

THE COPPERBELT UNIVERSITY

IN ASSOCIATION WITH

THE TECHNICAL AND VOCATIONAL TEACHERS' COLLEGE

BACHELOR OF SCIENCE IN MATHEMATICS AND SCIENCE WITH EDUCATION

SECOND YEAR - ODL

CLASSICAL MECHANICS (PHY 240)

DECEMBER 2022 PROMOTIONAL EXAMINATION

TOTAL MARKS - 100%

TIME ALLOWED: THREE (3) HOURS

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- 1. All questions carry equal marks of 20 marks each.
- 2. The marks are shown in brackets.
- 3. This paper contains seven questions. Answer **any five** questions of your choice.
- 4. Show clearly all the necessary calculations.
- 5. Marks will be awarded for neat and well-drawn diagrams.
- 6. Clearly indicate on the answer booklet cover page which questions you have attempted.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

WHEREVER NECESSARY USE:

 $g = 9.81 \text{m/s}^{2}$ $c = 3.0 \times 10^{8} \text{ m/s}$ $1 eV = 1.60 \times 10^{-19} \text{ J}$ $G = 6.67 \times 10^{-11} \text{ Nm}^{2} \text{ /kg}^{2}$ $1 Ci = 3.7 \times 10^{10} \text{ Bq}$ $\mu_{0} = 4\pi \times 10^{-7} \text{ Tm/A}$ $\varepsilon_{0} = 8.85 \times 10^{-12} \text{ F/m}$ $m_{e} = 9.11 \times 10^{-31} \text{ kg}$ $k_{e} = 8.99 \times 10^{9} \text{ Nm}^{2} \text{ /C}^{2}$ $e = 1.60 \times 10^{-19} \text{ C}$ $\hbar = 1.05 \times 10^{-34} \text{ Js}$ $R_{H} = 1.097 \times 10^{7} \text{ m}^{-1}$ $\sigma = 5.669 \times 10^{-8} \text{ W/m}^{2} \text{ K}^{4}$ $h = 6.626 \times 10^{-34} \text{ Js}$

Question One

- **a.** State the associative law and give its mathematical expression [3 marks]
- **b.** Given two vectors $\mathbf{A} = (3\hat{\mathbf{i}} 2\hat{\mathbf{j}} + 5\hat{\mathbf{k}})$ and $\mathbf{B} = (6\hat{\mathbf{i}} 7\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$, find:
 - i. $|\mathbf{A}|^2$ [3 marks] ii. $|\mathbf{B}|^2$ [3 marks]

11.
$$|\mathbf{B}|$$
 [3 marks]
13. $(\mathbf{A} \cdot \mathbf{B})^2$ [3 marks]

$$\mathbf{M} \cdot (\mathbf{A} \bullet \mathbf{B})$$

c. A certain structure is represented by the following vectors in space;

$$\mathbf{A} = \left(\frac{\sqrt{3}a}{2}\right)\hat{\mathbf{i}} + \left(\frac{a}{2}\right)\hat{\mathbf{j}}, \ \mathbf{B} = -\left(\frac{\sqrt{3}a}{2}\right)\hat{\mathbf{i}} + \left(\frac{a}{2}\right)\hat{\mathbf{j}} \text{ and } \mathbf{C} = c\hat{\mathbf{k}}$$

Find;
$$\mathbf{i.} \quad \mathbf{B} \times \mathbf{C} \qquad [5 \text{ marks}]$$

$$\mathbf{ii.} \quad \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \qquad [3 \text{ marks}]$$

Question Two

- **a.** Write the translation equations from Cartesian to polar coordinate system. [2 marks]
- **b.** Draw diagrams of how a point *P* can be described in Cartesian, cylindrical and spherical coordinate systems. [6 marks]
- c. Convert the following coordinates as indicated
 i. (3, π/3, -4) from cylindrical to Cartesian [3 marks]
 ii. (-2, 2, 3) from Cartesian to cylindrical [3 marks]
 d. Convert the following coordinates as indicated
 i. (8, π/4, π/6) from spherical to Cartesian [3 marks]
 ii. (2√2, 6, -4) from Cartesian to spherical [3 marks]

Question Three

- **a.** State what is meant by a scalar quantity and by a vector quantity. [4 marks]
- **b.** The commutative law states that the order of addition of two vectors does not matter. Use the geometrical method to prove the commutative law of the following vectors.

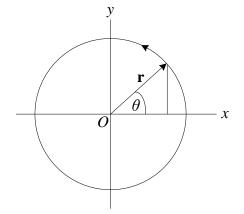
[6 marks]

c. Given two vectors $\mathbf{A} = (2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 7\hat{\mathbf{k}})$ and $\mathbf{B} = (5\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$, find:

i.	A + B	[2 marks]
ii.	A - B	[2 marks]
iii.	$ \mathbf{A} $	[2 marks]
iv.	B	[2 marks]
v.	$\mathbf{A} \bullet \mathbf{B}$	[2 marks]

Question Four

- **a.** $\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$ is a property of base vectors. Write the other four. [4 marks]
- **b.** Circular motion plays an important role in physics. Here we look at the simplest and most important case; uniform circular motion, which is circular motion at constant speed. Consider a particle moving in the x-y plane according to $\mathbf{r} = r(\cos \omega t \hat{\mathbf{i}} + \sin \omega t \hat{\mathbf{j}})$, where r and ω are constants. Find the acceleration of the particle. [3 marks]
- **c.** Suppose that the position of a particle is given by;


$$\mathbf{r} = A(e^{\alpha t}\hat{\mathbf{i}} + e^{-\alpha t}\hat{\mathbf{j}})$$

where *A* and α are constants. Find the velocity and magnitude of the velocity of the particle. [6 marks]

d. A table-tennis ball is released near the surface of the table with velocity $\mathbf{v}_0 = (0, 5, -3)$ m/s. It accelerates (downward) with acceleration $\mathbf{a} = (0, 0, -1.6)$ m/s². Find the velocity after 5 s. [7 marks]

Question Five

- a. State three Newton's laws of motion.
- **b.** In the figure below

Find the work done in moving a particle once around a circle C in the xy plane, if the circle has center at the origin and radius 3 and if the force field is given by

 $\mathbf{F} = (2x - y + z)\mathbf{\hat{i}} + (x + y - z^2)\mathbf{\hat{j}} + (3x - 2y + 4z)\mathbf{\hat{k}}$

[9 marks]

[6 marks]

c. Show that Newton's second law can be redefined as $F = \frac{\Delta p}{\Delta t}$. [5 marks]

Question Six

- **a.** Define power and write its mathematical expression. [3 marks]
- **b.** Due to a force, a particle of mass 5 units moves along a space curve whose vector is given as a function of time *t* by

$$\mathbf{r} = (2t^{3} + t)\mathbf{\hat{i}} + (3t^{4} - t^{2} + 8)\mathbf{\hat{j}} + 12t^{2}\mathbf{\hat{k}}$$
Find;
i. the velocity [2 marks]
ii. the momentum [2 marks]
iii. the acceleration [2 marks]
iv. the force at any time t [2 marks]

c. If $\mathbf{r}(t) = (t^2 + 2t)\hat{\mathbf{i}} + 3e^{-2t}\hat{\mathbf{j}} + 2\sin 5t\hat{\mathbf{k}}$, find, at t = 0;

i.
$$\frac{d\mathbf{r}}{dt}$$
 [4 marks]

ii.
$$\left|\frac{dt}{dt}\right|$$
 [3 marks]

Question Seven

a. Write the mathematical expressions of the following operators on the specified functions.

i.	the gradient of ϕ	[2 marks]
ii.	the divergence of \mathbf{F}	[2 marks]
iii.	the curl of \mathbf{F}	[2 marks]

b. If $\phi(x, y, z) = x^2 yz^3$ and $\mathbf{A} = xz\hat{\mathbf{i}} - y^2\hat{\mathbf{j}} + 2x^2 y\hat{\mathbf{k}}$, find;

i.	$ abla \phi$	[2 marks]
ii.	$ abla ullet \mathbf{A}$	[2 marks]
iii.	$ abla imes \mathbf{A}$	[2 marks]
iv.	$div(\phi \mathbf{A})$	[4 marks]
v.	$curl(\phi \mathbf{A})$	[4 marks]

END OF EXAMINATION