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Preface

The purpose of this book is to provide both worked examples and additional problems, with answers
only, which cover the contents of the two Bookboon books ‘Control Engineering: An introduction
with the use of Matlab’ and ‘An Introduction to Nonlinearity in Control Systems. Although there was
considerable emphasis in both books on the use of Matlab/Simulink, such usage may not always be
possible, for example for students taking examinations. Thus in this book there are a large number of
problems solved ‘long hand’ as well as by Matlab/Simulink. A major objective is to enable the reader
to develop confidence in analytical work by showing how calculations can be checked using Matlab/
Simulink. Further by plotting accurate graphs in Matlab the reader can check approximate sketching
methods, for say Nyquist and Bode diagrams, and by obtaining simulation results see the value of

approximations used in solving some nonlinear control problems.

I wish to acknowledge the influence of many former students in shaping my thoughts on many aspects
of control engineering and in relatively recent years on the use of Matlab. In particular, Professor Dingyu
Xue whose enthusiasm for Matlab began when he was a research student and who has been a great source
of knowledge and advice for me on its use since that time, and to Dr. Nusret Tan for his assistance and
advice on some Matlab routines. I wish to thank the University of Sussex for the facilities they have
provided to me in retirement which have been very helpful in writing all three bookboon books and

finally to my wife Constance for her love and support over many years.
Derek P. Atherton

University of Sussex

Brighton

May 2013.
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1 Introduction

1.1 Purpose

The purpose of this book is to provide both worked examples and additional problems, with answers only,
which cover the contents of the two Bookboon books Control Engineering: An introduction with the
use of Matlab[1] and An Introduction to Nonlinearity in Control Systems [2], which will be referred to
as references 1 and 2, respectively, throughout this book. In reference 1 the emphasis in the book was to
show how the use of Matlab together with Simulink could avoid the tedium of doing some calculations,
however, there are situations where this may not be possible, such as some student examinations. Thus
in this book as well as working out in many cases the examples ‘long hand, the solutions obtained using
Matlab/Simulink are also given. Matlab not only allows confirmation of the calculated results but also
provides accurate graphs of say Nyquist plots or root locus diagrams where an examination question
may ask for a sketch. Academics have been known to say they gained significant knowledge of a topic
from designing exercises for students. Unlike 50 years ago when slide rules and logarithmic tables were
used to solve problems designing exercises is now much easier because in most instances results can be
checked using appropriate computer programs, such as Matlab. Thus with these tools students can build

their own exercises and gain confidence in solving them by doing appropriate checks with software.

The examples and problems have been carefully chosen to try and bring out different aspects and results
of problem solving without, hopefully creating too much repetition, which can ‘turn off” the most ardent
enthusiast. Before the examples in each chapter a very brief overview of aspects of the topics covered is
given but more details can be found in the relevant chapters of references 1 or 2, which are referred to

in the relevant chapters of this book.

References

1. Control Engineering: An introduction with the use of Matlab, D.P. Atherton. Bookboon
2009.
2. An Introduction to Nonlinearity in Control Systems. D.P. Atherton. Bookboon 2011.

Contents Overview

The examples and problems are included under the following topic titles.

Mathematical Models and Block Diagrams.

Transfer Functions and their Time Domain Responses.
Frequency Responses and their Plotting

Feedback Loop Stability

State Space Models and Transformations

Control System Design.

Phase Plane Analysis

v 0 N ok wN

The Describing Function and Exact Relay Methods.
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2 Mathematical Models and Block
Diagrams

2.1 Introduction

Block diagrams are used by engineers to show how the possibly large number of components, which
are present in many systems, are interconnected. The information in a block may be purely descriptive,
such as that shown in Figure 2.1, which describes the components of a typical measurement system, or
contain a mathematical model of the various components which is required if any dynamic analysis is

to be undertaken, which will be our concern here.

Variable Signal Signal Signal
—» | Transducer > conversion gnar > gnal > Slgnal L,
Physical element processing transmission utilization | Used
variable output

Figure 2.1 Components of a typical measurement system.

The basic mathematical model of a component with lumped parameters is a differential equation.
Although all component models are nonlinear one may often be able to approximate them under certain
conditions by alinear differential equation. Control engineers usually work with two equivalents of a linear
differential equation, a transfer function or a state space model, as described in chapter 2 of reference
1. Thus a component model is typically shown by a block and labelled with its transfer function G(s)
as shown in Figure 2.2, where the input to the block is labelled U(s) and the output Y(s) . This means
that Y(s) = G(s)U(s), whereU(s) is the Laplace transform of the input signal u(f) and Y(s)is the
Laplace transform of the output signal y() . The corresponding relatlonshlp in the tlme domain is the
convolution integral, see appendix A reference 1, given by y(#) = .[ gt—1u(r)dr = I g(u(t—r)dr,

where g(?) the weighting function, or impulse response, of the block has the Laplace transform G(s).
It is normally understood that when the lower case is used, i.e 4, it is a function of t and when the upper

cases is used, i.e U it is a function of s.
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The first set of examples will be concerned with model representations for a single block. The transfer
function of a component, assumed to behave linearly, is the Laplace transform of its linear constant
parameter differential equation model, assuming all initial conditions are zero. This transfer function,
typically denoted by, G(s), will be the ratio of two rational polynomials with real coefficients, that is
G(s)=B(s)/ A(s). The roots of A(s) and B(s) respectively are the poles and zeros of G(s). A transfer
function is strictly proper when it has more poles than zeros. When the number of poles is equal to the
number of zeros the transfer function is said to be proper. The transfer function is stable if all its poles
have negative real parts. In Matlab the transfer function is typically entered by declaring the coefficients
of the polynomials A(s) and B(s) or in the zero-pole-gain form. A state space model represents an n”
order differential equation by a set of » first order differential equations represented by four matrices A,
B, C and D. For a single-input single-output system (SISO) the dimensions are nxn; 1xn, an n column
vector; nxl, an n row vector, and 1x1, a scalar. Whilst a state representation has a unique transfer
function the reverse is not true. Some simple aspects of state space representations will be covered here

with more in chapter 6.

The interconnection of model blocks is typically shown in a block diagram or signal flow graph where only
the former will be considered here. Often the 's' is dropped in the block diagram so that the relationship
for Figure 2.2 is typically denoted by Y = GU.

G(s) >
Y(s)

U;)

Figure 2.2 Single block representation.

In connecting block diagrams it is assumed that the connection of one block G, to the output of another
G, does not load the former so that if X = G, U and Y = G X then Y, = G,G X as shown in Figure 2.3

\

G1

> G2
U X

_<V

Figure 2.3 Series connection of blocks.

For two blocks in parallel with Y, = G.U, Y, =G,Uand Y =Y, +Y, then Y = (G, + G)U. In Matlab the
series connection notation is G, * G, and the parallel one G, + G,. Figure 2.4 shows a simple feedback
loop connection for which the relationships for the two blocks are C = GX and Y= HC with X=R - Y.

Eliminating X to get the closed loop transfer function, T, between the input R and output C gives
G
R 1+GH
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v
®
v

A
L
A

Figure 2.4 Closed loop block diagram

The required command in Matlab is T=feedback(G,H). If the positive feedback configuration is required
then the required statement is T=feedback(G,H,sign) where the sign = 1. This can also be used for
the negative feedback with sign = -1. Block diagrams and signal flow graphs, an alternative graphical
representation which will not concern us here, simply describe sets of simultaneous equations. Often
textbooks give sets of rules for manipulating block diagrams and obtaining relationships between the
variables involved but in many engineering problems there are not many interconnections between blocks

and one can work from first principles writing out expressions and eliminating variables as done above.
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The standard single-input single-output feedback control loop is typically assumed to be of the form
shown in Figure 2.5. G, Gc and H are respectively the transfer functions of the plant, controller and
measurement transducer, and the input signals R, D and N are respectively the reference or command
input, a disturbance and measurement noise. U is the control signal to the plant and C the output or
controlled variable. The open loop transfer function, G, (s), is the transfer function around the loop
with the negative feedback assumed, that is with s’ omitted, G,, = G.GH . The closed loop transfer
function C/R is often denoted by T. The error is the difference between the demanded output and the
actual output C. Normally the units of R and C will be different, for example C might be a speed and
R a voltage with the transducer H having units of V/rads/s. Typically, the feedback loop is designed to
achieve zero error between R and HC, which will be a voltage. The error in speed will be C -R/H, which
with no voltage error will only be the demanded speed if H is known exactly. The transfer function from

the input to the error at the input to Ge is 1-TH

+0

R + + U
Ge G

\ 4

A
I

Figure 2.5 Basic feedback control loop

The first two examples deal with transfer functions and their zeros and poles, and are followed by
three examples dealing with the interconnection of transfer functions and their evaluation in Matlab.
Mathematical models can also be entered and their responses to different inputs found using Simulink.
The ‘Continuous’ category of Simulink includes the following model forms, transfer function blocks
for either polynomial or zero pole form of entry, a state space block, an integrator block. The ‘Math
operations’ category, includes a gain block and a sumer. The next example covers a few basic aspects of

using these blocks in Simulink.

2.2 Examples

Example 2.1
s+1
§* 4357 +3s5+2

Find the poles and zeros of the transfer function G(s) =
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To find the poles one needs to find the roots of the denominator polynomial
s° +3s> +35+2=0. Since it is a cubic with real parameters it must have one real root and a quick
check shows one root is -2 Dividing the polynomial by s+2 yields s° +s+1which has roots

of s =—(1/2)=% j(4/3/2). Thus the transfer function has a zero at -1, and three poles at -2 and
—(1/2) £ j(4/3/2) . Using Matlab one has

>> G=tf([1 1],[1 3 3 2])
Transfer function:
s+1

SA3+38/N2+3s5+2
The zero-pole gain version can then be obtained from Matlab with the following instruction:-
>> zpk(G)

Zero/pole/gain:
(s+1)
(s+2) (A2 +s+ 1)
Note the complex roots are returned as a second order polynomial.

Alternatively the transfer function could have been entered in zero-pole-gain form as below and the

transfer function in polynomial form found.
>> G=zpk(-1,[-2 -0.5+0.866j -0.5-0.866j],1)
Zero/pole/gain:
(s+1)

(s+2) (A2 +s+ 1)
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>> tf(G)
Transfer function:
s+ 1
sA3+3sM2+3s+2

In a practical situation ‘nice’ numbers will not occur and polynomials can have much higher orders

than three so use of computational software such as Matlab is essential as indicated by the next example.

Example 2.2.

Find the poles and zeros of the transfer function

s°+55+6
S+ 6s* +14s° +21s> +135+6

G(s) =

(]
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Finding the roots of the denominator because the polynomial is of fifth order requires quite a bit of trial
and error and would be even worse for a practical situation where the polynomial coefficients would not
be integers. The roots command in Matlab gives
>> roots([1 6 14 21 13 6])
ans =

-3.4212

-0.9474 + 1.5690i

-0.9474 - 1.56901

-0.3421 + 0.6365i

-0.3421 - 0.6365i

Thus these are the poles, which are seen to be one real and two complex pairs, and the zeros are easily

seen to be -2 and -3. As all the poles have negative real parts the transfer function is stable.

Example 2.3
Find the transfer function of (a) the series and (b) the parallel combinations of the two transfer functions
Gi() =D and G-

(s+D)°(s”+s+4) (s+1D(s+2)

Note that in the product G,G, the zero at s = -2 from G, cancels the pole at s = -2 of G, giving:-

s+4

G, = . What happens in Matlab?
LoD (sT+s+4)

The first transfer function G, can be entered by making use of the convolution instruction ‘conv’ as

follows:-
>> G1=tf([1 2],[conv([1 2 1],[1 1 4])])
Transfer function:

s+ 2

sNM+3sN3+7sN2+9s+4

Download free eBooks at bookboon.com



>> G2=tf([1 4],[1 3 2]);
>> G=G1*G2
Transfer function:

sN2+6s+8

SA6 +6 N5+ 18" +36s"3+455"2+30s+ 8

Thus the zero pole cancellation has not been done by Matlab. This can be done, however, by using the

instruction ‘minreal), short for minimal realisation. Thus
>> G=minreal(G1*G2)
Transfer function:

s+4

sA5+4sM+10sM3+16s7M2+13s+4

To check that the denominator agrees with the above for the product of G1 and G2 one can use the zpk

function to obtain:-
>> zpk(G)
Zero/pole/gain:

(s+4)

(s+1)A3 (sA2 + s + 4).

For the parallel connection of the transfer functions

GP(s) = s+2 N s+4 ST+ As+4+(sT+55+4)(sP +5+4)
(S+D*(+s5s+4) (s+1D(s+2) (s+1)>(s+2)(s> +s+4)
giving GP(S)_52+4S+4+(s2+5s+4)(s2+s+4)_ st 465 +14s5° +285+20
(s+1)*(s+2)(s* +s5+4) §°+5s* +135 +2357 +225+8
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And using Matlab

>> GP=minreal(G1+G2)

Transfer function:

SN + 6873+ 14 M2 +28 s+ 20

SA5 + 557N + 13 M3 +23sM2+225+ 8
Here again if minreal is not used then the denominator is of sixth power as (s + 1)’ is included.

Example 2.4

Determine the transfer functions for the basic feedback loop block diagram of Figure 2.5 from

the input R and disturbance D to the output and the error at the input to G, respectively, with

- I+s G- 22 and H=1.
1+0.25s s(s”+s+4)

With us you can
shape the future.
Every single day.

For more information go to:
WWw.eon-career.com

Your energy shapes the future.

e-on
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The closed loop transfer function 7' = < = _ GG, which on substituting the values given gives
R 1+GGH
7 2(1+s) B 2(1+s)
(1+0.255)s(s” +s+4)+2(1+s) 0.255* +1.255° + 25> + 65 +2

is denoted by E, since ¥ =G,GE, gives %:;, which on substituting the values gives

1+ G.GH

s(s>+s+4)(1+0.255)  0.25s* +1.255° +2s° +4s
0.255* +1.255> + 25 +65+2 0255 +1.255> + 25 +65+2

and if the input to Gc

E —_—
R
Using Matlab and after entering the transfer functions T is obtained from
>> T=feedback(Gc*G,1)

Transfer function:

2s+2

025N +1.258"3+2s7"2+6s+ 2

And E/R from 1-T, that is

>> 1-T

Transfer function:

025N +1.258"3 + 272 +4s

025N +1.258"3+2sM"2+6s+ 2

The transfer function from D to the output corresponds to a negative feedback loop with input D,

feedforward element, G, and feedback element G, and is

cC G 2(1+0.255) 2+0.5s

D 1+GG.  (1+0255)s(s> +5+4)+2(1+0.255) 025s" +1.255° +25° + 65+2

>> CD=feedback(G,Gc)
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Transfer function:

05s+2

025N +1.258"N3 +2s"2+6s+ 2

C

E
With the input R zero the transfer function — =——.

D

Note the denominator polynomial of the transfer functions is always the same and its roots define the
stability of the loop, thus from Matlab

>> roots([0.25 1.25 2 6 2])
ans =

-4.3336
-0.1487 + 2.2317i
-0.1487 - 2.2317i
-0.3690
Which all have negative real parts showing the feedback loop is stable.

Example 2.5

Figure 2.6 shows a block diagram with two feedback loops for which the transfer functions are

1+4s 1 1 1 1
G S)= > G = 5 G S =—3G S =_’H(S): and
)= ) =105 &= GE=0h 1+0.1s
H,(s)= S __ . Find the transfer functions from the input R and disturbance D to the output C.
1+0.2s

Figure 2.6 Block diagram for example 2.5
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To show the possible approaches the transfer functions will first be derived in terms of the block
descriptors. To find the transfer function from R to C, which will be denoted by T, it is possibly easiest

to derive the closed loop transfer function of the inner loop first. Denoting this by 7, gives

G,G
= ﬁ and then the transfer function T is given by
GLG, _ G,G,G,G,

T1+GIG,H, 1+GGH, +GG,GG,H,

Alternatively the inner feedback loop can be replaced by noting that the total negative feedback from C

H,

to the input to G,is H, + so that, T, can be written

4~1

G,G,G,G, _ G,G,G,G,
1+ G,G,H, + G,G,G,G,H,

as before.

T= 7
1+ (H, +ﬁ)GleG3G4

44U
Substituting the transfer function values gives

- 0.08s° +1.22s> +4.3s +1
0.04s” +0.765° +4.64s° +12.25* +19.48s> +16s> +8.2s +1

20 Click on the ad to read more
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Using Matlab after the transfer functions have been entered gives

>> T1=feedback(G2*G3,H2)

Transfer function:

02s+1

0.1s"4 +08s"3+18s"2+27s+1

and

>> T=feedback(G1*T1*G4,H1)

Transfer function:

0.08 s"3 +1.22s"2+43s+ 1

0.04 sA7 + 0.76 s"6 + 4.64 sA5 + 12.2 s + 19.48 sA3 + 1672+ 82s + 1

The roots of the denominator are

>> roots([0.04 0.76 4.64 12.2 19.48 16 8.2 1])

ans =

-10.0031

-5.5809

-1.1400 + 1.4462i

-1.1400 - 1.4462i

-0.4851 + 0.7490i
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-0.4851 - 0.74901
-0.1658

Thus the system is stable.

The transfer function from D to C, which will be denoted F, is simply a forward path of G,G, and a

negative feedback path of GG,H, + G2GH2 which gives

G3 G4 G3 G4

F = =
1+ G,G,H, + G,G,G,G,H,

1+ G,G,(G,G,H, + GéHz)
4

Using Matlab
>> F=feedback(G3*G4,G1*G2*H1+G2*H2*inv(G4))
Transfer function:

0.02 sA5 + 0.4 5" +2.66s"3 +7.48 N2 +9.2s+4

0.02 sA8 + 0.42 sA7 + 3.08 sA6 + 10.74 sA5 + 21.94 sA4 + 27.48 sA3 +20.1 sA2 + 8.7 s+ 1

>> minreal(F)

Transfer function:

sA4 + 18 sA3 + 97 sA2 + 180 s + 100

SA7 + 19 s76 + 116 sA5 + 305 sA4 + 487 sA3 + 400 sA2 + 205 s + 25

Note the denominator polynomial is the same as that of T, its coefficients are all multiplied by 25, as

expected.
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Example 2.6

1
Enter the transfer G(s) = ————— into Simulink using transfer function blocks, a state space

(s+D(s+2)

representation, and using integrators?

The simplest approach is to use one block, but other possibilities are to do as a series or parallel
combination (partial fraction representation — see also chapter 3) as shown in Figure 2.7 as models 1,

2 and 3 respectively.

1
D, > G
Int 43512 outt
Transfer Fcn
1 1
S
In2 s+ s+2 out2
Transfer Fen1 Transfer Fcn4
1
D) > — L »(3)
I3 st out3
Transfer Fcn2
» L
>
s+2
Transfer Fcn3

Figure 2.7 Possible transfer function representations
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The use of an integration block has the advantage that an initial condition can be placed on its output.
Thus when modelling using integrators their set of outputs provide a possible state vector. For the single
integrator with input gain and feedback shown in Figure 2.8 the state equation is simply X = ax + bu
and the output equation y = cx which corresponds to a transfer function of bc /(s + a) if no initial

condition is placed on the output x of the integrator.

> : o>
In1 . . Out1
Gain1 Integrator Gain2
2 }<
Gain

Figure 2.8 Integrator with feedback

Note that the numerator of the transfer function, given any specific value, h, can be split arbitrarily
between b and c. It is quite common to take b = 1 and ¢ = h. Thus in the diagram of Figure 2.7 any of
the first order transfer functions in the approaches 2 and 3 could have been replaced by the integrator
implementation of Figure 2.8. For the first implementation, one simple approach using integrators,

known as the controllable canonical form is shown in Figure 2.9.

1 anl 1
O—>| 1 > 1 >
In1 Out1
Integrator Integrator1
5 dl
Gain
6 <
Gain1

Figure 2.9 Model of second order transfer function using integrators.

The differential equation corresponding to the transfer functionis ¥ + 5x + 6 = u if the output is denoted
by xand the inputbyu. Intransform terms after rearranging this can be writtenas s> X = —5sX —6.X + U,
which equates the two expressions available for the input to the first integrator. This approach can
obviously be used to realise a characteristic equation of any order, where if it is of order n there will be
n integrators in series and n feedback gain paths. Any of the three approaches to modelling the transfer
function with integrators is a possible state space representation with the integrator outputs as the state
vector. For the first representation in Figure 2.7 shown in Figure 2.9 the state relationships if the outputs

of the integrators, from left to right, are respectively x, and x, are
X, =X, and X, =—5x, —6x, +u

Thus, denoting the state vector by x equal to (x,,x,)" the state equation

Download free eBooks at bookboon.com



) 0 1
x=Ax+ Bu has A=

0
] and B = (1), and the output equation is y =Cx = (1 O)x .

For the second representation of Figure 2.7, with the state vector components being x, and x , the outputs

of the first and second time constants using integrators as in Figure 2.9, the equations will be

X, =—2x, + X, and X, =—X, +u so that the state representation has

A=(_02 —IJ’B:[(I)j and C=(1 0).

Finally for the third representation of Figure 2.7 and denoting the outputs of the integrators in the upper

and lower time constants as, X, and X, respectively, gives a state representation with

A:(_Ol —02}82@ and C=(1 1).

Note that this approach yields a diagonal form for the A matrix, with the eigenvalues of the matrix (roots
of the characteristic equation) on the diagonal. Any of these state representations may be used in Matlab

or Simulink for which the state space block is shown in Figure 2.10.

x' = Ax+Bu
| o——
In1 Out1
State-Space

Figure 2.10 State space model in Simulink.
Entering the first (A,B,C,D) representation into Matlab as below can be used to find the transfer function
>> A=([0 1;-6 -5]);
>> B=([0;1]);
>> C=([10]);
>> D=0;
>> G=ss(A,B,C,D);
>> tf(G)

Transfer function:

sN2+5s+6
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2.3 Problems

Problem 2.1

2
s°+4s+3
Find the poles and zeros of the transfer function — 2 3 5 and determine if it is
s”+Ts" +15s" + 145" +8s

stable. Check your result using Matlab.

[0, -2, -4, -0.5£0.866j; -1,-3; stable, all poles negative real part]

Problem 2.2

2
s°+4s5+3
Find the poles and zeros of the transfer function — Z 3 > and determine if it is
87 +5s5" +4s” +4s” +16s

stable. Check your result using Matlab.
[0, -2, -4, 0.5£1.323j; -1,-3; unstable, complex poles positive real part]

Problem 2.3

Find the transfer function for the block diagram of Figure P2.3 in terms of the individual transfer

+2 2
functions. Determine its value if G,(s) = 2S—, G,(s)= L and G;(s) = 13 Find its poles

s+1 s+1 s+3

and zeros.

Figure P2.3

3s* +11s+10
st 4557 +8s% +75+3

> -1, -3, -0.5+0.866j; -2, -5/3.]

Problem 2.4

Find two state representations for the transfer function of Problem 2.3 and check your result in Matlab.

0 1 0 0 0 10
0 0 1 0 0 ’ 11
[Controllable form of TE A = , B = ,C' = , D=0
0 0 0 1 0 3
-3 -7 -8 -5 1
o 1 0 0
-1 -1 0 O
Controllable form for the TF G, and diagonal form for G, and G,. A= 5 . Lol
2 1 0 -3
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0 0

1
B = > CT = 0 > .D = 0 ']

0 1

0 2
Problem 2.5

. . . . s+1 1 2
Determine the transfer function for Figure P2.3if G, (s) = 54—, G, (s) = and G, (s) =——.
sT+s+1 s+1 s+3

Find its poles and zeros.

3s+5
s +4s +45+3

; -3, -0.5£0.866j; -5/3.]

Problem 2.6

Find two state representations for the transfer function of Problem 2.5 and check your result in Matlab.

0O 1 0 0
[Controllable form for the TE 4=| 0 0 1 [,B=|0 ,c=(5 3 0),D:0.
-3 —4 -4 1

DUKE

= THE FUQUA
SCHOOL
OF BUSINESS

iy

Learn More »
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0 1 O

0
Controllable form for G,with no zero plus diagonal for pole at -3, A=| -1 -1 0 |[,B=|1],
1 0 -3 0

C=(3 0 -4).D=01

Problem 2.7

Find the transfer functions C/R and C/D for the block diagram of Figure P2.7 in terms of the individual

1 2
L G =2,
S

transfer functions. Determine their values in terms of K if:- G,(s) = K , G, (s) = Grl)y
S+

1
H,(s)=1,and H,(s) = 10 . Estimate the maximum value of K for stability from the transfer function

poles and check with Matlab.

Figure P2.7

[E _ G,G,G; E _ G,G; .
R 1+G,H,+GG,G,H, D 1+G,H,+G,G,G,H,

C_ 2K (s +10) C_ 2(s +10) ,
R s*+125° +21s* +5(20+2K)+ 20K~ D s*+12s° +21s* +s(20+2K) + 20K ’
K ~55.]

Problem 2.8

Determine the transfer functions C/R and C/D for Figure P27 in terms of K

. K(1+s) 1 2 10 .
ifi-G,(s) =——=, G =, ==,H =1, and H,(s)=———. Estimate the

T P =0
maximum value of K for stability from the transfer function poles and check with Matlab.

[g_ 20K (s> +11s +10)
R s*+21s’ +57(130+ 20K) + 5(200 + 220K ) + 200K
2(s* +20s +100) . Stable for all K.]
s* 42157 + 57 (130 + 20K) + (200 + 220K ) + 200K ~

¢
D
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Problem 2.9

Find the transfer functions C/R and C/D for Figure P2.9 in terms of the individual transfer functions.

: . . . 1 2 4
Determine their values in terms of K ifi- G (s)=K,G, (s)=——, ==, -,
() 5 () 0 G, (s) -y G,(s) .

H (s)=1, H,(s) = and H,(s) = 2. Estimate the maximum value of K for stability from the

s+

transfer function poles and check with Matlab.

Figure P2.9
[E — G,G,G,G, £ — GG, .
R 1+G,H,+G,G,G,H, +GG,G,GH, D 1+G,H,+G,GG,H,+GG,GGH,’
C 8K (s +10)
R s*+20s® +116s* +s(160 +8K) +80+80K ’
¢ 8(s +2)(s +10) K =1827]

D 5" 4205’ +1165° +5(160+8K) +80 + 80K

Problem 2.10

Find the transfer functions C/R and C/D for Figure P2.10 in terms of the individual transfer functions.

2 4
Gy(9) = Gls)=—

and H,(s) = 2. Estimate the maximum value of K for stability from the

Determine their values in terms of K if:- G,(s)= K’Gz(s): 1
S+

10
s+

H (s)=1,H,(s) =

transfer function poles and check with Matlab.

Figure P2.10
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[E — G1G2G3G4 £ — G3G4 .
R 1+G,H,+G,G,H,+G,G,G,GH D 1+GH,+G,GH,+GG,GGH,’
C 8K (s +10) C 8(s +2)(s +10)

R s°+20s +116s° +5(180+8K)+80K D s* +20s° + 1165 +5(180 + 8K ) + 80K ’
K=21.75]

Problem 2.11

Some nonlinear systems are covered in later examples. Check that you can simulate the following
nonlinear characteristics in Simulink by providing a sinusoidal input and looking at the characteristic
input-output using an X-Y scope. (i) an ideal saturation with linear gain of 4 and ouput levels of +2,
(ii) an on-off relay with hysteresis with input switching levels of £0.5 and output levels of +2, (iii) a relay
with dead zone and hysteresis with input switching levels of £0.5and +1.5 and output levels of 0 and +2,

(iv) a characteristic x — (x°/6).

Problem 2.12

The signal y = sin @ + (1/3) cos 36. Calculate its maximum value and check your result in Simulink by

feeding the signal to a simout block and using the command max(simout).

[0.471]
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3 Transfer Functions and their
Time Domain Responses

3.1 Introduction

In this section the examples and problems relate to the response of transfer functions, G(s) , to different
inputs, covered in reference 1 chapter 3. If transfer functions with time delays, see reference 1section
6.2, are neglected then as mentioned in the previous chapter, G(s) , will be the ratio of two rational
polynomials with real coefficients, that is G(s) = B(s)/ A(s) . Inputs to G(s) will also be simple functions
of s so finding the time response requires inversion of a function of a ratio of polynomials in s. This
typically requires putting the function into partial fractions so that the inverse Laplace transform can be
found. If the transfer function is proper then it must first be written as a constant plus a strictly proper
transfer function. The constant will be the value of D in a state space representation. Many textbooks have
tables of Laplace transforms but if multiple complex poles are neglected then a simple table, which can
be used to invert transfer functions, in conjunction with the fact that s in the numerator can be taken as
a derivative operator, is given below in Table 3.1. Note that the table could have been reduced further by
noting that the result for poles at the origin can be found from that for multiple real poles for n =1...00
by taking the limit as @ — 0 and that the Laplace transform of &(¢) follows as the derivative of u(?).
Further number 4 has been added as it will be frequently used but is derived from 3, as suggested above,

by differentiation. Thus the only results which are ‘basic’ are 2 and 3.

- 1
Poles at the origin — o 50) an impulse for n = 0.
S

u(t) a unit step forn=1.
(n-1)

(n—1)!

for all other n

1 tn—l .
A d
(s+a) (n=1)!

Multiple real poles

" hoteforn=1,0=1

* )

o

2 : ﬁ
s +2w s+ w, 1-<9)

Complex poles e gin w, (1- 42)1/2t

2
S
Derivative of 3 4 PEES

s*+20w,5+ o)

2
e[ cos (1 —gz)l/zt—@—"sin o,(1-%)"%1]

(- 42)1/2

Table 3.1 Brief Table for Laplace Transforms
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Some students have difficulties obtaining partial fractions so that the first four examples are chosen
to cover this concept and the inversion of Laplace transforms. Time delays do have to be considered
typically for two situations, first where they may be required to describe an input signal, and secondly
where a system transfer function involves a time delay, a very common situation for models of process

control plants. The Laplace transform result that is used is

F(s)e™™ © f(t—t)u(t—1)

where F(s) is the Laplace transform of f(¢f)and u(f —7)is the unit step function at time ¢ = 7. The

next three examples are therefore concerned with time delays.

The final example derives the complete response of a simple transfer function to a sinusoidal input.
It is shown that the solution consists of a transient term as well as the steady state sinusoidal solution
which can be obtained from the transfer function by replacing s by j® .This steady state solution, as @
is varied, is known as the frequency response of the transfer function, for which examples are given in

the next chapter.

3.2 Examples

Example 3.1

: s+2 o o
A system has a transfer function of G(s) = . Find its poles and zeros, its gain at d.c

(s+D(s+3)(s+4)

(zero frequency) and its response to a unit step input.

The d.c. gain is obtained by putting s =0 so that G(0)=2/1x3x4=1/6. The poles are -1, -3

and -4 and there is a single zero at -2. The output, Y(s), for a unit step input into G(s) is given by

Y(s)= s+2 which needs to be put into partial fractions to find the output time
s(s+1)(s+3)(s+4)
function. The partial fractions are — + B + c + D and for this to be equal to Y(s) then
s s+1 s+3 s+4
s+2 A B C D
s(s+1D)(s+3)(s+4) s s+1 s+3 s+4

Because of the input step function Y(s) has four poles, one at s = 0, in addition to the three of G(s). Thus
the right hand side (rhs) of eqn. (3.1) has four terms with a coefficient, known as the residue at the pole,
over each pole. The long way to solve for the residues A, B, C and D is first to work out the rhs with the

common denominator, that is

A(s+1D)(s+3)(s +4)+ Bs(s +3)(s +4)+ Cs(s +1)(s +4) + Ds(s + 1)(s + 3)
s(s+1)(s+3)(s+4)
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Then expand the numerator and compare the coefficients in the powers of s, thus for example thes
cubed term which is zero on the left hand side (lhs) and the constant term which is 2 on the lhs give
A+ B+ C+ D =0 and 124 =2, respectively. Similarly the s squared and s terms yield two more linear
equations involving, and which can then be solved for, A, B, C and D. However, the quick approach is
to recognise that eqn.(3.1) is valid for all values of s so that if both sides of the equation are multiplied

by s and s is taken equal to zero then

( 1)(S +§)( 4) |,_o= 4 giving 4 =2/12as seen earlier. If the same procedure is done for s +1,
S+D(S+I3)(s+

s +3and s+4 with s put equal to -1,-3 and -4 one obtains

$|5=71=Ba &hﬁzc’ and LL% D. Thus B=-1/6,
s(s+3)(s+4) s(s+1)(s+4) s(s+1)(s+3)

C=-1/6 and D =1/6. This procedure is often known as the cover up rule as to work out a residue

one multiplies the expression by its denominator and then equates s to the pole value.

-~

-
-

-
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The solution for the output from inverting the rhs of eqn. (3.1) is ¥(¢) =(1/6)(1—e " — e +e™). The
first term in the brackets may also be written as #(#) as the solution for y() is only valid for # > 0 . Note
that the final value of the step response, see reference 1 appendix A, which can be obtained from either
lim,  y(¢)or lim_, sY(s), is A which is equal to 1/6. Also the initial value, which can be obtained
from lim, ,, y(f)or lim_, sY(s), is zero. When asked to sketch a step response it is useful to have
the initial slope which can be obtained from differentiating y(t) or in the s domain from lim___ s*Y(s),

as in the s domain the slope of y(t) is sY(s).

Matlab can be used to check partial fractions using the instruction [r,p,k]=residue(num,den) here r is
the residue at the pole p, and k is only finite when the number of zeros is equal to the number of poles,
i.e. when the transfer function is not strictly proper and is D in a state space representation. Thus for
this example one has
>> num=[1 2];den=[1 8 19 12 0];
>> [r,p,k]=residue(num,den)
r=

0.1667

-0.1667

-0.1667

0.1667

-4.0000
-3.0000

-1.0000

The step response which is obtained from the commands
>> G=tf([1 2],[1 8 19 12]);

>> step(G)
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is given in figure 3.1, and obviously confirms the final value of 1/6 = 0.167.

Step Response
0.18 T

0.14 1

0.12 1

o1} .

Amplitude

0.06 - 1

0.04 b

0.02 1

0 1 1 1 1 1
0 1 2 3 4 5 6

Time (sec)

Figure 3.1 Step response of the transfer function

Example 3.2

To illustrate the problem of a repeated root consider the evaluation of the unit impulse response of

1
= 6

Since the Laplace transform of a unit impulse is 1 it is required to find the inverse Laplace transform

B C A Ds+E

+ + - or + ;
s+2 s+1 (s+1) s+2 (s+1)

where B, C are related to D, E as is easily seen by bringing the last two terms in the first expression to

of G(s). This can be put into partial fractions either as

a common denominator. Since the inverse Laplace transform of the first expression is often easier to
write down the former is usually preferred. Using the cover up rule it is seen that 4 =1 and C =1. To
find B it is probably easiest to then compare the numerator coefficients for one power of s. In this case
the constant term looks easy and gives 4+ 2B + 2C =1, which then yields B = —1. Thus the impulse

. -2t —t —t
responseis e = —e  +le .

Matlab can again be used to check the partial fraction expansion and gives the following results

1.0000

-1.0000

1.0000
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p=
-2.0000
-1.0000
-1.0000
k=

Note the residues are given for the partial fraction expansion involving A, B and C in that order.

Example 3.3

s+2
sP+s+1

Find the poles and zeros and the unit step response of the transfer function G(s) =

SMS from your computer
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There is a zero at s =—2 and there are two complex poles ats =—0.5+ j\/§ /2, obtained from the
roots of s° +s5+1=0, found either by using the expression for the roots of a quadratic or going
back to the basics of ‘completing the square, i.e writing the expression as (s +0.5)” + (\/5 /2)* =0,

which is how the expression for the roots of a quadratic equation was derived. The output

Y(S)zzsizzju > As +—= B with the residue at the pole s=0 found by
s(s“+s+1) s s +s+1 sT+s5+1

the cover up rule. By comparing the numerator coefficients for the sand s’terms one has

2+ A=0 and 2+ B =1 giving 4 =-2 and B =—1. Thus inversion, using Table 3.1, of Y(s) gives

() =2 —2e "P[cos(x/3t/2) — (1/3)sin(x/3t / 2)] — e "> [(2/~3) sin(\/3¢ / 2)]
which on simplification gives y(f) =2 —2e *'? COS(\/gl‘ /2).

Alternatively if one uses the results given in typical Laplace transform tables one writes

2 25+l 2 s +(1/2)]

Y(s)=—"—— "~ =" . .
(s) s Pis+l s {[s+(1/2)]2+[\/§/2]1/2} which gives as before

(t)=2-2¢"""? cos(+/3t/2).

In this case if one uses Matlab to get the partial fractions the result shows the residues at the complex

poles as seen below

>> num=[1 2];

>> den=[1110];

>> [r,p,k]=residue(num,den)

-1.0000 + 0.0000i

-1.0000 - 0.00001

2.0000

p:

-0.5000 + 0.8660i
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-0.5000 - 0.8660i

0
k=

(]
Thus one has Y(s)= g — 1 — 1 = % — 22S—+1 as before.

s+0.5-0.866j s5+0.5+0.866]j s s +s+1
Example 3.4
, , . 2(1+cs) .
Determine the values of ¢ for which the step response of the transfer function G(s) = ———=—will
(s+D(s+2)

have an overshoot. Confirm your result using Matlab and obtain plots of the step response for ¢ equal

to 0.5, 1, 1.5 and 2.
Comment

Many students think that there will be no overshoot when a transfer function has real negative poles.

This may not be the case when there are zeros as this simple example illustrates.

Putting - into partial fractions gives 95 1 . 05

s(s+1D(s+2) s s+l (s+2)
Laplace transform gives in the time domain 0.5—e +0.5¢™. Thus the response of G(s)to a unit step

which on taking the inverse

is 1—2e” +e™ +2ce” —2ce™, which has a final value of 1 {also given by G(0)}.

Differentiating and equating to zero to find the maximum gives

e'(I-c)+e(2c—1)=0 giving ¢ = 1_720 Since the solution for e~ must lie between zero and unity
1-2c¢

2

it requires ¢ > 1. The overshoot will be ¢(1-2¢)—2¢7(1-¢) = (=1 Thus for the values of ¢ equal
(2¢-1)

to 0.5, 1, 1.5 and 2, the overshoots will be 0, 0, 12.5% and 33%. Figure 3.2 shows the responses from

Matlab. To get multiple plots on the same graph the ‘hold’ facility can be used in Matlab.

Download free eBooks at bookboon.com



Control Engineering Problems with Solutions Transfer Functions and their Time Domain Responses

Step Response
14 T T T T T
c=2
—¢c=15
12+ e H
——¢=05
1
o 08} e
°
2
=
5
< 06 1
04} .
0.2 b
0 1 1 1 1 1
0 1 2 3 4 5 6
Time (sec)

Figure 3.2 Step responses for the transfer function of example 3.4.

The peak value of the response can be obtained in Matlab as shown below for ¢ = 1.5
y=step([3 2],[1 3 2]);

>> max(y)

ans =

1.1250
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Example 3.5

A pulse, x(), defined by x(¢)=1 for # < Aand x(t) =0 for ¢ > A, is applied to the transfer function
G(s)=1/(s +1) obtain the output response. If the height of the pulse is changed to 1/ A so that it has
unit area, show that by taking the limit as A — O one obtains the impulse response g(f)of G(s)

A quick appraisal of the situation indicates that the input is the sum of two unit steps a positive one
occurring at time zero and a negative one at time A. Thus using superposition the response will be that
for the unit positive step from time zero to A and for # > A the sum of the unit positive step response
and that of a negative step at time ¢ = A. Since the unit step response of the transfer function is 1 — e’
the response y(f) will be 1—¢"for 0<s<Aand 1—e' -1+ e ™ =) _ o7 for t > A. Note
that for the response to the negative step since it occurs at time 7 = A the time variable is shifted to
t —A. There are other ways of writing this result, since by definition of the unit step u(¢) is unity for
t > 0 and zero for ¢ <0, so that u(t — 7) is unity for ¢ > 7 and zero for ¢ < 7. Thus one can write
yO) =u@®)[l-e']-u(t-A)[1—e "] or y(t)=1-e" —u(t—A)[1-e“™] both of which are
valid for all 7> 0.

The alternative approach which is more logical, certainly for more complicated input functions, is to note

thattheinputis #(¢) — u(f — A) whichhasthe Laplacetransform 1 e . Theoutputisthereforetheinverse
—As Ky K
][%] which gives as before y(r) = u(t)[1—e ' ]—u(t - A)[1 - e M.
s+

e

Laplace transform of [l -
s s

When the pulse has unit area then for 7 > A, y(t) = (1/ A){u(H)[1 —e " ]—u(t — A)[1 - e ™1}, which
as A — 0 becomes y(r) =lim,_,(1/A){—e™ + e ™} =lim,_,(1/A){e” (¢" — D)} =™ = g(1)

Comment

Here the unit pulse function p, () = u(¢) —u(t — A) between zero and A has been used which is very
useful for taking the Laplace transform of piecewise continuous functions. Note that if this is time shifted
to startat £ =7, thatis p, (f—7)=u(t —7)—u(t —7—A), then the function f(¢)p,,(f—7)is zero
everywhere except between ¢ = 7 and ¢ = 7 + A where it is equal to f(%).

Example 3.6

Determine the Laplace transforms of the following signals, x():-

a) x(t)=sinwt for t <27 /w and zero elsewhere.
b) x(t)=tfor 0 <¢<1land x(¢)=1for t >1
o) x(t)=tu(t—r)

25/

a) The signal is equal to (sin @t)p,,,,(¢)so its Laplace transform is {— il = {l — }
ST+ s
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—-s —-s

b) The signal is equal to #p, (¢) + u(¢ —1) so its Laplace transform is Lz — % +€ . Note the

S S s
signal x(?) can also be described as the summation of the two signals ¢ from 0 to oo, — ¢ +1

from 1 to oo which can be seen to give the same Laplace transform.

¢) The signal x(f) = t’u(f — 7) can be written in the form x(t) =[(t =)’ +2t(t —7) + 7" }u(t — 7)

when expanding the ¢’ term. Each term is now in the form f(t — 7)u(¢ — ) so the Laplace

2 _—st

2e7°7  2e°T  rce
+ +

S S2 N

transform is

Example 3.7

2
@

o

The second order underdamped transfer function G(s) = has an input consisting of

s +280,+ @)

o

a step of magnitude a at time zero and another of magnitude 1 —a at time 7. Find the output and show
that if 7 is taken equal to 7 /@,(1-¢?)"?and a=1/(1+A)where A =exp[—Cr /(1—¢?)"?] then

the output will be unity for 7 > 7.

The input signal is au(t) + (1 —a)u(t — 7). The step response, y(t), of G(s) is given in many books but

W] 1 s+2lw,

it will be worked out here. One has Y(s)=—; 2 o=—+— - and taking the inverse
S(s”+20w,+w) s 5T +2050,+ 0,
Laplace transform gives y(¢) =1-exp(—¢w,#)[cos ot — - gz)] —sinawr + a _252)] S sinat]=1- %smm +9)

where w=w,(1-¢ 2)1/2 and cos¢@ = ¢ . From differentiation of y(f) to find its maximum yields
o, sin(ax + @) —wcos(awt +@) =0, which gives tan(wf+¢@)=tangp, so that t=nr/w.
The first overshoot occurs for ¢=7/@, which on substituting in the solution for y(t) gives
y(t)=1+exp[-¢m /(1-C%)"?1=1+ A, where A is the per unit overshoot. Thus the response, c(t)

to the given input is

_aexp(—=¢w,1)
(1- 4/2)1/2

for ¢ > 7 gives

| expl=¢o, (1)
(- 4/2)1/2

c(t)=a sin(wt + @)+ (1 —a)u(t —7)[

sinf[w(t —7)+ @] which

(—a)exp[-co, (1 ~7)]

() =1- aexp(—dw,t)

(1—C2)" sin(wt + @) — -2y sin[(t —7) + ¢] that is
c(t)=1- fm[a sin(awr + @) + (1 - a) exp(¢w,7) sin(wt + ¢ — o7)]
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Now if 7 =7/ @,(1-¢?)"? = 7/ @ then

C(t) 1= eXp(_Ca)ot)

(1-27)" {asin(wt + @)+ (1—a)exp[-¢7 /(1- & ?)]sin(wt + @ — 7)1}

The term within the brackets is

asin(ot + @) + (1—a)exp[—¢7 /(1 - )] sin(wt + @ — 7)] = sin(wt + @)[a— A (1-a)] which
is zero for aA=(1-a), thatis a=1(1+A). Thus ¢(¢)=1 for t>rif r=7/w,(1-¢*)"*and
a=1(1+A), as required.
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Comment

There is a nice physical explanation for this result. Consider a load suspended vertically on a rod for
which the anchor point is free to move horizontally in the x direction and it is moved instantaneously a
distance a. Then the load will start to move to below the anchor point. If the motion is described by the
second order differential equation corresponding to the above transfer function it will overshoot. When
it reaches its overshoot, where its velocity will be zero, if the anchor point is then moved instantaneously
to be directly above it, which will be a further distance aA, then the motion will stop. This concept was
originally due to Smith [3.1] and called posicast control. More recently the general approach where the
input form is adjusted to produce a desired output, has become known as input shaping and has received

considerable attention in recent years in the control engineering literature.

Example 3.8

The sinusoidal signal sin(@f + ) is applied to a network with transfer function 1/(1+ s7') at time ¢ = 0.
Find the output. What should be the value of 6 for no transient to be observed in the output?

This is a simple example to illustrate the fact that when applying a sinusoidal signal to any dynamic
system the steady state sinusoidal output which gives the frequency response is only attained after a

transient has decayed.

First the Laplace transform of sin(wt + ) is required. It can be seen from 3 in Table 1 that with ' =0

the Laplace transform of sin «f is so that by differentiation the Laplace transform of @ cos wt

2 2
s tw
. N7 . S . .
is ——— giving the Laplace transform of coswf as ———-, or the result can be obtained directly
s to ST+ o

from 4 with { = 0. Thus the Laplace transform of sin(@t + @) which equals sin @t cos & + cos ot sin 6
s @cosO+5sinf

s+’

Therefore the output Y(s) from the transfer function is given by {a)cos ;9 s 2s1n 9} { ! 3.
s“+w 1+sT)
A Bs+C 2 —Tsi
Putting into partial fractions as + yields 4 = @l cosO—-Tsin0 ,
1+sT &+ w? 1+ @’T?

. 2 .

p=1 0 -l cosd and C =2 Tsin6 j a;cos@ . Inverting the partial fraction expansion gives
1+ o’T? I+o'T

Ae™"'" + Beoswt + (C/ w)sin ot which on substituting for A, B and C, and after some algebra gives
the solution for the output, (), of

oT*cos@—Tsinb. .,
e+

(l‘)‘{ ;
Y 1+ @1 (1+’T?)"

sin(wt + ¢)
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where ¢ =6 —tan~' @T . The first term is the transient term which essentially becomes zero after
57 and the second term is the steady state sinusoidal output signal. Note as expected its amplitude is
1( 1+ @’T?)"?and it lags the input by tan™' @7 as is obtained by putting s = j@into the transfer
function. For the transient term to be zero requires @T'> cos@ — T sin @ = 0 so that tan & = @T. This
is as expected since the output starts from zero and must therefore be sin @t with no transient, which

is confirmed by the steady state term in the solution as¢ = 0.

References

3.1 Smith O.].M. Feedback Control Systems. McGraw-Hill, New York, 1958.

3.3 Problems

Problem 3.1
sP+6s5+8

Find the unit step response of the transfer function G(s)=— .
s°+4s+3

[(8/3)—(3/2)e™ —(1/6)e™]

Problem 3.2

s+1

Find the unit impulse response of the transfer function G(s) = —————.
(s +2) (s +3)

[Ze—zr _ 2673[ _ te—zt ]

Problem 3.3
Find the unit impulse and unit step response of the transfer function G(s) = (1_62); .
s+
[0.25-0.25¢7 = 0.5t —{0.25—-0.25¢“" = 0.5(t = 1)e> " u(t - 1)]
Problem 3.4
Find the unit impulse response of the transfer function G(s) = %5 Use the result to obtain the
ST+ L5+
unit impulse response of the transfer function G(s) = ZS;S .
sT+2s+5
[0.5¢7"sin 2t ;e cos2t —2e " sin 2t]
Problem 3.5
5

Find the unit step response of the transfer function G(s) = . What is the final value of the

242545
output? Check this result by using the final value theorem. * *

[1—e™ cos2t—0.5¢" sin 2¢; 1]
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Problem 3.6

What is the maximum overshoot for the step response of Problem 3.5. Check the result using Matlab

[20.8%, or .208 per unit{e *'*}]

Problem 3.7
Find the unit step response of the transfer G(s)= ﬁ function.
[0.5—(t=2)e " —0.5¢" D u(t-2)]
Problem 3.8
s+2

, and hence determine

Use Matlab to obtain the partial fraction expansion G(s)=——— -
" +65+10s" +9s+4

its impulse response.
[p =0.0513 0.3333 -0.1923 - 0.1999i -0.1923 + 0.1999i
r = -4.0000 -1.0000 -0.5000 + 0.8660i -0.5000 - 0.8660i

0.0513¢™ +0.3333¢™ + ¢ ¥ {~0.288 sin 0.866¢ — 0.385c0s 0.866¢' |
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Problem 3.9

An R-C circuit has the input applied to the series combination and the output taken from across the
capacitor. The input is sin(t+¢), R=1MQ and C=1pF. Find the value of ¢ so that there is no transient in

the output. Check you answer using Simulink.

[45°]

Problem 3.10

5

Find using Matlab the smallest value of T for which the transfer function G(s) = >
(I1+sT)(s" +2s+5)

will not have an overshoot for a step input.
[0.81]
Problem 3.11

5(1+sT)
(25 +1)(s* +2s +5)

Find using Matlab the largest value of T for which the transfer function G(s) = will

not have an overshoot for a step input.

[1.45]

Problem 3.12

Find using Matlab the largest value of T for which the transfer function G(s) = M will not
(s+1)"(s+2)

have an overshoot for a step input.

[~1.2]
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4 Frequency Responses and their
Plotting

4.1 Introduction

The frequency response, or more correctly steady state frequency response, of a transfer function G(s)
is G(jw). The topic is covered in chapter 4 of reference 1. Briefly G(jw) is a complex number with a
magnitude and argument (phase) so that if one wishes to show its behaviour over a frequency range then
one has 3 parameters to deal with the frequency, w, the magnitude, M, and the phase ¢. Alternatively
it can be written in terms of its real X(jw) and imaginary Y(jw) components. The former is the polar
representation of a complex number and the latter the rectangular version. Students should become
familiar with working with both the polar and rectangular forms as dependent on what is required one
approach may prove superior. Engineers use three common ways to plot the information, which are

known as Bode diagrams, Nyquist diagrams and Nichols diagrams as discussed in chapter 4 of reference 1.

The examples in this section deal with frequency responses and their plotting and again have been chosen

to try and illustrate important points.

4.2 Examples
Example 4.1

A network has a transfer function of G(s)=1/(1+s7)". Calculate the frequency at which it will have
a phase shift of -180° and the corresponding gain. What are the values for n = 3 and 6. Check the result

for n = 3 using Matlab and explain how you have obtained the result.

This example is chosen to illustrate a situation where the best approach is to work in the polar form (i.e.
gain and phase). Here

|G(jo)|= — and ArgG(jw)=ntan ' (wT).

1
(1+&°T?)

Thus the phase is -180° when n tan ' (wT') = 7 , which gives @T = tan(7 / n) and a corresponding gain
1
[1+tan’(z/n)]"*"

of |G(jw)|=

;3/2:1:0.125 ; and for n = 6,
1+3) 8
133

a)T=tan(7r/6)=1/\/§and |G(ja))|=71 —= =10.650.

1+7 3/2
( 3

In particular for n = 3, @T =tan(x/3) = V3 and |G(jo) |=
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Control Engineering Problems with Solutions Frequency Responses and their Plotting

The commands to get the Nyquist plot in Matlab for n = 3 are
>>G=tf(1,[1 3 3 1]);
>> nyquist(G)

The plot is shown in Figure 4.1 and is drawn for both positive and negative frequencies, w. The arrows
mark the direction of increasing w and the plot for negative w is the mirror image in the real axis of that
for positive w. Or stated alternatively, the expression for a Nyquist plot has a real part which is an even

function of w and an imaginary part which is an odd function of w. (See Example 4.2)

Nyquist Diagram
1 T T T T T

08} i
06} i

04r System: G

Real: -0.122
02 Imag: -0.000785
Frequency (rad/sec): -1.81

[ u

Imaginary Axis

-0.2F

04} E

06} 4

-0.8F B

1 ! ! ! ! ! ! ! !

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Real Axis

Figure 4.1 Nyquist plot for example 4.1
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To find the gain and frequency when the phase is -180° the cursor can be used as shown in Figure 4.1
to obtain an approximate result or the command margin(G), which gives 18.1dB (this corresponds to

-0.125) at a frequency of 1.73 rads/s. (See Example 5.2 for a further explanation).

Example 4.2

Prove that the frequency response of a transfer function G(s) has a real part which is even in w and an

imaginary part which is odd in w.

It will be assumed that the transfer function does not have a time delay, although if this may not be

the case the result is still easily shown to be true. Let G(s) = AE ; thus G(jw) = izj) which can be

C(a’z) + ja)D(a)z) _ {C(wz) + ij(a)z)} {E(a)z) _ ja)F(a)z)} which can be written

written G(jw) =

E(@’)+ joF (o) EN0")+ 0’ F’ (o)
G(jw) = CE +@’DF + jo{DE - CF} yhere the dependence of the polynomials C, D, E, and F on »*
E’+o'F?
has been omitted. Thus Re{G(jw)} = M which is even and Im{G(jw) = M which
E’+®’F’
is odd.
Example 4.3
1+sT

where ¢ < 1 has a maximum phase lead of sin™'
1+sal to

and that the corresponding gain in dB is —101log,, &. [Quoted

Show that the phase lead network G(s) =

1
at the angular frequency of =
8 q y ,, T\/a

without proof in chapter 7 of reference 1].

Here G(jw) _ 1+jol  and to simplify the algebra we let u =T so that the phase lead is
1+ joaT
tan~ u — tan " qu = tan " 2— m; . Here the very useful relationship for arc tangent functions, namely
1+au

tan~' A+ tan~ B = tan"! 1A— iAl; has been used. Differentiating the expression X = 1”;;; with respect to u
+

and equating to zero gives u(l —a)2au = (1—-a)(1 + au®) giving ou’ =1, thatis @ = l/T\/E . Thus the

_ _ 24172
maximum phase lead is tan™' 1/+/a —tan™ /o = tan™ I—a _ sin™ l-a and the gain is (I+u)

wWa l+a 1+ a?u®)"?
which with 3z =1/ \/Z substituted becomes 1/ \/E , that is —101log,, & in dB.
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Example 4.4
1-2s
s(1+s)

and check the results

Sketch the Bode and Nyquist diagrams for the transfer function G(s)=
using Matlab.

For the Bode diagram the transfer function is considered as the individual terms:-

1) 1—2s for the rhs plane zero, which in terms of asymptote sketching rises at +6dB/octave
from a break point at 0.5rad/s. The phase varies from 0° to -90°.
2) 1 for the integrator, a line of slope -6dB/octave with 0dB gain at 1 rad/s. A constant phase of
s
-90°
3) % for the lhs plane pole, which has a slope of -6dB/octave from the break point at 1 rad/s.
N

The phase varies from 0° to -90°.

The three individual Bode plots are shown in Figure 4.2, as 1, 2 and 3 respectively together with that
for their ‘sum’” G(s) as 4. Note that the phase curve cannot be estimated from the magnitude curve as
the transfer function is not minimum phase, {i.e. the final slope is -6db/octave (or -20dB/decade) but

the phase is -270°}.

Information from the Bode diagram can, of course, be used to assist in sketching the Nyquist plot, but if
the former is not required the following points can easily be seen by considering the individual elements

in G(s) as done in the Bode diagram or directly from G( j@), from which it can be seen that:-

1) Atlow frequencies the phase shift tends to -90° and the magnitude to infinity
2) At high frequency the phase tends to -270° and the gain to zero.
3) From low frequencies to high frequencies the phase varies continuously from -90° to -270°

and the gain reduces continuously. At some frequency the phase must be -180°.
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Bode Diagram
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Figure 4.2 Bode diagram for G(s) of example 4.4.
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Nyquist Diagram

10 T T T T T
8 -
6 - -
4t ) i
System: G3
Real: -2
o 2fF Imag: 0.00269 7
Z Frequency (rad/sec): -0.71
—— T
§ o " -
£
j=2)
@
E 2F -
41 .
6 .
-8 .
10 1 1 1 1 1
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Real Axis

Figure 4.3 Nyquist plot for G(s) of example 4.4

To obtain further information on the Nyquist plot requires some calculations. Points of interest are
obviously where the phase is -180° and the low frequency asymptote, which is not necessarily the negative

imaginary axis as many sketches in books often seem to indicate. From phase considerations the argument

of G(jw)is —tan"' 20 —90° —tan™' @ . This is -180° where tan' 2w+ tan” @ = tan™ o _ 907,

2
(1+2)"? e
—— = 2, which are in agreement
V172(1+1/2)

1-2jo  (-2jo)l-jo)
jo(l+ jw) - Jjo(l+o®)

which gives @ =+/1/2 = 0.707 . The corresponding gain is

with the Nyquist plot shown in Figure 4.3. Writing G( jw) = in rectangular

form X(w)+ jY (o) gives X(jw) = a
+

5 which tends to -3 as w tends to zero.

®

Note that since the Nyquist plot goes to infinity at zero frequency the infinite semicircle closure at this
frequency given by the theory is not shown as may be required for stability assessment. (See Example 5.4).

Although this can be found theoretically it can also be found using Matlab by replacing the integrator

by a ‘lossy integrator, that is 1 by where ¢ is small. The Nyquist plot is shown in Figure 4.4 with

S+ &
£=0.05. §
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Nyquist Diagram
15 T T T

Imaginary Axis
o
+
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o
o

10 15 20
Real Axis

Figure 4.4 Nyquist plot for example 4 with ‘lossy integrator’

Example 4.5

a)Z

0

s(s* +2¢w,s + @)

Find for the transfer function G(s)= the frequency at which it has a phase shift of

-180° and the corresponding gain. Check the result using Matlab for @, =4 and ¢ =0.2.

C()2

[

The given transfer function G(jw) = may be considered as an integrator 1/s in

jo(-0" + 2w, jo+ o)
series with an underdamped second order system. The integrator gives a phase of —90° at all frequencies
so the phase shift of the two in series will be ~180° when the second order underdamped transfer function
has a phase shift of -90°. This can easily be seen to be the case when @ = @, and its response will be
—1/2¢j (seealso Figure 4.2 reference 1 for the frequency response of the second order transfer function).

Thus the gain of the transfer function at the frequency @ = @, is 1/2{w, . For @, =4and { =0.1 the

gain is 1.25 = 1.94 dB at 4 rads/s, which is confirmed to cursor accuracy, by the Bode plot of Figure 4.5.
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Bode Diagram
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-100 D
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g
o -180
@
&
225
-270 Bnn
10" 10° 10' 10°
Frequency (rad/sec)
Figure 4.5 Bode plot for example 4.5
Example 4.6
. . 1+5T,
Determine the low frequency asymptote for the Nyquist plot of G(s) =
s(1+sT,)(1+sT;)

What should be the relationship between the time constants if the asymptote is to be the imaginary axis?
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For this example it is noted that at low frequencies the gain tends to infinity at a phase of -90°
and at high frequencies the gain tends to zero and the phase to -180°. The low frequency phase of
-90° does not necessarily mean that the locus at zero frequency finishes on the negative imaginary
axis as it may tend to an asymptote other than the imaginary axis. Often this is not clearly shown

in sketches of Nyquist plots given in some textbooks. To solve this example one needs to work in
1+ jo, _(1+ jol)(1 - joT,)(1 - joT,)
jo(l+ jol,)(1+ joT;) jo(+ o’ T))1+o’Ty)

rectangular coordinates. Thus G(jo)=

2
giving Re G(jw) = — o TLT +(T - T, - T3). Hence as the frequency tends to zero the real part of the
1+ T))(1+ &'T))
locus tends to the value 7, — 7, — T, . In particular if 7} =3 and 7, =1, then for the three values of 1, 2

and 3 for 7 the asymptote is at 1, 0 and -1 as shown in the Nyquist plots for positive frequencies only

shown in Figure 4.6. For the imaginary axis to be the asymptote 7, =7, + T5.

L <
.

e
L

T
IR

Valugs of T3; \
in.the.boxes

o
/
]

Ymaginary
[«2)
._.-/

0.8 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
Real

Figure 4.6 Nyquist plots for positive frequencies for different values of T,

Example 4.7
sS+25+16

Sketch the Bode and Nyquist diagrams for the transfer function G(s) = ——— .
s(s—D(s+1)
—(s* +25+16) 110

First, for the Bode diagram, it is best to write the transfer function in the form G(s) =
s(I-s)1+s)

transfer function is seen to consist of the five components:-
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1) A second order numerator term with a natural frequency of 4 and damping ratio of 0.25
with an asymptotic approximation of an increasing gain at 12dB/octave from w = 4 and
phase from 0 to 180°.

2) An integrator, constant slope of -6dB/octave with 0dB at w = 1 and phase of -90°.

3) A time constant term corresponding to a pole at 1. Break point at w = 1 and decreasing
gain. Phase shift from from 0° to 90°.

4) A time constant term corresponding to a pole at -1. Break point at w = 1 and decreasing
gain. Phase shift from from 0° to -90°.

5) A gain of -1, that is a magnitude of 1 and a phase shift of -180°.

Thus in terms of an asymptotic plot the initial gain decreases with increase in frequency at -6dB/octave (due
to 2) until w = 1, where it changes to -18dB/octave (due to 3 and 4), and then at w = 4 it returns to -6dB/
octave (due to 1). The phase starts at -270° (-90° from 2 and -180° from 5}, at w = 1 it does not change (due
to 3 and 4) and after w = 4 (due to 1) it eventually becomes -90°. The Bode plot is shown in Figure 4.7.

The Nyquist plot has infinite gain at low frequencies (due to 2) and a phase of -270° and at high frequencies
goes to zero gain at a phase of -90°. It can be seen from the Bode plot that the gain decreases steadily,
apart from between 4 and 8 rad/s where it is roughly constant. The phase changes continuously from

low to high frequencies with a rapid variation around w = 4.

Bode Diagram

60

40

20

Magnitude (dB)

-20 .

-40
-90 —

-135

-180

Phase (deg)

-225

/
-270
-1 0 1 2
10 10 10 10

Frequency (rad/sec)

Figure 4.7 Bode diagram for example 4.7
Obvious other points of interest for the Nyquist plot are the asymptote at low frequencies and where

the phase is -180°. The latter can be found easily since the phases of 3 and 4 cancel each other the phase
shift will be -180° when the lead produced by 1 is 90°, which is at w = 4.
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—wr+27 1 —
- a) i ]a).+ 6 which has a real part of 22
jo(jo-1)(jo+1) o +1

frequency tends to zero. The Nyquist plot is shown in Figure 4.8.

and therefore tends to -2 as the

By calculation G(j) =

Nyquist Diagram
8 T
6l 4
4| 4
System: G
oL Real: -0.115 ]
@2 Imag: 0.00479
Ed Frequency (rad/sec): -4.05
>
g O + (" p—
£
j=2
@
E
E L i
4 4
6 4
8 ! 1 1 1 1
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0
Real Axis

Figure 4.8 Nyquist plot for example 4.7.

In this case if the integrator is replaced by a ‘lossy integrator’ with & = 0.2 (made quite large so that the
original plot can also be seen) then the Nyquist plot is as shown in Figure 4.9. This indicates that the
infinite semicircle for the Nyquist is in the left hand side of the diagram starting at -90° and going to 90°.
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Nyquist Diagram
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Figure 4.9 Nyquist plot with ‘lossy integrator’ for example 4.7

Example 4.8
0.70(s +1)(s* +10s +1600)
(s> +0.55 +16)(s + 70)

Discuss the shape of the Nyquist diagram for G(s) =
Matlab.

before plotting it with

0.70*1*1600
16*70
=0.70. Thus the locus starts at 1 and finishes at 0.7 on the real axis. In terms of

At zero frequency G(0)=
. 0.70(jw)*
Gjo) = AU

increasing frequency there is a lead with breakpoint at 1rad/s, a pair of complex poles with resonant

1 and as the frequency, w, tends to infinity

frequency at 4 rad/s and damping 0.0625, which is low, a pair of complex zeros with resonant frequency
at 40 rads/s and damping 0.125 and finally a lag with break point at 70 rads/s. Thus one expects the
Nyquist to show a lead initially with an increase in gain peaking around 4 rads/s. and increasing phase
lag until the gain reaches almost zero at 40 rads/s. The Nyquist plot is shown in Figure 4.10 which clearly
shows the peak gain around 4 rads/s. Figure 4.11 shows the plot for higher frequencies only, finishing at
0.7 on the real axis and going near to the origin at around 40 rads/s. The plot shows two intersections

of the imaginary axis which could be calculated to obtain more detail for a sketch.

Download free eBooks at bookboon.com



Control Engineering Problems with Solutions Frequency Responses and their Plotting

Nyquist Diagram
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Figure 4.10 Nyquist plot for example 4.8
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Figure 4.11 Nyquist plot at higher frequencies for example 4.8

43 Problems
Problem 4.1

A feedback system has an open loop transfer function G(s)=1/s(s+ 1)2 and H(s) =1. Obtain the
Nyquist diagram for G(j®) on a plot with M circles. From this estimate the peak of the closed loop
frequency response and the frequency at which it occurs. Check the result by obtaining a Bode plot of

the closed loop frequency response.

[=10dB (9.17dB), 0.73rads./s]
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Problem 4.2

1+sT

A compensator G, (s) of the form G (s)= . is to be added before G(s) in problem 3.1. Plot the

+0.1s
Nyquist diagrams of G_(s)G(s) for various values of T and estimate the minimum value of T to ensure

the maximum value in the closed loop frequency response does not exceed 3dB. Check the result on

the closed loop Bode plot.
[0.73]

Problem 4.3

A feedback system has a plant transfer function of G(s) = 4 /(1 + 0.55)(1 + 0.1s)*and a feedback transfer
function H(s)=e*". Sketch the asymptotic Bode diagram for G(s) and estimate the phase shift when
the gain is unity and the frequency at which it occurs. Check your result using Matlab and determine the

maximum value of T for the system to have a phase shift when the gain is unity of (i) -180° and (ii) -140°.

[-130°, 5.7rads/s; 0.153, 0.031]

360°
thinking

Deloitte
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Problem 4.4

Sketch the asymptotic Bode diagram forG(s) = 0.5(1+ 4s)/s(1+ s+ s>)(1 + 0.5s5)and estimate the
phase shift when the gain is unity. Check your result using Matlab.

[-168.7°]
Problem 4.5

Sketch the asymptotic Bode diagram for G(s) = (1—5)(1+ 4s)/8s(1+ 0.55)’and estimate the phase
shift when the gain is unity and the gain when the phase is -180°. Sketch also the Nyquist diagram giving
the frequency at which the real axis is crossed and the value of the asymptote as the frequency tends to

zero. Check your results using Matlab.
[-76°, -5.71dB; 2.63, 0.25]

Problem 4.6

(1+s)
s(1+0.15)(s* —4)
for which the phase is -180° and the value of the asymptote to which it tends for low frequencies.

Sketch the Nyquist diagram for the transfer function G(s) = . Calculate the frequency

[1.12, -0.475]

Problem 4.7

2
A unit negative feedback system has an open loop transfer function G(s) = K(IJF—‘H';?) Determine
s(L+5)
the maximum value of K if the closed loop frequency response should never exceed 0dB. Check the

result using Matlab.
[0.25]

Problem 4.8

2
Sketch the Nyquist plot of G(s) = _SEstd and evaluate any points at which the axes are cut and

s(s—=D(s+1)
the corresponding frequencies. Determine also the infinite semicircle closure at w = 0.

[Real axis at -0.2 with @ = 2rads / s ; lhs plane from -90° to +90° as w increases.]
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5 Feedback Loop Stability

5.1 Introduction

The problems in this chapter are concerned with the determination of the stability and relative stability
of a closed loop feedback system. This material is covered in reference 1 chapters 5 and 6, and a brief

summary is given here.

If the open loop transfer function of the feedback loop, is denoted by G(s) rather than G, (), then the
closed loop transfer function, often denoted by 7(s), has a denominator of 1+ G(s). The loop will be
stable if the roots of the denominator, namely the characteristic equation 1+ G(s) = F(s) =0, all have
a negative real part, that is lie in the lhs s-plane. If G(s) does not contain a time delay then F(s)will be a
polynomial in s with real coefficients f,, that is F(s) = f, + f;s + f,5° +......f,s" . Before the advent
of modern computing facilities finding the roots of a polynomial of order greater than three was not
an easy problem. A problem addressed during the 19 century by mathematicians was that of trying to
find conditions for the roots of a polynomial to have negative real parts and this led to the well known
Hurwitz-Routh criterion found in all control textbooks. For a polynomial with known coefficients the
criterion provides a solution and symbolic results can be obtained for some low order polynomials. In
particular it can be shown that a necessary but not sufficient condition (except for polynomials of order 1

and 2) is that all the coefficients, f

n

, of the polynomial must be positive. For the third order polynomial

a necessary and sufficient condition is all the coefficients must be positive and f, f> > f, f5.

A graphical criterion due to Mikhailov states that if the polynomial F(jw) is plotted for w increasing from
zero on a complex plane, then all its roots will lie in the lhs s-plane if from starting on the positive real
axis at f, it moves in a counter clockwise direction passing successively through the positive imaginary

axis, negative real axis etc in turn, cutting n-1 axes before tending to infinity.

The algorithm ‘roots” given in Matlab now finds the roots of even quite high order polynomials very

quickly and because of its speed can be used to assess how the roots vary with changes in the coefficients.
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Control engineers are interested in finding the stability from the open loop transfer function G(s). There
are two reasons for this (i) the fact that the information available on the open loop may be the frequency
response G(j®) (particularly true several years ago when frequency response identification testing was
common) and (ii) compensating networks are typically included inside the loop and thus their effect on
the open loop transfer function is easily seen. The Nyquist criterion states that the closed loop system
will be stable if the number of clockwise encirclements by the frequency response locus G(j®) of the
(-1,0) point plus the number of rhs s-plane poles of G(j®) is zero. The criterion can also be interpreted

using Bode or Nichols plots.

The root locus is a method which shows how the roots of the characteristic equation vary with variations
in a parameter, typically the open loop gain, K. One is often interested in ‘how stable’” a feedback loop is
and typical measures of this, apart from the root locations provided by use of a root locus, are the gain
and phase margin and the closed loop frequency response peak, which can be found from the open

loop frequency response.
The examples covered in this section deal with the above topics.

5.2 Examples

Example 5.1
K(s+1)
s(s+a)(s* +s+1)

Consider a feedback loop with open loop transfer function G(s) =

I WANT TO CHANGE DIRECTION

5 AND THE W WORLD.

GOT-THE-ENERGY-TO-LEAD.COM

We believe that energy suppliers should be renewable, too. We are therefore looking for enthusiastic
new colleagues with plenty of ideas who want to join RWE in changing the world. Visit us online to find
out what we are offering and how we are working together to ensure the energy of the future.
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a) Consider initially the case of K = 6 and a = 4 then the open loop characteristic equation is

s* +55° +55* + 85 +4 =0 and using the Routh-Hurwitz array (see reference 1 Appendix B) gives

Row label
s* 1 5 4
s® 5 8
s? 17/5 4
s 36/17
s° 4

There are no sign changes in the first computed column so the system is stable.

b) Consider now the case when K is unknown and a = 4 then the array becomes

Row label
st 1 5 K
3 5 4+K
s? (21-K)/5 K
s (K*+8K-84)/(K-21)
s° K

and it can be seen that the penultimate term in the first computed column is negative for K > 6. Checking

the roots in Matlab for K = 6 gives

>> roots([1 55 10 6])

ans =

-4.3028

-0.0000 + 1.4142i

-0.0000 - 1.4142i

-0.6972

showing that the two complex roots have zero real part.

64

Download free eBooks at bookboon.com



Control Engineering Problems with Solutions Feedback Loop Stability

G(s) has one zero at -1, and four poles at 0, -0.5+0.866j and -4. Thus root loci start from the four poles,
will exist on the negative real axis between 0 and -1 and between -4 and -oo and the loci starting from
the complex poles will pass into the rhs of the plane for K = 6, tending to asymptotes at +60°, which
intersect on the negative real axis at -4/3. The Matlab plot is shown in Figure 5.1 and this allows the

location of the closed loop poles to be found for different values of K.

Root Locus
T

2
5 /]
n
System: g
1 Gain: 5.81 -
Pole: -0.00747 + 1.4i
Damping: 0.00534
0.5 Overshoot (%): 98.3 b
g Frequency (rad/sec): 1.4
>
@ 0
£
j=2)
©
E
05 o
BN ‘\ 4
15F B
2 1 1 1 1 1 1 1 1
4.5 4 3.5 3 25 2 1.5 1 0.5 0 0.5

Real Axis

Figure 5.1 Root locus plot for gains from 0 to 10 for example 5.1.
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Figure 5.2 shows Mikhailov plots for the polynomial with three different gains K, from which it can
again be seen that system is stable for K = 4, neutrally stable for K = 6, and unstable for K = 8. For K = 4
although the system is stable the pole locations are -4.21, -0.608 and -0.091+1.25j, so the complex pair

are quite near to the imaginary axis.

S

4L
RN

-30

Ymaginary

. NG

-50 ]\’f i‘\

-60
-5 0 5 10 15 20
Real

Figure 5.2 Mikhailov plots for Example 5.1 with three different gains K.
The routine used for the Mikhailov plot, as one is not given in Matlab, was:-
function mikplot(w,p)

for i=1:length(w);
num=p;
den=[1];
[rea(i),ima(i)]=nyquist(num,den,w(i));
end
plot(rea,ima)
xlabel(‘Real’)
ylabel(‘Ymaginary’)
grid

where the inputs required are the (angular) frequency string in w and the polynomial coefficients in p.

Since the magnitude on the plot increases rapidly with frequency after crossing the final axis the last

frequency value in w has to be selected with care to get a good plot.
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c) Consider now the case of a variable and K = 4. The characteristic equation is now

s*+(+a)s’ +(1+a)s’ +(4+a)s +4 =0 and the Hurwitz-Routh array is

Row label
s* 1 1+a 4
s 1+a 4+a
s? (a*+a-3)/(1+a) 4
s (a*+a*7a-16)/ (a*+a-3)
s0 4

The s* term is positive for a > 1.30 and the s term is positive for a > 1.30 and a > 3.04, therefore the system
is stable for a > 3.04. It can be seen from this array involving a and the previous one involving K that the
arrays can involve quite cumbersome algebra for large order polynomials with an unknown parameter.

To plot a root locus to show how the roots vary, the above equation can be divided by the terms not

a(s’ +s>+5)
s+t 45T +4s+4
a(s’ +s> +5)
st+s’+st+4s+4

involving a to give 1+ =0 and the root locus is plotted for an open loop transfer

function of G(s)= where a replaces K as the parameter on the locus. The transfer
function is typically unlike a usual open loop transfer function and the numerator and denominator

have to be factored to get the poles and zeros. From Matlab the zeros are at 0,-0.5+0.866j and the poles

at 0.67+1.46j, -1.17+0.42j. The root locus is shown in Figure 5.3 for a = 1.
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Root Locus
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Figure 5.3 Root locus for the variable parameter a

Example 5.2

Consider now the frequency response properties of the same open loop transfer function as Example

5.1 with a = 4 and K = 1. The Nyquist diagram is shown in Figure 5.4.
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Nyquist Diagram
T T

Imaginary Axis
o

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
Real Axis

Figure 5.4 Nyquist diagram for transfer function

To find the gain margin and phase margin for this transfer function one can obviously use the cursor
on the Nyquist plot, although to get any reasonable accuracy one would obviously have to do a replot
of Figure 5.4 over a more suitable frequency range. However if the Matlab command ‘margin(G)’ is
used then the Bode diagrams for the transfer function G are drawn as shown in Figure 5.5. The gain
and phase margins are indicated on the figure with interpolation of the frequency vector points used
in the plot employed to give their values quite accurately above the plot. For this case the gain margin
is 3.52dB and the phase margin 14.4°, both of which are low. This is expected from the pole locations
given in the previous example. Provided the feedback transfer function H = 1, which will be assumed,
any peak in the closed loop frequency response can be found by placing M circles on the Nyquist plot,
which can be done in Matlab by right clicking on the plot with the mouse and selecting ‘grid’ from the
menu obtained. The result is shown in Figure 5.6 where a frequency vector has been selected with a=-0.3

and b=2 in the ‘logspace’ command.
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Bode Diagram
Gm=3.52 dB (at 1.41 rad/sec) , Pm=14.4 deg (at 1.19 rad/sec)
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Figure 5.5 Bode diagram showing gain and phase margins.

Nyquist Diagram
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Figure 5.6 M circles on the Nyquist plot for Example 5.2.

From Figure 5.6 it can be seen that a peak in the closed loop frequency response of around 15dB at a

frequency of 1.25 can be expected, which is confirmed in Figure 5.7.
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Bode Diagram
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Figure 5.7 Closed loop frequency response plot for Example 5.3.

Example 5.3.

1+sT,
s+ sT,)(1+sT;)
T, =1land T, =2. It is required to investigate the values of additional loop gain K for the choice of

, with the parameter values

Consider again the transfer of Example 4.6, namely G(s) =

T, = 3 which will result in a closed loop frequency response with no resonant peak.
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It can be seen from Figure 5.6 that to satisfy this condition the frequency response of the forward
loop transfer function G(s) must not have a negative real part greater than 0.5, as the M circle for

0dB is a straight line parallel to the imaginary axis and passing through -0.5. From example 4.6,

~ o' T+ (1 -1, - Ty)

1+’ T))(1+ &’T})
—20’T, + (7, -3)
(1+0”)1+40%)

ReG(jw) = , which with the parameter values 7, =1and 7; = 2 substituted

gives ReG(jw) = . Replacing @” by u, differentiating the expression with respect to

u and equating to zero gives (1+u)(1+4u)* 2T, + (T, =3 —2uT,)(5 + 8u) = 0, which on solving the

-(12- + - +
12 —4T,) + (58T —1327T, +18)"?

uadratic for u gives u =
d 5 8T

. For the particular choice of 7; =3 this

gives the nice solution of u = 0.5 and the corresponding maximum negative value of Re G(jw) as 0.667.
Thus for this choice of 7] the maximum value of the gain K for no peak in the closed loop frequency
response is 0.75. The frequency response of 0.75G(jw) is shown in Figure 5.8 on a Nyquist plot with M

circles, and the Bode diagram for the closed loop frequency response with H = 1 in Figure 5.9.

Nyquist Diagram
5 T T T T T T T

0dB

System: g
Real: -0.498

Imag: -1.1
Frequency (rad/sec): 0.74:

Imaginary Axis

-5 1 1 1 1 1 1 1
-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
Real Axis

Figure 5.8 Nyquist plot of KG(jw) for example 5.3.

Download free eBooks at bookboon.com



Control Engineering Problems with Solutions

Feedback Loop Stability

Bode Diagram
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Figure 5.9 Closed loop frequency response for example 5.3.

Example 5.4.

Determine the range of K for stability from the Nyquist plots of closed loop systems with the following

open loop transfer functions.

_ K(s+1D
) G(S)_(s2+1)(s+2)'
_ K(s+1)
b) )= o)
c) G(S):I<(S—+I)2
s(s=2)(s—1)
&) G(s) = 10K (s +1)

(s> +1.25 +16)

The solutions to these types of questions are often most easily done using the Routh-Hurwitz criterion

or the root locus but they are done here to show applications of the Nyquist Criterion.

a) The first example contains a lead term, a lag term and a second order lag with no damping. For K =1
it starts on the real axis at 0.5 and finishes at the origin with a phase of 180°. Because there is no damping

in the second order lag the Nyquist plot goes to infinity for w = 1, so that use of the Matlab command

‘nyquist’ gives the very uninformative plot shown in Figure 5.10.
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x 10 Nyquist Diagram
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Figure 5.10 Nyquist plot for G(s) of example 5.4(a).

One can generate a frequency vector by taking a set of points from near zero to just less than w = 1 and
another set from just above w = 1 to a relatively large value and then plot the Nyquist as shown below

to obtain the plot in Figure 5.11
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>> wl=logspace(-2,-0.05,500);
>> w2=logspace(0.05,2,500);
>> w=[wl w2];

>> nyquist(g,w)

The problem with this plot is that the plot routine joins together the points obtained after the low
frequency plot is obtained from A (textbox added) to B, the last point at B is joined to C the start of
the high frequency plot. This means the infinite semicircle is replaced by the straight line from B to C.

Nyquist Diagram
1
08} B
06} B
04} 4
o 02F E
2
>
@ 0 +
£
j=2)
©
E -02f
04}
-06
-0.8}F c
-1 1 !
-3 2 1 0 1 2 3

Real Axis

Figure 5.11 Nyquist plot for defined frequency vector for example 5.4(a).

Alternatively, two separate plots can be done one for the frequencies below w = 1 and the other for the

frequencies above to obtain Figure 5.12 by using the Matlab statements:-

>> nyquist(g,wl)
>> hold

Current plot held
>> nyquist(g,w2)
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Nyquist Diagram
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Figure 5.12 Nyquist plot for two frequency vectors for example 5.4(a).

The true plot has an infinite semicircle from beyond B to before C so there is no encirclement of the
(-1, 0) point. i.e. N=0. Also since the transfer function has no rhs s-plane poles, P=0, and the loop is
stable for K > 1.

. K(s+1)

G - 7
b) The Nyquist plot of G(s) 5702541

with a phase of -90°. It is easy to show that it crosses the real axis at -5. Since there are two complex rhs

for K =1 starts at 1 on the real axis and finishes at the origin

s-plane poles P = 2. The plot is shown in Figure 5.13 and it has two counter clockwise encirclements
of the (-1, 0) point so N = -2. Thus Z the number of rhs s-plane closed loop poles is 2 - 2 = 0 and the

closed loop system is stable.

Nyquist Diagram
8 T
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4 4
2 -
2
2
>
g 0 +
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Figure 5.13 Nyquist plot for example 5.4(b)
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If the gain K is reduced to less than 0.2, however, there will be no encirclements of the (-1, 0) point, so
that N = 0 and Z = 2. Thus the system is unstable for K > 0.2.
2
¢) For this case G(s) = (]<(S2;L(1)
S(S — S —
and finish at the origin with a phase of -90°. There are two real rhs s-plane poles so P = 2. The Nyquist

and the Nyquist locus is seen to start at infinity with a phase of -90°

plot is shown in Figure 5.14 for K -1 using a defined frequency vector to obtain a better plot near the
origin. Before the closed loop stability can be assessed the infinite semicircle closure needs to be found.
Theoretically this is done by taking a small semicircle in the rhs s-plane mapping around the pole at
the origin. If this is done as frequency increases along the imaginary axis from a negative to a positive
value (the argument goes from -90° through 0° to +90°) then the argument in G(s) changes from +90°
through 0° to -90° so the infinite semicircle on G(jw) is in the rhs s-plane. This is confirmed in Figure

5.15 where a ‘leaky integrator’ with & = (.05 has been used.

Nyquist Diagram
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Figure 5.14 Nyquist plot for Example 5.4(c)

Thus for K=1, N =0 and the closed loop system is unstable. As the gain is increased the Nyquist point (-1,
0) will eventually lie inside the double loop at the lhs of the plot. The point where the Nyquist crosses the
negative real axis can be found using the ‘margin’ command, which gives a gain margin of 10.6dB, or by
obtaining a more accurate graph near to the crossover frequency. Note the margin command gives a gain
where the phase is -180°, it does not indicate stability. The corresponding gain is [0*/** =10'"%"*° = 3.39.
Thus for gains greater than this value there will be two counter clockwise encirclements of the (-1, 0)
point, giving N = -2, so that Z = 0 and the closed loop system will be stable. Thus the closed loop system

is stable for gains greater than 3.39 which is confirmed by the Hurwitz-Routh criterion.
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Nyquist Diagram
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Figure 5.15 Nyquist plot for Example 5.4(c) with a‘leaky integrator".
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10K (s +1)°

s*(s* +1.25+16)
starts at low frequencies at infinity with a phase of -270° and finishes at the origin with the same phase

d) In this case G(s)= and since the transfer function contains a triple integration it
of -270°. The numerator lead time constants are both at unity and the lag term is second order with a
frequency of 4 rad/s. and a light damping ratio of 0.15. There is thus a possibility it may cross the negative
real axis. The default Nyquist plot with K = 1 is shown in Figure 5.16. This is of no good for assessing
stability because the detail for frequencies near the origin is missing and the closures at infinity are not
of course given. For the latter it can be shown theoretical that as the frequency increases around the
small semicircle to the right of the three poles at the origin the phase of the transfer function due to
the three poles changes from 270° (-90°) through 180°, 90° and 0° and continues to -270° (+90°), that

is a total phase change on the Nyquist plot of 540° in a clockwise direction with increasing frequency.

Nyquist Diagram
8000 T T

6000 |-
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2000

Imaginary Axis
)

-2000 [~

-4000 [~

-6000 [~

8000 L L L L L L
-700 -600 -500 -400 -300 -200 -100 0 100

Real Axis

Figure 5.16 Nyquist plot for example 5.4(d).

To examine the plot near the origin a frequency vector from 107" to 10? was used and the plot is shown

in Figure 5.17.

Nyquist Diagram
T

Imaginary Axis
o

4 ! ! ! !
5 -4 3 -2 - 0 1

Real Axis

Figure 5.17 Nyquist plot for higher frequencies for example 5.4(d)
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The negative real axis is cut at approximately -1.14 and -0.574. For K = 1 the encirclements N = 0 as the
small one near the origin is in the counterclockwise direction and the one at infinity is in a clockwise
direction. For gains less than 1/1.14 = 0.877 or greater than 1/0.574 = 1.74 the Nyquist point will be

encircled twice in the clockwise direction, giving N = 2. The system is therefore stable for 0.88 < K <1.74.

Example 5.5

Obtain the root locus for the transfer function given in Example 5.4(d).

The transfer function has a gain of 10, two zeros at -1 and five poles three at the origin and the other two
at - 0.6 £ 3.95j. The relative degree is 3 so that three loci tend to infinity along asymptotes at +60° and
180°, which intersect at 0.8 on the real axis. There is a locus on the negative real axis from the origin (i.e.
to the left of an odd number of singularities) to infinity, and since the system is unstable for small gains
the other two branches from the origin must initial go into the rhs s-plane. Since the system becomes
stable for a small gain range it is likely that the roots starting at the two complex poles move into the
rhs s-plane for a gain slightly higher than that obtaining when the complex root paths from the origin
move into the lhs s-plane. The plot obtained from Matlab is shown in Figure 5.18 from which it will be

seen that the gain range for stability agrees with that from the Nyquist criterion.

System: g
Root L« Gain: 1.75
6 T T T T Pole: 0.00541 + 3.66i — ]
Damping: -0.00148 -

Overshoot (%): 100 _—
Frequency (rad/sec): 3.66

Imaginary Axis
o

System: g

Gain: 0.865

Pole: 0.00228 - 1.08i
Damping: -0.00211
a4t «— | Overshoot (%): 101 i
Frequency (rad/sec): 1.08

6 L L L L L L L L
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25

Real Axis

Figure 5.18 Root locus plot for Example 5.4(d)

Example 5.6

Find the value of & and the corresponding value of K on the root locus for all three roots on the locus

to be real and equal for the transfer function G(s) = 12<((11+ST)) Show further that as « goes through
s*(I+asT

this value the shape of the root locus changes and also that for this choice of « the required value of K

to provide a maximum phase margin for the closed loop system will be the same as found previously.
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It is convenient to do a time scale on the transfer function and replace s7" by p so that the transfer
function becomes G(p) :lz((llip)) where k=KT?. The closed loop characteristic equation is
P AP +kAp+kAi=0 VI\)/here alp: 1/ o . Assuming the three equal roots are [ then equating the
coefficients of the characteristic equation with the expansion of (p + /) gives A =3/, kA =3/ and
kA = 3 from which #=3, 1 =9 and k =3. Thus the root locus for G(s) has three equal poles
when @ =1/9 and K =3/T?. The transfer function has three poles, two at the origin and one at — A,
and a zero at —1. From the root locus rules one can conclude that (i) there is a locus on the negative
real axis between the pole and zero and (ii) two roots go to infinity approaching asymptotes at +90°,
which intersect on the real axis at the point (4 —1)/2. Since the system is stable for all gains the two
root locus branches starting from the origin must move into the left half plane but what is not known
without further investigation is whether these branches go to infinity along the asymptotes or return
first to the negative real axis which according to the previous calculation must be the case when 4 =9,

that is & =1/9. The root loci are shown in Figure 5.19 for the three values of @ =1/8, a =1/9 and

a =1/10, respectively.

Figure 5.19 Root loci for three values of a for example 5.6.

1+sT . . ,11—0[
1S Sin
1+asT I+«

the gain isv/a . Thus for & =1/9 the maximum phase lead is sin'(0.8) =53.1° at a frequency of

The maximum phase lead provided by at a frequency of @=1/T Vo where

@ =3/T where the gain is 3. Therefore if @ =3/T is taken as the phase margin frequency, then the

*321)

phase margin will be a maximum if | G(j®) | has unit gain at this frequency. This means ™
giving K =3/T?, as before.
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Example 5.7

—0.55

Re % Calculate its gain and phase

s(s+1

margins for K = 1 and determine the maximum value of K for stability. Obtain the approximate value

A feedback system has an open loop transfer function of G(s) =

of K for stability using the Routh-Hurwitz criterion and the standard expansion for the exponential up

to order 2, and from the Pade approximation of order 3 to 1.

The effects of time delay in a feedback loop are often most easily studied using Nyquist plots as a time
delay has unit gain at all frequencies and a phase shift which increases linearly with increase in frequency.

Thus the given G(s) will have a phase shift of 180° when tan"' @+ 0.5 = 90° which has a solution of
1
1.307(1+1.307%)"?
dBfor K=1is 201log,,(1/0.465) = 6.65 and the value of gain for which the closed system goes unstable is

@ =1.307 . The gain at this frequency is K | G(jo) |- =0.465. Thus the gain margin in

w0ty and thisis equal to unitywhen @* + @ = 1, which has the solution

@ = 0.786 . The phase shift at this frequency is —90° — tan~'(0.786) — (0.393*180/ )" = -150.69",
giving a phase margin of 29.31°. To check in Matlab the transfer function without the delay, say g, is

6.65dB or2.15. The gain is

entered and then the statement

>> g.inputd=0.5;
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produces a new transfer function g with the delay. The Nyquist plot for K = 1 for the transfer function is
shown in Figure 5.20 using a defined frequency vector. If the comment ‘margin(g)’ is used then a Bode

plot with the gain and phase margin values is given which confirms the above calculations

Nyquist Diagram
T T

1k System: g

Real: -0.466

Imag: 0.000332

Frequency (rad/sec): -1.31
¥
+

Imaginary Axis
=)

3 1 1 1 1 1 1
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
Real Axis

Figure 5.20 Nyquist plot for G(s) of Example 5.7 with K= 1.

. e . . 2 —0.5.
The characteristic equation is s~ + s+ Ke™ ™"

=0, which on substituting the first three terms of the
expansion for the exponential gives s° + s+ K(1—0.55+0.1255>) = 0. This will give a stable system
if all the coefficients are positive, which is true for K <2. Using the 3/1 Pade expansion in the
characteristic equation gives (s° +5)(1+0.125s)+ K(1—(3/8)s + (1/16)s”> — (1/8*24)s>) = 0 which

gives s°[1 — (K /24)]+s°[9 + (K /2)] + s[8 —3K]+8K = 0.

One of the coefficients becomes negative for K >8/3 but it is also required for stability that
8K[1- (K /24)]<[9+(K/2)][8-3K] which gives (7/6)K*+31K —72 <0, which is true for
K <2.149, showing very good agreement with the exact result.

Example 5.8

The frequency normalised open loop transfer function G(s) corresponding to the standard underdamped
second order closed loop transfer function 1/(s* +2&s+1) is G(s) =1/s(s +2{). Determine the
phase margin for G(s) in a unit negative feedback system. Plot this phase margin and the percentage
overshoot for the step response of the closed loop system against the damping ratio (. {Note the correlation
of these two relationships is often used in open loop frequency response design to estimate the overshoot

in the closed loop step response of the system — see problem 5.8 and chapter 7}.

The transfer function G(s) has wunit gain when |l/@(jo+2{)|=1, that is
V[o(w®* +4%)"?]=1. This gives o’ +4§2a)2 +1=0 which has the positive solution
@° =+/47 +1-2¢7. The phase of G(jw) is —(7/2)—tan ' (@/2¢) rads, so that the phase
margin is tan ' (2¢ /@) = tan"' (2¢ /[(4¢ 7 +1)"2 —2£7]77).
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The percentage overshoot for the closed loop step response is 100 exp(—¢7 /+/1—¢*). The results are
shown plotted against ( in Figure 5.21.
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Figure 5.21 Percentage overshoot and phase margin for second order system

53 Problems
Problem 5.1

Check the results obtained in Example 5.4 using the Routh-Hurwitz criterion.

Problem 5.2

Check the results obtained in Example 5.4 from root locus plots.

Problem 5.3

Obtain the solution for the gain K of Example 5.3 if the time constants have the values 7, =6, T, =1,
and 7, =2.

[0.555]

Problem 5.4

2
The transfer function of problem 4.8 G(s)= s rswd is in a closed loop unit negative feedback

s(s=D(s+1)
system with a compensator of gain K. Use the Nyquist criterion to find the values of K for which the
system will be stable and check your result using the Routh-Hurwitz criterion and a root locus plot.

Obtain the Mikhailov plot for the critical value of K.
[K > 5]

84

Download free eBooks at bookboon.com



Control Engineering Problems with Solutions Feedback Loop Stability

Problem 5.5

For the following transfer functions obtain the range of positive values of K for which the system will

be stable by the Routh-Hurwitz criterion and use of the Nyquist diagram drawn for K =1

_K(s+1)
2 Gls)= s(s* —4)
_ K(s+1)
R ST
9 Gs) = K(s+1)’
(s+3)(s+2)(s—1)
d) G(s)= K(s2+ 8)
(s+2)(s”+0.35)
. _ K(1-5)
) Glo)= s(1+s)°
D Gs) = K(s+1)°

s(s> —4)(0.1s +1)

[stable K > 2.5, stable K > 0.1, stable N = 0, unstable all positive K, stable K < 2/3, stable K > 2.5]
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Problem 5.6

Ke™
s(s+2)
feedback system. Obtain the exact value from a Nyquist plot and approximate values from the Routh-

Calculate the maximum value of K for stability of the transfer function G(s) = — in a unit negative

Hurwitz criterion using Pade expansions fore™’ of order 3/0, 1/1.
[3.743 (11.46dB); 3.76; 3.88]

Problem 5.7

A system with unit negative feedback has an open loop transfer function G(s)= K /s(s +3). Sketch
its Nyquist diagram for K = 10 and find its magnitude and frequency when the phase is -180°. Calculate
also the asymptote to which it tends at zero frequency and the critical gain of K, K, for which it is just
stable. If K is chosen equal to K_ /2 show that it will have a gain of unity at the frequency @ =2.047
rads/s and calculate the phase margin of the system. If K = K_/2 and the feedback transfer function
H(s)=e"*", find the maximum value of T for which the system will be stable. Check your results with
Matlab.

[10/54, 3 rads/s.; 20/27, 54; 21.4°; 0.183s.]

Problem 5.8

A system with unit negative feedback has an open loop transfer function G(s) =100K /s(s +10)>.
Calculate the maximum value of K for which the system is stable. Sketch the root locus, determine any
breakaway points and the value of K for which they occur and the frequency at which the imaginary
axis is crossed. Show that if K = 3 the closed loop poles are at -14.54 and -2.73+3.63j. Calculate the
phase margin for the closed loop system for this value of K and obtain the percentage overshoot from

the Matlab closed loop step response.

Assuming the system is approximated by a second order one with the above complex poles, what will
be the damping ratio, percentage overshoot for the closed loop step response and the phase margin (see
the graphs in example 5.8). What can you conclude from these results about using phase margin criteria
for designing third or possibly higher order systems where the desired performance is a limit on the

closed loop step response overshoot.

[20; +5, 40/27, 10rads/s; 58.9°, 8.87%; 0.60, 9.48%, 52.6°, you will normally have to use a higher phase

margin to achieve a given overshoot than indicated by Figure 5.21.]
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Problem 5.9

Determine from the Nyquist plot and the use of ‘M circles’ the maximum allowable value of K for the
system of Problem 5.8 to have a closed loop frequency response with a maximum magnitude of 4dB.

Check the result by using Matlab to plot the closed loop frequency response.

[~6]

Problem 5.10

Using the standard notation a feedback control system has G(s) =1/s(s +2)*, G.(s) = Kand H(s)=1.

a) Find the value of K which just causes the system to go unstable.
b) Find the value of K if the closed loop frequency response must not exceed 0dB.

¢) If a time delay exists in the feedback path so that H(s)=e ™", find the new value of K

which just causes the system to go unstable.
d) Check the last result by finding the solution from the Routh criterion using the
approximatione " =1—x+ (x> /2!)—(x’/3!)

[(a) 16, (b) 2, (c) 5.81, (d) 5.83]

Problem 5.11

A system has an open loop transfer function G(s) and unit negative feedback. Make use of M circles to

find the maximum value of gain K for the closed loop frequency response never to exceed unit gain if:-

a) G(s)=K/s(s+a)
b) G(s)=K/s(s+1)
o) G(s)=K(s+1)’

[(a) K<a® (b) K<0.25(c) K<2]
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6 State Space Models and
Transformations

6.1 Introduction

The purpose of the examples in this chapter is to cover basic aspects of state space modelling, transfer
functions of state space models, transformations between state space representations, controllability and
observability and the response of state space models with external inputs and initial conditions. These
topics are covered in chapter 10 of reference 1. The first example deals with the physical modelling of
a permanent magnet dc motor driving a load through gearing. The following 7 examples use a limited
number of state space models, which allows the relationships between the various methods of determining
their state space properties and transfer functions to be compared. Finally an example is given on pole
placement using state variable feedback to show the value of doing this by first transforming the system

to the controllable canonical form.

6.2 Examples
Example 6.1

A permanent magnet dc motor drives a load through a speed reducing gear box of ratio, #n. The motor is
supplied from a voltage, v, has an armature resistance, R, and inductance L, and the inertias and viscous
friction coefficients of the motor and load shafts are ] , F, and ], F,, respectively. Find the transfer
function for the motor from input voltage to output shaft position and state space models for the motor
using (i) the output position and its derivatives as state variables and (ii) the output position, velocity
and motor current as state variables. What do these state space models become if the motor inductance

can be neglected?

The equations of motion for the motor and load shafts are

T, -Fr,=J,0 +F@8,

m- m

and
Fr,=J,0, +F,0,
where 6 and 8, are the motor and load shaft positions, F is the force between the gear teeth and the

r’s the radii of the motor and load shaft gears.

Using the facts that €, =n@, and r, = nr, the single equation of motion referred to either the motor

or load shafts becomes

T,=(J,+J,/n")0, +(F, +F,/n")0,
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or
nT, =(J, +n°J )0, +(F, +n’F)0,

Taking the first equation and denoting the total inertia and friction referred to the motor shaft

by Jand F, thatis J=J +.J,/n” and F = F, + F, /n* and dropping the subscripts m gives
T=J0+F6
Since the motor torque is given by 7' = Ki this becomes
=JO+F0
The equation for the motor armature circuit is
v=Ri+Ldi/dt + KO

where K@ is the back emf.

Taking Laplace transforms of the last two equations and with some rearrangement one obtains

KI = Js*6 + Fs@

[ = —KsO)/(R+sL)

e
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which on eliminating I gives the transfer function

0 K

VoS LI +5*(RJ + LF)+s(K* + RF)

Thus if this is put into the controllable canonical form state space representation with state vector
. e \T
X = (9 0 9) , then the matrices are

0 1 0 0
A4, =0 0 1 ,B,=| 0 |,C,=(1 0 0)andD=0
0 —(K*+FR)/LJ —(RJ+LF)/LJ K/LJ

Alternatively, for the state vector of z = (19 0 i )r one has, by choice,
Z =2,
and from the two equations for which the Laplace transforms were taken above
Kz, =Jz, + Fz,

v=Rz,+Lz; + Kz,

These three equations give the state space representation

0 1 0 0
A=|0 —-F/J K/J|,B=[ 0| C=( 0 0)and D=0
0 —K/L -R/L 1/L

Itcanbeeasilyseenthat det(4,.) = det(A4) =0, trace( 4. ) = trace(A) = —{% + g} and the characteristic
equation for both A and Ais s’LJ +s°(RJ + LF)+s(K*>+ RF)=0. In many cases L can be
neglected and the resulting transfer function is

K B K/RJ K,
s°RJ+s(RF+K?) s(s+[RF+K*]/RJ) s(s+a)

o
v

where K, = K/RJand a=(RF + K*)/RJ . The corresponding state space representation is

A:[g _laJ, B:[(l)j and C=(K, 0)
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Example 6.2

For the transfer functions

2
2 Gls)=— 2
(s+1D)(s+3)
2
b) G _ s +25+3
(5) s +7s* +145+8
Determine

i. The controllable canonical form state space representation.

ii. A diagonal form state space representation.

Use Matlab to check your result in (ii) and also find the companion form of Matlab and compare it with

your result in (i)

(a)
. s+2 s+2 . . . .
(i) For G(s) = =— . Thus in controllable canonical form, using the subscript
(s+D(s+3) s +4s5+3
¢, one has
0 1 0
A = , B = ,CL,:(2 l) and D, =0.
-3 -4 1
. . . . . . 05 05 . .
(i) Putting G(s) into partial fractions gives G(s) = PR + 3 which has a state space representation
S+ S+
-1 0 b, _ '
of 4, = 0 3/’ B, = b |’ C, Z(Cl Cz), D, =0. The choices for B, and C, are arbitrary as
2

the only requirement is that b,c, = b,c, = 0.5, whilst also the eigenvalues on the diagonal of A4, could

be interchanged. Typically one chooses either b, =b, =lor ¢, =c, =1. A typical solution would

-1 0 1
JBA =(J, c,=(0.5 0.5), D, =0.

therefore be A4, :( 0 3
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To obtain the diagonal form using Matlab the command is canon(G,modal’) and because of the various
alternative solutions the representation returned by Matlab may differ according to the entry form
used for G. In this case when the system was entered as the transfer function the result was

-3 0 —-3.606
A, :£ _J , B, :( j, C, :(_ 0.1387 —0,2236), D, =0, and when entered as the

0 —2.236
-1 0 -0.7071
controllable canonical form it was 4, = , B, = , C\ = (0.7071 0.31 62),
0 -3 1.581 3 1
D, = 0.Forboth entry forms the companion form returned by Matlabwas 4 = (1 4) , B, = (0] ,

C = (1 — 2), D, =0. Itis seen that 4 is equal to ACT and the unity value in ch occurs in the

cm

first element not the last as with B, . If the command [csys,V]=canon(G,companion’) is entered into Matlab

the transformation matrix V, which satisfies V4V ' = 4,,, is obtained.
(b)

*+2s5+3 o0
(i) For G(s)=— e 5 a the controllable canonical form is 4 =| 0 0 1|,

§°+7s” +14s+8 ‘
8 —14 -7
B.=|0|,C.=(3 2 1)and D, =0.
1
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2/3 3/2 11/6
- +

(ii) Expanding in partial fractions gives G(s) =
s+1 s+2 s+4

so that one diagonal representation

-1 0 0 1
isA, =0 -2 0|, B, =|1|,C, =(2/3 =3/2 11/6)and D, =0.
0 0 -4 1
-4 0 0 ~7.659
One modal representation given by Matlab is 4, =| 0 -2 0 |, B, =|-9.798 |,
0 0 -1 3.83
C, =(-0.2394 —0.1531 0.1741) and D, =0 and the companion representation is
00 -8 1
A, =10 -14|,B, =|0|,C, =01 -5 24)and D, =0.
01 -7 0

Againd, = ACT and the unity value in B occurs in the first element.

Example 6.3
. . . . +2
Obtain an upper triangular state space representation form for the transfer function G(s) = SR B
(s+D(s+4)
The transfer function can be written as the two cascaded transfer functions G,(s)= s+2 and
s+1

1 . . L1
G,(s)= i A state space representation for the first transfer function with input u and output z,
S+

1 .
consideringitas G,(s) =1+ " is X, =u — x,, z =u + x, and for the second, with input zand output
S+

y is x,=—4x+z, y=x,. Substituting for z givesx, =—4x, +x, +u, and also y=x,, so that

-4 1 1
Ag :( 0 _1], Bg = (J, Cg = (1 0), and Dg = 0. Obviously this is not unique as one could

alternatively separate G(s) into G,(s) = L and G,(s)= s+2 .
s+1 s+4

Example 6.4

For the following state space descriptions calculate the eigenvalues and eigenvectors of the A matrix and
give an equivalent state space representation in terms of a diagonal (modal) form of the A matrix. State
whether the representations are controllable and observable and give the transfer functions. Check the

calculations using Matlab.

ya=|7 7N e C=( 2),D=0
YO 2 2 ) T I
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-5 1 -1

o) A=|-4 -1 -2|,B= ,C=@4 -1 2),D=0
4 -1 0 -1
~-15 —16 -8 1

d A4=| 15 17 10|,B=|-1|,C=(1 0 1),D=0
~16 —17 -8 1

s+5

i sl — A=
(a) For this case (_2 ci2

J, which has the characteristic equation s* +7s+12=0,

with eigenvalues -3 and -4. Taking s equal to -3 the first eigenvector is given by

_ t 1
3 —A= 343 ! = 2 Ly =0 so that one can take (“): ) and for s equal
-2 =3+2) (=2 -1\t ) =2

to -4 the other ei tor is gi b 41A—_4+5 P! 1t”—o that
0o - e otner elgenvec or 1S glVCl’l y = ) 449 = 9 _9 tzz = SO a

1 1 11 -1 -1
one can take (12j=( J and the transformation matrix T =( 5 J. Thus T 1:[2 lj

Z‘22
w e (AL e )
.= 2)[ 12 IJ =(~3 -1). Since neither B, or C, contain a zero term the representation is
S5s+24

controllable and observable and its transfer function is T After entering the state space
N A

description of G into Matlab then in response to the following command one obtains

>> [T,D]=eig(A)

T=
-0.7071 0.4472
0.7071 -0.8944
D=
-4 0
0 -3

Here T is the transformation matrix and it is seen that the eigenvectors (after allowing for scaling) are
in the reverse order and so therefore are the eigenvalues in the D matrix. Alternatively if the following
commands are used the modal form is given directly together with the transformation matrix which is

the inverse of T.
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>> [Gd,V]=canon(G,modal’)

a=
x1 x2
x1l -4 0
x2 0 -3
b=
ul
x1 -5.657
x2 -6.708
c=
x1 x2
yl 0.7071 -1.342
d=
ul
yl 0
Continuous-time model.
V=
-2.8284 -1.4142
-2.2361 -2.2361
>> T=inv(V)
T=

-0.7071 0.4472
0.7071 -0.8944

This state space description yields the same transfer function allowing for rounding errors, which can
also be found from the command tf(Gd).

s+5 -4

(b) For this case s/ — A :( |
s

j, which has the characteristic equation s*+55+4=0, with

eigenvalues -1 and -4. For the eigenvectors (s,/ — A)¢, = 0 gives for the two values of s £, = (1 l)T and

s Voo (1 s o gp V3 43YS A A (0,
=@ 1 ogiver=| | | Thisgives L3 —ush-1 ofn 1) o —a)T

as expected. B, = —l/3 43 = ! and ¢, =(1 2 L4 =(3 6)- Thus due to the zero in
1/73  -1/3\1 0 11

B, the second mode -4 is not controllable and the transfer function is

. Using the command
s+1

Gd=canon(G,modal’) in Malab the response is
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x1 x2
xl -4 0
x2 0 -1
b=
ul
x1 0
x2 -1.414
Cc =
x1 x2
yl -1.455 -2.121
d=
ul
yl 0

From which it can be seen that the transfer function is 3/(s+1) and the mode at -4 is uncontrollable as

the first element of the B vector is zero. The response in Matlab to tf(G) is

Transfer function:

3s+12

sN2+5s+4
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which on cancelling the s+4 factor gives 3/(s+1). Alternatively for the following commands the reduced

model is obtained.
>> Gm=minreal(G)

1 state removed.

a=
x1
xl -1
b=
ul
x1 1.414
Cc=
x1
yl 2.121
d=
ul
yl 0
Continuous-time model.
>> tf(Gm)

Transfer function:

s+ 1
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s+5 -1 1
(c) For this system 57— 4=| 4 s+1 2| which gives the characteristic equation S +6s+11ls+6=0,
-4 1 K

which has eigenvalues of -1, -2 and -3. The corresponding eigenvectors from (s,/ — A)t, =0 can be

1 1 1
calculated as t1=(1 2 —2)T, t2=(1 2 —1)Tand t3:(l 1 —l)T.Thus =2 2 1] giving
-2 -1 -1
-1 0 -1 -1 0 0 —1
r'=| o0 1 1 |sothatcalculationsgive 7'uT=| 0 -2 0 |,7'B=|2 |andCT=(-2 0 1). Thus
2 -1 0 0o 0 -3 1

it can be seen that the mode at -2 is unobservable and the transfer function is 2 + 1 = 23s +7 .
s+1 s+3 s +4s+3

The Wake
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- e
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Using Matlab gives

>> [Gd,V]=canon(G,modal’)

xl -3 0 0

x2 0 -1 0

x3 0 0- 2

ul
x1l -1.732

x2 -3

x3 4.899

x1 x2 x3
yl -0.5774  -0.6667 1.11e-016

ul
yl 0

Continuous-time model.

V=
-3.4641 1.7321 -0.0000

-3.0000 0.0000 -3.0000

0.0000 2.4495 2.4495
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>> T=inv(V)

T =
-0.5774 0.3333 0.4082
-0.5774 0.6667 0.8165
0.5774 -0.6667 -0.4082
>> tf(Gd)

Transfer function:

3sM2+13s+ 14

SAN3+6sM2+11s+6

The essentially zero term in the last element of C shows that the -2 mode is unobservable and the transfer

function is equal to when the common factor of s + 2 is cancelled

2

s°+4s+3
-15 -16 -8 1
(d) Forthesystem A =| 15 17 10|,B=|-1]|,C z(l 0 1),D=0,thecharacteristicequation
-16 -17 -8 1

s+15 16 8
is | =15 s—17 —10|= 0, which on multiplying out gives s° + 65> +11s+ 6 =0, which has roots

16 17 s+8

of -1, -2 and -3. Hand calculation of the eigenvectors with the above numbers in the A matrix is laborious

so going straight to Matlab gives Continuous-time model.
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>> [Gd,V]=canon(G,modal’)

xl -3 0 0
x2 0 -2 0
x3 0 0 -1
b=
ul
x1l -12.79
x2 14.59
x3 -3.536
c=
x1 x2 x3
yl -1.056 -1.028 -0.9899
d=
ul
yl 0

Continuous-time model.

V=
-63.9336  -51.1468 0.0000
102.1616 72.9726 -14.5945
-38.8909  -21.2132 14.1421
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From this modal representation it can be seen that the system is controllable and observable and further

>> T=inv(V)
T =
-0.5474 -0.5482 -0.5657
0.6648 0.6852 0.7071
-0.5083 -0.4796 -0.4243,
and
>>tf(Gd)

Transfer function:

2sMN2-2s+3

SA3+6s"2+11s+6
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Example 6.5

For the state space descriptions (a), (b) and (c) of example 6.4 calculate the transfer function and the

state transition matrix by

i) The inverse Laplace transform method
ii) The diagonalisation method

iii) The Cayley Hamilton theorem.

S+2 -1
+5
(a) For this case s/ — A4 = (S_ 5 o4 2] and (s/ —A4)" = (s+ 3)2(S T4 (s +3)_£S5+ 4) :
(s+3)(s+4) (s+3)(s+4)
s+2 -1
1
(i) The transfer function is (I 2 (s+ 3)2(S G +3)st5+ 9 [2] = % and putting each term of

(s+3)(s+4) (s+3)(s+4)

(s — A)'into  partial fractions and taking inverse Laplace transforms  gives

t :eAt —
¢( ) (2e3t _ 2674t 2e73t _ 674t

_e 1M g +e4zj

(ii) Using the diagonalizing T matrix found earlier gives
1 1 e—3t 0 -1 -1 _ 6—31 + 26—41 _ e—St + e—4t
Atrp—1
TeMT™ = L > o Sy | before.
2 =1L 0 e 2 1 2e 2e 2e e

(iii) From use of the Cayley-Hamilton theorem one has e =/ + o, 4 and e = a, + as,

which yields e =a, —3a, and e =, —4a, giving a, =4e™> -3¢ and o, =e™> —e™",

thus again
i 47 —3e7H 0 N Se+5e™ e +e ) (—eM+2e - +e™
0 4™ =37 27 —2e —2e7 42e7" 27 —2e 27—
5 4 s 4
s+5 —
(b) For this case s — A =( | j and (s/-4)" = (S+1Z(ls+4) (H?f; Al
p :

(s+D(s+4) (s+D(s+4)
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s 4
(i) The transfer function is (1 2 (s+D(s+4) (s+D(s+4) 1 = 3s+12 = 3 and
-1 s+5 1) (s+D)(s+4) s+1
(s+D(s+4) (s+1)(s+4)

putting each term of (s/ — 4)' into partial fractions and taking inverse Laplace transforms
—e ' +4de™ de — 46'4’]

gives ¢(1) = e’ =(1/3) *( —e e 4ol —e¥

(ii) Using the diagonalizing T matrix found earlier gives
TeNT™ =(1/3)* boajer 0=t 4 =(1/3)*| el rde de—de as before.
1 1 0 e—4t 1 -1 _e—t +e—4t 4e—t _e—4t

(iii) From use of the Cayley-Hamilton theorem one has e” = ¢,/ + ;4 and e* =, + a5,

which vyields e’ =a,-a, and e =q,-4a, giving a,=(4/3)e” —(1/3)e™ and

a, =(1/3)e” —(1/3)e™, thus again

U Bl 0 ), (=Se'+5e™ de—de™) (e 4de™ 4o —de™
0 4e” —e —e e 0 —e+e™ e —e™

s+5 -1 1
(c) For this case s/ —4A=| 4 s+1 2|and
-4 I s

. sP+s-2 —4s5-8 4s+8

(sI-A4)7" =] 1 s+1 s +55+4 —-s—1
(s +1(s +2)(s +3) 3 _25-6 246549,
s—1 1 -1
(s+D(s+3) (s+2)(s+3) (s+D)(s+2)
~ —4 s+4 ~2
s+ D(s5+3) (s+2)(s+3) (s+D(s+2)
4 -1 s+3

(s+D(s+3) (s+2)(s+3) (s+D(s+2)
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The transfer function is

C(sI-A)"'B=
s—1 1 -1
(s+D(s+3) (s+2)(s+3) (s+D(s+2) | 2
(4 1 9 -4 s+4 -2 .
(s+D(s+3) (s+2)(s+3) (s+D(s+2)
4 -1 s+3 -1
(s+D(s+3) (s+2)(s+3) (s+D(s+2)
8s? +24s+8
s +6s7+1 s+6
(4 1 2 —357-95-2 B 35 +13s+14 o 3s+7
S 4657 +1 s+6| (s+D(s+2)(s+3) (s+D(s+3)
—2s7—2s+38
s +6s7+1 s+6
—e 426 e _ o —e e
and e” =|-2e" +2e 2eF - -2 +2e
2" =2 —e M +eM  2e -
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(ii)Using the diagonalizing T matrix found earlier gives

1 I 1)e" 0 0)-1 0 -1 1 1 1)-e" 0 —e”

TeNT' =2 2 1[0 ¢* o]0 1 1|=[2 2 1 0 e e |=
-2 -1 -1)0 0 ee¥)l2 -1 0 -2 -1 —1)\2e7 —-e* 0
_efl +2ef3l e*Zl _6731 _efl +e*2l
—2e"+2e 27— —2e" +2e7
2e" —2eY  —eM4e Qe —e¥
as before.

t

(iii) From use of the Cayley-Hamilton theorem one has e =a,/+aA+a,4’ and

e’ = a, +a,s, + a,s’ . Substituting the eigenvalues in the latter equation gives the three equations

e'=ay,—a, +a,, e =a,-2a, +4a,and e = a, —3a, +9a, . These give solutions for the

alphas of o, =3e™ —3e™ +e™', a, =2.5¢" —4e™™ +1.5¢* and
—5 1 —1y-5 1 -1} (17 -5 3
a,=05¢"—e? +0.5¢ . Now 4’ =| -4 -1 -2|-4 -1 -2|=[16 -1 6
4 -1 0 4 -1 0 -16 5 =2

b

so substituting the alphas in the matrix equation gives

3¢ =3¢ +e 0 0
et = 0 3¢ —3eH +e 0 +
0 0 3¢ —3eH +e

—12.5¢" +20e —=7.5¢>  25¢" —4eF +1.5¢"  —2.5¢" +4eH —1.5¢7"

—10e” +16e¥ —6e™> =25 +4e —1.5¢ —5e +8 —3e |+
10e” =167 + 6™ —25¢" +4e —1.5¢" 0
8.5¢" —17e ™ +8.5¢™ —2.5¢" +5¢* =2.5¢" 1.5¢" =3¢ +1.5¢
8¢ —16e* +8¢™ —0.5¢" "+ -0.5¢ 3e'—6e M 43 |=
—8¢ +16e7 =8¢ 2.5¢" =5 +2.5¢7 —e 42—
_ e*l + 26*31 6*21 _ e*}[ _ e*l + ele
—2e +2e 27— —2e" +2e7”
2 —2e  —e+e  2e-e
as before.
Example 6.6

Use the controllability and observability theorems to check the results obtained for controllability and

observability in Example 6.4.
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_5 _ _ |
(a) For this example 4B =( . 1](1J =( g so that (B AB) :(

, the determinant of which
2 =2)\2 2 =2

is 12, so the system is controllable. Similarly [ ¢ ] :( 12 J,which has a determinant of -3, so the
CA -1 -5

system is observable.

I -1
(b) For this example (B AB):(1 J ,which has a determinant of zero, so that the system
is uncontrollable. The uncontrollable mode, however, is not revealed by this simple test. Similarly

( ¢ j _ ( 1 2], which has a determinant of 18 so the system is observable.

CA4 -7 4
-5 1 -1 17 -5 3
(c) For this example 4=| -4 -1 -2 |and A*==| 16 —1 6 |so that
4 -1 0 -16 5 =2
2 -6 16
(B AB A’B ) =|-3 -9 23 |, which has a determinant of 4 so the system is controllable.
1 5 =15
. . C 4 - 1 2 . . .
Similarly c4l=l_s 3 _of which has a determinant of zero, so the system is unobservable.
c4*) (20 -9 2
-15 -16 -8
(d) For this example 4 =| 15 17 10 | and
-16 -17 -8

-15 -16 -8\ -15 -16 -8 113 104 24
A*=[15 17 10| 15 17 10 |=|-130 —121 -30 |so that
-16 -17 -8)\-16 -17 -8 113 103 22

1 -7 33
(B AB A° B): —1 8 39|, which has a determinant of -1 so that the system is controllable.
1 -7 32
C 1 0 1
Also | C4 |=|-31 —-33 —16 |, which has a determinant of 2835, so the system is observable.

cA’ 226 207 46
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Example 6.7

For the following three state space descriptions

(a) A= N _IJ,B=(1J, c=( 2),D=0.x(0)=ﬁ.
2 -2 2 1
(b) A= > 4},3:@,0:(1 2), D=0. x(O)z[lJ.
-1 0 1 2
-5 1 -1 2 1
(c) A=|-4 -1 -2|,B=[3|,C=(4 -1 2),D=0. x(0)=|-1
4 -1 0 -1 2

determine the output for a unit step input at time zero and the initial conditions given using

i) The s-domain approach.

ii) The time domain approach.
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(a)(i) In the s-domain the output Y(s)is given by

Y(s)=C(sl — A) "' x(0)+ C(sI — A) ' BU(s) = C(s] — A)"' x(0) + G(s)U(s). Using the values

for this example gives

s+2 -1
Y(s)z(l > (s+3)(s+4) (s+3)(s+4) 2 N 55+ 24 _ 45+ 21 N 55+ 24
2 5+5 1) s(s+3)s+4) (s+3)(s+4) s(s+3)(s+4)

(s+3)(s+4) (s+3)(s+4)
9 5 2 3 1

Putting into partial fractions gives Y (s) = - +—- + which on inversion gives
s+3 s+4 s s+3 s+4

y(t)=2+6e —de™.

(i) In the time domain y(f) can be evaluated from y(¢) = Ce™ x(0) +ICeA(’_’)Bu(T)dr. The
0

first term is easily found and is equal to

_ 3 +2 -4t -3t + —4t 2 1
2y T T T T = Bet —2e 3et —et] | |=9e —5e,
2 =2 2e = \1 2

For the second term since the input is a unit step #(7) =1 and all the elements in the second integral

t
will be of the form J‘ Ke"" dr = (K /m)(e™ —1), where K and m are constants. Thus this term is
0

(i 2 1/3)e™ =) —(1/2)e™ 1)  1/3(e™ =) —(1/4)(e™ -1) [1j_
(=2/3) e =) +(1/2)(e ¥ =1) (=2/3)e -+ /4 -)\2)

(— e =D+1/2)e* =1) —(e=D)+1/4)(e™" - 1)(;] =2-3¢" +e*

Thus as before the total output y(f) =2+ 6e ™" —4e™.

S 4
N o (s+D(s+4) (s+D)(s+4) 1) 55+26 .
(b) (i)In this case C(s/ — 4) ' x(0)=((1 2 1 cis [zj = —(s DG 1d) which

(s+D(s+4) (s+D)(s+4)

. . . - 4 . . .
oninversion gives 7e”' —2e"'. The unit step response is the inverse Laplace transform of 61D
S(s +

which is 3 - 3¢ and contains no term in e * as this mode is uncontrollable. The total response

is 3—4e" —2e".
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(ii) The initial condition response is

2

—e ' +de™ de' —4e )1
Ce'x(0)=(1/3 2/3
= { —e'+eM 4o —e™ ]{

j:7e’—2e4’ as before and the step

- 4 -t Y
response is (1/3 2/3{ e’ —l-(e" -1 —4e’ -D+e -1 j[l

j =3-3¢" as
e —1-(1/4) (e =) -4 -D)+1/4) e -1

expected.

(¢) (i)For this case

s—1 1 1
(s+1)(s+3) (s+2)(s+3) (s+D(s+2) | |
C(sI—A)'x(0)=(4 -1 2 —4 s+4 —2 1=
(s+D(s+3) (s+2)(s+3) (s+D(s+2)
4 -1 s+3 2
(5+D)(s43) (s+2)(5+3) (s+D)(s+2)

1
4(s+2) -1 2 1l 9s+21 6 N 3
(s+D(s+3) s+3 s+1 (s+D)(s+3) s+1 s+3

This is a time domain response of 6 + 3¢~ with no term in e as this mode is unobservable. The
3s+7

— h' h 3 _ —t _ =3t . . 1
(s +1)(s +3) which inverts to (7/3) —2e™ —(1/3)e " giving a tota

step response in the s-domain is

response of (7/3)+4e™" +(8/3)e™.

In the time domain the initial condition response is

_e*l‘ +26*3t efzt _6*31 _e*t +e*2t 1
(4 -1 2)-2e"+2e™ 2e*—e —2e"+2e | -1|=
Qe ' =2 —e P te? el —e¥ 2
1
(2e’t +2e —e 2e7 ] =1|=6e" +3e7
2
110
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The step response is

(4 -1 2)*

e’ —1-(2/3) e ~1) - (1 /2)(e™ =1)+(1/3)(e™ - 1)) e’ —1-(1/2) e -1) 2
20 =1 —(2/3)e™ -1) —(e =D+1/3)e -1 2 =) —(e™ =1) 3
=2 =D+ @2/3) e =1) A/2)e* -D)-1/3) e =1) =2 -D)+1/2)e* -1 -1

which gives
2

(2 —2e" —(2/3) e =1) (A/3)e =1) =2(e" =] 3 |=(7/3)=2¢" —(1/3)e™ as before
-1

and giving a total response of (7/3)+4e™ +(8/3)e™ .

Example 6.8

Obtain the controllable canonical form for the state space descriptions of example 6.4 from

i) The transfer function

ii) Use of the appropriate transformation matrix.

EXPERIENCE THE POW
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0
B =(J, C.=(24 5)and D, =0.

0 1
so that in controllable canonical form A, z( 12 7j ,

c

(ii) The transformation matrix T to give the controllable canonical has column vectors ¢, given by

t,=B, At, =—ayt,, At, =t, —ajt,, At; =t, —a,t,, etc. where the a’s are the coefficients of the

characteristic equation. For a second order system this gives the three equations ¢, =5,

1
At, =—ayt,, At2 =1, —ayt,, only two of which need to be used. Using the first two gives ¢, = 2)

(N, P pae[ 16 112 YT) (0
= an = —d = — =
and > =| 1= "4 5 “1/6 —5/12)2) | 1p)> thus

0 1 L ~1/6 1/12Y=5 -1y 0 1 0 1
T = and A, =T AT = =
12 2 1 0 L2 -2M12 2) (-12 -7
Lo (=16 1/12Y1) (0 0 1
B =T"'B= =l |,Cc =cT=(1 2 =(24 5)and D =o0.
1 0 \2) 1 12 2 ¢

(b)(i) This second order system was found to be uncontrollable and its transfer function reduced to

3
s+1°

(ii) Because the system is uncontrollable no transformation matrix T can be found. The calculations give

1 0 -1 |1 4 1 4
t,=| land t, =4 = ,giving T’ = , which is singular as its determinant
1 1/4 -5/4 )1 4 1 4

is zero and therefore no inverse exists.

(c)(i) This state space description was found to be controllable but not observable with a transfer function

3s° +13s+14 3s+7

of 165 11516 = 24513 after cancelling the common factor of s+2. As a th(i)rd order
0 1 0

system it has a controllable canonical form of A =|0 0 1|, B.=[0 and
6 -1 -6 1

C. :CT:(14 13 3). As a minimum realisation its controllable canonical ~form is

0 1 0
AC:( J,Bcz(jand C.=(7 3).
-3 -4 1
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(i) The column vectors for the transformation matrix T are given byt, =B, t, =—a,A 't,and

-5 1 -1
t,=A"'t,—a,A't,. For this system 4—| _4 _1 _7 |giving
4 -1 0
/3 -1/6 1/2 2 -2 1 =3\2 2
Al =] 4/3 -2/3 1 sothat , =| 3 |,t,=—--8 4 -6 3 |=|2]|and
-4/3 1/6 =3/2 -1 8§ -1 9 -1 4
/3 —-1/6 1/2 \(-20 6 2 6 2
t,=| 4/3 -=2/3 1 -31|=| 9 |giving T=2 9 3 |with
-4/3 1/6 -=3/2) 15 -1 4 -1 -1
3/2 -1 0
T =|-7/2 5/2 1/2 |. On substituting the appropriate matrices this gives
19/2 —-13/2 -3/2
0 1 0 0
A =T'AT=| 0 0 1 |.B.= T'B=|0]andC,=CT =(14 13 3)as expected.
-6 —-11 -6 1
-15 —-16 -8 +34 -8 24
(d)(i) For this system 4 =| 15 17 10 |, giving A’1:(1/6 40 8 —30|. For the
-16 —-17 -8 -17 -1 15
1 2 -9 (-1
transformation matrix £, =| -1, {, =—647't; =| —2 |and L=A"t-11t)=4" 9 |=| 2
1 1 -10) (-1
2 -1 1 1 0 -1
giving T=|—-2 2 —1jand T"'=|1 1 0 |. As expected on substituting the appropriate
1 -1 0 1
0 0
matrices 4, =T AT =| 0 ,B,=T"'B=|0|and C,=CT=(3 -2 2).
-6 —-11 1

Example 6.9

State space descriptions (a), (c) and (d) of example 6.4 are all controllable. Determine the required state
feedback gains to move the poles in (a) to -5 and -6 and in (c) and (d) to -4, -5 and -6. Determine also

the resulting system transfer functions from the new input r to the output y.
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-5 -1 1
(a)This system has 4 =( 5 2] , B= (2] C=(1 2) and D = 0, with controllable canonical

-12 -7
u=r—k"x, the new system A matrix Ais given by 4, = A4~ Bk". Using the controllable
0
12—k, -T—k,
to be s° +11s+30=0, this requires the components of k. to be k=18 and k, =4, where

0 1 0
form 4, :( j, B, = (J and C, =(24 5). With D = 0 and state feedback such that
j .For the characteristic equation

canonical form this gives 4, = 4, — Bk = (

the subscript ¢ relates to the canonical form. The transfer function is

C.(sI-4 f..)*' B :M. Using the transformation matrix T between the original
‘ 0 s+ 11s+30
system and its canonical form the required feedback in terms of the original system states is

-1/6 1/12

K x, =kIT'x=(18 4){ |

Jx = (1 3/2)x. The required feedback is thus k' = (l 3/2).

If this feedback is calculated directly from the system representation then
~5—k —1-k,

2-2k —2-2k,
s> +s(7+k, +2k,)+12+12k,, where by chance the constant term is independent of k,. For

A, =A- BKkT = ], which has the characteristic equation
this characteristic equation to be s° +11s+30 =0, requires k, =1 and k, =3/2 as expected.
Thus if one does not transform to the controllable canonical form one typically has a set of

simultaneous equations to solve for the gain values. The transfer function is

s+6 5/2)'(1 +5 —5/2Y1 A
C(sI-4,)"'B=(1 2 ’ :2(172) y :ﬁias expected.
: 0 s+5 2 s +11ls+300 O s+6 \2 s +11s+30
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-5 1 -1 2
(c) This system has 4= {—4 -1 —ZJ ,B=| 3|, C= (4 -1 2), D = 0, with transformation
4 -1 0
6 2 3/2 -1 0
matrix to controllable canonical formof T={2 9 3 |and 7'=-7/2 5/2 1/2 |,
4 -1 -1 19/2 -13/2 -3/2
0 1 0
Using the controllable canonical form d,=| 0 0 1 , and the characteristic
—6-k, —ll—k, —6-k,

equation s° +s5°(6+k,,)+s(1 +k,,)+6+k, =0 is required to be s° +15s° +745+120=0.

This gives k| = (l 14 63 9) and the feedback required from the original states is

3/2 -1 0
KM =k!T"=(114 63 9)-7/2 5/2 1/2 |=(36 —15 18). The transfer function is
19/2 -13/2 -3/2

3 2
C.(sI-4,) 130 which gives 35" +13s+14  Note that there is now no numerator root term
(s+4d)(s+5)(s+6)

which cancels a denominator one so the transfer function is third order and the system is observable.
S+5+2k —1+2k, 1+2k,
If one does not use the transformation approach then (sI -4 f): 4+3k  s+1+3k, 2+3k,
—-4—k, 1-k, s—ky
and working out the values of the three ks to obtain k' = (36 -15 18) for det(s/ — 4,) to equal

s> +15s% + 74s +120 s extremely laborious.

(d) Since this system has the same A and B, as the previous example k. is again given by

2s*=25+3

ch = (1 14 63 9) and the transfer function with the state feedback is )
(s+4)(s+5)(s+6)

The required

feedback from the original states is

1 0 -1
K'=k'T"=(114 63 9)1 1 0 |=(0177 72 -210).
01 2

It should be noted that provided the system is controllable and observable the zeros of the transfer
function are not changed by state variable feedback. Also since in the last two examples the pole values
have been moved appreciably relatively high feedback gains are required, which could cause saturation

problems in a practical implementation.
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6.3 Problems

Problem 6.1

Figure P6.1 shows an R-C network. Assuming the resistors to be each equal to R and the capacitors
each equal to C obtain a state space representation in terms of T = RC for the circuit for the following
two choices of state variables. (i) the output voltage and its derivative and (ii) the voltages across the

two capacitors. Confirm the A matrices for the two representations have the same trace, determinant

and eigenvalues.

R1

R2

— "1

Input -

C1

: C2 Output

Figure P6.1 Simple R-C circuit.

0 1 0 )
(A= ) ,B=| |, c=(@/T* 0),p=0.
~1T? -3/T 1

/T -2/T /T

Az(—l/T /T } B:( 0 J C=(l 0)D=0)

Problem 6.2

Figure P6.2 shows an RLC circuit. Derive the transfer function from the input voltage Vi to the output
voltage Vo. Obtain the A,B,C,D matrices for state space models using (i) the output voltage and its
derivative as the state variables and (ii) the output voltage and the current through the inductance as

state variables. Check that the A matrices have the same trace, determinant and eigenvalues for the two

representations.

Vi

Vo

Figure P6.2 RLC circuit
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1

Il
TN
(e

0 1
[A= , B , C=(1/LC 0),D=0.
~1/LC —~1/RC

A:(—I/RC l/Cj B:(lo ] C=( 0)D=0]

-1/L 0

Problem 6.3

Give state space descriptions in (a) controllable canonical form and (b) diagonal form for the following

transfer functions:-

) G(s)= ﬁ

i) G(s)= +4§2++24s+3
i) G(s) = ISOs(i;B(i ;22.3
iv) G(s) = o

sS+6s+11s+6

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

\7\‘ PDF components for PHP developers

www.setasign.com
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2s +1
v) G(s) =
(s) s +7s* +14s+38
2
vi) G(S):ZS +12s+15

sP+55+6

W R I C=( 0),D=0; 4= :
WA=, 5 5=1) ¢ o

0 1 0

State Space Models and Transformations

0
D=0. (i) 4= 0 0 1 |,B=|0|,C=(2 1 0),D=0;
1

3 -4 -4

0 -0866 -0.5 1

0 —-12 -7

0 0

0 1 0 0
A4=l0 0 1 |,B=|0|,C=(20 30 10),D=0;4=|0 -3
1

0 0

-3 0 0 1
A=| 0 -05 0.866},3{1},C(0.14z9 0.4426 —0.2997) D =0. (iii)

0 1
0|.B=|1],
—4 1

0 1 0 0
C=(1.667 6.667 15),D=0. (iv)A{O 0 IJ,B[O},C(I 2 0),
1

-6 —-11 -6

-1 0 0 1
D=0; A=| 0 -2 0| B=|1[,C=(-05 3 -25), D=0. (V)
1

0o 0 -3

0 1 0 0 -1
A= 0 0 1 |,B=|0[,C=( 2 0),D=0; 4=| 0
-8 —14 -7 1 0

: ] B:[?), c=(3 2),p=2;

, 0
C=(-1/3 3/2 -7/6), D=0.(vi) A:[

-6 -5
a2 0 gt Cc=(-1 3),p=2
Lo =3 ) P2
Problem 6.4

0 1
0 [,B=|1],
—4 1

Obtain a state representation of the differential equation X"+ 3% + 3X + x = 7 + u with the output y = x

-3 10 0
[4=|-3 0 1|,B=|1],C=(1 0 0),D=0]
1.0 0 1
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Problem 6.5

A system has a state space representation with matrices:-

-6 -3 1
A= , B= 1,C=(2 1) and D = 0. Find

4 1

a) The eigenvalues of the A matrix.

b) Its state transition matrix.

¢) Its transfer function.

d) The output response to an initial value of the state vector equal to (I 1)’ and a unit step
input.

e) The phase of the output relative to the input in the steady state if the input is a sinusoid of
frequency 1 rad/s.

f) If B=(1 b) not (I 1), find any values of b for which the system is uncontrollable.

_3 -2t 4 =3¢ _3 -2t 3 -3t
[-2,-3;[ ¢ v ¢ e 3542 (1/3)— 2 +(14/3)e " :11.3%-1 and -4/3.]

4e —4e™  4e =3¢ )7 (s+2)(s+3)

Problem 6.6

Find the transformation matrix T to transform the A matrix in problem 6.5 to the diagonal form and

use this to obtain the state transition matrix.

(301
S BT

Problem 6.7

Find the state transition matrix for problem 6.5 using the Cayley Hamilton theorem.

Problem 6.8

A system has a state space representation with:-

1 -2 0
A=( j,B=(],C=OC)mdD=QFmd

4 -5 1

i. Its state transition matrix.
ii. Its transfer function.
iii. The output response with no input for ¢ = 1 and an initial state vector (2 1.

iv. Any values of ¢ for which the system is unobservable.

e — et ot -3t -2
[[ e e e +e J cs—2—c 6e—t_3e*3f’_1/2and—1-]

2e —2e —e 427 ) (s+1)(s+3)]
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Problem 6.9

It has been noted in Example 6.9 that the zeros of the transfer function are not changed by state variable

feedback. This is a consequence of the fact that

1
s
. 1 s’
(s/-A4.) B, = m , where A_and B, are in the controllable canonical form. Prove
et(sl — A,
Sn—l

this result.

Problem 6.10

-6 2 1
C= (1 0), D = 0 to the controllable canonical form and find this form. Determine the state feedback

-7 3 2
Find the transformation matrix to transform the state space description 4 2[ , B= ,

gains to place both poles at -2 and the resulting input-output transfer function.

[T:[_l 2}4:(0 lJan(Oj’CF(—l 2) and D, =0. k" =(=5/9 1/9) and

-5 1 —4 -5 1

2s-1)
(s+2)*

Problem 6.11

0 1 1
A system has 4 = [6 J, B= (1], show that it is unstable but controllable and find its controllable
canonical form. Find also the feedback gains required to move the unstable pole to -5 and keep the

stable pole unchanged.

0 1 0 .
[4 = ) I,BC: | ;and k" =(16/3 8/3).]
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Problem 6.12

0
Find the transformation matrix to transform the state space description 4 :( 2 ! , B= 1],
-12 -5
C= (1 2), D = 0 to the controllable canonical form and find this form. Determine the state feedback
gains to place the poles at -3 and -4. Do this both by (i) using the transformation matrix for the controllable

canonical form and (ii) transforming to diagonal form and using the feedback gains required for the

diagonal form. What is the new input-output transfer function?

1 0 0 1 0 2s+1
T= , A= ,B = |,C. =(-3 2),k"=(18 4), —— —
[ (—2 lj ¢ (—2 —3] ¢ (lj ‘ ( ) ( ) S2+7S+12]

Problem 6.13

For the controllable canonical form of the transfer function (v) of Problem 6.3 find the required feedback

gains to place all the poles at s = —1. What is the new input-output transfer function?

25 +1

(k" =(7 11 4), D)

1.

Problem 6.14

A system has the controllable canonical form state space representation

0o 1 0 0
A= 0 0 1]|,B=|0|,C=(2 1 0),D=0; Find:-
12 -19 -8 1

i) The eigenvalues of the A matrix.
ii) The required state feedback gains to move all the poles to -1.
iii) The transformation matrix T to put the system in diagonal form.

iv) The required state feedback gains to place all the poles at -1 for the diagonal form.

111
[-1,-3,-4; k=(=11-16,-5); T=| -1 =3 —4|; k=(0-8,-27)]
1 9 16
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Problem 6.15

A system is described by the following A, B, C, D matrices:-

42 11 37 -1
A=| 44 -13 36 |,B=|-1|,C=(5 -2 3),D=0; Find:-
—40 10 -36 1

1) The eigenvalues of the A matrix
2) The transformation matrix T to put the system into the controllable canonical form

3) The required state feedback gains to place all the poles at -1.

3 -1 -1
[[1,2,4T=| 4 -2 —1|; k=(29,-7,-26)]
—2 1 1
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7 Control System Design

7.1 Introduction

This chapter is concerned with the design of linear feedback control systems to meet specified design
criteria. It covers problems relating to the material of chapters 7, 8, 9 and 11 of referencel. Extensive
use is made of Matlab to get open loop frequency response and closed loop step response data. Many
numerical answers given have been taken from Matlab plots using the cursor so should not be regarded
as exact but are sufficiently accurate to compare the results of different design approaches. More time
could have been taken to get more accurate numbers, for example by doing plots with more points or over
shorter ranges but this really serves no purpose as in many practical problems models are approximate

and their parameters are in many cases not known to better than 10%.
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The initial examples and problems concentrate on the design of classical controllers, namely phase lead,
phase lag and PID controllers, Their use in both the error channel and feedback paths are considered.
The advantages of these controllers, which are in series with the plant, are:- (i) there design is not difficult
and since they have few parameters the effect of changing any one of them is easily understood (ii) the
input signals they use, either the system output and/or the error, are readily available (iii)in many cases
they can achieve the desired system performance requirements. Probably their major disadvantage is that
they may not be able to maintain satisfactory performance if the plant parameters vary significantly, as
shown in some examples. It may be possible to overcome this difficulty by the use of state feedback to
change the system poles but this normally requires the measurement or estimation of additional signals.
Also a state space model is required which may require more modelling effort than finding a transfer
function or frequency response from plant input-output data. Some of these aspects are considered in

the later examples.

7.2 Examples
Example 7.1

A control system has a plant transfer function of G(s)=2/s(1+0.4s)>. Show that in a feedback loop
with a unit negative feedback gain it has a phase margin of 28.7° at the frequency 1.48 rads/s. Design both
phase lead and lag compensators with unit gain at zero frequency so that the phase margin is increased
to around 45°. Obtain the step responses using Matlab of the closed loop with a unit gain compensator
and the phase lead and lag designs having the error signal as input. Design also a phase lead compensator
using pole-zero cancellation to produce the same phase margin. Compare the overshoot, peak time,

settling time and phase margin for all four designs in a Table.

_ 2
G(jw)=—————, so that | G(jo)|=

« o 3 . .
jo(1+0.4 jo) giving 0.16° + @ =2 which has the

2
o(1+0.160%)
solution @ =1.48 . The corresponding phase is —90 —2tan ' 0.4 *1.48 which equals -151.25°, giving

a phase margin of 28.7°.
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Thus to achieve a phase margin of around 45° the lead compensator using the classical design approach
will require a maximum phase lead of 16.3+¢°. For this transfer function, since both break points occur
at the same frequency, the phase change will be quite rapid beyond the double break point so a relatively
high value of € should be taken. Thus considering Table 7.1 in reference 1 a value of o =1/3 will be
tried. The peak gain for this value of & is 4.77dB. G(jw) is approximately 4.77dB down at @ = 2,05, so
choosing this as the centre frequency of the lead.network G_(s) = Lt sT gives T Ja =1/2.05 » SO

iigi:z gives a phase margin of 41°. Btéﬁge of the rapid phase change

of G(jw) repeating the design for o =1/4 gives a smaller phase margin of around 37°. For the phase
1+sT

+asT
chosen one decade below the required unity gain point of the open loop transfer function. Assuming

that 7' ~ 0.84. Using G, (s) =

lag design the compensator G_(s) = will now have & > 1. and typically the breakpoint 1/7 is

the lag network has a phase lag of around 5° at the required unity gain point this means finding the
frequency where G(jw) has a lag of about 130°. This is @ ~0.91, so that 7 =10/0.91, giving
1+11s

The

1+22s
closed loop step responses for the lead and lag designs and a unit gain compensator are shown in Figure

7.1.

approximately 11. The gain of G(jw)at @ ~0.911s 1.95 so taking a = 2 gives G (s) =

If the compensator is designed by pole-zero cancellation then G, (s) willbe of the form G _(s) = 1+0.4s )
‘ 1+sT

Choosing the time constant ratio to be of the same order as the lead design, i.e. 4, gives G (5) = 1+04s
T 1+00s ]

which results in a phase margin of 47.3° and a step response with an overshoot of 13%. A comparison

of the results is given in Table 7.1 with that labelled lead being for the classical design.

Step Response

T
no compensator

Amplitude

05} 1

Time (sec)

Figure 7.1 Comparison of closed loop step responses.

Download free eBooks at bookboon.com



Control Engineering Problems with Solutions Control System Design

44 2.1 125 29 at 1.48rad/s
27 1.4 4.4 41 at 2.06rad/s
21 1.7 4.0 47 at 1.65rad/s
23 32 15 48 at 0.89rad/s

Table 7.1 Summary of step responses

Example 7.2

A control system has a plant transfer function of G(s)=2/s(1+0.55)(1+0.1s) . Calculate the phase
margin. Design phase lead compensators by the classical approach and also by pole-zero cancellation
with the same time constant ratio which yields a phase margin of 55° at w = 1.80. Design also a phase lag
compensator to give the same phase margin. Estimate the difference in gain of the closed loop frequency
response at high frequencies and confirm this by obtaining the closed loop frequency response plots.
What is the significance of this with respect to any high frequency noise generated in the output position

measurement device?

For the given transfer function | G(jw) |= 2/ @(1+0.250%)"*(1+0.010* )" and this is equal to unity
when @ =1.56. The corresponding phase of G(jw) is then —90 —tan' 0.78 —tan ' 0.156 = —136.62
giving a phase margin of 43.4°. The required additional phase lead to produce a phase margin of 55° is
12 + &, soavalueof ¢ = 1/2 maybeselected. G(jw)is3dBdownwhen @ = 1.97 sothat 7 = /2 /1.97 ~ 0.72

giving the compensator transfer function G, (s) = i i 3.72s which gives a phase margin of 53.6°at @ =1.98.
+0.36s

1+0.77s
1+0.26s

(Note if @ =1/3 is chosen the design gives G, (s) = which provides a phase margin of 58.8° at

1+0.5s
1+0.25s

® =2.24). A pole-zero cancellation design with a time constant ratio of 2 gives G.(s) = which

yields a phase margin of 55.6° at @ = 180.

For a phase lag design allowing for the lag network to give 5° phase lag at the required unit gain frequency

requires / G(jw)=—120"which is given for @ = 0.91 and the corresponding | G(jw) | = 6db which

corresponds to a gain of 2.0. Thus 7 =10/0.91 =11 and the resulting lag compensator has a transfer
1+11s

function of G (s5) =
¢ 1+22s

. The characteristics of the step response for all three designs with the

compensators having the error as input are given in Table 7.2.
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14 1.38 3.0 53.6 at 1.98rad/s
12 1.50 23 55.6 at 1.80rad/s
12 3.06 11 57.5 at 0.91rad/s

Table 7.2 Summary of step response results

G.G
The transfer function from a sensor measuring the output to the output is el whether the
compensator has the output or error as input. At high frequencies the open loop gain will become small
so that this transfer function approximates the open loop gain transfer function GG . The high frequency

gain of the compensator G (s)= L+ sT
1+asT

is 1/ . For the lead compensators this is 2 and for the lag

compensator it is 0.5. Thus the difference in the gain at high frequency between the lead and lag
compensators is 12dB, so that the effect of measurement noise can be significantly less for the lag
compensator. The closed loop frequency responses for the system with the lead and lag compensators

are shown in Figure 7.2.

Bode Diagram
20

0
— T \\\
Q -20 ] & lead
;; \\\ ™~
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% - lag N
= \\\\\
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-100
0 T
N ‘\
N
N
N
§ .90 lead
o
2 ag |\
£ -180 D
\::\
\%
T ]
-270
-1 0
10 10 10 10

Frequency (rad/sec)

Figure 7.2 Closed loop frequency response plots.

127

Download free eBooks at bookboon.com



Control Engineering Problems with Solutions Control System Design

Example 7.3

Two lead compensators were designed in each of Examples 7.1 and 7.2 and the results for step responses
summarised in a Table. Add to the Tables the results if the compensators are placed in the feedback path

having the output rather than error as input. What do you conclude from these results?

43 41 at 2.06rad/s
13 2.1 4.1 47 at 1.65rad/s

Table 7.3a Summary for Example 7.1

n/a.

41 at 2.06rad/s
4 1.9 23 47 at 1.65rad/s

Table 7.3b Summary for Example 7.2

The settling times are comparable with those for the compensator in the error channel but the overshoots
are lower. This is typical and due to the fact that when the lead compensator is in the feedback path the

zero in the closed loop transfer function occurs at a higher frequency.

360°
thinking.
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Example 7.4

A control system has a plant with a transfer function of G(s)=0.5@"/s(s’ +2{sw, + @.) and
H(s)=1. The design specifications are to design a series compensator to keep approximately the same
open loop bandwidth as that with a unit gain compensator and a step response with an overshoot of no
more than 25% assuming that the parameters @, and ¢ , which are not known very accurately are 1 and
0.1, respectively. Is the system stable if G, (s) =1? The designer chooses a P-Z cancellation compensator
for the feedforward path with transfer function G_(s) = (s* +0.2s + 1) /(1 + sT)* . Determine a suitable
value of T and from Matlab obtain the percentage overshoot and settling time for the closed loop step
response and the phase and gain margins. What are the overshoot and settling time if the compensator
is placed in the feedback path? Because of the uncertainty about the parameters the designer examines
the performance as ¢ varies. Calculate the minimum value of § for which the system will be stable and
the overshoot, settling time and phase margin for { = (0.05 . The designer obtains further results for the
step response and phase margin for both § =0.1 , the nominal value, and ¢ =0.05, with @, =0.8

and, @, =1.2. What do you conclude from these results?

With no compensator, that is G_(s)=1 the closed loop characteristic polynomial is
5 +0.25> +5+0.5=0 so the system is unstable as applying the Routh criterion 0.5 > 0.2x1.0.
Since the design must achieve approximately the same open loop bandwidth a suitable choice for T is
unity, so that G,(s) = (s* +0.2s +1)( 1+5)” and G,(s)G(s) = 0.5/s(1+ s)” with ideal pole-zero
cancellation. The step response gives an overshoot of 25% at a time of 6.72s, a settling time of 19s and
the system phase and gain margins are 44.1° at 0.424 rad/s and 12dB at 1.00rad/s, respectively. If the
compensator is placed in the feedback path the overshoot is 91% at a time of 4.8s and the settling time
is 36s.

If the damping is unknown the compensated open loop transfer function is

(s> +0.2s5+1) 0.5
(s+1)*  s(s*+2&+1)

the frequency of 1rad/s. where it has a gain of 0.5/2{. At this frequency the compensator has no phase

G.(s)G(s) = . The phase shift of the plant transfer function is -180° at

shift and a gain of 0.2/2, which is 0.1. Thus the compensated system has a gain of 1/40( at a phase -180°,

so that for stability 40 > 1 giving { > 0.025.

The results for the step responses are summarised in Table 7.4
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1.0 0.1 25% at 6.7s 19s 44 at 0.424rad/s
1.0 0.05 20 at 6.3s 24s 47 at 0.425rad/s
0.8 0.1 51%at 7s 124s 35 at 0.485rad/s
0.8 0.05 unstable 16 at 0.696 rad/s
1.2 0.1 26 % at7.7s 19s 47. at 0.406rad/s
1.2 0.05 25% at 8.1s 54s 49 at 0.406rad/s

Table 7.4 Summary of step response results.

From the tabulated results several interesting aspects can be seen although examination of the complete
step responses and Bode or Nyquist diagrams yield further interesting aspects. First for the fourth case
in the Table the system goes unstable, although the phase margin given by Matlab does not reveal this.
In fact the gain goes through unity at two frequencies and Matlab computes the phase margin from the
lowest frequency. The gain margin is negative so this confirms the instability. The settling time for the
closed loop step response often increases significantly due to oscillations resulting from the resonant
poles not being cancelled by the zeros of the compensator. The effect of overestimating the resonant

frequency of the plant poles has the most significant effect on the resulting behaviour.

Example 7.5
A plant with a transfer function of G(s) = 2(1—5s)/(1+5)’ is required to be controlled in closed loop
with a PI controller, with transfer function G _(s) = K,(1+(1/s7})), to provide a good response to set

point changes. Compare controller designs using the following methods and comment on your results.

a) The zero of the controller is used to cancel a plant pole and then K, is chosen using the
root locus approach to place the closed loop poles to give (i) two real and equal poles and

(ii) complex poles with a damping ratio of 0.6.

b) Use of the Ziegler-Nichols rules { K, = 0.45K aand T, = 0.87, where K and T are

respectively the critical gain and the critical period of the plant}.

c) The critical frequency,@, =27 /T, , is placed at the point 0.40 /_-195° on the compensated
Nyquist plot.

d) Simulation is used to determine the K;and 7, which minimise the ISTE.

130
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(a) The transfer function of the controller is G _(s) = K,[(1+sT,)/sT,)]so that for its zero to
cancel a plant pole 7, =1, giving the open loop transfer function 2K, (1-s)/s(1+s). Thus, since
the transfer function is second order it is easy to evaluate the required gains from the characteristic
equation s* +s(1—2K,) + 2K, = 0. This shows that the system is stable for K, < 0.5 ; that equal
roots will occur for K, = 0.0858 (the breakaway point of the root locus from the negative real
axis) and roots for a damping ratio of 0.6 for K, = 0.1603. Thus using approximate values the
required PI controller transfer functions have (i) K, =0.086, 7, =1and (ii) K, =0.16,7, =1

(b) The plant has a frequency response G(j@) = 2(1— jw)( 1+ jw) from which it is easily seen that
the critical frequency is @, =1.732and the corresponding gain is unity. T =27/1.732=3.63 so
that from the rules 7, =0.8x3.63 =2.90and K, = 0.45.

1

(c) For this case the PI controller must give a gain of 0.40 and a phase lag of 15° at the critical frequency of
K,(1+ 0 T
o,

1.732rad/s. Thus tan~' @, T, = 75°giving 7, = 2.15 and =0.4 so that K, =0.386.

(d) Since only two parameters are to be adjusted to minimise the ISTE this can be done by iteration with
the Simulink block diagram shown in Figure 7.3. The results are K, =0.42 and 7, =2.21.

1

s [ L—
1
x L 1Ly 2.497
Int tor2
ntegrato N —» s
Product1 Integrator1 Display
Praquct
-2s+2
| K- > & > P I:l
s2+2s+1
Step Gain Transfer Fcn Scope
1
s —> y
Integrator Gain1
To Workspace

Figure 7.3 Simulink diagram for evaluation of ISTE

The results are summarised in Table 7.5 together with the important descriptors of the closed loop step

response and open loop frequency response.
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a(i) 0.086 1.0 No 14.9s 71 at0.172 153at1.0
a(ii) 0.16 1.0 10% at7.7s 11.3s 54 at 0.320 99at1.0
b 0.45 2.90 3% at3.7s 14.2s 67 at 0.481 5.8 at 1.46
0.39 2.15 7% at4.3s 9.5s 60 at 0.466 6.2 at 1.36

d 0.42 2.21 10% at4.1s 9.3s 58 at 0.489 6.0 at 1.35

Table 7.5

The designs trade off speed of response, which if fast will result in an overshoot, against a longer settling
time. The low value of K, in design a(i) results in a slow response with no overshoot and has the largest
gain and phase margins. If a small overshoot is allowed then designs (b) and (c) would probably be

preferred.

oy,
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Example 7.6

Aprocesshasatransfer functionof G(s) = 2/(1+ s)(1 + 0.2s)” whichisto be controlled in a feedback loop
with H(s) =1 and a PID controller with transfer functionG,_(s) = K{1+(1/sT,)+ (sT,/1+ asT,)},
with o = 0.1 What are the critical gain, K, and frequency, @, , of the plant? It is required to achieve
a set point step response with an overshoot of no more than 20% and a settling time of 2 seconds. What

are the results from the following two design approaches?

a) Use of the Ziegler - Nichols tuning parameters, K = 0.6K_, 7. =0.57, and 7, =0.1257,,
where T, =27/ o, .

b) Assuming @ =0 in G,(s) the critical frequency is moved to the point 0.7/_-135° on the
compensated Nyquist locus. Give the calculated values of K and 7, to do this assuming
T, =4T,.

From Matlab the gain margin is 17.1dB at 5.92 rads/s and the phase margin 89.1° at 1.53 rads/s. The
gain corresponding to 17.1dB is 10'""** =7.16 Thus K, =7.16 and @, =5.92.

(@ T =27/592=1.06 so that from the Z-N rules K =0.6x7.16~4.3, T, =0.57T, =0.53 and

T, = 0.13. Substituting these values in the given transfer function G_(s) for the PID controller
4.3(0.07585> +0.543s + 1)

0.00689s” +0.53s
16.9rads/s , a phase margin of 26.8 at 4.71 rads/s and a closed loop step response with an overshoot of

gives G_(s) = . For this controller the system has a gain margin of 19.9dB at

51% at 0.64s and a settling time of 2.8s.

(b) With & = 0and T, = 4T, the transfer function of the controller is G, (s) = K(1+2sT,)* / 4sT,and

to satisfy the required phase condition of the design it must have a phase shift of 45° at ®,. Thus

45° =-90° +2tan"" 2w.T, giving T, = 0.204 . Tosatisfy thegain condition | G.(jw,) | G(jw)|=0.7
1 K(1+4a'T})

716 4a.T,

T, =0.20and T; =0.82 gives the controller transfer function G (s)=

which gives =(0.7, yielding K =3.54 after substituting for @, and 7, . Taking

3.54(0.180s> + 0.84s +1)
0.0164s> +0.82s

With this controller the system has a gain margin of 19.3dB at 17.8rads/s, a phase margin of 47.2° at

4.70 rads/s and a closed loop step response with an overshoot of 24% at 0.62s and a settling time of 1.1s.
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Thus neither controller design meets the step response criterion. However approach (b) meets the settling
time criterion and several modifications are possible which might achieve the design criterion. One
possibility is to feed the derivative term from the output rather than the error but this results in a larger
overshoot and a longer settling time. A second possibility is to just keep the integral term in the error

channel and feed both the proportional and derivative terms from the output as this delays the effect of
3.54(1+0.225)

1+0.02s
fed from the output. In this case the system has a gain margin of 13dB at 4.43 rads/s, a phase margin of

the step input at the input to the plant. This results in G.(s)=3.54/0.8s and Gd (s)=

68.4° at 1.08 rads/s and a closed loop step response with no overshoot and a settling time of 2.1s. This
roughly satisfies the criterion which can be achieved by minor modifications of the parameters. A third
approach is to move the critical point in the approach of (b). Since the settling time for the design was
easily achieved a gain reduction should reduce the overshoot, so the critical frequency can be moved

from 0.7/_-135° to 0.55/_-135° giving a controller gain K =2.75. 'Thus taking

2.75(0.180s> +0.84s +1)

0.0164s” +0.82s
margin of 52.3° at 3.84 rads/s and a closed loop step response with overshoot of 19% at 0.72s and a

G.(s)= gives a system with a gain margin of 21.5dB at 17.8 rads/s, phase

settling time of 1.5s.

Finally another possibility would be to use a PI-PD controller where a proportional term is included in

both the error channel and the feedback path.

Example 7.7

A plant has a transfer function of G(s) =2/ s{1+(2s/@,)+(s* / @, )} with ¢ =1.25 and @, =2.5.
It is to be controlled in a feedback loop with /(s) =1 and a compensator G, (s) in the error channel.
What are the gain and phase margins if G_(s) = 1. Design a phase lead compensator with unit gain at
zero frequency to give a phase margin of around 45° and give the gain crossover frequencies of the
uncompensated and compensated open loop frequency responses. Unfortunately there is considerable
uncertainty about the damping ratio, £, and it is believed it might get as small as half the assumed value.
If this is the case what will be the phase margin of the system. Investigate the design of a compensator

to achieve the required value of phase margin for both values of damping.
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For the given G(s) the gain margin is 9.9dB at 2.5rads/s and the phase margin is 28.5° at 1.33rads/s.
Since the plant gain falls off quickly to achieve a phase margin of 45° the compensator will probably

have to provide a lead of at least 30°. Taking @ =1/3 gives a gain of 4.77dB and a maximum phase lead
1+0.95s

140325
This compensator only results in producing a phase margin of 43.9° at 1.83 rads/s for the system. Trying

a=1/4 results in G (5) = _ts and a system with a phase margin of 47.7° at 1.97rads/s. The

1+0.25s

required gain crossover frequencies are 1.33 and 1.97rads/s, respectively. The closed loop step response

0f30°. G(s) isapproximately 4.77dB down at 1.83rads/sso T = +/3 /1.83 = 0.95giving G.(s)=

of the compensated system gives an overshoot of 20% at 1.43s and a settling time of 3.3s.

When the compensator is used for the plant with damping reduced by 50% the gain margin is 3.06dB at
3.67rads/s and the phase margin is 14.6° at 1.32rads/s. The closed loop step response is very oscillatory
with an overshoot of 41% at 1.23s.and a settling time of 14.6s. {NOTE. If the main concern for the results
with the reduced damping is the poor step response, not the phase margin, then one could investigate
the performance with the lead controller in the feedback path. If this is done then for the nominal
damping the step response has no overshoot and a settling time of 4.6s and for the reduced damping an
oscillatory behaviour along a time constant so that the first overshoot is 5% at 3.23s and the second 6%

at 5.13s with a settling time of 10.9s. Possibly an acceptable design.}
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A phase margin of 45° cannot be achieved for the plant transfer function with the reduced damping
with a lead compensator so that if speed of response is not a factor then a phase lag compensator can
be used. The Bode diagrams for the two plant transfer functions are shown in Figure 7.4. As the phase
shift of the nominal plant (larger damping) is greater initially the phase lag network needs to be designed

for this transfer function. The transfer function has a phase lag of around -130° at 0.77rads/s where the

gain is about 6.87dB=2.20. An approximate phase lag with 7' =1/0.077 =13 is G _(s) = 1+135 hich
‘ 1+ 28s

gives a phase margin of 46.1° at 0.781rads/s with the nominal plant and 58.5° at 0.952 rads/s with the

plant with the reduced damping. The closed loop step responses for the two cases have overshoots of

24% at 3.66s and 12% at 2.7s, and settling times of 13s and 14s, respectively.

Bode Diagram
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Figure 7.4 Frequency responses for plant transfer functions. (nominal plant blue)

Example 7.8

A plant has a transfer function G(s)=(1+s5)/5(s* —4) and is to be controlled in a loop with unit
negative feedback by the phase lead compensator G, (s) = K(1+s)/(1+ 0.1s). Plot a root locus for the

system and find the approximate value of K to give a minimum overshoot to an input step.
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K(1+s)’
s(s* —4)(1+0.1s)
0, 2, -2 and -10. This is an unstable transfer function due to the pole at 2. The basic rules for the root

The open loop transfer function G, (s)G(s) = which has two zeros at -1 and poles at
locus indicate there will be a locus on the real axis between the poles at 2 and 0 and between the poles
-2 and -10. The excess of poles over zeros is 2 so there are two locus branches which tend to infinity
along an asymptote cutting the real axis at -4. The locus starts at poles and finishes at zeros so that there
will be two breakaway points from the real axis one between 2 and 0 and the other between -2 and -10.
The two loci from the former will finish at the two zeros at -1. The root locus from Matlab is shown in
Figure 7.5. Two points are marked, one shows that the system becomes stable for K > 2.64 and the other

that the breakaway point between the roots -2 and -10 occurs for a gain K = 3.29.

Root Locus
10 T T u T

System: gl
or Gain: 2.64 7
Pole: -0.00715 + 1.12i
ar Damping: 0.00638 1
Overshoot (%): 98
® 21 Frequency (rad/sec): 1.12 4
2 [ ]
= . R
'% System: gl k,._/
E -2t Gain: 3.29 |
Pole: -4.7 +7.88e-008i
Damping: 1 i

Overshoot (%): 0
Frequency (rad/sec): 4.7

-10 1 1 I 1
-10 -8 -6 -4 -2 0 2

Real Axis
Figure 7.5 Root locus plot
Thus whatever the choice of K there will be 4 complex poles. There is little change in the overshoot for

the step response for gains K over quite a significant range as shown in Figure 7.6 for gains of 10, 20

and 30, respectively. The minimum overshoot of around 51% occurs for K = 12.
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Figure 7.6 Closed loop step responses for different gains.

Example 7.9

A feedback system has a plant with a transfer function G(s) = K /s(1+0.5s)(1+0.125s) and H(s)=1.
Determine the maximum value of K for the system to be stable. If K is half this value; design a phase
lead compensator of the form G_(s) = (1+57")/(1+ 0.1255) to achieve a maximum phase margin. Give
details of the resulting closed loop step response if the compensator is placed (a) in the error channel and
(b) in the feedback path. Find using simulation the optimum values of T to minimise the ISTE (Integral

of the square of time times error) for cases (a) and (b). Give details of the corresponding step responses.

A hand calculation to evaluate the required value of T' is extremely time consuming but with Matlab a solution
can easily be obtained by trial and error using the margin command. The optimum value of T is around
0.47 and it results in a phase margin of 37.7°. The closed loop step response for (a) results in an overshoot

of 34% at 0.67s and a settling time of 2.4s and for (b) an overshoot of 1% at 1.01s and a settling time of 2.0s.

A simulation diagram for evaluating the ISTE is shown in Figure 7.7 for the compensator in the forward
path. The optimum values of T are 0.60 and 0.44, respectively, and the value of the ISTE is about 12%
smaller for case (b). The step response has an overshoot of 34% at 0.80s and a settling time of 2.53s for

case (a) and 5% at 1.06s and settling time of 2.03s for case(b).

1
He O e =
—p! s
Integrator1 |§|
80

Int t "
ntegrator Product Product1 Display

Scope

| > 0.6s+1
= 0.125s+1 den(s)
Step Transfer Fenl Transfer Fcn Scope1
% |§|

Scope2

Figure 7.7 Simulink diagram for ISTE evaluation.
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Example 7.10

A process with a transfer function of G(s)=4e " /(1+5) is to be controlled in a feedback loop with
H(s)=1 and a PID controller with transfer function G,(s) = K{1+(1/sT,)+(sT,/1+asT,)}, with
o = 0.1 What are the critical gain, K, and frequency, @, , of the plant? What are the results from the

following three design approaches?

a) Use of the Ziegler — Nichols tuning parameters, K =0.6K_, 7, =0.57,and 7, = 0.1257,,
where T, =27/, .

b) The critical frequency is moved to the point 0.6/_-135° on the compensated Nyquist locus.
Give the calculated values of K and 7, to do this assuminga = 0and 7, = 47,

c) The critical frequency is moved to the point 0.6/_-135° on the compensated Nyquist locus.

Give the calculated values of K and 7, to do this assuming o =0 and 7, =87,

The phase shift of the plant frequency response is — @ — tan™ @ which gives -180° when @ = @, = 2.03
4

rads/s and the corresponding gain |G(jw)|l= ————
p g8 |G(jo) (l+2.032)1/2

=1.77 so thatK, =1/1.7 =0.566.

(]
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(a)Since T, =27/ @, =2 /2.03 =3.10 the Z-N parameters are K= 0.34, 7, =1.55,and 7, =0.39.

K[s*(1+ )T, +s(T, +aT,) +1] _ 0.34(0.665s° +1.59s +1)
s*al.T, +sT, 0.0605s* +1.55s

For the resulting system the gain and phase margins are 3.85dB at 2.53rads/s and 63.2° at1.01 rads/s.

The controller transfer function is G, (s)=

The Matlab ‘feedback’ function cannot be used when a transfer function in it contains a delay. If desired
approximate results can be obtained using this function and approximating any delay in a transfer function
by its Pade approximation. Alternatively the system can be simulated in Simulink which gave a closed

loop step response with an overshoot of 37% at 1.9s and a settling time of 9.2s.

(b) With @ = 0and 7, = 4T, the transfer function of the controller is G_(s) = K(1+2s7,)* / 4sT,and

to satisfy the required phase condition of the design it must have a phase shift of 45° at @, . Thus
45" =-90° + 2tan"' 2m,T, giving 2m,T, = 2.414 so that T, = 0.5946 . To satisfy the gain condition

1 K(1+40'T})
0.566 4T,
for w, and T,. Taking K = 0.24,7,=0.59 and 7, =2.36gives the controller transfer function

|G.(jo.)| G(jo,) |= 0.6 whichgives =0.6,yielding K = 0.2401 after substituting

2
G.(s)= 0.24(1.531s" + 2425 +1) '1pe resulting system has gain and phase margins of4.11dB at 2.77rads/s
‘ 0.139s +2.36s

and 96.1° at 0.491 rads/s, respectively. The closed loop step response is oscillatory but has no overshoot

and a settling time of 12s.

(c)With @ = 0 and T, = 8T, thetransfer functionofthecontrolleris G, (s) = K (1+ 85T, + 85T} )/ 8sT,
which gives G.(jw)=K(1+8joT, —8w’T;)/8jwT, and as in (b) the numerator must provide
a phase lead at the critical frequency of 135°, thus tan"'[8@.T,,(1 -8 T;)] =135 which gives
T,=0.55 and 7, =4.4. The gain K = 0.24, as before, and the controller transfer function is
G,(s) = 0.24(2.68s” +4.465 +1) . The resulting system has gain and phase margins of 4.27dB at 2.77rads/s

0.242s” + 4.40s
and 116° at 0.35 rads/s, respectively. The closed loop step response is oscillatory but has no overshoot

and a settling time of 26s.
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Example 7.11

A feedback system has a plant with a transfer function G(s) =1/s(1+s)(1+0.1s) and H(s) = 1. It is
required to design a controller G (s) so that the closed loop step response does not have an overshoot
greater than 10%. Use the root locus approach to find the required controller gain if (a) G (s) = K and
(b) G.(s)=K(1+s)/(1+0.1s). Obtain the closed loop step responses and comment on their relative

behaviour.

Figure 7.8 shows the root locus plot using a gain range of 0-12 for case (a), where the complex roots
cross the axis for K = 11, with an estimated gain value of 0.605 for around 10% overshoot. Since the
real pole is still at approximately -10 its contribution to the closed loop step response is expected to
be small. The closed loop step response has an overshoot of 9% at 5.2s and a settling time of 7.8s. For
case (b) a difficulty in designing a phase lead compensator using the root locus is to have a strategy
for choosing its zero and pole, and one simple method is the zero-pole cancellation used here. Again
a point with damping around 0.6 for the complex poles is selected. A gain of 3.03 gives complex pole
damping of 0.596 with an overshoot of 9.73%. The real part of the complex poles is around -2.7 and the
real pole is at approximately -14.6 so its effect on the closed loop step response is again expected to be
small. The closed loop step response has an overshoot of 9% at 0.93s and a settling time of 1.36s. The
two step responses are quite similar but the speed of response is increased by a factor of more than five

with the lead compensator.

Root Locus
4 T T T T T

System: g
Gain: 0.605
2+ Pole: -0.467 + 0.619i -

Damping: 0.602
Overshoot (%): 9.34
1F Frequency (rad/sec): 0.775 1

Imaginary Axis
o

4 1 1 1 1 1
-12 -10 -8 -6 -4 -2 0 2

Real Axis

Figure 7.8 Root locus plot.
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Example 7.12

A relay autotuning experiment was performed on a process, with a relay having an output of +1, and
the values obtained for the amplitude of the limit cycle and its frequency at the relay input were 0.64
and 1.0 rads/s, respectively. It was decided to control the process with an ideal PID controller in the
error channel and to select the controller parameters so that the integral time constant was four times
the derivative time constant and the frequency of 1.0 rads/s occurred at a gain of 0.5 and a phase of
-150° on the compensated Nyquist locus. What are the required values for the controller gain and

derivative time constant.

The gain through the relay for the limit cycleis 44/ ax =4/0.647 = 0.5027 ~ 0.5which is the estimate

from DF analysis for the critical gain, K. Now K G, (j®,) must have a gain of 0.5, thus | G, (j@,) |=1,
K(s’TT, +sT, +1)
ST,

K(1+25T,)" with T = 4T, therefore —90° + 2 tan "' 20,7, = 30°giving tan"' 2@,T, = 60° so that
4sT,

20T, = 3 andon substituting for @, gives 7, = 0.866.Now |G, (j®,)|=

and a phase shift of 180" —150" =30". Now Gc(s)=K(1+LT+sTd)=
S i

K(1+40)T;) K(1+3)
40T, 243

2K \hich equals unity for K = 0.866.
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Example 7.13

Here the use of state feedback control is considered to improve the control of the plant transfer function
given in Example 7.4, where it was seen that problems arose with a series compensator design when the
plant parameters varied. The simulink diagram for the transfer function is given in Figure 7.9, where
it is assumed that the states are the output of the integrators and that feedback is only possible to the
plant input. The Gain and Gainl blocks show the nominal value of unity for @, and the Gain3 block
is 2¢w, with the nominal value of { = 0.1 entered. The resulting system, as in Example 4, is required
to have zero steady state error to a step input. {NOTE:- If the physical structure of the plant had the
integrator after the second order dynamics the design would be easier as no feedback need be used
around it and the integrator would ensure zero steady state error to a step input. The same reasoning
would apply for the situation of Figure 7.9 if it were possible to feedback into the plant at the output of
the block labelled Integrator2.}

1
1 0 - 1 1
OS>+ | ! G
i Out1
Gain2 Integrator2 Gain1 Integrator Gain Integrator .
0.2
Gain3
Figure 7.9 Simulink model of state variable representation.
The state space description for the plant is
0 o, 0 0
A=|-w, -2o, o, |, B=|0|and C=(1 0 O), D = 0. {NOTE the A matrix is singular}.
0 0 0 1

0
Assuming the feedback is such that u = 0.5/~ 0.5(k, &, k) 0 |, then the new A matrix is

0 o, 0 s -, 0
4,=| ~o, -2o, w, |,whichleadstos/-4,=| o, s+2{w, -, |and thecharacteristic
~0.5k, —0.5k, 0.5k, 0.5k, 0.5k, s+0.5k,

equation | s/ — 4 |= s> + 5> (2¢w, +0.5k,) + s((w,k; +0.50,k, + @) +0.50> (k, + ky) =0-
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A transfer function with an integration term is required in front of the plant to produce a zero steady
state error to a step input, so if this is chosen as (s +1)/s and the feedback gains are chosen to place

the three poles of the characteristic equation at -1, then the nominal forward path transfer function is
s(s+1)
system is shown in Figure 7.10 with the simulation of the nominal transfer function in parallel, which

which is in agreement with the design using the series compensator in Example 7.4. The resulting

allows one to check that the feedback gains have been correctly calculated and also to compare results
with those of the nominal system when the plant parameters are varied. The required gain values are:-

k =-3.6, k,=2.88 and k, =5.6.

st+1
UHor 5 g ——
y s s
Step Transfer Fen Gain  Integrator Scope
|§|
Scope1 /I
\-Kﬁ
L p )| p 05 [
s den(s)
Transfer Fen1 Transfer Fcn2 Scope2
|§|
Scope3

Figure 7.10 State feedback design.

Using the same parameter variations as Example 7.4 the step response results, equivalent to Table 7.4,

are given below in Table 7.6 obtained using the Simulink model of Figure7.10

1.0 0.1 25% at 6.5s 19s
1.0 0.05 26 at 6.0s 23s
0.8 0.1 39% at 7.0s 37s
0.8 0.05 41% at 7.0s 39s
1.2 0.1 24 % at 7.0s 27s
1.2 0.05 25% at 6.5s 22s

Table 7.6 Summary of step response results.
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It can be seen from Table 7.6 that the step responses are not now as sensitive to the parameter changes
and the system remains stable for @, = 0.8 and { = 0.05. Indeed for this value of damping factor the
system will remain stable until the resonant frequency is less than half the nominal value. This is expected

due to the ability of the three feedback gains to change the three roots of the characteristic equation.

Example 7.14

-7 3
A system has a state space description of 4 = ( 6 2] , B= (ﬂ ,C=(1 0),D=0.Calculate the required
feedback gains to move both poles to -2 by (i) by direct calculation and (ii) by first transforming the

system to the controllable canonical form.

-3

s+7
(i) For the given system s/ — A = ( 6 2j , therefore |s] - A| =5 +55+4=(s+1)(s+4)and

S —

the poles are at -1 and -4, respectively.

For the state feedback # =7 — Bk', where k" =(k, k,) the new A matrix is

. (-7 3) (2 ~7-2k 3-2k,
A, =A-Bk" = 1k k)=
-6 2) 1 —6-k 2-k,
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s+7+2k —-3+2k,

=s>+(5+2k +k))s+4-5k, — k.
64k s—24k S TOTRTR)S 2

Thus |s] - A| =

For both poles to be at -2, the characteristic equation must be § > +45+4=0 so that the values of the
gains must satisfy 5 + 2k, +k, =4 and 4 — 5k, — k, = 4, which has the solution k =(=5/9 1/9).

2 -11

(ii) The system is controllable as (B AB ) = (1 10

j is not singular.
To transform to controllable canonical form we have

B=t, At, = —ayt, and A12 =1, —aft, where a, = a, =4, of which we only need to use two.

2 -7 3\ (-8) (-1 -1 2
Thus using the first two relationships #, = = = ,sothat T = ,
1 -6 2) \-4 -5 -5 1
- 1/9 -2/9 — 1/9 =2/9)2 0 red. and CT (l 0 -1 2
= , = = , as required, an = =
5/9 ~1/9 5/9 —1/9)\1) (1) "™ -5 1

(—1 2). For the state feedback wu = r—BkCT, where kCT :(klc kzc) the new A matrix is

’ 0 1 0 0 1 _ o
A, =4.-Bk. = — (klc, k,, ) = with the characteristic
-4 -5 1 -4—-k,. —-5-k,

equation s° +(5+k,,)s+4+k, =0 sothat k, =0 and k,, =—1.

Since x = Txc where x is the original state vector and x,_ that for the controllable canonical form, then

1/9 -2/9
J:(—5/9 1/9),

the feedback k x =k T 'x = kx, where k = kCTf1 ,thus k = (0 1
a0 5/9 -1/9

as before.

Example 7.15

-15 —-16 -8 1
A system has a state space description 4=| 15 17 10 |B=|-1[,C=(1 0 1)and D=0. Determine
-16 -17 -8 1

the transfer function of the system. Find the eigenvalues of A and the transformation matrix T to put
the system into the controllable canonical form, where 4, =T ' AT . Use this value of T to obtain the
controllable canonical form A.,B,,C.,D, and confirm that this agrees with the transfer function.
Determine the required feedback gains for the system A, B, C, D to have all its poles at -1 and the

corresponding input-output transfer function.
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For the transformation to controllable canonical form B = ty At =-at,and At, =t -at,.

From Matlab after entering the system state space description and the command G = ss(4, B, C, D)

25 —2s5+3
57 +65* +115+6
eigenvalues of A as, -1,-2 and -3, so that the characteristic equation is s° + 65> +11s+6 =0 giving

then the command #f () yields the transfer function . Entering eig(A) gives the

a,=6,a, =11and g, =6, and in addition

-5.6667 -1.3333 4 2 -1
A" =| 6.6667 13333 —5|sothatt, =6A47't,=|—-2|and t,=A"t +1147t, =| 2
—2.8333 -0.1667 2.5 1 -1
2 -1 1 1 0 -1 0 1 0
Thus T=|-2 2 —1|,T"=|1 1 0 |and T'AT = A.=| 0 0 1 |as expected.
1 -1 1 01 2 -6 —-11 -6
0
Further B, =T"B=|0|, C. =CT = (3 -2 2)andD, =D =0 asexpected to yield the known
1

transfer function for G. The required characteristic equation after feedback is s° +3s> +3s+1=0
so that the required feedback gains for the controllable canonical form are given from 6+4, =1,
11+k,, =3and6+k,, =3 sothat k] = (— 5 -8 - 3). Thus the feedback required from the states

of A, B, C, Dis

1 0 -1
K'T"=(-5 -8 —3)1 1 0 |=(=13 —11 —1) The corresponding input-output transfer
0 1

25 —25+3

function is 3
(s+1)

{Note:- Pole placement can be done directly in Matlab using the expression k = place( A4, B, p) where

p is the vector of the required pole locations. However, the algorithm does not work when the multiplicity
of a pole in p is greater than the rank of B. A simple check can obviously be made by putting all three
poles near to -1, so choosing p =[-1,—1.01,—0.99]gives k =[-13.0002,-11.0001,—0.9999]which

on rounding gives the solution given above.}
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7.3 Problems
Problem 7.1
A feedback system has G(s)=32/s(s’ +4s+16) and H(s) = 1. It is required to design a controller

keeping the same velocity constant, that is 2, so that the system has a step response with an overshoot
no greater than 5%.
1+0.25s
[[G.(s)=—T
[G.(s) 1+0.1s
1+10s

G,.(s)= 15215 (phase lag) in forward path gives 4% overshoot and settling time of 14s.]
+21.08

(phase lead) in feedback path gives 5% overshoot and settling time of 3.7s or

Problem 7.2

A plant has a transfer function of G(s) = 4@’ /(s +4)(s” + 245w, + @ )with the parameters ¢ and
o, estimated as 0.1 and 1.0, respectively. It is therefore decided to design a controller with zeros to cancel
the poles and since no steady state error is required for a step input the controller transfer function is
taken as G, (s) = (s> +0.2s +1)/s(s +1). Determine the gain and phase margins of the compensated
system and obtain the closed loop step response giving the % overshoot and settling time. There is

concern about the value of the plant parameters so the behaviour of the system is examined for (i) a

10% reduction in ¢ and (ii) a 10% reduction in @, . Discuss your results.
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[Gain and phase margins 14dB at 2.0 rads/s and 41.2° at 0.776 rads/s. 28% overshoot at 3.81s and a
settling time of 11.4s. (i) Effect relatively small (ii) The closed loop system is unstable with gain and
phase margins of -1.79dB at 0.872 rads/s and -13.7° at 0.907 rads/s]

Problem 7.3

A process has a transfer function of G(s)=2/(1+ s)(1+0.55)(1+ 0.1s) which is to be controlled in

a feedback loop with H(s) = 1 and a PID controller with transfer function
G.(5)=K{+Q1/sT)+(sT,/1+asT,)} with & = 0.1 What are the critical gain, K, and frequency,
@, , of the plant? It is required to achieve a set point step response with an overshoot of no more than

16% and a settling time of 2 seconds. What are the results from the following two design approaches?

a) Use of the Ziegler - Nichols tuning parameters, K =0.6K_, 7, = 0.5, and 7, = 0.1257,,
where T, =27/ o, .

b) The critical frequency is moved to the point 0.6/_-125° on the compensated Nyquist locus.
Give the calculated values of Kand 7}, to do this assuming & =0 and 7, =47,.

[ K, =99 and @, =5.66. (a) Gain and phase margins of 22.2dB at 20.4rads/s and 24.4° at 4.54 rads/s.
Step response overshoot of 55% at 0.65s and a settling time of 3.6s. (b) Gain and phase margins of 20.3dB
at 18.5rads/s and 57.2° at 3.95 rads/s. Step response with an overshoot of 13% at 0.69s and a settling

time of 1.4s.- meets specifications.]

Problem 7.4

A plant has a transfer function G(s) =16/s(s+1)(s+4) and is to be controlled in a loop with unit
negative feedback by the compensator G (s)=(1+sT)/(1+saT), witha >0.1.The speed of the
response to a step input is not critical but a major requirement is that the overshoot should not exceed

10%, determine suitable values for ¢ and T.

+1
[G.(s)= e (lead) in feedback path, no overshoot and a settling time of 4.1s. G,(s) = 3as+1
0.1s+1 340s +1

(lag) in forward path11% overshoot at 7.6s and settling time of around 40s.]

Problem 7.5

A feedback system has a plant with a transfer function G(s)=4/s(1+0.45)(1+0.1s) and H(s) = 1.
Design phase lead and phase lag compensators to give the feedback loop a phase margin of around 45°.
Obtain the closed loop step responses for the two designs with the compensator in the error channel

and also for the phase lead design with the compensator in the feedback path.
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0.45s +1

[Lead G, (s) = 01551’ Step responses:- error channel 24% overshoot settling time 2.3s, feedback path
AS5s+
no overshoot settling time 2.0s. Lag G_(s) = 16466S+11 gives step response overshoot 24% and settling
.65+
time 6.7s]
Problem 7.6

A process with a transfer function of G(s5) = 2e™"* /(1+0.45)" is to be controlled in a feedback loop
with H(s) = 1 and a PI controller with transfer function G, (s) = K{l +(1/57})}. What are the critical
gain, K, and frequency, @, , of the plant? What are the results from the following two design approaches

for the closed loop step response?

a) Use of the Ziegler - Nichols tuning parameters, K = 0.45K_ and 7, = 0.87,, where
T =2rlw,.

b) The PI controller should give a phase lag of 15° and the open loop gain of the compensated
frequency response should be 0.7/ K at the critical frequency @, .

[K, =1.68 and @, =3.84.(a) K =0.74 and T, =1.31, 19% overshoot at 1.4s and settling time
5.3s.(b) K =0.68 and 7, =0.97, 26% overshoot at 1.5s and settling time 5.3s.]

Problem 7.7

A feedback system has a plant with a transfer function G(s)=1/s(1+s)*. Show that in a feedback
loop with unit negative feedback gain it will have a phase margin of 21.4° at the frequency 0.682rads/s.
Design a phase lag controller with unit gain at zero frequency to give a phase margin for the system of

around 45° and give details of the resultant closed loop step response.

2

Os
G’ =
Ge() =05 41

gives a phase margin of 46.7°, step response overshoot of 24% at 7.5s and settling

time 32s.]

Problem 7.8

A feedback system has a plant with a transfer function G(s)=1/s1+0. 5s)2 . Show that in a feedback
loop with unit negative feedback gain it will have a phase margin of 21.4° at the frequency 1.365rads/s.
Design phase lag controllers with unit gain at zero frequency, by both frequency response and root locus
methods, to achieve a closed loop system step response with an overshoot no greater than 10%.

(G, (s)=

gives 8% overshoot and settling time of 35s]

20s +1
60s +1
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Problem 7.9

A relay autotuning experiment was performed on a process and the values obtained for the critical gain
and critical frequency were 2.0 and 1.0 rads/s, respectively. It was decided to control the process with
an ideal PID controller in the error channel and to select the controller parameters so that the integral
time constant was four times the derivative time constant and the frequency of 1.0 rads/s occurred at
a gain of 0.5 and a phase of -150° on the compensated Nyquist locus. What are the required values for

the controller gain and derivative time constant.
[K =0.866 and T, = 0.866 ]

Problem 7.10

A relay autotuning experiment was performed on a process and the values obtained for the critical gain
and critical frequency were 1.8 and 1.0 rads/s, respectively. It was decided to control the process with
an ideal PID controller in the error channel and to select the controller parameters so that the integral
time constant was four times the derivative time constant and the frequency of 1.0 rads/s occurred at a
gain of 0.55 and a phase of -150° on the compensated Nyquist locus. What are the required values for

the controller gain and derivative time constant.

[K=0.86 and T, =0.866 ]
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Problem 7.11

A process with a transfer function of G(s) =2 /(1 + S)3is to be controlled in a feedback loop with
H(s) = 1and a PI controller with transfer function G_(s) = K{1+ (1/s7,)}. What are the critical gain,

K, and frequency, @, , of the plant? Determine the parameters of the PI controller if it is designed to:-

a) Use the Ziegler — Nichols tuning parameters, K = 0.45K, and 7, = 0.87, where
T =2rlw,.

b) To move the critical point to a gain of 0.4 and phase -192° on the compensated Nyquist
locus.

c) A zero of the compensator is used to cancel a pole of the process transfer function and the

gain margin is adjusted to 12dB.
Compare the closed loop step responses of the three designs.

[K,=4.0 and @, =1.732. (i) K =1.80 and 7, =2.90. 57% overshoot, settling time 33s (ii)
K =1.56 and T, =2.71. 52% overshoot, settling time 27s (iii) K =0.25 and 7, =1.0. 25%

overshoot, settling time 20s]

Problem 7.12

A feedback system has a plant with a transfer function G(s)=4/s(1+s)(1+0.1s) and H(s) =1.
Design a phase lead compensator using pole zero cancellation and with unit gain at zero frequency to
give a phase margin of around 50°. Also design a phase lag compensator, again with unit gain at low
frequency, to achieve the same phase margin. Obtain the closed loop step responses for the two designs

with the compensator in the error channel and also for the phase lead design with the compensator in
the feedback path.

+1
[G.(s)= Osls 1 gives a phase margin of 50.9°. Step response in error channel 17% overshoot and 1.7s
settling time and in feedback path no overshoot and settling time 4s. G (s)= égs +i gives a phase
s+

margin of 51.5°. Step response 20% overshoot and settling time 25s.]

Problem 7.13

Show that for an ideal PID controller, G,(s) = K{1+(1/s7,)+ s7T,}, placed in the error channel and
controlling a plant with transfer function G(s) that, if the design strategy is to place the critical frequency
of the plant at a point g/ —135° on the compensated frequency response locus, then the PID controller

gain will be independent of the choice of the ratio 7, /7, .
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Problem 7.14

53 45 30 -1
A system has a state space description 4=| -1 -1 0 [,B=| 0 |,C= (8 5 4) and D = 0.
-103 -87 -59 2

Determine the transfer function of the system. Find the eigenvalues of A and the transformation matrixT
to put the system into the controllable canonical form, where 4, =T "'AT . Use this value of T to obtain
the controllable canonical form A4,,B,.,C,, D, and confirm that this agrees with the transfer function.
Determine the required feedback gains for the system A, B, C, D to have its poles at -2, -2.5 and -3 and

the corresponding input-output transfer function. Why is the transfer function second order?

1 0 -1
+3
[Transfer function is — Sz , Eigenvalues are -1,-2and -4. T=| —1 1 0 |and transfer
s +7s" +14s5+8
function is % Pole — zero cancellation. ] 0 -1 2
s°+4.5s+5
Problem 7.15

-2 .05 0 1

A system has a state space description 4= [2 1 4 ], B=|0|,C= (1 -0.5 - 1) and D = 0. Determine the
-2 -1 -1 1

transfer function of the system and the eigenvalues of A. Find the required feedback gains for the system

to have its poles at -1, -2 and -3 and the corresponding input-output transfer function.

1

[Transfer function is —————
§7+2s" +2s+1
1

, Eigenvalues are -1, and -0.5+0.66j. Gain vector (14,-0.5,-10) and

transfer function is

S +65>+11s+6

Problem 7.16

Design the controller for Problem 7.2 by first modifying the plant transfer function with state variable
feedback so that its poles are at -1, -2 and -3. Then close the loop so that the error, the difference between
the input R and plant output, is fed through the transfer function (s +1)/s to the modified plant input.
What is the required feedback gain vector? Compare the closed loop step responses with those of problem

P7.2 and show that they are less sensitive to plant parameter variations than the design of problem P 7.2.

[Gain vector is (0.5, 2.3, 0.45)]
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8 Phase Plane Analysis

8.1 Introduction

Phase plane analysis is a method which can be useful in the study of second order nonlinear systems
and is covered in chapter 2 of reference 2. A second order system has two states and its motion can be
shown by plotting one state against the other with time a parameter on the locus, known as a trajectory.
When the second state is the derivative of the first state, typically the output, the state variables are known
as phase variables, and the trajectory motion is in a phase plane. The method was originally used by
physicists but was found particularly useful in the early days of control engineering because of the ease
with which it could be applied to nonlinear second order systems, typically position control systems or
servomechanisms as they were often called, where the nonlinearities were described by linear segmented
characteristics. It has the advantage that it can be applied when the feedback loop contains more than
one nonlinear element. Several phase plane examples, relating to the determination of oscillations or

step responses, are given in this section.

8.2 Examples

Example 8.1

Figure 8.1 shows the block diagram of a second order system where NLt1 is an on off relay with
hysteresis having switching levels A =+1 and output levels /# =+1 and NLz is bx’. Derive the

equations which can be used to determine the limit cycle in the system with R = 0 and find its
phase plane coordinates at the switching times and its frequency if a=K =1 and »=0.5.

Compare the solution with simulation results.

R
O *Om{ NLi | Kl(s+a) b»v{ 1/s ké
A

<
X

Figure 8.1 Block diagram for Example 8.1
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The transfer function K / s(s +a) has inputs from NLi of +1. Denote its output as x and its

derivative (the input to NL2) as v. The input to NL1 will be — x — bv’and assuming this is positive
and greater than 1 it will produce a positive output from NLi until — x —bv* = —1, that is until
the curve x+bv’ =1 in the phase plane is reached by the trajectory. The differential equation

for x when the output from NL1is +1 is ¥ + ax = K which to obtain the solution can be written

in Laplace transform form as s°X(s)—sx(0)—%(0)+ a{sX(s)—x(0)} = K /s, which can be

K w0 x0)
s’(s+a) s(s+a) s

x(t) = ﬁ Kz + Ke; O O, x(0) and by differentiation the expression for its derivative
a a a a

written as = X(s)= and on inverting gives the solution

Keful

is v(r) = § — +v(0)e . The equation for a phase plane trajectory for an output of +1 from
NL1 can be obtained by eliminating ¢ from these equations and is
x(7) = x(0) — v() —v(0) V(O) s 1Og {CW(((t)))[I;} This is not a simple curve and the limit cycle can be
found as easﬂy using the equations for v(¢) and x(t), since the limit cycle will be symmetrical
with two trajectory arcs one for the output of NL1 equal to +1,described by the above equations,

and the other for the output of NL: equal to -1. Thus if we assume that for NL1 equal to +1 the

trajectory starts after switching at the point (—x,,—v,)in the phase plane it will finish, by
symmetry, at the point (x,,v,), where the output of NL1 switches to -1. {Note this concept can

be used to obtain limit cycles in relay systems for higher order systems and is inherent in the
time domain method of Hamel and the state space formulation of Chung (reference 8.1) used

more recently in reference 8.2}. Thus putting these initial and final conditions into the above

Kt K Ke* v, ve K Ke™*

equations gives y ==~ _ 2 4 —x, and vy, = —v,e . Further the point
a

2 2
a a a a a a

(x,,,) lies on the curve x +bv’ =1 so that X, + bv; =1. These three equations allow solutions

to be obtained for the three unknowns x, v, and ¢, when a, band Kare given.

Thus for a = K =1 and b = 0.5 the three equations are:-

2x, =t—l+e" —=v, +ve';v,=1—e' —ve';and x, +0.5v) =1.
1 1 1 1 1 1 1
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Solving these using fminsearch in Matlab gives x, = 0.622, v, = 0.911 and ¢ = 3.066. The period of the
limit cycle is thus 6.13 seconds which corresponds to a fundamental frequency of 1.03 rads/s. The solution
in simulink for an initial condition on the output, C, of +1 is shown in figure 8.2, which confirms the

values calculated for X, and v and additional measurements confirm the period.

0.8

0.6

0.4 /

o\

-1 0.8 -06 -04 -02 0 02 04 06 08 1

Figure 8.2 Simulink solution for the limit cycle.

Example 8.2

Consider the system shown in the block diagram of figure 8.3 in which the nonlinearity NL: is
a relay with dead zone with output values of £1and switching levels of+1. Find the required

value of b in terms of K and a for the step response not to have an overshoot.

NL, > Kils*a) [0y s |1y
Y

o
<K

Figure 8.3 Block diagram for example 8.2

Again denoting the output by x and its derivative by v, then for a large step input the maximum
value of v is K/a, which is typically studied in the phase plane by assuming a large negative
initial value for x. The output of NL1 switches to zero when —x —bv =1 so that the response is
then described by the above equations in example 8.1 with K = 0. From these it is easy to see
that ax(¢) =v, —v(t) + ax, which describes a straight line of slope -a in the phase plane. Thus
for this final motion with no relay output to reach the origin the initial conditions must satisty
v, = —ax, . For a large step input v, = K/ a and since the initial value points lie on the switching
line —x, —bv, =1 elimination of x, and v, between these equations gives K (1— ab) = o*which
can be written as b = (K —a’)/ Ka. For a finite value of b then K > a”.
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Thus if there is no feedback b, that is b = 0, there will be no overshoot for a large step input provided
K < a’ and the response for a negative initial condition — x,on the output C will come to rest with
the output between -1 and zero, reaching zero for a large value of x, if K =a”. For K > a’ there will
be an overshoot for large x,until K =2a” when the overshoot will be 1 and a further switch of the

relay will take place for K >2a’.

Introducing a finite b will prohibit overshoots for large values of x, for larger values of K. For example,
to avoid overshoots for large values of x, for a = 1 and K = 10 requires b = 0.9 and for a = 2 and
K =10 requires b = 0.3.

Example 8.3

A second order conservative nonlinear system is described by the differential equation X + n(x)=0
where n(x) is a nonlinearity. Obtain a solution for the period of the undamped oscillation in terms of
the initial value for x of —Xx,. Calculate the value of this period forx, =—1 and x, =—1.5 for the

nonlinearities (i) n(x) = x, (ii) 7(x) = x’ and (i) n(x) =sinx.

Denoting the derivative of x by v the phase plane differential relatlonshlp is vdv/dx = —n(x), which

assuming initial values of —x, and v, gives v’ —v, =-2 J n(x)dx, which can be written as

vi—ve =2{F(-x,)— F(x)} where F(x)= In(x)dx. Writing v = dx/ dt gives
0

L =[vi +2{F(-x,)— F(x)}] which can be integrated wrt x from — x,to 0 with v, =0 to give a

dx
[2{F(=x,) = F(x)}]"*

quarter cycle of the oscillation. Thus the period 7" =4 J.

a) For n(x) = x the linear case one hasF'(x) = J. n(x)dx = J.xdx =x?/2, so that
0 0

'[ [2{(x5/2) - (X2 /211"
__ &
(xo )"

T =4sin"'(x/x,)[*=4*(x/2) =2, which is independent of the initial condition.

which since the integrand has even symmetry can be

written 7 = 4J. . This gives the well known result that
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b) For n(x) = x* one has F(x)= In(x)dxz fx3dx _ +*/4, so that
Xo d 0 0
- 4_[ [ /2)— ();4 IO for which no analytical solution is known. The integral

0
depends on the initial condition — x, and can be found numerically in Matlab using the

numerical integration routine ‘quad’. For initial conditions of 1 and 2 the values of T are 7.42
and 3.61, respectively. They can also be checked by simulation. Figure 8.4 shows the

Simulink phase plane plots for several different values of X;.

Figure 8.4 Phase plane plots for cubic nonlinearity
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X

c) For n(x)=sinx one has, F(x)= In(x)dx = Isin xdx = —cosx so that

Xo dx 0 0
T= 4j 77> for which again no analytical solution is known. The integral
o [2(cosx —cos x,)}]

again also depends on the initial condition — X, and can be found numerically in Matlab

using the numerical integration routine ‘quad’ In this case since sin x =0 for, X =17 there
are multiple singular points and those for x = *7 are saddle points, so that oscillations

around the origin do not exist for| x, [> 77 . The period of the oscillations increases as x,
increases and is 6.38, 6.70, 8.35 and 16.16, respectively for — x, equal to 0.5, 1.0, 2.0 and 3.0.
Figure 8.5 shows the Simulink phase plane plots for these values of x,, obtained using

default values in the Simulink simulation. Thus the trajectories are not very smooth but

illustrate the change in shape for the different initial conditions.

Figure 8.5 Phase plane plots for conservative system with sinusoidal nonlinearity

Example 8.4.

Figure 8.6 shows the block diagram of a position control system with unit Coulomb friction where the
nonlinearity is a signum function, that is equals +1 for positive velocity and -1 for negative velocity.

Determine the response for an input step of 10 and compare with the result if there is no Coulomb friction.
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Figure 8.6 Block diagram for a system with Coulomb friction

The Coulomb friction has the effect of making the singular point +1 for positive values of v and -1 for
negative values of v. Thus the effective magnitude of the step input is 9 and since the closed loop transfer
function excluding the Coulomb friction is 4/(s” + s + 4),which has a damping ratio of ' = 0.25, the
overshoot is 9exp(—0.257 /(1—0.25%)"° =9(0.444) =3.996 so that the next motion with a negative
velocity will be from -2.996 about -1. The overshoot will be 1.996*0.444=0.88, so that the motion comes
to rest at -0.12. The successive overshoots for the step input of 10 with no Coulomb friction damping
are 10*(0.444)" for n =1,2,3etc . Thus the zero velocity axis is crossed at -4.44, 1.971, -0.875 , etc. The

responses without and with Coulomb friction are shown as plots (i) and (ii) in Figure 8.7

“A10 5 0 5

Figure 8.7 Responses of the system of Figure 8.6 to a step input of 10

Example 8.5

Figure 8.8 shows a position control system where NL: is a saturation characteristic with a very
high gain in the linear regime and output levels of =2 and NL2 is Coulomb friction with levels

of £0.5. If K= 8 calculate the required value of b to give a fast response and ensure no overshoot

for step inputs of magnitude less than 4 units for the system without and with Coulomb friction.
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Figure 8.8 Block diagram for Example 8.5

The response will be faster without Coulomb friction so this case needs to be considered to
determine b. With the linear regime of NL1 very small, switching from positive to negative
torque will occur at the line —x —5v =0 and the motion will be described by parabolas in the
phase plane. For a response with no overshoot switching from the positive torque parabola to
the negative one should take place half way to the origin, that is at x = —2 . The parabola through
the origin has the equation v’ —v*(0) = —4K {x — x(0)}, where v = x =0, and x(0),v(0) will lie
on the switching line so that — x(0) —bv(0) = 0. Thus substituting K = 8 and x(0) =-2 gives
2% /b* =32%*2, so that b = 0.25. The point on the switching line where switching takes place is
thus (-2, 8) and the switching line has a slope of -4. When the Coulomb friction is included,
which is chosen relatively larger than would be expected in practice to clearly show its effect,
the maximum value of the input to K/s will be reduced from 2 to 1.5, so the initial part of the
response will be given by the parabola v’ —v*(0) = 3K {x — x(0)}, with x(0) = —4 and v(0)=0.
This will meet the switching line —x—0.25v =0 at the point (-1.81,7.25). Starting from this

point denoted x(0),v(0) the ensuing parabola, because the Coulomb friction assists the

deceleration, is v’ —v*(0) = —-5K {x — x(0)}. It will meet the switching line again before the
origin and the ensuing motion will be a sliding motion down the switching line. Figure 8.9
shows the responses obtained in Simulink for step inputs of 6, 4 and 2 respectively, with those
labelled with a * being the ones with the Coulomb friction included. Note that with no Coulomb
friction the response for a step of 6 shows an overshoot, as expected, and then the final motion
is along the switching line, and for a step of 2 the response soon returns to the switching line
after the first switching and then slides down it to the origin. The responses are of course slower
with the Coulomb friction included, as will be seen if the time responses are plotted, but is
apparent from the phase plane because of the lower velocity profiles.
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Figure 8.9 Simulink responses for Example 8.5

Example 8.6

It is sometimes appropriate to limit the velocity in a position control system and this can be
done by limiting the magnitude of the error signal as illustrated in Figure 8.10, where NLs,
a saturation characteristic, has been added to the block diagram of Figure 8.8. Design the
saturation characteristic so that the response will not exceed a velocity of 8 units and thus have
no overshoot for a step input of any magnitude.

Figure 8.10 Modification of Figure 8.8 by the addition of saturation.

The response with no overshoot in the previous example for no Coulomb friction has a maximum
velocity of 8unitsreached when x = —2 . The switchingline with errorlimiting willbe 7, (—x) — 0.25v =0
and for this to be v = 8 requires 7n,(—x) =2, so that the required saturation level is 2. Thus, when

v =18 in any response sliding will take place.
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The simulink diagram for the example is shown in Figure 8.11, where the systems without and with
Coulomb friction are simulated in parallel. This is a useful technique when one wishes to compare the
performance of two systems. Also, some oscilloscopes additional to those shown in the diagram were
used. Figure 8.12 shows the responses obtained on the phase plane for step inputs of -4, -6 and -10,
respectively. Those marked with an asterisk are again for the case of Coulomb friction included. If the
step is large enough for the maximum velocity to be reached then the final part of the response will be
the parabolic curve straight to the origin when there is no Coulomb friction. With Coulomb friction,

however, the response will be initially along a parabola followed by some sliding down the switching line.

[=]
L

v\);|
~
=

-10 -8 -6 4 2 0 2

Figure 8.12 Phase plane responses for Example 8.6

Example 8.7

Figure 8.13 shows the system of the previous example but with the first integrator of transfer function
K /s replaced by the transfer function K /(s + a). Discuss how the phase plane trajectories in Figure

8.12 for K = 8 will change for finite values of a and obtain the responses for a = 0.5.

C

Figure 8.13 Block diagram for Example 8.7
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The effect of a, which is equivalent to viscous friction, is to change the phase plane plots from parabolas.
For positive velocity when the torque is positive the velocity increase in the phase plane trajectory is slower
than that of the parabola and when the torque is negative the velocity decrease in the phase plane trajectory
is faster than that of the parabola. Thus as a increases the time taken to reach the velocity limit will increase
and after switching the retardation will be faster. Figure 8.14 shows the simulations for a = 0.5, where
these aspects can be clearly seen when compared with Figure 8.12. In particular it can be seen that the final
path of the trajectories for large inputs, including the case for no Coulomb friction, end up sliding down
the switching line to the origin. It is, of course, possible to avoid the sliding by suitable adjustment of the

saturation to a lower limit level, dependent on whether Coulomb friction is or is not present.

8

B/AERR /el

Figure 8.14 Phase plane trajectories for Example 8.7
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Example 8.8

[Note;- It would probably be inappropriate not to include an example on backlash since the effect on
performance caused by backlash in gears was one of the ‘driving forces™ for looking at the effects of
nonlinearity in the early years of control engineering — then often known as servomechanisms. The
model most often used for backlash is the nonlinearity shown in the Simulink diagram of Figure 8.15
and it is a relatively crude approximation of the actual physical phenomenon of backlash in gears. First
it assumes that the friction to inertia ratio for the driven shaft is high so that when the drive shaft starts
to slow down the driven shaft will remain in contact with the same gear teeth. Secondly, when the drive
shaft reverses the same dynamics is used for motion through the backlash, whereas in fact the friction
and inertia of the load should be excluded. Finally, when the drive shaft has moved across the backlash
the teeth coalesce passively with the two shafts then continuing to move with the velocity achieved by
the drive shaft. This motion across the backlash corresponds to the horizontal lines in the backlash
characteristic in Figure 8.15. In practice the approximation by this model of the actual behaviour is
not good as when the drive shaft slows down multiple impacts (i.e. oscillations between gear teeth in
contact) may occur and on the reversal of direction the same phenomenon may occur with multiple
impacts by the drive shaft in ‘picking up’ the driven shaft and the loss of energy in the impacts resulting
in a velocity reduction. In fact the ‘pick up’ assumptions involve contradictory requirements as to ensure
the drive shaft does not loose velocity requires it to have a high inertia relative to the driven shaft but
if this is the case the impact will knock the driven shaft forward causing bouncing across the backlash
and multiple impacts will occur. The only way to get better solutions for the problem of backlash is by

simulating the impact phenomenon more accurately as some simulation languages allow.]

Thus after this ‘health warning’ the simple example portrayed by the Simulink diagram of Figure 8.15 is
considered. Here the forward loop transfer function is of the form K /s(s + a)and the backlash width
b =1. The requirements are (i) to simulate the system for the parameters K = 16 and a =1 for a step
input of -6 (ii) give the equations which describe the phase plane motion and (iii) repeat the simulation

for K = 2 to show that there is then no limit cycle.

A
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Figure 8.15 Simulink diagram for system with backlash.
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Figure 8.16 shows the phase plane plot which is the velocity of the drive shaft versus the position of the
output (driven) shaft. The initial output of the backlash is set at -6, the same as the initial value on the
integrator, which in Simulink means that the drive shaft starts in the middle of the backlash. The first
part of the motion is across the backlash so that the output shaft is stationary at -6 until the drive shaft
has moved 0.5 (b/2) units. The motion for the drive shaft is therefore described by a constant input of
6 into the transfer function K /s(s + a) with zero initial conditions. Thus from the equations in Example
8.1, with the parameters for K and a substituted, the expressions for position and velocity are
x(1)=96(t—1+e ") and v(r) =96(1 —e™"), respectively. The time to reach the end of the backlash is
given by the solution of the first equation with x(¢) = 0.5 and the velocity achieved at the end of the
backlash is given from the second equation with the value of time substituted. The solutions are ¢ = 0.104
and v(¢) = 9.47, which are confirmed by time responses in the simulation. Motion with the two shafts

in contact is given by the state equations X = vand v = —16x + v which can be written as dv _—l6x+v,

dx v

the slope of a trajectory in the phase plane. This gives the response from (—6,9.47) to (x(1),0), the
point marked A in Figure 8.16 where the shafts both come to rest again. The next motion is again through
the backlash to B where a slightly lower velocity is reached, although the distance travelled is now 1 unit,
because the input to the motion is the value of x at A. In this case the motion is eventually seen to result

in a limit cycle because the damping is quite small.
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Figure 8.16 Phase plane plot for Example 8.8 with K = 16.

It is easy to repeat the simulation for different parameters and when K = 2 it will be found that the

response is far less oscillatory and no limit cycle results.
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8.3 Problems
Problem 8.1

Check by simulation the results derived in example 8.2 for the required value of b for no overshoot to
large step inputs with (i) a = 1 and K = 10, (ii) a = 2 and K = 10 and (iii) a = 2 and K = 20.

[b=0.9;6=03;b=0.4]

Problem 8.2

Calculate the point at which the final sliding motion to the origin for a step input of 4 starts in example

8.5 when the Coulomb friction is present.

[-0.69, 2.75]

Problem 8.3

Calculate the point at which the final sliding motion to the origin for large step inputs starts in example

8.6 when the Coulomb friction is present.

[-0.50, 2.00]

Problem 8.4

Calculate the value of b and saturation level required in example 8.6 if the requirement is that with
Coulomb friction present the velocity for large step inputs should not exceed 8 and the final response

should be parabolic straight to the origin.

[6=0.2;1.6]

Problem 8.5

If it is required in Example 8.7 for the response from the limit velocity of 8 to reach the origin without
sliding find the required saturation limit level and gain b for (i) no Coulomb friction and (ii) Coulomb

friction.

[1.72,0.215;1.41,0.176]
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Problem 8.6

Check the results for problems 8.2 to 8.5 by simulation.

Problem 8.7

Sketch phase plane responses for step inputs to the system of Figure P8.7 when NL is an ideal relay with
ouput levels +/,K = @ andb = 2/ @, . {Note the last two parameters are such that if NL is linear of
unit slope then the system will be critically damped}. Find the maximum step input for which the system

will have no overshoot and the percentage overshoot for a step input of twice this value.

C
Y

NL 4 Kis

D]

<
Figure P8.7

[16/, 22%)]
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Problem 8.8

If in Figure P8.7 NL is an ideal saturation characteristic with unit slope in the linear regime and saturation
levels of * /1, show that the maximum step input for no overshoot with the same parameters for K and

b as Problem 8.7 is approximately 12.5h.

Problem 8.9

Figure P8.9 shows an additional nonlinear characteristic, NLi, to that of Figure P8.7 and the
other values are identical to those of Problem P8.7. Determine what the characteristic NL1 with
input u should be if the system should have no overshoot for all step inputs with K = 4 and
h =2. Check your result by simulation and show that there will also be no overshoot if the
relay is replaced by the saturation characteristic as in Problem 8.8

A

Figure P8.9

[4sgn(u)y|u ]

Problem 8.10

The block diagram below shows a feedback loop with Coulomb friction when the nonlinearity NL for
input u is defined by dsign(u) . If d =1 find the magnitude of the first overshoot for a step input of 10

units if ¢ has values of (i) 0.6 and (ii) 1.2. Check your results by simulation.

R

v s ey

Figure P8.10

[2.35; 0.47]
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Problem 8.11

In the block diagram of Figure P8.11 the nonlinearities NL: and NL2 are respectively an on off
relay with dead zone switching at *£1with output levels of *2and an ideal saturation
characteristic with unit slope saturating at = 2. Calculate the first overshoot and final steady

state value for initial conditions on the output integrator of (i)-10 and (ii) -6 units. Check your

results by simulation.

1/s }—>7C
Y

Figure P8.11

[6’ 1; 2a_]-]

Problem 8.12

In the block diagram of Figure P8.11the nonlinearities NL1 and NL: are respectively an on oft relay
with dead zone switching at + 1 with output levels of + 2 and —u + (u° / b*) . Show that a limit cycle
without sliding will only occur if 5 > 4 . For this situation with no sliding show that the limit cycle
will have a magnitude of x =1+ (b>/4)and of v =5 and a period of (2b” +4)/b . Check this out
in simulation for values of b=4 and 6 and for b=2 show that sliding takes place in the limit cycle.

Problem 8.13

In the block diagram of Figure P8.13 the nonlinearity NL is an on off relay with dead zone and hysteresis
with switching levels at 0.5 and +1.5 and output levels of +4 and 0. Determine the limit cycle in the

system and show that it has a period of 7 seconds. Check your result by simulation.

N

Figure P8.13

[Amplitude of x = 2.5, Amplitude of v=2]
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9 The Describing Function and
Exact Relay Methods

9.1 Introduction

The DF method, which is covered in detail in chapters 3 to 5 in reference 2, enables certain aspects
of a nonlinear feedback system to be investigated by representing a nonlinear element by a complex
gain which is the ratio of the fundamental of its output to the amplitude, and possibly frequency, of
a sinusoidal input. It can be extended to cover more than one sinusoidal input, including a sinusoid
plus bias, two sinusoids and even random inputs. The examples begin with calculations of DFs for two
static nonlinear elements and one for a rather complicated nonlinear configuration. The following ten
examples then use the DF method to assess the stability and/or the calculation of limit cycles in feedback
loops, including one for an asymmetrical limit cycle and another where two nonlinear elements exist
in the loop. Results of some simulation studies are also given to enable the accuracy of the approximate
solutions of the DF method to be seen. Finally a few examples are given on the calculation of the exact
limit cycle frequency for feedback loops containing relay elements. The Tsypkin method for this analysis
is described in detail in reference 2 but some calculations are also done using a state space approach
not given in detail in reference 2. An advantage of the Tsypkin method for evaluating limit cycles in
relay systems is the easy comparison it allows with the DF method and that the series solutions for the
different transfer functions can be stored in computer files. With the facilities of Matlab, however, for
solving nonlinear equations the state space approach originally introduced in reference 9.1 has some

advantages as will be seen from the examples.

9.2 Examples
Example 9.1

Determine the DF of the symmetrical odd single valued nonlinear characteristic defined for positive

values of x by
n(x)=0 for x <9,
n(x)=m(x—0,) for 6, <x<9J,
n(x)=m(0, —0,) for x> 9,

The characteristic 7(x) is shown in Figure 9.1 from which it can be seen that it is equivalent to the sum

of two saturation characteristics labelled n,(x) and —n,(x), respectively.
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Figure 9.1 Nonlinearity and its synthesis from two ideal saturation characteristics.

The DF for an ideal saturation with linear slope m and saturating at an input & is MmN (0 / a) where

N.(5) )= 1 fora<od
ST = (1/m)[2a +sin2a] fora >&

Thus the DF for n(x)is mNg(0,/a)—mNg(0,/a).

Example 9.2

Determine the DF of the symmetrical odd double valued nonlinearity shown in Figure 9.2 for input

amplitudes a > & .

Figure 9.2 Odd symmetric double valued nonlinearity.

Using the approach of reference 2 chapter 3 the in phase and quadrature nonlinearities 7, (x)and 7, (x)

are as shown in Figure 9.3
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Figure 9.3 In phase and quadrature nonlinearities for nonlinearity of figure 9.2

The describing functlon N(a)=N,(a)+ jN,(a) where N, (a)= (4/a*) J. xn,(x)p(x)dx  and
N (a) (—4/a 7r)J.n (x)dx . For the above characteristics it can be seen that N (a) can be synthesised

as two ideal saturatlon characteristics in parallel both of linear slope m /2 and with saturation taking

place for input levels of § - 2A and 6, respectively. Thus N, (a) = (m/2)[N {(6 —2A)/a} + N (6/a)]
and N (a)=(-4/a’7) j n,(xX)dx = (-4/a’7){mA(S —2A) +mA’} = -4mA(S — A)/ a’z which is (the

area of the nonlinearit}? loop) / —a’x.

Example 9.3

Figure 9.4 shows the block diagram of a nonlinear network consisting of an absolute value (modulus)
block, a multiplier, an ideal differentiator and an ideal relay with outputs of +1. {Note:- if the transfer
function of the block before the relay is 1+ 57 not s, then the network is known as a span filter — see
reference 9.2 section 11.6 and Problem 9.6}. Show that its describing function is (2/ 77)e’ 72 and check

this by Fourier analysis in Simulink

X Y

abs X

*—{ S M relay }—HA

Figure 9.4 Nonlinear network

The output waveform, y(¢), for an input, x(¢#) = asin @t, is shown in Figure 9.5 obtained from the

simulation of Figure 9.6.
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Figure 9.6 Simulink diagram for the determination of the fundamental of y(t)
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In the simulation a frequency of 1 rad/s. has been used for x(t); the simulation taken over a time of 27 ;
and the derivative block has been omitted with the signal at the relay input replaced by a cos wt . Note
that (i) because of the sign (relay) block the amplitude of this signal is immaterial and (ii) because of
the lack of dynamics there is no transient involved. (Note to do Fourier analysis of the output waveform
from a dynamic system one has to obtain the steady state waveform which only results after any transient

has decayed.)

Since the waveform of y(f) is even it has no fundamental sine component and the cosine component

/2

is given by b =(4/ ﬂ)”jzasinecosedez(%/ 7)(1/4)cos28|),,=2a/x. Thus the describing function is
2/ ﬂ)ej”/2. This is cc[;nﬁrmed by the simulation of Figure 9.6, where a = 1, with the sinusoidal
component given by the display box being zero and the cosinusoidal component given by the displayl
box being 0.636. Confirmation that the DF is independent of the input sinusoidal amplitude, g, is

obtained by varying a.

Example 9.4

A position control system with no input is modelled as a second order differential equation and has the

state equations
X, =x, and X, =—4x, —kx, —cx, | x, |

where x, is the position and x, the velocity. The damping term kx, is provided by a velocity feedback
signal so that the value of k can be adjusted by the designer. Assuming the sign of the damping term
kx, is reversed calculate using the DF method the amplitude of the limit cycle in the system at both
position and velocity. The value of ¢ is unknown and therefore the designer decides to do an experiment
to estimate ¢ by taking k = -2 and measuring the amplitude and frequency of the resulting limit cycle in
x, and x,. Calculate what these values are predicted to be by the describing function method if ¢ = 0.5.
Which measurement do you expect to give the best estimate for ¢? Do the simulation and check these

estimates for c.

The easiest way to solve the problem is to recognise that if both the terms in x, are removed from the
second state equation then one has an ideal oscillator of frequency @ = 2rads/s. Replacing the third
term in the second equation by its describing function equivalent with x, having amplitude a, then the
last two terms are zero when — ka —cN(a)a = 0, which gives N (a) = ¢/ k.For the given nonlinearity
N(a)=8a/3r, which gives a =37c/8k . Since the estimated frequency is 2 rads/s the amplitude of
x, will equal 37zc / 16k, half the amplitude of x,.
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For the given values of c and k the two amplitudes are 4.71 and 2.35. Which of the two is most accurately
predicted by the describing function is not easy to ascertain because although the x, limit cycle is more
sinusoidal the describing function analysis is based on assuming x, to be a sinusoid. Also in doing this
procedure in practice one would probably measure the peak to peak amplitude of the signals rather than
perform a Fourier analysis to obtain the fundamental values. A simulation shows both waveforms near
to sinusoids of 2 rads/s with peak amplitudes of 4.71 and 2.42, respectively. Thus for these measurements

the velocity amplitude appears best but whichever is used the error is relatively small.

Example 9.5

Obtain using the describing function method the amplitude and frequency of the limit cycle in the
output C for the system described by the block diagram of Figure 9.7 if G(s) = 1/(s - 2) and the nonlinearity
NLis 0.5x | x].

Figure 9.7 Block diagram for Example 9.5

It can be seen that this is essentially the same system as covered in the previous example, however shown in
this form an alternative approach is suggested of assuming the loop open at NL, denoting the NL input and

e, respectively and finding the ratio of — e, / e,. Doing this gives (4e,/s) —e, = e, / G(s),

SG(s) __ o . The Nyquist plot of this is given by — i

o -2jo+4

output by e

0’

e() —

which is

from which —* = ==
e, s+4G(s) s —-2s+4
seen to have a phase of -180° at 2rads/s and a magnitude of -0.5. The Nyquist plot is shown in Figure 9.8.
The describing function for the nonlinearity N(a)=0.5(8a/3x), thus C(a)=—1/N(a)=-37/4a is
on the negative real axis of the Nyquist plot moving towards the origin as a increases. The solution for

the amplitude is given by (=37 /4a)=—-0.5, that is a = 4.71, as before. The intersection between the

Nyquist plot and C(a)is in the direction required for a stable limit cycle.
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Nyquist Diagram
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Figure 9.8 Nyquist plot for the frequency response in Example 9.5

Example 9.6

A closed loop system with unit negative feedback contains in its forward path an on off relay with dead

zone, switching at =6 and having output levels of 0 and *+ /%, and a plant with transfer function
K 2
G(s) e . Show that the system will be stable if 0 < K < 7{@,0/ h.If K =27iew,5/h

TS+ 285w, + @)
show that the system has a stable limit cycle with amplitude of approximately 3.96 and frequency w, .

The transfer function G(j®) has a phase shift of -180° when the quadratic term has a phase shift of
-90°. Thisis obviously the casewhen @ = @, and the correspondinggainis Kw_ /[w,(2{w’)] = K / 2{w,.
The describing function for a relay with dead zone (see Appendix 3.11 reference 2),

N(a) = 4h(a*> —56*)"*/a’x for a > & and 0for a < & . This is easily shown by differentiation to have
(a)=2h/ 76 .The C(a) =—1/N(a)locus on a Nyquist plot

thus starts at — oo on the negative real axis, increases as a increases up to — 76 / 2/ and then returns

a maximum value when a = \/55 of N

max

to —oo. If the gain K is large enough the Nyquist plot of G(j@)will cut C(a) from below, so that

according to the Loeb intersection criterion the smaller value of a at the intersection point will correspond

to an unstable limit cycle and the larger value of a to a stable one. Thus for stability the maximum gain
is given by (K /2lw,)(2h/ n6) = Kh/ nlw,5 <1, giving 0 < K < nlw,5/ h -

For K =27w,6/ h the gain of G(j®) when its phase is -180° is 775/ / and therefore the amplitude of
alimit cycle solution with frequency @, is given by {4h(a’ —&°)"* /a’ 7} {xS/h} =1.Taking x = 5/ a

then the expression yields the quadratic equation in x* of 16x* - 16x>+ 1=0, which has solutions of
x=sqrt{(2+ NE) )/ 4}, for which the smallest positive value is x = 0.259, yielding a = 3.866.
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Example 9.7

A closed loop system with unit negative feedback contains in its forward path an on off relay with
10(2 - 5)

Q+s5)1+s)

input to the system use the DF method to estimate the amplitude and frequency of the limit cycle at the

hysteresis of + A and output levels of 1, and a plant with transfer function G(s) = I o

input to the relay for values of A equal to 0, 1 and 2, respectively. Compare the results with measured

values from simulations.

For the on off relay with hysteresis the describing function (see Appendix 3.11 reference 2) is given by

N(a)=(4h/a’*m){(a> —=AN)"* = jA} for a>A. Thus the C(a) locus is given b
g y

C(a)= (- /4h){(a> = A*)"* + jA} and it is seen that the imaginary part is independent of a, thus

the C(a) loci are lines parallel to the negative real axis and a distance 7A /4h below for different values

_022J0) g Ref( ey =130 gng
2+ jo) 1+ jo) A+ o)1+ o%)

@roira *° the frequency of the limit cycle2 can be found directly from
100(8 — ) _ 7 as h=1. This can be written A = 40(0(22;_(0 ) 5
(4+o’)1+o’) 4 74+ 0’ )1+ o)
from this equation for the given values of A then the amplitude a of the oscillation at the relay input can

(@ -AN)"?  10(50° -4)
4 (4+0’)(1+ )
in Figure 9.9 computed from the Matlab program

of A. Now the frequency response G(jw)=

Im{G(j))} = 10(w* —8)

= f(w). Once @ is found

be found from . The graph of f (@), where @ is replaced by ,, is shown

% f(x) for example 9.7
x=linspace(1.2,3,50);

f=(40/pi). *x.*(8-x.*x)./((4+x.%x) * (1+x.*x));
plot(x,f)

grid

f(x)

o

-1
1.2 14 1.6 1.8 2 22 24 26 2.8 3
X

Figure 9.9 Graph of f(x) for example 9.6.
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This shows that the solutions for @ are respectively 2.83, 2.41 and 2.13 rads/s , with as expected the
frequency of the limit cycle decreasing as A increases. The equation for the amplitude of the limit cycle
40(4-50")
7(4+ 0’ )(1+0’)

can be written g ={A” +] 1712, which gives the corresponding amplitudes as 4.24,

4.88 and 5.42, respectively.

The actual limit cycles from simulations are shown in Figure 9.10 for A =0and A = 2, which are quite
distorted. For the three values of A the measured amplitudes and frequencies are 5.0 and 2.4 rads/s; 5.9
and 2.1 rads/s; and 6.6 and 1.9 rads/s. As expected (i) due to the appreciable distortion in the limit cycles
which show a ‘peaky effect’ the fundamental amplitude, the DF estimate, is less than the measured
magnitude and (ii) the frequency predicted by the DF method is higher than the actual frequency (From
comparison of Nyquist locus G(jw) and 4; (0, ®) ).

Figure 9.10 Limit cycles for A = 0 (left) and A= 2 (right).

Example 9.8
~(s/2)
Repeat the DF calculations of example 9.7 for the transfer function G(s) = 10 {Note that a first
. . ~(s/2). 2—% (1+5)
order approximation for e is 1.

2+s

Download free eBooks at bookboon.com



Control Engineering Problems with Solutions The Describing Function and Exact Relay Methods

Since e /“"* =cos(w/2)— jsin(w/2)this gives Re{G(jw)}= 10[cos(e /(12) — i))sm(a)/2)] and
+®

—10[@wcos(w/2) +sin(w/2)]. Thus for the limit cycle frequency
1+ o)

Im{G(jw)} =

_ 40[cos(w/2) — wsin(w/2)]

= f(w)> which is again plotted in Figure 9.11 as f(x) against x, from
z(l+ o)

A

which for a given A the frequency @ can be found.

Figure 9.11 Graph showing the relationship between the value of the hysteresis and the limit cycle frequency for example 9.8.
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For A equal to 0, 1, 2 the values of @ are respectively, 3.67, 3.21 and 2.84, and the corresponding
40(—cos(w/2) + wsin(w/ 2))
r(1+o?)
the previous example uses a first order approximation for the time delay there is a reasonable difference

amplitudes from a = {A* +[ °}""? are 3.34, 3.79 and 4.23. Note that although

between the solutions as the Nyquist loci for the two transfer functions differ quite significantly when
the phase lag is near to 180°, as shown in Figure 9.12. The inner frequency plot marked time delay being

the transfer function of this example.

Nyquist Diagram

Imaginary Axis
) o
T
+
1

IS
T
1

Real Axis

Figure 9.12 Nyquist plots of transfer functions in examples 9.7 and 9.8.

Example 9.9

A closed loop system with unit negative feedback contains in its forward path an on off relay with
10

(1+s)*
input, R, to the system is constant. Do calculations using the describing function for the on off ratio at

hysteresis A of 1 and output levels of & of £1, and a plant with transfer function G(s) =

the output of the relay and the frequency of the limit cycle for constant input values of R equal to 0, 2

and 4. Compare the results with those from simulations.

To solve the problem the describing function for an on off relay with hysteresis having a sinusoidal plus
bias input is required. It can be found in Appendix A2 of reference 9.2 but it is calculated here. Taking
the input as ¥ + a sin @, then the output of the nonlinearity will switch to 1 when y +asin g, = Aand
to -1 when y +asin(z +6,) =—A, so that 6, =sin "' {(A—y)/a} and 0, =sin ' {(A+ y)/a}. The

in phase fundamental output is

6 7+0, 2
b =(1/7){[~hsin0d0+ [hsin0d0+ [~ hsin6dO} = (2! x){cos 6, +cos b}
0 6, +0,
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and the quadrature component is

91 7T+€2 27
a, =(1/7z){j—hcos9de+ jhcosedm j—hcosade} =(2h/ 7){sin O, +sin6,} = 4hA/ ar.
0 6 7+6,

The bias output is (1/27)(—h6, +h( + 6, —6)—hi2z —(x+6,)} = (h/ 7)(6, - 6,) = ha |

where @ =0, —6,. Thus the describing function expressions for the fundamental and bias signal are
N, (a,y)=(2h/ar)(cosb, +cosb,)— j(4hA/ax) and N (a,y)=(h/ym)(0, - 6,).

The equations to balance the fundamental and bias around the loop are

N,(a,7)G(jw)=-1and R—10yN (a,7) =y

The first equation yields two equations from the real and imaginary parts, so that there are three equations
to solve for the three unknowns w, a and y for given values of R. The simplest form of the first two
equations is probably obtained by writing N _(a,y)=—1/G(jw)- The three equations with the unity

values for h and A substituted are
30w’ —1=(2/an)(cosb, +cosb,), @ —-3w=-4/a’x and R—(10/7)(0,-0,) =7 .

The equations can be easily solved in Matlab using an algorithm such as fminsearch and the results obtained
are respectively for w, a and y; 1.3258, 2.7804 and 0.0000; 1.3289, 2.7860 and 0.5750; 1.3225, 2.7742 and
1.1133; for R =0, 2 and 4 respectively. The third of the above equations can be written o/ / 7 = (R-y) /10
and therefore the on off ratio, p, givenby p=(r+a)( 7 —a) = (10+ R—y)/(10 — R + y) yields the
corresponding values for p of 1.0000, 1.3323 and 1.8117. It can be seen that the results show a negligible
change in the frequency and fundamental amplitude of the limit cycle. In the simulations the peak

amplitude of the limit cycles was measured and the results are compared with the theory in Table 9.1.

Calculated Calculated Calculated Measured Measured Measured
w a p w Peak amp. P
1.326 2.780 1.000 1.30 2.83 1.00
1.329 2.786 1.332 1.29 2.81 1.33
1.323 2.774 1.812 1.24 2.80 1.83

Table 9.1 Comparison of calculated and simulation results.
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Control Engineering Problems with Solutions The Describing Function and Exact Relay Methods

When R is increased sufficiently the limit cycle disappears and the relay output remains fixed at unity,
the theoretical limit for this value of R from the above expressions is 6.13 whereas in the simulation it
is approximately 9.0. This is, of course, a large difference and is due to the fact that the distortion in the
limit cycle waveform increases significantly, mainly due to second harmonic content, as R increases, and

the accuracy of the DF solution therefore deteriorates.

Example 9.10

A closed loop system with unit negative feedback contains in its forward path a gain compensator, an

on off relay with dead zone, switching at & 1and having output levels of 0 and *+1, and a plant with

1
transfer function G(s) = m . Determine using the describing function method the maximum value
s(l+s
of gain, K, which may be placed in the compensator before the system goes unstable? Check your result
by simulation. Calculate the value of the frequency and amplitude of the limit cycle at the relay input

when the compensator has a gain of 6 and compare with simulation results.

The DF for the relay with dead zone is N(a) = (4h/a’z)(a”> — )" which has a maximum value of
N(a),., =2h/7n6. | G(jw)=-180"when w=1 and the corresponding magnitude is

|G(jw)|,.,= ! l Thus instability will occur with a compensator gain of K when %5 >1,
that is K > 70/ h, giving K > 7w for S =h=1.

o(l+0’) 2 75 2
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The system was simulated in Simulink as shown in Figure 9.13, with no step input. An initial condition
of 4 was placed on the integrator and the gain, K, in the gain block varied. For a gain of 3 the response

persisted for over 200 seconds.

1 1 ]
J —>( >, »{K > oo T s >
Step Relay Gain Transfer Fcn Integrator Scope
= [ ]
Relay1 Scope
I-—> simout
=
To Workspace
Scope2

Figure 9.13 Simulink diagram for Example 9.10

For K = 6 the system is unstable with a limit cycle of frequency 1 rad/s. and amplitude given by

6 4
PR (a* —1)"? =1giving a* —1=a*z’ /144, which has solutions of & =1.04 and 3.68 with the
an

latter being the stable solution. In the simulation the amplitude of the limit cycle was 3.61.

Example 9.11
Discuss the stability of the feedback loop of Figure 9.14 if G,(s) = K /(s +2), G,(s) =1/(s +1) and

NL is an ideal saturation characteristic with unit slope in the linear regime and saturating at inputs of

+1. If K = 8 determine the amplitude and frequency of any possible limit cycle.

C
SR

\ 4

Figure 9.14 Block diagram for Example 9.11
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Here a quick appreciation of the situation can be assessed by considering the bounds of the describing

function for saturation, N(a), in the system characteristic equation which is s(s + 2) (s + 1 N(a)) + K =

s+ {3+ N(a)}s> +2{1+ N(a)}s + K = 0. For stability K <2{3 + N(a)}{1 + N(a)} which equals 6 for

N(a) = 0 and 16 for N(a) = 1. Thus, for K = 8, there is the possibility of a limit cycle for larger values of

a. To calculate its value at the input to the nonlinearity, X, the negative of the transfer function from Y

to X with NL removed (the equivalent open loop transfer function) is required. This is
X sG, s(s+2)

G, (s)= _Y = GG, = 13712518 The Nyquist plot in Matlab shows that this transfer function

has a phase of -180° when @ =1.58and it crosses the negative real axis from positive to negative

imaginary values, which means the limit cycle is unstable, at -4.23. Thus N(a) = 1/4.23 = 0.236. Figure
9.15 shows the DF plot for saturation with & =1 for amplitudes greater than unity from which it can
be seen that the corresponding value of a is around 5.4 (more accurate value is 5.36). In practice with
initial conditions on the output integrator simulations showed that the response went unstable for an
initial condition greater than 4 (note that in terms of the limit cycle this corresponds to an amplitude

of 4w =4%*1.58 = 6.32 at the relay input).

0.9 \
0.8 \
0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 9.15 Describing function for ideal saturation.
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Example 9.12

The block diagram of Figure 9.16 shows a feedback system with two nonlinear elements.

NL: is a saturation characteristic with unit slope and saturation levels and NL: is a cubic. If

1+2s 10 1
, G (s)= , and G,(s)=—, show that the system possesses a limit
140255 OO = 50T 08) (=7 ystem p e

cycle and find its frequency and amplitude at the input to the two nonlinearities.

G.(s)=

R

S0 X e e ING , G | >
\ 4
NL: X

<
<«

Figure 9.16 Block diagram for Example 9.12
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Representing the DFs of the two nonlinearities by N,(a,)and N, (a,) respectively, the forward transfer

(1+2s) 10
s(1+0.255) {s° +2.55 + 1+ 10N, (a,)}

amplitudes N,(@,) =1 and N,(a,) =0, thus the loop will be unstable if G (s)with N,(a,)=0is

. For small

function of the loop is N,(@,)G ,(s) where G, (s) =

unstable with unity negative feedback. The characteristic equation for this situation is

s*4+6.55° +11s” + 845 +40 =0 which has a complex pair of roots with a positive real part and is

thus unstable. As the amplitudes increase N,(a,) will become less than unity as a, becomes greater

than unity and N, (a,) will continue to increase as @, increases. Both these effects will help to ‘stabilise

alimit cycle’ in the feedback loop and the relationship between @, and a, will depend upon the frequency
(1+40°)"”

of the limit cycle according to ¢, = a, 5 — . One way to solve the problem is to select values
ofl + (0 /16))}

for N,(a,), or a,since N,(a,)=3a; /4, then find the values of @ for which G, (jw)will have a

phase shift of -180° and the corresponding magnitudes | G, (j®) |. Values of a, can be calculated from
the above equation for the corresponding values of w, then N, (a,) using the known DF for saturation
and finally the value of N,(@,)| G (j®)|. The solution is then that combination of w, @ and a, for
which N, (a,)|G,(jw)|=1. Table 9.2 shows computed values for this process for values of 10N,(a,)
from 5 to 8. The values for w for -180° of G, and | G, | can be found using the margin function in Matlab.
From the Table it is easily seen that the required solution will exist for a frequency between 3.84 and
3.97 rads/s. Further iteration gives the required solution values as @ = 3.89, a, =133 anda, = 0.920.
The corresponding three values measured from the simulation were, 3.88, 1.32 and 0.937, respectively,
where the last two numbers are peak amplitudes. The simulations show that both waveforms at the

nonlinearity inputs are near sinusoidal, hence the good predictions of the DF method.

10N,(a,) 5.00 6.00 7.00 8.00
a, 0.8165 0.8944 0.9661 1.0328
w for -180° of G, 3.69 3.84 3.97 410

|G,| dB 1.84 1.46 1.10 0.739
|G| 1.236 1.183 1.135 1.089
a 1211 1301 1.382 1453
N,(a,) 0.915 0.871 0.833 0.763
N,(a,) |G, 1.131 1.030 0.945 0.831

Table 9.2 Calculations to iterate to the limit cycle solution for Example 9.12
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The simulink diagram for the simulation is given in figure 9.17

2s+1 > ~ > 10 1 > |:|
0.255+1 [ $2+2.55+1 s
Constant Transfer Fen1| Saturation1 Transfer Fcn Integrator Scope
Fen
= j
Scope1
->|§|
>

Scope2 To Workspace

Sco

»

L

y1

To Workspace1

Figure 9.17 Simulink diagram for Example 9.12

Example 9.13

Here we examine the stability of the feedback loop of Example 8.8, which has a simple backlash

nonlinearity model, using the DF.

The DF for this backlash model is derived in reference 9.2 but will be repeated here as an example of
working out the DEF as it is a special form of multi-valued nonlinearity. The nonlinearity and its in-phase

and quadrature characteristics are shown in Figure 9.18 for an input amplitude a, where a > b/2

Np(X)={n1(x)+n(x)}/2 Slope 1/2
\
Slope 1
[ [
—a-a+b a-b a
h Slope 1/2
Nq(X)={n2(x)-n1(x)}/2|
ﬂz
[ [
-a -atb a-b a

Figure 9.18 Backlash and its in-phase and quadrature nonlinearities

Download free eBooks at bookboon.com



Control Engineering Problems with Solutions The Describing Function and Exact Relay Methods

1 ——

0.8

0.6

Np

0.4

T

0.2

\
0 02 04 06 08 1 1.2 1.4 16 1.8 2

N /

0

0

Ng |-0-1

-0.2

-0.3 R

-0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
r

Figure 9.19 In-phase and quadrature DF components.
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It can be seen that the in-phase nonlinearity is the equivalent of a linear gain of 0.5 and an ideal saturation
characteristic of linear gain 0.5 and saturating ata —b. Then the in-phase component of the DF is
N ,(a)=0.5+0.5N ([a—b]/a), where N is the DF of ideal saturation. The quadrature component
N,(a)is the negative of twice the area under n (x) dividled by az, thus
N, (a)=(-4/an)[(b/2)(a-D) —b*/4]1=b(b-2a)/arx. The DF N(a)=N (a)+ j,N(a). Figure
9.19 shows graphs of N ,and N plotted against » =b/a, for a > 2b , thatis r < 2. For the transfer
function K /s(s+1), Figure 9.20 shows Nyquist plots of the frequency response for K = 2, 4 and 16
together with C(a) = -1/ N(a), from which it can be seen that for the two higher values of Ka limit
cycle is predicted. Additional Nyquist plots predict no limit cycle for K < 3.5. This compares with a

value of around K < 2.3 found from simulation of the system. {Note. This is a limit cycle approximately

equal to the backlash width}.

Nyquist Diagram

Imaginary Axis
o

Real Axis

Figure 9.20 Nyquist plots for different K together with C(a)=-1/N(a)

Example 9.14

Use the Tsypkin method to determine the frequency of the limit cycle in a negative feedback loop
containing an ideal relay and the transfer function G(s) =1/(1+ s)(1+ s7;)(1+ s7,). Obtain the solution
for 7, =2 and T, =4 and compare it with the DF solution.
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Putting the transfer function into partial fractions gives G(s):i+ B, ¢
I+s 1+sT, 1457,

where

1 T’ T}
— , B= 1 and C= 2 @000
(1-T)H(1-T,) (T, -7, -T,) (T, -1, -T)
given by Im 42 (0,0) =0 where for the transfer function 1/(1+sT),

. Now the solution for the limit cycle is

Im 45(0,0) = -AC, (0, ®) = —% tanh %, since S” | (0,w) = 0 and where 4 = @T . The solution for the

limit cycle frequency is thus given by A tanh 2£ + Btanh—"— + C tanh —~

@ 20T, 20T,

= (. The DF solution for

the problem is tan~' @+ tan~' @7, +tan~' T, = 7.

For the parameters given the Tsypkin solution is given by 1 tanh —— — 2 tanh —— + 8 tanh 2 = 0. The
3 2w 4o 3 8w

equation can be easily solved in Matlab using the fminsearch ‘ routine as follows:-
>> f=@(x) ((1/3)*tanh(pi/(2*x(1)))-2*tanh(pi/(2*x(1)*2))+(8/3)*tanh(pi/(2*x(1)*4))) "2

f=

@(x) ((1/3)*tanh(pi/(2*x(1)))-2*tanh(pi/(2*x(1)*2))+(8/3)*tanh(pi/(2*x(1)*4))) 2
>> fminsearch(f,1)
ans =

0.9196

The above equation for the DF solution can be solved in a similar way and gives an angular frequency
of 0.9354.

[Note:- The approximate exact solution for the transfer function G(s) =1( 1+ )’ can be computed in

Matlab by letting 7, =1+ & and 7, =1- ¢, and taking & small.]

Example 9.15

Obtain an expression which will give the solution for the limit cycle frequency in a negative feedback
loop containing a relay with hysteresis and a plant with a time delay using the state space approach,
where the plant is described by (4, B, C,0) and the delay is 6.
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Figure 9.21 Simulation to show sample waveforms.

Figure 9.21 shows typical waveforms for a symmetrical oscillation with the relay switching negative at
time #, and with the delay assumed to occur after the relay. The waveform labelled ‘u’ is a scaled version
of the relay output, the input to the plant is ‘ud’ delayed by 0 from ‘u’ and the input to the relay is labelled

“-y, that is minus the loop output. The relay switching levels in the simulation are +0.25. The input to
the plant is + / for the time period #, < ¢ <t, + 6 and -h for the period t, + & <t <t, + T, where T
is the half period of the limit cycle. A state space description of the plant transfer function is X = 4x + Bu

and y = Cx, where B is a column vector and C a row vector. If the state equation is integrated over a

time 7 from time 0 to 7 when u is constant at +/h one obtains
x(7) = e’ x(0) + je‘”Bhdt =e’ x(t,)+ A7 (e’ = I)Bh=¢e""x(0) + g(t)Bh
0

where g(7)= A" (e’ —1I). Thus for the system over the above two time periods of duration 6 and

T — @ one has
x(t, +0) = eATx(to) + g(@)Bh and

x(ty +T)=e"""?x(t, + 8) — g(T — ) Bh which on substituting for x(¢, + €) in the second equation

gives

x(t, +T)=e" " {e"x(t,) + g(0)Bh} — g(T — ) Bh which becomes

x(t,+T) = eATx(to) + {eA(T’g)g(Q) -g(T-0)}Bh
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Now

T Vg@)—g(T-0)=e "4 (" ~1)—A" (""" —I)=Aa" (" +1-2¢""?) since
e =A4"¢"A4. For an odd symmetrical limit cycle x(¢, +7") = —x(¢,), thus

x(t,) = +e'") A" 2e"? —e™ ~I)Bh.
The half period, T, for the limit cycle can then be found from the condition

y(t,) =Cx(t,)=C +e"") "' A" —e™ —I)Bh=A.

An equation which is easily solved in Matlab for the value of T when given specific plant parameters
(4, B,C,0) and delay 6.
Example 9.16

Use the result obtained in Example 9.15 to check the limit cycle frequency obtained for the parameters

given in Example 9.14.
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For #=A=0 the solution for the limit cycle frequency is given by
Clexp(AT)+ 11" A '[exp(AT)—1]1Bh =0 which can be solved in Matlab after the parameters

(A, B,C)have been entered with the function below for fminsearch

f=@(x) (C*inv(expm(A*x(1))+I)*inv(A)*(expm(A*x(1))-I)*B)A2

or the more general function:-

f=@(x) ((C*inv(expm(A*x(1))+I)*inv(A)*(2*expm(A*(x(1)-z))-expm(A*x(1))-1)*B)-d)"2
where z is the time delay and dis A/ /.

It should be noted that the required function for the matrix exponential in Matlab is expm. The function

exp when used with a matrix takes the exponential of the individual matrix terms. x(1)is the solution

for the half period T and is 3.4162, which corresponds to an angular frequency of 0.9196, as in Example
9.14.

[Note:- The solution involves the inverse of the matrix A, which will not exist when A is singular, for
example when the transfer function has a pole at the origin. A solution, however, can be calculated good

enough for any engineering purposes by replacing s by s + &, and making & small.]

References

9.1 Chung J.K-C. and Atherton D.P, The Determination of Periodic Modes in Relay Systems Using the
State Space Approach. International Journal of Control, Volume 4, pp 105-126, 1966.

9.2 Atherton D.P, Nonlinear Control Engineering: Describing Function Analysis and Design. Van
Nostrand Reinhold, London, 1975.

9.3 Problems
Problem 9.1

Repeat the procedure of example 9.1 if the state equations for the system are
X =X,

. _ 3
X, =—4x, —kx, —cx;

[(4k/3¢)"?, (k/3c)"?, 2.31, 2.16, peak amplitudes in simulation 2.32and 1.25]
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Problem 9.2

Calculate the amplitude and frequency of the output limit cycle, C, for the system represented by the

block diagram of Figure 9.7 if the nonlinearity NL is 2" for the two cases of (a) G(s)= 3.2 and
5+6 § 78
®) G =

[(a) 1.49,1.15 (b)1.11,3.61]

Problem 9.3

Determine using the DF the amplitude and period of the limit cycle in Problem 8.13.
[2.78, 7.11]

Problem 9.4

A block diagram of a Clegg integrator is shown in Figure P9.4. The zero crossing detector (zcd) and
reset gate operate such that one integrator is on when the input X is positive and the other when it is
negative, and the integrator outputs are set to zero when there is no integrator input. Show that its DF

is independent of the input amplitude, has a magnitude of 1.619/ ® and a phase shift of —38.15".

X Y

A

Y

A

zcd Reset gate

Figure P9.4 Block diagram of Clegg Integrator

Problem 9.5

A Simulink diagram of the limited integrator of Somerville and West (see reference 9.2 page 134) is
shown in Figure P9.5, where Gain 1is 1/T. Note that the effect of the dead zone feedback through the
high Gain K is to limit the integrator output to £V, where the dead zone is £V, and it is not the same
as limiting the output of the integrator with a saturation characteristic. {Note:- The limited integrator in

Simulink implements the same function.} Show that its DF N(a) = Np(a) + ij(a) has:-

Np(a):iz(r—u) and Nq(a):—L{2a—sin2a)} for ¥ > u , and
w 27
Np(a) =0 and Np(a) =-lufor r<u,

where u =T ,r=a/Vand cosa =1-Qu/r).
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OS> L |

In1 . Out1
Gain1 Integrator
e /
" U
Gain Dead Zone

Figure P9.5 Simulink diagram of limited integrator

Problem 9.6

The block diagram of a SPAN filter is shown in Figure P9.6. Show that its DE N(a), is

Q2/m)ftan'(1/a)+a/(1+a’)+ ja’ /(1+a’)where o = T .

X Y

abs X
\

y
*—{ 1+sT M relay }—P;A

Figure P9.6 Block diagram of SPAN filter.

Problem 9.7

A driven limiter is described by the equations

n(x,x) = xsgn(x + 7x) for | x|<| x+ Tx |

n(x,x)=x+Tx for | x|> x+Tx|

Show that its DF is 2tan™' (27 /o) + ja tan™ (277 / &) where o = T .

Problem 9.8

A nonlinear feedback loop with unit negative feedback and a zero reference input has an ideal relay,

with output levels of £1, followed by transfer functions G,(s) and G,(s)in the forward path. A

constant disturbance U enters the forward path after G, (s). Find using the DF method the limit cycle

frequency and amplitude at the relay input, and the relay output on off ratio, p, if U = 0, -2 and -4,

respectively, G, (s) = %and G,(s)=
s

s(s+2)
Calculated Calculated Calculated Measured Measured Measured
U w a p w Peak amp. P
0 1.414 2.122 1.00 1.37 2.20 1.00
-2 1.414 2.018 1.50 1.36 2.18 1.50
-4 1.414 1.717 233 1.29 2.10 2.29
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Problem 9.9

Use the DF method to estimate the limit cycle in Example 8.12
[Amplitude for both x and v of 2b/ \/g , period 27 .]

Problem 9.10

Figure P9.10 shows a simple feedback system. If G, is a gain K, G, =1/(1+5)* and NL is an ideal
saturation characteristic with unit slope in the linear regime and saturating at unit input, estimate using
the DF the maximum allowable gain K if the system is to remain stable for initial conditions up to a

magnitude of 3 on the output C. Check the result by simulation.

C
s G

\ 4

Figure P9.10 Block diagram of feedback loop.
[3.44; simulation 2.85]

Problem 9.11

A negative feedback loop contains an ideal relay with output +1and an FOPDT (first order plus dead
time) plant with transfer function Ke * /(1+s). [Note this is the normalised version of the plant
Ke ™" /(1+ sT)]. Determine the limit cycle frequency given by the DF method and also the exact value.
Calculate also the result given for the limit cycle amplitude by the DF method and the exact peak

amplitude.

Using the DF the solution for @ isgivenby 0@, + tan =~ @, = 7 and the amplitude T(l+w ;
[Usingthe DF the solution for @, is givenby 0@, + tan”' dtheamplitudeby 4K / z(1+ )"

the exact solution is @, = 7 /log(2¢” —1)and the peak amplitude is K(1—e™”)]

Problem 9.12

A negative feedback loop contains an ideal relay with output *1and a plant with the transfer function
Ke " /'s. Show that the DF method gives the exact frequency 77 /2 of the limit cycle and that the
amplitude predicted is the fundamental amplitude of the actual limit cycle waveform. What does this
suggest about how better results for estimating the critical gain might be obtained for the plant of Problem

9.11 in the autotuning method.
[Better estimates for K from the relay test can be obtained by estimating the fundamental of the

amplitude - approximately triangular waveform for small rho and square waveform for large rho for the

FOPDT plant - and using this value of amplitude in the DF expression giving K .]
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Problem 9.13

Determine in terms of T the frequency of the limit cycle in a negative feedback loop containing an ideal
relay and a plant with the transfer function G(s) = K /s(1+ s)(1+ sT) using both (a) the DF method
and (b) the exact method of Tsypkin. (Note this is the normalised version of the plant
G(s)=K,/s(1+sT,)(1+ sT,)). Give the values for 7' =2 . Check the Tsypkin solution by using the
state space solution given in Example 9.16 for a state space representation of the transfer function
G(s)=K/(s+ &)1+ s)1+sT) with ¢ small.

[ o= l/ﬁ (b) {(T -7z /2w} + tanh(7 / 2w) — T tanh(z / 20T) (a) 0.7070 (b) 0.6903 |

Problem 9.14

Use the state space method to estimate the limit cycle frequency for a negative feedback loop containing

a relay with hysteresis having // A = 2 and the transfer function G(s) =1/(1+s)".
[0.8251rads/s. using & = 0.01(see Example 9.14)]

Problem 9.15

Use the state space method to determine the half period of the odd symmetrical limit cycle in a negative

feedback system containing a relay with hysteresis, having 4/ A = 2 ,a delay of 0.5 and a transfer function
of G(s)=1/(1+5)1+2s)(1+4s).

[5.2803]

Problem 9.16

Show that in a negative feedback loop with an ideal relay the normalised unstable FOPDT (first order
plus dead time) plant, G(s) = Ke*’ /(s — 1), will only possess a limit cycle for 8 < 0.693.

Problem 9.17

Derive using the state space method the equations which yield the solution for the pulse width 7 and
half period T of the odd symmetrical limit cycle in a negative feedback loop containing a relay with dead

zone and hysteresis and the plant (4, B, C,0).

[x(z,) =+ eAT)_lA_l(eAT — eA(T_’))Bh , x(1,) = eATx(tO) A" (eA’ —1)Bh, Cx(t,)=0+A
and Cx(t,))=0—-A]
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Problem 9.18

Obtain the limit cycle half period and pulse width using the state space method for the case of Problem
9.17if G(s) =24/(1+5)(1+25)(1+45), h=1,6=1 andA =0.5.

[3.8412 and 3.1322 for the stable limit cycle; 10.2498 and 1.2995 for the unstable one.]
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