0,0,0) = 2z ey 2 2ma?d(cos 0),
My [* o
= MO2 0/ sinfz- (—6)d(cosb),
~1
M, 1
= K 0/ sin? @ d(cos f),
2 Ja
M 1
= MO2 0/ (1 — cos®6) d(cos8),
-1
2
B(0,0,0) - gMOMO-
2
B(0707O) = gMOM

and is in the same direction as M.

(6.46)

(6.47)
(6.48)
(6.49)

(6.50)

(6.51)

(6.52)

Now H = B/ug — M, so that H(0,0,0) = —%M and it is in the opposite direction to M.

6-6 Consider the hysteresis loops of the magnetically-soft iron-based amorphous alloy and the

magnetically-hard alloy of iron, aluminium, nickel and cobalt shown in Chapter 6.

(a) Estimate the work done to bring 1 cm® of each material through one cycle of the

hysteresis loop. (b) Two transformers operating at 50 Hz have magnetic cores of volume

100 cm? (one of each type of material) and are (unwisely) operated at a current at which

saturation occurs. How much power is lost as heat in each case? [You could print the

hysteresis plots and estimate the area by drawing over it a grid and measuring by hand

sufficient points on the graph to get within say 20% accuracy for the area.]

Solution
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Grid lines have been drawn over the hysteresis plots above. The area of the upper half of

the hysteresis loop (for positive Bjy) is identical to that of the lower half. Read off the
(horizontal) “widths” in H at “heights” By; =0, 0.1, 0.2, ... (T). The approximate values
are tabulated below.
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iron-based alloy Alnico

By (T) | AH (kAm™1) | AH (kA m~1)
0.0 30 120
0.1 25 120
0.2 25 120
0.3 20 120
0.4 20 120
0.5 15 120
0.6 15 120
0.7 15 120
0.8 10 120
0.9 10 120
1.0 0 120
1.1 115
1.2 100
1.3 90
14 0
sum: 185 1625

The areas of the two loops are approximately:

iron-based alloy: ?{BMCZH —=2x (18 kAm™')x (0.1 T) = 3.7x10*J, (6.53)

Alnico: j[BMdH =2x (1625 kA m~1) x (0.1 T) = 3.2x 10° J. (6.54)

Now, this is for a sample volume of 1 m3. For a magnetic core of volume 100 cm3=10"% m

the energy to take the sample around one cycle is then 3.7 J (iron-based alloy) or 32 J

(Alnico).

If the sample is used in a transformer operating at 50 Hz with the magnetic field saturating,
the energy lost to heat in one second is 50 times the energy for one cycle, i.e. 185 W (iron-

based alloy) or 1.6 kW (Alnico). If the core were made of Alnico, the rate of heating would

be similar to that of a domestic electric room heater!
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