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Preface

Preface

This book gives the solutions to the exercises at the end of each chapter of my book “Essential
Electrodynamics” (also published by Ventus Publishing ApS). I recommend that you attempt
a particular exercise after reading the relevant chapter, and before looking at the solutions
published here.

Often there is more than one way to solve a problem, and obviously one should use any valid
method that gets the result with the least effort. Usually this means looking for symmetry in the
problem – for example from the information given can we say that from symmetry arguments
the field we need to derive can only be pointing in a certain direction. If so, we only need to
calculate the component of the field in that direction, or we may be able to use Gauss’ law or
Ampère’s law to enable us to write down the result. In some of these exercise solutions the
simplest route to the solution is deliberately not taken in order to illustrate other methods of
solving a problem, but in these cases the simpler method is pointed out.

The solutions to the exercise problems for each chapter of “Essential Electrodynamics” are
presented here in the corresponding chapters of “Essential Electrodynamics - Solutions”.

I hope you find these exercises useful. If you find typos or errors I would appreciate you
letting me know. Suggestions for improvement are also welcome – please email them to me at
protheroe.essentialphysics@gmail.com.

Raymond J. Protheroe
School of Chemistry & Physics, The University of Adelaide, Australia

Adelaide, May 2013
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Electrodynamics and conservation laws

1 Electrodynamics and conservation laws

1–1 A magnetic dipole of moment m = m�z is located at the origin. A thin circular conducting
ring of radius a vibrates such that the position of its centre is r = [z0 + b cos(ωt)]�z with
b ≪ a ≪ z0. The plane of the ring remains parallel to the x—y plane during the vibration.
Find the emf around the ring in the ϕ direction.

Solution

The magnetic field of the dipole is

B(r) =
µ0

4π

[
3r(m · r)− r2m

r5

]
. (1.1)

Since b ≪ a ≪ z0 we can approximate the magnetic field anywhere on the ring as it vibrates
by

B[zr(t)�z)] =
µ0

4π

[
3zr �z (m�z · zr �z)− z2rm�z

z5r

]
=

µ0

2π

m�z
z3r

, (1.2)

where zr(t) = [z0 + b cos(ωt)] is the height of the ring.

The magnetic flux through the loop is

ΦB(t) = πa2
µ0m

2π
[z0 + b cos(ωt)]−3 , (1.3)

=
µ0ma2

2z30

[
1 +

b

z0
cos(ωt)

]−3

, (1.4)

≈ µ0ma2

2z30

[
1− 3

b

z0
cos(ωt)

]
(1.5)

since a ≪ z0. Hence,

E = − dΦB

dt
, (1.6)

∴ E ≈ −3µ0ma2b ω

2z40
sin(ωt). (1.7)

1–2 A thin disc of radius a and height h contains charge +q uniformly distributed throughout
the disc. The disc is located with its centre at the origin, and rotates about the z-axis with
angular velocity ω = ω�z.
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(a) Using cylindrical coordinates but with R being the cylindrical radius to avoid confusion
with the charge density ρ(r), specify the current density J(R,ϕ, z) as a function of position.
In the limit h ≪ a find the magnetic dipole moment.
(b) Consider a circular loop of radius R0 around the z-axis at height z0 above the disc for
the case R0 ≪ a ≪ z0. Find the magnetic flux through the loop, and hence find the vector
potential at the loop.
(c) If, due to friction in the axle, the disc’s angular velocity is decreasing exponentially
with time t as ω(t) = ω0e

−t/t0 , where t0 is the decay time scale, find the electric field at
the loop at time t = 0.

Solution

(a) Within the disc, ρ(r) = q

πa2h
and v(r) = Rω�ϕ, and so

J(r) = ρ(r)v(r) = ρ(r)Rω�ϕ =
qRω

πa2h
�ϕ. (1.8)

The dipole moment is

m =
1

2

∫
r × J(r) d3r, (1.9)

=
h

2

∫ a

0
(R �R)×

(
qRω

πa2h
�ϕ
)

2πRdR, (1.10)

=
qω

a2

∫ a

0
R3 dR�z, (1.11)

=
qωa2

4
�z. (1.12)

(b) The circular loop is close to the axis of the dipole, but a distance z0 ≫ a away. The
magnetic field of a dipole is

B(r) =
µ0

4πr3
[3(m · �r )�r − m]. (1.13)

∴ B(0, 0, z0) =
µ0

4πz30
2m�z =

µ0

8πz30
qωa2 �z. (1.14)

The magnetic flux through the loop is then approximately

ΦB = πR2
0 B(0, 0, z0) =

µ0

8

R2
0

z30
qωa2. (1.15)
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We can obtain the vector potential from the magnetic flux using

∮

Γ
A · dr =

∫

S
B · dS = ΦB, (1.16)

where loop Γ is the circular loop and S is any surface bounded by the loop. From symmetry
arguments the vector potential must be in the �ϕ direction

∴ A(R0, ϕ, z0) =
ΦB

2πR0

�ϕ =
µ0

16π

a2R0

z30
qω �ϕ. (1.17)

(c) If ω(t) = ω0e
−t/t0 then

E(R0, ϕ, z0, t) = − ∂

∂t
A(R0, ϕ, z0, t), (1.18)

= − µ0

16π

a2R0

z30
qω0

∂

∂t
e−t/t0 �ϕ, (1.19)

=
µ0

16π

a2R0

z30

qω0

t0
e−t/t0 �ϕ. (1.20)
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1–3 A light rigid rectangular circuit with resistance R has mass m attached to the middle
of the lower side (width s), and the top side is suspended horizontally using frictionless
bearings to form a simple pendulum of length h as shown in the diagram below. In the
absence of a magnetic field the position of the pendulum mass would be described by
rm(t) ≈ h θ0 cos(ωt) �x where ω =

√
g/h. A uniform magnetic field B points in the verti-

cally upward direction.

θ

axis of rotation

z

R

B

x y

h

mg

s

(a) Assuming the position of the pendulum mass is still described by rm(t) ≈ h θ0 cos(ωt) �x,
what is the magnetic flux ΦB(t) through the circuit, and hence the emf as a function of
time? Take the direction around the circuit indicated by the arrow to correspond to positive
emfs and currents.

(b) What is the force on the lower side of the circuit due to the magnetic field? What
is the instantaneous work done by the pendulum against this force? Compare this with
instantaneous power dissipated in the circuit? What are the consequences of the presence
of the magnetic field for the motion of the pendulum?

Solution

(a) The magnetic flux through the circuit is

ΦB(t) = �x · rm(t) sB = hθ0 cos(ωt)sB (1.21)

an so the emf is

E(t) = −dΦB

dt
= ωhsBθ0 sin(ωt). (1.22)

The current is

I(t) = E(t)/R = (ωhsBθ0/R) sin(ωt). (1.23)
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(b) The Lorentz force on the lower side of the circuit is

F(t) = I

∫

lower side
dr′ × B, (1.24)

= (ωhsBθ0/R) sin(ωt) (s �y)× (B �z), (1.25)

= (ωhs2B2θ0/R) sin(ωt) �x, (1.26)

and since v(t) = dr/dt = −ωhθ0 sin(ωt) �x, we note that F(t) is in the opposite direction to
v(t). The instantaneous work done by the pendulum against this force is

Pmech(t) = −F(t) · v(t), (1.27)

= −[(ωhs2B2θ0/R) sin(ωt) �x] · [−ωh θ0 sin(ωt) �x], (1.28)

= (ω2h2s2B2θ20/R) sin2(ωt). (1.29)

Note that The instantaneous power dissipated as heat in the resistor is

Pheat(t) =
E2

R
=

[ωhsBθ0 sin(ωt)]2
R

(1.30)

consistent with conversion of the mechanical energy of the pendulum to heat.

(c) The pendulum’s amplitude θ0 will decay over time. To determine the rate of decay, we
can consider first consider the average rate of energy loss of the pendulum which is equal
to the time-average of the power dissipated as heat

⟨Pheat⟩ =
(ωhsBθ0)

2

2R
(1.31)

and compare this with the total energy of the pendulum which is equal to its kinetic energy
at x = 0

Wtot =
1

2
mv2max =

1

2
m(ωhθ0)

2. (1.32)

The energy will decay exponentially with timescale

τenergy =
Wtot
⟨Pheat⟩

=
1

2
m(ωhθ0)

2 2R

(ωhsBθ0)2
=

mR

s2B2
, (1.33)
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that is, Wtot(t) ∝ e−t/τenergy . Since the energy is proportional to θ20 the pendulum amplitude
θ0 will decay exponentially as θ0(t) ∝ e−t/τθ where τθ = 2τenergy.

1–4 Consider the section of a two-wire transmission line shown below. Show that the self-
inductance per unit length for the case where D ≫ a is given by

L =
µ0

π
ln D

a
. (1.34)

I

I

2a

b

D

Solution

We need to calculate the magnetic flux between the two wires for a section of length b due
to current I flowing in both wires. For just one wire the magnetic field is
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B =
µ0I

2πρ
(1.35)

and integrating between the conductors we get the flux for length b

ΦB = b
µ0I

2π

∫ D−a

a

dρ

ρ
= b

µ0I

2π
ln

(
D − a

a

)
(1.36)

Multiplying by 2 (to include the flux from both wires) and dividing by b and the current
we get the inductance per unit length

L =
µ0

π
ln

(
D − a

a

)
=

µ0

π
ln

(
D

a

)
(D ≫ a). (1.37)

1–5 Consider a coaxial cable as an infinite cylindrical inductor and find the inductance per unit
length.

Solution

ρ

a
Γloop

I

I

1
zρ

ρ
2

Consider length a with current I in the �z direction on the inner conductor and I in the
−�z direction on the outer conductor. To find the magnetic field, use Ampere’s law for a
coaxial circular loop of radius ρ, for ρ1 < ρ < ρ2,

2πρB(ρ, ϕ, z) = µI. ∴ B(ρ, ϕ, z) =
µI

2πρ
�ϕ (ρ1 < ρ < ρ2). (1.38)

The magnetic flux through the rectangular loop Γ of length a and width (ρ2−ρ1) spanning
radii ρ1 < ρ < ρ2 as shown is

ΦB =

∫ ρ2

ρ1

µI

2πρ
a dρ =

µaI

2π
ln

(
ρ2
ρ1

)
. (1.39)
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Hence, the inductance per unit length is

L =
ΦB

I a
=

µ

2π
ln

(
ρ2
ρ1

)
. (1.40)

1–6 The diagram shows a parallel plate capacitor. Find the current I(t), and the displacement
current density JD between moving capacitor plates, and check that the total displacement
current is ID(t) = I(t). Neglect fringing effects.

v

x

A

(t)

x(t)

V

Solution

From the capacitance of a parallel plate capacitor we get the charge on the positive plate

Q(t) = C(t)V =
ε0A

x(t)
V. (1.41)

So there is a current flowing

I(t) =
dQ

dt
= − ε0AV

[x(t)]2
dx

dt
= − ε0AV

[x(t)]2
v(t). (1.42)

The electric field between the plates is

E(t) =
V

x(t)
�x. (1.43)

The displacement current density between the plates is then

JD = ε0
∂E
∂t

= −ε0
V

[x(t)]2
dx

dt
�x = −ε0

V

[x(t)]2
v(t)�x. (1.44)

Multiply JD by the plate area A�z to get the total displacement current

ID = JD ·A�x = −ε0
V

[x(t)]2
Av(t) (1.45)
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which is the same as the current I in the wire.

1–7 Consider a straight piece of wire radius a and length ∆z, along which current I is flowing.
The potential difference between the ends is ∆V . Find the Poynting vector at the surface of
the wire and use it to determine the rate at which energy flows into the wire, and compare
the result with Joules’s law.

solution

z

E a

z∆

H J

S

When a current flows along a resistive wire, work is done which shows up as Joule heating.
The energy flows from the electromagnetic field into the wire, and the rate at which energy
is flowing can be determined from the Poynting vector. If the wire has potential difference
∆V between its ends, the electric field is parallel to the wire and given by
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E =
∆V

∆z
�z (1.46)

From Ampere’s law the magnetic intensity of current I is circumferential, and at the surface
has the value

H =
I

2πa
�ϕ. (1.47)

Then, the Poynting vector is

S =

(
∆V

∆z
�z
)
×
(

I

2πa
�ϕ
)

= − ∆V I

2πa∆z
�ρ. (1.48)

The Poynting vector points radially inward and so the energy per unit time passing in
through the surface of length ∆z of the wire, which has area 2π a∆z, is

−
∫

Σ
S · dΣ =

∆V I

2π a∆z
2π a∆z = ∆V I, (1.49)

where dΣ is used here for the surface element to avoid confusion with the Poynting vector
S. The current density has magnitude J = I/πa2, so the Joule heating power of the wire,
which has volume πa2∆z, is

∫

vol
E · J d3r =

(
∆V

∆z

)(
I

πa2

)(
πa2∆z

)
= ∆V I. (1.50)

The current and voltage are constant, and so the magnetic and electric fields also are
constant,

− d

dt

∫

vol

(
εE2

2
+

B2

2µ

)
d3r = 0. (1.51)

The result, Poynting flux into the wire (Eq. 1.50) equals Joule heating power (Eq. 1.49)
plus rate of increase of field energy inside wire (Eq. 1.51), is consistent with Poynting’s
theorem.

1–8 A long solenoid carrying a time-dependent current I(t) is wound on a hollow cylinder whose
axis of symmetry is the z-axis. The solenoid’s radius is a, and it has n turns per metre.
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(a) Write down the magnetic intensity H(r, t) and magnetic field B(r, t) everywhere. What
is the energy density in the magnetic field inside the solenoid?
(b) Find the electric field E(r, t) everywhere using Faraday’s law in integral form.
(c) Find the magnetic vector potential A(r, t) everywhere.
(d) Find the Poynting vector S(r, t) inside the cylinder, and hence the energy flux into
a section of the cylinder of length h and the rate of increase of energy density inside the
cylinder. Compare this with the rate of increase of magnetic field energy inside length h

of the cylinder.

Solution
(a) From earlier work on electromagnetism we should know that

B(ρ, ϕ, z) =

{
µ0nI �z (ρ < a)

0 (ρ > a)
, H(ρ, ϕ, z) =

{
nI �z (ρ < a)

0 (ρ > a)
.

(1.52)

The magnetic energy density inside the solenoid is

u =
B2

2µ0
=

(µ0nI)
2

2µ0
=

µ0(nI)
2

2
. (1.53)

(b) As the current increases, so does the magnetic field which is uniform and remains in the
�z direction. Thus, the induced electric field vector must be perpendicular to the z direction,
and from symmetry arguments must be in the ±�ϕ direction, i.e. E(r, t) = Eϕ(ρ, t)�ϕ. Hence,
using Faraday’s law

∮
E · dr = − d

dt
ΦB, (1.54)

∴ 2πρEϕ(ρ, t) =

{
−(πρ2)µ0ndI/dt. (ρ < a)

−(πa2)µ0ndI/dt. (ρ > a)
(1.55)

∴ E(r, t) =

{
−(ρµ0n/2) dI/dt �ϕ. (ρ < a)

−(a2µ0n/2ρ) dI/dt �ϕ. (ρ > a)
(1.56)

(1.57)

(c) To find the vector potential we can use

∮

Γ
A(r, t) · dr =

∫
S B(r, t) · dS.
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From symmetry arguments, the vector potential must be in �ϕ direction, and therefore we
should use a concentric loop Γ of radius ρ giving

2πρAϕ =

{
πρ2µ0nI (ρ < a)

πa2µ0nI (ρ > a)
, (1.58)

∴ A =

{
(µ0nIρ/2) �ϕ (ρ < a)

(µ0nIa
2/2ρ) �ϕ (ρ > a)

. (1.59)

(d) The Poynting vector at ρ = a is

S(a, ϕ, z) = E(a, ϕ, z)× H(a, ϕ, z), (1.60)

=

(
− a

2
µ0n

dI

dt
�ϕ
)
× (nI �z) , (1.61)

= − a

2
µ0n

2I
dI

dt
�ρ, (1.62)

= − a

4
µ0

d

dt
(nI)2 �ρ, (1.63)
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and is directed radially inwards.

To find the energy flux going into a section of the solenoid of length h we multiply by the
its surface area 2πah

2πah [−Sρ(a, ϕ, z)] = 2πah
a

4

d

dt

[
µ0(nI)

2
]

= πa2h
d

dt

[
µ0H

2

2

]
(1.64)

which is just the rate of increase of magnetic energy inside length h of the solenoid.

1–9 Using the Maxwell stress tensor find the pressure exerted on a perfectly absorbing screen
by an electromagnetic plane wave at normal incidence.

Solution

Assume the screen is in the x–y plane and the EM wave is

E = E0�x cos(kz − ωt), B =
E0

c
�y cos(kz − ωt). (1.65)

Momentum conservation in electrodynamics is expressed by

d

dt

[
Ppart +

∫

V
(ε0E × B) d3r

]
=

∑
i

�ei

∮

S


∑

j

Tij�ej · �n

 dS, (1.66)

where �n is the outward normal unit vector at surface S which bounds volume V , and

Tij = ε0

[
EiEj + c2BiBj −

1

2
δij(E · E + c2B · B)

]
. (1.67)

The volume V corresponds to the space defined by z > 0, so �n = −�z and �ej · �n ̸= 0 for
j ↔ z. Hence we need only calculate Txz, Tyz and Tzz.

For the EM wave above Txz = Tyz = 0 and

Tzz = −1

2

(
ε0E · E +

1

µ0
B · B

)
= −u (1.68)

where u is the energy density of the EM wave.

The pressure is given by the rate of change of the momentum of particles and fields inside
V , so we need to integrate over a portion of the surface, i.e. some area A of the x—y

plane, and with V bounded by A and extending in the +z direction. Then the force on

Download free eBooks at bookboon.com



Essential Electrodynamics: Solutions

19 

Electrodynamics and conservation laws
Essential Electrodynamics - Solutions 1 Electrodynamics and conservation laws

the contents of V is

F =
∑
i

�ei

∫

A


∑

j

Tij�ej · �n

 dS, (1.69)

= �z [Tzz�z · (−�z)]A (1.70)
= −�z (−u)A (1.71)
= uA�z. (1.72)

Hence, the pressure p = F/A = u is equal to the energy density in the EM wave.

If we had not been asked explicitly to use the Maxwell stress tensor we could have arrived
at the same result in a simpler way by noting that the momentum density is g = S/c2,
and that for an EM wave S = u c �k. Pressure will be the magnitude of the momentum flux
gc = (S/c2)c = u.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

With us you can 
shape the future. 
Every single day. 
For more information go to:
www.eon-career.com

Your energy shapes the future.

http://www.eon-career.com


Essential Electrodynamics: Solutions

20 

Electromagnetic waves in empty space and linear dielectrics

2 Electromagnetic waves in empty space and linear dielectrics

2–1 Prove that the spherical waves given by

f(r, t) = f0 r
−1 exp[i(±kr − ωt)] (2.1)

are solutions of the 3D wave equation.

Solution

We need to show that this is a solution of the three-dimensional wave equation

∇2f =
1

v2p

∂2f

∂t2
. (2.2)

Using the Laplacian in spherical coordinates and noting that f has no dependence on θ or
ϕ then the left hand side of Eq. 2.2 is

∇2f =
1

r2
∂

∂r

(
r2

∂f

∂r

)
, (2.3)

= f0
1

r2
∂

∂r

{
r2

(
−r−2 ± r−1ik

)
exp[i(±kr − ωt)]

}
, (2.4)

= f0
1

r2
∂

∂r
{(−1± rik) exp[i(±kr − ωt)]} , (2.5)

= f0
1

r2
{(

∓ik ± ik − rk2
)

exp[i(±kr − ωt)]
}
, (2.6)

= −k2f. (2.7)

Now since vp = ω/k the right hand side of Eq. 2.2 is

1

v2p

∂2f

∂t2
= − 1

v2p
ω2f = −k2f (2.8)

and so the 3D wave equation is satisfied.

2–2 A monochromatic plane wave E(r, t) = E0 exp[i(k ·r−ωt)] is travelling in the +�z direction
through a lossless linear medium with relative permittivity εr = 4 and relative permeability
µr ≈ 1 and is polarised in the �x direction. The frequency is ν = 1 GHz and E has a
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maximum value of +10−3 V m−1 at t = 5 ns and z = 1 m.
(a) Find the angular frequency, phase velocity, wavenumber, wave vector, and wavelength.
(b) Obtain the instantaneous expression for E(r, t) valid for any position and time.
(c) Obtain the instantaneous expression for H(r, t) valid for any position and time.
(d) Find the Poynting vector and its time-averaged value.
(e) Find the locations where Ex is maximum when t = 0 s.

Solution

(a) The angular frequency is ω = 2πν = 2π × 109 = 6.24× 109 rad/s.

The phase velocity is

vp =
1

√
µε

=
1

√
µrµ0εrε0

=
c

√
µrεr

=
c√
1× 4

= 1.5× 108 m/s. (2.9)

The wavenumber is

k =
ω

vp
=

6.238× 109

1.5× 108
= 41.9 rad/m. (2.10)

The wave vector has magnitude k and is in the direction of wave propagation, i.e. k =

41.89�z rad/m.

The wavelength is λ = 2π/k = vp/ν = 1.5× 108/109 = 0.15 m.

(b) Taking the real part of the monochromatic plane wave, and noting that the wave is
travelling in the +�z direction, has maximum E0 = 10−3 V m−1 and is polarised in the �x
direction,

E(r, t) = 10−3 cos
[
41.89z − 6.238× 109t+ δ

] �x V m−1. (2.11)

To find the phase constant δ we use the information that E is maximum when t = 5 ns
and z = 1 m, and this occurs when the phase is 2nπ (n is any integer), so

41.89× 1− 6.238× 109 × 5× 10−9 + δ = 2nπ (2.12)

giving δ = (2nπ − 10.70) rad. The fields are unaffected by our choice of integer n. So, for
convenience, setting n = 0 we find

E(r, t) = 10−3 cos
[
41.89z − 6.238× 109t− 10.70

] �x V/m. (2.13)
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(c) We use B = k × E/ω = �k × E/vp, then

B(r, t) = �z ×
[
10−3 cos

(
41.89z − 6.238× 109t− 10.70

) �x] /1.5× 108 T, (2.14)

= 6.67× 10−12 cos
(
41.89z − 6.238× 109t− 10.70

) �y T. (2.15)

Now we can readily obtain H = B/µ = B/µ0,

H(r, t) = 5.31× 10−6 cos
(
41.89z − 6.238× 109t− 10.70

) �y A/m. (2.16)

(d) The Poynting vector is

S(r, t) = E × H, (2.17)

=
(
10−3 �x)× (

5.31× 10−6�y) cos2
(
41.89z − 6.238× 109t− 10.70

)
, (2.18)

= 5.31× 10−9 cos2
(
41.89z − 6.238× 109t− 10.70

)�z W/m2. (2.19)
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Because the time-averaged value of cos2(ωt) is 1/2, we have

⟨S⟩ = 2.65× 10−9 �z W/m2. (2.20)

(e) We need to find where Ex is maximum at t = 0. This occurs where the phase is 2nπ

with n being an integer, i.e. Ex is maximum where

2nπ = 41.89× z − (6.238× 109)× 0− 10.70. (2.21)
∴ z = (10.70 + 2nπ)/41.89 = 0.255 + 0.15n m. (2.22)

Note that the term 0.15n is simply nλ.

2–3 Given the electric fields for the following polarisations,

E(r, t) = (�xE0,x + �yE0,y) cos(kz − ωt+ δ) (linear), (2.23)

E(r, t) = E0[�x cos(kz − ωt+ δx)− �y sin(kz − ωt+ δx)] (left circular), (2.24)

E(r, t) = �xE0,x cos(kz − ωt+ δx) + �yE0,y sin(kz − ωt+ δx) (right elliptical) (2.25)

with E0,y > E0,x, find the instantaneous and time-averaged energy densities and Poynting
vectors. In each case, assume the wave is propagating in a medium with permittivity ε and
permeability µ.

Solution

The energy density, magnetic field, magnetic intensity and Poynting vector of an EM wave
are given by

u(r, t) = ε|E(r, t)|2, (2.26)

B(r, t) = ω−1k × E(r, t) =
1

vp
�k × E(r, t) =

√
εµ �k × E(r, t), (2.27)

H(r, t) =
B(r, t)

µ
=

√
ε

µ
�k × E(r, t) = Z�k × E(r, t), (2.28)

S(r, t) = E(r, t)× H(r, t) = [E(r, t)]×
[
Z�k × E(r, t)

]
= Z|E(r, t)|2�k, (2.29)

where vp = 1/
√
µε is the phase velocity and Z =

√
ε/µ is the wave impedance of the

medium.
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(a) Linear polarisation:

E(r, t) = (�xE0,x + �yE0,y) cos(kz − ωt+ δ), (2.30)

u(r, t) = ε(E2
0,x + E2

0,y) cos2(kz − ωt+ δ), (2.31)

⟨u⟩ =
1

2
ε(E2

0,x + E2
0,y), (2.32)

S(r, t) = Z(E2
0,x + E2

0,y) cos2(kz − ωt+ δ)�z, (2.33)

⟨S⟩ =
1

2
Z(E2

0,x + E2
0,y)�z. (2.34)

(b) Left circular polarisation:

E(r, t) = E0[�x cos(kz − ωt+ δx)− �y sin(kz − ωt+ δx)],

u(r, t) = εE2
0 [cos2(kz − ωt+ δx) + sin2(kz − ωt+ δx)] = εE2

0 ,

⟨u⟩ = εE2
0 ,

S(r, t) = ZE2
0�z,

⟨S⟩ = ZE2
0 �z.

(b) Right elliptical polarisation (E0,y > E0,x):

E(r, t) = �xE0,x cos(kz − ωt+ δx) + �yE0,y sin(kz − ωt+ δx),

u(r, t) = ε[E2
0,x cos2(kz − ωt+ δx) + E2

0,y sin2(kz − ωt+ δx)],

∴ u(r, t) = ε
[
E2

0,x + (E2
0,y − E2

0,x) sin2(kz − ωt+ δx)
]
,

⟨u⟩ =
1

2
ε(E2

0,x + E2
0,y),

S(r, t) = Z
[
E2

0,x + (E2
0,y − E2

0,x) sin2(kz − ωt+ δx)
] �z,

⟨S⟩ =
1

2
Z (E2

0,x + E2
0,y)�z.

2–4 For a monochromatic EM plane wave incident on a plane interface between two dielectrics
describe what is meant by perpendicular (σ, s) and parallel (π, p) polarisation states.
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Include a suitable diagram in your answer.

Solution

In transmission/reflection of light at an interface between two dielectrics, the incident ray,
transmitted ray and reflected ray are in the plane of incidence, which is defined as the plane
containing the incident ray and the normal to the interface. If the plane in which the elec-
tric field oscillates is perpendicular to the plane of incidence, the wave has perpendicular
(σ, s) polarisation, and if the the plane in which the electric field oscillates is parallel to
the plane of incidence, the wave has parallel (π, p) polarisation.

n

tn

i

θ
t

reflected wave
i

tE

incident wave

transmitted wave

rE

(s) Polarizationσ

r
θ =θiθ

E

i iθi

n

tn

i

θ
t

reflected wave

r

incident wave

transmitted wave

(p) Polarizationπ

i
E

E

t

r

E

θ =θ
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2–5 Define what is meant by the amplitude reflection and transmission coefficients, and by the
reflectance and transmittance.

Solution

The amplitude reflection and transmission coefficients relate the complex amplitudes of
the electric fields of the reflected and transmitted waves to the complex amplitude of the
electric field of the incident wave. For example for perpendicular polarisation,

E⊥
r = r⊥E

⊥
i , E⊥

t = t⊥E
⊥
i .

Reflectance is defined by the ratio of the the energy flux reflected by unit area of the
interface to the energy flux incident on unit area of the interface.

Transmittance is defined by the ratio of the the energy flux transmitted through unit area
of the interface to the energy flux incident on unit area of the interface.

2–6 (a) Use the amplitude reflection coefficient for parallel polarisation

r∥(θi) ≡ E
∥
r

E
∥
i

=
(nt/ni)

2 cos θi −
√

(nt/ni)
2 − sin2 θi

(nt/ni)
2 cos θi +

√
(nt/ni)

2 − sin2 θi

. (2.35)

to show that Brewster’s angle is given by both

cos θB =
1√

1 + (nt/ni)2
and tan θB =

nt

ni
. (2.36)

(b) Show that

tan θB =
nt

ni
(2.37)

can also be derived from Snell’s law and by requiring the angle between the reflected and
transmitted rays to be π/2.

Download free eBooks at bookboon.com



Essential Electrodynamics: Solutions

27 

Electromagnetic waves in empty space and linear dielectrics
Essential Electrodynamics - Solutions 2 Electromagnetic waves in empty space and linear dielectrics

Solution

(a) Brewster’s angle is the angle of incidence such that r∥(θB) = 0, so that

(nt/ni)
2 cos θB =

√
(nt/ni)

2 − sin2 θB, (2.38)

(nt/ni)
4 cos2 θB = (nt/ni)

2 − (1− cos2 θB), (2.39)

cos2 θB
[
(nt/ni)

4 − 1
]
= (nt/ni)

2 − 1, (2.40)

cos2 θB
[
(nt/ni)

2 − 1
] [

(nt/ni)
2 + 1

]
= (nt/ni)

2 − 1, (2.41)

cos2 θB
[
(nt/ni)

2 + 1
]
= 1, (2.42)

∴ cos θB =
1√

1 + (nt/ni)2
. (2.43)

The alternative formula we get from Eq. 2.42 above, from which

cos2 θB (nt/ni)
2 = 1− cos2 θB, (2.44)

cos2 θB (nt/ni)
2 = sin2 θB, (2.45)

∴ tan θB =
nt

ni
. (2.46)

(b) Eq. 2.46 can be derived from Snell’s law and requiring the angle between the reflected
and transmitted rays to be π/2. For this case θt = (π/2− θi), and so from Snell’s law we
find

ni sin θi = nt sin θt, (2.47)

ni sin θB = nt sin
(π
2
− θB

)
, (2.48)

ni sin θB = nt cos θB, (2.49)

∴ tan θB =
nt

ni
. (2.50)
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2–7 Give a formula with explanations for the reflectance and transmittance in terms of the
magnitude of the Poynting vectors of the various waves, and their angles with respect to
the normal to the interface. How is the reflectance related to the amplitude reflection
coefficient? How is the transmittance related to the reflectance? Why?

Solution

In terms of the Poynting vectors of the three waves,

R =
Sr cos θr
Si cos θi

, T =
St cos θt
Si cos θi

.

Note that the area of the interface as seen by each of the three waves is the projected area,
and the hence the relevant cos θ factor is needed.

The reflectance is related to the amplitude reflection coefficient by R = |r|2.

The transmittance is related to the reflectance by R+T = 1 as required by energy conser-
vation.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.fuqua.duke.edu/globalmba

BUSINESS HAPPENS HERE.BUSINESS HAPPENS

http://s.bookboon.com/fuqua


Essential Electrodynamics: Solutions

29 

Electromagnetic waves in empty space and linear dielectrics
Essential Electrodynamics - Solutions 2 Electromagnetic waves in empty space and linear dielectrics

2–8 Explain the physical meaning of the critical angle, and derive its formula.

Solution

From Snell’s law nt sin θt = ni sin θi

sin θt =
ni

nt
sin θi.

For internal reflection, Snell’s law can not be satisfied for angles of incidence greater than
the critical angle,

θc = arcsin
(
nt

ni

)
,

for which sin θt ≥ 1. For larger angles of incidence, there will be no transmitted wave,
i.e., there will be total internal reflection.
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3–1 The resistivity of silver is ρ = 1.6 × 10−8Ω m, and its permeability is µ = 0.9998µ0, find
the reflectance for light of wavelength 500 nm at normal incidence from air.

Solution

For perpendicular and parallel polarisations the amplitude reflection coefficients for normal
incidence are

r⊥(0
◦) =

1− nt/ni

1 + nt/ni
, r∥(0

◦) =
nt/ni − 1

nt/ni + 1
, (3.1)

and we see that |r⊥(0◦)| = |r∥(0◦)|. Hence, we can use either amplitude reflection coeffi-
cient in calculating the reflectance, as we must be able to do since parallel and perpendicular
polarisations are undefined for θi = 0◦. Then, for external reflection from air we have

r⊥(0
◦) =

1− n(ω)

1 + n(ω)
=

1− Re{n} − i Im{n}
1 + Re{n}+ i Im{n}

. (3.2)

Using the rule that the complex conjugate of a quotient of two complex numbers is the
quotient of the complex conjugates of the two complex numbers, the reflectance is

R(0◦) = |r(0◦)|2 = (1− Re{n})2 + (Im{n})2

(1 + Re{n})2 + (Im{n})2
. (3.3)

From the wave number of a good conductor

k(ω) ≈ (1 + i)2−1/2(µσω)1/2 (3.4)

we are able to estimate the refractive index,

n(ω) ≈ (1 + i)c

√
µσ

2ω
. (3.5)

A wavelength of 500 nm corresponds to an angular frequency of ω = 2π × 3× 108/500× 10−9 =

3.77× 1015 rad s−1. We see that for silver

Re{n} ≈ Im{n} = 3× 108

√
0.9998× (4π × 10−7)× (1/1.6× 10−8)

2× (3.77× 1015)
= 30.6. (3.6)
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Hence, using Eq. 3.3 the reflectance is

R(0◦) =
(1− Re{n})2 + (Im{n})2

(1 + Re{n})2 + (Im{n})2
= 0.937 . (3.7)

3–2 Show that the time-averaged power density ⟨E · J⟩ in a dilute plasma is zero.

Solution

The conductivity of a dilute plasma is purely imaginary,

σ = i
nee

2

meω
, (3.8)

so that the current density and electric field are 90◦ out of phase. Consequently, the
time-averaged power will be zero, as shown below

E · J = Re{E0e
−iωt} · Re

{
eiπ/2 |σ|E0e

−iωt
}
, (3.9)

= {E0 cos(−ωt)} ·
{
|σ|E0 cos

(π
2
− ωt

)}
, (3.10)

= |σ|E2
0 cos(ωt) sin (ωt) , (3.11)

E · J =
1

2
|σ|E2

0 sin(2ωt) (3.12)

⟨E · J⟩ = 0. (3.13)

Hence, there is no resistive energy loss.

3–3 At midnight and noon, at a certain location and date, the electron number density in the
ionosphere was as given in the plot below.
(a) Label the x-axis at the top of the plot in terms of the plasma frequency νp (MHz).
(b) Find the height of the reflecting layer at 1 MHz and 3 MHz at midnight and noon.
(c) Find the minimum frequencies for communication with orbiting satellites at midnight
and noon.
(d) Estimate the total electron content in (electrons m−2) at midnight and noon.
(e) An instantaneous broad-band pulse of radio-frequency interference (RFI) is emitted
overhead by an orbiting satellite and observed by an terrestrial detector with a bandwidth
from 1.2—1.8 GHz. What is the duration of the observed pulse?
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Solution

(a) The plasma frequency in Hz is νp = ωp/2π

νp =
1

2π

(
nee

2

ε0me

)1/2

(3.14)
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and so for ne = 109 m−3 the plasma frequency is 2.8× 105 Hz and log(νp/MHz) = −0.55.
Because νp ∝ n

1/2
e two decades of ne correspond to one decade of νp, so we now have the

information needed to relabel the plot as shown below.

(b) Reading off the plot, we obtain the height of the reflecting layer shown in the table
below.

Time 1 MHz 3 MHz
midnight 240 km 300 km
noon 80 km 85 km

(c) Reading off the plasma frequencies at the maximum ne values, the minimum frequencies
to avoid reflection by the ionosphere are 6.3 MHz (midnight) and 18 MHz (noon).

(d) The total electron content (TEC) is
∫
ne(h)dh, which we can estimate by tabulating

ne (in units of 1012 m−3) at every 100 km, and multiplying the sum by ∆h = 105 m as
follows.
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h (km) noon midnight
100 1.4
200 3.9
300 3.6 0.17
400 1.8 0.50
500 0.8 0.34
600 0.4 0.22
700 0.3 0.16
800 0.3 0.14
900 0.2 0.13
Sum 12.7 1.66

Hence, the TEC at noon is (12.7 × 1012) × 105 = 1.27 × 1018 electrons m−2, whereas at
midnight the TEC is 1.66× 1017 electrons m−2.

(e) Using the result for a given dispersion measure, which is defined in a similar way to the
TEC, we have the arrival time of the pulse at a given frequency

t(ν) =
e2

8π2ε0mec
× TEC × ν−2 = (1.34× 10−7)× TEC ν−2 (3.15)

such that the spread in arrival times is

∆t = (1.34× 10−7)(ν−2
1 − ν−2

2 )× TEC (3.16)
= (1.34× 10−7)× [(1.2× 109)−2 − (1.8× 109)−2]× TEC (3.17)
= 2.46× 10−26 × TEC. (3.18)

Hence, the pulse is spread out in time by 3.13× 10−8 s (noon) or 4.09× 10−9 s (midnight).

3–4 For pulsar PSR J1817-3837 the observed position angle (PA) of linear polarisation with
respect to the North Celestial Pole is plotted below vs. frequency. The dispersion measure
is 102.85 pc cm−3, where 1 pc=3.09 × 1016 m (1 parsec) is the distance unit used by
astronomers. Find the average value of the parallel component of the magnetic field along
the line of sight to this pulsar.
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Solution

The first step is to determine the rotation measure for this pulsar using the data given in
the plot. Even though we expect a ν−2 dependence of position angle, the range of frequency
is sufficiently small that we can make a linear fit (shown below).
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Reading off data at two frequencies we can tabulate it together with wavelength as shown.

ν (MHz) λ (m) λ2 (m2) PA (degrees)
1500 0.2 0.04 -40
1250 0.24 0.0576 +64

The observed rotation measure is

RM =
∆PA
∆λ2

=
104◦

0.0176 m2 = 5909◦ m−2 = 103 rad m−2. (3.19)

The rotation measure is related to the magnetic field and electron density along the line of
sight to the pulsar by

RM = 2.63× 10−13

∫
ne(r)B(r) · dr (rad m−2). (3.20)

Hence, for PSR J1817-3837 we must have

∫
ne(r)B(r) · dr = RM/(2.63× 10−13) = 3.92× 1014 T m−2. (3.21)

The observed dispersion measure is

DM =

∫
ne(r) dr = 102.85× (3.09× 1016)× 106 = 3.18× 1024 m−2. (3.22)
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Hence, the average value of the parallel component of the magnetic field along the line of
sight to this pulsar is

⟨B · �r ⟩ =
∫
ne(r)B(r) · dr∫

ne(r) dr
= 1.23× 10−10 T. (3.23)

3–5 We are receiving radio signals from an interplanetary space probe which is far from the
Sun. It is currently on a trajectory such that it has been eclipsed by the Sun, but it is now
emerging from behind the Sun. The space probe regularly broadcasts instantaneous broad-
band pulses of radio-frequency emission every second, and it also broadcasts spacecraft
experiment instrument data over a narrow frequency band of width 100 kHz extending from
10,000.0 MHz to 10,000.1 MHz. It transmits using a dipole antenna aligned perpendicular
to the plane of the ecliptic (the plane containing the Earth’s orbit). We are just renewing
radio contact as the space probe is emerging from behind the solar limb.

The Sun’s corona is an extremely hot (> 106 K) plasma which is highly variable, and
has dynamic coronal loops of magnetised plasma. The corona is located above the Sun’s
photosphere. At the time we are observing, the base of the corona in front of the space probe
as it emerges from behind the Sun has an electron number density of ne(R⊙) ∼ 3×1015 m−3.
The corona’s a scale height is about H ∼ 108 m, such that the electron number density
decreases with height as ne(r) = ne(R⊙) exp[−(r −R⊙)/H]. Imagine that, at the time we
are observing, the Sun’s magnetic dipole moment is m = 2× 1029 A m2 and it happens to
be pointing directly towards Earth.

(a) What is the minimum radio frequency that we are able to receive from the space probe?
(b) What is the additional delay of the pulses due to propagation through the corona?
(c) By how much has the plane of polarisation of the EM wave carrying the data signal
rotated due to propagation through the corona?
[Make what you think are reasonable approximations – do not attempt a rigorous calcula-
tion. The radius of the solar photosphere is R⊙ = 6.955× 108 m.]

Solution

The geometry is as shown below.
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R coronaSun

to space probe

H

R

L to Earth

(a) The plasma frequency is

νp =
1

2π

(
nee

2

ε0me

)1/2

(3.24)

and so at the base of the corona where ne(R⊙) = 3 × 1015 m−3 the plasma frequency is
3.1 GHz. No communication can take place below this frequency.

(b) To estimate the dispersion measure we could use the maximum electron number density
and a path-length of 2L corresponding to the path through the corona below height H (see
diagram above), where
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L =
√

(R⊙ +H)2 −R2
⊙ = 3.9× 108 m. (3.25)

Hence, the dispersion measure is DM ∼ 2Lne(R⊙) ∼ 2.3× 1024 m−2.

Using the standard result for the time delay for a given dispersion measure, we have the
arrival time of the pulse at different frequencies

t(ν) =
e2

8π2ε0mec
× DM × ν−2 = (1.34× 10−7)× DM ν−2 (3.26)

Over the bandwidth of the detector the delays are

t(10, 000.0MHz) = (1.34×10−7)×(2.3×1024)×(1.0000×1010)−2 = 3.0820×10−3 s,
t(10, 000.1MHz) = (1.34×10−7)×(2.3×1024)×(1.0001×1010)−2 = 3.0814×10−3 s.

Hence, the start of the observed pulse is delayed by ∼ 3 ms and the duration of the pulse
is ∼ 600 µs.

(c) To find the angle of rotation of the plane of polarisation, we need to estimate the parallel
component of magnetic field by, say, the surface magnetic field at the magnetic equator
r = (R⊙, 90

◦, ϕ), where the pole of these spherical coordinates corresponds to the magnetic
axis of the Sun. Then, we can obtain the surface field from the magnetic dipole moment
m⊙ using

B(r) = µ0

4π

[
3r(m⊙ · r)− r2m⊙

r5

]
, (3.27)

and so at the Sun’s magnetic equator the surface magnetic field magnitude is

B =
µ0

4π

m⊙
R3

⊙
=

4π × 10−7

4π

2× 1029

(6.996× 108)3
= 5.8× 10−5 T. (3.28)

The rotation measure is related to the magnetic field and electron density along the line of
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sight to the pulsar by

RM = 2.63× 10−13

∫
ne(r)B(r) · dr (rad m−2) (3.29)

= (2.63× 10−13)× (3× 1015)× (5.8× 10−5)× (2 × 3.9× 108) (3.30)
= 3.6× 107 rad m−2. (3.31)

The rotation measure is defined through

RM =
∆PA
∆λ2

. (3.32)

Hence, the plane of polarisation will have rotated by

PA(10, 000.0MHz) = (3.6× 107)×
(
3× 108)

1010

)2

= 32351.522 rad, (3.33)

PA(10, 000.1MHz) = (3.6× 107)×
(

3× 108)

1.0001× 1010

)2

= 32345.053 rad. (3.34)

So the plane of polarisation will have rotated by an enormous angle of the order of 30,000
radians, and we see that over the 100 kHz receiver bandwidth the position angle changes
by ∼ 5 radians. These numbers are of course only order of magnitude estimates, but
they show that trying to align the a dipole antenna with the plane of polarisation makes
no sense, and that to obtain all the signal it would be necessary to have two orthogonal
polarisations and appropriately combine the two signals.
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4–1 A standard waveguide for the “X-band” (8.2–12.4 GHz) has internal cross section 2.286 cm
by 1.143 cm. Find the the first two cut-off frequencies, as these will give the frequency
range for which only the TE10 mode will propagate.

Solution

Since a = 2b, these will correspond to ω10 = cπ/a and ω01 = ω20 = 2cπ/a = 2ω10. To get
the frequency in Hz,

ν10 = c/(2a) (4.1)
= (3× 108)/(2× 2.286× 10−2) (4.2)

ν10 = 6.56 GHz, (4.3)
∴ ν01 = 13.1 GHz. (4.4)

4–2 Find the electromagnetic field energy per unit length of waveguide for TE10 mode. Express
your result in terms of abε0E2

max. Start with the fields for the TE10 mode

Ey = Emax sin
(πx

a

)
sin(kz − ωt), (4.5)

Bx = −Emax
k

ω
sin

(πx
a

)
sin(kz − ωt), (4.6)

Bz = −Emax
π

aω
cos

(πx
a

)
cos(kz − ωt). (4.7)

where k =
√

ω2/c2 − (π/a)2.
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Solution

The time-averaged energy in the EM field per unit length of the waveguide is

U

L
=

∫ a

0

∫ b

0

ε0
2

⟨
[Ey(r, t)]2

⟩
dy dx

+

∫ a

0

∫ b

0

1

2µ0

{⟨
[Bx(r, t)]2

⟩
+
⟨
[Bz(r, t)]2

⟩}
dy dx, (4.8)

=

∫ a

0

∫ b

0

ε0
2

⟨
E2

max sin2
(πx

a

)
sin2(kz − ωt)

⟩
dy dx

+

∫ a

0

∫ b

0

1

2µ0

{⟨
E2

max
k2

ω2
sin2

(πx
a

)
sin2(kz − ωt)

⟩

+

⟨
E2

max
π2

a2ω2
cos2

(πx
a

)
cos2(kz − ωt)

⟩}
dy dx. (4.9)

Now, we can use the following:

⟨
sin2(kz − ωt)

⟩
=

⟨
cos2(kz − ωt)

⟩
=

1

2
;

∫ a

0
sin2

(πx
a

)
dx =

∫ a

0
cos2

(πx
a

)
dx =

a

2
. (4.10)

Then

U

L
=

ε0
2

ab

4
E2

max +
1

2µ0

ab

4

k2

ω2
E2

max +
1

2µ0

ab

4

π2

a2ω2
E2

max, (4.11)

and using the dispersion relation given we can substitute for k above to get

U

L
=

ε0
2

ab

4
E2

max +
1

2µ0

ab

4

(
1

c2
− π2

a2ω2

)
E2

max +
1

2µ0

ab

4

π2

a2ω2
E2

max, (4.12)

=
ε0
2

ab

4
E2

max +
1

2µ0

ab

4

1

c2
E2

max. (4.13)

Hence, remembering that µ0ε0 = 1/c2, the energy per unit length of waveguide for TE10

mode is

U

L
=

ε0ab

4
E2

max. (4.14)
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4–3 Consider a hollow standard WR-159 F-band waveguide which has an internal cross section
of 40.386 mm × 20.193 mm.
(a) A 2 GHz signal is fed into the waveguide. Will this cause a wave to propagate along
the waveguide?
(b) Assuming the wave would be in the TE10 mode, what is the wavenumber? Discuss the
implications of your answer.

Solution

(a) The lowest cutoff frequency is for the TE10 with ω10 = cπ/a = 2.33 × 1010 Hz, hence
ν10 = c/2a = 3.71 GHz. 2 GHz is below the cut-off frequency for the TE10 mode, and so
the wave will decay exponentially with distance.
(b) The wavenumber is obtained from the dispersion relation with ω = 2π × 2 rad s−1

k =
1

c

√
ω2 − ω2

10 = ± i 65.6 m−1. (4.15)

Because this is purely imaginary the wave will not propagate, and the electromagnetic field
will decay exponentially as e−Im{k}z if the wave was launched in the +�z direction. The
field attenuation length is 1/Im{k} = 15.3 mm.
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4–4 Consider the case of launching an EM wave with frequency ω < ω10 into a rectangular
waveguide. Assuming the wave will attempt to propagate as a TE10 wave travelling in
along the waveguide (in the z direction),
(a) Derive all the components of the electromagnetic field for the case where k is purely
imaginary.
(b) Obtain the Poynting vector and discuss the energy flow.

Solution

(a) We will need to obtain the (real) EM field E(r, t) and B(r, t) of the TE10 mode for the
case where k is purely imaginary. We know that for all the TE modes E0

z (x, y) = 0 and
that the amplitude function of the longitudinal component of the magnetic field for the
TE10 mode is

B0
z (x, y) = B10 cos

(πx
a

)
. (4.16)

We can get all the other field components from B0
z and E0

z using

B0
x(x, y) =

(
k
∂B0

z

∂x
− ω

c2
∂E0

z

∂y

)
β = −βkB0

10

(π
a

)
sin

(πx
a

)
, (4.17)

B0
y(x, y) =

(
k
∂B0

z

∂y
+

ω

c2
∂E0

z

∂x

)
β = 0, (4.18)

E0
x(x, y) =

(
k
∂E0

z

∂x
+ ω

∂B0
z

∂y

)
β = 0, (4.19)

E0
y(x, y) =

(
k
∂E0

z

∂y
− ω

∂B0
z

∂x

)
β = +ωβB10

(π
a

)
sin

(πx
a

)
, (4.20)

where we have used

β ≡ ic2

ω2 − k2c2
=

ic2

ω2
10

=
ic2

(πc/a)2
=

i a2

π2
. (4.21)

We need to multiply these field amplitude functions by exp [i (k10z(ω)− ωt)] to get the

Download free eBooks at bookboon.com



Essential Electrodynamics: Solutions

45 

Waveguides
Essential Electrodynamics - Solutions 4 Waveguides

(complex) EM field of a TE10 wave in the z-direction:

Ex(r, t) = 0, (4.22)

Ey(r, t) = +B10 i ω
(a
π

)
sin

(πx
a

)
ei(kz−ωt), (4.23)

Ez(r, t) = 0, (4.24)

Bx(r, t) = −B10 i k
(a
π

)
sin

(πx
a

)
ei(kz−ωt), (4.25)

By(r, t) = 0, (4.26)

Bz(r, t) = +B10 cos
(πx

a

)
ei(kz−ωt), (4.27)

with k =
√

ω2/c2 − (π/a)2. (4.28)

In the present problem, k(ω) = i Im{k(ω)}, and so the (real) EM field of the TE10 wave in
the z-direction is

Ex(r, t) = 0, (4.29)

Ey(r, t) = Re
{
+B10 i ω

(a
π

)
sin

(πx
a

)
ei(kz−ωt)

}
, (4.30)

= −B10 ω
(a
π

)
sin

(πx
a

)
e−Im{k} z sin(−ωt), (4.31)

= Emax sin
(πx

a

)
e−Im{k} z sin(ωt), (4.32)

Ez(r, t) = 0, (4.33)

Bx(r, t) = Re
{
−B10 i k

(a
π

)
sin

(πx
a

)
ei(kz−ωt)

}
, (4.34)

= +B10 Im{k}
(a
π

)
sin

(πx
a

)
e−Im{k} z sin(−ωt), (4.35)

= −Emax
k

ω
sin

(πx
a

)
e−Im{k} z sin(ωt), (4.36)

By(r, t) = 0, (4.37)

Bz(r, t) = Re
{
+B10 cos

(πx
a

)
ei(kz−ωt)

}
, (4.38)

= +B10
ωa

π
cos

(πx
a

)
e−Im{k} z cos(−ωt), (4.39)

= −Emax
π

ωa
cos

(πx
a

)
e−Im{k} z cos(ωt). (4.40)
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(b) The Poynting vector is S ≡ E × H = (EyHz�x − EyHx�z) for this problem, then

Ey(r, t) = Emax sin
(πx

a

)
e−Im{k}z sin(ωt), (4.41)

Hx(r, t) = −Emax
Im{k}
ωµ0

sin
(πx

a

)
e−Im{k} z sin(ωt), (4.42)

Hz(r, t) = −Emax
π

ωµ0a
cos

(πx
a

)
e−Im{k} z cos(ωt). (4.43)

Hence, the non-zero components of the Poynting vector are

Sz(r, t) = E2
max

Im{k}
ωµ0

sin2
(πx

a

)
e−2Im{k}z 1

2
sin(2ωt). (4.44)

Sx(r, t) = −E2
max

π

ωµ0a

1

2
sin

(
2
πx

a

)
e−2Im{k}z 1

2
sin(2ωt), (4.45)

where we have used cosA sinA = sin(2A)/2.

The result is that S oscillates at frequency 2ω and decays with increasing z, and ⟨S⟩ = 0.
The intensity attenuation length is (2 Im{k})−1.
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5–1 A walkie-talkie has a short centre-fed dipole antenna 12 cm long and radiates 3 W at
450 MHz.
(a) What is the radiation resistance of the antenna? Assume the antenna has been balanced
by a suitable inductor such that its impedance is purely resistive, and that the transmission
line from the transceiver is matched to the impedance of the antenna.
(b) What is the value of the peak current in the antenna?
(c) What is the peak electric field at the location of a receiving antenna at distance r?
(d) With the transmitting walkie-talkie held vertically, an identical receiving walkie-talkie
also held vertically at a distance of 2 km away can barely receive the transmission, i.e.
the range is 2 km. What would be the range if: (i) the transmitting antenna were tilted
at 60◦ towards the receiving antenna, (ii) the transmitting antenna was vertical but the
receiving antenna was tilted at 60◦ towards the transmitting antenna, (iii) the transmitting
antenna was vertical but the receiving antenna was tilted at 60◦ to the vertical in a plane
perpendicular to the line of sight to the transmitting walkie-talkie?

Solution

(a) The wavelength is λ = 3 × 108/4.5 × 108 = 0.667 m, giving d/λ = 0.18 and so we
shall use formulae relevant to a short (d ≪ λ) centre-fed dipole antenna. The radiation
resistance of this short centre-fed dipole antenna is then approximately

Rrad = 197

(
d

λ

)2

= 197× 0.182 = 6.38Ω. (5.1)

(b) We can use the time-averaged power ⟨P ⟩ = 3 W, together with the radiation resistance,
to obtain the peak current I0 as follows

I20 = 2⟨I2⟩ = 2
⟨P ⟩
Rrad

, ∴ I0 =

√
2× 3

6.38
= 0.97A. (5.2)

(c) The antenna will emit electric dipole radiation, and for this short centre-fed dipole
antenna the dipole’s amplitude is

p0 =
I0d

2ω
=

0.97× 0.12

2× (2π × 4.5× 108)
= 2.06× 10−11 C m. (5.3)
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For electric dipole radiation the electric field, and field amplitude, are

E(r, t) = −
(

k2

4πε0

)
p0

ei(kr−ωt)

r
sin θ �θ. (5.4)

∴ E0 = −
(

ω2

4πε0c2

)
p0
r

sin θ �θ, (5.5)

= − (2π × 4.5× 108)2

4π × (8.85× 10−12)× (3× 108)2
2.06× 10−11 sin θ

r
�θ. (5.6)

= −16.5
sin θ

r
�θ (V m−1). (5.7)

(d) When both antennas are vertical, in a horizontal plane, and 2 km apart, the electric
field component parallel to the receiving antenna is the minimum detectable,

E
∥
min =

16.5

2000
sin 90◦ = 8.25× 10−3 V m−1. (5.8)

(i) For the transmitting antenna tilted by 60◦ towards the receiving antenna we have
θ = 60◦ in Eq. 5.7, and �θ is pointing vertically down (parallel to the receiving dipole
antenna). Hence, at the detection threshold we must have

E
∥
min = 16.5

sin 60◦

r
, ∴ r = 1.73 km. (5.9)

(ii) If the transmitting antenna is vertical and the receiving antenna is tilted by 60◦ towards
the transmitting antenna, the electric field is vertical but the component parallel to the
antenna is reduced by cos 60◦. Hence

E
∥
min = 16.5

sin 90◦ cos 60◦
r

, ∴ r = 1.00 km. (5.10)

(iii) If the transmitting antenna is vertical and the receiving antenna is tilted by 60◦ from
the vertical perpendicular the direction to the transmitting antenna, the electric field is
vertical but the component parallel to the antenna is reduced to E0 cos 60◦. Hence, as
before,

E
∥
min = 16.5

sin 90◦ cos 60◦
r

, ∴ r = 1.00 km. (5.11)
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5–2 Starting with the Clausius-Mossotti formula and the time-averaged dipole radiation power

αm =
ε0
nv

(εr − 1), ⟨P ⟩ =
p20 ω

4

12πε0c3
, (5.12)

find the cross section for scattering of light at λ500 × 500 nm wavelength by air molecules,
and its associated mean free path 1/(nvσ). Dry air at STP has ρ = 1.30 kg m−3, and
n = 1.00029, and its molecular weight is 29.

Solution

A molecule acquires an electric dipole moment in the presence of an electric field p = αmE.
For the case of a dilute gas the Clausius-Mossotti equation yields

αm =
ε0
nv

(εr − 1) =
ε0
nv

(n2 − 1) (5.13)

where nv is the number density of molecules, εr the relative permittivity and n is the
refractive index.
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In the presence of an oscillating electric field due to an incident monochromatic plane
wave E0 cos(k · r − ωt) the molecule becomes an oscillating dipole which radiates with
time-averaged power

⟨P ⟩ =
p20 ω

4

12πε0c3
=

(
ε0
nv

)2 (n2 − 1)2E2
0ω

4

12πε0c3
. (5.14)

Dividing ⟨P ⟩ by the time-averaged energy flux of the incident wave ⟨S⟩ = 1
2ε0E

2
0c, we

obtain the cross section

σmol =
8π3

3

(n2 − 1)2

n2
v

λ−4. (5.15)

From the data on dry air given,

(n2 − 1)2 = 3.4× 10−7, (5.16)

nv =
ρ

29u
=

1.30

29× 1.66× 10−27
= 2.6× 1025 m−3. (5.17)

∴ σ(λ) =
8π3

3

(n2 − 1)2

n2
v

λ−4 (5.18)

=
8π3

3

3.4× 10−7

(2.6× 1025)2
× (500× 10−9λ500)

−4, (5.19)

= 6.65× 10−31λ−4
500 m2. (5.20)

The mean free path is 1/nvσ = 58λ4
500 km, where λ500 = λ/(500 nm).

5–3 In the presence of an applied uniform electric field E = E0�z the radial component of the
electric field outside a perfectly-conducting sphere of radius a centred at the origin becomes

Er(r, θ, ϕ) = E0

(
1 + 2

a3

r3

)
cos θ. (5.21)

Find the cross section for scattering of monochromatic EM waves by a perfectly-conducting
sphere of radius: (a) a ≪ λ, and (b) a ≫ λ. Assume electric dipole radiation is responsible.

Solution

(a) For a monochromatic plane wave with electric field E(r, t) = E0 cos(kx − ωt)�z with

Download free eBooks at bookboon.com



Essential Electrodynamics: Solutions

51 

Radiation and scattering
Essential Electrodynamics - Solutions 5 Radiation and scattering

k−1 ≫ a, the applied electric field over the entire sphere can be approximated by E(a, θ, ϕ, t) ≈
E0 cos(ωt)�z.

Then, using Gauss’ law, the surface charge density is

σ(a, θ, ϕ, t) = ε0E(a, θ, ϕ, t) · �r = ε0Er(a, θ, ϕ, t) = 3ε0E0 cos(ωt) cos θ. (5.22)

The dipole moment will be in the �z direction, and its z component will be

pz(t) = �z ·
∮

rσ(r, t) dS, (5.23)

= cos(ωt)
∫
(a cos θ)(3ε0E0 cos θ) 2πa2 d(cos θ), (5.24)

∴ pz(t) = 6πa3ε0E0 cos(ωt)
∫ 1

−1
cos2 θ d(cos θ). (5.25)

∴ pz(t) = 4πa3ε0E0 cos(ωt)�z. (5.26)

Using Larmor’s formula for electric dipole radiation, the time-averaged power is

⟨P ⟩ =
p20 ω

4

12πε0c3
=

(
4πa3ε0

)2
E2

0 ω
4

12πε0c3
=

4πa6ε0E
2
0 ω

4

3c3
. (5.27)

Because the dipole radiation pattern is proportional to sin2 θ where θ is the angle to the
acceleration direction, the radiation will be zero in the direction of acceleration, i.e. in the
±�z direction and maximum at all directions in the x—y plane.

The time-averaged Poynting vector for the EM wave is

⟨S(r)⟩ =
1

2
ε0E

2
0c�z. (5.28)

Hence, the scattering cross section due to electric dipole radiation is

σEDR
sc =

⟨P ⟩
⟨S⟩

=

(
4πa6ε0E

2
0 ω

4

3c3

)/(
1

2
ε0E

2
0c

)
=

8πa6

3

ω4

c4
=

8π

3
(k4a4)a2.

(5.29)

Since the wavenumber has units (m−1) and a has units (m), the cross section has units
(m2) as required. The scattering cross section is proportional to ω4 which is the same
dependence as for scattering by molecules which was found by Rayleigh.
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Note that the cross section we have calculated is actually incomplete as it neglects magnetic
dipole radiation from oscillating surface current loops induced by the changing magnetic
field of the incident electromagnetic wave. Including magnetic dipole radiation would
increase the calculated cross section by 25%.

(b) The cross section for the case where k−1 ≪ a, is for wavelengths λ ≪ a, in which
case the perfectly conducting sphere may be considered a perfect reflector blocking out its
cross-sectional area σ = πa2.

5–4 In the presence of an applied uniform magnetic field B = B0ẑ a perfectly-conducting sphere
(radius a) acquires a magnetic dipole moment m0.
(a) What are the boundary conditions at the surface of the sphere? Find the magnetic
dipole moment that, together with the applied magnetic field, satisfies the boundary con-
ditions.
(b) Find the contribution of magnetic dipole radiation to the cross section for scattering
of monochromatic EM waves by a perfectly-conducting sphere of radius a ≪ λ.

Solution

(a) Inside a perfect conductor E = 0 and B = 0, so that the boundary conditions on the
electromagnetic fields at the conductor’s surface just outside the conductor are simplified
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to E∥ = 0 and B⊥ = 0. That is, the electric field at the surface is normal to the surface,
and the magnetic field at the surface is parallel to the surface.

(b) Adding the field of a magnetic dipole at the origin with moment m = m0�z to the
constant field B0�z,

B(r) = B0 �z +
µ0

4π

[
3�rm0 cos θ −m0�z

r3

]
, (5.30)

= B0(cos θ�r − sin θ �θ ) +
µ0m0

4π

[
3�r cos θ − (cos θ�r − sin θ �θ )

r3

]
. (5.31)

At the surface of the conductor Br(a, θ, ϕ) must be zero, and so

B0 cos θ + µ0m0

4πa3
2 cos θ = 0. (5.32)

∴ m0 = − 2πa3

µ0
B0�z. (5.33)

For a monochromatic plane wave with magnetic field B(r, t) = B0 cos(kx − ωt)�z with
k−1 ≫ a, the applied magnetic field near the conductor can be approximated by B(r, t) ≈
B0 cos(ωt)�z. Hence,

m(t) = m0 cos(ωt)�z. (5.34)

For an oscillating magnetic dipole, the time-averaged radiation power is

⟨P ⟩ = µ0ω
4m2

0

12πc3
=

µ0ω
4

12πc3
4π2a6

µ2
0

B2
0 . (5.35)

The time-averaged Poynting vector for the EM wave is

⟨S(r)⟩ =
1

2µ0
B2

0c�z. (5.36)

Hence, the contribution of magnetic dipole radiation to the scattering cross section is

σMDR
sc =

⟨P ⟩
⟨S⟩

=

(
µ0ω

4

12πc3
4π2a6

µ2
0

B2
0

)/(
1

2µ0
B2

0c

)
=

2π

3
(k4a4)a2. (5.37)

Adding this to the contribution of electric dipole radiation to the scattering cross section
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(Exercise 5–3) we obtain

σtot
sc = σMDR

sc + σEDR
sc =

10π

3
(k4a4)a2. (5.38)

5–5 In bremsstrahlung an energetic electron is accelerated in the electric field of an atomic
nucleus and emits electromagnetic radiation. Consider the case of an electron of kinetic
energy 10 keV travelling on a trajectory parallel to the z-axis, and that there is a lead
(Pb) nucleus located at impact parameter b = 10−10 m (distance of closest approach to
the initial trajectory). Assume that for this impact parameter the electron’s deflection is
small, and that a calculation of the energy lost to electromagnetic radiation can be done
classically.
(a) By comparing b with the de Broglie wavelength h/mv, reassure yourself that a classical
calculation is valid for this impact parameter and velocity.
(b) By checking whether or not the deflection angle is small, reassure yourself that approx-
imating the trajectory by a straight-line is valid.
(c) Estimate the total energy radiated by the electron. [Neglect atomic electrons.]

Solution

(a) From the kinetic energy, EK = (1/2)mv2, we first find the electron’s velocity, and then
the de Broglie wavelength

v =

√
2EK

me
=

√
2× (104 × 1.6× 10−19)

9.11× 10−31
= 5.93× 107 m s−1, (5.39)

λdB =
h

mv
=

6.62× 10−34

(9.11× 10−31)× (5.93× 107)
= 1.23× 10−11 m. (5.40)

The impact parameter b = 10−10 m is about a factor of 10 larger than the de Broglie
wavelength, and so use of classical physics is (marginally) justified.

vt

z

θ

b

E

v

a

−e

+Ze

(b) The straight line approximation is only valid when the impulse is small compared to
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the initial momentum, i.e. ∆p⊥ ≪ mev where

∆p⊥ =

∫ ∞

−∞

Ze2

4πε0(b2 + v2t2)
cos[θ(t)]dt, (5.41)

=

∫ ∞

−∞

Ze2

4πε0

b

(b2 + v2t2)3/2
dt, (5.42)

=
Ze2

2πε0bv
. (5.43)

Since the straight line approximation is valid when ∆p⊥ ≪ mev, we require

b ≫ Ze2

2πε0mev2
= 1.18× 10−11 m (5.44)

which is marginally satisfied since b = 10−10 m.

(c) Larmor’s formula for the instantaneous radiation power is

P (t) =
a(t)2e2

6πε0c3
, (5.45)
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and so the total energy radiated by the electron as it travels from z = −∞ to z = +∞ is

W =
e2

6πε0c3

∫ ∞

−∞
a(t)2dt, (5.46)

=
e2

6πε0c3

∫ ∞

−∞

(
(Ze)× e

4πε0(b2 + v2t2)me

)2

dt, (5.47)

=
e2

6πε0c3

(
Ze2

4πε0me

)2 ∫ ∞

−∞

1

(b2 + v2t2)2
dt, (5.48)

=
Z2e6

96π3ε30c
3m2

e

[
bt

2b3(b2 + v2t2)
+

tan−1(vt/b)

2b3v

]∞
−∞

, (5.49)

=
Z2e6

96π3ε30c
3m2

e

π

2b3v
, (5.50)

=
Z2e6

192π2ε30c
3m2

eb
3v

, (5.51)

= 4.04× 10−5 eV. (5.52)

5–6 A pulsar is a rapidly-spinning magnetised neutron star observed at radio and sometimes
higher (optical, X-ray and gamma-ray) frequencies. Neutron stars have masses of typically
M ∼1.4 M⊙ (solar mass 1 M⊙ ≈ 2 × 1030 kg), radius R ≈ 10 km, moment of inertia
IMoI = 2

5MR2 ≈ 1038 kg m2 and a wide range of surface magnetic fields. Outside the
neutron star the magnetic field may be approximated by that of a magnetic dipole at its
centre making angle α to the spin axis. Pulsars typically emit one or more narrow pulses
at the same time into each spin period P , and measurements at different epochs generally
show that the spin is slowing down as characterised by the time-derivative of the period Ṗ .

(a) Derive formulae in terms of P and Ṗ for the rotational kinetic energy Erot, the rate
of loss of rotational kinetic energy Ėrot, the pulsar’s characteristic age τ = Erot/Ėrot and,
assuming the slow-down is due to conversion of rotational kinetic energy to magnetic dipole
radiation, the pulsar’s minimum equatorial surface magnetic field Bmin.
(b) The radio pulsar PSR J0157+6212 has P = 2.355 s and Ṗ = 1.89 × 10−13 (“The
Australia Telescope National Facility Pulsar Catalogue”, Manchester, R.N., et al., 2005,
Astron. J., 129, 1993, and http://www.atnf.csiro.au/research/pulsar/psrcat/). Find Erot,
Ėrot, τ = Erot/Ėrot and Bmin.
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Solution

(a) The rotational kinetic energy is

Erot =
1

2
IMoIω

2 =
1

2
IMoI

(
2π

P

)2

= 2π2IMoIP
−2. (5.53)

The rate of loss of rotational kinetic energy is

Ėrot = 2π2IMoI(−2)P−3Ṗ = −4π2IMoI
Ṗ

P 3
. (5.54)

The pulsar’s characteristic age is

τ =
2π2IMoIP

−2

4π2IMoI ṖP−3
=

P

2Ṗ
. (5.55)

For the pulsar, we have a rotating magnetic dipole of effective moment m0 sinα, where α is
the angle between the pulsar’s magnetic moment and its spin axis as it is only the moment’s
component perpendicular to the spin axis which is relevant for radiation. Furthermore, a
rotating magnetic dipole moment is equivalent to two orthogonal oscillating magnetic dipole
moments out of phase by 90◦.

We need to write the magnetic moment in terms of the surface magnetic field, and for a
magnetic dipole of moment m0

B(r) =
µ0

4π

[
3r(m0 · r)− r2m0

r5

]
, (5.56)

and so at the magnetic equator of a neutron star (m0 · r = 0 in the formula above) the
surface magnetic field has magnitude

B =
µ0

4π

m0

R3
, ∴ m0 =

4π

µ0
R3B. (5.57)

The time-averaged magnetic dipole radiation power of a rotating dipole is twice the power
of a single oscillating magnetic dipole

⟨PMDR⟩ = 2× µ0ω
4(m0 sinα)2

12πc3
. (5.58)

Substituting for the magnetic dipole moment in terms of the polar surface magnetic field
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we get

⟨PMDR⟩ =
8π3µ0

3c3P 4

(
4π

µ0
R3B sinα

)2

. (5.59)

Equating this to the rate of loss of rotational kinetic energy is

8π3µ0

3c3P 4

(
4π

µ0
R3B sinα

)2

= 4π2IMoI
Ṗ

P 3
, (5.60)

B2 sin2 α = 4π2IMoI
Ṗ

P 3

3c3P 4

8π3µ0

µ2
0

16π2R6
. (5.61)

∴ B sinα =

(
3c3µ0IMoI

32π3R6

)1/2 (
ṖP

)1/2
. (5.62)

∴ B > 3.20× 1015
(
ṖP

)1/2
(T). (5.63)
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(b) For pulsar PSR J0157+6212 the rotational kinetic energy is

Erot = 2π2 × 1038 × P−2 = 3.56× 1038 J. (5.64)

The rate of loss of rotational kinetic energy is

Ėrot = 4π2 × 1038
Ṗ

P 3
= 5.71× 1025 W. (5.65)

The pulsar’s characteristic age is

τ =
P

2Ṗ
= 6.2× 1012 s = 2.0× 105 y. (5.66)

The pulsar’s minimum polar surface magnetic field is

Bmin = 3.20× 1015
(
ṖP

)1/2
= 2.14× 109 (T). (5.67)
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