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Preface to the First
Edition

The purpose of this book is essentially to provide a sound second year
course in Mathematics appropriate to studies leading to B.Sc.
Engineering Degrees and other qualifications of a comparable level.
The emphasis throughout is on techniques and applications,
supported by sufficient formal proofs to warrant the methods being
employed.

The structure of the text and the techniques used follow closely
those of the author's first year book, Engineering Mathematics —
Programmes and Problems, to which this further book is a companion
volume and a continuation of the highly successful learning strategies
devised. As with the previous work, the text is based on a series of self-
instructional programmes arising from extensive research and rigid
evaluation in a variety of relevant courses and, once again, the
individualised nature of the development makes the book eminently
suitable both for general class use and for personal study.

Each of the course programmes guides the student through the
development of a particular topic, with numerous worked examples to
demonstrate the techniques and with increased responsibility passing
to the student as mastery is achieved. Revision exercises are provided
where appropriate and each programme terminates with a Revision
Summary of the main points covered, a Test Exercise based directly on
the work of the programme and a set of Further Problems which
provides opportunity for the additional practice that is essential for
ensured success. The ability to work at one’s own pace throughout is of
utmost importance in maintaining motivation and in achieving
mastery.

In several instances, the topic of a programme is a direct extension
of basic work covered in Engineering Mathematics and where this is so,
the title page of the programme carries a brief reference to the relevant
programme in the first year treatment. This clearly directs the student
to worthwhile revision of the prerequisites assumed in the further
development of the subject matter.

A complete set of Answers to all problems and a detailed Index are
provided at the end of the book.

Grateful acknowledgement is made of the constructive suggestions
and cooperation received from many quarters both in the develop-
ment of the original programmes and in the final preparation of the
text. Recognition must also be made of the many sources from which
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xvi Preface to the First Edition

examples have been gleaned over the years and which contribute in
no small measure to the success of the work.

Finally my sincere appreciation is due to the publishers for their
patience, advice and ready cooperation in the preparation of the text
for publication.

K.A. Stroud




Preface to the Second
Edition

Since the first publication of Further Engineering Mathematics as core
material for a typical second year engineering degree course, requests
have been received from time to time for the inclusion of further
topics to cover the particular requirements of individual syllabuses.

Some limit, inevitably, has to be placed on the physical size of the
text, but it has been possible at least to include a programme on Linear
Optimisation (Linear Programming) which was one of the subjects most
frequently required.

The treatment of the additional material follows the structure of the
rest of the book and the emphasis is largely on the practical use of the
simplex method for the solution of both maximisation and minimisa-
tion problems.

The opportunity has also been taken to amend and clarify a number
of minor points in the existing text and my thanks are due to those
correspondents who have undertaken to write with constructive
comment. Such feedback is always welcome.

K.A.S.



Preface to the Third
Edition

With the new edition of Further Engineering Mathematics, the
opportunity has been taken to incorporate a number of minor
revisions and amendments to the previous text.

The format of the pages has been changed and the publishers have
undertaken the complete resetting of the text to result in a more open
presentation of the material and to facilitate the learning process still
further.

Once again, my sincere thanks are due to all those correspondents
who have kindly written with constructive comment concerning the
book and to the publishers for their continued support, advice and
cooperation throughout the preparation, production and marketing of
the work.

K.AS.



Preface to the Fourth
Edition

It is now nearly 20 years since Advanced Engineering Mathematics (in
earlier editions called Further Engineering Mathematics) by Ken Stroud
was published and from the start it has been one of the most widely
used and successful textbooks for science and engineering students at
this level. I am delighted to have been asked to contribute to a new
edition. As with the fifth edition of Engineering Mathematics 1 have
endeavoured to retain the very essence of the book that has
contributed to so many students’ mathematical abilities over the
years, particularly the time-tested Stroud format with its close
attention to technique development throughout. In my task I have
been greatly assisted by a first-rate team of academics who have
worked alongside me in the development of this edition. To them I
should like to express my sincere gratitude for all the detailed care and
consideration they have given to all my contributions.

Immediately noticeable is the title change from Further Engineering
Mathematics to Advanced Engineering Mathematics which, it is felt, more
clearly describes the contents to a world-wide audience. Because a
substantial amount of material in the first two Programmes of the
earlier editions is no longer taught in the detail given, the first
significant change to the contents has been their consolidation into a
single Programme called Numerical solutions of equations and interpola-
tion. To cater for continual changes in engineering mathematics four
new Programmes have been added: Z transforms, Introduction to the
Fourier transform, Numerical solutions of partial differential equations and
Complex analysis 3, the last dealing with complex integration. The two
original Programmes dealing with the Laplace transform have been
separated into three Programmes with the addition of new material on
harmonic oscillators. Sturm-Liouville systems have been introduced
into the Programme Power series solutions of ordinary differential
equations and predictor—corrector methods have been added to the
Programme Numerical solutions of ordinary differential equations.

To follow the format of the fifth edition of Engineering Mathematics
and to give as much assistance as possible in organising the student’s
study I have introduced specific Learning outcomes at the
beginning and Can You? checklists at the end of each Programme.
In this way the learning experience is made more explicit and the
student is given greater confidence in what has been learnt.

Xix



Preface to the Fourth Edition

It is only in working on this new edition, just as with the earlier
book Engineering Mathematics, that the enormity of Ken Stroud’s
achievement can be really understood. The vast amount of work
involved, the care and attention to detail and above all the complete
understanding of his students and their learning processes are
apparent in every page. It has been both a challenge and an honour
to be able to work on such a book. I should like to thank the Stroud
family again for their support in my work for this new edition. I
should also like to thank my Editor, Helen Bugler, and her erstwhile
assistant, Esther Thackeray, for their continued good humour, care
and professionalism that have been invaluable in the creation of this
new edition.

Huddersfield Dexter J. Booth
February 2003



Hints on using the
Book

This book contains twenty-three Programmes, each of which has been
written in such a way as to make learning more effective and more
interesting. It is almost like having a personal tutor, for you proceed at
your own rate of learning and any difficulties you may have are
cleared before you have the chance to practise incorrect ideas or
techniques.

You will find that each Programme is divided into sections called
frames. When you start a Programme, begin at Frame 1. Read each
frame carefully and carry out any instructions or exercise which you
are asked to do. In almost every frame, you are required to make a
response of some kind, testing your understanding of the information
in the frame, and you can immediately compare your answer with the
correct answer given in the next frame. To obtain the greatest benefit,
you are strongly advised to cover up the following frame, where
necessary, until you have made your response. When a series of dots
occurs, you are expected to supply the missing word, phrase, or
number. At every stage, you will be guided along the right path. There
is no need to hurry: read the frames carefully and follow the directions
exactly. In this way, you must learn.

At the end of each Programme, you will find a Revision summary
and a Can You? checklist that matches the Learning outcomes
given at the beginning of the Programme. Read these carefully to make
sure you have not missed anything. Next you will find a short Test
exercise. This is set directly on what you have learned in the
Programme: the questions are straightforward and contain no tricks.
When you have completed these, return to the Can You? checklist as
a final reminder of the contents of the Programme. To provide you
with the necessary practice, a set of Further problems is also
included. Remember that in mathematics, as in many other situations,
practice makes perfect — or more nearly so.

Even if you feel you have done some of the topics before, work
steadily through each Programme: it will serve as useful revision and
fill in any gaps in your knowledge that you may have.



Useful background
information

1 Algebraic identities
(a+b?=a*+2ab+1* (a+Db)® =a®+3a’b+3ab? +1°
(a-b)?>=a®>-2ab+b* (a-b)®=a®—-3a®b+3ab® - P
(a+Db)* = a* + 4a°b + 6a*V* + 4ab® + b*
(a—b)* = a* — 4a®b + 6a*V* — 4ab® + b*
a> - =(a—-b)a+b)
a® +b® = (a+b)(a®> —ab + P?)
a3 — b = (a—Db)(a® +ab+ P?)
2 Trigonometrical identities
(1) sin?0+cos’6=1; sec’d=1+tan’9;
cosec? =1+ cot? 9
(2) sin(A+B) =sinAcosB+ cosAsinB
sin(A — B) =sin A cos B — cos AsinB
c0s(A + B) = cos AcosB —sinAsinB
cos(A —B) = cosAcosB +sinAsin B

tanA + tanB
tan(A4 +B) = 1 —-tanAtanB
tanA — tanB
tan(4 —B) = 1+tanAtanB
(3) Let A=B=6 .. sin20=2sinfcosd
co0s 20 = cos® g — sin% 0
=1-2sin?0=2cos26-1
2tané
tan20 = ————
an 1 —tan?4
_¢ O S
4) Leté'—2 . sm¢—231nzcosz
2?29
COS ¢ = Ccos 2 sin’ 2
1 _9en2?_ 29
=1-2sin z—2cosz 1



Useful background information

Ztanis

tan¢ = 2¢

1 — tan2
(5) sinC +sinD = ZsmC; cosC;D
sinC—sinD:Zcos-C—l_TDsinC;D
cosC+ cosD = ZCOSC;DCOSC;D
cosD—cosC=251nC;DsmC;D

(6) 2sinA cosB = sin(A + B) + sin(A — B)
2cosAsinB = sin(A + B) —sin(4 — B)
2 cos A cos B = cos(A + B) + cos(A — B)
2sin A sin B = cos(A — B) — cos(A + B)
(7) Negative angles: sin(—6) = —siné
cos(—0) = cos @
tan(—6) = —tané
(8) Angles having the same trigonometrical ratios:
(a) Same sine: 0 and (180° — 6)
(b) Same cosine: ¢ and (360° — 0), i.e. (—6)
(c) Same tangent: 6 and (180° + 6)
(9) asinf+ bcosd = Asin(f + o)
asind — bcosf = Asin(f — )
acosf+ bsinf =Acos(d — o)
acosf —bsinf = Acos(0+ o)

A=+/a?+Dp?

where b
a=tan™! 2 (0° < a < 90°)

3 Standard curves
(a) Straight line

_ Y _r-n
Sl
ope, m dx X2 — X1
Angle between two lines, tanf = M2~
1+mymy

For parallel lines, my = my

For perpendicular lines, mym; = —1



xxiv

Useful background information

Equation of a straight line (slope = m)

(1) Intercept c on real y-axis: y=mx+c¢

(2) Passing through (x1, y1): y —y1 =m(x — x1)
y=y1 _X—x
-y x-x

(3) Joining (x1, y1) and (x2, y2):

(b) Circle
Centre at origin, radius r: x* +y? =12
Centre (h, k), radius r: (x —h)?>+ (y — k)2 =12
General equation: x% + % +2gx +2fy +c=0

with centre (—g, —f): radius = 1/g2+f2 — ¢

Parametric equations: x =rcosé, y =rsiné
(c) Parabola
Vertex at origin, focus (a, 0): y* = 4ax
Parametric equations: x = at?, y = 2at
(d) Ellipse

2 2
Centre at origin, foci (:l:\/ az + b2, 0): Z—z+ % =1

where a = semi-major axis, b = semi-minor axis
Parametric equations: x =acosf, y = bsiné
(e) Hyperbola
Centre at origin, foci (:I: VaZ+ b2, 0): Z—Z— ;”—z =1
Parametric equations: x = asec6, y =btané
Rectangular hyperbola:

a a a®
Centre at origin, vertex + (—, — |: xy === ¢?
& (ﬁ ! \/§> V=3
a .
where ¢ = — ie xy=c2

V2
Parametric equations: x = ct, y =c/t
4 Laws of mathematics
(a) Associative laws — for addition and multiplication
a+(b+c)=(@a+b)+c
a(bc) = (ab)c
(b) Commutative laws — for addition and multiplication
a+b=b+a
ab =ba
(©) Distributive laws - for multiplication and division
a(b+c)=ab+ac

b+c b ¢ .
p —E-I-E(prowdeda;éO)




Frames

Numerical
solutions of
equations and
interpolation

Learning outcomes

When you have completed this Programme you will be able to:
e Appreciate the Fundamental Theorem of Algebra

e Find the two roots of a quadratic equation and recognise that for
polynomial equations with real coefficients complex roots exist in
complex conjugate paits

e Use the relationships between the coefficients and the roots of a
polynomial equation to find the roots of the polynomial

e Transform a cubic equation to its reduced form

e Use Tartaglia’s solution to find the real root of a cubic equation

e Find the solution of the equation f(x) =0 by the method of
bisection

e Solve equations involving a single real variable by iteration and use
a spreadsheet for efficiency

e Solve equations using the Newton-Raphson iterative method

e Use the modified Newton-Raphson method to find the first
approximation when the derivative is small

e Understand the meaning of interpolation and use simple linear and
graphical interpolation

e Use the Gregory-Newton interpolation formula with forward and
backward differences for equally spaced domain points

e Use the Gauss interpolation formulas using central differences for
equally spaced domain points

e Use Lagrange interpolation when the domain points are not
equally spaced



2 Programme 1

introduction

In this Programme we shall be looking at analytic and numerical
methods of solving the general equation in a single variable, f(x) = 0.
In addition, a functional relationship can be exhibited in the form of a
collection of ordered pairs rather than in the form of an algebraic
expression. We shall be looking at interpolation methods of estimat-
ing values of f(x) for intermediate values of x between those listed
among the ordered pairs.

First we shall look at the Fundamental Theorem of Algebra,
which deals with the factorisation of polynomials.

The Fundamental Theorem of
Algebra

The Fundamental Theorem of Algebra can be stated as follows

Every polynomial expression f(x)=a,x" + @ 1x* 1 + ...

+ a1X + ap can be written as a product of n linear factors

in the form

FX) = an(x—r)(x—72)(- - )(x — 7)

As an immediate consequence of this we can see that there are n values
of x that satisfy the polynomial equation f(x) =0, namely x=ry,
X=ry, ..., X =Ty We call these values the roots of the polynomial, but
be aware that they may not all be distinct. Furthermore, the
polynomial coefficients g; and the polynomial roots r; may be real,
imaginary or complex.

For example the quadratic equation

%2 +5x+6 =0 can be written (x+2)(x+3) =0 so it has the two
distinct toots x = —2 and x = -3

%% — 4x + 4 = 0 can be written as (x — 2)(x — 2) = 0 so it has the two
coincident roots x =2 and x = 2

%% +x+1 =0 can be written as (x + a)(x + b) = O so it has the two
roots x=—agand x=—b

To find the numerical values of a and b we need to use the formula for
finding the roots of a general quadratic equation. Can you recall what
it is? If not, then refer to Frame 14 of Programme F.6 in Engineering
Mathematics, Fifth Edition.

The solution to the quadratic equation ax? + bx +c=0is............

The answer is in the next frame
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Y= —b+vb? — 4ac
- 2a

So theroots of xX2+x+1=0are............
Next frame

Because

—b+vb2—4ac -1+vV1-4

da=b=c=1landsox=

2a 2
1,.V3

This quadratic equation has two distinct complex roots. Notice that the
two roots form a complex conjugate pair — each is the complex conjugate
of the other. Whenever a polynomial with real coefficients a;
has a complex root it also has the complex conjugate as
another root.

So given that x = —2 + j/5 is one root of a quadratic equation with
real coefficients then

the other rootis ............

x=-2-j/5

Because

The complex conjugate of x=-2+jV5 is x=-2-jv5 and
complex roots of a polynomial equation with real coefficients
always appear as conjugate pairs.

The quadratic equation with these two rootsis............
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¥ +4x+9=0

Because

If x=a and x = b are the two roots of a quadratic equation then
(x—a)(x—b)=0 gives the quadratic equation. That is
(x—a)(x—b)=x%>—(a+b)x+ab=0.

Here, the two roots are x = —2 +j/5 and x = —2 — j/5 so that
(x— [—2+i\/§])(x— [—Z—i\/g]) =0

That is xz—x[—2+j\/§—2—j\/§] + [—Z-I-i\/g] [—Z—i\/g] =0.

Sox2+4x+9=0.

Notice that the coefficients are ............

Real

Relations between the coefficients and the roots of a
polynomial equation

Let o, B, v be the roots of x3 + px? + gx +r = 0. Then, writing the
expression x3 + px? + gx +r in terms of o, 3, v gives

Bp4ge+r=............

(x—a)x-p(x-7)

Therefore
Bprgu+r=x—-a)(x—p0)(x—")
= (- [a+Ax+af)(x—7)
=x3 - (a+ ﬁ)xZ +afx — %% + (a+ B)yx — ofy
=%~ (a+B+7x* + (af + By +72)x — afy
equating coefficients
@ a+B+y=-cei. ..

@ -p b q (© —r

This, of course, applies to a cubic equation. Let us extend this to a
more general equation.
So on to the next frame
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In general, if a1, a2, a3 ..., are roots of the equation

PoxX™ + p1x" 7t + pox™ 2 4 L+ pp_iX + pn =0 (po#0)
then sum of the roots B
bo
sum of products of the roots, two at a time =%
o
sum of products of the roots, three at a time = —%
0
sum of products of the roots, n at a time = (—1)".?
0

So for the equation 3x* +2x3 + 5x2 + 7x — 4 =0, if o, 3, v, 6 are the
four roots, then

@ a+B8+y+bé=..ccooa.n.

(b) aB+ By +y6+8a+8B+ya=............
©) afy+Py6+~vba+aBb=............
dafyb=.ccccen.....

@ -2 % © -2 @ -3

Now for a problem or two on the same topic.

Example 1

Solve the equation x3 — 8x? + 9x + 18 = 0 given that the sum of two of
the roots is 5.
Using the same approach as before, if o, 3, 7 are the roots, then

@ a+B+y=.ceiiiii...
) af+By+va=..cc.c......
© afy=.ccveno...

@@ 8 ()9 (o -18

Sowe have a+ 3+~v=8 Leta+p8=S5
o854+ y=8 .4=3
Also ofy=-18 af(3) =-18 Soaf=-6
a+pB=5 .. B=5-a .. a5-a)=-6
?-52-6=0 .. (a-6)(a+1)=0 .. a=-1loré6
C.B=6o0r —1

Rootsarex=-1, 3, 6
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Example 2

Solve the equation 2x3 +3x% — 11x — 6 = 0 given that the three roots
form an arithmetic sequence.

Let us represent the roots by (a —k), a, (a +k)

Then the sum of the roots =3a=............

and the product of the roots =a(a—k)(a+k)=............

3a=_3, a(a+k)(a—k)=g=3

2
1 1/1 5\ ... S
a——'i —E(Z—k)—:a . k—ﬂ:z
5 1
1f]<=E a=-3; a—-k=-3; a+k= 2
) 1
Ifk——i a——i, a-k= 2;, a+k=-3

*. required roots are —3, —%, 2

Here is a similar one.

Example 3

Solve the equation x3 + 3x2 — 6x — 8 = 0 given that the three roots are
in geometric sequence.

This time, let the roots be {—, a, ak

a a
Then x=a+ ak=............ and (f) (@(ak)=............

sum of roots = —3; product of roots = 8

It then follows that the roots are ............ ) eeeeeeenaas et

-4, 2, -1

The working rests on the relationships between the roots and the
coefficients, i.e. if a, 8, v are the roots of the cubic equation

ax> +bx> +cx+d=0
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@ -2 o5 © -2

In each of the three examples reconstruct the cubic to confirm that
they are correct.
Now on to the next stage

Cubic equations

The Fundamental Theorem of Algebra tells us that every cubic
expression

f(x)=ax®+bx* +cx+d

can be written as a product of three linear factors
f(x) = alx —r)(x —12)(x —13)

Consequently, every cubic equation
fx)=ax—n)x—r)x—r)=0

has three roots which may be distinct or coincident and which may be
real or complex. However, because complex roots of a polynomial
with real coefficients always appear in cornplex conjugate pairs we can
say that every such cubic equation has

atleastone ............

at least one real root

To find the value of this real root we can employ a formula equivalent
to the formula used to find the two roots of the general quadratic. This
is called Tartaglia’s method but before we can proceed to look at that
we must first consider how to transform the general cubic to its
reduced form.

Next frame

Transforming a cubic to reduced form
In every case, an equation of the form
B+ax® +bx+c=0
can be converted into the reduced form y*+py+q=0 by the
substitution x =y — g.

The example overleaf will demonstrate the method. | 4
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Example 4
Express f(x) = x3 + 6x2 — 4x + 5 = 0 in reduced form.
Substitutex=y—§, ie. x=y—§=y—2. Putx=y—-2.

The equation then becomes
y-2°+6(y-2"-4(y—-2)+5=0
(0 —3y%2+3y4—-8)+ 60 -4y +4)—4(y-2)+5=0
which simplifiesto ............

¥} —16y+29=0

Tartaglia's solution for a real root

In the sixteenth century, Tartaglia discovered that a root of the cubic
equation x3 + ax + b = 0, where a > 0, is given by

O LN I G N 2
- 2 27 ' 4 2 27 " 4

That looks pretty formidable, but it is a good deal easier than it

a3 b2

b b . .
appears. Notice that 3 and 27 + 4 occur twice and it is convenient

to evaluate these first and then substitute the results in the main
expression for x.

Example 5

Find a real root of x3 +2x +5=0.
b

Here,a=2,b=5 .. §=2~5

@ D 8 25

\/2—74'? = -2—7+—4—-— v6-5463 = 2-5586

Then x = (—2-5 + 2-5586)'/3 + (—2:5 — 2:5586)"/3
—0-3884 — 17166 = —1-3282  x=—1-328

Once we have a real root, the equation can be reduced to a quadratic
and the remaining two roots determined. They are x = 0-664 +j1-823
and x =0-664 —j1-823 (see Engineering Mathematics, Fifth Edition,
Programme F.6).

Example 6
Determine a real root of 2x3 + 3x — 4 = 0.
This is first written x3 +1-5x —2=0 .. a=15,b=-2

a3 b2
Now you can evaluate g and % + % and so determine




Numerical solutions of equations and interpolation 9

0-8796

Because

1/3
b a b 1/3_
{_§+ §7+Z} = {2:06066}'/*= 1.2725 and

1/3
b a b _ 1/3_ _q.
{_E ~\35+ Z} = {-0-6066}"°= —0-3929,

therefore x = 1-2725 — 0-3929 = 0-8796

Note: If you wish to find the real root of a cubic using Tartaglia’s
method and a < 0 then just multiply the entire equation by —1.

Next frame

Numerical methods

The methods that we have used so far to solve quadratic equations and
to find the real root of a cubic equation are called analytic methods.
These analytic methods used straightforward algebraic techniques to
develop a formula for the answer. The numerical value of the answer
can then be found by simple substitution of numbers for the variables
in the formula. Unfortunately, general polynomial equations of order
five or higher cannot by solved by analytic methods. Instead, we must
resort to what are termed numerical methods. The simplest method of
finding the solution to the equation f(x) = 0 is the bisection method.

Bisection
The bisection method of finding a solution to the equation f(x) =0
consists of

Finding a value of x, say x = a, such that f(a) < 0
Finding a value of x, say x = b, such that f(b) >0
The solution to the equation f(x) = 0 must then lie between a and b.
Furthermore, it must lie either in the first half of the interval between
a and b or in the second half.
f(x) 1
f(b)>0

f([a + b}/2)

a+b b X

f(a)<0 2 >
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Find the value of f([a + b]/2) - that is halfway between a and b.

If f([a+Db]/2) >0 then the solution lies in the first half and if
f(la+Db]/2) <0 then it lies in the second half. This procedure is
repeated, narrowing down the width of the interval by a half each
time. An example should clarify all this.

Example 7

Find the positive value of x that satisfies the equation x2 —2 = 0.
Firstly we note that if x =1 then x> — 2 <0, and that if x = 2 then
x%2 — 2 > 0, so the solution that we seek must lie between 1 and 2.

We look for the ............

The mid-point between 1 and 2 which is 1-5

Now, when x = 1-5, X2 -2 =0-25>0

so the solution must lie between ............

1and 1-5

The mid-point between 1 and 1-5 is 1-25. When x =125,
x -2=-04375<0

so the solution must lie between ............

1-25 and 1-5

The mid-point between 1-25 and 1-5 is 1-375. We now evaluate x> — 2
at this point and determine in which half interval the solution lies.
This process is repeated and the following table displays the results. In
each block of six numbers the first column lists the end points of the
interval and the mid-point. The second column contains the
respective values f(x) = x> — 2. Construct the table as follows.

(a) For each block of six numbers copy the last number in the first
column into the second place of the first column of the following
block. This represents the centre point of the previous interval.

(b) For each block of six numbers copy the number that represents the
other end point of the new interval from the first column into
the first place of the first column of the following block. Look
at the signs in the second column of the first block to decide which
is the appropriate number.
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a 1-0000_-1:0000 _,1-0000 —1-0000 > 1-5000 0-2500  1-5000 ~0-2500
b 2:0000 2-0000 > 1-5000 —02500 > 1-2500 —0-4375  1-3750 —0-1094
(@+b)/2  1-5000—02500 1-2500=04375 1-3750 —0-1094 14375 0-0664
a 113750 —0-1094 14375 00664 1-4063 —0-0225 1-4219 0-0217
b 144375 00664 14063 —0-0225 1-4219 0-0217 1-4141 —0-0004

(a+b)/2 1-4063 —0:0225 1-4219 0-0217 1-4141 —0-0004 1-4180 0-0106

a 14141 —0-0004 1-4141 —0-0004 1-4141 —0-0004 1-4141 —0-0004

b 14180 00106 1-4160 0-0051 14150 00023 1-4146 0-0010
(a+b)/2 14160 0-0051 14150 00023 1-4146 0-0010 1-4143 0-0003

a 14141 —0-0004 1.4143 0-0003  1-4142 —0-0001

b 1-4143 00003 1-4142 —0-0001 14142 0-0001

(a+b)/2  1-4142 —0-0001 1-4142 0-0001 1-4142 0-0000

The final result to four decimal places is x = 1-4142 which is the
correct answer to that level of accuracy — but it has taken a lot of
activity to produce it. A much faster way of solving this equation is to
use an iteration formula that was first devised by Newton.

Next frame

Numerical solution of equations
by iteration

The process of finding the numerical solution to the equation
fx)=0

by iteration is petformed by first finding an approximate solution and

then using this approximate solution to find a more accurate solution.

This process is repeated until a solution is found to the required level

of accuracy. For example, Newton showed that the square root of a
number a can be found from the iteration equation

1 a .
Xi+1=§(Xi+*)—(“), 120,1,2,...

i
where X, is the approximation that starts the iteration off. So, to find a
succession of approximate values of v/2, each of increasing accuracy,

we proceed as follows. Let xp = 1-5 — found by the first stage of the
bisection method. Then

X1 = l (Xo +£) =0-5(1-5+2/1-5) = 1-4166...
2 X0

This value is then used to find x;.
By rounding x; to 1-4167, the value of x, is found tobe ............
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Xp = 1-4142

Because

2

This has achieved the same level of accuracy as the bisection method
in just two steps.

Xp =1 (x1 +xi) — 0-5(1-4167 + 2/1-4167) = 14142 . ..
1

Using a spreadsheet

This simple iteration procedure is more efficiently performed using a
spreadsheet. If the use of a spreadsheet is a totally new experience for
you then you are referred to Programme 4 of Engineering Mathematics,
Fifth Edition where the spreadsheet is introduced as a tool for
constructing graphs of functions. If you have a limited knowledge
then you will be able to follow the text from here. The spreadsheet we
shall be using here is Microsoft Excel, though all commercial
spreadsheets possess the equivalent functionality.

Open your spreadsheet and in cell Al enter # and press Enter. In
this first column we are going to enter the iteration numbers. In cell
A2 enter the number 0 and press Enter. Place the cell highlight in cell
A2 and highlight the block of cells A2 to A7 by holding down the
mouse button and wiping the highlight down to cell A7. Click the
Edit command on the Command bar and point at Fill from the drop-
down menu. Select Series from the next drop-down menu and accept
the default Step value of 1 by clicking OK in the Series window.

The cells A3 to A7 fill with ............

the numbers 1 to 5

In cell Bl enter the letter x — this column is going to contain the
successive x-values obtained by iteration. In cell B2 enter the value of
Xo, namely 1-5.
In cell B3 enter the formula
= 0-5*(B2+2/B2)
The number that appears in cell B3 is then ............

1-416667

Place the cell highlight in cell B3, click the command Edit on the
Command bar and select Copy from the drop-down menu. You have
now copied the formula in cell B3 onto the Clipboard. Highlight the
cells B4 to B7 and then click the Edit command again but this time
select Paste from the drop-down menu.

The cells B4 to B7 fill with numbers to provide the display
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n X

0 15

1 1-416667
2 1-414216
3 1414214
4 1-414214
5 1-414214

By using the various formatting facilities provided by the spreadsheet
the display can be amended to provide the following

X
1-500000000000000
1-416666666666670
1-414215686274510
1-414213562374690
1-414213562373090
1-414213562373090

The number of decimal places here is 15, which is far greater than is
normally required but it does demonstrate how effective a spreadsheet
can be. In future we shall restrict the displays to 6 decimal places.

Notice that to find a value accurate to a given number of decimal places or
significant figures it is sufficient to repeat the iterations until there is no
change in the result from one iteration to the next.

Save your spreadsheet under some suitable name such as Newton
because you may wish to use it again.

Now we shall look at this spreadsheet a little more closely

Kk WN=ORX

Relative addresses

Place the cell highlight in cell B3 and the formula that it contains is
=0-5*(B2+2/B2). Now place the cell highlight in cell B4 and the
formula there is =0-5*(B3+2/B3). Why the difference?

When you enter the cell address B2 in the formula in B3 the
spreadsheet understands that to mean the contents of the cell
immediately above. It is this meaning that is copied into cell B4 where
the cell immediately above is B3. If you wish to refer to a specific cell in a
formula then you must use an absolute address.

Place the cell highlight in cell C1 and enter the number 2. Now
place the cell highlight in cell B3 and re-enter the formula

= 0-5*(B2+$C$1/B2)

and copy this into cells B4 to B7. The numbers in the second column
have not changed but the formulas have because in cells B3 to B7 the
same reference is made to cell C1. The use of the dollar signs has
indicated an absolute address. So why would we do this?

Change the number in cell C1 to 3 to obtain the display ............
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X
1-500000000000000
1-750000000000000
1-732142857142860
1:732050810014730
1-732050807568880
1-732050807568880

LNk W= OSI

These are the iterated values of v/3 — the square root of the contents of
cell C1. We can now use the same spreadsheet to find the square root
of any positive number.

Newton’s iterative procedure to find the square root of a positive
number is a special case of the Newton-Raphson procedure to find
the solution of the general equation f(x) = 0, and we shall look at this
in the next frame.

Newton-Raphson iterative method

Consider the graph of y = f(x) as y
shown. Then the x-value at the
point A, where the graph crosses
the x-axis, gives a solution of the

equation f(x) = 0. fx)

If P is a point on the curve near
to A, then x = x¢ is an approx-
imate value of the root of
f(x) = 0, the error of the approx-
imation being given by AB. o

Let PQ be the tangent to the curve as P, crossing the x-axis at
Q (x1,0). Then x = x; is a better approximation to the required root.

From the diagram, S—B = [%XZ] i.e. the value of the derivative of y at
P ‘
the point P, x = x,.
PB
" gp=I(0) and PB=f(x)
. PB _ f(x)
S QB= = =h (sa
oo FGoy " )
X1 =Xx9—h R 4] =X0—f(xo)

f'(xo0)
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If we begin, therefore, with an approximate value (xp) of the root, we
can determine a better approximation (x;). Naturally, the process can
be repeated to improve the result still further. Let us see this in
operation.

On to the next frame

Example 1
The equation x> —3x—4 =0 is of the form f(x) = 0 where f(1) <0
and f(3) > 0 so there is a solution to the equation between 1 and 3. We
shall take this to be 2, by bisection. Find a better approximation to
the root.
We have f(x) =x> -3x—-4 .. f/(x) =3x2-3
If the first approximation is xo = 2, then

f(x0) =f(2)=-2 and ['(x0)=f"(2)=9
A better approximation x; is given by

_ f(Xo) —y _X03—3Xo—4
fixo) 0 3x%2-3

x1=2—(—_§9=2-22

L Xo=2; x1 =222

X1 = X0

If we now start from x; we can get a better approximation still by
repeating the process.

o= 31— f(x1) _x13—3x1—4
2= f'(xl)_ ! 3X12—3
Here x; = 2-22 fx)=..cooii. ;o )=t
f(x1) =0281; f'(x1)=11-785
Thenxp=............
Xy = 2-196
Because
0-281
X9 = 2:22 — m = 2196

Using x2 = 2:196 as a starter value, we can continue the process until
successive results agree to the desired degree of accuracy.
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x3 = 2-196
Because
f(x2) = f(2-196) = 0-002026; f'(x2) =f'(2-196) = 11-467
i o flxz2) ) B 0-00203 _ .
. X3 =X i)~ 2-196 1467 = 2-196 (to 4 sig. fig.)

The process is simple but effective and can be repeated again and
again. Each repetition, or iteration, usually gives a result nearer to the
required root x = x4.

In general Xpp 1 =...c.n.....

f(Xn)

e =T )

Tabular display of results

Open your spreadsheet and in cells Al to D1 enter the headings n, x,
f(x) and f'(x)

Fill cells A2 to A6 with the numbers O to 4

In cell B2 enter the value for xo, namely 2

In cell C2 enter the formula for f(x9), namely =B2*3 — 3*B2 - 4 and
copy into cells C3 to C6

In cell D2 enter the formula for f’(xo), namely =3*B2”2 - 3 and copy
into cells D3 to D6

In cell B3 enter the formula for x;, namely =B2 - C2/D2 and copy into
cells B4 to B6.
The final display is ............

n x f(x) ()

0 2 -2 9

1 2222222 0-30727 11-81481
2 2-196215 0-004492 11-47008
3 2195823 1-01E-06 11-46492
4  2-195823 S5-15E-14 11-46492

As soon as the number in the second column is repeated then we
know that we have arrived at that particular level of accuracy. The
required root is therefore x = 2-195823 to 6 dp. Save the spreadsheet so
that it can be used as a template for other such problems.
Now let us have another example.
Next frame
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Example 2

The equation x3+2x2—-5x—1=0 is of the form f(x) =0 where
f(1) < 0 and f(2) > 0 so there is a solution to the equation between 1
and 2. We shall take this to be x =1-5. Use the Newton-Raphson
method to find the root to six decimal places.

Use the previous spreadsheet as a template and make the following
amendments

In cell B2 enter the number ............

1-5

Because
That is the value of x that is used to start the iteration

In cell C2 enter the formula ............

=B2"3 + 2*B272 - 5*B2 -1

Because

That is the value of f(x) = xo3 + 2x¢% — 5xp — 1. Copy the contents
of cell C2 into cells C3 to CS5.

In cell D2 enter the formula ............

=3*B2"2 + 4*B2 -5

Because

That is the value of f/(xo) = 3x0> + 4xo — 5. Copy the contents of
cell D2 into cells D3 to D5.

In cell B2 the formula remains the same as ............

=B2 - C2/D2

The final display is then ............
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x ) F(x)
1-5 —-0-625 775
1-580645 0-042798 8-817898
1-575792 0-000159 8:752524
1-575773 2-21E-09 8-75228

wN= O

We cannot be sure that the value 1-575773 is accurate to the sixth
decimal place so we must extend the table.

Highlight cells AS to D5, click Edit on the Command bar and select
Copy from the drop-down menu.

Place the cell highlight in cell A6, click Edit and then Paste.
The seventh row of the spreadsheet then fills to produce the display

X f(x) ()
1-5 —0-625 775
1-580645 0-042798 8-817898
1-:575792 0-000159 8:752524
1-575773 2-21E09 8-75228
1-875773 —8-9E-16 8-75228

W= O3

And the repetition of the x-value ensures that the solution
x = 1-575773 is indeed accurate to 6 dp.
Now do one completely on your own.
Next frame

Example 3

The equation 2x3 — 7x2 — x 4+ 12 = 0 has a root near to x = 1-5. Use the
Newton-Raphson method to find the root to six decimal places.
The spreadsheet solution produces ............

x =1-686141 to 6 dp

Because

Fill cells A2 to A6 with the numbers 0 to 4

In cell B2 enter the value for x;, namely 1-5

In cell C2 enter the formula for f(x¢), namely =2*B2*3 — 7*B2~2 - B2
+ 12 and copy into cells C3 to C6

In cell D2 enter the formula for f’(xp), namely =6*B2”2 — 14*B2 ~ 1
and copy into cells D3 to D6

In cell B3 enter the formula for x;, namely =B2 - C2/D2 and copy into

cells B4 to Bé6.
The final display is ............
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n x ) F(x)

0 1-5 15 -85

1 1:676471 0-:073275 —7-60727
2 1-686103 0-000286 —7-54778
3 1-686141 4-46E-09 —7-54755
4 1:686141 0 —7-54755

As soon as the number in the second column is repeated then we
know that we have arrived at that particular level of accuracy. The
required root is therefore x = 1-686141 to 6 dp.

First approximations

The whole process hinges on knowing a ‘starter’ value as first
approximation. If we are not given a hint, this information can be
found by either

(a) applying the remainder theorem if the function is a polynomial
(b) drawing a sketch graph of the function.

Example 4

Find the real root of the equation x3 4+ 5x> — 3x — 4 = 0 correct to six
significant figures.

Application of the remainder theorem

involves substituting x =0, x = +1, x = +2, y

etc. until two adjacent values give a change -—13

in sign.

f(x)=x>+5x2—-3x—4

fO)=-4 f(1)=-1 f(-1)=3
The sign changes from f(0) to f(—1). There
is thus a root between x = 0 and x = —1.

Therefore choose x=—-0-5 as the first
approximation and then proceed as before. -4

Complete the table and obtain the root
X =it

x=—-0-675527

The final spreadsheet display is

n x f(x) ')

0 -0-5 ~1-375 ~7:25

1 —0-689655 0-11907 ~8:469679
2 ~0-675597 0-000582 ~8:386675
3 ~0-675527 1-43E-08 ~8:386262
4 ~0-675527 0 ~8-386262
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Example 5

Solve the equation e*+x—2=0 giving the root to 6 significant
figures.

It is sometimes more convenient to obtain a first approximation to
the required root from a sketch graph of the function, or by some
other graphical means.

In this case, the equation can be rewritten as e* =2 —x and we
therefore sketch graphsof y=¢*and y =2 —x.

X 0-2 0-4 0-6 0-8 1
e 1.22 1-49 1-82 2-23 2:72
2—x 1-8 1-6 1-4 1-2 1
y
3

0

It can be seen that the two curves cross over between x = 0-4 and
x = 0-6.
Approximate root x = 0-4

fxy=e+x-2 ff(x)y=€e+1
X=...ciiiiin.
Finish it off
x = 0-442854
The final spreadsheet display is
n X F(%) f/(x)
0 0-4 —0-10818 2-491825
1 0-443412 0-001426 2-558014
2 0-442854 2-42E-07 2-557146
3 0-442854 7-11E-15 2-557146

Note: There are times when the normal application of the Newton-
Raphson method fails to converge to the required root. This is
particularly so when f”(xo) is very small, so before we leave this section
let us consider this difficulty.
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Modified Newton-Raphson method

If the slope of the curve at x = xp is small, the value of the second
approximation x = x; may be further from the exact root at A than the
first approximation.

) |

_—

X / Xo X

If x = xp is an approximate solution of f(x) =0 and x = xo — h is the
exact solution then f(xo — h) = 0. By Taylor’s series

hZ
F(xo = H) = F(x0) = hf'(x0) + 5" (%0) = ... =0
(a) If we assume that & is small enough to neglect terms of the order h?
and higher then this equation can be written as
f(xo — h) = f(x0) — hf'(x0), that is f(xo) — hf'(x0) =~ O and so
1 Fx0) f(x0)
f'(x0) f*(xo)
to the solution of f(x) = 0.

giving x; = xp —

as a better approximation

This is, of course, the relationship we have been using and which
may fail when f’(x) is small.

Notice: h is positive unless the sign of f(x) is the opposite of the
sign of f’(xo).
(b) If we consider the first three terms then
2
f(xo — h) = f(x0) — hf"(x0) +%f”(xo) ~ 0, that is

2f (x0) — 2hf" (x0) + H*f"(x0) = O
Since f"(xp) is small we shall assume that we can neglect it so

—2f(x0)
h=+
1" (x0)
That is h= _f?’z(cx{))) unless the signs of f(xo) and f'(xo) are
0
different when it is h = — f%"(c)(;‘;)' We use this result only when
f'(x0) is found to be very small. Having found x; from xo we then
revert to the normal relationship x,.1 = x, — 7’:'(();(0)) for subsequent
0

iterations.
Note this
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Example 6

The equation x> — 1-3x2 4+ 0-4x — 0-03 = 0 is known to have a root near
x = 0-7. Determine the root to 6 significant figures.

We start off in the usual way.
f(x) =x3 —1-3x* + 0-4x — 0-03
fl(x) =3x%2—2:6x+04

and complete the first line of the normal table.

[ (%n)
n Xn f (xn) f'(xn) h= f’(x:) Xny1 =Xn—h
0 |07
Complete just the first line of values.
We have
f(xn)
n | x, f(*n) ' (xn) h= 7 (x';) Xps1 =Xn—h
0 |07 | —0-044 0-05 —0-88 1-58

We notice at once that

(a) The value of x; is well away from the approximate value (0-7) of
the root.

(b) The value of f’(xo) is small, i.e. 0-05.

To obtain x; we therefore make a fresh start, using the modified
relationship x; =............

f(x) =x3-13x2+04x— 003 = [(x— 1-3)x + 0-4]x — 0-03
F(X) =3x% — 2:6x +0-4 = (3x—2:6)x+04
'(x) =6x—26

n x| fa) | oo h:‘/;fgr(‘%» ¥ =xth

0 |07 —-0-044

Complete the line
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n | foe) | e | he T x ek

0 |07 | —0-044 1-6 0-2345 0-9345

Note that in the expression x; = xo &+ h, we chose the positive sign
since at xg = 0-7, f(xo) is negative and the slope f’(xo) is positive.

07 /(1 X
|
~0-044 —

Having established that x; = 0-9345, we now revert to the usual

f(%n)

el =X T )

therefore and obtain the required root.

for the rest of the calculation. Complete the table

The final spreadsheet display is

n x f(x) ) (%)
0 07 —0-044 0-05 16
1 0934521 0-024625 0-590233

2 0-892801 0-002544 0-469997

3 0887387 4-02E-05 0-45516

4 0887298 1-06E-08 0-454919

5 0887298 9-16E-16 0-454919

Therefore to six decimal places the required root is x = 0-887298.
Note that we only used the modified method to find x;. After that
the normal relationship is used.

And now ...

To date our task has been to find a value of x that satisfies an explicit
equation f(x) = 0. This is quite general because any equation in x can
be written in this form. For example, the equation

sinx =x — e3*

can always be written as

sinx—x+e* =0
and then approached by one of the methods that we have discussed
so far.

What we want to do now is to work the other way — given a value of
x, to find the corresponding value of f(x). If f(x) is given explicitly
then this is no problem, it is just a matter of substituting the value of x
in the formula and working it out. However, many times a function
exists but it is not given explicitly, as in the case of a set of readings
compiled as a result of an experiment or practical test. We shall
consider this problem in the following frames.

Next frame
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Interpolation

When a function is defined by a well-understood expression such as
fx)=4x> —3x2 +7
or
f(x) = 5sin(exp[x])
the values of the dependent variable f(x) corresponding to given
values of the independent variable x can be found by direct
substitution. Sometimes, however, a function is not defined in this
way but by a collection of ordered pairs of numbers.

Example 1

A function can be defined by the following set of data:

% (%) Intermediate values, for example, x = 2-5, can be
1 4 estimated by a process called interpolation.

2 14

3 40 The value of f(2-5) will clearly lie between 14 and
4 88 40, the function values for x =2 and x = 3.

5 164

6 274

Purely as an estimate, f(2-5)=...... e
What do you suggest?

27

1 Linear interpolation

If you gave the result as 27, you no doubt agreed that x =25 is
midway between x = 2 and x = 3, and that therefore f(2-5) would be
midway between 14 and 40, i.e. 27. This is the simplest form of
interpolation, but there is no evidence that there is a linear relation-
ship between x and f(x), and the result is therefore suspect.

Of course, we could have estimated the function value at x = 2-5 by
other means, such as
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by drawing the graph of f(x) against x

2 Graphical interpolation

We could, indeed, plot the graph of f(x) against x and, from it,
estimate the value of f(x) at x = 2-5.

y
100
fix)
¥ g0l This method is also
60 approximate and time
consuming.
40
f(2-5) =~ 26
20
1 | ! | 1 |
] 1 2 3 4 x

In what follows we shall look at interpolation using finite differences,
which work well and quickly when the values of x are equally spaced.
When the values of x are not equally spaced we need to resort to the
more involved algebraic method called Lagrangian interpolation (which
could also be used for equally spaced points).

Next frame
3 Gregory-Newton interpolation formula using forward finite
differences

x | f)
: : We assume that xg, xq, ... are
Xo f (x0) distinct, equally spaced apart,
x1 | fx) | Afo=f(x1)—f(x) andxp<x;<...

For each pair of consecutive function values, f(xo) and f(x1), in the
table, the forward difference Afy is calculated by subtracting f(xo) from
f(x1). This difference is written in a third column of the table, midway
between the lines carrying f(xo) and f(x1).

x fx) Af
1 4 10
2 14
26 Complete the table for the data given
3 40 in Frame 59 which then becomes
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x ) Af
1 4 10
2 14 ”
3 40 .8
4 88 e
5164 o
6 274

We now form a fourth column, the forward differences of the values of
Af, denoted by A?f, and again written midway between the lines of
Af. These are the second forward differences of f(x).

So the table then becomes ............

X f®  AF &F

1 4 10

2 14 5 16

3 40 o 2

4 88 e 28

s o164 34 |
6 274

A further column can now be added in like manner, giving the third
differences, denoted by A3f, so that we then have ............

x @ A &F oF
1 4 10

2 14, 16

3 40 . 2

4+ 88 28

s 164 o 34

6 274

Notice that the table has now been completed, for the third
differences are constant and all subsequent differences would be zero.

Now we shall see how to use the table. So move on
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To find f(2-5)
X f(x) Af a’f Af
1 4
10
X0 —~ 2 14 16
h Xp |- == == — 26 6
X1 — 3 40 T-~_1l_ 22
48 -~-_]_ 6
4 88 28 Tm—a ]
76 6
5 164 34
110
6 274

We have to find f(2-5). Therefore denote x = 2 as x

x=3asx;
Let h = the constant range between successive values of x,
ie. h=x1 —xp

}x =25asx

% ;xo , 0<p<1
2:5-20
— =
All we now use from the table is the set of values underlined by the
broken line drawn diagonally from f(xo).

So we have

Express (xp — Xo) as a fraction of h, i.e. p =

Therefore, in the case above, h =1 and p = 0-5.

p=05 fo=14 Af =26 Ay=22 Afo=6

Now we are ready to deal with the Gregory~Newton forward difference
interpolation formula

R T e v

This is sometimes written in operator form

,;,:{1+pA+p(Pz_! 1)A2+p(P_13)!(P_2)A3+...}]%

Nfo+...

which you no doubt recognise as the binomial expansion of
fo=Q0+AY xfo
Substituting the values in the above example gives

F25)=fp=ieeeeernn
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24-625

Because

B 0-5(—0-5)
fr=14+05(26) +— —

=14+13-275+0-375
=27-375 - 275 = 24-625

0-5(—0-5)(—1-5)

(22) + 1x2x3 6)

Comparing the results of the three methods we have discussed
(a) Linear interpolation f(2-5) =27

(b) Graphical interpolation f(2-5) = 26

(c) Gregory-Newton formula f(2-5) = 24-625 — the true value

Example 2
x £(%) It is required to determine the value of f(x) at
2 14 X = 5:5.
4 88 In this case
6 274 X0 = ceeiiiiiiinn X1 =i,
8 620 h =............ pP=eiiii..
10 1174
=4 x1=6, h=2; p=075
Because

h=x1-x=6—-4=2
15

_Xp—Xx0 S5S5—-4 A
=" =g = =07

First compile the table of forward differences ............

x| AF | N | A
2 14
74
Xo — 4 88 112
186 48
Xy — 6 274 160
346 48
8 620 208
554
10 1174

The Gregory-Newton forward difference interpolation formula is
fr=Q0+AY xfo

i.e. fo= i,
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2!
—ﬁH—PAfo+p(P )Azf +P————(P_l3)‘(p_2)A3ﬁ)+...

f,,:{1+pA+P(P_1)A2+p(P_13)!(P_2)A3+...}f0

So, substituting the relevant values from the table, gives

F35) =fr=ernernnn
214-4
Because
X f(x) Af i A%f
2 14
74
X0 —» 4 88 112
Xp ———>f———— —mo - 186 48
X1 —> 6 274 ~L _160
346 1 48
8 620 2087~~~ _
554
10 1174
f(55) = f, = 88 + 0-75(186) + %)2;2—52(160)
0-75(—0-25)(—1-25)
1x2x3 (48)
=88 +139-5 — 15 + 1-875 = 214375

. f(5-5) = 214-4

Finally, one more.

Example 3

Determine the value of f(—1) from the set of function values.

x -4 | -2 0 2 4 6 8
fx) | 541 | 55 1 ~53 | -155 | 31 | 1225

Complete the working and then check with the next frame.
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f(-1)=10

Here is the working; method as before.

X f(x) Af A Af A%
—4 541
—486
Xo — -2 55 432
Xp S G | _—54 —432
x— | 0 1 [~-<<L_ o 384
—54 [~~~_| -48
2 -53 —48 ~~-.] 384
~102 336 [~~-_|
4 —-155 288 384
186 720
6 31 1008
1194
8 1225
Xo=-2; x1=0; sz—l' h=2; p=1
~1p-2

Lo - 1)(P 2)(P 3)
1x2x3x4 A4ﬁ)

=55+= ( 54) +% A 2)(O)Jr%l(j;( 2)( —48)

AEDEDE z)(384

1x2x3x4
=55-27+0-3-15=10
L fr=f-1)=10

This table of data does have its restrictions. For example, if we had
wanted to find f(2-5) from the table we would have run out of data
because there is no A*f entry available. In such a case we can resort to
a zig-zag path through the table using central differences.

Next frame
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Central differences

The central difference operator § is defined by its action on the
expression f(x) as

6F(x) = F(x +h/2) — F(x— h/2)
and using this operator the interpolated value of f(x) near to the given
value of fp is defined by the Gauss forward formula as

P 1) g, IR0

fo = fo+Pfosy +
1 -Dp-2
NUARY IR P
or by the Gauss backward formula as

NIRRT AR VIR P
There are no tabulated values at the half-interval values xo + #/2 and
Xo — /2 and so these are taken to be the differences evaluated at mid-
interval as given in the forward difference table. This means that the
tables for the Gregory—Newton forward differences and the central
differences are identical (apart, that is, from the column headings); the
method of tracing through the table, however, is different. For
example, to find f(2-5) for the example given in Frame 59

x fx) ) Ffx) Ef®
4

10
2 14 16
3 40 22

48 6
4 88 28

76 6
5 164 34

110
6 274

Here xo =2, fo =14, oy, =26, &fo = 16, &f, =6, 8*f =0 and
p=05.Thus
f =14+ 0526+ $DE06, OICONELI)

=14+13-2-0-375 = 24-625

which agrees with the value found using the Gregory—Newton forward
difference formula.
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Try one for yourself. The given tabulated values are

x f o Ff Ofk)
0o -5

3
1 -2 6

- 9\\\‘ ‘///12

2 7'\27/18\

Using the Gauss forward

12 difference formula, the
3 34 30
57 interpolated value of
4 91 fe2y=.....o......
Next frame
10-576
Because

. -1 -Dp+1
Using f, = fo + péfo.y +li(£-2—!——)6% +I—’(£%—)63fm_% +... and
following the solid line through the table where

X0=2, fo=7 &fy=27, &fo=18, &fy=12andp=02,

(02)(-08) . (02)(-08)(12) ,
2 6

then f, = 7 + (0-2)27 +
=7+54-144-0-384

=10-576
Using the Gauss backward difference formula (following the broken
line)
+1 -Dp+1
fo =fo+p8foy +P——-———(p2! ) &fo L=+l 3)!([’ )63f0_% +...

where here 6f,_; = 9 and 8°f,_; = 12 and so

(02)(12) o (09(12)(-08)
2

fr=7+(02)9+ =

=7+18+216 - 0-384 = 10-576

as found with the Gauss forward difference formula.
Next frame
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Gregory-Newton backward
differences

We have seen that the Gregory—-Newton forward difference procedure
loses terms if the interpolation is for points sufficiently forward in the
table. We have also seen how this difficulty can be avoided by using
central differences. However, even with central differences we can run
out of data before completing a full traverse of the table. In such a
situation we resort to the Gregory—Newton backward difference
formula

fp=fo+pAf_1+p(p+1)A2f +P——("+13)!("+2)A3f_3+...

As an example, consider the table of Frame 74.

x f(x) Af A%f A3f
1 4

10
2 14 16

26 6
3 40 22

48 6
4 88 28 _--

76 __--" 6
5 164 _--" 34

--—7110

6 274

Using this table we can calculate f(5-5) by tracing back through the
table (see broken line) as

pif 5+ @IEIES)

(0:5)(1-5)28  (0-5)(1:5)(2:5)6
2 T 6

(0-5)(1-5)
2

f(5-5) =fo+ (0-5)Af1 + A3f 3

=164+ (0-5)76 +

=214-375
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In each of the examples that we have looked at so far the tabular
display of differences eventually results in a column of zeros and this
determines the number of terms in an interpolation calculation. The
zeros have arisen because all the examples have been derived from
polynomials. The following example deals with a tabular display of
differences which does not result in a column of zeros. In this case the
number of terms used in the interpolation calculation determines
confidence in the accuracy of the result.

Example

Use the Gregory-Newton forward difference method to find £(0-15) to
4 decimal places from the following finite difference table

x f(x) Af Azf A3f
0 | 0-000000
0-099833
01 | 0-099833 —0-000998
S J_ 0-098836 ~0-000988
02 | 0198669 | ~~~~-__| -0-001985
0-096851 | T~~~__ | —0-000968
03 | 0-295520 —0002953 | T~~~ __
0-093898 —0-000938
0-4 | 0-389418 —0-003891
0-090007
05 | 0479426

Here x9 = 0-1, x; = 0-2, x, = 0-15 and therefore p = 0-5, and

fo =fo+PpAfo +p__(p2—! 1) A%fy L2 -Dp=2) 13)!([’ ~2) A3y + ...

1

=0-099833 + % (0-098836) + (§> (— %) (—0-001985)/2

+ (%) (_%) (_ %) (~0-000969)/6 + ..

= 0-099833 + 0-049418 + 0-000248 — 0-000061 + . ..
=0-1494 to 4 dp
As you can see, the calculation can continue indefinitely and

termination is dictated by the number of decimal places required in
the final answer.
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Lagrange interpolation

If the straight line p(x) = ap + aix passes through the two points
(%0, f(x0)) and (x1, f(x1)), where ag and a; are constants, then the
equation for this line can also be written as

P =2—
For example, the straight line p(x) = 3 + 2x passes through the two

points (1, 5) and (2, 7). Substituting the values for the variables in the
above equation demonstrates this alternative form for the equation

x—2 x—1
PA)=7—55+5—77=10-5x+7x~7 =3+2x

So, given the two data points from Frame 59, (2, 14) and (3, 40), using
linear interpolation

f(23)=p25)=............
27
Because
PO) = 3 (0) 3= ()
Xo
_X— 3 X — 2
=5 314 40 26x — 38
and so

f(2:5) ~ p(x) = 26(2-5) — 38 = 27

The principle of Lagrange interpolation is that a function f(x) whose
values are given at a collection of points is assumed to be
approximately represented by a polynomial p(x) that passes through
each and every point. The polynomial is called the interpolation
polynomial and it is of degree one less than the number of points
given. For two data points the interpolating polynomial is taken to be
a linear polynomial, as you have just seen in the last example. For
three data points the interpolating polynomial is taken to be a
quadratic, for four data points the interpolation polynomial is taken to
be a cubic, and so on.
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In the same manner as before it can be shown that the quadratic
(%) = ao + a1x + axx*

that passes through the three points (xo, f(xo0)), (*1, f(x1)) and
(%2, f(x2)) can be written as

p(x) = ((x —X1)(X — X2)

Flo) + ((" “X)X =) gy

X0 — X1) (X0 — X2) X1 — Xo)(X1 — X2)

+ (x—xo)(x—xl) f(Xz)

(x2 — x0)(x2 —x1)

So let’s try one. Given the collection of values

x f(x)
1-5 0405
21 0742
3 1-099
by Lagrangian interpolation, f(1-8) ~............ to 2 decimal places
0-58
Because
(x —x1)(x — x2) (x —x0)(x — x2)
= X
p(X) (XO —Xl)(Xo _xz) f(xo) + (Xl — xO)(Xl _XZ) f( 1)
(X —x0)(x — x1)
(2 —x0)(xz —x1) %)
. (x=-21yx-3) x-1-5x-3) .
T (1-5-21)(1-5-3) 0-405 + (2-1-1-5)(2.1-3) 0742
(x=1-5)(x-21)
G-153 21 *
_(¥*-51x+63) (x> —4:5x 4+ 45)
=09 0-405 + —-———(_0. 59) 0-742
2 _ 3. .
(x 316.;5+ 3-15) 1099
= —0-11x? 4+ 0-958x — 0-784
So that

f(1-8) =~ p(1-8) = 0-58 to 2 decimal places.

By carefully considering the interpolating polynomials for two and
three data points you should be able to see a pattern. Write down what
you think the interpolating polynomial should be for four data points:
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(x —x1)(x — x2)(x — x3) (x — x0)(x — x2)(x — x3)
pR) = (%0 — X11)(xo - xzz)(xo —2;3) f(xo) + (21— Xoo)(xl — X2) (%1 — x3) fon)

(x = x0)(x — x1)(x — X3) (x — X0)(x — x1)(x — x2) F(xs)

(x2 — Xx0)(x2 — x1)(x2 — X3) X3 — %0)(x3 — X1)(X3 —x2)|

f(Xz) + (

Use this interpolating polynomial for the data points

x  f®
1 0-368
1-2 0-301
1-3 0-273
1-5 0-223

To 2 decimal places, f(1'4)~............

0-25

Because p(x)
o (x=x1)(x—x2)(x—x3) (x—x0)(x—x2)(x —x3)
~ (x0—x1)(x0—X2)(Xo—X3) flxo) + (%1 —X0)(x1—X2) (%1 — X3) Flx)
(x—X0)(X—x1)(x—x3) (x—X0)(x—x1)(X —X3)
(X2 —X0) (X2 — X1) (X2 — X3) flxa)+ (X3 —x0) (X3 —X1) (X3 — X2) fls)
_ (x=12)(x=1-3)(x—15) 0368 + x—1)(x—1-3)(x—1-5) 0301

= 1-12)1-13)1-15) (12-1)(12-13)(12-15)
" (1-?—_1;2;)-(3_ -11235)((1_31 = 1-5) 0273+ (1-553‘__1%’-‘5_—135)(‘1_-; 5 i-3) 0223
o 37&2-_:)(‘)16‘:);)‘ —18) 573 ¥ =35¢ s 196 0.223

= —0167x3 + 0-767x*> — 1-415x + 1-183

So that
f(1-4) = p(1-4) = 0-25 to 2 decimal places
The general Lagrange interpolation polynomial for n+ 1 data points at
Xo, X1,--., Xn 1S
_ (= x)(x = x2)(-- ) (x — Xn)
PO = G20 2 Ito - 2a) )
(= X0)(x = X2)(- - -)(X — Xn)
G =20 — ) ()0t — %) OV
g = x0) = X)) (X — Xn)
(o= 20) (ot = 20)C ) Gt = 00) ! )
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This now completes the work of this Programme. What follows is a
Revision summary and a Can You? checklist. Read the summary
carefully and respond to the questions in the checklist. When you feel
sure that you are happy with the content of this Programme, try the
Test exercise. Take your time, there is no need to hurry. Finally, a
collection of Further problems provides valuable additional practice.

% Revision summary 1

1 The Fundamental Theorem of Algebra can be stated as follows:
Every polynomial expression f(x) = dpX" + dp_1 X" +---+a1x +ap
can be written as a product of n linear factors in the form

f() = an(x —r)(x =12)(- - )(x = 1)

2 Relations between the coefficients and the roots of a polynomial equation
Whenever a polynomial with real coefficients a; has a complex root
it also has the complex conjugate as another root.

If o, B, v, ... are the roots of the equation
PoxX" +p1X"H +pox" 2 b 4 PuaX +pu=0
then, provided pp # 0
j 4!

sum of roots = —*=
Po

sum of the product of the roots, taken two at a time =%
0

p3
Po
nPn

po’

sum of the product of the roots, taken three at a time = —

sum of the product of the roots, taken n at a time = (-1)

3 Cubic equations
Every cubic equation with real coefficients has at least one real
root that can be found by Tartaglia’s solution. The real root of
¥+ax+b=0,a>0is

Yo b a3+b2 1/3+ b [a® b2 13
“\ 2tVz7t 7 AR

Reduced form

Every cubic equation of the form x3+ax?+bx+c¢=0 can

be written in reduced form y®+py+q=0 by using the
a

transformation x =y — 3

4 Numerical methods
Bisection
The bisection method of finding a solution to the equation
f(x) = O consists of
Finding a value of x such that f(x) <0, say x =«
Finding a value of x such that f(x) > 0, say x = b.

The solution to the equation f(x) = 0 must then lie between a and
b. Furthermore, it must lie either in the first half of the interval
between a4 and b or in the second half.
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5

10

11

Numerical solution of equations by iteration
The process of finding the numerical solution to the equation

f(x)=0
by iteration is petformed by first finding an approximate solution
and then using this approximate solution to find a more accurate

solution. This process is repeated until a solution is found to the
required level of accuracy.

Using a spreadsheet

Iteration procedures are more efficiently performed using a
spreadsheet.

Newton—Raphson iteration method

If x = xo is an approximate solution to the equation f(x) =0, a
better approximation x = x; is given by

_ [(x0)
f'(x0)

Modified Newton-Raphson iteration method

If, in the Newton—-Raphson procedure f’(xo) is sufficiently small
enough to cause the value of x; to be a worse approximation to
the solution than xq, then x; is obtained from the relationship

_ flw)
7o)

X1 = Xo , and in general x,,; = x,

—2f (x0)
X3 =Xp %
N Y
. . _ ., [(xa)
Subsequent iterations then use xn11 = X, — -
f'(%n)
Interpolation
Linear
Graphical

Gregory—Newton interpolation formulas using central finite differences
-1 —1){p-2
ﬁa=f0+PAﬁ)+P(pz, )Asz+P(p 3)'(P )A3f0+

Gauss interpolation formulas using central finite differences
Gauss forward formula

o= o+ oy + 2O Vit 4 DR~ D
RSV R P
Gauss backward formula
fo=To+ pbfo_y + (P';!l)P(Szfo 4 P+ 1)5!(11 -1 foy

L@+ +1p-1)
!

4 e
4 *fo +

39
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12 Gregory-Newton interpolation formula using backward finite
differences

fo=fo+pAfa +=75— 30

13 Lagrange interpolation
If the straight line p(x) = ap + a;1x passes through the two points
(%0, f(x0)) and (x1, f(x1)), where ap and a; are constants, then the
interpolation polynomial (straight line) for this line can be
written as

X—X
PR =1

— X0
X1 — Xo (X1)
The quadratic interpolating polynomial that passes through the
three points (xo, f(x0)), (x1, f(*1)) and (x2, f(x2)) can be written as

(x—x)(x - Xz) (x— XO)(X )
X) =

PO = o =0 — ) 0 B o) = ) Y

(x— xo)(x X1)

(e —x0)(r2 — ) 2
The cubic interpolating polynomial that passes through the four

data points (xo, f(x0)), (x1, f(x1)), (x2, f(x2)) and (x3, f(x3)) can be
written as

_ (x—=x1)(x = x9)(x — x3)
P = (x0 — Xll)(xo - Xzz)(xo —3;63) f(xo)
(x —x0)(x — x2)(x — x3)
T B = %0)(x1 = x2) (x1 — %3) Fla)
(= x0)(x — x1)(x — x3)
T B~ x0) (s — ) (2 — x3) | 2
(x — x0)(x — x1)(x — x3)
(s~ %0) 05 —31) (%5 — x2) )
The interpolating polynomial that passes through n+1 data
points is

(X Xl)(X Xz)( )(X x") f( )
—x1)(X0 — x2)(- ) (X0 — Xn)
(X = X0)(X — X2)( - ) (X — Xn)
(1 = o) (1 —3) () — ) O
(X — Xo)(x — Xl)(. . )(x — xn—l) f(xn)

(% — X0) (Xn — x1) (- +-) (Xn — Xn_1)
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¥4 Can You?

Checklist 1

Check this list before and after you try the end of Programme test.

On a scale of 1 to 5§ how confident are you that Frames
you can:

e Appreciate the Fundamental Theorem of Algebra?
Yese [J 0O 0O 0O 0O No

e Find the two roots of a quadratic equation and
recognise that for polynomial equations with real
coefficients complex roots exist in complex
conjugate pairs?

Yes ] ] ] ] ] No

e Use the relationships between the coefficients and the
roots of a polynomial equation to find the roots of
the polynomial?

Yes O o 0O 0O 0O No

e Transform a cubic equation to reduced form?
Yes (I (J 1 [ No

e Use Tartaglia’s solution to find the real root of a cubic
equation?
Yes [ [0 OO 0O @O No

e Find the solution of the equation f(x) = O by the
method of bisection?
Yes [ O [1 O O No

e Solve equations involving a single real variable by
iteration and use a spreadsheet for efficiency?
Yes [J 0O 0O O O No

e Solve equations using the Newton-Raphson iterative
method?
Y [0 0O 0O [ O No

e Use the modified Newton-Raphson method to find the
first approximation when the derivative is small?
Yes [ 0O 0O [0 O No

e Understand the meaning of interpolation and use
simple linear and graphical interpolation?

Y O 0O O 0O O No
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e Use the Gregory-Newton interpolation formula using
forward and backward differences for equally spaced
domain points?

Yes ] O O O O No

e Use the Gauss interpolation formulas using central
differences for equally spaced domain points?

Yes OJ J O ] ] No

e Use Lagrange interpolation when the domain points
are not equally spaced?

Yes ] O Il Il Il No

Test exercise 1

ik

1 Given that x = —1 +jv/3 is one root of a quadratic equation with real
coefficients, find the other root and hence the quadratic equation.

2 Solve the cubic equation 2x3 — 7x> — 42x + 72 =0.

3 Write the cubic 3x3 + 5x2 + 3x+ 5 in reduced form and use Tartaglia’s
method to find the real root.

4 Use the method of bisection to find a solution to x3 — 5 = 0 correct to 4
significant figures.

5§ Use the Newton-Raphson method to find a positive solution of the
following equation, correct to 6 decimal places:

cos 3x = x2

6 Use the modified Newton-Raphson method to find the solution correct
to 6 decimal places near to x = 2 of the equation

2 —6x>+13x-9=0
7 Given the table of values

x | f()
1 0
2 19
3 70
4 171
5 340
6 595
estimate

(@) f(2-5) using the Gregory—Newton forward difference formula
(b) 1(3-4) using the Gauss central difference formula
(©) (5-6) using the Gregory—Newton backward difference formula.

>
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8 Given the table of values

f&)
4

-9
-108

(ST \S I

use Lagrangian interpolation to estimate the value of f(2-2).

43

Further problems 1

10

11

12

1 1
AL v3 and x = 1+

2 V2
equation with real coefficients, find the other two roots and hence the
quartic equation.

Given that x = are two roots of a quartic

Solve the equation x3 — 5x% — 8x + 12 = 0, given that the sum of two of
the roots is 7.

Find the values of the constants p and g such that the function
f(x) = 2x3 4+ px2 4 gx 4+ 6 may be exactly divisible by (x — 2)(x + 1).

If f(x)=4x*+px>—23x2+gqx+11 and when f(x) is divided by
2x% + 7x + 3 the remainder is 3x + 2, determine the values of p and q.

If one root of the equation x3 —2x2 — 9x+ 18 = 0 is the negative of
another, determine the three roots.

Solve the equation x3 — 7x2 — 21x + 27 = 0, given that the roots form a
geometric sequence.

Form the equation whose roots are those of the equation
x3 +x% + 9x + 9 = 0 each increased by 2.

Form the equation whose roots exceed by 3 the roots of the equation
¥ —-4x*+x+6=0.

If the equation 4x3 —4x%2 —5x+3 =0 is known to have two roots
whose sum is 2, solve the equation.

Solve the equation x* — 10x? + 8x + 64 = 0, given that the product of
two of the roots is the negative of the third.

Form the equation whose roots exceed those of the equation
2x3 —3x2 - 11x4+ 6 =0 by 2.

If o, B, v are the roots of the equation x3 + px? 4 gqx +r = 0, prove that
2+ B+ =p?>-2q
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13

14
15

16

17

18

19

20

Using Tartaglia’s solution, find the real root of the equation
2x3 + 4x — 5 = 0 giving the result to 4 significant figures.

Solve the equation x3 —6x — 4 =0.

Rewrite the equation x3 + 6x% + 9x + 4 = 0 in reduced form and hence
determine the three roots.

Show that the equation x3 + 3x2 — 4x — 6 = 0 has a root between x = 1
and x = 2, and use the Newton-Raphson iterative method to evaluate
this root to 4 significant figures.

Find the real root of the equations:
@ xX¥*+4x+3=0 (b) 5x*+2x—-1=0.
Solve the following equations:
(@ x*-5x+1=0 () ¥*+2x-3=0
(© ¥ —4x+1=0.

Express the following in reduced form and determine the roots:

(@ X}+6x>+9x+5=0
) 8x3+20x2 +6x-9=0
(c) 4x3—9x% +42x—10=0.

Use the Newton-Raphson iterative method to solve the following.

(a) Show that a root of the equation x3+3x%+5x+9 =0 occurs
between x = —2 and x = —3. Evaluate the root to four significant
figures.

(b) Show graphically that the equation e** =25x— 10 has two real
roots and find the larger root correct to four significant figures.

(¢) Verify that the equation x — cos x = 0 has a root near to x = 0-8 and
determine the root correct to three significant figures.

(d) Obtain graphically an approximate root of the equation
2Inx = 3 — x. Evaluate the root correct to four significant figures.

(e) Verify that the equation x* + 5x — 20 =0 has a root at approxi-
mately x = 1-8. Determine the root correct to five significant
figures.

(f) Show that the equation x + 3sinx = 2 has a root between x = 0-4
and x = 0-6. Evaluate the root correct to five significant figures.

(g) The equation 2cosx =¢* — 1 has a real root between x = 0-8 and
x = 0-9. Evaluate the root correct to four significant figures.

(h) The equation 20x3 — 22x2 + 5x — 1 = 0 has a root at approximately
x = 0-6. Determine the value of the root correct to four significant
figures.
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21

22

23

24

A polynomial function is defined by the following set of function
values

X 2 4 6 8 10
y=rf(x) -7-00 9-00 97-0 305 681
Find
(a) f(4-8) using the Gregory—Newton forward difference formula

(b) 1 (7-2) using the Gauss central difference formula
(©) f(8-5) using the Gregory—-Newton backward difference formula.

For the function f(x)
x 4 ) 6 7 8 9 10
f(x) -10 12 56 128 234 380 572
Find
(@) f(4'5) and f(6-4) using the Gregory-Newton forward difference
formula
(b) f(7-1) and f(8-9) using the Gregory—-Newton backward difference
formula.
x 2 4 6 8 10 12
f(x) -9 35 231 675 1463 2691

For the function defined in the table above, evaluate (a) f(2:6) and
®) (7-2).

A function f(x) is defined by the following table
X —4 -2 0 2 4 6 8
fx | 277 51 1 | -17 | —147 | =533 | —1319
Find
(@ f(-3) and f(1-6) using the Gregory-Newton forward difference
formula

(b) 1(0-2) and f(3-1) using the Gauss central difference formula

(© f(44) and f(7) using the Gregory—Newton backward difference
formula.

45
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25

26

27

Given the table of values

x )

-1 ~2:71828
3 —0-04979
5 ~0-00674

use Lagrangian interpolation to find the value of f(3-4).

Given the table of values

X f()

6 0-801153

72 | —0-82236

9 —0-73922
13 0-994808

use Lagrangian interpolation to find the value of f(8).

Given the table of values

X f()

-2 —2-63906
0 ~2-48491
5 -1-94591
6 -1-79176

use Lagrangian interpolation to find the values of
@ f(-08)

(®) f(08)

© £(55).
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Learning outcomes

When you have completed this Programme you will be able to:

Obtain the Laplace transforms of simple standard expressions

Use the first shift theorem to find the Laplace transform of a simple
expression multiplied by an exponential

Find the Laplace transform of a simple expression multiplied or
divided by a variable

e Use partial fractions to find the inverse Laplace transform
e Use the ‘cover up’ rule

Use the Laplace transforms of derivatives to solve differential
equations
Use the Laplace transform to solve simultaneous differential
equations
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Introduction

The solution of a linear, ordinary differential equation with constant
coefficients such as the second-order equation

af”(t) + bf'(t) + f () = 8(t)
can be solved by first obtaining the general form for the expression
f(t). This general form will contain a number of integration constants
whose values can be found by applying the appropriate boundary
conditions (see Engineering Mathematics, Fifth Edition, Programme 25).
A more systematic way of solving such equations is to use the Laplace
transform which converts the differential equation into an algebraic
equation and has the added advantage of incorporating the boundary
conditions from the beginning. Furthermore, in situations where f(t)
represents a function with discontinuities, the Laplace transform
method can succeed where other methods fail.

Laplace transform techniques also provide powerful tools in
numerous fields of technology such as Control Theory where a
knowledge of the system transfer function is essential and where the
Laplace transform comes into its own. Let us see what it is all about.
(For a more detailed introduction see Engineering Mathematics, Fifth
Edition, Programme 26.)

Laplace transforms

The Laplace transform of an expression f(t) is denoted by L{f(t)} and
is defined as the semi-infinite integral

Loy = [ et @

The parameter s is assumed to be positive and large enough to ensure
that the integral converges. In more advanced applications s may be
complex and in such cases the real part of s must be positive and large
enough to ensure convergence.

In determining the transform of an expression, you will appreciate
that the limits of the integral are substituted for ¢, so that the result
will be an expression in s. Therefore

00

LF®) = | fear=F()

t=

Make a note of this general definition: then we can apply it
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So we have L{f(t)} = J: F(t)estdt — F(s)

Example 1
To find the Laplace transform of f(t) = a (constant).

L{a} = J:Q aeStdt =a [e:;]o = _% [e-st]go
=-3fo-1y=5
c. L{a} = g (s>0) )

Example 2

To find the Laplace transform of f(t) = ¢* (a constant). As with all
cases, we multiply f(t) by e~ and integrate between t = 0 and t = co.

00
o L{e") = J et dt = Jm e -t gt
0 0

Finish it off.

1
ty
L{e“}_s_a
Because
L{e*t ooeat st q * (s a)td et *
e} = e~ dt = e v t=
e .[0 Jo [—(5—“)]0
1 1
R
1
. Y
S L{é‘}——s_a (s >a) (3)

So we already have two standard transforms

L{a)=2 and Lfey=_1-
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4 1
L#} =3 e -—
5 _ 1
L=Sy=—5 L™=y

Note that, as we said earlier, the Laplace transform is always an

expression in s.
Now for some more examples

Example 3
To find the Laplace transform of f(t) = sinat. We could, of course,
apply the definition and evaluate

L{sinat} = J sinat - e~St dt

0

using integration by parts.

However, it is much shorter if we use the fact that

e’ = cosf +jsind
so that sin @ is the imaginary part of e/, written .# (/).

The function sin at can therefore be written .#(e/*) so that

L{sinat} = L{# (")} =ij oSt g — jJ (6Tt 4
0 0

AL ot
:j{s—l'a}
J

We can rationalise the denominator by multiplying top and bottom
by ............

s+ja

. s+ja a
oL at} =4 =
{sinat} {sz + az} 52 +a?

. a
L{smat} = sz—l-_az (4)

We can use the same method to determine L{cos at} since cosat is the
real part of e/, written R(e/*).
Then L{cosat} =............
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L{COS at} = SZ-I——aZ (5)
Because
s+ja s
L{cosat} = ER{SZ ~ az} =P
Recapping then: L{1}=............ i LS =....
L{sin2t} =............ ; L{cos4t}=............
_1 o1
L{l}—s’z L{ea}—s_a
. . S
L{sin2t} = Fwy L{cos4t} = 2116
Example 4

To find the transform of f(t) = t" where n is a positive integer.
By the definition L{"} = J et dt.
0

Integrating by parts

L{t"} = [t” (5__;)]?%]? P

oo 00
o] et
S 0 S 0

We said earlier that in a product such as t"¢~** the numerical value of s
is large enough to make the product converge to zero as t — co

" [t"e'“] =0-0=0
0

o L{") = gf fr-le-st gt 6)

00 00
You will notice that j "¢t dt is identical to j t"e~st dt except that
0 0

n is replaced by (n — 1).
00 00
Il = j et dt, then L, = j f-let dt
0 0

and the result (6) becomes I, = g.In_l (7)

This is a reduction formula, and if we now replace n by (n — 1) we get




52 Programme 2

n—1
s

I 1= N )

If we replace n by (n — 1) again in this last result, we have
n—2

I,>= S dn3
e n
So Inzj teStdt ==1I, 1
0 S
nn-1
—;. s -In—Z
nn-1n-2
=55 I3 etc.

=i (next line)

nn-1n-2n-3
I,,_;. PR Ty

So finally, we have
In=E.n—1'n—-2~n—3mn—(n—l)_I0
s° s s s s
But  Io=L{t") =L{1} =
_nn-1)(n-2)(n—-3)...3)(2)(1) _n!
- sn+l =‘—gn—+1—
. n n!

L=t ue = ey =S

.. In

and with n=0, since 0! =1, the general result includes L{1} =%
which we have already established.

Example 5

Laplace transforms of f(t) = sinh at and f(t) = cosh at.

Starting from the exponential definitions of sinh at and cosh at, i.e.
sinhat =1 (e —e™) and coshat =1(e” +e )

we proceed as follows.

@ f(t) =sinhat. L{sinhat} =J sinhat e dt
0

= %J:Q (e“t - _at)e_St dt

1 00
- —(s—a)t _ ,—(s+a)t
ZJO {e e }dt

Complete it
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a

L{Sinh at} = r

a2

Because

0 2

1 [ 1[ e (-t
el —(s—a)t _ —(s+a)t — _
1 L e e

e~ (s+a)t ]°°
0

1
T 2\s—a

.. L{sinhat} = oz

1 . a
s+af s2—a2

£, (9)

(b) f(t) = coshat. Proceeding in the same way
L{coshat} =............

N

L{COSh at} = SZ——-—_

az

L{coshat} =
0

_ [e—(s—a)t N ea(s+a)t]°°_
T2-(s—a) —(s+a)l,

_1f 2 S
T2\s2-a2f s2-a?
s

. L{COSh at} = m

= DN

1

2

{

J‘°° ( e“t + e—at) e—st dr = %Jm { e—(s—a)t 4 e—(s+a)t} dt
0

1 1 }
.__!__
s—a s+a

(10)

So we have accumulated several standard results:

a. ¢ 1 n!
Liagy=5i Le%y=;—7i L =5g
L{Sin at} = 52+_az; L{COS at} = m—

L{sinhat} = sz_f?;

L{coshat} = Sz_s_

a2

Make a note of this list if you have not already done so: it forms the

basis of much that is to follow.
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The Laplace transform is a linear transform, by which is meant that:

(1) The transform of a sum (or difference) of expressions is the sum (or
difference) of the individual transforms. That is

L{f(t) £8(0)} = L{f (1)} = L{g(t)}

(2) The transform of an expression that is multiplied by a constant is the
constant multiplied by the transform of the expression. That is

L{kf (1)} = kL{f (1)}
Note: Two transforms must not be multiplied together to form the
transform of a product of expressions — we shall see later that the

product of two transforms is the transform of the convolution of two
expressions.

Example 6

(@) L{2¢" +t} =L{2e'} + L{t}
=2L{e'} + L{t}
2 1 28%24s+1
= — —|— —_———_—
s+1 sz s%2(s+1)
(b) L{2sin 3t + cos 3t} = 2L{sin 3t} + L{cos 3t}
3 s s+6
_2's2+9+sz+9_32+9
(c) L{4€* + 3 cosh4t} = 4L{e*} + 3L{cosh 4t}
1 s 4 3s
_4's—z+3'sz— 16 s—2 216
75— 65— 64
T (s —2)(s% - 16)
So 1. L{2sin3t+4sinh3t}=............
L{5¢* + cosh2t} = ............

3. L{B+22—4t+1}=............

18(s% + 3) . 652 — 45 — 20

L s¢—81 ' To(s—4)(s2-4)

1
3. S—4{s3—4sz+4s+6}

The working is straightforward.

. . 3 3
1. L{281n3t+481nh3t} =2m+4.gf9-
6 N 12 18(s>+3)
5249 's2-9  s4_-81
5 s 65 — 45— 20

B Sy Sl F Ny CRY

2. L{5¢* + cosh2t} = .
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3t 2t 11
2 _ -2 . Rt i
3. L{P+200—4t+1}=5+2.5-4 5+

=§lz{s3—4sz+4s+6}

We have been building up a list of standard transforms of simple
expressions. Before we leave this part of the work, there are three
important and useful theorems which enable us to deal with rather
more complicated expressions.

Theorem 1 The first shift theorem

The first shift theorem states that if L{f(t)} = F(s) then
L{e™™f(t)} =F(s + a)

Because L{e™™f(t)} = Jooo e f(tetdt = r f(t)e ) dt = F(s + a)
t= t=0

That is
L{e“f(t)} = F(s +a)

The transform L{e~*f (t)} is thus the same as L{f (t)} with s everywhere
in the result replaced by (s + a).

For example L{sin 2t} = 711
2 2

—3¢t _ _
then L{e *sin2t} = G137 id FT6s+13

Similarly, L{t?} =SE3 SOL{ReMY =

_2
(s—4)°

Because L{t*} = z . L{t?¢*} is the same with s replaced by (s — 4).

s3
o Lty =2

(s—4)°

Here is a short exercise by way of practice.

Exercise

Determine the following.

1. L{e 2 cosh3t} 4. L{e*cost}
2. L{2¢%sin3t} 5. L{e¥sinh 2t}
3. L{ate!} 6. L{t3e}

Complete all six and then check with the results in the next frame
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Here they are.
1. L{cosh3t} = 7 s_ 5 . L{e"* cosh3t} = E%
. s+2
T s2445-5
. 3 . 3t o B 6
2. L{Sln 3t} = Sz ) . L{Ze Sln3t} = m
_ 6
T s2—6s5+18
1 4
. L{4t}=4.— -t —
3 {4t} 7 L{4te™'} o 1)2
__S t _ -2
4. L{cost} = o o L{e** cost} = ————2) .
o s=2
T s$2—4s+5
. 2 . ) 2
5. L{Smh Zt} = Sz 7 . L{egt Slnth} = _(s_—3)T4
B 2
T s2—65+5
6. L{t3} _3 oo L{Be*} =
54 s+ 4)

Now let us deal with the next theorem

Theorem 2 Multiplying by t and ¢"
If L{F(£)} = F(s) then L{tf(£)} = —F (5
et de—st
Because L{tf(t)} :JZO tf(t)et df = L f(t)( )dt

d st g — g
—ajzof(t)e tdt = —F'(s)

That is
L{tf(t)} = —F (s)
: 2
For example, L{sin2t} = 213
. : d/ 2 4s
. L{tslnzt} = —£ Sz T 4) = (sz +4)2

and similarly, L{tcosh3t}=............
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249
(s2-9)?

d/ s \_ (s2-9)—s(25) s2+9
as-(sz —9) - (2-92  (s2-9)°

We could, if necessary, take this a stage further and find L{t2 cosh 3t}

Because L{t cosh 3t} = —

ds | (s> -9)”
_ 2s(s+27)
(s2-9)°
_4
52+ 16
L{tsindt}=............ and L{fsin4t}=............

L{f* cosh 3t} = L{t(t cosh 3t)} = - & {S_zi}

Likewise, starting with L{sin 4t} =

8  8(3s*-16)
(s2+16)%"  (s2+16)°

applying L{tf(t)} = —% {F(s)} in each case.

Theorem 2 obviously extends the range of functions that we can
deal with.
So, in general, if L{f(t)} = F(s), then

LT} = (-1 o )

Make a note of this in your record book
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Theorem 3 Dividing by t

If L{f(£)} = F(s) then L{f(ti)} = J; F(o)do
<f ®)

provided Lim T) exists. To demonstrate this we start from the
t—0

right-hand side of the result

0 o0 Notice the dummy vari-
j F(o)do =r {J f(t)e dt} do  able o. The end result is
=S o=s Lt=0 an expression in s which

00 00
_ J J Ft)e—tdo dt comes from the lower limit
t=0 Jo=s of the integral so the vari-

ot able of integration, which
= J:o o “:s € d"} dt s absorbed during the pro-

cess of integration, is

= Jm f(t)e_‘f dt changed to o. Notice also

—0 t that we interchange the
I { f (t)} order of integration.
Ut

This rule is somewhat restricted in use, since it is applicable only if

t . A
Lim ([%) exists. In indeterminate cases, we use L'Hépital’s rule to
t—0

find out. Let’s try a couple of examples.

Example 1

Determine L{su;at}

First we test Lim {smtat} = {g} =? By L'Hopital’s rule, we differentiate
t—0

top and bottom separately and substitute t=0 in the result to
ascertain the limit of the new expression.

inat C
Lim {Smt“ }=Lim {“ ‘;s “t} —a, that is, the limit exists and the
t—0 t—0

theorem can therefore be applied.

3 00
So L{sinat} = Ez—t—az' therefore L{smtat} = J

Notice that arctan (g) + arctan (%) = —, as can be s
seen from the figure
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Example 2
t

Determine L {}ﬂ}

First we test whether Lim {1_+052t} exists. Result? ............
t—0

the limit exists

Lim {1 — cos 2t
t—0 t

Lim {ﬂ} = Lim {Z sin Zt} ~9_0 - limit exists.
t—0 t -0 1 1

} -1 8 = % =7 .. Apply I'Hopital’s rule.

L{l—cosZt}:%—?—f—l_—Z

Then, by Theorem 3
1 —cos2t (1 o
L{ t }_Ja:s{;_az'l-‘}}da

- [lncr—%ln(aZ +4)]°° :%[ln(azai 4)];

o=S$

When ¢ — oo, ln(——-az—) —-In1=0

02 +4
Therefore, L{—l%m} P
Complete it
I 52 +4
n 2
Because
1 — cos 2t 1 §2 s2 \ M2
=2 = om(5%) =1(e)
2
—1In s 42—4
s

Let us pause here for a while and take stock, for we have met a
number of results important in the future work.
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1 Standard transforms

ft) L{f(t)} =F(s)
a
a —_
s
et 1
s—a
inat a
sina i
s
cos at 5 3
s24+q
. a
sinh at o
s
cosh at o
|
t" s”lJrT (n a positive integer)

2 Theorem 1 The first shift theorem
If L{f(t)} = F(s), then L{e"™f(t)} = F(s + a)
3 Theorem 2 Multiplying by t

If L{F()} = F(s), then L{()} = — & (F(5)}
4 Theorem 3 Dividing by t

If L{f(t)} = F(s), then L{f—(tQ} = ro F(o)do

o=§

provided Lim {@} exists.
t—0

Now let us work through a short revision exercise, so move on

Exercise

Determine the Laplace transforms of the following expressions.

1 sin3t 6 tcosh4r

2 cos2t 7 t2-3t+4
t_

3 et 8 e n 1

4 6t2 : 9 3cos4t

§ sinh3t 10 #sint

Complete the whole set and then check results with the next frame
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Here are the results.

2
1 3 6 s+ 16
$2+9 (s2 — 16)
2 2 7 L 3512
244 s3
1 s
3 s—4 8 ln(s—B)
12 s—3
1 = 2 $2 —6s+ 25
2 _
5 3 10 6s° —2
s2—9 (s2+1)3

It is just a case of applying the standard tranforms and the three
theorems.
Now on to the next piece of work

Inverse transforms

Here we have the reverse process, i.e. given a Laplace transform, we
have to find the function of t to which it belongs.

For example, we know that .SZ—I-Laz is the Laplace transform of sin at,

SO we can now write L‘l{ } = sinat, the symbol L! indicating

a
$2 +a?
the inverse transform and mnot a reciprocal.

() 4{52 j 25} ............ ;) L—l{—lz—} e
(a) L‘l{s—iz} =%, © L—l{%} =4
® L {ﬁ} —cosSt; (d) L‘l{szl_z 9} — 4sinh 3t

Therefore, given a transform, we can write down the corresponding
expression in t, provided we can recognise it from our table of
transforms.
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3s+1
s2—-5—-6
our list of standard transforms.

But what about L‘l{ }? This certainly did not appear in

In considering L1 {Sze’i%}, it happens that we can write
3s+1 as the sum of two simpler functions 1 + 2 which, of

s2-5—6 s+2 s-3
course, makes all the difference, since we can now proceed

3s+1 1 2
1) 98+1 | _,af L &
L {52—5—6} L {s+2+s—3}

which we immediately recognise as ............

e 2t + 263

The two simpler expressions H—LZ and }’f_§ are called the partial
3s+1

fractions of 2 os_¢ and the ability to represent a complicated
algebraic fraction in terms of its partial fractions is the key to much of
this work. Let us take a closer look at the rules.

Rules of partial fractions

1 The numerator must be of lower degree than the denominator.
This is usually the case in Laplace transforms. If it is not, then we
first divide out.

2 Factorise the denominator into its prime factors. These determine
the shapes of the partial fractions.

3 A linear factor (s+ a) gives a partial fraction s‘-:;a where A is a

constant to be determined.

B

(s+a) M (s +a)*

B C
Gt+a) (s+a)2+ (s+a)*

Ps+Q
s2+ps+q
7 Repeated quadratic factors (s + ps + q)2 give
Ps+Q Rs+T
S2+ps+q  (s2+ps+q)°

4 A repeated factor (s + a)? gives

5 Similarly (s + a)® gives

6 A quadratic factor (s> + ps + q) gives

So GTr26-3) +S 2_) (];9__ 5 has partial fractions of the form ............
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_i__l_i
s+2 s-5

3s2 —4s+11
an 2

(s+3)(s—2)
Be careful of the repeated factor.

has partial fractions of the form ............

A 4 B + C
s+3 (s—2) (5_2)2

Let us work through the various steps with an example.

Example 1

To determine L‘l{ Ss+1 }

s2—-s~-12

(a) First we check that the numerator is of lower degree than the
denominator. In fact, this is so.

Ss+1 Ss+1
2-5—12" (s—4)(s+3)
(c) Then the partial fractions are of the form ............

(b) Factorise the denominator p

A B
s—4 s+3

We therefore have the identity
Ss+1 A 4 B
s2~s5—12"5-4 s+3
If we multiply through both sides by the denominator s> —s — 12 =
(s —4)(s + 3) we have
5s+1=A(s+3)+B(s-4)
This is also an identity and true for any value of s we care to substitute

- our job is now to find the values of A and B.
We now substitute convenient values for s

(@ Let(s—4)=0,ie.s=4 .. 21=A(7)+B(0) .. A=3
(b) Let(s+3)=0,ie.s=—-3andweget ............
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3e#t + 2¢73t
Example 2
Determine L™} {s92s_— zi }
Working as before, f(f) =............
4 4 5%

Because

LF0)} = 2

(&) Numerator of first degree; denonominator of second degree.
Therefore rule satisfied.

95-8 A B
® Gy =5 5=z
(c) Multiply by s(s —2). .". 9s—8 =A(s —2) +Bs.
(d) Puts=0. —8=A(-2)+B(0) .. A=4.
(¢) Puts—2=0,ie.s=2. 10=A(0)+B(2) .. B=5.

0 =L-1{§+S_Lz} _ 445

Example 3

s2 — 155+ 41

(s+2)(s — 3)?

determine its inverse transform.
s2 —15s+ 41

m has partial fractions of the form ............
s s—

Express F(s) = in partial fractions and hence
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A N B 4 C
s+2 s-3 (5_3)2

Now we multiply throughout by (s + 2)(s — 3)* and get
2 —155s+41=A(s—3)2 +B(s +2)(s —3) + C(s + 2)
Putting (s —3) =0 and then (s +2)=0we obtain ............

A=3and C=1

Now that we have run out of ‘crafty’ substitutions, we equate
coefficients of the highest power of s on each side, i.e. the coefficients
of s2. This gives ............

1=A+B .. 1=3+B .. B=-2

S£-15s+41 3 2 1
(s+2)(s-37 s+2 s-=3 (s-3)
3 2
-1 _ -1 —
Now L {—s+2} ............ and L {3—3} ............

3e~2t and 2%

But what about L™! 1 50?7
(s—-3)

We remember that L1 {slz} =i,

and that by Theorem 1, if L{f ()} = F(s) then L{e"*f(t)} = F(s + a).

. (;3)2 is like Slz with s replaced by (s —3) i.e. a= -3.
S —

'L”l{ 1 }zte3t
' (s—3)

2 _
L-l{_._(s ;;H;;Z} 3% 4 26 4 1
s+2)(5—
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Example 4

2 _
Determine L*l{ 45" —Ss+6 }

(s+1)(s2+4)
Notice that this time we have a quadratic factor in the denominator
452 —55+6 _ A  Bs+C
(s+1)(s2+4) s+1 s2+4
S 42— 55+ 6=A(s>+4) + (Bs+C)(s + 1).
(a) Putting (s+1)=0,ie.s=-1, 15=54 .. A=3
(b) Equate coefficients of highest power, i.e. s
4=A+B .. 4=3+B .. B=1
(c) We now equate the lowest power on each side, i.e. the constant
term
6=4A+C .. 6=124+C .. C=-6
Now you can finish it off. f(t)=............

f(t) =3e !+ cos2t — 3sin2t

Because

3 s 6
W = ateri— v

o f(t) =3e" +cos2t — 3sin 2t

The “‘cover up' rule

While we can always find A, B, C, etc., there are many cases where we
can use the ‘cover up’ methods and write down the values of the
constant coefficients almost on sight. However, this method only
works when the denominator of the original fraction has non-
repeated, linear factors. The following examples illustrate the method.
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Example 1

B

We know that F(s) = 59 has partial fractions of the form% + =

s —8

(5-2)
By the ‘cover up’ rule, the constant A, that is the coefficient of %, is
found by temporarily covering up the factor s in the denominator of
E(s) and finding the limiting value of what remains when s (the factor
covered up) tends to zero.

Therefore A = coefficient of = Lim {9: _28 } — 4. Thatis A = 4.
s—0 -

Similarly, B, the coefficient of p _1 > is obtained by covering up the

factor (s — 2) in the denominator of F(s) and finding the limiting value
of what remains when (s — 2) — 0, that is s — 2.

Therefore B = coefficient of Lz =Lim {95 — 8} = 5. That is B=35.
- s—2
So that
9s—-8 4 5

SG-2) s 5-2
Another example

Example 2
3 s+17 _A B C
T (s=-D(s+2)(s—-3) s—1 s+2 s-3

A: cover up (s — 1) in F(s) and find

Lim {J17—} = E L. A = —3

F(s)

s—»1 L(8+2)(s—3) —6
Similarly

B T B=............

Civvvvnnn. L C=a.
'y s+17 _ 1§ _ - B
B‘fl’fé{(s—lxs—s)}'(—3)(—5) b B=l
o s+17 \_ 20 oo
ot i) "o "2 O

c. F(s) = ! + 2 3

s+2 s—3 s—1
So f(t) = e % 4+ 2¢% — 3¢t
Every entry in our table of standard transforms gives rise to a

corresponding entry in a similar table of inverse transforms. Let us
tabulate such a list.
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Table of inverse transforms

F(s) f(t)
a
; a
s -Il— a e
n!
P t" (n a positive integer)
1 tn—l
— —_— itive integer
o w1 (n a pos integer)
L sinat
2+ a?
s
m cos at
3 f P sinh at
s
o cosh at
Theorem 1

The first shift theorem can be stated as follows.

If F(s) is the Laplace transform of f(t) then F(s +a) is the Laplace
transform of e “f(t).
Here is a short revision exercise.

Exercise

1 Find the inverse transforms of

1 5 3s+4
(@ 253’ (b) (?_—4)31 (© 219"
2 Express in partial fractions
225+ 16 s2—11s+6
(@

G+06-26+3) @ Grne_27
3 Determine

_1[48* — 175 — 24 . 5s2—4s—7
@ L l{s(s+3>(s—4>}' ®) Ll{(s—s)(s2+4>}'
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1 (@ %eSt/Z; (b) 5t (© 3c053t+§sin3t

1+4—5~(b)2—1—4
s+1 s—2 s+3’ s+1 5—-2 (s—2)?

2 (b

3 (@ 2+3e3 e ) 2% +3cos2t + %sin 2t

Solution of differential equations
by Laplace transforms

To solve a differential equation by Laplace transforms, we go through
four distinct stages

(a) Rewrite the equation in terms of Laplace transforms.
(b) Insert the given initial conditions.

(c) Rearrange the equation algebraically to give the transform of the
solution.

(d) Determine the inverse transform to obtain the particular solution.

We have spent some time finding the transforms of a variety of
functions of t and the inverse transforms of functions of s, i.e. we have
largely covered steps (a) and (d) of the above list. However, to write a
differential equation in Laplace transforms, we must obtain the
dx d?x
transforms of the derivatives — -—-
n of the derivatives af and iz

Transforms of derivatives

Let f'(t) denote the first derivative of f(f) with respect to t,
f”(t) denote the second derivative of f(t) with respect to t, etc.

Then L{f'(t)}= J eStf'(t)dt by definition.
0

Integrating by parts

Lr®) = [ero)] - [ rof-sea

When t — oo, e7Stf(t) = ............
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0

Because s is positive and large enough to ensure that e~* decays faster
than any possible growth of f(t).

S L{F(©)} = —f(0) + sL{f ()}
Replacing f(t) by f'(t) gives
L{f"®}=............

L{f"(t)} = s’F(s) — sf(0) — '(0)

Because

L{f' ()} = —f(0) + sL{f (1)}
s0 L{f"(t)} = —f'(0) + sL{f'(t)}

= —f"(0) + s(—f(0) + sL{f(1)})
Writing L{f(t)} = F(s) as usual, we have
L{f(t)} = F(s)

L{f'(t)} = sF(s) — {(0)

L{f"(t)} = sF(s) — sf(0) — f'(0)
We can see a pattern emerging

LIF" ()} = v

L{"(0)} = SF(s) - (0) - 57'0) ~ (0)

Alternative notation

We make the working neater by adopting the following notation.
Let x =f(t) and at t = 0, we write

X=Xp ie. f(0) =x¢

dx .

P! ie. f'(0) =x;

2
% =Xy i.e. f'(0) = x; etc.
d'x_

Logm = X ie. f*(0) = x,
Also we denote the Laplace transform of x by X,
ie. X=L{x}=L{f(t)} =F(s).

So, using the ‘dot’ notation for derivatives, the previous results can be
written ............
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L{x}=x

L{x} =sX—x0

L{x} = %X — sx0 — x;

L{Z} = 3% — %X — sx; — X3

In each case, the subscript indicates the order of the derivative,

d”x

i.e. x, = the value of FTa att=0.

Notice the pattern of the results.

L{E} = s*% — $3x0 — s%x1 — sx3 — X3

Now, at long last, we can start solving differential equations.

Solution of first-order differential equations

Example 1

Solve the equation % —2x=4given thatatt=0, x=1.

We go through the four stages.
(a) Rewrite the equation in Laplace transforms, using the last notation
L{x}=%x L{x}=............
L{4}=............

L{x} = s%— x0; L{4} = %

“ e

Then the equation becomes (sX — xp) — 2X =

(b) Insert the initial condition that at t =0, x=1,i.e. xo=1

. s;?—l—?j:é
s

(©) Now we rearrange this to give an expression for x
X=ieiiiiiannn
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s+4

Xzs(s—Z)

(d) Finally, we take inverse transforms to obtain x.

s—(ss¥2—) in partial fractions gives ............
3 2
s—2 s
Because
s+4 _A B . _
s(s—2)=-s_+s—2 .5+4=A(s—2)+Bs
(1) Put s—2)=0,ie.s=2 ;. 6=B(2) .. B=3
(2) Puts=0 So4=A(-2) L A=-2
g s+4 3 2
T s(s-2) s—-2 s

Therefore, taking inverse transforms

X =L—1{s(ss—t47)} =L—1{s—§._2.—§} =

x=3e2t_-2

This solution should now be substituted back into the differential
equation to verify that it is, indeed, correct.

Example 2

Solve the equation % +2x = 10¢* given that at t =0, x = 6.

(a) Convert the equations to Laplace transforms, i.e.

_ _ 10
(SX—X0)+2X—:§

(b) Insert the initial condition, xo = 6
SX—6+2x= 10
s—-3

(c) Rearrange to obtainx=............
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i=(s+2)(s—3)

(d) Taking inverse transforms to obtain x

6s -8
= -1 Tl
= )
Complete the solution

x=4e 2 4 263

Because
6s—-8 A B
6+2)(-3) s+25-3
. 6s—8=A(s-3)+B(s+2)

(1) Put (s—3)=0,ie.5=3 . 10=B(5) B=2
(2) Put s+2)=0,ie.5=-2. .. —20=A(-5) .. A=4
3= 6s—8 _ 4 4 2

T T (5+2)(s-3) s+2 ' s-3

4 2
. -1 —2t i
.x=L {——s z+——_s_3}=4e + 268

Example 3

Solve the equation % —4x = 2% + €%, given that at t =0, x=0.

Work this through the four steps in the same way as before and
complete it on your own.
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x =t — 2 4ttt

The working is quite standard.
dx

QX 4y 92t At
ks 2¢% ¢
- _ 2 1
(@) (sx—xo)—4x—m+m
oo e 2 1
(b) Xo=0 ..SX—4X—E+S_4
© .. x= 2 + !
N (s—2)(s—4) (s—4)?
2 A B .

d) (s—2)(s—4)=s—2+5—-4 L. 2=A(s—4)+B(s—2)
Putting (s—2)=0,ie.5=2 .. 2=A(-2) .. A=-1
Putting (s—4)=0,i.e.s=4 .. 2=B(2) S.B=1
. 1 1

s—4—_s—2+(5_4)2
Lox=et %yttt

Now on to the next frame

Solution of second-order differential equations

The method is, in effect, the same as before, going through the same
four distinct stages.

Example 1

. dx _dx s
Solve the equation e 33?+ 2x = 2¢°", given that at t =0, x=35

dx
and T 7.

(a) We rewrite the equation in terms of its transforms, remembering
that

L{x} =%
L{z} =sX—xo
L{3} = 2% — sxg — X1

The equation becomes ............
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2
s—-3

(%X — sxo — X1) — 3(sX — x0) + 2% =

(b) Insert the initial conditions. In this case xo =S and x; =7

. (szi—53—7)—-3(si—5)+22=%

(c) Rearrange toobtain x=............

552 —23s+26

*=e-106-26-3)

Because

szx—Ss—7-3s;z+1s+z;z=._f_§
(s2—35+2)i—53+8=s.:2._3.

_ 2 2+ 552 — 235+ 24
(S—l)(S—Z)X—;:—g'i‘SS—S— p—
552 — 235+ 26
(-1 —2)(s-3)
(d) Now for partial fractions
5s2-23s+26 A i B 4 C
(s=1)(-2)(s=3) s—1 s-2"s-3
c. 552 —23s+26=A(s~2)(s—3)+B(s—1)(s=3)+C(s—1)(s = 2)
SothatA=............ ; N ; =i

=

o 4 1
T s—1 " 5-3
CX=

x = 4ef + ¢

As you see, the Laplace transform method can be considerably shorter
than the classical method which requires

(a) determination of the complementary function
(b) determination of a particular integral
(c) obtaining the general solution, before

(d) arriving at the particular solution by substitution of the initial
conditions in the general solution. >
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Here is another example.

Example 2
Zx dx
Solve FTo 4x = 24 cos 2t given that at t =0, x =3 and G 4.
(a) In Laplace transforms ............
24s
23 7 —
(S X—SXo—-Xl) —4X—m
(b) Insert initial condition, i.e. xo = 3; x; = 4
24s
2% _ 2 _ A4 _ 45 = 235
5°X —3s—4—4x 214
_ 24s
. 2 — e
. (P -4)x 3Bs+4+ 5
35 +4s> + 365+ 16
N 2+ 4
© = 3s® + 45> 4+ 365 + 16
(s2+4)(s—2)(s+2)
Expressed in partial fractions, this becomes
D

359 +45 +365+16 _As+B C
($2+4)(s—2)(s+2) $2+4 s—2 s+2

o353+ 452+ 365+ 16 = (As +B)(s — 2)(s +2) + C(s> + 4)(s + 2)
+D(s® +4)(s - 2)

Putting (s—2)=0,ie.5=2,gives C=4

Putting (s +2) =0, i.e. s=-2, gives D=2

Equating coefficients of s® and also the constant terms gives A = —3

and B=0.
_X:3§+4ﬁ+3&+16= 4 N 2 3
’ (S2+4)(s—2)(s+2) s—2 s+2 s2+4
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x = 4é* + 2¢7% — 3cos 2t

Now let us solve another equation, this time using the ‘cover up’ rule.

Example 3
Solve % + 5% + 6x = 4t, given that at t =0, x=0 and x = 0.

As usual we begin (s2% — sxo — x1) + 5(sX — xo) + 6% = 4

2
_ 4
X =0;x=0 .. (sz+55-|-6)x=s—2
Cy= 4
T s2(s+2)(s+3)

The s? in the denominator can be awkward, so we introduce a useful
trick and detach one factor s outside the main expression, thus

j—l ——4 —_1_ é+_B +_C
TsIs(s+2)(s+3)f  sls s+2 s+3

Applying the ‘cover up’ rule to the expressions within the brackets
colfa1 2 41

T s|6's (s+2) 3's+3
Now we bring the external % back into the fold

21 2 4 1
3's2 s(s+2) 3's(s+3)

and the second and third terms can be expressed in simple partial
fractions so that

X=

X=..iciiiinn.
go21.1 1 41 4 1
" 3's2 s 's+2 9's 9s+3
which can now be simplified into
i_z 1 §1+ 1 4 1
" 3's2 9's s+2 9's5+3




78 Programme 2

There are times when a quadratic coefficient of X cannot be expressed
in simple linear factors. In that case, we merely complete the square
converting the expression into (s+k)>+a? Let us see such an
example.

Example 4
Solve % — 2x + 10x = €%, given that at t =0, x =0 and x = 1.

We find the expression for X as before.

s—1

*=5-2)(?—25+10)
Because
(szi—sxo—n)—2(si—xo)+102=;—1—2—
X=0x=1 N Sz)z—l—ZSi'l'lOi:s—lz-
1 s—1
° 2— X = _ =
. (*-25+10)x 1+s— P
Cgo s—1
T (s —2)(s? - 25+ 10)
Expressing this in partial fractions
X=iiininn... Evaluate the coefficients.
i—i 1 _ s—10
T10|s—-2 s2—-25+10
Because
s—1 _ A + Bs+C
(5=2)(s*—25+10)  (s—2) s2-2s5+10
. 5—1=A(s* - 25+ 10) + (s— 2)(Bs + C)
Put(s-2)=0,ies=2  1=A@4-4+10) . A=
[2] 0=A+B L B=-g
[CT] —-1=10A-2C .. 2C=2 L C=1

‘i—i 1 B s—10
T 10s-2 s2-25+10 >
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Now we have to find the inverse transforms to obtain x. The first
1 s—10
— i 2" 2 i
term s is easy enough, but what of 225110 The denominator
will not factorise into simple linear factors; therefore we complete the
square in the denominator and write it as
s—10  s-10
$2-25+10 (s—1)2+9
and then we improve this still further and write it in the form
(s-1)-9 -
(s—1)2+9 (s—1)2+9
ﬁ with s replaced by (s — 1), which indicates an extra factor e! in
the final function of t (Theorem 1).

So g=--d L - s=1 9
10)s-2 (s—1%2+9 (s—1)2+9

. We are quite happy with this, for is merely

1 .
x=1—0{e2t—e‘cos3t+3e‘sm3t}

Just try one more like this one

Example 5

Solve % +x +x = et given that at t =0, x =0 and x = 1. We find the
expression for X as before.

s+2
(s+1)(s2+s+1)

X =

_ _ 1
Because (s>X% — sXo — X1) + (sX — xo) + X = S——where xp=0andx; =1

+1
so that
1
23 —_ Y X — ——
s“X—1+sx+x STl
therefore
_ 1 s+2
2 =1 =
x(s>+s+1) +s+1 P
giving
7= s+2
T+ 1)(s2+s+1)
Expressing this in partial fractions
X = iiiinnnnnnn

Evaluate the coefficients




80 Programme 2

1 s—1

x:s+1+sz+s+1
Because
3= 5+2 A + Bs+C
T (s+D(P+s+1) s+1 s24s5+1
so that

s+2=A(®+s+1)+Bs+C)(s+1)
Put s+ 1 =0, that is s = —1 then
1=A(1-1+1) sothatA=1

[]] 0=A+B so that B= -1

[CT] 2=A+C sothat C=1
Therefore

5= 1 s—1

s+1 s24+s+1
Completing the squares in the second term gives

s—1
FarsgI
s—1 s+1 \/§x—z‘/3

Zrs+1 (s+%)z+(‘/7§)z (S+%)z+(‘/7§)2

Because

s—1  s-1

s2+s5+1 (s+%)2+%
__s+)-
=22
(+9°+(%)
S N 1
N 2 2 2 2
C+p*+(9) c+9+(%)

so that

=i

1 s+3 N V3 xLZ
- - 2 2
T 6+9+(9)
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V3t +V3e71/? sing

_ ot )2
x=€"'—e*cos——
2

Before we leave this topic, the same general approach can be employed
for solving simultaneous differential equations.

Let us see an example in the next frame

Simultaneous differential equations

Example 1
Solve the pair of simultaneous equations
y—x=¢e
i+y=et
given that at t =0, x=0and y =0.
(a) We first express both equations in Laplace transforms.

_ _ 1
(5}’—}’0)—":m

1
(SX—x0)+7y=——

s+1
(b) Then we insert the initial conditions, xo =0 and y, = 0.
LSy —X= !
ot (1)
V=51

(c) We now solve these for X and y by the normal algebraic method.
Eliminating y we have

Fox=y
P+ 52X =——
Y s+1
2 1  £-25-1
. (2 o _ _
G ey e S PR £
—_— s2—-2s—1

(s—1)(s+1)(s2+1)
Representing this in partial fractions gives ............
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go 1l 1 1.1 s 1
T 2's—1 2's4+1"s2+1 " s2+1

Because

5o s2-2s~1 A B Cs+D

G-De+DE+D) 5-1 s+1 2+1
S8t —2s—1=A(s+1)(s*+1) +B(s —1)(s* + 1)
+(s—1)(s+1)(Cs+D)
Putting s=1and s = —1 givesA=—}and B=—1.
Comparing coefficients of s> and the constant terms gives C = 1 and
D=1.
1 1 1 1 +s+1
2's—1 2's+1 s2+1

L X=

x=-}et —le*+cost +sint

We now revert to equations (1) and eliminate X to obtain y and hence
y, in the same way. Do this on your own.

y=3e +iet —cost+sint

Here is the working.

25 g =

Sy —sX=—3

V+sX = 1

4 Ts+1

(2 qye S 1 s2425-1

- G SR oy S S Py oy
$2+2s—1 A B Cs+D

- }7=(s—1)(s+1)(sz+1)Es—1+s+1+ s2+1

L2425 1=A(s+1)(s*+1) +B(s— 1)(s* + 1)
+(s—1)(s+1)(Cs+ D)
Putting s=1and s = —1 givesA=1and B=1.
Equating coefficients of s* and the constant terms gives C = —1 and

D=1.
o101 +1 1 s 4 1
V=250 2's+1 s2+1 s2+1
R —t :
. y—ze +§e cost+sint
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So the results are

1
x= —E(et-l-e‘t) +sint+ cost = sint + cost — cosh t

1
y=§(et+e‘t) +sint —cost =sint — cost + cosh t
. x=sint+cost —cosht; y=sint—cost+ cosht

Simultaneous equations are all solved in much the same way. Here
is another.

Example 2
Solve the equations
2y—6y+3x=0
34-3x-2y=0
given that att =0, x=1and y = 3.
Expressing these in Laplace transforms, we have

2(sy —y0) — 6y +3x=0
3(sx—x0)—3x—2y=0

Then we insert the initial conditions and simplify, obtaining

3X+(2s—-6)y =6 €))
(3s—-3)x~-2y=3 (¥A)
(@) To find x
€)) 3X+(2s—6)y=6
2)x(s-3) (s—3)3s—-3)x—(2s—6)y=3(s-3)
Adding, [(5=3)(35s-3)+3]x=35s-9+6

oo (32 —1254+12)x =353
(*—4s+4)x=s5-1
s—1 _ A B A(s-2)+B
(=2 5-2 (s-27 (-2
S.s—1=A(s—2)+B giving A=1 and B=1
X $+(s—_1—27 cox=éet et
(b) Going back to equations (1) and (2), we can find y.

. x—=
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y =1{6¢% + 3te2t}

Because, eliminating x we get

__ 6s-9 _1] A + B _1 A(s—2)+B

P 25-27 2\5-2" s-272f 2\ (-2

S, 65s—9=A(s—2)+B ,.A=6; B=3
1 6 3

~"V=§{m+(s-z)2} " y=hed e

Simultaneous second-order equations are solved in like manner.
Again, with all these solutions it is a worthwhile exercise to substitute
the solution back into the differential equation to verify that the
solution is correct.

Example 3

If x and y are functions of ¢, solve the equations
X+2x—y=0
P+2p—-x=0
giventhatat t =0, x0=4; yo=2; x; =0; y1 =0.
We start off as usual with (s’ —sxo —x1) +2¥ -y =0
and (s*9 —spo—y1) +27 —x=0
Inserting the initial conditions, we have
X —4s+2¥—-7=0
?y-25+2y—x%x=0
Simplifying these we can eliminate y to obtain ¥ and hence x.

X = eeiiennnnnn
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x=3cost+ cos(\/i’:t)

Because
(+2)x -7 =4s (1)
—X+ (s +2)y=2s (2)
Eliminating y and simplifying gives
_ 4s*+10s
T (s24+1)(s2+3)
4s3 + 10s As+B Cs+D
- (sz+1)(s2+3)E 2+1 213
. 4% +10s = (s + 3)(As + B) + (s* + 1)(Cs + D)

Equating coefficients of like powers of s

bl

=

[*] 4=4A+C .. A+C=4
[CT] 0=3B+D ..3B+D=0
Puttings=1, 14=4A+4B+2C=2D .. 2A+2B+C+D=7

Puttings=-1 —-14=-4A+4B-2C+2D .. 2A-2B+C—-D=7
Putting C = 4 — A and D = —3B in the last two leads to

3s s
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x=3cost+ cos(ﬁt)

To find y we could return to equations (1) and (2) and repeat the
process, eliminating X so as to obtain y and hence y.
But always keep an eye on the original equations, the first of which is

X+2x—y=0
Therefore, in this particular case, y = X + 2x.
So all we have to do is to differentiate x twice and substitute
x=3cost+ COS(\/gt)
%= -3sint - V3sin(V3t)
X=-3cost— 3cos(\/§t)
. y=-3cost—3 cos(\/§t) +6cost+ Zcos(«/gt)
. y=3cost— cos(\/§t)

which is a good deal quicker.
So, as we have seen, the method of solving differential equations by
Laplace transforms follows a general routine.
(a) Express the equation in Laplace transforms
(b) Insert the initial conditions
(c) Simplify to obtain the transform of the solution
(d) Rewrite the final transform in partial fractions
(e) Determine the inverse transforms

and, by now, you are fully aware of the importance of partial fractions!

That brings us to the end of this particular Programme. We shall
continue our study of Laplace transforms in the next Programme.
Meanwhile, be sure you are familiar with the items listed in the
Revision summary that follows, and respond to the questions in the
Can You? checklist. You will then have no difficulty with the Test
Exercise and the Further problems provide additional practice.
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Revision summary 2
1 Laplace transform L{f(t)} = jm f(te st dt = F(s).
0
2 Table of transforms

f(t) L{f(t)} =F(s)
a a
s
et 1
s—a
. a
sinat T
s
cosat =T 3
24+ a
. a
sinh at o
s
cosh at o
n! cpr s
t" sy (n a positive integer)

3 Linearity of the Laplace transform

(a) The transform of a sum (or difference) of expressions is the
sum (or difference) of the individual transforms. That is

L{f(t) £&(0)} = L{f (D)} + L{g(t)}

(b) The transform of an expression that is multiplied by a
constant is the constant multiplied by the transform of the
expression. That is

L{kf(t)} = KL{f()}
4 Theotem 1 First shift theorem
If L{f(t)} = F(s), then L{e~*f(t)} = F(s + a).
5 Theorem 2 Multiplying by ¢t

If L{F(8)} = F(s), then L{Ef (1)} = ~ < {F(5).
6 Theorem 3 Dividing by t

If L{f(t)} = F(s), then L{itt)} = r F(o)do

N

provided that Lim {f—(—:)} exists.
t—0

7 Inverse transform

If L{F (1)} = F(s), then L~ {F(s)} = £ (2). >
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8 Rules of partial fractions

(a) The numerator must be of lower degree than the denomi- \
nator. If not, divide out.
(b) Factorise the denominator into its prime factors.

(c) Alinear factor (s + a) gives a partial fraction sf-;a where A is a

constant to be determined.

LB

s+a (s+a)
A B C

e) Similarly (s + a)® gives + + .

() Y( )gl s+a (s+a)z (S+a)3

Ps+Q

S2+ps+q
(8) A repeated quadratic factor (s% + ps + q) gives
Ps+Q Rs+T
S2+ps+q - (s2+ps+q)°
The ‘cover up’ rule
The ‘cover up’ rule often enables the values of the constant
coefficients to be written down almost on sight. However, this

method only works when the denominator of the original
fraction has non-repeated, linear factors.

(d) A repeated factor (s + a)” gives

(f) A quadratic factor (s% + ps + q) gives

10 Table of inverse transforms

F(s) f(t)
a
3 a
1 eat
S+a
n!
prsy t" (n a positive integer)
1 -1
st (n—1)!
4 sinat
SZ + aZ
LI cosat
SZ + aZ
a
oy sinh at
s
P cosh at

By the first shift theorem
If F(s) is the Laplace transform of f (t)
then F(s + a) is the Laplace transform of e™#f (t).
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11 Laplace transforms of derivatives
L{x} =%

L{%} =L{x} =sx—x0

de

where xo =valueof x att =0

2
L{d x} = L{X} = sx — sxp — x1 etc.

x1 = value of % at t =0, etc.
dt
12 Solution of differential equations
(a) Rewrite the equation in terms of Laplace transforms.
(b) Insert the given initial conditions.
(c) Rearrange the equation algebraically to give the transform of
the solution.
(d) Express the transform in standard forms by partial fractions.
(e) Determine the inverse transforms to obtain the particular
solution.

13 Simultaneous differential equations
Convert the simultaneous differential equations into simulta-
neous algebraic equations by taking the Laplace transform of each
equation in turn. Insert the initial values. Solve the simultaneous
algebraic equations in the usual manner and take the inverse
Laplace transform of the algebraic solutions to find the solutions
to the simultaneous differential equations.

¥4 Can You?

Checklist 2

Check this list before and after you try the end of Programme test.

On a scale of 1 to 5§ how confident are you that

you can:

e Obtain the Laplace transforms of simple standard
expressions?

Y [ 0O O 0O O No

e Use the first shift theorem to find the Laplace transform
of a simple expression multiplied by an exponential?
Yes [0 0O 0O 0O O No

e Find the Laplace transform of a simple expression
multiplied or divided by a variable?
Yes ] J J L] O No >

Frames
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e Use partial fractions to find the inverse Laplace
transform?

Yes [ O [0 0O O No
e Use the ‘cover up’ rule?
Yes [ O O 0O 0O No

e Use the Laplace transforms of derivatives to solve
differential equations?

Y [0 0O U 0O 0O No

e Use the Laplace transform to solve simultaneous
differential equations?

Yes 0o O O Ll Ll No

Test exercise 2

2

1 Determine the Laplace transforms of the following functions.
(@) 3e ¥ —5e* (b) sindt+cosd4t (c) 1 +2t2—-t+4
et _e2t
t
2 Determine the inverse transforms of the following.
s—5 s2+3s—7
@ 535-9 © c-pnEri2
s —-3s—4 252 —6s—1
C d .
© -a6-1 @ EE-5+9
3 Solve the following equations by Laplace transforms.

(d) e?*cos5t (e) tsin3t ®

() gx? +3x=e¢2 given that x=2 whent =0

(b) 3x—6x=sin2t giventhatx=1whent=0
(c) X—7x+12x=2 giventhatatt=0,x=1andx=35
(@ X—2x+x=te' giventhatatt=0,x=1andx=0.
4 Solve the following pair of simultaneous equations where x and y are
functions of t and given thatatt=0,x=4and y = —-1.
X+y+x+2y=e3
X+3x+ 5y =5e7

Further problems 2

1 Determine the Laplace transforms of the following functions.
(a) e**cos2t (b) tsin2t (c) 2 +4t2+5

@ S +4) (@ tcost  (© Si“i‘Zt. >
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2 Determine the inverse transforms of the following.

25—6 55—8 2 —-2s+3
(@ G-26-9) (b) ) (©) oo2F
2-11s s s—3
@ (s—2)(s2+25+2) © (2 +1)(s2+4) ® s2+4s+20°
In Questions 3 to 11, solve the equations by Laplace transforms.
3 x—4x=8 att=0,x=2.
4 3x—4x=sin2t att=0,x=1.
5§ X—-2x+x=2(t+sint) att=0,x=6,x=35.
6 X—6x+8x=¢e* att=0,x=0,x=2.
7 X+9x=cos2t att=0,x=1,x=23.
8 i-2%x+5x=¢* att=0,x=0,x=1.
9 it+4it+ax=t2+e? att=0,x=1,x=0.
10 X+ 8x+32x =32sin4t att=0,x=x=0.

11 % +25x=10(cosS5t—2sin5t) att=0,x=1,x=2.

In Questions 12 to 17, solve the pairs of simultaneous equations by Laplace
transforms.
12 p+3x=e2
x—3y=¢é
13 4x-2p+10x-5y=0
y—18x+ 15y =10
14 x—2y-3x+6y=12
3y+5x+2y=16
15 2x+3y+7x=14t+7
Sx—-3y+4x+6y=14t-14
16 2%+ 2x + 3y + 6y = 56¢! — et
x—2x—p—3y=-21et - 7et
17 i—-y+x—y=>5¢e
2x—-y+y=0

}att=0,x=y=0.
}att:O,y:4,x=2.
}att=0,x=12,y=8.
}att=0,x=y=0.
}att=0,x=8,y=3.
}att:O,x=1,y=2,5c=O.

18 Find an expression for x in terms of ¢, given that
y—x+2x=10sin2t
y+2y+x=0 and whent=0,x=y =0.
19 If JX+8x+42y=24cos4t
and y+2x+5y=0
and at t=0, x=y =0, x =1, y =2, determine an expression for y in
terms of ¢.
20 Solve completely, the pair of simultaneous equations
5%+ 12+ 6x=0
5%+ 16§+ 6y =0
given that, att=0,x=%y=1,%=0,y=0.
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Learning outcomes

When you have completed this Programme you will be able to:

e Use the Heaviside unit step function to ‘switch’ expressions on
and off

e Obtain the Laplace transform of expressions involving the Heavi-
side unit step function

92
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Iintroduction

In the previous Programme, we dealt with the Laplace transforms of
continuous functions of t. In practical applications, it is convenient to
have a function which, in effect, ‘switches on’ or ‘switches off’ a given
term at pre-described values of t. This we can do with the Heaviside unit
step function.

Heaviside unit step function

Consider a function that maintains a zero value for all values of t up to
t = ¢ and a unit value for t = ¢ and all values of t > c.

f)=0 fort<c

f(t)
f&)=1 fort>c

0 c t

This function is the Heaviside unit step function and is denoted by
f(t) =u(t—c)

where the c¢ indicates the value of t at which the function changes

from a value of O to a value of 1.
Thus, the function

f(®)
1P

is denoted by f(t) =............

f(t) =u(t—4)

Similarly, the graph of f(t) = 2u(t — 3) is
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f(H)

So u(t — ¢) has just two values

fort<cut—c)=............
fort>cut—c)=............

t<cu(t—-c)=0; t>zcqut—-c=1

Unit step at the origin

u( If the unit step occurs at
the origin, then ¢ = 0 and
1 f(t) = u(t — c¢) becomes
f(t) = u(t)
0 t

ie. u(t)=0fort<0
u(t)y=1fort > 0.
Effect of the unit step function

The graph of f(t) = t2 is,
161 of course, as shown.

f(t)

I Il . -t
T T T

-4 -2 0 2 a t
Remembering the definition of u(t — c), the graph of
f()=ut—2)-£is




Laplace transforms 2 95

For t<2,ut—-2)=0 .. ult-2)-2=0-£=0
t>2,ut-2)=1 . ut-2)-2=1-2=¢

So the function u(t — 2) suppresses the function #? for all values of t up
to t = 2 and ‘switches on’ the function t? at t = 2.

Now we can sketch the graphs of the following functions.

(@) f(t) =sint forO0<t<2nw

®) f(t) =u(t—=/4) -sint for 0 <t < 2m.

These give ............

and ............

That is, the graph of f(t) = u(t — n/4) - sint is the graph of f(t) =sint
but suppressed for all values prior to t = /4.
If we sketch the graph of f(t) = sin(t — n/4) we have

Since u(t — c) has the effect of suppressing a function for t < ¢, then
the graph of f(t) = u(t — x/4) - sin(t — 7/4) is

............
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That is, the graph of f(t) = u(t — n/4) - sin(t — n/4) is the graph of
f(t) =sint (t > 0), shifted =/4 units along the t-axis.

In general, the graph of f(t) =u(t —c) - sin(t — ¢) is the graph of
f(t) =sint (t > 0), shifted along the t-axis through an interval of

¢ units.
Similarly, for ¢ > 0, sketch the graphs of
@ fy=e"

®) fO=ut—c) et
© () =u(t—c)-e®9
@) F(t) =eHu(t— 1) — u(t - 2)}.

Arrange the graphs under each other to show the important

differences.
@
© \ (o) = et
0 —
® L ‘
f(o \[\ f(&) = u(t - et
0
¢ t
© -
f(t) N u(t—c)-eXt-9
0
¢ t
@ [
0 \"\[___f@ = et{u(t-1)-u(t-2))
o —.

In (a), we have the graph of f(t) = e~*

In (b), the same graph is suppressed prior to t = ¢

In (c), the graph of f(t) = et is shifted ¢ units along the t-axis

In (d), the graph of f(t) = e~* is turned on at t = 1 and off at t = 2.
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Laplace transform of u(t - c)

Lu(t -9y =5~

Because
L{u(t—¢c)} = J eStu(t — c)dt
0

but
_ 0 forO<t<c
St. _
€ u(t_c)_{e‘“ fort>c
so that

o0 o)
L{u(t—c)} = . eSty(t —c)dt = L et dt

[e—st] o0 e—5¢
c

—S N

Therefore, the Laplace transform of the unit step at the origin is

L)} = e
1
s
Because ¢ = 0,
So Liu(t o)y =
and L{u()} = 1.

s
Also from the definition of u(t):

L(1) = L{1- u(f)}
L(t) = L{t - u(t)}
L{F(H)} = L{F(®) - u(t)}

Make a note of these results: we shall be using them
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As we have seen, the unit step function u(t — ¢) is often combined with
other functions of t, so we now consider the Laplace transform of

u(t—c)-f(t—oc.

Laplace transform of u(t-c)-f(t-c)
(the second shift theorem)
L{u(t —c) - (f(t — )} = e “L{f(t)} = e™“F(s)
Because
L{u(t—c)-f(t—o)} = ro etu(t—c)-f(t—c)dt
0
0 forO<t<c

but e Stu(t —¢) =
( ) {e—“ fort>c

so that

L{u(t—c)-f(t—c)} = r eStf(t—c)dt

We now make the substitution t —c=v so that t = c+v and df = dv.
Also for the limits, when t=¢, v=0 and when t— oo, v — 0.
Therefore

L{u(t—o) - fit—c)} = J: eSEF(V) dv

=e“ J: e fv)dv

Now J e %f(v) dv has exactly the same value as J e Stf (t) dt which
0 0

is, of course, the Laplace transform of f(t). Therefore

L{u(t — ) - f(t - )} = e L{f(£)} = e™F(s)

L{u(t—c)-f(t—c)} =€ -F(s) where F(s) = L{f(t)}

So L{u(t —4)-(t— 4)2} = e .F(s) where F(s) = L{1?}

—_ e_4s (g_'> = Ee_is.
53 53

Note that F(s) is the transform of 2 and not of (t — 4)%.
In the same way:

L{u(t—3)-sin(t—3)} =............
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e—3s

s2+1

Because L{u(t — 3) - sin(t — 3)} = ¢~ - F(s) where F(s) = L{sint}
1
S s2+1

1
M — - S [ — —3s —_—
o L{u(t—3)-sin(t—3)} =e (sz+1)
So now do these in the same way.

@) L{u(t —2)-(t— 2)3} e
®) L{u(t—1)-sin3(t - 1)}  =...oooo.....
(©) L{u(t—>5)- et} =
(d) L{u(t —n/2) -cos2(t —w/2)} =............

Here they are
@) L{u(t ~2)-(t-2)’} = -F(s) where F(s) = L{}

| —25
g (3_) _&”
s s

() L{u(t—1)-sin3(t—1)} =e™*-F(s) where F(s) = L{sin 3t}
_sf 3 \_ 3
()5

© L{u(t -5)- e(t‘s)} =e">.F(s) where F(s) =L{e'}

1 e—Ss
_ —5s _€
=€ ( —1> s—1

(d) L{u(t —7/2) - cos2(t — w/2)} = e ™/?.F(s) where F(s) = L{cos 2t}

_ e—1rs/2 s _ s- e—1rs/2
s +4 s2+4

SoL{u(t—c)-f(t—c)} =e = -F(s) where F(s) =L{f(t)}.
Wiritten in reverse, this becomes

If F(s) = L{f(t)}, then e™* - F(s) = L{u(t - ¢) - f(t — ¢)}
where c is real and positive.
This is known as the second shift theorem.

Make a note of it: then we will use it
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If F(s) = L{f(£)}, then == - F(s) = L{u(t — c) - f(t — ¢)}

This is useful in finding inverse transforms, as we shall now see.

Example 1

—4s

s>

The numerator corresponds to e~ where ¢ = 4 and therefore indicates
u(t — 4).

Then slz _F(s)=L{t} . f(t)=t.

Find the function whose transform is

g L—l{es_:s} —u(t—4)-(t—4)

Remember that in writing the final result, f(f) is replaced by

Example 2

25
Determine L! be .
s2+4

The numerator contains e 2 and therefore indicates ............

u(t—2)

The remainder of the transform, i.e. —6—, can be written as 3 _E_
s2+4 s2+4

3 ﬁ:p(s)zu ............ }

L{3sin2t}

6e=2
.71 _
R L2 W
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u(t —2) - sin2(t — 2)

Because

—2s
L—1{S6ze+4} =u(t—2)-f(t—2) where f(t) =L‘1{ 6 }
=u(t—2)-3sin2(t - 2)

Example 3

oS
Determine L-1{ 3¢ |,
249

This, in similar manner, is ............

u(t—1)-cos3(t—1)

Because the numerator contains e~* which indicates u(t — 1).
s
Also o F(s) = L{cos 3t}

o f®)=cos3t . f(t—1)=cos3(t—1).
L1 {%} =u(t—1)-cos3(t—1)

Remember that, having obtained f(¢), the result contains f(f — c).
Here is a short exercise by way of practice.

Exercise

Determine the inverse transforms of the following.

2¢5 25738
@) 3 @@ Z-16

3e72s S5e—s
(b) 2-1 (e) p

8% s-es/?
© =73 ® w13

Results — all very straightforward.
@) u(t—5)-(t-5)>

(b) 3u(t —2)-sinh(t - 2)

(©) 4u(t —4)-sin2(t—4)

(d) 2u(t —3) - cosh 4(t - 3)

(e) Su(t-1)

® u(t—1/2)-cosvV2(t—1/2).
Before looking at a more interesting example, let us collect our results
together as far as we have gone.
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The main points are

@ u(t—c)=0 O<t<c} )
=1 t>c
® Liut -0y =~ o
L{u(t)} =
(© L{u(t—c)-f(t—c)} == -F(s) where F(s) =L{f(£)} 3)
(d) If F(s) = L{f ()}, then e™ - F(s) = L{u(t — ©)} - f(t — ©)} (4)
Now let us apply these to some further examples.
Example 1
Determine the expression f(t) for which
3 4e S
L{f(t)} =§—%—+—‘;—2‘

We take each term in turn and find its inverse transform.

(a) L‘l{%} = 3L‘1{%} =3 ie. 3u()

®) L—l{‘lse—;} —u(t—1)-4(t—1)

© L‘l{si;zs} =

u(t —2)-5(t — 2)

So we have L7! {%} = 3u(t)
L—l{%—i} =ut-1)-4(t-1)

L-l{ses;zs} —u(t—2)-5(t—2)

o F(f) =3u(t) —u(t—1) -4 — 1)+ u(t—2) - 5(t - 2)

To sketch the graph of f(t) we consider the values of the function
within the three sections 0 <t<1,1<t< 2, and 2 < t.

Betweent=0and t=1, f(t)=............

f(t)=3

Because in this interval, u(t) =1, but u(ft — 1) =0and u(t —2) =0. In
the same way, between t =1land t =2, f(t) =............
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f(t)=7 -4t

Because betweent=1and t =2, u(t) =1, u(t—- 1) =1, but
u(t—-2)=0.

L f)=3-4t-1)+0=3—-4t+4=7—4t
Similarly, fort > 2, f(t) =............

fH)=t-3

Becausefort > 2, u(t) =1, u(t—1)=1and y(t-2) =1
Sf()=3-4(t—-1)+5(-2)
=3-4t+4+5t-10=t-3
So, collecting the results together, we have
for O0<t<1, f(t)=3
1<t<2, f()=7—4t (t=1,f{t)=3;t=2,f(t)=-1)
2<t, fO)=t-3 (t=2,f)=-1t=3,ft)=0)
Using these facts we can sketch the graph of f(t), which is

Here is another.

Example 2

. . 12 3e 3e¥
Determine the expression f(t) =L 5 + Z and sketch the
graph of f(t).

First we express the inverse transform of each term in terms of the unit
step function.

This gives ............
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L {%} =2u(t); L! {%} =ut-1)-3(t-1)

L‘1{3§—;3s} =u(t-3)-3(0t-3)

Sof@® =2u®)+ut—-1)-3(t—-1)—u(t-3)-3(t-3)
So there are ‘break points’, i.e. changes of function, att=1and t = 3,
and we investigate f(t) within the three intervals.

O<t<1 fy=....o.......

1<t<3 fO=....ooooitt.

3<t fH=..ooooin.

O<t<1,f()=2 1<t<3,f(t)=3t-1; 3 <t f(H)=8

Because with

O<t<1, ut)=1,butut-1)=ult-3)=0 Sfe)=2
1<t<3, ut)=1ut—1)=1,butut-3)=0
LB =2+3(t-1)=3t-1 SLf)=3t-1
3<t, ut) =1, ut—-1)=1,ut—-3)=1
L) =2+3t-3-3t+9 Sof)=8
Therefore, the graph of f(t)is ............
f(0)
8 ______________ —_—
6 |
4+ |
|
2] ' |
1 1 1 |
0 1 2 3 4 t
. 2 t=1,f(t)=2
Between the break points, f(t) =3t~ 1 { t—3 f()—8

Now move on for the next example

Example 3

(1-e?)+e?)

If £(t) =L—1{
graph of the function.

Although at first sight this looks more complicated, we simply
multiply out the numerator and proceed as before.

}, determine f(t) and sketch the
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qfl—eB et e
o -1 {12 }

_ 1 e2 et 6
I A AR

We now write down the inverse transform of each term in terms of the
unit function, so that

fO)=ult) - t—ut-2)-t—2)+ut—4)-(t—4)—u(t-6)-(t—-6)

and we can see there are break pointsatt =2, t =4, t =6.

For 0<t<2, f(t)y=t—04+0-0 fit)y=t
2<t<4, f)=t-(t-2)+0-0 fity=2
4<t<6, f()=t—(t—2)+({t—-4)-0 fy=t-2
6<t, fO)=t—-(t—-2)+(t-4)—(t—6) f(t)=4

The second and fourth components are constant, but before
sketching the graph of the function, we check the values of f(t) =t
and f(t) =t — 2 at the relevant break points.

f(t)=t. Att=0,f(t)=0; att=2, f(t)=2
fy=t—-2. Att=4,f(t)=2; att=6,f(t)=4.
So the graph of the functionis ............

4 ____________________
10 , /E
|

It is always wise to calculate the function values at break points, since
discontinuities, or jumps, sometimes occur.
On to the next frame

Now for one in reverse.

Example 4
A function f(t) is defined by
f(t) =4 forO<t<2

=2t—3 for2<t.

Sketch the graph of the function and determine its Laplace transform.
We see that for t =0to t =2, f(t) =4.
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Notice the discontinuity at t = 2.
Expressing the function in unit step form:
f(t) =4u(t) — 4u(t —2) +u(t —2) - (2t - 3)
Note that the second term cancels f(t) = 4 at t = 2 and that the third
switches on f(t) =2t -3 at t = 2.
Before we can express this in Laplace transforms, (2t — 3) in the

third term must be written as a function of (t — 2) to correspond to
u(t — 2). Therefore, we write 2t — 3 as 2(t — 2) + 1.

Then f(t) = 4u(t) — 4u(t —2) + u(t — 2) - {2(t - 2) + 1}
=4u(t)—4u(t—2)+u(t—2)-2(t - 2) +u(t - 2)
=4u(t) — 3u(t —2) +u(t—2)-2(t - 2)

LY=o

4 3¢725 e %
s S 52

L{ft)} =

Here is one for you to work through in much the same way.

Example 5

A function is defined by f(t) =6 0<t<1
=8-2t 1<t<3
=4 3<t.

Sketch the graph and find the Laplace transform of the function.
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Expressing this in unit step form we have
f(t) =6u(t) —6u(t—1) +u(t—1)- (8 —2t)
—u(t-3)-(8-2t)+u(t-3)-4
where the second term switches off the first function f(f) =6 att=1
and the third term switches on the second function f(t) =8 — 2t,
which in turn is switched off by the fourth term at t = 3 and replaced
by f(t) = 4 in the fifth term.

Before we can write down the transforms of the third and fourth
terms, we must express f(t) =8 — 2t in terms of (ft—1) and (t - 3)
respectively.

8-2t=6+2-2t=6-2(t—1)
8-2t=2+6—-2t=2-2(t-3)

S f()=6u(t)—6u(t—1)+u(t—-1)-{6 —2(t—1)}

—u(t—3)-{2—-2(t—3)} +4u(t-3)
= 6u(t) — 6u(t — 1) + 6u(t — 1)
~u(t—1)-2(t—1) ~ 2u(t — 3)
+u(t—3)-2(t—3)+4u(t - 3)
which simplifies finally to f(£) =............

F() = 6u(t) — u(t — 1) - 2(t — 1) + u(t — 3) - 2(t - 3) + 2u(t — 3)

from which L{f(t)}=............

6 25 2e3 23
L{f(t)}=§‘ 2 T2t

Note that, in building up the function in unit step form

(@) to ‘switch on’ a function f(f) at t=c, we add the term
u(t—c)-f(t—oc

(b) to ‘switch off’ a function f(t) at t = ¢, we subtract u(t —¢) - f(t — ¢).

You have now reached the end of this Programme and this brings you
to the Revision summary and the Can You? checklist. Following
that is the Test exercise. Work through this at your own pace. A set of
Further problems provides additional valuable practice.
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% Revision summary 3
1 Heaviside unit step function: u(t — ¢)

(1) f(t)=0 O<t<c
=1 c<t

2 Suppression and shift

f(t) u(t-o)-f(t)

u(t-c)-f(t-c)

3 Laplace transform of u(t — c)
e—CS

L{ut -9} =5 L{u®) = 1.

4 Laplace transform of u(t —c) - f(t — )
L{u(t—c)-f(t—c)} =e“-F(s) where F(s) = L{f(t)}.
§ Second shift theorem

If F(s) = L{f(t)}, then e - F(s) = L{u(t — c) - f(t —c)} where cis
real and positive.
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¥4 Can You?

Checklist 3
Check this list before and after you try the end of Programme test.

On a scale of 1 to 5 how confident are you that Frames
you can:

e Use the Heaviside unit step function to ‘switch’
expressions on and off?

Yes [l ] ] ] ] No

e Obtain the Laplace transform of expressions involving
the Heaviside unit step function?

Yes O O O O O No

Test exercise 3

1 In each of the following cases, sketch the graph of the function and find
its Laplace transform.

@ f(t)=3t O0<t<2

=6 2<t

®) f()=e* 0<t<3
=0 3<t

© fHy=t2 0<t<2
=2 2<t<3
=4 3<t

@) f(t) =sin2t O<t<mw
=0 T <t.

2 Determine the function f(t) whose transform F(s) is
F(s) = % {z —5e* + 8e‘33}.
Sketch the graph of the function between t =0 and ¢ = 4.
1+3 —25 _ p—3s
3 () :L—l{( 3P (1-e?)

sz
graph of the function.
4 Determine the function f(t) for which

o - {2 =521,

Sketch the waveform and express the function in analytical form.

}, determine f(t) and sketch the
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Further problems 3

1 XL{f(t)} = ;15 {33 +2¢7% — 2¢75 }, determine f(t).

2 If f(¢p) =L‘1{(1 —¢ s)(zl +e”) }, find f(t) in terms of the unit step
function. s
3 A function f(t) is defined by
ft)y=4 0<t<3
=2t+1 3<t.
Sketch the graph of the function and determine its Laplace transform.

4 Express in terms of the Heaviside unit step function
@ f)=t2 0<t<3
=5t 3<t.
() f(t) = cost O<t<nm

= cos 2t T<t<2m
= cos 3t 27 < t.

5 A function f(t) is defined by

ft)=0 O<t<2
=t+1 2<t<3
=0 3<t

Determine L{f(t)}.

6 A function f(t) is defined by
f(t) =t* O0<t<2
=4 2<t<Ss
=0 S<t
Determine (a) the function in terms of the unit step function
(b) the Laplace transform of f(t).




Frames
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transforms 3

Learning outcomes

When you have completed this Programme you will be able to:
e Find the Laplace transforms of periodic functions

e Obtain the inverse Laplace transforms of transforms of periodic
functions

e Describe and use the unit impulse to evaluate integrals
e Obtain the Laplace transform of the unit impulse

e Use the Laplace transform to solve differential equations involving
the unit impulse

e Solve the equation and describe the behaviour of an harmonic
oscillator

111
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Laplace transforms of periodic
functions

Periodic functions

Let f(t) represent a periodic function with period T so that
f(t +nT) = f(t) with a graph of the following form

(o

f(t, +T)=1(t,)

0 t, T 44T 2T 3T t

If we describe the first cycle by f(t) then

= t) for0<t<T
f( = {fg) o(ﬁlerwise

The second cycle is identical to the first cycle except that it is shifted
by T units of time along the t-axis. Therefore the second cycle can be
described in terms of the Heaviside unit step function as
f(t = T)u(t — T). That is

2. o _ [f(®) forT<t<2T
fle=Tut-T)= { 0 otherwise

By this reasoning the periodic function f(t) is represented by

F6)=FOU®) +..oneenn...

ft)=Ff®ult)+ft-Tult—-T)+f(t-2T)u(t - 2T)+---

Because
u(t) switches on f(t) at time t = 0, u(t — T) switches on f(t — T) at
time t = T and u(t — 2T) switches on f(t — 2T) at time t = 2T, etc.
Consider now the Laplace transform of f(t). By definition

—_ 00 — T —
L{F(®) = | e*Feyae= | eira = Fs

because for t > T, f(t) = 0 and so the semi-infinite integral becomes an
integral just over the period of f(t). Using the second shift theorem
(see Frame 10 of Programme 3), the Laplace transform of f(t) is

L{f(t)} = L{f (Du(t)} + L{f(t — T)u(t - T)}
+L{f(t - 2T)u(t — 2T)} +---
That is
L{f)}=..ccevnn....
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L{f(t)} = F(s) + e TF(s) + e »TF(s) + - --

Because

L{f(t)u(t — ¢)} = e*L{f(t)} by the second shift theorem.
We can factor out F(s) and write L{f(t)} as
LIf®O}= (1 +e T +e 5T .. )F(s)

Now, do you remember the series 1+ x +x%+x3+...? This can be

written in closed form as

1+x+x2+x3+... =0

1ax+x2+x83+...=

1—x

Because

1
1-x

=1-x0)"'=14x+x2+23+...

either by the binomial theorem or by performing the long division.

So, if we let x = ¢T then

1+e T e T — ...

1+eT4e2T4 | =

1—esT

1

And so the Laplace transform of f(t) is given as

Lif®)}=1+e*T +e T+ .. )F(s) =

1

T
L{F(0) = g gy Fls) where F(5) = L St (t) dt

Note that we integrate e~!f(t) over one cycle, that is from t =0 to
t =T, and not from t = 0 to t = co as we did previously.

This is an important result. Make a note of it — then we shall apply it
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Example 1
Find the Laplace transform of the function f(t) defined by

023 92423} reva=ro

3 ————— ———— e ————

()

0 2 4 6 8 t

The expression for L{f(t)} is
............ (do not evaluate it yet)

4
LIF®) = fo | e FO

0

Because the period =4, i.e. T =4.
The function f(t) =3 forO<t <2 and f(t) =0for 2 <t < 4.

2
- L{f(t)} = lee_—“L et 3dt=...ooun.....

L)} = e

Because

o)== - = {(5) - ()

_ 3 1—e2) 3
Tl s T s(1+e %)

That is all there is to it. Now for another, so move on
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Example 2
Find the Laplace transform of the periodic function defined by
fey=t/2 0<t<3
ft+3)=f()

0 3 6 9 t

Because in this case, period = 3, i.e. T = 3.

L UAO) = | e

1 —le—ss Jz e (%) dt
L 2(l—e¥L{F()} = Jz t-etdt

Integrating by parts and simplifying the result gives
L{fO)r=.ccooooo....

L) = 5 {1 - e}

Because

21— ¥)L{f()} = Jz te st dt

—st\ 13 3
=[S il
—S 0 SJo

3¢¥ 1 [e’“] 3
B 0

M S|—S

3 e—3s —3s 1
2 52

L L) —izf 3“;;}
{1

=)
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Example 3
Sketch the graph of the function
f)=¢ 0<t<5

Ft+5) = (1)

and determine its Laplace transform.

First we sketch the graph of f(t), whichis......

f(D)

Clearly, period =5 .. T=3S5

1 L :
LIFO} =g | - FOd gives

L{FE} = eeeennn...

Complete the working

— e 56-1)

L{f(t)} = (——T—‘

e—Ss)

Because
S
L)} = 8_55 j st o dt
S (=)} = J e 6D

[e<s(s:n1t)]o it

e—56-1)

~L{f(D)}= W——

e55)

All very straightforward.

—-S(s—l)}
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Example 4
Determine the Laplace transform of the half-wave rectifier output
waveform defined by
f(t)=8sint O<t<nm
=0 T<t<2m

b rerzn=fo

Here the period is 2w i.e. T = 2x.
In general, for a periodic function of period T

1 2170)) T RNTT

1 T
LIF®) =1=gx | - FO

So, for this example

21
LF®) =g, " FO

S (= )L{f()} = J: et . 8sintdt
Writing sint as the imaginary part of e, i.e. sint = feft,
(1-e?™)L{f(t)} = &fJ:e*‘t -eltdt
=85 r e Nt gt
0

and this you can finish off in the usual manner, giving

210> T RTT
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8
Lif(0} = (s2+1)(1 —e™)

Because
(1- e )i @) =8-5 | e6Mar
0
e_(s"i)t T
—s-s[£ 5]
—(s—Nlo
-8
= 2 eGP _
=Sl -l
1 —ST ,jm
=8-S —[1-e*e
s—J
But ¢/ = cos +jsinm = —1.

L -y =s-sf e

- S-J{ S+ +e‘“)} - 8{“—“’%}

s2+1 s2+1
. 1 1+e™
cL L{f(t)}:l_e_m ><8{ 271 }
8

TA—em)(2+1)
Now let us consider the corresponding inverse transforms when
periodic functions are involved.

Inverse transforms

Finding inverse transforms of functions of s which are transforms of
periodic functions is not as straightforward as in earlier examples, for
the transforms result from integration over one cycle and not from
t =0 to t = co. Hence we have no simple table of inverse transforms
upon which to draw.

However, all difficulties can be surmounted and an example will
show how we deal with this particular problem.

Example 1
Determine the inverse transform
L_l{z +e % — 3e‘s}
S(1 — e %)
The first thing we see is the factor (1—e™*) in the denominator,

which suggests a periodic function of period 2 units, i.e.
T=2.
The key to the solution is to write (1 — e=%) in the denominator as
(1 - %)7" in the numerator and to expand this as a binomial series.
We remember that (1 -x)"1=............

ﬁﬁ where




Laplace transforms 3 119

A-x)'=14+x+x2+x3+...

(=) =14 (6) + (€2) 2+ (€ 2) +. ..
=1+e P te ¥4 s ...

—25 _ 2,—S
L L{F®) = E;(i___eg;_ = @re 3e)(1-e )

Z%(Z + e—Zs _ 36—3) (1 4 e—2s +e~4s + e—6s +e~8.s + .. )

We now multiply the second series by each term of the first in turn
and collect up like terms, giving
1 2 +2¢% +2¢% +2¢7% ...
Lif®)}=+ + e + e + e .
—3e$ ~3e73 ~3e™5

L{f(t)} = %{z —3et +3eF -3 ¥ 43¢ ¥ -3 +...}

—CS

. e . . .
Each term is of the form 5 SO expressing f(t) in unit step form,
we have

F(t) = 2u(t) — 3u(t — 1) + 3u(t — 2) — 3u(t — 3) + 3u(t — 4). ..

and from this we can sketch the waveform, which is therefore
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fHh=2 0O<t<1

2 1<t<z} Fit+2)=f(t)

The key to the whole process is thusto ............

express (1 — e;Ts) in the denominator
as (1—e )7 in the numerator and
to expand this as a binomial series.

We do this by making use of the basic series

A-0)"=1+x+2+x3+x4+...

Example 2

3(1—e)

; -1
Determine L {s =

} and sketch the resulting waveform of f(t).
3 —S —3s5\~1
L{if}=<(1—-e")(1-e™)

s
= e (next step)

L{f(t)} = %(1 e (1+eF e +e®+..)

which multiplied out gives

L{f()} = % (l-e*+e¥—e®tes_e+..)

3 3 3e73 3e % 36

N N N M N

And in unit step form, this gives

10 E T

f(t) =3u(t) - 3u(t —1)+3u(t—-3)-3u(t—4)+...

The waveform isthus ............




121

Laplace transforms 3

f(o
3 ————————————— —— —
1 1

0 1 2 3 4 5 6 7 t

f)=3 O<t<1}

t+3)=f(t
f=0 1<t<3f [E+I=FO
And now, one more. They are all done in the same way

Example 3

—4s
EL{f(t)} = zisz — }a—ziFiT)' determine f(¢) and sketch the waveform.

1 t
The first term is easy enough. In unit step form L! {m} =5 u(t)

From the second term
2¢4 2( _ sy -1
O R G UL
=%{e‘4‘(1 +eBte et )}

Q¢4 g8 D125 9o-16s
s s s T s
Lf) = (in unit step form)

+...

F(t) =5 - u(t) — 2u(t — 4) — 2u(t — 8) — 2u(t ~12) — ...

Now we have to draw the waveform. Consider the function terms up
to each break point in turn.

0<t<4 f)=y FO)=0; f(4)=2
4<t<8 f(t):%—z F4)=0; f(8)=2
8<t<12 f(t):%—Z—z F8)=0; F(12)=2 etc.

So the waveform is ............
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0 4 8 12 16 t

Expressed analytically, we finally have
f)=F O<t<d, flt+4)=((t)

The Dirac delta - the unit impulse

So far we have dealt with a number of standard Laplace transforms and
then the Heaviside unit step function with some of its applications.
We now come to consider an entity that is different from any of the
functions we have used before because it is not a proper function.
Rather than being defined by its inputs and corresponding outputs it is
defined by its effect on other functions. If f(t) represents a function
then the Dirac delta §(t) is defined by the integral

| rese-ayar=re@

-0

8(t) is often referred to as the Dirac delta function even though it is
not a function in the conventional sense of being completely defined
in terms of its outputs for the corresponding inputs. The nearest that
can be achieved in defining it in function terms is

6(t)={0 t#0

undefined t=0
From the definition, if f(t) = 1 then

r St—a)dt=............

—0Q

r §(t —a)dt = 1

—00

Because
r f(t)é6(t —a)dt = f(a) and f(t) =1 so f(a) = 1, therefore

00
J 6(t — a)dt = 1 hence the name unit impulse.

—00

Also, if p < a < q then

q
J St—a)dt=............
p
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q
J ft—a)dt=1
P

Because

Jw 6(t—a)dt=r 6(t—a)dt+J:6(t—a)dt+ro6(t—a)dt
o0 —o0 q

q since §(t —a) =0
andg<t<oo

r
=1

q
So that J §(t—a)dt=1
?

Graphical representation

Graphically the Dirac delta or unit impulse §(t — a) is represented by
the horizontal axis with a vertical line of infinite length at t = a.

(1)

So far, then, we have
@ ré(t—a)dt= 1

4
) Ef(t) .8(¢ - a) dt = f(a)
provided, in each case, thatp <a < q.
Example 1
To evaluate J: (t*+4)-6(t—2)dt.

The factor §(t — 2) shows that the impulse occurs at t =2, i.e. a = 2.
fO=t2+4 . fla=f2)=4+4=8
r(tZ +4)-6(t—2)dt =f(2) =8
1
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Example 2

To evaluate JW cos 6t - §(t — w/2)dt.
0

rcos 6t-5(t—n/2)dt =f(n/2) =cos3m=—1
0

and in the same way
6
@) J 5 8(t—3)dt=..oveeenn.s
0
S
(b) j et §t—a)dt=............
2

© j:(?;tz —4t+5)-8(t—2)dt=............

6
@) JOS-é(t—B)dt=5x1=5

() E e s(t—4)dt=f(4)=[e¥],_=e€P

© J:(3t2—4t+5)~6(t—2)dt=12—8+5=9

Nothing could be easier. It all rests on the fact that, provided p < a < q

r fit)-6(t—a)ydt=............
p

f(a)

Now let us consider the Laplace transform of §(t - a).

On then to the next frame

Laplace transform of §(t-a)

We have already shown that

[[ro-s¢-aa=r@ p<a<q

»
Therefore, if p=0and g =
, f@-ét—a)dt=f(a)

Hence, if f(t) = e~%, this becomes

” et §(t —a)dt = L{§(t — a)}
Jo
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—as

i.e. the value of f(t), i.e. e, at t = a.
L{§(t—a)}=e*

It follows from this that the Laplace transform of the impulse function
at the originis ............

Because, for a =0, L{§(t —a)} = L{§(t)} =" =1
S L{sr=1

Finally, let us deal with the more general case of L{f(t)- 6(t — a)}.

We have L{f(t)-6(t —a)} = J e St.f(t)-§(t — a) dt. Now the integrand
0

est.f(t)- 6(t — a) = O for all values of t except at t = a at which point
et =%, and f(t) =f(a).

~ L) - 8(t—a)} = f(a) - j 8(t —a)dt

0

= f(@)- (1)
o L{f() - 8(t — )} = f(@)e™

Another important result to note. Then let us deal with some examples

We have L{f(t)-6(t —a)} =f(a) - e*

Therefore

(@ L{6-6(t—4)} a=4, .. L{6-6§t—4)}=6e*
®) L{t3-6t—2)} a=2, .. L{t3-6(t—2)}=8e>
Similarly

(©) L{sin3t-6(t—7/2)} =...ccce.....

Because

L{sin3t - 6(t — /2)} = [sin 3] /2 = _e~™/2

t=r/2 " e
and
(d) L{cosh2t-§(t)} =............
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Because
L{cosh2t-§(t)} = [cosh 2t],_ - €® = cosh0- (1) =1
So our main conclusions so far are as follows.

q
1 J ft—a)dt=............ provided ............
p

@) j: F£)-8(t—aydt=............ provided ............

G) L{s(t—a)} =...oen.....
@ LB} = evneenn...
) LIF(t) - S(t—a)y =.ovvnee...

q
1) J §(t —a)dt — 1 provided p < a < q
P

@) E £(t) - 6(t —a)dt = f(a) provided p < a < q

@B) L{t-a)}=e*
(4 L{5()} =1
©®) L{f(t)-6(t—a)} =f(a)-e*

Just check that you have noted this important list — the basis of all
work on the Dirac delta function.

Now for one further example on this section

Example

Impulses of 1, 4, 7 units occur at t = 1, £ = 3 and ¢ = 4 respectively, in
the directions shown.

(1)

1-8(t—1) |7'8(t—4)

0 1 2 3 4 t

45(t —3)
Write down an expression for f(t) and determine its Laplace
transform.
Wehave f(t)=1-6(t—1)—4-6(t—3)+7-6(t—4).
Then L{f()} =............
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L{f()} =e* —4e > + 7e*

and that is all there is to that.

The derivative of the unit step function
One further consideration is interesting.

Consider some function f(t) that is zero outside some finite interval
[a, D] of the real line. That is, f(t) =0 for t < a and £ > b, then

| ey at = poror.-o

where u(t) is the unit step function and f(t) is zero at the limits.

Now

|" morera=|" worgda | uworow
and so

r L(OF () dt = rw WD) (£) dt

This means that
ro ) dt = — J u(t)f'(t) dt

[oo]
ro f(t)dt Because the unit step
is zero for negative t

8

o

-[ro]

= ~f(00) +(0)

= Because f(co0) = 0 by
o) definition

= Joo S(Of (t)dt By the definition of
—co the Dirac delta

and so v/ (t) = é(t) — the unit impulse is equal to the derivative of the unit
step function.
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Differential equations involving
the unit impulse

Example 1

A system has the equation of motion
X+ 6x+8x=g(t)

where g(t) is an impulse of 4 units applied att = 5. Att =0, x =0 and
x = 3. Determine an expression for the displacement x in terms of ¢.

The impulse of 4 units is applied at t = 5. .". g(t) =4-6(t - 35).
L X+6x+8x=4-6(t-5) Att=0,x=0,x=3.
Taking Laplace transforms this differential equation becomes

(s2% — sxo — X1) + 6(sX — x0) + 8% = 4>

Now xp =0; x; =3
. $°X — 3+ 65X+ 8X = 4e”>
S (P+6s+8)x=3+4¢>
1

L X=(3+4e) GIO6TD

- 1 . . .
Writing GI967a in partial fractions, we get

= (3+4e-53){1.——1__1. 1 }

. ;Z—E 1 _ 1 42 e—Ss e—Ss
T T 2)s+2 s+4 S+2 s+4

Taking inverse transforms

x= %{e‘” —e ¥} 4+ Z{e"z(t's) Ut —5) — e D) Lyt - 5)}
= %{e‘” —e M} 4 2{e7 . 0.yt —5) —e .. ut - 5)}

which simplifiesto x=............
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X = e‘Zt{%+2«fz10 “u(t —- 5)} - e‘4’{%+ 2e20 . u(t - 5)}

Example 2

Solve the equation X + 4%+ 13x = 2. §(t) where, at t =0, x =2 and
x=0.

A+4x+13x=2-6(t) x=2x=0
Expressing in Laplace transforms, we have

(% — sx0 — x1) + 4(sX — x0) + 13X =2- (1)

Inserting the initial conditions and simplifying,

1

X=@2s+10) G 13

Rearranging the denominator by completing the square, this can be

written
Xx=(2s+ 10)——12—
(s+2)°+9
XS i
x = 2e % {cos 3t + sin 3t}
Because
7 2(s+2) 6

(s+2)°%+9 (s+2)%+9
. x=2e % cos3t + 2¢ % sin 3t
", x=2¢?*{cos 3t + sin 3t}
Now for one further example for you to work through on your own.

So move on
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Example 3
The equation of motion of a system is

X + 5% + 4x = g(t) where g(t) =3 - 6(t — 2).
At t=0, x=2 and x=—-2. Determine an expression for the
displacement x in terms of t.

We have % + 5x +4x = 3 - 6(t — 2) with xo = 2 and x; = -2.
As before, you can express this in Laplace transforms, substitute the
initial conditions, simplify to obtain an expression for x and finally
take inverse transforms to determine the required expression for x.

Work right through it carefully. It is good revision and there are
no snags.

x=et{2+2 ut-2)} - ult-2)

Here is the working for you to check.
X+5%+4x=3-6(t—2)with xp =2 and x; = -2
(% — sx0 — X1) + 5(sX — Xo) + 4% = 3¢

$2% — 25+ 2 + 55X — 10 + 4% = 37>
(> +55+4)x—25s—8 =3¢
So(s+1)(s+4)X=25+8+3e>
2(s+4) _2s 3

LX= e .
GrDGe+d) ¢ GrDe+d
2 (1 1
“syite {s+1—s+4}
_ 2 e o2
L X= +

s+1 s+1 s+4
Lx=2ettu(t—2) e _y(t —2). e 42
=2t +u(t-2)-f. et —ut-2)-e. e
X =e't{2+ez-u(t—2)} — 8 -€_4t-u(t—2)
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Harmonic oscillators

If the position of a system at time ¢ is described by the expression f()
where f(t) satisfies the differential equation

af”(t) + bf () = 0, f(0) = a and '(0) = 8
(and where a and b have the same sign)

then, taking Laplace transforms of both sides gives
L{af"(t) + bf ()} = L{0}

That is
a[s*F(s) — sa — ] + b[F(s)] =0

Collecting like terms gives
(as® + b)F(s) = sa.+

giving

F(s) = sa+f

asz+b

and so

Therefore F(s) = szs_s_a(/}:l/)a) te f {Z/ a)

f) = %cos \/gt + gsin \/gt

The system executes simple harmonic, oscillatory motion with frequency

b 27 a
—radians per unit of time and with period ——— = 24 /. It is called
\/; P Perot oa = “"Vb

an harmonic oscillator. Let’s try some examples.

Example 1
Find the solution to the harmonic oscillator
f"(t) + 16f(t) = 0 where f(0) = 1 and f'(0) =0
Taking Laplace transforms gives
F(s)=............

S
FO=%716

Because
Taking Laplace transforms L{f”(t) 4+ 16f(t)} = L{0}.

That is s2F(s) — s + 16F(s) = 0 and so
s
Fo) =218
This means that
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f(t) = cos 4t

Because
s s
=i~ vr@
transforms on page 68.
The motion of this system is then periodic with frequency 4 radians
per unit of time and with period 27/4 = /2 units of time.

so f(t) = cos4t from the Table of Laplace

Example 2

The frequency and period of the harmonic oscillator whose position
f(t) satisfies the differential equation

5f"(t) + 10f(t) = O where £(0) = 0 and f'(0) = 4

is given as
frequency ............ radians per unit of time
and period ............ units of time
frequency v2 and period v2r
Because

Taking Laplace transforms gives
L{5f"(t) + 10f (t)} = L{0} that is 55’F(s) — 4 + 10F(s) = O so that
4 4/5
552410 s2+2
and from the Table of Laplace transforms on page 68

f(t) = 2T\/zsin V2t

E(s) =

This is periodic with frequency v2 radians per unit of time and
period 27/v/2 = v/2x units of time.
2vV2

Notice that the amplitude of the motion is 5

Damped motion
Consider the equation
Sf"(t) + 5f'(t) + 10f(t) = O where f(0) =0 and f'(0) = 4

This is the same as the last equation in Frame 54 with an extra term
added, namely 5f'(t). This term describes a particular effect on the
system as you will see from the solution.

Solving the differential equation gives
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f(t) = -53—7e-f/2 sin (ﬁt/z)

Because
Taking Laplace transforms gives
L{5f"(t) + 5f'(t) + 10f(t)} = L{0} that is
5(s2F(s) — 4) + 5sF(s) + 10F(s) = 0
so that
20 B 4 _ 4
s2+55+10 s2+s+2 (s+1/2)% + (ﬁ/z)z

and from the Table of Laplace transforms on page 68

ft) = %e‘t/z sin(ﬁt/z)

E(s) = g

This is periodic with frequency 1 radian per unit of time and period

27 units of time but with an amplitude that is decreasing with time.
The graph of this function is as follows

2 -

1-5

fo 14

0-5 1

0 . t

VAR
-0-5

-1 A

The effect of the 5f'(t) in the differential equation is to introduce
damping into the oscillatory motion so causing the oscillations to
decay. Let’s try another example.
Example 3
Consider the equation

5f"(t) + f'(t) + 10f (t) = O where f(0) = 0 and f'(0) = 4

This equation is again similar to the previous equation but with a
smaller damping term of f’(t) instead of 5f’(t). Then here
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f(t)—\/ng 01t sin /1-99¢

Because
Taking Laplace transforms gives
L{5f"(t) + f'(t) + 10f(t)} = L{O} that is
5(s%F(s) — 4) + sF(s) + 10F(s) =
so that

20 B 4 _ 4
524+ 15+10 s2+025+2 (s+0-1)2 + 199

E(s) =

and from the Table of Laplace transforms on page 68

f(t)= \/—14:9'5‘3_0“ sin v/1-99t

This is periodic with frequency v/'1-99 radians per unit of time and

period 27/+/1-99 units of time and with an amplitude that is
decreasing with time. The graph of this function is as follows

]

1

f(t)omﬂf\/\/\ﬁ ;

N v 10\/ 15 207 2 30

=2

_

-3 4

Again, the effect of the f'(t) in the differential equation is to introduce
damping into the oscillatory motion so causing it to decay. Also
because the coefficient of f'(t) is smaller in this example, the damping
is less severe.
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Forced harmonic motion with
damping

The equation
f'(t) +f'(t) +f(t) = ¢ where f(0) =0 and f'(0) =0
we know would represent damped harmonic motion were it not for

the exponential on the right-hand side. To see the effect of the
exponential we solve the equation.

Taking Laplace transforms we see that
F(s)=............

F§) == 1)(s:+s+ i)
Because
L{f"(t) +f/(t) + f(t)} = L{¢'} that is (s* + s+ 1)F(s) = _1 7 S0
Fs) = ;

(s—=1)(s2+s+1)
Separating into partial fractions gives

F(s)=.....oo.n..
1 s+2
F) =351 3@ s+ 1)
Because
1 A Bs+C

G-DE1s+D) G6-1) E+s+D)
_A(s>+s5+1)+(Bs+C)(s—1)
(-1 +s+1)

Equating numerators and then comparing coefficients of powers of s
gives

1=A(s>+s+1)+(Bs+C)(s—1)
[2l: 0=A+B 1) So(2)+(3): 1=2A-B
[s: 0=A-B+C (2) 2x(1): 0=2A+2B
[CT: 1=A-C 3) Therefore: —1=3B
soB=-1/3=—-Aand C=-2/3

1 1 s+2
Thus F(s) = G-1)(+s+ 1)=3(s—1)_3(S2+S+1)

Consequently
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f(t)= € %e‘t/z (cos\/?gt + ﬁsinﬁ )

3 2
Because
1 s+2
Fs) = 36—1) 3(s2+s+1)
1 s+3 3

36D () 3(6+D)
So
A g Vet iny3
f(®) =3-3¢ (cos St + \/§smTt)
from the Table of Laplace transforms on page 68.

8000 ~
7000 -
6000 -
5000 -
7o) 4000
3000 -
2000 -
1000 -

0

]

1
Notice that the term §e‘t/ 2 (cos@t +v3 sin‘/Tgt) represents damped

harmonic motion and is called the transient term whereas the term
i

e .
3 represents a steady-state term, so called because as the transient

term decays the steady-state term remains the dominant part of the
solution. The steady-state solution is a direct consequence of the term
on the right-hand side of the differential equation.

Try another one for yourself. The transient and steady-state terms of
the system described by the differential equation

() + 2f'(t) + 5f (t) = €% where f(0) =0 and f/(0) = 1

are  Transientterm ............ Steady-state term ............
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1 S ot t
~13¢ €os 2t + =€ sin 2t, 1362'

Because
Taking Laplace transforms, L{f"(t) + 2f(t) + 5f(t)} = L{e?*'}. That is

[s*F(s) — 1] + 2sF(s) + 5F(s) = ﬁ, that is
1 s—1
2 = —————— T
(s +Zs+5)F(s)_1+S_z T3
s—1 A Bs+C
So thatF(s)_(S—Z)(52+25+5) _s—2+52+25+5' Hence
s—1=A(s®+2s+5) + (Bs + C)(s — 2). Equating powers of s gives

[s%]: 0=A+B
[sl: 1=2A-2B+C
[CT: -1=5A-2C

Solving these three equatlons gives A=1/13, B=-1/13 and
C =9/13 so that

F(s) = 1 _ s—9
T 13(s—2) 13(s2+2s+5)
1 s—-9
= — . That is
13(s—2) 13((5 +1)% + 22)
1 s+1 10
F(s) = - +
Bl-2) 13(s+1)°+22) 13((s+ 1% +22)
Therefore
ft)= ezt ~ L etcosar + > etsin2t
13 13
60 -
50 -
40 4
f(o 30 -
20 -
10 A
0 T T T 1 t
1 2 3 4

Next frame
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Resonance

These differential equations with a function on the right-hand side are
called inhomogeneous differential equations. They represent
systems whose behaviour f(t) is dictated by the structure of the left-
hand side and the forcing function on the right-hand side. If an
undamped and unforced system which exhibits periodic behaviour
has a periodic forcing function applied that has the same period then
resonance will occur and the system will undergo periodic behaviour
with an increasing amplitude. An example will illustrate this.
The differential equation

f"(t) + f(t) = 0 where f(0) = 0 and f'(0) = 1
represents an undamped, unforced system with behaviour

FO) =ieaann...

f(t) =sint

Because
Taking the Laplace transform of both sides of the equation gives
L{f"(t) + f(t)} = L{0} that is s*F(s) — 1 + F(s) = O so that

1 . .
F(s) = 71 8iving f(t) =sint

If the forcing term —2sint is applied to the right-hand side of the
equation it has the same period as the natural frequency of the system
being forced and so resonance will set in. The differential equation to
solve is then

f"(t) +f(t) = —2sint where f(0) = 0 and '(0) = 1
This has the solution f(f) =............
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f(t) =tcost
Because

Taking the Laplace transform of both sides of the equation gives
L{F"(t) + F(D)} = L{~2sint} that is sF(s) — 1 + F(s) = %

50 that F(s) = =~ — —— 2 giving F(s) = =" Now, the

2+1 (s241)° (z 1)
Laplace transform of costis ——— and (—— e
P s2+1 s2+1) (s24+1)%

Therefore f(f) =tcost
40 -

{?\pAAAA,ﬂ
VAT,

—40 -

The system undergoes periodic behaviour with an increasing
amplitude.

You have now reached the end of this Programme and this brings you
to the Revision summary and the Can You? checklist. Following
that is the Test exercise. Work through this at your own pace. A set of
Further problems provides additional valuable practice.

% Revision summary 4
1 Periodic functions
fit)=f({t+nT) n=1,23,... Period = T.

2 Laplace transform of a periodic function with period T
T
Lf®) =1 | - FO

3 Inverse transforms involving periodic functions

g p1fl¥2eF -3¢
& S(1—e)

Expand (1 — e—35)_1 as a binomial series, like

A-x)t=14+x+x2+x3>+...

Multiply out and take inverse transforms of each term in turn. >
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4 Dirac delta function or unit impulse function

£(f) 3(t-a) s(t—a)=0  t#a

Il
8
T
8

0 a t
8 Delta function at the origin

f(t
® a=0 . 6t=0 t#£0
89 =00 t=0.
0 t
6 Area of pulse=1
f(6) q
3(t-a) J 6(t—a)ydt=1
p
| | p<a<gq
0 p a q t

7 Integration of the impulse function
q
[fo-se-ayat=r@ p<a<q
P

8 Laplace transform of §(t — a)
L{§(t—a)}=e*
L{6(t)} =1 because a =0
L{f(t) - 8(t - @)} = f(a) - e
9 Harmonic oscillators
The equation of af”(t) + bf (t) =0, f(0) = « and f'(0) = 8, where a
and b are of the same sign, represents a system undergoing simple
harmonic motion and is referred to as an harmonic oscillator. The

system oscillates with a frequency of \/g radians per unit of time

and with period —— \/_ =27 A 2 units of time. If a first derivative
term is added to the left-hand side of the equation then, provided
all three coefficients have the same sign, the system will undergo

damped harmonic motion. >
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10 Forced harmonic motion
Forced harmonic motion is achieved by the existence of a term on
the right-hand side of the equation giving rise to transient and
steady-state parts of the solution.

11 Resonance
Resonance is exhibited by a system undergoing periodic beha-
viour with a growing amplitude of vibration. Resonance occurs
when a system, whose unforced behaviour is periodic, is forced
with the same period.

¥4 Can You?

Checklist 4

Check this list before and after you try the end of Programme test.

On a scale of 1 to 5, how confident are you that Frames
you can:

e Find the Laplace transforms of periodic functions?
Yes o o o 0o o No

e Obtain the inverse Laplace transforms of transforms of
periodic functions?

Yes ] ] UJ ] ] No

e Describe and use the unit impulse to evaluate integrals?

Yes 0O 0O 0O 0O O No

e Obtain the Laplace transform of the unit impulse?
Yes [ [ O O O No

e Use the Laplace transform to solve differential
equations involving the unit impulse?

Yes | | ] OJ L] No

e Solve the equation and describe the behaviour of an
harmonic oscillator?

Yes O O 0O 0O @O No
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Test exercise 4

1 Determine the Laplace transform of the periodic function shown.

2 Evaluate
(@) re‘3t -6(t—2)dt
0

®) rosinBt-é(t—vr) dt
0

3
© L (262 +3) - 8(t — 2) dt.

3 Determine (a) L{4-6(t —3)}, (b) L{e73-§(t —2)}.
Sketch the graph of f(t) =3-6(t) +4-6(t—2)—-3-6(t—4) and
determine its Laplace transform.

5 Solve the equation % + 6x + 10x = 7 - §(t) given that, att =0, x=-1
and x =0.

6 The equation of motion of a system is
X+3x+2x=3-6(t—4).
At t =0, x =2 and x = —4. Determine an expression for the
displacement x in terms of t.

7 Find the frequency, periodic time and solution for each of the following
harmonic oscillators.
@ f'(t)+f(t) =0 given that f(0) =0 and f'(0) = 1
(b) 6f"(t) + 2f'(t) +9f(t) = O given that f(0) =0 and f'(0) = 3.

8 Find the transient and steady-state solutions of the forced harmonic
oscillator
f"(t) + 2f'(t) + 3f(t) = 4€™ given that f(0) = —2 and f/(0) = 6.
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Further problems 4

1 Iff(t) =asint O<t<m _
o S S resan=ro,

a
@+ DA —em)
2 Iff(t)=asint O<t<m f(t+m)=[(t), determine L{f(t)}.
3 Find the Laplace transforms of the following periodic functions.
@ f@t) =t 0<t<T fE+T)=f(t)
b) f(t)=¢¢ O<t<2r fit+2n) =f(t)

© f(t) =t 0<t<1} F(E+2) = F(B)

prove that L{f(t)} =

=0 1<t<?2
@ fit)=t2 0<t<2 ~
! 2<t<3} F(t+3)=f(t)

4 A mass M is attached to a spring of stiffness w?M and is set in motion at

t = 0 by an impulsive force P. The equation of motion is
M3+ Muw?x =P §(t).
Obtain an expression for x in terms of t.

5 An impulsive voltage E is applied at ¢ = 0 to a series circuit containing
inductance L and capacitance C. Initially, the current and charge are
zero. The current i at time t is given by

di g¢q

where g is the instantaneous value of the charge on the capacitor. Since
dgq

i= ar determine an expression for the current i in the circuit at time t.

6 A system has the equation of motion
X+ 5%+ 6x=F(t)
where, at t =0, x = 0 and x = 2. If F(t) is an impulse of 20 units applied
at t = 4, determine an expression for x in terms of t.

7 Find the frequency, periodic time and solution for each of the following
harmonic oscillators.

(@ 12f"(t) +f(t) = 0 given that f(0) = —1 and f'(0) =2
() f"(t)+12f(t) = 0 given that f(0) = 2 and f'(0) = —1.
8 Solve for each of the following harmonic oscillators.
(@) 4-6f"(t) +2-2f(t) = O given that f(0) = 1-6 and f'(0) = —3-1
(b) V2f"(t) +V3f(t) = 0 given that f(0) = 0 and f'(0) = .

9 Find the transient and steady-state solutions of the forced harmonic
oscillator

4" () + 31 (t) + 2f(t) = €'
given that £(0) =0 and f’(0) = 6.
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Z transforms

Learning outcomes

When you have completed this Programme you will be able to:

e Define the Z transform of a sequence and derive transforms of
specified sequences

e Make reference to a table of standard Z transforms

e Recognise the Z transform as being a linear transform and so obtain
the transform of linear combinations of standard sequences

e Apply the first and second shift theorems, the translation theorem,
the initial and final value theorems and the derivative theorem

e Use partial fractions to derive the inverse transforms
e Solve linear, first-order, constant coefficient recurrence relations

e Demonstrate the relationship between the Laplace transform and
the Z transform

144
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Introduction

The Laplace transform deals with continuous functions and can be
used to solve many differential equations that arise in science and
engineering. There are occasions, however, when we have to deal with
discrete functions — sequences — and their associated difference
equations. For example, the central processing unit of your
computer can only handle information in the form of pulses of
electricity. This information transmission is called digital transmis-
sion. There are, however, times when information is fed into the
computer in the form of a continuously varying signal called an
analogue signal. For instance, a mouse can be moved about the flat
surface of your desk in a continuous manner but the central processing
unit will only recognise position on the screen to the nearest pixel.
The analogue signal coming from the mouse needs to be converted
into a digital signal for recognition by the computer’s central
processing unit. This conversion of a signal from analogue to digital
is achieved by a device called a demodulator that samples the
analogue signal at regular intervals of time and outputs the sampled
values as the digital signal — as a sequence of values. The Z transform,
which is allied to the Laplace transform, deals with such sequences
and the recurrence relations - or difference equations - that arise.

The sequence ..., 372, 371, 39, 3, 32, 33,... has a general term of the
form 3* and as a shorthand notation we use {3¥}*  to represent this
sequence and to indicate that the powers range from —oco to oo.
The sum

SO O

is called the Z transform of the sequence, Z{3¥}> , and is denoted
by F(z), where the complex number z is chosen to ensure that the sum
is finite. We say that

o] k
{3¥}°, and Z{3}" =F(z)= ) @) form a Z transform pair.

k=—o0
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For our purposes we shall consider only causal sequences of the form
{x}s where x; = O for k < 0 which for brevity we shall denote by {x:}
with corresponding Z transform

Z{ix}y=Fz)=) —.
{ k} ( ) ; 3
Notice that this is the definition of the Z transform of the sequence
{x«}. For example, the unit impulse sequence {6} = {1, 0, 0, 0,...} has
the Z transform
Z{}=eooiiii. valid for ............ values of z

Z{é} = 1 valid for all values of z

Because
Z{b6} = —
{6x} ;Zk
0 O
=1+—+—2+...=1
z Z
Try another.

The sequence {u} = {1, 1, 1,...} = {1} is called the unit step sequence
and has the Z transform

............ provided |z|............
Next frame
Z_ provided lz] > 1
z—-1 P
Because
Z{} = F(z)
[o] 00
N1
U U U U |
N 2tz st tat
Comparing this to the series expansion of - ! S =1+x+ P ST
which is valid for |x| < 1 then
F(z) = 1 1 provided 1' <1
1 z
z
=-2_ provided |z| > 1
=z-1?
And another.

Given the causal sequence {x} = {1, q, @%, a3, a*,...} = {a*}
the Z transform is ............
Next frame
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¥4
—— provided |z| > a
Z—a

Because
k

zZ{d"} =g%
=36

=1+§+(§)2+(§)3+...

Comparing this to the series expansion of =14+x+x24+x3+...

which is valid for |x| < 1 then

F@)=1+2+ (;)2+(§)3+...

1
1—x

@ provided E‘ <L

z

That is, multiplying numerator and denominator by z
z .
F(z) = 7—a provided |z| > |a|
z
z—d
Let’s try another. The sequence {x} = {0, 1, 2, 3, 4,...} = {k} has the
Z transform

Therefore {a*} and F(z) = (2| > |a|) form a Z transform pair.

Z{k}=F2)=..ccc.......
Answer in the next frame
1 2 3 4
F(Z)=E+?+z_3+?+"'
Because
Z{k} =F(z)
o
k=OZk
-y K
=ozk
—o+ly2,. 3,4,
Ttz 22 BT

By comparing this sequence with the derivative of (1 —x)™! and its
series representation, this sequence can be written as a rational
expressionin zas F(z) =............
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VA
Oy

Because
1 2 3 4
F(Z)—0+;+Z'—2+z—3+?+...

Comparing this with the series expansion

1+2x+3x2+4x3+---=%(1+x+x2+x3+~--)
d 1 1
=—1—x =
then we can see that by multiplying F(z) by z
2 3 4 1
ZF(Z)—1+E+E§+E§+"'—m
so, dividing both sides by z gives

1 z
Ko = a2~ oy

Next frame

Table of Z transforms

We list the results that we have obtained so far as well as some
additional ones for future reference.

Sequence Transform Permitted
F(z) values of z
{&}={1,0,0,...} 1 All values of z
z
{uk}={ll 1/ 1/} Z-1 'Z|>1
z
{k}={0, 1, 2, 3,...} (Z—_l_)z 'Z'>1
z(z+1
{k*}=1{0,1,4,9,...} hg) |z} > 1
z(Z2+4z+1
{kB} = {O, 1, 8, 27, } —(“(Z__F—)- ,Zl >1
z
{d}=1{1,4a,a% a3,...} “—a | > |a
az
{ka*} = {0, a, 242, 3a%,...} o’ |z| > |a]

Next frame
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Properties of Z transforms

1 Linearity

The Z transform is a linear transform. That is, if @ and b are constants
then

Z(a{x} + b{n}) = aZ{x} + bZ{y}

For example, the Z transform of the sequence {k}is Z{k} =............
and the Z transform of the sequence {e~%*}is Z{e*} =............

Zk} =— e_z

zZ{ky =—2
(z—

Because

Z{k} = @ 1) ——— from the table and, also from the table,
Z{a*} = Z——— so when a = ¢72,
Z{ —Zk} .

Consequently, the Z transform of 3{k} — 5{e 2%} is............

ze—Z

—523 +132%2 — z(3¢72 + 5)
(z-1)*z-e?)

Because
Z(3{k} — 5{e*}) =3Z{k} — 5Z{e"*}
3z Sz
T@z-1? (@-e?)
32( —e 2) 5z(z — 1)*

(z-1)*(z—e2)

322 —3z¢72 - 52 + 1022 —
(z-1)*(z~e?)

=523 41322 — 2(3e72 + 5)

- 1)z-e?)
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2 First shift theorem (shifting to the left)
If Z{xx} = F(z) then
Z{Xgym} = Z"F(z) — [ZmXo +Z2% 4.+ me—l]

is the Z transform of the sequence that has been shifted by m places to
the left. For example

Z{xgs1} = zF(2) — zxp
Z{xx2} = 22F(2) — 22x0 — 211

These will be used later when solving difference equations. Note the
similarity between these results and the Laplace transforms for the first
and second derivatives for continuous functions.

For example, given that Z{4¥} = z—f_i then

Z{4B =

64z
z—4

Because
Z{xkym} = Z"F(z) — [2"%0 + 2™ a1 + ...+ ZXm1 ]
S0

Z{4"3) = PZ{4F} - [4° + 2241 + 4] where Z{4"} ="
3 Z
=z

i [2 + 42% + 162]

7
=-Z——4_ [ZS+4ZZ+162]

- (22 +422+162)(z—4)

z—-4
_z4—(z4—64z)
- z—4
_ 64z
T z—4

In this way we have derived the Z transform of the sequence
{64, 256, 1024, ...} by shifting the sequence {1, 4, 16, 64, 256, ...}
three places to the left and losing the first three terms.

z

- 1)2 then

Try another. Given that Z{k} =
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72

(z- 1)

Because
Z{xxm} = Z"F(z) — [2"%0 + 2" %1 + ... + ZXp1]
SO

z
Z{k+1}=ZW—[ZXO]

72

(z~1)*

3 Second shift theorem (shifting to the right)
If Z{xx} = F(z) then
Z{xx-m} = 2 "F(2)

the Z transform of the sequence that has been shifted by m places to
the right.

For example, given that Z{x;} = -Zf—l then

Z{xXg3}=.coooiin..
1
72(z—1)
Because
Z{xk—m} = 27"F(2)
SO
_,3_Z
Z{xx 3} =2z P
_ 1
T 22(z-1)

In this way we have derived the Z transform of the sequence
{0,0,0,1, 1, 1,...} by shifting the sequence {1,1,1,1,...} three
places to the right and defining the first three terms as zeros.

Try this one. The sequence {x;} with Z transform

Z{xx} = , where a is a constant, is {............ }

1
z-a
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(@)

Because

From the table of transforms the nearest transform to the one in

question is which is the Z transform of{a*}. Now

z
(z—a)
1 1 z
G-a) z (z-a
=2z"'F(z) where F(z) = Z{d"}
and so
1
(z—a)

which is the Z transform of {a*}, shifted one place to the right.

=z{d1}

4 Translation

If the sequence {x} has the Z transform Z{x} =F(z) then the
sequence {gkx;} has the Z transform Z{a*x} = F(a~'z).

For example, Z{k} = E—z—l-)—z so that Z{2¥k} =............
Z —

2z
(z-2)

Because
Since Z{k} = (—Z'l_)z = F(z) then by the translation property
z

Z{2*k} =F(27'2)
271z
(2-1z-1)°

2z
T (z-2)
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5 Final value theorem

For the sequence {x;} with Z transform F(z)
Lim xx = Lim { <E—_—1> F(z)} provided that Lim xi exists.
k—o0 z—1 Z k—o00

For example, the sequence { (%)k} has the Z transform

z 2z
o= "m-1
Now
, z—1 e f2(z—-1))
wim{ (7)o} =tim{Z=} =0
and

k—00

k
Lim { (%) } = 0 which confirms the final value theorem.

Using the final value theorem the final value of the sequence with the

Z transform
2
F(z) = 1()2—4-227 i .ooiinls
(z—-1)(5z-1)
0-75
Because
— _ 2
Lim{(z 1)F(z)} — Lim (z 1) 10z° + 2z ;
21 z z-1 z J(z—1(5z-1)
= Lim _1_02_4'_22
-1 | (5z—1)
_12
16
=075

6 The initial value theorem

For the sequence {xx} with Z transform F(z)
x9 = Lim {F(z)}

Z—00

For example, the sequence {a*} has the Z transform F(z) = }%‘— and

LimF(z) = Lim—— = Lim1 =1 by L’Hopital’s rule. Furthermore

Z—00 Z—00 Z—00 1

xo = a° = 1 so demonstrating the validity of the theorem.
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7 The derivative of the transform
If Z{xx} = F(z) then —zF'(z) = Z{kxx}

This is easily proved.

oo , 00 L 1™ ~
F(z) = kz_;xkz"‘ and so F'(z) = ;xk(—k)z k-1 —E;xkkz k

1
and so — zF'(z) = Z{kxx}
For example, the sequence {a*} has the Z transform F(z) = ﬁ and

so the sequence {ka*} has Z transform
Z{kxx} = —zF'(Z) = .nnnn..

Z{kou} = #

Because

VA 7 —_— —_
—zF’(z):—z(——)=—-z z—a 2z __az ;
z—a (z—a) (z—a)
Notice that this is in agreement with the Table of transforms in
Frame 8.

Next frame

Inverse transforms

If the sequence {x} has Z transform Z{xx} =F(z), the inverse
transform is defined as

Z7'F(2) = {x}

There are many times when, given the Z transform of a sequence, it is
not possible to immediately read off the sequence from the Table of
transforms. Instead some manipulation may be required and, as with
Laplace transforms, very often this involves using partial fractions.

Example
4 .
The sequence {xx} has Z transform F(z) =2 5576 To find the

inverse transform, and hence the sequence, we recognise that the
denominator can be factorised and separated into partial fractions as
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Fz) :_%—z—z-z
Because
z
F() “Z_57+6
_ z
T (z-2)(z-3)
A B
=7z—2tz_3
_A(z-3)+B(z-2)
T (z-2)(z-3)

Equating numerators gives z =A(z— 3) +B(z—-2), giving A+ B=1
and —3A — 2B = 0. From these two equations we find that A = —2 and
B=3.S0

Fo) =3 2

z-3 z-2
The nearest Z transform in the table to either of these two partial

fractions is Z{a*} = p f - Therefore if we write
3 2
Fo=7"377=3
—éx z 2 z
Tz z-3 z z-2
SO
ZWF@) =
Z7'F(z) = {3F - 2%}
Because
3 z 2 z
F(z):Exz—3_Exz—2
=3 x2z1Z{3"} -2 x z71z{2%}
and so

Z7'F(z) = 3 x {3*1} — 2 x {2¥1} by the second shift theorem
=3 - {2
= {3k - 2%} giving x, = 3% — 2
There is a simpler way of doing this without employing the second
shift theorem. Recognising that z appears in the numerator of F(z), we

consider instead the partial fraction breakdown of F~(ZZ—)
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1 1
z-3 z-2
Because
Fo) 1,z
z z z22-5z+6

_ 1

T z22-5z+6

_ 1

T Z-2)z-3)

_A B

" z-2 z-3

_A(z—-3)+B(z-2)

T E-2)(z-3)
Equating numerators gives 1 = A(z — 3) + B(z — 2), giving
[z]: A+B=0

[CT]: —3A —2B =1 with solution A = —1 and B = 1. So that

Fz 1 1 .

“z T z-3 z—Zthatls
z z

@) =z—3_z—2

= Z{3%} — Z{2k} and so
Z7'F(z) = {3k} — {2¥}
- (3r- 2
Thus the use of the second shift theorem is avoided.

So try one yourself. The sequence {xx} has Z transform

Sz
(22— 4z+4)(z+2)

therefore {x} =............

F(z) =
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o = {5 (2 27}

Because
o) _1, Sz
z  z (2-4z+4)(z+2)
_ 5
(2-2)%(z+2)
A B C

=(z_z)2+z—2+z+2

_A(z+2)+B(z—2)(z+2) +C(z - 2)°
(z—2)%(z+2)
Equating numerators gives 5 =A(z+2) + B(z?> — 4) + C(z2 — 4z + 4),

giving
[22]: B+C=0
[z]: A-4C=0

[CT]: 2A—-4B+4C=35
with solution A =5/4, B= —5/16 and C = 5/16, so
Fz) 5/4 5/16 5/16
z (z-2) z—2 z+2
2z S z S

z
———-—(z_z)z—ﬁxz———_z+ﬁx—+z and so

Z7'F(z) = % x {k2¥} — 16 x {2k} + {( 2) }
= {136 [(zk- 12K + (-2) ]}

giving

F(z) =%x

Next frame

Recurrence relations

Sometimes adjacent terms of a sequence are related to each other. For
example the terms of the sequence

{x} = {2}
are such that xz,; = 2¥t1 = 2 x 2K = 2x;. That is
Xkl = 2%k

This equation holds true for all adjacent terms of the sequence — it
recurs for all values of k. The equation is called a linear, first-order,
constant coefficient recurrence relation. The order of the
equation is given by the maximum shift between related terms — here
it is 1. Clearly, the recurrence relation

Xgio —Xkp1 — Xk =1lisof order ............
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Because

The maximum shift between terms in the relation is 2 — that is from
k to k+ 2.

Initial terms

A recurrence relation can be used to generate the terms of a sequence
provided initial terms are given - equal in number to the order of the
equation. For example, given the sequence {x;} where xx; = 3x; with
the initial term xo = 2 generates the sequence of terms

=12, .oy oeey ey )

{0} =1{2, 6, 18,54, ...}

Because
Since xx,1 = 3xx where xo = 2 then
X1=3x%=3x2=6
X2=3x1=3x6=18
x3=3x=3x18=>54

Similarly, if another sequence has terms that satisfy the second-order
recurrence relation

Xxp2 — 3Xky1 +2x = 1 where xp =0 and x; = 1
then the first five terms of the sequence are
{a}={0,1, ..., ..., ..., ...}

{x)=1{0,1, 4,11, 26, ...}

Because
Since xx12 — 3xx41 + 2x¢ = 1 where xo = 0 and x; = 1 then
Xo—3x1+2xg=1thatisx; —3x1+2x0=1 andsox; =4

X3—3x3+2x; =1thatisx3—3x4+2x1=1 andsox3=11
x4 —3x3+2xy=1thatisxs —3x11+2x4=1and so x4 =26

Try another yourself.

The sequence {x;} has terms that satisfy the second-order recurrence
relation

X2 — X = 1 where xo =0 and x; = -1

The first six terms of this sequence are
{my={0, -1, ..., ..., ..., ..., .}
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{Xk} = {Or -1,1,0, 2, 1, }

Because

Since xg,2 — X = 1 where xo = 0 and x; = —1 then
Xy —Xo=1thatisx; —O0=1andsox; =1
x3—Xx31=1thatisxs+1=1and sox3=0
Xx4—xy=1thatisxy—1=1and soxs =2
Xs—x3=1thatisxs—O0O=1andsoxs=1

Therefore {xx}={0, —1,1,0,2,1, ...}

Next frame

Solving the recurrence relation

If a sequence {x;} satisfies a recurrence relation with given initial
conditions then the general term of the sequence can be found by
using the Z transform where Z{x;} = F(z). This is referred to as solving
the recurrence relation. For example, solve the recurrence relation

Xg+o — 3xke1 +2xx =1 where xp =0 and x; =1

Because this recurrence relation is true for all values of k it can itself be
used to form a sequence {yx}, namely

i} = {2 — 3% + 243 = {1}

Now, taking the Z transform of both sides of this equation gives
Z{yk} =Z{Xx12 — 3Xk41 + 2x¢} = Z{l} that is
Z{xx2} — 3Z{xki1} + 2{x} = Z{1}

Using the first shift theorem and Z{x;} = F(z) this then becomes

(22F(2) — 2%x0 — zx1) — 3(zF(2) — zx0) + 2F(z) = ZL

-1

Collecting like terms and substituting for the initial terms xo = 0 and
x; =1 gives

(2 -32+2)F(z) —z= z so(zz—32+2Fz—z+—z _Z

z-1 JE(2) = z—-1 z-1

That is F(z) z 2

atis F(z) = =

(z-1)(22-3z+2) (z—1)*(z-2)

and so Fz) _ z

z  (z-1)*(z-2)
This has the partial fraction breakdown

F(z) ...... ... ...
7_(2_1)2 s




160 Programme 5

F(z) 1 2 2
7=_(z_1)2_z—1+z—2
Because
F(z) z
. (z-1@E-2)

A B C
2(2_1)2+z—1+z—2
_A(z—2)+B(z-1)(z—2) +C(z— 1)
B (z-1)*(z—2)

and so

z=A(z—2)+B(z - 1)(z— 2) + C(z — 1)? giving

[2%]: B+C=0

[21]: A-3B-2C=1

[CT]: -2A+2B+C=0

with solutionA=-1,B=-2and C=2
Therefore

Fg_ 1 2 2
z  (z-1? z—-1 z-2

Taking the inverse Z transform of F(z) yields the sequence
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Z7'F(z) = {-k — 2+ 2¢1}

Because
PE:— ! 5= 2 + 2 and so
z (z-1) z—1 z-2
z 2z 2z
F(Z)—_(Z_1)2_2—1+z—z
Therefore

7o =2 ((z - 1)2) -2 (5) v 227 (55)

{—k—2x+2(25)}
={-k-2+2""} since i =1

Indeed, {x}={-k—2+2%1} is the solution to the recurrence
relation as can be seen by substituting back

X2 — Xk + 2%
— (—[k +2] -2+ zlk+21+l) -3 (—[k +1]-2+ zlk+11+1)
+2(—k — 2+ 2K1)
=(-k—4+8x2%) —3(-k-3+4x2 +2(-k—2+2x2"
=—k—4+8x2X+3k+9-12x2K-2k—4+4x2*
=1
Try one yourself.
The solution of the second-order recurrence relation

Xki2 —Xk=1 wherexo=0and x; = -1lisx=............

o = k/2 k even
¥~ 1(&=3)/2 kodd

Because
Taking the Z transform of the recurrence relation gives
Z{Xxy2 — X} = Z{1}. That is, Z{xx,2} — Z{x} = Z{1} so that

(22F(2) — 2*x0 — zx1) — F(2) = zf T

Substituting for xo = 0 and x; = —1 gives
Fz)y=............
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—z+2

= -1

Because

(22F(z) — 2*x0 — zx1) — F(z) = }%I where xo = 0 and x; = —1 giving

(zz—l)F(z)+z=Z_1so
VA VA
FO=—ne—n @-1n ®
F(z) 1 ~ 1
z  (z+1)(z-1?% (+1(z-1)
1-(z—1)
C(z+1)(z-1)7?

. —z+2
(z+1)(z— 1)
Separating into partial fractions gives

@_g z _3 z +1 z
z  4z+1 4z-1 2(z-1)

Because
F(z) —z+2
z  (z+1)(z-1)?

__A 4 B 4 C
z+1 z-1 (z—1)>?
_A(z-1)?+B(z+1)(z-1)+C(z+1)
B (z+1)(z—1)
Equating numerators and comparing coefficients of powers of z gives

[z2): A+B=0

[z]: —2A+C=-1

[CT]: A—-B+ C=2with solution A =3/4,B=-3/4and C=1/2
3z 3 z +1 z

S 4z+1 4z-1 2(z-1)?

so that F(z)

By inverting the transform we find that
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Y — k/2 k even
¥~ 1 (k-3)/2 kodd
Because
F(z)=§ z 3 z 1 z

4z+1 4z-1 2(_1)

and

Z—l{zf_ 1} = {(—1)’<} SO Z_l{(3/4)z4z- 1} _ (3/4){(_1)7(}
z{Z5} = (1) s0 2 {(-3/4) 2=} = (-3/9{1%}

z—1 z—1

{2t -w oz fun o) amm

Therefore {x} = {(3 /8)(~1)k — (3/4) + (k/Z)}
k/2 k even
(k—3)/2 kodd

so that x; = {
Next frame

Sampling

If a continuous function f(t) of time t progresses from t = 0 onwards
and is measured at every time interval T then what will result is the
sequence of values

{f(kT)} = {f(0), F(T), f(2T), f3T),.-.}

A new, piecewise continuous function f*(t) can then be created from
the sequence of sampled values such that

F(t) = {G(kT) if t =kT

otherwise

The graph of this new function consists of a series of spikes at the
regular intervals t = kT

(0

\

SN §

T 2T 3T nT
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This function can alternatively be described in terms of the delta
function §(t) as

FA(b) = FO)8(t) + F(T)6(t — T) + F(2T)S(t — 2T) + FBT)5(t — 3T) + ...
= > f(KD)(t —KT)
pay
The Laplace transform of f*(t) is then given as
F'(s) = L{f*(8))
- L (FO)5(t) + F(T)S(t — T) + F2T)8(t — 2T) +.. Je~ dt
=£(0) +f(T)e™*T + f(2T)e T + f(3T)e™>T +
= SO FT)eHT
pary
Define a new variable z = ¢T and we see that

Lp@) =Y ranzt =3 IE0

k=0
which is the Z transform of the sequence{f(kT)}.

Example 1
The function f(t) = e~ is sampled every interval of T.

The Z transform of the sampled function is then ............

z

F2) = ——r

Because

Defining f*(t) = %o F(KT)6(t — kKT) = 320 e~ *T§(t — kT) then the
Laplace transform of f*(t) is given as

F*(S) Z e—kaT —ksT

This means that the Z transform of {f(kT)} is

X, g—kal 1 z
F(z): = =
Z k —aT _eal
= Z l_e‘z z—e
z

Notice that this agrees with the Z transform of the sequence {b*}
(Wthh is L) when b is replaced by e=%T

Try another.

Example 2
The function f(t) = t is sampled every interval of T.

The Z transform of the sampled function is then ............
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Tz

=y

Because

The Z transform of {f(kT)} is F(z) =if—(§kD Here f(kT) =kT

k=0
and so
X kT
Fz)=3 —
pary)
1 2 3
—T(E+z—2+z—3+...>
=I(1+Zz_1+32_2+4z‘3+...)
VA
=—Tz§z-(1+z‘1+z‘z+z‘3+...}
d nN?t'rT N? Tz
-5 (13) ~203) e
Example 3

The function f(t) = cost is sampled every interval of T.

The Z transform of the sampled function is then ............

_ z(z—cosT)
F@) T 722-2cosT+1

Because
iT 4 ¢—iT
f(t) =cost = e_ize_ and the Z transform of {e™*T} is
F@) = —=r

eil + T
Therefore the Z transform of — is
1/, z z 1(z(z—eT) +z(z—eT)
2 (z —eT "z~ eiT) 2 ( (z—eTT)(z—elT) )
1 ( 222 — z(e/T + ¢7IT) )
2\z22 - [eT +eiT]z+1
_ z(z—cosT)
T Z22-2zcosT+1
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And that is the end of the Programme on Z transforms. All that remain
are the Revision summary and the Can You? checklist. Read
through these closely and make sure that you understand all the
workings of this Programme. Then try the Test exercise; there is no
need to hurry, take your time and work through the questions
carefully. The Further problems then provide a valuable collection
of additional exercises for you to try.

% Revision summary 5
1 Sequences
The sequence ..., x_3, x_1, X0, X1, X2,... is represented by the
notation {x}%_. The sequence {x}; is called a causal sequence
and is denoted simply by {x}.

2 Z transform
The Z transform of the causal sequence {x;} is

o0
Z{x} = Z(X—:) = F(z) where the value of z is chosen to
z
k=0 ensure that the sum converges.
{xx} and Z{x} form a Z transform pair.

3 Table of Z transforms

Sequence Transform Permitted
F(z) values of z
{&}=1{1,0,0,...} 1 All values of z
xp={1,11,...} z—z-l lz| > 1
z
{k}z{ol 1,2, 3'} m 'Z‘>1
z(z+1
{k}={0,1,4,9,..} (i_ 1)3 z| > 1
z(z2+4z+1
{¥}={0,1,8,27,...} ﬁ((z—_f)z—l lz| > 1
z
{a} ={1,4a, 4% a3 ..} CaT) |z| > |a|
az
{kak} = {O, a, 2a2' 3a3’ . .} E;_—a)—z Izl > Ial

4 Linearity
The Z transform is a linear transform. That is, if a and b are
constants then

Z(a{xx} + b{y}) = aZ{xx} + bZ{y«}.
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s

10

11

12

First shift theorem (shifting to the left)
If Z{xx} = F(z) then

Z{xym} = 2"F(2) — [Z™X0 + 2" X1 + ... + ZXm_1]

the Z transform of the sequence that has been shifted by m places
to the left.

Second shift theorem (shifting to the right)
If Z{x} = F(2) then

Z{xg-m} =2""F(2)

the Z transform of the sequence that has been shifted by m places
to the right.

Translation
If the sequence {x} has the Z transform Z{xz} = F(z) then the
sequence {ax} has the Z transform Z{a*x} =F(a~'z).

Final value theorem
For the sequence {xx} with Z transform F(z)

Lim xy = Lim { (-Z_TI)F (z)} provided that Lim x; exists.
k—o0 z—1 k—oo

The initial value theorem

For the sequence {xx} with Z transform F(z)

xo = Lim {F(z)}.

The derivative of the transform

If Z{x} = F(z) then —zF'(z) = Z{kxt}.

Inverse transformations

If the sequence {x} has Z transform Z{x} = F(z), the inverse
transform is defined as

Z_IF(Z) = {Xk}.

Recurrence relations

A recurrence relation expresses the relationship that adjacent
terms of a series hold to each other. The order of the equation is
given by the maximum shift between related terms.

Initial terms

A recurrence relation can be used to generate the terms of a
sequence provided initial terms are given — equal in number to the
order of the equation.

Solving the recurrence relation
If a sequence {x;} satisfies a recurrence relation with given initial
conditions then the general term of the sequence can be found by
using the Z transform where Z{x;} = F(z). This is referred to as
solving the recurrence relation.

167
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13 Sampling
If a continuous function f(t) is sampled at equal intervals, the
resulting sequence has a Z transform that is related to the Laplace
transform of the piecewise function created from the sequence of
sample values.

L0y =Y ren)z* =3 LD _ 7 ery

k=0 k=0
where
{f(kT)} ={f(0), F(T), f2T), f(3T), ...},
Fro = {g(kT) z)ftltlerv’:ise
and
z=¢eT.

¥4 Can You?

Checklist 5
Check this list before and after you try the end of Programme ftest.

On a scale of 1 to 5 how confident are you that Frames
you can:

e Define the Z transform of a sequence and derive
transforms of specified sequences?

Yes O O ] J ] No
o Make reference to a table of standard Z transforms?

Yes O 0O 0O O 0O No

e Recognise the Z transform as being a linear transform
and so obtain the transform of linear combinations of
standard sequences?

Yes O O O O O No

e Apply the first and second shift theorems, the
translation theorem, the initial and final value
theorems and the derivative theorem?

Yess [0 [J O O O No
e Use partial fractions to derive the inverse transforms?

Yes O ] ] O ] No
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e Solve linear, constant coefficient recurrence relations?
Yes O O | O O No

o Demonstrate the relationship between the Laplace
transform and the Z transform?

Yes [ OO 0O 0O [ No

Test exercise 5

Find the Z transform of the causal sequence {x;} where x; = (—1).
Find the Z transform of the causal sequence {x;} where x; = 4k — 2a*.

3 Find the Z transform of the causal sequences:

(@ {k-3}
(b) { 5k+2}
4 TFind the inverse Z transformation of
2(7 _
F(z) = z%(z - 3)

(22-2z+1)(z-2)"
§ Solve the recurrence relation
Xxi2 — 4Xgy1 + 4xx = 3 where xg =1 and x; = 0.

6 The function f(t) = sint is sampled at equal intervals of t = T. Find the
Z transform of the resulting sequence of values.

Further problems 5

1 Find the Z transform of the causal sequence {Xx} where x; = (—a)¥
where a > 0.

2 Solve each of the following recurrence relations.

(@) Xg+2 + 5xke1 +6xx =1 where xo =0 and x; =1
(b) 3xg42 — 7Xxy1 + 2% = k where xp =1 and x; =0
(C) X4z — 9xx = 2k where xp = 1 and x; = 1.
3 Given that yiy1 =w and gy =Wy where Wi = Xx — )k, show that

Vi+2 + Yk = xx and solve for yx when {x} = {6}, the unit impulse
sequence where yo =0, y; = 1.
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4

If

Pr+1 = Gk
qrk+1 =Tk

v = Xx — aqx — Bpx where a and S are constants, show that

DPrr2 + aPr1 + BPx = X

Solve this recurrence relation when po = 1, p; = 0 for

(@ a=4, =4 and {x} = {6}, the unit impulse sequence

(b) =4, =4 and {x} = {uk} the unit step sequence.

Find the Z transform of each of the following sequences.

@ {1,0,1,0,1,0,...}

®) {0,1,0,1,0,1,...}

© {1,0,1,1,0,0,0, 1}

@ {1,1,1,00,0,1,1}

@ {0,0,0,1,1,1,0,0,0, 1, 1}
® {1,1,0,0,0,1, 1}

Note that the last four of these are finite sequences.

Find the inverse transform of
@ F&) =39 er 2)(z+3)
® Fo) =77 1)(2122)(2 +3)
© FO) = g

) F(z) = #sz

Given

show that

ZF(z)={3,3, -3, -3,...}.

Hint: Use long division on F(z).

Given
2 _3
F (Z) = (1 + E)
show that

Z'F(z)={1, — 6,24, —48,...}.

Hint: Use the binomial theorem on F(z).
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9 Find the final value of the sequence {x;} with Z transform

472 -z
Fz) = 222 -3z+1°
10 What is the initial value of the sequence whose Z transform is given by
222 —z+1
Fo) =537

11 Given the sequence of n terms {x;} for 0 < k <n — 1 with Z transform
Fu(z), show that the Z transform of the sequence formed by continually
repeating the terms {x;} is given as

Fn(2)

1—-zn

12 Using the result of Question 11, show that the Z transform of the
sequence obtained by continually repeating the three term sequence
{1,0, —1}is

72

2+1°

13 Find the Z transforms of the sequence of values obtained when f(t) is
sampled at regular intervals of t = T where
(@) f(f) =sinht
(b) f(t) = coshat
(© f(t) =e ™ coshbt.

F(z) =

F(z) =




Frames

Fourier series

Learning outcomes

When you have completed this Programme you will be able to:

Determine the period and amplitude of a periodic function

Write down the harmonics of a periodic trigonometric function
Give an analytic description of a non-sinusoidal periodic function
Evaluate integrals with periodic integrands

Demonstrate the orthogonality of the trigonometric functions
sinnx and cosnx forn=0, 1, 2,...

e Describe a periodic function as a Fourier series subject to Dirichlet
conditions

e Obtain the Fourier coefficients and hence the Fourier series of a
periodic function

e Describe the effects of the harmonics in the construction of the
Fourier series

e Find the value of the Fourier series at a point of discontinuity of the
periodic function

e Derive the Fourier series of non-sinusoidal periodic functions
e Recognise even and odd functions and their products

Derive the Fourier sine and cosine series for odd and even functions
respectively

e Derive half-range Fourier series

e Recognise the condition for the Fourier series to contain only odd
or only even harmonics

e Explain the significance of the term ay/2

Pferequ ' zte' Engmeenng Mathematlcs (Fzﬁh Editiort) .
Programmes 15 Integratlon 1 and 17 Reductmn formulas f"

172
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Introduction

We have seen earlier that many functions can be expressed in the form
of infinite series. Problems involving various forms of oscillations are
common in fields of modern technology and Fourier series, with which
we shall now be concerned, enable us to represent a periodic function
as an infinite trigonometrical series in sine and cosine terms. One
important advantage of a Fourier series is that it can represent a
function containing discontinuities, whereas Maclaurin’s and Taylor’s
series require the function to be continuous throughout.

Periodic functions

A function f(x) is said to be periodic if its function values repeat at
regular intervals of the independent variable. The regular interval
between repetitions is the period of the oscillations.

y
AN AN
0 V4
X X, +p X
period

Graphs of y=Asin nx

(a) y =sinx
The obvious example of a periodic function is y = sin x, which goes
through its complete range of values while x increases from 0° to
360°. The period is therefore 360° or 2« radians and the amplitude,
the maximum displacement from the position of rest, is 1.

1"+t——~_

fix) amplitude
/ P

0
w 27 x
3 \_4 lamplitude

period = 27

-

(b) y =5sin2x
The amplitude is 5.
The period is 180° and
there are thus 2 complete  f(x) P 4
cycles in 360°. ] !

ephraim
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(©) y=Asinnx
Thinking along the same lines, the function y = Asinnx has

amplitude ............ ;period ............ ;
and will have ............ complete cycles in 360°.
360° 27

amplitude = A; period = = cycles in 360°

Graphs of y = A cosnx have the same characteristics.

By way of revising earlier work, then, complete the following short
exercise.

Exercise

In each of the following, state (a) the amplitude and (b) the period.

1 y=3sindx § y=>5cos4x
2 y=2cos3x 6 y=2sinx

3 y= sin% 7 y=3cos6x
4 y=4sin2x 8 y= 6sin—23—x

Deal with all eight. They will not take much time.

No. Amplitude Period No. Amplitude Period
1 3 27/S 5 5 /2
2 2 2x/3 6 2 ™
3 1 47 7 3 /3
4 4 T 8 6 3r
Harmonics

A function f(x) is sometimes expressed as a series of a number of
different sine components. The component with the largest period is
the first harmonic, or fundamental of f(x).

y =A;sinx is the first harmonic or fundamental

y =Azsin2x  is the second harmonic

y=Assin3x  is the third harmonic, etc.

and in general
y=Asinnxisthe............ harmonic, with
amplitude ............ and period ............
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nth harmonic; amplitude A,; period = 2711'

Non-sinusoidal periodic functions

Although we introduced the concept of a periodic function via a sine

curve, a function can be periodic without being obviously sinusoidal
in appearance.

Example

In the following cases, the x-axis carries a scale of f in milliseconds.

@ vy
4
() X s 1
0 6 8 14 16 ¢ (ms) period = 8 ms
period I
®
3 < AR
f{t) /\
L X period=.........
0 2 5 6 8 t (ms)
© y
fie) AN | hN l period =.........
-4 - —_—— e ——
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(b) period = 6 ms; (c) period = 5 ms

Analytic description of a periodic function

A periodic function can be defined analytically in many cases.

Example 1
y
3 —_—— —_—
f(x) |
0 4 6 10 12 «x

(@) Betweenx=0andx=4, y=3,ie. f(x)=3 O<x<4

(b) Betweenx=4andx=6,y=0,ie f(x)=0 4<x<6
So we could define the function by

3

reo={;

F+6) =)
the last line indicating that ............

O<x<4
4<x<6

the function is periodic with period 6 units

Example 2

In this case

(@) Betweenx=0andx=2,y=x ie. f(x)=x 0<x<2
(b) Betweenx=2andx:6,y=—%+3, ie. f(x)=3—% 2<x<6
() The period is 6 units ie f(x+6)=f(x).

So we have

O0<x<2

X
f(x)={3_§ 2<x<6
f(x+6)=7f(x).
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Example 3

14
5 _—

f(x)

f(x)=%x O0<x<8
fx+8)=f(x)

Here is a short exercise.

Exercise
Define analytically the periodic functions shown.

- —— P — —_————

f(x)

0 1 L 1

12
-1 sl —

Finish all five and then check the results.
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Here are the details.

1 2-x 0O0<x<3
f(x)={_1 3<x<5$
flx+5)=f(.

2 3 0<x<4
fxy=¢5 4<x<7
0 7<x<10

fx+10) =f().
3 x O<x<4
f(x)={4 4<x<7
0 7<x<9

Fx+9) = f(x).

4 I%x O0<x<4

FO=37-x 4<x<10
-3 10<x<13
f(x+13) =f(x).

5 -1 O0<x<2
f(x)={3 2<x<35
-1 S<x<7

fx+7)=fx).

Now we have the same thing in reverse.

Exercise
Sketch the graphs of the following, inserting relevant values.
1 4 O<x<5$
f(x)={0 S<x<8
f(x+8)=f(x).
2 fx)=3x-—x> 0<x<3
fx+3)=rfx).

3 %) = 2sinx O<x<7w
—10 T<X<2W
flx+2m) = f(x).
4 % O<x<nm
f(X)= X
7r—§ T<X<27
flx+2m) = ().
2
5 3‘;— O<x<4
fW=14 4<x<s
0 6<x<8

f(x+8)=f(x).
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Here they are: check carefully.
1 y

4
2o e

7 A S —
f(x)

N e
#x) /i'—
I

All this is in preparation for what is to come, so let us now consider
Fourier series.

Sle———

Move on then to the next frame

Integrals of periodic functions

Before we proceed we need to consider some specific integrals
involving integers m and n. These are integrals over a single period
of periodic integrands. You will already know some of these and the
others you will easily be able to work out. The integrals that we are
concerned with are those of sines, cosines and their combinations
where the integration is over a single period from —n to =. First,
though, we list the integral of the unit constant over the period.
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1| dx=[x]:r=21r
2 r cosnxdx = [sinnx

-

] (n#0)

__sinnm  sin(—nn)
T on n
=0 Dbecause sinnmr =0

3 f Sinmxdx=............ (n+#0)

T
J sinnxdx =0

Because
T cosnx|™
Lrsmnxdx_[— " | @#0)
cosnm  cos(—nm)
=- +
n n

=0 because cos(—x) = cosx
4 r cosznxdxzj cosz_2nx+1_dx because cos24 = 2cos?A —1
- -7

T

_sin2nrw LT sin(—2nmr)  (—m)
4n 2 4n 2

=T

5 [ sin?nxdx=............ (n#0)

Because

J 1-COS2MX 4y because cos2A = 1 - 2sin?A

i 2 _
[Wsm nxdx = B >
_ [x sinan]’r

2" dn | (n#0)

m _sin2nm  (—m) 4 sin(—2n)
2 4n 2 4n
™
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6 Ccos mx cos nx dx

-

= % [cos(m + n)x + cos(m — n)x] dx

because 2 cos A cos B = cos(A + B) + cos(A — B)

_ [sin(m +n)x  sin(m— n)x]’: (m # 1)

m+n m-—n
_sinm+mnr  sin(m—mn _sin(m+n)(—x) sin(m —n)(-m)
T m+n m-—n m+n m-—n
=0
7 sinmxsinnxdx=............ (m # n)
J sinmxsinnxdx=0, m+#n
—
Because
T
j sin mx sin nx dx
_,rl i
= —J [cos(m — n)x — cos(m + n)x] dx
because 2sinAsin B = cos(A — B) — cos(A + B)
sin(m —n)x sin(m+n)x|"
=[ r(n—n) a t(n-l-n)] (m # 1)
™
_sinm—mn _sin(m+mnm)r _ sin(m —n)(-n) 4 sin(m 4+ n)(—n)
T m-n m+n m—n m+n

=0
8 J cos mx sinnx dx (m # n)

= .;. [sin(m + n)x — sin(m — n)x] dx

because 2 cosAsin B = sin(A + B) — sin(A — B)
1 [_ cos(m+n)x cos(m— n)x] N (m £ 1)

2 m+n m-—n
1 ( cos(m+mn)r cos(m—n)w
=5~ +
2 m+n m-—n
cos(m+ n)(—m) cos(m — n)(—m)
m+n m-—n

=0 because cos(—x) = cosx
And finally, when m=n

T
9 j cosmxsinmxdx=............
-7
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T
j cosmxsinmxdx =0

=n

Because
JT cos mx sin mx dx
= % sin2mxdx Dbecause sin24 = 2sinAcosA
-7
1] cos2mx]™
= L (m #0)
_1( cos2mm 4 cos 2m(—m)
2 2m 2m

=0 because cos(—x) = cosx

Summary

1| dx=[x] =2

-7

2 r cosnxdx =0

3 r sinnxdx =0
lifm=n
4 r cosmx cosnxdx = w6, wWhere 6y, =
- Oif m#n
(6mn is called the Kronecker delta)

48
5 J sinmx sinnx dx = 7y,
—7

9
6 J cosmxsinnxdx =0
-

Note that the same results are obtained no matter what the end points
of the integrals are, provided that the interval between them is one period.
So, for example

k+2m 3 k+2m
J cosnxdx = [sm nx] (n+#0)
k n ik

_ sin(nk + 2nm) sinnk
- n n
=0 because sin(x + 2nr) =sinx

Now to put all these integrals to practical use
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Orthogonal functions

If two different functions f(x) and g(x) are defined on the interval
a<x<band

b
|| s ax=o

then we say that the two functions are orthogonal to each other on
the interval a < x < b. In the previous frames we have seen that the
trigonometric functions sinnx and cosnx where n=0, 1, 2,... form
an infinite collection of periodic functions that are mutually
orthogonal on the interval —7n < x <, indeed on any interval of
width 2x. That is

r cosmxcosnxdx=0 form+#n
r sinmxsinnxdx=0 form#n
and

s
J cosmxsinnxdx =0

-

Fourier series

Given that certain conditions are satisfied then it is possible to write a
periodic function of period 2x as a series expansion of the orthogonal
periodic functions just discussed. That is, if f(x) is defined on the
interval —7 < x < 7 where f(x + 2nr) = f(x) then

f(x) = %+ E(a,, cos nx + by, sin nx)
n=1

This is the Fourier series expansion of f(x) where the a, and b, are
constants called the Fourier coefficients. But how do we find the values
of these constants? Quite easily. We make use of the mutual
orthogonality of the trigonometric functions in the expansion.
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For example, to find a;o we multiply f(x) by cos 10x and integrate over
a period. That is

r f(x)cos 10xdx

a4 | .
= [F (—<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>