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Mathematics is often presented as a large collection of disparate facts to be
absorbed (memorized!) and used only with very specific applications in
mind. Yet the development of mathematics has been a journey that has
engaged the human mind and spirit for thousands of years, offering joy,
play, and creative invention. The Pythagorean theorem, for instance,
although likely first developed for practical needs, provided great intellec-
tual interest to Babylonian scholars of 2000 B.C.E., who hunted for
extraordinarily large multidigit numbers satisfying the famous relation a2 +
b2 = c2. Ancient Chinese scholars took joy in arranging numbers in square
grids to create the first “magic squares,” and Renaissance scholars in
Europe sought to find a formula for the prime numbers, even though no
practical application was in mind. Each of these ideas spurred further
questions and further developments in mathematics—the general study of
Diophantine equations, semi-magic squares and Latin squares, and public-
key cryptography, for instance—again, both with and without practical
application in mind. Most every concept presented to students today has a
historical place and conceptual context that is rich and meaningful. The
aim of Facts On File’s Encyclopedia of Mathematics is to unite disparate
ideas and provide a sense of meaning and context.

Thanks to the encyclopedic format, all readers can quickly find
straightforward answers to questions that seem to trouble students and
teachers alike:

• Why is the product of two negative numbers positive?
• What is π, and why is the value of this number the same for all circles?
• What is the value of π for a shape different than a circle?
• Is every number a fraction?
• Why does the long-division algorithm work?
• Why is dividing by a fraction the same as multiplying by its reciprocal?
• What is the value of ii?
• What is the fourth dimension?

INTRODUCTION



Introduction vii

This text also goes further and presents proofs for many of the results
discussed. For instance, the reader can find, under the relevant entries, a
proof to the fundamental theorem of algebra, a proof of Descartes’s law of
signs, a proof that every number has a unique prime factorization, a proof
of Bretschneider’s formula (generalizing Brahmagupta’s famous formula),
and a derivation of Heron’s formula. Such material is rarely presented in
standard mathematical textbooks. In those instances where the method of
proof is beyond the scope of the text, a discussion as to the methods
behind the proof is at least offered. (For instance, an argument is presented
to show how a formula similar to Stirling’s formula can be obtained, and
the discussion of the Cayley-Hamilton theorem shows that every matrix
satisfies at least some polynomial equation.) This encyclopedia aims to be
satisfying to those at all levels of interest. Each entry contains cross-refer-
ences to other items, providing the opportunity to explore further context
and related ideas. The reader is encouraged to browse.

As a researcher, author, and educator in mathematics, I have always
striven to share with my students the sense of joy and enthusiasm I expe-
rience in thinking about and doing mathematics. Collating, organizing,
and describing the concepts a high-school student or beginning college-
level student is likely to encounter in the typical mathematics curriculum,
although a daunting pursuit, has proved to be immensely satisfying. I
have enjoyed the opportunity to convey through the writing of this text,
hopefully successfully, a continued sense of joy and delight in what math-
ematics can offer.

Sadly, mathematics suffers from the ingrained perception that primary
and secondary education of the subject should consist almost exclusively
of an acquisition of a set of skills that will prove to be useful to students in
their later careers. With the push for standardized testing in the public
school system, this mind-set is only reinforced, and I personally fear that
the joy of deep understanding of the subject and the sense of play with the
ideas it contains is diminishing. For example, it may seem exciting that we
can produce students who can compute 584 × 379 in a flash, but I am sad-
dened with the idea that such a student is not encouraged to consider why
we are sure that 379 × 584 will produce the same answer. For those stu-
dents that may be naturally inclined to pause to consider this, I also worry
about the response an educator would give upon receiving such a query. Is
every teacher able to provide for a student an example of a system of arith-
metic for which it is no longer possible to assume that a×b and b×a are
always the same and lead a student through a path of creative discovery in
the study of such a system? (As physicists and mathematicians have discov-
ered, such systems do exist.) By exploring fundamental questions that chal-
lenge basic assumptions, one discovers deeper understanding of concepts
and finds a level of creative play that is far more satisfying than the perfor-
mance of rote computation. Students encouraged to think this way have
learned to be adaptable, not only to understand and apply the principles of
a concept to the topic at hand, but also to apply those foundations and
habits of mind to new situations that may arise. After all, with the current



advances of technology in our society today, we cannot be sure that the
rote skill-sets we deem of value today will be relevant to the situations and
environments students will face in their future careers. We need to teach
our students to be reflective, to be flexible, and to have the confidence to
adapt to new contexts and new situations. I hope that this text, in some
small ways, offers a sense of the creative aspect to mathematical thinking
and does indeed gently encourage the reader to think deeply about con-
cepts, even familiar ones.

Encyclopedia of Mathematics contains more than 800 entries arranged
in alphabetical order. The aim of the historical notes, culture-specific arti-
cles, and the biographical portraits included as entries, apart from provid-
ing historical context, is to bring a sense of the joy that mathematics has
brought people in the past. The back matter of this text contains a timeline
listing major accomplishments throughout the historical development of
mathematics, a list of current mathematics organizations of interest to stu-
dents and teachers, and a bibliography.

viii Introduction



AAA/AAS/ASA/SAS/SSS Many arguments and proofs
presented in the study of GEOMETRY rely on identify-
ing similar triangles. The SECANT theorem, for
instance, illustrates this. Fortunately, there are a num-
ber of geometric tests useful for determining whether
or not two different triangles are similar or congruent.
The names for these rules are acronyms, with the let-
ter A standing for the word angle, and the letter S for
the word side. We list the rules here with an indica-
tion of their proofs making use of the LAW OF SINES

and the LAW OF COSINES:

a. The AAA rule: If the three interior angles of one tri-
angle match the three interior angles of a second tri-
angle, then the two triangles are similar.

The law of sines ensures that pairs of corresponding
sides of the triangles have lengths in the same ratio.
Also note, as the sum of the interior angles of any trian-
gle is 180°, one need only check that two corresponding
pairs of interior angles from the triangles match.

b. The AAS and ASA rules: If two interior angles and
one side-length of one triangle match corresponding
interior angles and side-length of a second triangle,
then the two triangles are congruent.

By the AAA rule the two triangles are similar. Since a
pair of corresponding side-lengths match, the two trian-
gles are similar with scale factor one, and are hence con-
gruent. (Note that any two right triangles sharing a
common hypotenuse and containing a common acute
angle are congruent: all three interior angles match, and

the AAS and ASA rules apply. This is sometimes called
the “HA congruence criterion” for right triangles.)

c. The SAS rule: If two triangles have two sides of
matching lengths with matching included angle, then
the two triangles are congruent.

The law of cosines ensures that the third side-lengths of
each triangle are the same, and that all remaining angles
in the triangles match. By the AAS and ASA rules, the
triangles are thus congruent. As an application of this
rule, we prove EUCLID’s isosceles triangle theorem:

The base angles of an isosceles triangle are
equal.

Suppose ABC is a triangle with sides AB and
AC equal in length. Think of this triangle as
representing two triangles: one that reads BAC
and the other as CAB. These two triangles
have two matching side-lengths with matching
included angles, and so, by the SAS rule, are
congruent. In particular, all corresponding
angles are equal. Thus the angle at vertex B of
the first triangle has the same measure as the
corresponding angle of the second triangle,
namely, the angle at vertex C.

This result appears as Proposition 5 of Book I of
Euclid’s famous work THE ELEMENTS.

d. The SSS rule: If the three side-lengths of one triangle
match the three side-lengths of a second triangle,
then the two triangles are congruent.

1
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The law of sines ensures that all three interior angles
match, and so the SAS rule applies.

EUCLIDEAN GEOMETRY takes the SAS rule as an
AXIOM, that is, a basic assumption that does not
require proof. It is then possible to justify the validity
of the remaining rules by making use of this rule solely,
and to also justify the law of sines. (The fact that the
sine of an angle is the same for all right triangles con-
taining that angle relies on SAS being true.)

See also CONGRUENT FIGURES; SIMILAR FIGURES.

abacus Any counting board with beads laid in paral-
lel grooves, or strung on parallel rods. Typically each
bead represents a counting unit, and each groove a
place value. Such simple devices can be powerful aids
in performing arithmetic computations.

The fingers on each hand provide the simplest “set
of beads” for manual counting, and the sand at one’s
feet an obvious place for writing results. It is not sur-
prising then that every known culture from the time of
antiquity developed, independently, some form of
counting board to assist complex arithmetical compu-
tations. Early boards were simple sun-baked clay
tablets, coated with a thin layer of fine sand in which
symbols and marks were traced. The Greeks used trays
made of marble, and the Romans trays of bronze, and
both recorded counting units with pebbles or beads.
The Romans were the first to provide grooves to repre-
sent fixed place-values, an innovation that proved to be
extremely useful. Boards of this type remained the stan-

dard tool of European merchants and businessmen up
through the Renaissance.

The origin of the word abacus can be traced back
to the Arabic word abq for “dust” or “fine sand.” The
Greeks used the word abax for “sand tray,” and the
Romans adopted the word abacus.

The form of the abacus we know today was devel-
oped in the 11th century in China and, later, in the 14th
century in Japan. (There the device was called a
soroban.) It has beads strung on wires mounted in a
wooden frame, with five beads per wire that can be
pushed up or down. Four beads are used to count the
units one through four, and the fifth bead, painted a dif-
ferent color or separated by a bar, represents a group of
five. This provides the means to represent all digits from
zero to nine. Each wire itself represents a different power
of ten. The diagram at left depicts the number 35,078.

Addition is performed by sliding beads upward
(“carrying digits” as needed when values greater than
10 occur on a single wire), and subtraction by sliding
beads downward. Multiplication and division can be
computed as repeated addition and subtraction. Histo-
rians have discovered that the Chinese and Japanese
scholars also devised effective techniques for computing
square and cube roots with the aid of the abacus.

The abacus is still the popular tool of choice in
many Asian countries—preferred even over electronic

2 abacus

A simple abacus

A Chinese abacus from before 1600. Notice that two beads, each
representing five units, are placed in each column above the bar.
(Photo courtesy of the Science Museum, London/Topham-HIP/The
Image Works)



calculators. It is a useful teaching device to introduce
young children to the notion of place-value and to the
operations of basic arithmetic.

See also BASE OF A NUMBER SYSTEM; NAPIER’S
BONES.

Abel, Niels Henrik (1802–1829) Norwegian Algebra
Born on August 5, 1802, Niels Abel might have been
one of the great mathematicians of the 19th century had
he not died of tuberculosis at age 26. He is remembered,
and honored, in mathematics for putting an end to the
three-century-long search for a SOLUTION BY RADICALS

of the quintic equation. His theoretical work in the top-
ics of GROUP THEORY and ALGEBRA paved the way for
continued significant research in these areas.

Abel’s short life was dominated by poverty, chiefly
due to the severe economic hardships his homeland of
Norway endured after the Napoleonic wars, exacer-
bated by difficult family circumstances. A schoolteacher,
thankfully, recognized Abel’s talent for mathematics as a
young student and introduced him to the works of
LEONHARD EULER, JOSEPH-LOUIS LAGRANGE, and other
great mathematicians. He also helped raise money to
have Abel attend university and continue his studies.
Abel entered the University of Christiania in the city of
Christiania (present-day Oslo), Norway, in 1821.

During his final year of study, Abel began working
on the solution of quintic equations (fifth-degree poly-
nomial equations) by radicals. Although scholars for a
long time knew general formulae for solving for
QUADRATIC, cubic, and QUARTIC EQUATIONs using noth-
ing more than basic arithmetical operations on the
COEFFICIENTs that appear in the equation, no one had
yet found a similar formula for solving quintics. In
1822 Abel believed he had produced one. He shared the
details of his method with the Danish mathematician
Ferdinand Degen in hopes of having the work published
by the Royal Society of Copenhagen. Degen had trouble
following the logic behind Abel’s approach and asked
for a numerical illustration of his method. While trying
to produce a numerical example, Abel found an error in
his paper that eventually led him to understand the rea-
son why general solutions to fifth- and higher-degree
equations are impossible. Abel published this phenome-
nal discovery in 1825 in a self-published pamphlet
“Mémoire sur les équations algébriques où on démontre
l’impossibilité de la résolution de l’équation générale du

cinquième degré” (Memoir on the impossibility of alge-
braic solutions to the general equations of the fifth
degree), which he later presented as a series of seven
papers in the newly established Journal for Pure and
Applied Mathematics (commonly known as Crelle’s
Journal for its German founder August Leopold Crelle).
At first, reaction to this work was slow, but as the repu-
tation of the journal grew, more and more scholars took
note of the paper, and news of Abel’s accomplishment
began to spread across Europe. A few years later Abel
was honored with a professorship at the University of
Berlin. Unfortunately, Abel had contracted tuberculosis
by this time, and he died on April 6, 1829, a few days
before receiving the letter of notification.

In 1830 the Paris Academy awarded Abel, posthu-
mously, the Grand Prix for his outstanding work.
Although Abel did not write in terms of the modern-day
concepts of group theory, mathematicians call groups sat-
isfying the COMMUTATIVE PROPERTY “Abelian groups” in
his honor. In 2002, on the bicentenary of his birth, the
Norwegian Academy of Science and Letters created a
new mathematics prize, the Abel Prize, similar to the
Nobel Prize, to be awarded annually.

Research in the field of commutative algebra con-
tinues today using the approach developed by Abel
during his short life. His influence on the development
of ABSTRACT ALGEBRA is truly significant.

absolute convergence A SERIES containing 

positive and negative terms is said to converge abso-
lutely if the corresponding series with all terms 

made positive, , converges. For example, the series 

converges absolutely because 

the corresponding series 

converges. (See CONVERGENT SERIES.) The “absolute
convergence test” reads:

If converges, then the original series

also converges.

It can be proved as follows:
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Let pn = |an| – an. Then each value pn is either
zero or equal to 2 |an|, depending on whether
an is positive or negative. In particular we have
that 0 ≤ pn ≤ 2|an|. 

Consequently, and so, by
the 

COMPARISON TEST, converges. Conse-
quently 

so does .

This test does not cover all cases, however. It is still 

possible that a series containing positive and 

negative terms might converge even though 

does not. For example, the alternating HARMONIC

SERIES converges, yet 

does not. A series that 

converges “on the condition that the negative signs 

remain present,” that is, one for which 

converges but does not, is called “condition-

ally convergent.” Manipulating conditionally convergent
series can lead to all sorts of paradoxes. For example,
the following argument “proves” that 1 = 2:

Start with the observation that:

(This follows from the study of the harmonic
series or from MERCATOR’S EXPANSION.) Con-
sequently:

Collecting terms with a common denominator
gives:

and so 2 = 1.

Paradoxes like these show that it is not permissible
to rearrange the order of terms of a conditionally con-
vergent series. Mathematicians have shown, however,
that rearranging the terms of an absolutely convergent
series is valid.

See also ABSOLUTE VALUE.

absolute value (modulus) Loosely speaking, the
absolute value of a REAL NUMBER is the “positive ver-
sion of that number.” Vertical bars are used to denote
the absolute value of a number. For example, the abso-
lute value of negative three is |–3| = 3, and the absolute
value of four is |4| = 4. The absolute value of a real
number a is typically envisioned three ways:

1. |a| equals a itself if a is positive or zero, and equals
–a if it is negative. (For example, |–3| = –(–3) = 3
and |3| = 3.)

2. |a| equals the positive square root of a2. (For example,

.)

3. |a| is the distance between the points a and 0 on
the real number line. (For example, |–3| = 3 = |3|
since both –3 and 3 are three units from the ori-
gin.) More generally, if a and b are two points on
the number line, then the distance between them
on the number line is given by |a – b|. (For exam-
ple, the points 4 and –7 are |4–(–7)| = |4 + 7| = 11
units apart.)

By examining each of the cases with a and b posi-
tive or negative, one can check that the absolute value
function satisfies the following properties:

i. |a + b| ≤ |a| + |b|
ii. |a – b| ≤ |a| + |b|

iii. |a · b| = |a| · |b|

Knowing the absolute value of a quantity deter-
mines the value of that quantity up to sign. For exam-
ple, the equation |x+2| = 5 tells us that either x + 2 = 5
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or x + 2 = –5, and so x equals either 3 or –7. Alterna-
tively, one can read the equation as |x – (–2)| = 5, inter-
preting it to mean that x is a point a distance of five
units from –2. Five units to the left means x is the point
–7; five units to the right means x is 3.

The notion of absolute value was not made explicit
until the mid-1800s. KARL WEIERSTRASS, in 1841, was
the first to suggest a notation for it—the two vertical
bars we use today. Matters are currently a little confus-
ing, however, for mathematicians today also use this
notation for the length of a VECTOR and for the MODU-
LUS of a COMPLEX NUMBER.

abstract algebra Research in pure mathematics is
motivated by one fundamental question: what makes
mathematics work the way it does? For example, to a
mathematician, the question, “What is 263 × 178 (or
equivalently, 178 × 263)?” is of little interest. A far
more important question would be, “Why should the
answers to 263 × 178 and 178 × 263 be the same?”

The topic of abstract algebra attempts to identify
the key features that make ALGEBRA and ARITHMETIC

work the way they do. For example, mathematicians
have shown that the operation of ADDITION satisfies
five basic principles, and that all other results about the
nature of addition follow from these.

1. Closure: The sum of two numbers is again a number.
2. Associativity: For all numbers a, b, and c, we have:

(a + b) + c = a + (b + c).
3. Zero element: There is a number, denoted “0,” so

that: a + 0 = a = 0 + a for all numbers a.
4. Inverse: For each number a there is another number,

denoted “–a,” so that: a + (–a) = 0 = (–a) + a.
5. Commutativity: For all numbers a and b we have:

a + b = b + a.

Having identified these five properties, mathemati-
cians search for other mathematical systems that may
satisfy the same five relations. Any fact that is known
about addition will consequently hold true in the new
system as well. This is a powerful approach to matters.
It avoids having to re-prove THEOREMS and facts about
a new system if one can recognize it as a familiar one in
disguise. For example, MULTIPLICATION essentially sat-
isfies the same five AXIOMS as above, and so for any
fact about addition, there is a corresponding fact about
multiplication. The set of symmetries of a geometric

figure also satisfy these five axioms, and so too all
known results about addition immediately transfer to
interesting statements about geometry. Any system that
satisfies these basic five axioms is called an “Abelian
group,” or just a GROUP if the fifth axiom fails. GROUP

THEORY is the study of all the results that follow from
these basic five axioms without reference to a particu-
lar mathematical system.

The study of RINGs and FIELDs considers mathe-
matical systems that permit two fundamental opera-
tions (typically called addition and multiplication).
Allowing for the additional operation of scalar multi-
plication leads to a study of VECTOR SPACEs.

The theory of algebraic structures is highly devel-
oped. The study of vector spaces, for example, is so
extensive that the topic is regarded as a field of math-
ematics in its own right and is called LINEAR ALGEBRA.

acceleration See VELOCITY.

actuarial science The statistical study of life
expectancy, sickness, retirement, and accident matters
is called actuarial science. Experts in the field are called
actuaries and are employed by insurance companies
and pension funds to calculate risks and relate them to
the premiums to be charged. British mathematician and
astronomer, Edmund Halley (1656–1742) was the first
to properly analyze annuities and is today considered
the founder of the field.

See also LIFE TABLES.

acute angle An ANGLE between zero and 90° is called
an acute angle. An acute-angled triangle is one whose
angles are all acute. According to the LAW OF COSINES, a
triangle with side-lengths a, b, and c and corresponding
angles A, B, C opposite those sides, satisfies:

The angle C is acute only if cosC > 0, that is, only if a2

+ b2 > c2. Thus a triangle a, b, c is acute if, and only if,
the following three inequalities hold:

cosC
a b c

ab
= + −2 2 2

2
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a2 + b2 > c2

b2 + c2 > a2

c2 + a2 > b2

See also OBTUSE ANGLE; PERIGON; PYTHAGORAS’S
THEOREM; TRIANGLE.

addition The process of finding the sum of two
numbers is called addition. In the elementary ARITH-
METIC of whole numbers, addition can be regarded as
the process of accumulating sets of objects. For exam-
ple, if a set of three apples is combined with a set of
five apples, then the result is a set of eight apples. We
write: 3 + 5 = 8.

Two numbers that are added together are called
addends. For instance, in the equation 17 + 33 = 50,
the numbers 17 and 33 are the addends, and the num-
ber 50 is their sum. Addition can also be regarded as
the process of increasing one number (an addend) by
another (called, in this context, an augend). Thus when
17 is augmented by 33 units, the result is 50.

The PLACE-VALUE SYSTEM we use today for writing
numbers simplifies the process of adding large integers.
For instance, adding together 253 and 589 yields 2 + 5
= 7 units of 100, 5 + 8 = 13 units of 10, and 3 + 9 = 12
units of 1. So, in some sense, it is reasonable to write
the answer to this addition problem simply as 7 | 13 |
12 using a vertical bar to separate units of powers of
10. Since 13 units of 10 is equivalent to one unit of 100
and three units of 10, this is equivalent to 8 | 3 | 12.
Noting, also, that 12 units of one 12 is equivalent to
one unit of 10 and two single units, this can be rewrit-
ten as 8 | 4 | 2. Thus we have: 253 + 589 = 842.

The latter process of modifying the figures into sin-
gle-digit powers of 10 (that is, in our example, the pro-
cess of rewriting 7 | 13 | 12 as 8 | 4 | 2) is called
“carrying digits.” Students in schools are usually
taught an algorithm that has one carry digits early in
the process of completing an addition problem rather
than leaving this work as the final step. Either method
is valid. (The term “carry a digit” dates back to the
time of the ABACUS, where beads on rods represented
counts of powers of 10 and the person had to move—
“carry”—counters from one rod to another if any
count was greater than a single digit.)

The process of addition can be extended to NEGA-
TIVE NUMBERS (yielding an operation called SUBTRAC-

TION), the addition of FRACTIONs (completed with the
aid of computing COMMON DENOMINATORs), REAL

NUMBERS, COMPLEX NUMBERS, VECTORs, and MATRIX

addition. The number ZERO is an additive IDENTITY

ELEMENT in the theory of arithmetic. We have that a + 0
= a = 0 + a for any number a.

The sum of two real-valued functions f and g is the
function f + g whose value at any input x is the sum of
the outputs of f and g at that input value: ( f + g)(x) =
f(x) + g(x). For example, if f(x) = x2 + 2x and g(x) =
5x + 7, then (f + g)(x) = x2 + 2x + 5x + 7 = x2 + 7x + 7.

A function with the property that f(x + y) = f(x) +
f(y) for all inputs x and y is called “additive.” For
example, f(x) = 2x is additive.

The addition formulae in TRIGONOMETRY assert:

The symbol + used to denote addition is believed to
have derived from a popular shorthand for the Latin
word et meaning “and” and was widely used by math-
ematical scholars in the late 15th century. The symbol
first appeared in print in Johannes Widman’s 1489
book Behennde unnd hüpsche Rechnung auf fallen
Kauffmannschaften (Neat and handy calculations for
all tradesmen).

See also ASSOCIATIVE; CASTING OUT NINES;
COMMUTATIVE PROPERTY; DISTRIBUTIVE PROPERTY;
MULTIPLICATION; SUMMATION.

affine geometry The study of those properties of
geometric figures that remain unchanged by an AFFINE

TRANSFORMATION is called affine geometry. For exam-
ple, since an affine transformation preserves straight
lines and RATIOs of distances between POINTs, the
notions of PARALLEL lines, MIDPOINTs of LINE segments,
and tangency are valid concepts in affine geometry. The
notion of a CIRCLE, however, is not. (A circle can be
transformed into an ELLIPSE via an affine transforma-
tion. The equidistance of points on the circle from the
circle center need not be preserved.)

Affine geometry was first studied by Swiss mathe-
matician LEONHARD EULER (1707–83). Only postulates

sin( ) sin cos cos sin
cos( ) cos cos sin sin

tan( )
tan tan

tan tan

x y x y x y
x y x y x y

x y
x y

x y

+ = +
+ = −

+ = +
−1
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1, 2, and 5 of EUCLID’S POSTULATES remain valid in
affine geometry.

affine transformation Any map from the PLANE to
itself that transforms straight LINES into straight lines
and preserves RATIOs of distances between POINTs (so
that the midpoint of a line segment, for instance,
remains the midpoint after the transformation) is called
an affine transformation. One can prove that any affine
transformation must be a LINEAR TRANSFORMATION

followed by a translation. Thus an affine transforma-
tion T is completely specified by a MATRIX A and a
VECTOR b so that T (x) = Ax + b for any vector x repre-
senting a point in the plane.

An affine transformation T satisfies the relation:

T(sx + ty) = sT(x) + tT(y)

for any two vectors x and y and any two real numbers
s and t such that s + t = 1. This is sometimes taken as
the definition of what it means for a transformation to
be affine.

Affine transformations generally do not preserve
the lengths of line segments nor the measure of
ANGLEs between segments. It is possible to transform
a CIRCLE into an ELLIPSE, for instance, via an affine
transformation.

See also AFFINE GEOMETRY.

Agnesi, Maria Gaëtana (1718–1799) Italian Calcu-
lus Born on May 16, 1718, to a wealthy family of silk
merchants, Maria Agnesi is best remembered for her
influential expository text outlining the methods and
techniques of the newly invented CALCULUS. Written
with such clarity and precision, Istituzioni analitiche
(Analytical institutions) garnered her international
fame. Agnesi is considered the first major female math-
ematician of modern times, and she holds the distinc-
tion of being the first woman to be awarded a
professorship of mathematics on a university faculty.

Agnesi demonstrated remarkable academic talents
as a young child. By age 13 she had mastered many
languages and had published translations of academic
essays. Although little consideration was given to edu-
cating women at the beginning of the 18th century,
Agnesi’s father encouraged her intellectual develop-

ment, provided tutors of the highest quality, and pro-
vided forums for her to display her talents to Italian
society. In preparation for these events, Agnesi had pre-
pared discourses on a wide variety of topics in science
and philosophy, which she published as a collection of
190 essays at age 20.

After the death of her mother, Agnesi undertook
the task of instructing her younger brothers in the sub-
ject of mathematics. In 1738 she began preparing a
textbook for their use, and found the topic so com-
pelling that she devoted her complete intellectual atten-
tion to mathematics. Ten years later, her famous
two-volume text Istituzioni analitiche was published.

The work was the first comprehensive overview of
the subject of calculus. Although designed for young
students beginning their studies of the subject, Agnesi’s
work was recognized as providing hitherto unnoticed
connections between the different approaches of SIR

ISAAC NEWTON (1642–1727) and GOTTFRIED WIL-
HELM LEIBNIZ (1646–1716), independent coinventors
of the subject. Her piece also provided, for the first
time, clear explanations of previously confusing issues
in the topic. Her text collated and explained the work
of other contributors to the subject from several differ-
ent countries, a task no doubt facilitated by her skills in
translation. Her talents, not just as an expository
writer, but also as a great scholar in mathematics, were
apparent. Mathematicians at the time recognized her
text as a significant contribution to the further develop-
ment of the topic of calculus. In 1750 Agnesi was
appointed the chair of mathematics at the University of
Bologna in recognition of her great accomplishment.
Curiously, she never officially accepted or rejected the
faculty position. It is known that she never visited the
city of Bologna, even though her name appears on uni-
versity records over a span of 45 years.

After the death of her father in 1752, Agnesi with-
drew from mathematics and devoted her life to charita-
ble work, helping the sick and the poor. In 1783 she
was made director of a women’s poorhouse, where she
remained the rest of her life. Having given all her money
and possessions away, Agnesi died on January 9, 1799,
with no money of her own and was buried in a pauper’s
grave. The city of Milan, where she had lived all her
life, today publicly honors her gravesite.

John Colson, Lucasian professor of mathematics at
Cambridge, published an English translation of Isti-
tuzioni analitiche in 1801. He said that he wanted to
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give the youth of Britain the same opportunity to bene-
fit from this remarkable text as the young scholars
from Italy had been able to enjoy.

Alembert, Jean Le Rond d’ (1717–1783) French
Differential equations, Analysis, Philosophy Born on
November 17, 1717, in Paris, France, scholar Jean le
Rond d’Alembert is best remembered for his 1743 trea-
tise Traité de dynamique (Treatise on dynamics), in
which he attempted to develop a firm mathematical
basis for the study of mechanics. D’Alembert pioneered
the study of partial DIFFERENTIAL EQUATIONs and their
use in physics. He is also noted for his work on vibrat-
ing strings.

After briefly pursuing theology and medicine at the
Jansenist Collège des Quatre Nations, d’Alembert set-
tled on mathematics as his choice of academic study.

He graduated from the Collège in 1735 to then pursue
interests in fluid mechanics. In 1740 he presented a
series of lectures on the topic to members of the Paris
Academy of Science, which earned him recognition as a
capable mathematician and admittance as a member of
the academy. He remained with the institution for his
entire career.

D’Alembert came to believe that the topic of
mechanics should be based on logical principles, not
necessarily physical ones, and that its base is funda-
mentally mathematical. In his 1743 treatise Traité de
dynamique, he attempted to refine the work of SIR

ISAAC NEWTON (1642–1727) and clarify the underpin-
nings of the subject. The following year d’Alembert
published a second work, Traité de l’équilibre et du
mouvement des fluides (Treatise on the equilibrium and
movement of fluids), that applied his results to the
study of fluid motion and introduced some beginning
results on the study of partial differential equations. He
developed these results further over the following
years. In 1747 d’Alembert submitted a paper “Réflex-
ions sur la cause générale des vents” (Reflections on the
general cause of air motion) for consideration for the
annual scientific prize offered by the Prussian Academy.
He did indeed win.

At the same time d’Alembert also began work as a
writer and science editor for the famous French Ency-
clopédie ou dictionnaire raisonné des sciences, des arts,
et des métiers (Encyclopedia and dictionary of the
rationales of the sciences, arts, and professions), taking
responsibility for the writing of the majority of mathe-
matical entries. The first volume of the 28-volume
work was published in 1751.

D’Alembert published several new mathematical
results and ideas in this epic work. For instance, in vol-
ume 4, under the entry differential, he suggested, for
the first time, that the principles of CALCULUS should be
based on the notion of a LIMIT. He went so far as to
consider defining the derivative of a function as the
limit of a RATIO of increments. He also described the
new ratio test when discussing CONVERGENT SERIES.

D’Alembert’s interests turned toward literature and
philosophy, and administrative work, in the latter part
of his life. He was elected as perpetual secretary of the
Académie Française in 1772. He died 11 years later on
October 29, 1783.

His work in mathematics paved the way for proper
development of the notion of a limit in calculus, as well
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Jean Le Rond d’Alembert, an eminent mathematician of the 18th
century, pioneered the study of differential equations and their
application to mechanics. (Photo courtesy of Topham/
The Image Works)



as advancement of the field of partial differential equa-
tions. In mechanics, he is honored with a principle of
motion named after him, a generalization of Sir Isaac
Newton’s third law of motion.

See also DIFFERENTIAL CALCULUS.

algebra The branch of mathematics concerned with
the general properties of numbers, and generalizations
arising from those properties, is called algebra. Often
symbols are used to represent generic numbers,
thereby distinguishing the topic from the study of
ARITHMETIC. For instance, the equation 2 × (5 + 7) =
2 × 5 + 2 × 7 is a (true) arithmetical statement about a
specific set of numbers, whereas, the equation x ×

(y + z) = x × y + x × z is a general statement describing
a property satisfied by any three numbers. It is a state-
ment in algebra.

Much of elementary algebra consists of methods of
manipulating equations to either put them in a more
convenient form, or to determine (that is, solve for)
permissible values of the variables that appear. For
instance, rewriting x2 + 6x + 9 = 25 as (x + 3)2 = 25
allows an easy solution for x: either x + 3 = 5, yielding
x = 2, or x + 3 = –5, yielding x = –8.

The word algebra comes from the Arabic term
al-jabr w’al-muqābala (meaning “restoration and
reduction”) used by the great MUHAMMAD IBN M–

US
–
A

AL-KHW
–
ARIZM

–
I (ca. 780–850) in his writings on the

topic.
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History of Equations and Algebra

Finding solutions to equations is a pursuit that dates back to
the ancient Egyptians and Babylonians and can be traced
through the early Greeks’ mathematics. The RHIND PAPYRUS,
dating from around 1650 B.C.E., for instance, contains a
problem reading:

A quantity; its fourth is added to it. It becomes
fifteen. What is the quantity?

Readers are advised to solve problems like these by a
method of “false position,” where one guesses (posits) a
solution, likely to be wrong, and adjusts the guess accord-
ing to the result obtained. In this example, to make the divi-
sion straightforward, one might guess that the quantity is
four. Taking 4 and adding to it its fourth gives, however, only
4 + 1 = 5, one-third of the desired answer of 15. Multiplying
the guess by a factor of three gives the solution to the prob-
lem, namely 4 × 3, which is 12.

Although the method of false position works only for
LINEAR EQUATIONs of the form ax = b, it can nonetheless be an
effective tool. In fact, several of the problems presented in
the Rhind papyrus are quite complicated and are solved rel-
atively swiftly via this technique.

Clay tablets dating back to 1700 B.C.E. indicate that
Babylonian mathematicians were capable of solving certain
QUADRATIC equations by the method of COMPLETING THE

SQUARE. They did not, however, have a general method of
solution and worked only with a set of specific examples
fully worked out. Any other problem that arose was

matched with a previously solved example, and its solution
was found by adjusting the numbers appropriately.

Much of the knowledge built up by the old civilizations
of Egypt and Babylonia was passed on to the Greeks. They
took matters in a different direction and began examining all
problems geometrically by interpreting numbers as lengths
of line segments and the products of two numbers as areas
of rectangular regions. Followers of PYTHAGORAS from the
period 540 to 250 B.C.E., for instance, gave geometric proofs
of the DISTRIBUTIVE PROPERTY and the DIFFERENCE OF TWO

SQUARES formula, for example, in much the same geometric
way we use today to explain the method of EXPANDING BRACK-
ETS. The Greeks had considerable trouble solving CUBIC EQUA-
TIONs, however, since their practice of treating problems
geometrically led to complicated three-dimensional con-
structions for coping with the product of three quantities.

At this point, no symbols were used in algebraic prob-
lems, and all questions and solutions were written out in
words (and illustrated in diagrams). However, in the third
century, DIOPHANTUS OF ALEXANDRIA introduced the idea of
abbreviating the statement of an equation by replacing fre-
quently used quantities and operations with symbols as a
kind of shorthand. This new focus on symbols had the sub-
tle effect of turning Greek thinking away from geometry.
Unfortunately, the idea of actually using the symbols to
solve equations was ignored until the 16th century.

The Babylonian and Greek schools of thought also influ-
enced the development of mathematics in ancient India. The
scholar BRAHMAGUPTA (ca. 598–665) gave solutions to

(continues)
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quadratic equations and outlined general methods for solving
systems of equations containing several variables. (He also
had a clear understanding of negative numbers and was
comfortable working with zero as a valid numerical quantity.)
The scholar Bh–askara (ca. 1114–85) used letters to represent
unknown quantities and, in working with quadratic equations,
suggested that all positive numbers have two square roots
and that negative numbers have no (meaningful) roots.

A significant step toward the development of modern
algebra occurred in Baghdad, Iraq, in the year 825 when the
Arab mathematician MUHAMMAD IBN M–US–A AL-KHW–ARIZM–I (ca.
780–850) published his famous piece Hisab al-jabr w’al-
muqābala (Calculation by restoration and reduction). This
work represents the first clear and complete exposition on
the art of solving linear equations by a new practice of per-
forming the same operation on both sides of an equation. For
example, the expression x – 3 = 7 can be “restored” to x = 10
by adding three to both sides of the expression, and the
equation 5x = 10 can be “reduced” to x = 2 by dividing both
sides of the equation by five. Al-Khw–arizm–ı also showed how
to solve quadratic equations via similar techniques. His
descriptions, however, used no symbols, and like the ancient
Greeks, al-Khw–arizm–ı wrote everything out in words. None-
theless, al-Khw–arizm–ı ’s treatise was enormously influential,
and his new approach to solving equations paved the way for
modern algebraic thinking. In fact, it is from the word al-jabr
in the title of his book that our word algebra is derived.

Al-Khw–arizm–ı ’s work was translated into Latin by the
Italian mathematician FIBONACCI (ca. 1175–1250), and his
efficient methods for solving equations quickly spread
across Europe during the 13th century. Fibonacci translated
the word shai used by al-Khw–arizm–ı for “the thing
unknown” into the Latin term res. He also used the Italian
word cosa for “thing,” and the art of algebra became
known in Europe as “the cossic art.”

In 1545 GIROLAMO CARDANO (1501–76) published Ars
magna (The great art), which included solutions to the cubic
and QUARTIC EQUATIONs, as well as other mathematical dis-
coveries. By the end of the 17th century, mathematicians
were comfortable performing the same sort of symbolic
manipulations we practice today and were willing to accept
negative numbers and irrational quantities as solutions to
equations. The French mathematician FRANÇOIS VIÈTE

(1540–1603) introduced an efficient system for denoting
powers of variables and was the first to use letters as coef-
ficients before variables, as in “ax2 + bx + c,” for instance.
(Viète also introduced the signs “+” and “–,” although he
never used a sign for equality.) RENÈ DESCARTES (1596–1650)
introduced the convention of denoting unknown quantities

by the last letters of the alphabet, x, y, and z, and known
quantities by the first, a, b, c. (This convention is now com-
pletely ingrained; when we see, for example, an equation of
the form ax + b = 0, we assume, without question, that it is
for “x” we must solve.)

The German mathematician CARL FRIEDRICH GAUSS

(1777–1855) proved the FUNDAMENTAL THEOREM OF ALGEBRA in
1797, which states that every POLYNOMIAL equation of degree
n has at least one and at most n (possibly complex) roots.
His work, however, does not provide actual methods for
finding these roots.

Renaissance scholars SCIPIONE DEL FERRO (1465–1526)
and NICCOLÒ TARTAGLIA (ca. 1500–57) both knew how to solve
cubic equations, and in his 1545 treatise Ars magna, Car-
dano published the solution to the quartic equation discov-
ered by his assistant LUDOVICO FERRARI (1522–65). For the
centuries that followed, mathematicians attempted to find a
general arithmetic method for solving all quintic (fifth-
degree) equations. LEONHARD EULER (1707–83) suspected
that the task might be impossible. Between the years 1803
and 1813, Italian mathematician Paolo Ruffini (1765–1822)
published a number of algebraic results that strongly sug-
gested the same, and just a few years later Norwegian
mathematician NIELS HENRIK ABEL (1802–29) proved that,
indeed, there is no general formula that solves all quintic
equations in a finite number of arithmetic operations. Of
course, some degree-five equations can be solved alge-
braically. (Equation of the form x5 – a = 0, for instance, have
solutions x = 5√a.– ) In 1831 French mathematician ÉVARISTE

GALOIS (1811–32) completely classified those equations that
can be so solved, developing work that gave rise to a whole
new branch of mathematics today called GROUP THEORY.

In the 19th century mathematicians began using vari-
ables to represent quantities other than real numbers. For
example, English mathematician GEORGE BOOLE (1815–64)
invented an algebra symbolic logic in which variables rep-
resented sets, and Irish scholar SIR WILLIAM ROWAN HAMIL-
TON (1805–65) invented algebraic systems in which
variables represented VECTORs or QUATERNIONs.

With these new systems, important characteristics of
algebra changed. Hamilton, for instance, discovered that
multiplication was no longer commutative in his systems: a
product a × b might not necessarily give the same result as
b × a. This motivated mathematicians to develop abstract
AXIOMs to explain the workings of different algebraic sys-
tems. Thus the topic of ABSTRACT ALGEBRA was born. One
outstanding contributor in this field was German mathemati-
cian AMALIE NOETHER (1883–1935), who made important dis-
coveries about the nature of noncommutative algebras.

See also ASSOCIATIVE; BABYLONIAN MATHEMATICS; CANCEL-
LATION; COMMUTATIVE PROPERTY; EGYPTIAN MATHEMATICS; FIELD;
GREEK MATHEMATICS; INDIAN MATHEMATICS; LINEAR ALGEBRA; RING.

History of Equations and Algebra
(continued)



In modern times the subject of algebra has been
widened to include ABSTRACT ALGEBRA, GROUP THE-
ORY, and the study of alternative number systems
such as MODULAR ARITHMETIC. BOOLEAN ALGEBRA

looks at the algebra of logical inferences, matrix alge-
bra the arithmetic of MATRIX operations, and vector
algebra the mechanics of VECTOR operations and
VECTOR SPACEs.

An algebraic structure is any set equipped with one
or more operations (usually BINARY OPERATIONs) satis-
fying a list of specified rules. For example, any group,
RING, FIELD, or vector space is an algebraic structure. In
advanced mathematics, a vector space that is also a
field is called an “algebra.”

See also BRACKETS; COMMUTATIVE PROPERTY; DIS-
TRIBUTIVE PROPERTY; EXPANDING BRACKETS; FUNDA-
MENTAL THEOREM OF ALGEBRA; HISTORY OF EQUATIONS

AND ALGEBRA (essay); ORDER OF OPERATION.

algebraic number A number is called algebraic if it
is the root of a POLYNOMIAL with integer coefficients.
For example, (1/2) (5 + √—13) is algebraic since it is a
solution to the equation x2 – 5x + 3 = 0. All RATIONAL

NUMBERS are algebraic (since a fraction a/b is the solu-
tion to the equation bx – a = 0), and all square, cube,
and higher roots of integers are algebraic (since 

n√—
a is a

solution to xn – a = 0).
At first thought it seems that all numbers are alge-

braic, but this is not the case. In 1844 French mathe-
matician JOSEPH LIOUVILLE made the surprising
discovery that the following number, today called
“Liouville’s constant,” cannot be a solution to any inte-
ger polynomial equation:

Numbers that are not algebraic are called “transcen-
dental.”

In 1873 French mathematician Charles Hermite
(1822–1901) proved that the number e is transcenden-
tal, and, nine years later in 1882 German mathematician
CARL LOUIS FERDINAND VON LINDEMANN established
that π is transcendental. In 1935 Russian mathematician
Aleksandr Gelfond (1906–68) proved that any number
of the form ab is transcendental if a and b are both alge-

braic, with a different from 0 or 1, and b irrational.
(Thus, for example, 2√

–
3 is transcendental.)

The German mathematician GEORG CANTOR

(1845–1918) showed that the set of algebraic numbers
is COUNTABLE. As the set of real numbers is uncount-
able, this means that most numbers are transcendental.
The probability that a real number chosen at random is
algebraic is zero. Although it was proven in 1929 that
eπ is transcendental, no one to this day knows whether
or not ππ is algebraic.

In analogy with algebraic numbers, a FUNCTION

y = f(x) is called “algebraic” if it can be defined by a
relation of the form

pn(x)yn + pn– 1(x)yn – 1+…+p1(x)y + p0(x) = 0

where the functions pi(x) are polynomials in x. For
example, the function y = √—

x is an algebraic function,
since it is defined by the equation y2 – x = 0. A tran-
scendental function is a function that is not algebraic.
Mathematicians have shown that trigonometric, loga-
rithmic, and exponential functions are transcendental.

See also CARDINALITY.

algorithm An algorithm is a specific set of instruc-
tions for carrying out a procedure or solving a mathe-
matical problem. Synonyms include “method,”
“procedure,” and “technique.” One example of an
algorithm is the common method of LONG DIVISION.
Another is the EUCLIDEAN ALGORITHM for finding the
GREATEST COMMON DIVISOR of two positive integers.
The word algorithm is a distortion of “al-Khw–arizm–ı,”
the name of a Persian mathematician (ca. 820) who
wrote an influential text on algebraic methods.

See also BASE OF A NUMBER SYSTEM; MUHAMMAD

IBN M–
US

–
A AL-KHW

–
ARIZM

–ı.

alternating series A SERIES whose terms are alternately
positive and negative is called an alternating series. For 

example, the GREGORY SERIES is 

an alternating series, as is the (divergent) series: 1 – 1 + 1 
– 1 + 1 – 1 +… Alternating series have the form 

, with each ai positive

number.
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In 1705, GOTTFRIED WILHELM LEIBNIZ noticed that
many convergent alternating series, like the Gregory
series, have terms ai that decrease and approach zero:

i. a1 ≥ a2 ≥ a3 ≥…
ii. an → 0

He managed to prove that any alternating series satis-
fying these two conditions does indeed converge, and
today this result is called the “alternating series test.”
(One can see that the test is valid if one physically
paces smaller and smaller steps back and forth: a1 feet
forward, a2 feet backward, a3 feet forward, and so on.
This motion begins to “hone in” on a single limiting
location.) We see, for example, that the series 

converges. Unfortunately,

the alternating series test gives us no indication as to
what the value of the sum could be. Generally, finding
the limit value is a considerable amount of work, if at
all possible. The values of many “simple” alternating
series are not known today. (One can show, however,
that the above series above converges to π2/12. See
CONVERGENT SERIES.)

See also ZETA FUNCTION.

altitude A line segment indicating the height of a
two- or three-dimensional geometric figure such as a
POLYGON, POLYHEDRON, CYLINDER, or CONE is called
an altitude of the figure. An altitude meets the base of
the figure at a RIGHT ANGLE.

Any TRIANGLE has three distinct altitudes. Each is a
LINE segment emanating from a vertex of the triangle
meeting the opposite edge at a 90° angle. The LAW OF

SINES shows that the lengths ha, hb, and hc of the three
altitudes of a triangle ABC satisfy:

ha = c sin β = b sin γ
hb = a sin γ = c sin α
hc = b sin α = a sin β

where a, b, and c are the side-lengths of the triangle,
and α, β, and γ are the angles at vertices A, B, and C,
respectively. Here ha is the altitude meeting the side of
length a at 90°. Similarly, hb and hc are the altitudes
meeting sides of length b and c, respectively. It also fol-
lows from this law that the following relation holds:

where r is the radius of the circle that contains the
points A, B, and C.

The three altitudes of a triangle always meet at a
common point called the orthocenter of the triangle.
Surprisingly, this fundamental fact was not noticed by
the geometer EUCLID (ca. 300 B.C.E.). The claim can be
proved as follows:

Given a triangle ABC, draw three lines, one
through each vertex and parallel to the side
opposite to that vertex. This creates a larger
triangle DEF.

By the PARALLEL POSTULATE, alternate
angles across parallel lines are equal. This
allows us to establish that all the angles in the
diagram have the values as shown. Conse-
quently, triangle DAB is similar to triangle
ABC and, in fact, is congruent to it, since it
shares the common side AB. We have that DA
is the same length as BC. In a similar way we
can show that AE also has the same length as
BC, and so A is the midpoint of side DE of the
large triangle. Similarly, B is the midpoint of
side DF, and C the midpoint of side EF. The
study of EQUIDISTANT points establishes that

h h h
abc

r
a b c =

( )3
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the perpendicular bisectors of any triangle are
CONCURRENT, that is, meet at a point. But the
perpendicular bisectors of triangle DEF are
precisely the altitudes of triangle ABC.

One can also show that the three altitudes of a tri-
angle satisfy:

where R is the radius of the largest circle that sits inside
the triangle.

See also EULER LINE.

amicable numbers (friendly numbers) Two whole
numbers a and b are said to be amicable if the sum of
the FACTORs of a, excluding a itself, equals b, and the
sum of the factors of b, excluding b itself, equals a. For
example, the numbers 220 and 284 are amicable:

284 has factors 1, 2, 4, 71, and 142, and their sum 
is 220

220 has factors 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 
and 110, and their sum is 284

The pair (220, 284) is the smallest amicable pair. For
many centuries it was believed that this pair was the only
pair of amicable numbers. In 1636, however, PIERRE DE

FERMAT discovered a second pair, (17296, 18416), and in
1638, RENÉ DESCARTES discovered the pair (9363584,
9437056). Both these pairs were also known to Arab
mathematicians, perhaps at an earlier date.

By 1750, LEONHARD EULER had collated 60 more
amicable pairs. In 1866, 16-year-old Nicolò Paganini
found the small pair (1184, 1210) missed by all the
scholars of preceding centuries. Today more than 5,000
different amicable pairs are known. The largest pair
known has numbers each 4,829 digits long.

See also PERFECT NUMBER.

analysis Any topic in mathematics that makes use of
the notion of a LIMIT in its study is called analysis. CAL-
CULUS comes under this heading, as does the summa-
tion of infinite SERIES, and the study of REAL NUMBERS.

Greek mathematician PAPPUS OF ALEXANDRIA (ca.
320 C.E.) called the process of discovering a proof or a

solution to a problem “analysis.” He wrote about “a
method of analysis” somewhat vaguely in his geometry
text Collection, which left mathematicians centuries
later wondering whether there was a secret method hid-
den behind all of Greek geometry.

The great RENÉ DESCARTES (1596–1650) devel-
oped a powerful method of using algebra to solve geo-
metric problems. His approach became known as
analytic geometry.

See also ANALYTIC NUMBER THEORY; CARTESIAN

COORDINATES.

analytic number theory The branch of NUMBER THE-
ORY that uses the notion of a LIMIT to study the proper-
ties of numbers is called analytic number theory. This
branch of mathematics typically deals with the “aver-
age” behavior of numbers. For example, to answer:

On average, how many square factors does a
number possess?

one notes that all numbers have 1 as a factor, one-
quarter of all numbers have 4 as a factor, one-ninth
have the factor 9, one-sixteenth the factor 16, and
so on. Thus, on average, a number possesses

square factors. This par-

ticular argument can be made mathematically precise.
See also ANALYSIS; ZETA FUNCTION.

angle Given the configuration of two intersecting
LINEs, line segments, or RAYs, the amount of ROTATION

about the point of intersection required to bring one
line coincident with the other is called the angle
between the lines. Simply put, an angle is a measure of
“an amount of turning.” In any diagram representing
an angle, the lengths of the lines drawn is irrelevant.
For example, an angle corresponding to one-eighth of a
full turn can be represented by rays of length 2 in., 20
in., or 200 in.

The image of a lighthouse with a rotating beam of
light helps clarify the concept of an angle: each ray or
line segment in a diagram represents the starting or end-
ing position of the light beam after a given amount of
turning. For instance, angles corresponding to a quarter
of a turn, half a turn, and a full turn appear as follows:
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Mathematicians sometimes find it convenient to deem
an angle measured in a counterclockwise sense as posi-
tive, and one measured in a clockwise sense as negative.

Babylonian scholars of ancient times were aware
that the year is composed of 365 days but chose to
operate with a convenient calendar composed of 12
months of 30 days. Thus the number 360 came to be
associated with the notion of a full cycle. Today, hark-
ing back to the Babylonians, angles are measured in
units of degrees, in which a full rotation corresponds to
360 degrees (written 360°). Thus a half turn corre-
sponds to 180°, and a quarter turn to 90°. A single
degree corresponds to 1/360 of a turn.

Each degree is divided into 60 smaller units called
minutes, denoted with an apostrophe, and each
minute is divided into 60 smaller units called seconds,
denoted with two apostrophes. Thus, for instance,
15°46′23′′ represents an angle of 15 degrees, 46 min-
utes, and 23 seconds.

Mathematicians prefer to use a unit of angle mea-
surement independent of the circumstance that we live
on the Earth, i.e., one that is natural to mathematics.
The chosen unit of measurement is called a radian.
Working with the simplest CIRCLE possible, namely, a
circle of radius one, mathematicians match the measure
of a full turn with the distance around that circle,
namely 2π, the circumference of the circle. Thus one
full rotation equals 2π radian. A half turn is measured
as half of this, namely, π radian, and a quarter turn as

radian.

To convert between degree and radian measures,
one simply notes that 360 degrees corresponds to 2π

radian. (Thus one degree equals radian, 

and one radian equals .)

A unit of measurement called a “gradian” is some-
times used in surveying. In this system, a full turn is
considered 400 gradian (and, consequently, a quarter
turn is divided into exactly 100 parts). This system is
rarely used in mathematics, if at all.

Angles are classified according to their measure:

• An angle of zero degree is called a null angle.
• An angle between 0° and 90° is called acute.
• An angle of 90° is called a right angle. (It is the angle

formed when one makes a perfect right turn.)
• An angle between 90° and 180° is called obtuse.
• An angle of 180° is called a straight angle.
• An angle between 180° and 360° is called a reflex

angle.
• An angle of 360° is called a PERIGON or a round angle.

Two angles are said to be congruent if they have the
same measure. If two angles have measures summing to
a right angle, then they are said to be complementary,
and two angles are supplementary if their measures sum
to a straight angle. Special names are also given to angles
that appear in a diagram involving a TRANSVERSAL.

The angle of elevation of a point P above the
ground relative to an observer at position Q on the
ground is defined to be the angle between the line con-
necting Q to P, and the line connecting Q to the point
on the ground directly below P. If P lies below ground
level, then an angle of depression is computed similarly.

The angle between two VECTORs is computed via
the DOT PRODUCT. Using TRIGONOMETRY one shows
that the angle A between two lines in the plane of
slopes m1 and m2, respectively, is given by:

(This follows by noting that the angle the first line makes
with the x-axis is tan–1(m1) and the angle of the second
line is tan–1(m2). Thus the angle we seek is A = tan–1(m1)
– tan–1(m2). The trigonometric identity tan(α– β) = 

now establishes the result.) 

Consequently, if m1m2 = –1, the lines are PERPENDI-
CULAR. The angle between two intersecting curves in
a plane is defined to be the angle between the TAN-
GENT lines to the curves at the point of intersection.

The link between the measure of an angle and the
length of arcs of a unit circle to define radian measure
can be extended to associate a measure of “angle” with
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regions on a unit SPHERE. A SOLID ANGLE of a region is
simply the measure of surface AREA of that region pro-
jected onto a unit sphere. Units of solid angle are called
steradians. The full surface area of the sphere is 4π
steradian.

See also BABYLONIAN MATHEMATICS; DIHEDRAL;
SLOPE; TRIANGLE; TRISECTING AN ANGLE.

angle trisection See TRISECTING AN ANGLE.

annulus (plural, annuli) An annulus is the region
between two CONCENTRIC circles in a plane. The
AREA of the annulus is the difference of the areas of
the two circles.

If a cyclist rides a perfect circle, the region between
the tracks made by the front and rear wheels is an
annulus. If the bicycle is r feet long (axel to axel), then,
surprisingly, the area of this annulus is πr2 feet squared,
irrespective of the size of the circle the cyclist traces.

antidifferentiation (integration) The process of
finding a function with a given function as its DERIVA-
TIVE is called antidifferentiation. For example, x2 is an 

antiderivative of 2x, since . The MEAN

VALUE THEOREM shows that two antiderivatives of
the same function differ only by a constant. Thus all
the antiderivatives of 2x, for example, are functions
of the form x2 + C.

The antiderivative of a function f(x) is denoted
∫f(x)dx and is called the indefinite integral of f. It is
defined up to a constant, and so we write, for example,
∫2x dx = x2 + C. (The constant C is referred to as a
“constant of integration.”) The notation is deliberately
suggestive of a definite integral of a function, ∫b

a f(x)dx,
for the area under the curve y = f(x) over the INTERVAL

[a,b]. The FUNDAMENTAL THEOREM OF CALCULUS

shows that the two notions are intimately connected.
See also INTEGRAL CALCULUS.

antilogarithm See LOGARITHM.

antipodal points (antipodes) Two points on a
SPHERE at the opposite ends of a diameter are said to be

antipodal. For example, the north and south poles are
antipodal points on the EARTH, as are any two points
EQUIDISTANT from the equator, with longitudes differ-
ing by 180°.

The famous Borsuk-Ulam theorem, first conjec-
tured by Stanislaw Ulam and then proved by Karol
Borsuk in 1933, states:

Let f be a continuous function that assigns two
numerical values to each and every point on
the surface of a sphere. Then there must exist
two antipodal points which are assigned pre-
cisely the same pair of values.

An amusing interpretation reads:

At any instant there exist two antipodal points
on the Earth’s surface of precisely the same air
temperature and air pressure.

Although the proof of this theorem is difficult, a one-
dimensional version of the result follows as an easy
consequence of the INTERMEDIATE-VALUE THEOREM.

apex (plural, apices) The point at the top of a POLY-
GON or a POLYHEDRON, such as the vertex of a triangle
opposite its BASE or the vertex of a pyramid, is called
the apex of the figure. The distance from the base of
the figure to its apex is called the height of the figure.

Apollonius of Perga (ca. 262–190 B.C.E.) Greek Geo-
metry Born in Perga, Greek Ionia, now Antalya,
Turkey, Apollonius worked during the Golden Age of
Greek mathematics and has been referred to throughout
history as the Great Geometer. His famous work, The
Conics, written in eight volumes, greatly influenced the
development of mathematics. (The names ELLIPSE,
PARABOLA, and HYPERBOLA for the three CONIC SEC-
TIONS, for instance, are said to have been coined by
Apollonius.) Copies of the first four volumes of this
work, written in the original Greek, survive today. Ara-
bic translations of the first seven volumes also exist.

Little is known of Apollonius’s life other than what
can be gleaned from incidental comments made in the
prefaces of his books. As a young man it is known that
he traveled to Alexandria to study with the followers of
EUCLID, who then introduced him to the topic of conics.

d
dx

x x( )2 2=
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The first volume of The Conics simply reviews ele-
mentary material about the topic and chiefly presents
results already known to Euclid. Volumes two and
three present original results regarding the ASYMPTOTEs
to hyperbolas and the construction of TANGENT lines to
conics. While Euclid demonstrated a means, for
instance, of constructing a circle passing through any
three given points, Apollonius demonstrated techniques
for constructing circles tangent to any three lines, or to
any three circles, or to any three objects be they a com-
bination of points, lines, or circles. Volumes four, five,
six, and seven of his famous work are highly innovative
and contain original results exploring issues of curva-
ture, the construction of normal lines, and the con-
struction of companion curves to conics. Apollonius
also applied the theory of conics to solve practical
problems. He invented, for instance, a highly accurate
sundial, called a hemicyclium, with hour lines drawn
on the surface of a conic section.

Apollonius also played a fundamental role in the
development of Greek mathematical astronomy. He
proposed a complete mathematical analysis of epicyclic
motion (that is, the compound motion of circles rolling
along circles) as a means to help explain the observed
retrograde motion of the planets across the skies that
had confused scholars of his time.

Apollonius’s work was extraordinarily influen-
tial, and his text on the conics was deemed a stan-
dard reference piece for European scholars of the
Renaissance. JOHANNES KEPLER, RENÉ DESCARTES,
and SIR ISSAC NEWTON each made reference to The
Conics in their studies.

See also CIRCUMCIRCLE; CYCLOID.

Apollonius’s circle Let A and B be two points of the
plane and let k be a constant. Then the set of all points
P whose distance from A is k times its distance from B
is a CIRCLE. Any circle obtained this way is referred to
as one of Apollonius’s circles. Note that when k = 1 the
circle is “degenerate,” that is, the set of all points
EQUIDISTANT from A and B is a straight line. When k
becomes large, the Apollonius’s circle approaches a cir-
cle of radius 1.

To see that the locus of points described this way
is indeed a circle, set A to be the origin (0,0), B to be
the point (k + 1, 0) on the x-axis, and P to be a gen-
eral point with coordinates (x,y). The DISTANCE FOR-

MULA then gives an equation of the form 

. This is equivalent to 

, which is indeed the equa-

tion of a circle, one of radius . APOLLONIUS OF

PERGA used purely geometric techniques, however, to
establish his claim.

Apollonius’s theorem If a, b, and c are the side-
lengths of a triangle and a median of length m divides
the third side into two equal lengths c/2 and c/2, then
the following relation holds:

This result is known as Apollonius’s theorem. It can be
proved using two applications of the LAW OF COSINES

as follows:

Let B be the ANGLE between the sides of length
a and c. Then m2 = a2 + (c/2)2–ac cos(B) and b2

= a2 + c2 – 2ac cos(B). Solving for ac cos(B) in
the first equation and substituting into the sec-
ond yields the result.

See also MEDIAN OF A TRIANGLE.

apothem (short radius) Any line segment from the
center of a regular POLYGON to the midpoint of any of
its sides is called an apothem. If the regular polygon
has n sides, each one unit in length, then an exercise in
TRIGONOMETRY shows that each apothem of the figure 

has length .

An analog of PI (π) for a regular polygon is the
RATIO of its PERIMETER to twice the length of its
apothem. For a regular n-sided polygon, this ratio has
value n tan(180/n). The SQUEEZE RULE shows that this
quantity approaches the value π as n becomes large.

See also LONG RADIUS.
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applied mathematics The study and use of the math-
ematical techniques to solve practical problems is called
applied mathematics. The field has various branches
including STATISTICS, PROBABILITY, mechanics, mathe-
matical physics, and the topics that derive from them,
but the distinction from PURE MATHEMATICS might not
be sharp. For instance, the general study of VECTORs
and VECTOR SPACEs can be viewed as either an abstract
study or a practical one if one later has in mind to use
this theory to analyze force diagrams in mechanics.

Many research universities of today possess two
departments of mathematics, one considered pure and
the other applied. Students can obtain advanced degrees
in either field.

approximation A numerical answer to a problem
that is not exact but is sufficient for all practical pur-
poses is called an approximation. For example, noting
that 210 is approximately 1,000 allows us to quickly
estimate the value of 2100 = (210)10 as 1030. Students are
often encouraged to use the fraction 22/7 as an approx-
imate value for π.

Mathematicians use the notation “≈” to denote
approximately equal to. Thus, for example, π ≈ 22/7.

Physicists and engineers often approximate func-
tions by their TAYLOR SERIES with the higher-order 

terms dropped. For example, , at 

least for small values of x. The theory of INTEGRAL

CALCULUS begins by approximating areas under curves
as sums of areas of rectangles.

See also ERROR; FACTORIAL; NUMERICAL DIFFEREN-
TIATION; NUMERICAL INTEGRATION.

Arabic mathematics Mathematical historians of
today are grateful to the Arabic scholars of the past for
preserving, translating, and honoring the great Indian,
Greek, and Islamic mathematical works of the scholars
before them, and for their own significant contributions
to the development of mathematics. At the end of the
eighth century, with the great Library of Alexandria
destroyed, Caliph al-Ma’mun set up a House of Wis-
dom in Baghdad, Iraq, which became the next promi-
nent center of learning and research, as well as the
repository of important academic texts. Many scholars
were employed by the caliph to translate the mathemat-

ical works of the past and develop further the ideas they
contained. As the Islamic empire grew over the follow-
ing seven centuries, the culture of intellectual pursuit
also spread. Many scholars of 12th-century Europe, and
later, visited the Islamic libraries of Spain to read the
texts of the Arabic academics and to learn of the
advances that had occurred in the East during the dark
ages of the West. A significant amount of mathematical
material was transmitted to Europe via these means.

One of the first Greek texts to be translated at the
House of Wisdom was EUCLID’s famous treatise, THE

ELEMENTS. This work made a tremendous impact on
the Arab scholars of the period, and many of them,
when conducting their own research, formulated theo-
rems and proved results precisely in the style of Euclid.
Members of the House of Wisdom also translated the
works of ARCHIMEDES OF SYRACUSE, DIOPHANTUS OF

ALEXANDRIA, MENELAUS OF ALEXANDRIA, and others,
and so they were certainly familiar with all the great
Greek advances in the topics of GEOMETRY, NUMBER

THEORY, mechanics, and analysis. They also translated
the works of Indian scholars, 

–
ARYABHATA and

BH
–
ASKARA, for instance, and were familiar with the the-

ory of TRIGONOMETRY, methods in astronomy, and fur-
ther topics in geometry and number theory. Any Arab
scholar who visited the House of Wisdom had, essen-
tially, the entire bulk of human mathematical knowledge
available to him in his own language.

Arab mathematician MUHAMMAD IBN M–
US

–
A

AL-KHW
–
ARIZM

–ı (ca. 800) wrote a number of original
texts that were enormously influential. His first piece
simply described the decimal place-value system he had
learned from Indian sources. Three hundred years later,
when translated into Latin, this work became the pri-
mary source for Europeans who wanted to learn the
new system for writing and manipulating numbers. But
more important was al-Khw–arizm–ı ’s piece Hisab al-jabr
w’al-muqābala (Calculation by restoration and reduc-
tion), from which the topic of “algebra” (“al-jabr”)
arose. Al-Khw–arizm–ı was fortunate to have all sources
of mathematical knowledge available to him. He began
to see that the then-disparate notions of “number” and
“geometric magnitude” could be unified as one whole
by developing the concept of algebraic objects. This rep-
resented a significant departure from Greek thinking, in
which mathematics is synonymous with geometry.
Al-Khw–arizm–ı’s insight provided a means to study both
arithmetic and geometry under a single framework, and

sin
! !

x x
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his methods of algebra paved the way for significant
developments in mathematics of much broader scope
than ever previously envisioned.

The mathematician al-Mahani (ca. 820) developed
refined approaches for reducing geometric problems to
algebraic ones. He showed, in particular, that the famous
problem of DUPLICATING THE CUBE is essentially an alge-
braic issue. Other scholars brought rigor to the subject
by proving that certain popular, but complicated, alge-
braic methods were valid. These scholars were comfort-
able manipulating POLYNOMIALs and developed rules for
working with EXPONENTs, They solved linear and
QUADRATIC equations, as well as various SYSTEMs OF

EQUATIONS. Surprisingly, no one of the time thought to
ease matters by using symbols to represent quantities: all
equations and all manipulations were described fully in
words each and every time they were employed.

With quadratic equations well understood, the
scholar OMAR KHAYYAM (ca. 1048–1131) attempted to
develop methods of solving degree-three equations.
Although he was unable to develop general algebraic
methods for this task, he did find ingenious geometric
techniques for solving certain types of cubics with the
aid of CONIC SECTIONS. He was aware that such equa-
tions could have more than one solution.

In number theory, Thabit ibn Qurra (ca. 836–901)
found a beautiful method for generating AMICABLE NUM-
BERS. This technique was later utilized by al-Farisi
(ca. 1260–1320) to yield the pair 17,296 and 18,416,
which today is usually attributed to LEONHARD EULER

(1707–83). In his writing, Omar Khayyam referred to
earlier Arab texts, now lost, that discuss the equivalent
of PASCAL’s TRIANGLE and its connections to the
BINOMIAL THEOREM. The mathematician al-Haytham
(ca. 965–1040) attempted to classify all even PERFECT

NUMBERs.
Taking advantage of the ease of the Indian system

of decimal place-value representation, Arabic scholars
also made great advances in numeric computations.
The great 14th-century scholar JAMSHID AL-KASHI

developed effective methods for extracting the nth root
of a number, and evaluated π to a significant number of
decimal places. Scholars at the time also developed
effective methods for computing trigonometric tables
and techniques for making highly accurate computa-
tions for the purposes of astronomy.

On a theoretical note, scholars also advanced the
general understanding of trigonometry and explored

problems in spherical geometry. They also investigated
the philosophical underpinnings of geometry, focusing,
in particular, on the role the famous PARALLEL POSTU-
LATE plays in the theory. Omar Khayyam, for instance,
attempted to prove the parallel postulate—failing, of
course—but did accidentally prove results about figures
in non-Euclidean geometries along the way. The mathe-
matician Ibrahim ibn Sinan (908–946) also introduced
a method of “integration” for calculating volumes and
areas following an approach more general than that
developed by Archimedes of Syracuse (ca. 287–212
B.C.E.). He also applied his approach to the study of
CONIC SECTIONS and to optics.

See also BASE OF A NUMBER SYSTEM; HISTORY OF

EQUATIONS AND ALGEBRA (essay); HISTORY OF GEOME-
TRY (essay); HISTORY OF TRIGONOMETRY (essay).

arc Part of a continuous curve between two given
points on the curve is called an arc of the curve. In par-
ticular, two points on a CIRCLE determine two arcs. If the
circumference of the circle is divided by them into two
unequal parts, then the smaller portion is usually called
the minor arc of the circle and the larger the major arc.

Archimedean spiral See SPIRAL OF ARCHIMEDES.

Archimedes of Syracuse (287–212 B.C.E.) Greek
Geometry, Mechanics Born in the Greek colony of
Syracuse in Sicily, Archimedes is considered one of the
greatest mathematicians of all time. He made consider-
able contributions to the fields of planar and solid
GEOMETRY, hydrostatics, and mechanics. In his works
Measurement of a Circle and Quadrature of the Para-
bola, Archimedes solved difficult problems of mensu-
ration in planar geometry by inventing an early
technique of INTEGRAL CALCULUS, which he called the
“method of exhaustion.” This allowed him to compute
areas and lengths of certain curved figures. Later, in his
works On the Sphere and Cylinder and On Conoids
and Spheroids, he applied this technique to also com-
pute the volume and surface area of the sphere and
other solid objects. In his highly original work On
Floating Bodies, Archimedes developed the mathemat-
ics of hydrostatics and equilibrium, along with the LAW

OF THE LEVER, the notion of specific gravity, and tech-
niques for computing the CENTER OF GRAVITY of a
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variety of bodies. In mathematics, Archimedes also
developed methods for solving cubic equations,
approximating square roots, summing SERIES, and, in
The Sand Reckoning, developed a notation for repre-
senting extremely large numbers.

Except for taking time to study at EUCLID’s school in
Alexandria, Archimedes spent his entire life at the place
of his birth. He was a trusted friend of the monarch of
the region, Hiero, and his son Gelon, and soon devel-
oped a reputation as a brilliant scientist who could solve
the king’s most troublesome problems. One famous
story asserts that the king once ordered a goldsmith to
make him a crown, and supplied the smith the exact
amount of metal to make it. Upon receiving the newly
forged crown, Hiero suspected the smith of ill doing,

substituting some cheaper silver for the gold, even
though the crown did have the correct weight. He could
not prove his suspicions were correct, however, and so
brought the problem to Archimedes. It is said that while
bathing and observing the water displaced by his body
Archimedes realized, and proved, that the weight of an
object suspended in liquid decreases in proportion to the
weight of the liquid it displaces. This principle, today
known as Archimedes’ principle, provided Archimedes
the means to indeed prove that the crown was not of
solid gold. (It is also said that Archimedes was so excited
upon making this discovery that he ran naked through
the streets shouting, “Eureka! Eureka!”)

Archimedes is also purported to have said, “Give me
a place to stand and I shall move the Earth.” Astonished
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by the claim, King Hiero asked him to prove it.
Archimedes had, at this time, discovered the principles
of the levers and pulleys, and set about constructing a
mechanical device that allowed him, single-handedly, to
launch a ship from the harbor that was too large and
heavy for a large group of men to dislodge.

Dubbed a master of invention, Archimedes also
devised a water-pumping device, now known as the
Archimedes screw and still used in many parts of the
world today, along with many innovative machines of
war that were used in the defense of Sicily during the not-
infrequent Roman invasions. (These devices included
parabolic mirrors to focus the rays of the sun to burn
advancing ships from shore, catapult devices, and spring-
loaded cannons.) But despite the fame he received for his
mechanical inventions, Archimedes believed that pure
mathematics was the only worthy pursuit. His accom-
plishments in mathematics were considerable.

By bounding a circle between two regular polygons
and calculating the ratio the perimeter to diameter of
each, Archimedes found one of the earliest estimates for
the value of π, bounding it between the values 3 10/71
and 3 1/7. (This latter estimate, usually written as 22/7,
is still widely used today.) Archimedes realized that by
using polygons with increasingly higher numbers of
sides yielded better and better approximations, and that
by “exhausting” all the finite possibilities, the true value
of π would be obtained. Archimedes also used this
method of exhaustion to demonstrate that the length of
any segment of a parabola is 4/3 times the area of the
triangle with the same base and same height.

By comparing the cross-sectional areas of parallel
slices of a sphere with the slices of a cylinder that
encloses the sphere, Archimedes demonstrated that the
volume of a sphere is 2/3 that of the cylinder. The vol-
ume of the sphere then follows: V = (2/3)(2r × πr2) =
(4/3)πr3. (Here r is the radius of the sphere.) Archimedes
regarded this his greatest mathematical achievement,
and in his honor, the figures of a cylinder and an
inscribed sphere were drawn on his tombstone.

Archimedes also computed the surface area of a
sphere as four times the area of a circle of the same
radius of the sphere. He did this again via a method of
exhaustion, by imagining the sphere as well approxi-
mated by a covering of flat tiny triangles. By drawing
lines connecting each vertex of a triangle to the center
of the sphere, the volume of the figure is thus divided
into a collection of triangular pyramids. Each pyramid
has volume one-third its base times it height (essentially
the radius of the sphere), and the sum of all the base
areas represents the surface area of the sphere. From
the formula for the volume of the sphere, the formula
for its surface area follows.

One cannot overstate the influence Archimedes has
had on the development of mathematics, mechanics,
and science. His computations of the surface areas and
volumes of curved figures provided insights for the
development of 17th-century calculus. His understand-
ing of Euclidean geometry allowed him to formulate
several axioms that further refined the logical under-
pinnings of the subject, and his work on fluids and
mechanics founded the field of hydrostatics. Scholars
and noblemen of his time recognized both the theoreti-
cal and practical importance of his work. Sadly,
Archimedes died unnecessarily in the year 212 B.C.E.
During the conquest of Syracuse by the Romans, it is
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said that a Roman soldier came across Archimedes con-
centrating on geometric figures he had drawn in the
sand. Not knowing who the scholar was, or what he
was doing, the soldier simply killed him.

Archytas of Tarentum (ca. 428–350 B.C.E.) Greek
Geometry, Philosophy The Greek scholar Archytas of
Tarentum was the first to provide a solution to the clas-
sic DUPLICATING THE CUBE problem of antiquity. By
reducing the challenge to one of constructing certain

ratios and proportions, Archytas developed a geometric
construct that involved rotating semicircles through
certain angles in three-dimensional space to produce a
length essentially equivalent to the construct of the
cube root of two. (Creating a segment of this length is
the chief stumbling block to solving the problem.)
Although his innovative solution is certainly correct, it
uses tools beyond what is permissible with straightedge
and compass alone. In the development of his solution,
Archytas identified a new mean between numbers,
which he called the HARMONIC MEAN.
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Archytas lived in southern Italy during the time of
Greek control. The region, then called Magna Graecia,
included the town of Tarentum, which was home to
members of the Pythagorean sect. Like the Pythagore-
ans, Archytas believed that mathematics provided the
path to understanding all things. However, much to
the disgust of the Pythagoreans, Archytas applied his
mathematical skills to solve practical problems. He is
sometimes referred to as the Founder of Mechanics
and is said to have invented several innovative mech-
anical devices, including a mechanical bird and an
innovative child’s rattle.

Only fragments of Archytas’s original work survive
today, and we learn of his mathematics today chiefly
through the writings of later scholars. Many results
established by Archytas appear in EUCLID’s famous text
THE ELEMENTS, for instance.

arc length To measure the length of a curved path,
one could simply lay a length of string along the path,
pull it straight, and measure its length. This determines
the arc length of the path. In mathematics, if the curve in
question is continuous and is given by a formula y = f(x),
for a < x < b say, then INTEGRAL CALCULUS can be used
to find the arc length of the curve. To establish this, first
choose a number of points (x1, y1),…,(xn, yn) along the
curve and sum the lengths of the straight-line segments
between them. Using the DISTANCE FORMULA, this gives
an approximate value for the length s of the curve:

Rewriting yields:

The MEAN-VALUE THEOREM shows that for each i there is 

a value ci between xi–1 and xi so that ,

and so the length of the curve is well approximated by
the formula:

Of course, taking more and more points along the curve
gives better and better approximations. In the limit,
then, the true length of the curve is given by the formula:

This is precisely the formula for the integral of the 

function over the domain in question. 

Thus we have:

The arc length of a continuous curve y = f(x) over 

the interval [a,b] is given by 

Alternatively, if the continuous curve is given by a set of
PARAMETRIC EQUATIONS x = x(t) and y = y(t), for a < t <
b say, then choosing a collection of points along the
curve, given by t1,…,tn say, making an approximation to
the curve’s length, and taking a limit yields the formula:

In a similar way one can show that if the continuous
curve is given in POLAR COORDINATES by formulae and
x = r(θ)cos(θ) and y = r(θ)sin(θ), for a < θ < b, then the
arc length of the curve is given by:

The presence of square-root signs in the integrands
often makes these integrals very difficult, if not impos-
sible, to solve. In practice, one must use numerical tech-
niques to approximate integrals such as these.

See also NUMERICAL INTEGRATION.

area Loosely speaking, the area of a geometric figure
is the amount of space it occupies. Such a definition
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appeals to intuitive understanding. In general, how-
ever, it is very difficult to explain precisely just what it
is we mean by “space” and the “amount” of it occu-
pied. This is a serious issue. (See Banach-Tarski para-
dox on following page.)

As a starting point, it seems reasonable to say, how-
ever, that a 1 × 1 square should have “area” one. We
call this a basic unit of area. As four of these basic units
fit snugly into a square with side-length two, without
overlap, we say then that a 2 × 2 square has area four.
Similarly a 3 × 3 square has area nine, a 4 × 4 square
area 16, and so on.

A 3 × 6 rectangle holds 18 basic unit squares and
so has area 18. In general, a rectangle that is l units
long and w units wide, with both l and w whole num-
bers, has area l × w:

area of a rectangle = length × width

This is a fundamental formula. To put the notion of
area on a sound footing, we use this formula as a defin-
ing law: the area of any rectangle is to be the product
of its length and its width.

Although it is impossible to fit a whole number of
unit squares into a rectangle that is 5 3/4 units long and
√—

7 units wide, for example, we declare, nonetheless,
that the area of such a rectangle is the product of these
two numbers. (This agrees with our intuitive idea that,
with the aid of scissors, about 5 3/4 × √—

7 ≈ 15.213 unit
squares will fit in this rectangle.)

From this law, the areas of other geometric shapes
follow. For example, the following diagram shows that
the area of an acute TRIANGLE is half the area of the
rectangle that encloses it. This leads to the formula:

area of a triangle = 1/2 × base × height

This formula also holds for obtuse triangles.

By rearranging pieces of a PARALLELOGRAM, we see
that its area is given by the formula:

area of a parallelogram = base × height

area 23
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In general we can calculate the area of any POLYGON

as the sum of the areas of the triangles that subdivide
it. For example, the area of a TRAPEZOID is the sum
of the areas of two triangles, and the area of a regu-
lar POLYGON with n sides is the sum of the areas of n
triangles.

Curved Figures
It is also possible to compute the area of curved fig-
ures. For example, slicing a circle into wedged-shape
pieces and rearranging these slices, we see that the
area of a circle is close to being the area of a rectangle
of length half the circumference and of width r, the
radius of the circle.

If we work with finer and finer wedged-shape
pieces, the approximation will better approach that of
a true rectangle. We conclude that the area of a circle is
indeed that of this ideal rectangle:

area of a circle = 1/2 × circumference × r

(Compare this with the formula for the area of a
regular polygon.) As PI (π) is defined as the ratio
of the circumference of a circle to its diameter, 

, the area of a circle can thus be 

written: area = 1/2 × 2πr × r. This leads to the famous
formula:

area of a circle = πr2

The methods of INTEGRAL CALCULUS allow us to
compute areas of other curved shapes. The approach is
analogous: approximate the shape as a union of rectan-
gles, sum the areas of the rectangular pieces, and take
the LIMIT of the answers obtained as you work with
finer and finer approximations.

Theoretical Difficulties
Starting with the principle that a fundamental shape, in
our case a rectangle, is asserted to have “area” given by
a certain formula, a general theory of area for other geo-
metric shapes follows. One can apply such an approach
to develop a measure theory for measuring the size of
other sets of objects, such as the notion of the surface
area of three-dimensional solids, or a theory of VOLUME.
One can also develop a number of exotic applications.

Although our definition for the area of a rectangle
is motivated by intuition, the formula we developed is,
in some sense, arbitrary. Defining the area of a rectan-
gle as given by a different formula could indeed yield a
different, but consistent, theory of area.

In 1924 STEFAN BANACH and Alfred Tarski
stunned the mathematical community by presenting a
mathematically sound proof of the following assertion:

It is theoretically possible to cut a solid ball
into nine pieces, and by reassembling them,
without ever stretching or warping the pieces,
form TWO solid balls, each exactly the same
size and shape as the original.

This result is known as the Banach-Tarski paradox, and
its statement—proven as a mathematical fact—is abhor-
rent to our understanding of how area and volume
should behave: the volume of a finite quantity of material
should not double after rearranging its pieces! That our
intuitive understanding of area should eventually lead to
such a perturbing result was considered very disturbing.

What mathematicians have come to realize is that
“area” is not a well-defined concept: not every shape in
a plane can be assigned an area (nor can every solid in
three-dimensional space be assigned a volume). There
exist certain nonmeasurable sets about which speaking
of their area is meaningless. The nine pieces used in the
Banach-Tarski paradox turn out to be such nonmeasur-
able sets, and so speaking of their volume is invalid.
(They are extremely jagged shapes, FRACTAL in nature,
and impossible to physically cut out.) In particular,
interpreting the final construct as “two balls of equal
volume” is not allowed.

Our simple intuitive understanding of area works
well in all practical applications. The material pre-
sented in a typical high-school and college curriculum,
for example, is sound. However, the Banach-Tarski
paradox points out that extreme care must be taken

circumferenceπ = –––––––––––––
2r
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when exploring the theoretical subtleties of area and
volume in greater detail.

See also SCALE.

Argand, Jean Robert (1768–1822) Swiss Complex
number theory Born on July 8, 1768, in Geneva,
Switzerland, amateur mathematician Jean Argand is
remembered today for his famous geometrical interpre-
tation for COMPLEX NUMBERS. An ARGAND DIAGRAM

uses two perpendicular axes, one representing a real
number line, the second a line of purely complex num-
bers, to represent complex numbers as points in a plane.

It is not well known that Argand, in fact, was not
the first to consider and publish this geometric
approach to complex numbers. The surveyor Casper
Wessel (1745–1818) submitted the same idea to the
Royal Danish Academy in 1797, but his work went
unnoticed by the mathematics community. At the turn
of the century, Argand independently began to interpret
the complex number i geometrically as a rotation
through 90°. He expounded on the convenience and
fruitfulness of this idea in a small book, Essai sur une
manière de représenter les quantités imaginaires dans
les constructions géometriques (Essay on a method for
representing imaginary quantities through a geometric
construction), which he published privately, at his own
expense, in 1806. He never wrote his name in the
piece, and so it was impossible to identify the author.
By chance, French mathematician Jacques Français
came upon the small publication and wrote about the
details of the work in an 1813 article, “A Memoir on
the Geometric Representation of Imaginary Numbers,”
published in the Annales de Mathématiques. He
requested that the unknown originator of the ideas
come forward and receive credit for the work. Argand
made himself known by submitting his own article to
the same journal, presenting a slightly modified and
improved approach to his methods. Although histori-
ans have since discovered that the mathematicians
JOHN WALLIS (1616–1703) and CARL FRIEDRICH

GAUSS (1777–1855) each considered their own geomet-
ric interpretations of complex numbers, Argand is usu-
ally credited as the discoverer of this approach.

Argand was the first to develop the notion of the
MODULUS of a complex number. It should also be noted
that Argand also presented an essentially complete
proof of the FUNDAMENTAL THEOREM OF ALGEBRA in

his 1806 piece, but has received little credit for this
accomplishment. Argand was the first to state, and
prove, the theorem in full generality, allowing all num-
bers involved, including the coefficients of the polyno-
mial, to be complex numbers.

Argand died on August 13, 1822, in Paris, France.
Although not noted as one of the most outstanding
mathematicians of his time, Argand’s work certainly
shaped our understanding of complex number theory.
The Argand diagram is a construct familiar to all
advanced high-school mathematics students.

Argand diagram (complex plane) See COMPLEX

NUMBERS.

argument In the fourth century B.C.E., Greek
philosopher ARISTOTLE made careful study of the struc-
ture of reasoning. He concluded that any argument,
i.e., a reasoned line of thought, consists, essentially, of
two basic parts: a series of PREMISEs followed by a con-
clusion. For example:

If today is Tuesday, then I must be in Belgium.
I am not in Belgium.
Therefore today is not Tuesday.

is an argument containing two premises (the first two
lines) and a conclusion. An argument is valid if the con-
clusion is true when the premises are assumed to be true.

Any argument has the general form:

If [premise 1 AND premise 2 AND premise 3
AND…], then [Conclusion]

Using the symbolic logic of FORMAL LOGIC and TRUTH

TABLEs, the above example has the general form:

p → q
¬q

Therefore ¬p

The argument can thus be summarized: ((p → q) (¬q))
→ (¬p).

One can check with the aid of a truth table that
this statement is a tautology, that is, it is a true state-
ment irrespective of the truth-values of the component
statements p and q. (In particular, it is true when both
premises have truth-value T.) Thus the argument pre-
sented above is indeed a valid argument.

∨
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An argument that does not lead to a tautology in
symbolic logic is invalid. For example,

If a bird is a crow, then it is black.
This bird is black.
Therefore it is a crow.

is an invalid argument: ((p → q) q) → p is not a tau-
tology. (Informally, we can assert that a black bird need
not be a crow.)

The following table contains the standard forms of
argument commonly used, along with some invalid
arguments commonly used in error.

In the mid-1700s LEONHARD EULER invented an
elegant way to determine the validity of syllogisms, that
is, arguments whose premises contain the words all,
some, or no. For example,

All poodles are dogs.
All dogs bark.
Therefore all poodles bark.

is a syllogism, and Euler would depict such an argu-
ment as a diagram of three circles, each representing a
set mentioned in one of the premises. The validity of
the argument is then readily apparent:

An argument of the following structure, for exam-
ple, can be demonstrated as invalid by arranging circles
as shown:

All As are Bs.
Some Bs are Cs.
Therefore, some As are Cs.

Any diagram used to analyze the validity of an argu-
ment is called an Euler diagram.

See also DEDUCTIVE/INDUCTIVE REASONING;
QUANTIFIER.

Aristotle (384–322 B.C.E.) Greek Logic, Philosophy,
Physics, Medicine Born in Stagirus, Macedonia, Aris-
totle is remembered in mathematics for his systematic
study of deductive logic. In laying down the founda-
tions of FORMAL LOGIC, Aristotle identified the funda-
mental LAWS OF THOUGHT, the laws of reasoning, and
the fundamental principles that lie at the heart of any
mathematical ARGUMENT. His work in this area so
deeply affected the attitudes and approaches of scien-
tific thinking that Western intellectual culture as a
whole is often referred to as Aristotelian.

At age 17, Aristotle joined PLATO’s Academy in
Athens and remained there for 20 years. He worked
closely with Plato, and also EUDOXUS, nephew of Plato.
The equivalent of a modern-day research university, the
Academy brought together scholars from all disciplines
and provided a culturally rich environment that encour-
aged learning and promoted the advancement of knowl-
edge. Due to internal politics, however, Aristotle decided
to leave the Academy after Plato’s death in 347 B.C.E.

Valid Arguments Invalid Arguments

Direct Reasoning Fallacy of the Converse
(modus ponens)

p → q p → q
p q
therefore q therefore p

Contrapositive Reasoning Fallacy of the Inverse
(modus tollens)

p → q p → q
¬q ¬p
therefore ¬p therefore ¬q

Disjunctive Reasoning Misuse of Disjunctive Reasoning
p ∨ q p ∨ q p ∨ q p ∨ q
¬p ¬q p q
therefore q therefore p therefore ¬q therefore ¬p

Transitive Reasoning
p → q
q → r
therefore p → r

∨
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After tutoring the heir of King Phillip II, the future
Alexander the Great, for a number of years, Aristotle
returned to Athens in 335 B.C.E. to found his own
school, the Lyceum. He intended the school to be as
broad-based as possible, exploring a wide range of sub-
jects but with prominence given to the study of the nat-
ural world. While at the Lyceum, Aristotle wrote 22
texts covering an astonishing range of topics: logic,
physics, astronomy, meteorology, theology, meta-
physics, ethics, rhetoric, poetics, and more. He founded
a theory of kinematics, a study of space, time, and
motion, and he established principles of physics that
remained unchallenged for two millennia.

With regard to mathematics, Aristotle is remem-
bered for his writings in logic, a subject he identified as
the basis of all scientific thought. He invented the syllo-
gism, a form of argument that comes in three parts: a
major premise, a minor premise, and a conclusion.
Although a straightforward notion for us today, this
work represented a first fundamental step toward under-
standing the structure of reasoning. He presented the fol-
lowing line of thought as an example of a syllogism:

Every Greek is a person.
Every person is mortal.
Therefore every Greek is mortal.

Aristotle recognized that any line of reasoning follow-
ing this form is logically valid by virtue of its structure,
not its content. Thus the argument:

Every planet is made of cheese.
Every automobile is a planet.
Therefore every automobile is made of cheese.

for example, is a valid argument, even though the valid-
ity of the premises may be in question. Removing con-
tent from structure was a sophisticated accomplishment.
Aristotle called his field of logic “analytics” and
described his work on the subject in his book Prior and
Posterior Analytics. He wanted to demonstrate the effec-
tiveness of logical reasoning in understanding science.

Aristotle also discussed topics in the philosophy of
mathematics. He argued, for instance, that an unknow-
able such as “infinity” exists only as a potentiality, and
never as a completed form. Although, for example,
from any finite set of prime numbers one can always
construct one more, speaking of the set of prime num-
bers as a single concept, he argued, is meaningless.

(Today we say that Aristotle accepted the “potentially
infinite” but rejected the “actual infinite.”)

It is recorded that Aristotle would often walk
through the gardens of the Lyceum while lecturing,
forcing his pupils to follow. His students became
known as the peripatetics, the word peripatetic mean-
ing “given to walking.” Copies of Aristotle’s lecture
notes taken by the peripatetics were regarded as valu-
able scholarly documents in their own right and have
been translated, copied, and distributed across the
globe throughout the centuries.

Political unrest forced Aristotle to leave Athens
again in 322 B.C.E. He died soon afterward at the age
of 62 of an unidentified stomach complaint.

Aristotle’s analysis of critical thinking literally
shaped and defined the nature of logical thought we
exercise today in any academic pursuit. One cannot
exaggerate the profundity of Aristotle’s influence. By
identifying valid modes of thought and clarifying the
principles of logical reasoning, Aristotle provided the
tools necessary for sensible reasoning and astute sys-
tematic thinking. These are skills today deemed funda-
mental to basic goals of all levels of education.

See also CARDINALITY; DEDUCTIVE/INDUCTIVE REA-
SONING; PARADOX.

arithmetic The branch of mathematics concerned with
computations using numbers is called arithmetic. This
can involve a number of specific topics—the study of
operations on numbers, such as ADDITION, MULTIPLICA-
TION, SUBTRACTION, DIVISION, and SQUARE ROOTs,
needed to solve numerical problems; the methods needed
to change numbers from one form to another (such as
the conversion of fractions to decimals and vice versa);
or the abstract study of the NUMBER SYSTEMS, NUMBER

THEORY, and general operations on sets as defined by
GROUP THEORY and MODULAR ARITHMETIC, for instance.

The word arithmetic comes from the Greek work
arithmetiké, constructed from arithmós meaning “num-
ber” and techné meaning “science.” In the time of
ancient Greece, the term arithmetic referred only to the
theoretical work about numbers, with the word logistic
used to describe the practical everyday computations
used in business. Today the term arithmetic is used in
both contexts. (The word logistics is today a predomi-
nantly military term.)

See also BASE OF A NUMBER SYSTEM; FUNDAMENTAL

THEOREM OF ARITHMETIC; ORDER OF OPERATION.
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arithmetic–geometric-mean inequality See MEAN.

arithmetic mean See MEAN.

arithmetic sequence (arithmetic progression) A SE-
QUENCE of numbers in which each term, except the first,
differs from the previous one by a constant amount is
called an arithmetic sequence. The constant difference
between terms is called the common difference. For
example, the sequence 4, 7, 10, 13, … is arithmetic with
common difference 3. An arithmetic sequence can be
thought of as “linear,” with the common difference
being the SLOPE of the linear relationship.

An arithmetic sequence with first term a and com-
mon difference d has the form:

a, a + d, a + 2d, a + 3d, …

The nth term an of the sequence is given by an =
a + (n – 1)d. (Thus, the 104th term of the arithmetic
sequence 4,7,10,13,…, for example, is a104 = 4 +
[103 × 3] = 313.)

The sum of the terms of an arithmetic sequence is
called an arithmetic series:

a + (a + d) + (a + 2d) + (a + 3d)+…

The value of such a sum is always infinite unless the
arithmetic sequence under consideration is the constant
zero sequence: 0,0,0,0,…

The sum of a finite arithmetic sequence can be
readily computed by writing the sum both forward and
backward and summing column-wise. Consider, for
example, the sum 4 + 7 + 10 + 13 + 16 + 19 + 22 + 25
+ 28 + 31. Call the answer to this problem S. Then:

4 + 7 + 10 + 13 + 16 + 19 + 22 + 25 + 28 + 31 = S
31 + 28 + 25 + 22 + 19 + 16 + 13 + 10 + 7 + 4 = S

and adding columns yields:

35 + 35 + 35 + 35 + 35 + 35 + 35 + 35 + 35 + 35 = 2S

That is, 2S = 10 × 35 = 350, and so S = 175. In general,
this method shows that the sum of n equally spaced
numbers in arithmetic progression, a + b + … + y + z, is
n times the average of the first and last terms of the sum:

It is said that CARL FRIEDRICH GAUSS (1777–1855), as
a young student, astonished his mathematics instructor
by computing the sum of the numbers 1 though 100 in
a matter of seconds using this method. (We have 1 + 2 

+ … + 100 = 100 × = 5,050.)

See also GEOMETRIC SEQUENCE; SERIES.

arithmetic series See ARITHMETIC SEQUENCE.

array An ordered arrangement of numbers or symbols
is called an array. For example, a VECTOR is a one-
dimensional array: it is an ordered list of numbers. Each
number in the list is called a component of the vector. A
MATRIX is a two-dimensional array: it is a collection of
numbers arranged in a finite grid. (The components of
such an array are identified by their row and column
positions.) Two arrays are considered the same only if
they have the same number of rows, the same number of
columns, and all corresponding entries are equal. One
can also define three- and higher-dimensional arrays.

In computer science, an array is called an identifier,
and the location of an entry is given by a subscript. For
example, for a two-dimensional array labeled A, the
entry in the second row, third column is denoted A23.
An n-dimensional array makes use of n subscripts.

A
_

ryabhata (ca. 476–550 C.E.) Indian Trigonometry,
Number theory, Astronomy Born in Kusumapura,
now Patna, India, A

–
ryabhata (sometimes referred to as

A
–

ryabhata I to distinguish him from the mathematician
of the same name who lived 400 years later) was the
first Indian mathematician of note whose name we
know and whose writings we can study. In the section
Ganita (Calculation) of his astronomical treatise
A
–
ryabhatiya, he made fundamental advances in the the-

ory of TRIGONOMETRY by developing sophisticated
techniques for finding and tabulating lengths of half-
chords in circles. This is equivalent to tabulating values
of the sine function. A

–
ryabhata also calculated the

value of π to four decimal places (π ≈ 62,832/20,000 =
3.1416) and developed rules for extracting square and

1 + 100
2

S n
a z= × +

2
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cube roots, for summing ARITHMETIC SERIES, and find-
ing SUMS OF POWERS.

As an astronomical treatise, A
–
ryabhatiya is written

as a series of 118 verses summarizing all Hindu mathe-
matics and astronomical practices known at that time.
A number of sections are purely mathematical in con-
text and cover the topics of ARITHMETIC, TRIGONOME-
TRY, and SPHERICAL GEOMETRY, as well as touch on the
theories of CONTINUED FRACTIONs, QUADRATIC equa-
tions, and SUMMATION. A

–
ryabhata also described meth-

ods for finding integer solutions to linear equations of
the form by = ax + c using an algorithm essentially
equivalent to the EUCLIDEAN ALGORITHM.

Historians do not know how A
–

ryabhata obtained
his highly accurate estimate for π. They do know, how-
ever, that A

–
ryabhata was aware that it is an IRRA-

TIONAL NUMBER, a fact that mathematicians were not
able to prove until 1775, over two millennia later. In
practical applications, however, A

–
ryabhata preferred

to use √
—
10 ≈ 3.1622 as an approximation for π.

Scholars at the time did not think of sine as a ratio
of side-lengths of a triangle, but rather the physical
length of a half-chord of a circle. Of course, circles of
different radii give different lengths for corresponding
half-chords, but one can adjust figures with the use of
proportionality. Working with a circle of radius 3,438,
A
–

ryabhata constructed a table of sines for each angle
from 1° to 90°. (He chose the number 3,438 so that the
circumference of the circle would be close to 21,600 =
360 × 60, making one unit of length of the circumfer-
ence matching one minute of an angle.) Thus, in his
table, sine of 90° is recorded as 3,438, and the sine of
30°, for example, as 1,719.

With regard to astronomy, A
–
ryabhatiya presents a

systematic treatment of the position and motions of the
planets. A

–
ryabhata calculated the circumference of the

Earth as 24,835 miles (which is surprisingly accurate)
and described the orbits of the planets as ELLIPSEs.
European scholars did not arrive at the same conclu-
sion until the Renaissance.

associative A BINARY OPERATION is said to be asso-
ciative if it is independent of the grouping of the terms
to which it is applied. More precisely, an operation * is
associative if:

a * (b * c) = (a * b) * c

for all values of a, b, and c. For example, in ordinary
arithmetic, the operations of addition and multiplica-
tion are associative, but subtraction and division are
not. For instance, 6 + (3 + 2) and (6 + 3) + 2 are equal
in value, but 6 – (3 – 2) and (6 – 3) – 2 are not. (The
first equals 6 – 1 = 5, and the second is 3 – 2 = 1.) In
VECTOR analysis, the addition of vectors is associative,
but the operation of taking CROSS PRODUCT is not.

From the basic relation a * (b * c) = (a * b) * c, it
follows that all possible groupings of a finite number
of fixed terms by parentheses are equivalent. (Use an
INDUCTION argument on the number of elements pre-
sent.) For example, that (a * b) * (c * d) equals
(a * (b * c)) * d can be established with two applica-
tions of the fundamental relation as follows: (a * b)

* (c * d) = ((a * b) * c) * d = (a * (b * c)) * d. As a
consequence, if the associative property holds for a
given set, parentheses may be omitted when writing
products: one can simply write a * b * c * d, for
instance, without concern for confusion.

These considerations break down, however, if the
expression under consideration contains an infinite
number of terms. For instance, we have:

0 = 0 + 0 + 0 + …
= (1 – 1) + (1 – 1) + (1 – 1) + …

If it is permissible to regroup terms, then we could write:

0 = 1 + (–1 + 1) + (–1 + 1) + (–1 + 1) + …
= 1 + 0 + 0 + 0 + …
= 1

This absurdity shows that extreme care must be taken
when applying the associative law to infinite sums.

See also COMMUTATIVE PROPERTY; DISTRIBUTIVE

PROPERTY; RING.

asymptote A straight line toward which the graph
of a function approaches, but never reaches, is called
an asymptote for the graph. The name comes from the
Greek word asymptotos for “not falling together” (a:
“not;” sym: “together;” ptotos: “falling”). For exam-
ple, the function y = 1/x has the lines x = 0 and y = 0
as asymptotes: y becomes infinitely small, but never
reaches zero, as x becomes large, and vice versa. The
function y = (x + 2)/(x – 3) has the vertical line x = 3
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as asymptote: values of the function become infinitely
large as x approaches the value 3 from the right, and
infinitely large and negative as x approaches the value
3 from the left.

A function y = f(x) has a horizontal asymptote y = L
if limx→∞ f(x) = L or limx→–∞ f(x) = L. For example, 

the function has horizontal asymp-

tote y = 3, since

.

An asymptote need not be horizontal or vertical, 

however. For example, the function 

approaches the line y = x + 1 as x

becomes large, thus y = x + 1 is a “slant asymptote” for
the curve.

If a HYPERBOLA is given by the equation , 

then manipulating yields the equation . 

The right hand side tends to zero as x becomes large,
showing that the curve has slant asymptotes given by

, that is, by the lines and 

.

Extending the definition, we could say that the 

curve has the parabola y = x2 as 

an asymptote.

automaton (plural, automata) An abstract machine
used to analyze or model mathematical problems is
called an automaton. One simple example of an
automaton is a “number-base machine,” which consists
of a row of boxes extending infinitely to the left. One
places in this machine a finite number of pennies in the
rightmost box. The machine then redistributes the pen-
nies according to a preset rule.

A “1 ← 2” machine, for example, replaces a pair
of pennies in one box with a single penny in the box

one place to the left. Thus, for instance, six pennies
placed into the 1 ← 2 machine “fire” four times to
yield a final distribution that can be read as “1 1 0.”
This result is the number six written as a BINARY NUM-
BER, and this machine converts all numbers to their
base-two representations.

A 1 ← 3 machine yields base-three representations,
and a 1 ← 10 machine yields the ordinary base-ten rep-
resentations. The process of LONG DIVISION can be
explained with the aid of this machine.

Variations on this idea can lead to some interesting
mathematical studies. Consider, for example, a 2 ← 3
machine. This machine replaces three pennies in one
box with two pennies in the box one place to the left.
In some sense, this is a “base one and a half machine.”
For instance, placing 10 pennies in this machine yields
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the representation “2 1 0 1,” and it is true that 

.

See also BASE OF A NUMBER SYSTEM.

axiom (postulate) A statement whose truth is
deemed self-evident or to be accepted without proof is
called an axiom. The name comes from the Greek
word axioma for “worth” or “quality.” The alterna-
tive name “postulate” comes from postulatum, Latin
for “a thing demanded.”

One of the great achievements of the great Greek
geometer EUCLID and his contemporaries of around 300
B.C.E. was to recognize that not every statement in
mathematics can be proved: certain terms remain unde-
fined, and basic rules (postulates) about their relation-
ships must simply be accepted as true. One must
develop a mathematical theory with a “big bang,” as it
were, by simply listing a starting set of assumptions.
From there, using the basic laws of reasoning, one then
establishes and proves further statements, or THEO-
REMs, about the system.

For example, in a systematic study of EUCLIDEAN

GEOMETRY, the terms point, line, and plane are unde-
fined, and one begins a systematic study of the subject
by studying a list of basic axioms that tells us how
these quantities are meant to interrelate. (One axiom
of Euclidean geometry, for instance, asserts that
between any two points one can draw a line.) All the
results presented in a typical high-school text on geom-
etry, for example, are logical consequences of just five
principal assumptions.

In SET THEORY, the terms set and element of a set
are undefined. However, rules are given that define the
equality of two sets, that guarantee the existence of cer-
tain sets, and establish the means of constructing new
sets from old ones. In NUMBER THEORY, PEANO’S POS-
TULATES provide a logical foundation to the theory of
numbers and arithmetic.

A statement in a mathematical system that appears
true, but has not yet been proved, is called a conjecture.

See also DEDUCTIVE/INDUCTIVE REASONING; ERNST

FRIEDRICH FERDINAND ZERMELO.

axiom of choice First formulated by German mathe-
matician ERNST FRIEDRICH FERDINAND ZERMELO

(1871–1953), the axiom of choice is a basic principle of
SET THEORY that states that from any given collection C
of nonempty sets, it is possible to construct a set S that
contains one element from each of the sets in C. The set S
is called a “choice set” for C. For example, if C repre-
sents the three sets {1,2,3}, {2,4,6,8,…}, and {5}, then
S = {1,6,5} is a choice set for C. So too is the set S = {2,5}.

The axiom of choice has been considered counter-
intuitive when interpreted on a practical level: although
it is possible to select one element from each of a finite
collection of sets in a finite amount of time, it is physi-
cally impossible to accomplish the same feat when pre-
sented with an infinite collection of sets. The existence
of a choice set is not “constructive,” as it were, and use
of the axiom is viewed by mathematicians, even today,
with suspicion. In 1938 Austrian mathematician KURT

GÖDEL proved, however, that no contradiction would
ever arise when the axiom of choice is used in conjunc-
tion with other standard axioms of set theory.

Zermelo formulated the axiom to prove that every
ordered set can be well-ordered. The axiom of choice
also proves (and in fact is equivalent to) the trichotomy
law, which states that for any pair of REAL NUMBERS a
and b, precisely one of the following holds:

i. a > b
ii. a < b

iii. a = b

Although this statement, on one level, appears obvious,
its validity is fundamental to the workings of the real
numbers and so needs to be properly understood.

See also WELL-ORDERED SET.
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Babbage, Charles (1791–1871) British Computation
Born on December 26, 1791, in London, England,
Charles Babbage is best remembered for his work on
the design and manufacture of a mechanical calculator,
the forerunner of a computer. After first constructing a
“difference machine,” Babbage devoted the remainder
of his life to the construction of a superior “analytic
engine” capable of performing all mathematical opera-
tions. His work toward this goal laid the foundations
of computer design used today. Partly due to lack of
funding, however, the machine was never completed.

Babbage entered Trinity College, Cambridge, in
1810. While a student, he and a fellow undergraduate
coauthored Differential and Integral Calculus, an influ-
ential memoir on the history of calculus. After transfer-
ring to Peterhouse College, Babbage received his
bachelor’s degree in mathematics in 1814 to then begin
a career in mathematical research. Babbage published a
number of influential papers on the topic of functional
equations and was honored with election to the ROYAL

SOCIETY in 1816. In 1827 he became the Lucasian Pro-
fessor of Mathematics at Cambridge.

Much of Babbage’s theoretical work relied on
consulting tables of logarithms and trigonometric
functions. Aware of the inaccuracy of human calcula-
tion, Babbage became interested in the problem of
using a mechanical device to perform complex com-
putations. In 1819 he began work on a small “differ-
ence engine,” which he completed three years later.
He announced his invention to the scientific commu-
nity in an 1822 paper, “Note on the Application of
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Charles Babbage, an eminent mathematician of the 19th century,
is best known for his design and manufacture of a mechanical
computer. (Photo courtesy of the Science Museum, London/
Topham-HIP/The Image Works)



Machinery to the Computation of Astronomical and
Mathematical Tables.”

Although the machine was capable of performing
relatively simple, but highly accurate, computations
(using the method of FINITE DIFFERENCES to compute
values of POLYNOMIAL functions), his invention was
well received and was understood to be a first step
toward a new era in computational capabilities. Bab-
bage was awarded a gold medal from the Astronomical
Society and was given a grant from the Chancellor of
the Exchequer to construct a larger, more complex, dif-
ference engine.

In 1801 Joseph-Marie Jacquard invented a loom
capable of weaving complex patterns by making use of
a set of instructions set out on cards punched with
holes. Two decades later Babbage decided to follow the
same idea and design a steam-powered engine that
would accept instructions and data from punched
cards. With the assistance of Lord Byron’s daughter,
LADY AUGUSTA ADA LOVELACE, Babbage took to work
on creating a sophisticated calculating device. In 1832

he published a book, On the Economy of Machinery
and Manufactures, offering a theoretical discussion on
the topic. This could be considered the first published
work in the field of OPERATIONS RESEARCH.

Unfortunately, due to financial and technological
difficulties, the machine was never completed. (The
metalwork technology of the mid-1800s was not capa-
ble of the levels of precision Babbage’s machine
demanded.) The device in its unfinished state is pre-
served today in the Science Museum of London.
Although he never realized his dream of building an
operational, mechanical computer, his design concepts
have since been proved correct. It is not an exaggera-
tion to say that the modern computers constructed on
Babbage’s theoretical design have revolutionized almost
all aspects of 20th-century life.

Babbage died in London, England, on October
18, 1871.

Babylonian mathematics The Babylonians of 2000
B.C.E. lived in Mesopotamia, the fertile plain between the
Euphrates and Tigris Rivers in what is now Iraq. We are
fortunate that the peoples of this region kept extensive
records of their society—and their mathematics—on
hardy sun-baked clay tablets. A large number of these
tablets survive today. The Babylonians used a simple sty-
lus to make marks in the clay and developed a form of
writing based on cuneiform (wedge shaped) symbols.

The mathematical activity of the Babylonians seems
to have been motivated, at first, by the practical every-
day needs of running their society. Many problems
described in early tablets are concerned with calculating
the number of workers needed for building irrigation
canals and the total expense of wages, for instance. But
many problems described in later texts have no appar-
ent practical application and clearly indicate an interest
in pursuing mathematics for its own sake.

The Babylonians used only two symbols to repre-
sent numbers: the symbol to represent a unit and the 

symbol to represent a group of ten. A simple addi-
tive system was used to represent the numbers 1 

through 59. For example, the cluster represents
“32.” A base-60 PLACE-VALUE SYSTEM was then used to
represent numbers greater than 59. For instance, the
number 40,992, which equals 11 × 602 + 23 × 60 + 12, 

was written: . Spaces were inserted
between clusters of symbols.
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Charles Babbage completed work on his “difference engine,”
the world’s first sophisticated mechanical computer, in 1822.
(Photo courtesy of the Science Museum, London/Topham-
HIP/The Image Works)



Historians are not clear as to why the Babylonians
chose to work with a SEXAGESIMAL system. A popular
theory suggests that this number system is based on
the observation that there are 365 days in the year.
When rounded to the more convenient (highly divisi-
ble) value of 360, we have a multiple of 60. Vestiges of
this number system remain with us today. For exam-
ple, we use the number 360 for the number of degrees
in a circle, and we count 60 seconds in a minute and
60 minutes per hour.

There were two points of possible confusion with
the Babylonian numeral system. With no symbol for
zero, it is not clear whether the numeral repre-
sents 61 (as one unit of 60 plus a single unit), 3601 (as
one unit of 602 plus a single unit), or even 216,060, for
instance. Also, the Babylonians were comfortable with

fractions and used negative powers of 60 to represent
them (just as we use negative powers of 10 to write
fractions in decimal notation). But with no notation for
the equivalent of a decimal point, the symbol 
could also be interpreted to mean 1 + (1/60), or (1/60)
+ (1/602), or even 60 + (1/604), for instance. As the
Babylonians never developed a method for resolving
such ambiguity, we assume then that it was never con-
sidered a problem for scholars of the time. (Historians
suggest that the context of the text always made the
interpretation of the numeral apparent.)

The Babylonians compiled extensive tables of pow-
ers of numbers and their reciprocals, which they used in
ingenious ways to perform arithmetic computations.
(For instance, a tablet dated from 2000 B.C.E. lists all the
squares of the numbers from one to 59, and all the cubes
of the numbers from one to 32.) To compute the product
of two numbers a and b, Babylonian scholars first com-
puted their sum and their difference, read the squares of
those numbers from a table, and divided their difference
by four. (In modern notation, this corresponds to the
computation: ab = (1/4) [(a + b)2 – (a – b)2].) To divide a
number a by b, scholars computed the product of a and
the reciprocal 1/b (recorded in a table): ab = a × (1/b).
The same table of reciprocals also provided the means to
solve LINEAR EQUATIONs: bx = a. (Multiply a by the
reciprocal of b.)

Problems in geometry and the computation of area
often lead to the need to solve QUADRATIC equations.
For instance, a problem from one tablet asks for the
width of a rectangle whose area is 60 and whose length
is seven units longer than the width. In modern notation,
this amounts to solving the equation x(x + 7) = x2 + 7x =
60. The scribe who wrote the tablet then proffers a solu-
tion that is equivalent to the famous quadratic formula:
x = – (7/2) = 5. (Square roots were com-
puted by examining a table of squares.)

Problems about volume lead to cubic equations,
and the Babylonians were adept at solving special
equations of the form: ax3 + bx2 = c. (They solved these
by setting n = (ax)/b, from which the equation can be
rewritten as n3 + n2 = ca2/b3. By examining a table of
values for n3 + n2, the solution can be deduced.)

It is clear that Babylonian scholars knew of
PYTHAGORAS’S THEOREM, although they wrote no
general proof of the result. For example, a tablet now
housed in the British museum, provides the following
problem and solution:

√(7/2)2 + 60
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A seventh-century cuneiform tablet from northern Iraq records
observations of the planet Venus. (Photo courtesy of the British
Museum/Topham-HIP/The Image Works)



If the width of a rectangle is four units and the 
length of its diagonal is five units, what is its
breadth?

Four times four is 16, and five times five is 25. 
Subtract 16 from 25 and there remains nine.
What times what equals nine? Three times
three is nine. The breadth is three.

The Babylonians used Pythagoras’s theorem to compute
the diagonal length of a square, and they found an
approximation to the square root of two accurate to five
decimal places. (It is believed that they used a method
analogous to HERON’S METHOD to do this.) Babylonian
scholars were also interested in approximating the areas
and volumes of various common shapes by using tech-
niques that often invoked Pythagoras’s theorem.

Most remarkable is a tablet that lists 15 large
PYTHAGOREAN TRIPLES. As there is no apparent practi-
cal need to list these triples, this strongly suggests that
the Babylonians did indeed enjoy mathematics for its
own sake.

See also BASE VALUE OF A NUMBER SYSTEM.

Banach, Stefan (1892–1945) Polish Analysis, Topol-
ogy Born on March 30, 1892, in Kraków, now in
Poland, Stefan Banach is noted for his foundational
work in ANALYSIS and for generalizing the notion of
a VECTOR SPACE to a general theory of a space of
functions. This fundamental work allows mathemati-
cians today to develop a theory of FOURIER SERIES, in
some sense, in very abstract settings. Banach is also
remembered for his work leading to the famous
Banach-Tarski paradox that arises in the study of
AREA and volume.

Banach began his scholarly career with a university
degree in engineering from Lvov Technical University.
His academic plans were interrupted, however, with the
advent of World War I. During this time Banach was
forced to work building roads, although he did manage
to find time to also teach at local Kraków schools dur-
ing this period. Soon after the war Banach joined a
mathematics discussion group in Lvov and soon
impressed mathematical scholars with his abilities to
solve mathematical problems. Within a week of joining
the group, Banach had drafted a coauthored research
paper on the topic of measure theory, a theory that
generalizes the concept of area. Banach continued to

produce important results in this field at an extremely
rapid rate thereafter.

Banach was offered a lectureship at Lvov Techni-
cal University in 1920 and quickly set to work on a
doctoral thesis. Despite having no previous official
university qualifications in mathematics, Banach was
awarded a doctorate in 1922 by the Jan Kazimierz
University in Lvov.

Banach’s contributions to mathematics were sig-
nificant. His generalized work on Fourier series
founded a branch of mathematics now called func-
tional analysis. It has connections to the fields of
measure theory, integration, and SET THEORY. He and
his colleague Alfred Tarski presented their famous
paradoxical result in 1926 in their paper “Sur la
décomposition des ensembles de points en partiens
respectivement congruent” (On the decomposition of
figures into congruent parts). His 1932 paper,
“Théorie des opérations linéaires” (Theory of linear
operators), which develops the notion of a normed
VECTOR SPACE (that is, a vector space with a notion
of length attached to its vectors), is deemed his most
influential work. As well as conducting research in
mathematics, Banach also wrote arithmetic, algebra,
and geometry texts for high-school students.

In 1939 Banach was elected as president of the Pol-
ish Mathematical Society. Banach was allowed to main-
tain his university position during the Soviet occupation
later that year, but conditions changed with the 1941
Nazi invasion. Many Polish academics were murdered,
but Banach survived, although he was forced to work in
a German infectious diseases laboratory, given the task
to feed and maintain lice colonies. He remained there
until June 1944, but he became seriously ill by the time
Soviet troops reclaimed Lvov. Banach died of lung can-
cer on August 31, 1945.

Banach’s name remains attached to the type of vec-
tor space he invented, and research in this field of func-
tional analysis continues today. The theory has
profound applications to theoretical physics, most
notably to quantum mechanics.

bar chart (bar graph) See STATISTICS: DESCRIPTIVE.

Barrow, Isaac (1630–1677) British Calculus, Theol-
ogy Born in London, England, (his exact birth date is
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not known) Isaac Barrow is remembered in mathemat-
ics for his collection of lecture notes Lectiones geometri-
cae (Geometrical lectures), published in 1670, in which
he describes a method for finding tangents to curves
similar to that used today in DIFFERENTIAL CALCULUS.
Barrow may have also been the first to realize that the
problem of finding tangents to curves is the inverse
problem to finding areas under curves. (This is THE

FUNDAMENTAL THEOREM OF CALCULUS.) The lectures
on which his notes were based were extremely influen-
tial. They provided SIR ISAAC NEWTON, who attended
the lectures and had many private discussions with Bar-
row, a starting point for his development of CALCULUS.

Barrow graduated from Trinity College, Cam-
bridge, with a master’s degree in 1652, but was dissatis-
fied with the level of mathematics instruction he had
received. After leaving the college, Barrow taught him-
self GEOMETRY and published a simplified edition of

EUCLID’s THE ELEMENTS in 1655. He became professor
of geometry at Gresham College, London, in 1662, and
was elected as one of the first 150 fellows of the newly
established ROYAL SOCIETY in 1663. He returned to
Cambridge that same year to take the position of
Lucasian Chair of Mathematics, at Trinity College, and
worked hard to improve the standards of mathematics
education and interest in mathematical research at
Cambridge. With this aim in mind, Barrow gave a series
of lectures on the topics of optics, geometry, NUMBER

THEORY, and the nature of time and space. His discus-
sions on geometry proved to be highly innovative and
fundamentally important for the new perspective they
offered. Newton advised Barrow to publish the notes.

In 1669 Barrow resigned from the Lucasian Chair
to allow Newton to take over, and he did no further
mathematical work. He died in London, England, on
May 4, 1677, of a malignant fever. Barrow’s influence
on modern-day mathematics is oblique. His effect on
the development of the subject lies chiefly with the
inspiration he provided for others.

base of a logarithm See LOGARITHM.

base of an exponential See EXPONENT; EXPONEN-
TIAL FUNCTION.

base of a number system (radix, scale of a number
system) The number of different symbols used, per-
haps in combination, to represent all numbers is called
the base of the number system being used. For exam-
ple, today we use the ten symbols 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9 to denote all numbers, making use of the posi-
tion of these digits in a given combination to denote
large values. Thus we use a base-10 number system
(also called a decimal representation system). We also
use a place-value system to give meaning to the
repeated use of symbols. When we write 8,407, for
instance, we mean eight quantities of 1,000 (103), four
quantities of 100 (102), and seven single units (100).
The placement of each DIGIT is thus important: the
number of places from the right in which a digit lies
determines the power of 10 being considered. Thus the
numbers 8, 80, 800, and 8,000, for instance, all repre-
sent different quantities. (The system of ROMAN

NUMERALS, for example, is not a place-value system.)
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Isaac Barrow, a mathematician of the 17th century, is noted
chiefly for the inspiration he provided others in the development
of the theory of calculus. He may have been the first scholar to
recognize and understand the significance of the fundamental
theorem of calculus. (Photo courtesy of ARPL/Topham/The
Image Works)



For any positive whole number b, one can create a
place-value notational system of that base as follows:

Write a given number n as a sum of powers of b:
n = akbk + ak–1 bk–1 + … + a2b2 + a1b + a0
with each number ai satisfying 0 ≤ ai < b. Then
the base b representation of n is the k-digit
quantity ak ak–1…a2a1a0. Such a representation
uses only the symbols 0, 1, 2,…, b – 1.

For example, to write the number 18 in base four—
using the symbols 0, 1, 2, and 3—observe that 18 = 1 ×
42 + 0 × 4 + 2 × 1, yielding the base-4 representation:
102. In the reverse direction, if 5,142 is the base-6 rep-
resentation of a number n, then n is the number 5 × 63

+ 1 × 62 + 4 × 6 + 2 × 1 = 1,142.
One may also make use of negative powers of the

base quantity b. For example, using a decimal point to
separate positive and negative powers of ten, the num-
ber 312.407, for instance, represents the fractional 

quantity: 3 × 102 + 1 × 10 + 2 × 1 + 4 × + 0 ×

+ 7 × . In base 4, the number 33.22 is the quantity 

3 × 4 + 3 × 1 + 2 × + 2 × = 15 + + , which 

is 15.625 in base 10.

The following table gives the names of the place-
value number systems that use different base values b.
The Babylonians of ancient times used a sexagesimal
system, and the Mayas of the first millennium used a
system close to being purely vigesimal.

The representation of numbers can be well-
represented with the aid of a simple AUTOMATON

called a number-base machine. Beginning with a row of
boxes extending infinitely to the left, one places in the
rightmost box a finite number of pennies. The automa-
ton then redistributes the pennies according to a preset
rule. A “1 ← 2” machine, for example, replaces a pair
of pennies in one box with a single penny in the box
one place to the left. Thus, for instance, six pennies
placed into the 1 ← 2 machine “fire” four times to
yield a final distribution that can be read as “1 1 0.”
This result is the number six written as a BINARY NUM-
BER and this machine converts all numbers to their
base-two representations. (The diagram in the entry for
automaton illustrates this.) A 1 ← 3 machine yields
base-three representations, and a 1 ← 10 machine
yields the ordinary base-ten representations.

Long Division
The process of long division in ARITHMETIC can be
explained with the aid of a number-base machine. As
an example, let us use the 1 ← 10 machine to divide
the number 276 by 12. Noting that 276 pennies placed
in the 1 ← 10 machine yields a diagram with two pen-
nies in the 100s position, seven pennies in the 10s posi-
tion, and six pennies in the units position, and that 12
pennies appears as one penny in a box with two pen-
nies in the box to its right, to divide 276 by 12, one
must simply look for “groups of 12” within the dia-
gram of 276 pennies and keep count of the number of
groups one finds.

2
16

2
4

1
42

1
4

1
103

1
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1
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base b number system

2 Binary
3 Ternary
4 Quaternary
5 Quinary
6 Senary
7 Septenary
8 Octal
9 Nonary

10 Decimal
11 Undenary
12 Duodecimal
16 Hexadecimal
20 Vigesimal
60 Sexagesimal

Long division base ten



Notice that we find two groups of 12 at the 10s
position (that is, two groups of 120), and three groups
of 12 at the units position. Thus: 276 ÷ 12 = 23. The
standard algorithm taught to school children is nothing
more than a recording system for this process of find-
ing groups of twelve. Notice too that one does not need
to know the type of machine, that is, the base of the
number system in which one is working in order to
compute a long-division problem. If we simply write
the base number as x, and work with a 1 ← x machine,
then the same computation provides a method for
dividing polynomials. In our example, we see that:

(2x2 + 7x + 6) ÷ (x + 2) = 2x + 3

Thus the division of polynomials can be regarded as a
computation of long division. There is a technical diffi-
culty with this: a polynomial may have negative coeffi-
cients, and each negative coefficient would correspond
to a negative number of pennies in a cell. If one is will-
ing to accept such quantities, then the number-base
machine model continues to work. (Note, in this
extended model, that one can insert into any cell an
equal number of positive and negative pennies without
changing the system. Indeed, it might be necessary to
do this in order to find the desired groups of pennies.)

The process of long division might produce non
zero remainders. For example, in base 5, dividing 1432
by 13 yields the answer 110 with a remainder of 2
units. (In base 10, this reads: 242 ÷ 8 = 30 with a
remainder of 2.) If one is willing to work with negative

powers of five, and “unfire” a group of five pennies,
one can continue the long division process to compute,
in base 5, that 1432 ÷ 13 = 110.1111…

See also BABYLONIAN MATHEMATICS; BINARY NUM-
BERS; DIGIT; MAYAN MATHEMATICS; NESTED MULTIPLI-
CATION; ZERO.

base of a polygon/polyhedron The base of a trian-
gle, or of any POLYGON, is the lowest side of the figure,
usually drawn as a horizontal edge parallel to the bot-
tom of the page. Of course other edges may be consid-
ered the base if one reorients the figure. The base of a
POLYHEDRON, such as a cube or a pyramid, is the low-
est FACE of the figure. It is the face on which the figure
would stand if it were placed on a tabletop.

The highest point of a geometric figure opposite
the base is called the APEX of the figure, and the dis-
tance from the base to the apex is called the height of
the figure.

basis See LINEARLY DEPENDENT AND INDEPENDENT.

Bayes, Rev. Thomas (1702–1761) English Probabil-
ity, Theology Born in London, England, (the exact
date of his birth is not known), theologian and mathe-
matician Reverend Thomas Bayes is best remembered
for his influential article “An Essay Towards Solving a
Problem in the Doctrine of Chances,” published posthu-
mously in 1763, that outlines fundamental principles of
PROBABILITY theory. Bayes developed innovative tech-
niques and approaches in the theory of statistical infer-
ence, many of which were deemed controversial at the
time. His essay sparked much further research in the
field and was profoundly influential. The work also
contains the famous theorem that today bears his name.

An ordained minister who served the community of
Tunbridge Wells, Kent, England, Bayes also pursued
mathematics as an outside interest. As far as historians
can determine, he published only two works during his
lifetime. One was a theological essay in 1731 entitled
“Divine Benevolence, or an Attempt to Prove that the
Principal End of the Divine Providence and Government
is the Happiness of His Creatures.” The other was a
mathematical piece that he published anonymously in
1736, “Introduction to the Doctrine of Fluxions, and a
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Defense of the Mathematicians Against the Objections
of the Author of The Analyst,” defending the logical
foundations of SIR ISAAC NEWTON’s newly invented
CALCULUS. Despite the apparent lack of published math-
ematical work, Bayes was nonetheless elected a fellow
of the prestigious academic ROYAL SOCIETY in 1742.

Bayes retired from the ministry in 1752 but
remained in Tunbridge Wells until his death on April
17, 1761. His friend, Richard Price, discovered the
now-famous paper on probability theory among his
belongings and submitted it for publication. A second
paper, “A Letter on Asymptotic Series from Bayes to
John Canton,” one on asymptotic series, was also pub-
lished after Bayes’s death. The theoretical approach of
inferential statistics Bayes proposed remains an active
area of research today.

See also BAYES’S THEOREM; STATISTICS: INFERENTIAL.

Bayes’s theorem In his 1763 paper, published
posthumously, REV. THOMAS BAYES established a fun-
damental result, now called Bayes’s theorem, that
expresses the CONDITIONAL PROBABILITY P(A|B) of an
event A occurring given that event B has already
occurred in terms of the reverse conditional probability
P(B|A). Precisely:

This formula is easily proved by noting that

and .

More generally, suppose B1, B2,…, Bn is a mutually
exclusive and exhaustive set of events, that is, a set of
nonoverlapping events covering the whole SAMPLE

SPACE. Suppose also that we have been told that
another event A has occurred. Then the probability
that event Bi also occurred is given by:

To illustrate: suppose that bag 1 contains five red balls
and two white balls, and bag 2 contains seven red balls
and four white balls. If a bag is selected at random and
a ball chosen from it is found to be red, what is the
probability that it came from bag 1?

Here let A be the event “a red ball is chosen” and B1

and B2 the events “a ball is selected from bag 1 / bag 2,”
respectively. Then P(B1) = 1/2 = P(B2), P(A|B1) = 5/7,
and P(A|B2) = 7/11. Thus the probability we seek,
P(B1|A), is given by:

bearing The ANGLE between the course of a ship and
the direction of north is called the ship’s bearing. The
angle is measured in degrees in a clockwise direction
from north and is usually expressed as a three-digit
number. For example, a ship heading directly east has a
bearing of 090 degrees, and one heading southwest has
a bearing of 225 degrees.

The word “bearing” is also used for the measure of
angle from north at which an object is sighted. For
example, a crewman on board a ship sighting a light-
house directly west will say that the lighthouse has
bearing 270 degrees.

Bernoulli family No family in the history of mathe-
matics has produced as many noted mathematicians as
the Bernoulli family from Basel, Switzerland. The family
record begins with two brothers, Jacob Bernoulli and
Johann (Jean) Bernoulli, respectively, the fifth and 10th
children of Nicolaus Bernoulli (1623–1708).

Jacob (December 27, 1654–August 16, 1705) is
noted for his work on CALCULUS and PROBABILITY the-
ory, being one of the first mathematicians to properly
understand the utility and power of the newly pub-
lished work of the great WILHELM GOTTFRIED LEIB-
NIZ (1646–1716). Jacob applied the calculus to the
study of curves, in particular to the logarithmic spiral
and the BRACHISTOCHRONE, and was the first to use
POLAR COORDINATES in 1691. He also wrote the first
text concentrating on probability theory Ars con-
jectandi (The art of conjecture), which was published
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posthumously in 1713. The BERNOULLI NUMBERS also
appear, for the first time, in this text. Jacob occupied
the chair of mathematics at Basel University from
1687 until his death.

Johann (July 17, 1667–January 1, 1748) is also
known for his work on calculus. Being recognized as
an expert in the field, Johann was hired by the French
nobleman MARQUIS DE GUILLAUME FRANÇOIS

ANTOINE L’HÔPITAL (1661–1704) to explain the new
theory to him, first through formal tutoring sessions in
Paris, and then through correspondence when Johann
later returned to Basel. L’Hôpital published the con-
tents of the letters in a 1696 textbook Analyse des
infiniment petits (Analysis with infinitely small quanti-
ties), but gave little acknowledgment to Johann. The
famous rule that now bears his name, L’HÔPITAL’S
RULE, is due to Johann. Johann succeeded his brother
in the chair at Basel University.

The two brothers, Jacob and Johann, worked on
similar problems, and each maintained an almost
constant exchange of ideas with Leibniz. The rela-
tionship between the two siblings, however, was not
amicable, and they often publicly criticized each
other’s work.

Nicolaus (I) Bernoulli (October 21, 1687–November
29, 1759), nephew to Jacob and Johann, also achieved
some fame in mathematics. He worked on problems in
GEOMETRY, DIFFERENTIAL EQUATIONs, infinite SERIES,
and probability. He held the chair of mathematics at
Padua University, once filled by GALILEO GALILEI

(1564–1642).
Johann Bernoulli had three sons, all of whom

themselves became prominent mathematicians:
Nicolaus (II) Bernoulli (February 6, 1695–July 31,

1726) wrote on curves, differential equations, and
probability theory. He died—by drowning while swim-
ming—only eight months after accepting a prestigious
appointment at the St. Petersberg Academy.

Daniel Bernoulli (February 8, 1700–March 17,
1782), the most famous of the three sons, is noted for
his 1738 text Hydrodynamica (Hydrodynamics),
which laid the foundations for the modern discipline
of hydrodynamics. (Daniel’s father, Johann, jealous of
his son’s success, published his own text on hydrody-
namics in 1739 but placed on it the publishing date
of 1732 and accused his son of plagiarism.) Daniel
also worked on the mathematics of vibrating strings,
the kinetic theory of gases, probability theory, and

partial differential equations. He was awarded the
Grand Prize from the Paris Academy no fewer than
10 times.

Johann (II) Bernoulli (May 28, 1710–July 17,
1790) studied the mathematics of heat flow and light.
He was awarded the Grand Prize from the Paris
Academy four times and succeeded his father in the
chair at Basel University in 1743.

Johann (II) Bernoulli had three sons, two of whom,
Johann (III) Bernoulli (November 4, 1744–July 13,
1807) and Jacob (II) Bernoulli (October 17, 1759–
August 15, 1789), worked in mathematics. Johann (III)
studied astronomy and probability, and wrote on recur-
ring decimals and the theory of equations. He was a
professor of mathematics at Berlin University at the
young age of 19. Jacob (II) Bernoulli wrote works on
the mathematics of elasticity, hydrostatics, and ballis-
tics. He was professor of mathematics at the St. Peters-
burg Academy, but, like his uncle, drowned at the age
of 29 while swimming in the Neva River.

Members of the Bernoulli family had a profound
effect on the early development of probability theory,
calculus, and the field of continuum mechanics. Many
concepts (such as the Bernoulli numbers, a probability
distribution, a particular differential equation) are
named in their honor.

Bernoulli numbers See SUMS OF POWERS.

Bertrand’s paradox French mathematician Joseph-
Louis François Bertrand (1822–1900) posed the fol-
lowing challenge:
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Imagine an equilateral TRIANGLE drawn inside
a CIRCLE. Find the PROBABILITY that a CHORD

chosen at random is longer than the side-length
of the triangle.

There are two possible answers:

1. Once a chord is drawn we can always rotate the pic-
ture of the circle so that one end of the selected
chord is placed at the top of the circle. It is clear
then that the length of the chord will be greater than
the side-length of the triangle if the other end-point
lies in the middle third of the perimeter of the circle.
The chances of this happening are 1/3, providing the
answer to the problem.

2. Rotating the picture of the circle and the selected
chord, we can also assume that the chord chosen is
horizontal. If the chord crosses the solid line
shown, then it will be longer than the side-length
of the triangle. One observes that this solid line is
half the length of the diameter. Thus the chances of
a chord being longer than the side-length of the tri-
angle are 1/2.

Surprisingly, both lines of reasoning are mathematically
correct. Therein lies a PARADOX: the answer cannot
simultaneously be 1/3 and 1/2.

The problem here lies in defining what we mean
by “select a chord at random.” There are many dif-
ferent ways to do this: one could spin a bottle in the
center of the circle to select points on the perimeter
to connect with a chord, or one could roll a broom
across a circle drawn on the floor, or perhaps even
drop a wire from a height above the circle and see
where it lands. Each approach to “randomness”
could (and in fact does) lead to its own separate
answer. This paradox shows that extreme care must
be taken to pose meaningful problems in probability
theory. It is very difficult to give a precise definition
to “randomness.”

Bh–askara II (Bhaskaracharya) (1114–1185) Indian
Algebra, Arithmetic Born in Vijayapura, India, Bh–as-
kara (often referred to as Bh–askara II to distinguish him
from the seventh-century mathematician of the same
name) is considered India’s most eminent mathemati-
cian of the 12th century. He revised and continued the
studies of the great BRAHMAGUPTA, making corrections

and filling in gaps in his work, and reached a level of
mastery of ARITHMETIC and ALGEBRA that was not
matched by a European scholar for several centuries to
come. Bh–askara wrote two influential mathematical
treatises: Lilavati (The beautiful), on the topic of arith-
metic, and the Bijaganita (Seed arithmetic) on algebra.

Bh–askara was head of the astronomical observa-
tory in Ujjain, the nation’s most prominent mathemati-
cal research center of the time. Although much of
Indian mathematics was motivated by problems and
challenges in astronomy, Bh–askara’s writings show a
keen interest in developing mathematics for its own
sake. For example, the text Lilavati, consisting of 13
chapters, begins with careful discussions on arithmetic
and geometry before moving on to the topics of
SEQUENCEs and SERIES, fractions, INTEREST, plane and
solid geometry, sundials, PERMUTATIONs and COMBINA-
TIONs, and DIOPHANTINE EQUATIONs (as they are called
today). For instance, Bh–askara shows that the equation
195x = 221y + 65 (which he expressed solely in words)
has infinitely many positive integer solutions, beginning
with x = 6, y = 5, and x = 23, y = 20, and then x = 40,
and y = 35. (The x-values increase in steps of 17, and
the y-values in steps of 15.)

In his piece Bijaganita, Bh–askara develops the
arithmetic of NEGATIVE NUMBERS, solves quadratic
equations of one, or possibly more, unknowns, and
develops methods of extracting SQUARE and CUBE

ROOTs of quantities. He continues the discussions of
Brahmagupta on the nature and properties of the num-
ber ZERO and the use of negative numbers in arith-
metic. (He denoted the negative of a number by placing
a dot above the numeral.) Bh–askara correctly points
out that a quantity divided by zero does not produce
zero (as Brahmagupta claimed) and suggested instead
that a/0 should be deemed infinite in value. Bh–askara
solves complicated equations with several unknowns
and develops formulae that led him to the brink of dis-
covering the famous QUADRATIC formula.

Bh–askara also wrote a number of important texts
in mathematical astronomy and made significant
strides in the development of TRIGONOMETRY, taking
the subject beyond the level of just a tool of calculation
for astronomers. Bh–askara discovered, for example, the
famous addition formulae for sine:

sin(A + B) = sin A cos B + cos A sin B
sin(A – B) = sin A cos B – cos A sin B
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However, as was the tradition at the time, Bh–askara did
not explain how he derived his results. It is conjectured
that Indian astronomers and mathematicians felt it nec-
essary to conceal their methods regarding proofs and
derivations as “trade secrets” of the art.

Bh–askara’s accomplishments were revered for
many centuries. In 1817, H. J. Colebrook provided
English translations of both Lilavati and Bijaganita in
his text Algebra with Arithmetic and Mensuration.

bias A systematic error in a statistical study is called a
bias. If the sample in the study is large, errors produced
by chance tend to cancel each other out, but those from a
bias do not. For example, a survey on the shopping
habits of the general population conducted at a shopping
mall is likely to be biased toward people who shop pri-
marily at malls, omitting results from people who shop
from home through catalogs and on-line services. This is
similar to a loaded die, which is biased to produce a par-
ticular outcome with greater than one-sixth probability.

Surprisingly, American pennies are biased. If you
delicately balance 30 pennies on edge and bump the sur-
face on which they stand, most will fall over heads up.
If, on the other hand, you spin 30 pennies and let them
all naturally come to rest, then most will land tails.

See also POPULATION AND SAMPLE.

biconditional In FORMAL LOGIC, a statement of the
form “p if, and only if, q” is called a biconditional
statement. For example, “A triangle is equilateral if,
and only if, it is equiangular” is a biconditional state-
ment. A biconditional statement is often abbreviated as
p iff q and is written in symbols as p ↔ q. It is equiva-
lent to the compound statement “p implies q, and q
implies p” composed of two CONDITIONAL statements.
The truth-values of p and q must match for the bicon-
ditional statement as a whole to be true. It therefore
has the following TRUTH TABLE:

The two statements p and q are said to be logically
equivalent if the biconditional statement p ↔ q is true.

See also ARGUMENT.

bijection See FUNCTION.

bimodal See STATISTICS: DESCRIPTIVE.

binary numbers (base-2 numbers) Any whole num-
ber can be written as a sum of distinct numbers from
the list of powers of 2: 1, 2, 4, 8, 16, 32, 64, … (Simply
subtract the largest power of 2 less from the given
number and repeat the process for the remainder
obtained.) For instance, we have:

89 = 64 + 25 = 64 + 16 + 9 = 64 + 16 + 8 + 1

No power of 2 will appear twice, as two copies of the
same power of 2 sum to the next power in the list.
Moreover, the sum of powers of 2 produced for a given
number is unique. Using the symbol 1 to denote that a
particular power of 2 is used and 0 to denote that it is
not, one can then encode any given number as a
sequence of 0s and 1s according to the powers of 2 that
appear in its presentation. For instance, for the number
89, the number 64 is used, but 32 is not. The number
16 appears, as does 8, but not 4 or 2. Finally, the num-
ber 1 is also used. We write:

89 = 10110012

(It is customary to work with the large power of 2 to the
left.) As other examples, we see that the code 100010112

corresponds to the number 128 + 64 + 32 + 16 + 8 + –4 +
2 + 1 = 139, and the code 101112 to the number 16 + 8
+ 4 + 2 + 1 = 23. Numbers represented according to this
method are called binary numbers. These representa-
tions correspond precisely to the representations made
by choosing 2 as the BASE OF A NUMBER SYSTEM.

If one introduces a decimal point into the system
and interprets positions to the right of the point as neg-
ative powers of 2, then fractional quantities can also be
represented in binary notation. For instance, 0.1012

represents the quantity 2–1 + 2–3 = + = , and 

0.010101…2 the quantity + + + …, which, 1
64
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according to the GEOMETRIC SERIES formula, is the 

fraction .

Any DYADIC fraction has a finite binary decimal
expansion. As the study of those fractions shows, the
binary code of a dyadic can be cleverly interpreted as
instructions for folding a strip of paper to produce a
crease mark at the location of that dyadic fraction. The
process of RUSSIAN MULTIPLICATION also uses binary
numbers in an ingenious manner.

Binary numbers are used in computers because the
two digits 0 and 1 can be represented by two alterna-
tive states of a component (for example, “on” or “off,”
or the presence or absence of a magnetized region).

It is appropriate to mention that the powers of 2
solve the famous “five stone problem”:

A woman possesses five stones and a simple
two-arm balance. She claims that, with a com-
bination of her stones, she can match the
weight of any rock you hand her and thereby
determine its weight. She does this under the
proviso that your rock weighs an integral num-
ber of pounds and no more than 31 pounds.
What are the weights of her five stones?

As every number from 1 through 31 can be represented
as a sum of the numbers 1, 2, 4, 8, and 16, the woman
has stones of weights corresponding to these first five
powers of 2.

binary operation A rule that assigns to each pair of
elements of a set another element of that same set is
called a binary operation. For example, the addition
of two numbers is a binary operation on the set of
real numbers, as is the product of the two numbers
and the sum of the two numbers squared. “Union” is
a binary operation on sets, as is “intersection,” and
CROSS PRODUCT is a binary operation on the set of
vectors in three-space. However, the operation of DOT

PRODUCT is not a binary operation on the set of vec-
tors; the results of this operation are numbers, not
other vectors.

If the set under consideration is denoted S, then a
binary operation on S can be thought of as a FUNCTION

f from the set of pairs of elements of the set, denoted S
× S, to the set S: f : S × S → S.

See also OPERATION; UNARY OPERATION.

binomial Any algebraic expression consisting of two
terms, such as 2x + y or a + 1, is called a binomial.

See also MONOMIAL; POLYNOMIAL; TRINOMIAL.

binomial coefficient See BINOMIAL THEOREM.

binomial distribution The distribution that arises
when considering the question

What is the probability of obtaining precisely k
successes in n runs of an experiment?

is called the binomial distribution. Here we assume the
experiment has only two possible outcomes—“success
or failure,” or “heads or tails,” for example—and that
the probability of either occurring does not change as
the experiment is repeated. The binomial distribution
itself is a table of values providing the answers to this
question for various values of k, from k = 0 (no suc-
cesses) to k = n (all successes).

To illustrate: the chance of tossing a “head” on a
fair coin is 50 percent. Suppose we choose to toss the
coin 10 times. Observe that the probability of attaining
any specific sequence of outcomes (three heads, fol-
lowed by two tails, then one head and four tails, for 

example) is . In 

particular, the probability of seeing no heads (all
tails) is also 1/1024, as is the chance of seeing 10
heads in a row.

There are 10 places for a single head to appear
among 10 tosses, thus the chances of seeing precisely 

one head out of 10 tosses is , about 

1 percent. According to the theory of COMBINATIONs, 

there are ways for two heads to 

appear among 10 places, and so the probability of
seeing precisely two heads among the 10 tosses is 

, about 4.4 percent.

Continuing this way, we obtain the binomial distri-
bution for tossing a fair coin 10 times:
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If the coin is biased—say the chances of tossing a head
are now only 1/3—then a different binomial distribu-
tion would be obtained. For example, the probability
of attaining precisely eight heads among 10 tosses is 

now only , about 0.3 percent.

In general, if p denotes the probability of success,
and q = 1 – p is the probability of failure, then the
binomial distribution is given by the formula 

, the probability of attaining precisely k

successes in n runs of the experiment. This quantity is
the kth term of the binomial expansion formula from
the BINOMIAL THEOREM:

This explains the name of the distribution.
The binomial distribution has mean value (EXPECTED

VALUE) , which equals np. (To see this, 

differentiate the formula with 

respect to p.) The standard deviation is σ = . (See
STATISTICS: DESCRIPTIVE.)

The Poisson Distribution
It is difficult to calculate the binomial distribution if n is
very large. Mathematicians have shown that the bino-
mial distribution can be well approximated by the NOR-
MAL DISTRIBUTION for large values of n, provided the
value p is neither extremely small nor close to one. For
these troublesome values of p, SIMÉON-DENIS POISSON

showed in 1837 that the values —with µ = np, for 

k = 0, 1, 2, …—provide a sequence of values close to
the values one would expect from the binomial distribu-
tion. The distribution provided by these approximate
values is called a Poisson distribution.

The Geometric Distribution
Alternatively one can ask: what is the probability that
the first success in a series of experiments occurs on the
nth trial? If p is the probability of success and q = 1 – p
is the probability of failure, then one obtains a first
success on the nth experiment by first obtaining n – 1
failures and then a success. The probability of this
occurring is: P(n) = pqn–1. The distribution given by
this sequence of probability values (for n = 1, 2, 3, …)
is called the geometric distribution. It has mean µ = 1/p
and standard deviation σ = √

–
q/p. The geometric distri-

bution is a special example of Pascal’s distribution,
which seeks the probability Pk(n) of the kth success
occurring on the nth trial.

See also HISTORY OF PROBABILITY AND STATISTICS

(essay).

binomial theorem (binomial expansion) The identi-
ties (x + a)2 = x2 + 2xa + a2 and (x + a)3 = x3 + 3x2a +
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3xa2 + a3 are used in elementary ALGEBRA. These are
both special cases of the general binomial theorem that
asserts, for any positive integer n, we have:

Here each number is a COMBINATORIAL

COEFFICIENT, also called a binomial coefficient.
The binomial theorem is proved by examining the

process of EXPANDING BRACKETS, thinking of the quan-
tity (x + a)n as a product of n factors: (x + a)(x + a)…
(x + a). To expand the brackets, one must select an entry
from each set of parentheses (“x” or “a”), multiply
together all the selected elements, and add together all
possible results. For example, there is one way to obtain
the term xn: select x from every set of parentheses.
There are n ways to create a term of the form xn–1a:
select a from just one set of parentheses, and x from the 

remaining sets. In general there are ways to select k 

as and n – k xs. Thus, in the expansion, there will be 

terms of the form xn–kak.

The combinatorial coefficients are the entries of
PASCAL’S TRIANGLE. The binomial theorem applied to
(1 + 1)n explains why the elements of each row of Pas-
cal’s triangle sum to a power of two:

Applying the theorem to (1 – 1)n explains why the
alternating sum of the entries is zero:

Applying the theorem to (10 + 1)n explains why the
first few rows of Pascal’s triangle resemble the powers
of 11:

112 = (10 + 1)2 = 100 + 2 × 10 + 1
113 = (10 + 1)3 = 1,000 + 3 × 100 + 3 × 10 + 1
114 = (10 + 1)4 = 10,000 + 4 × 1,000 + 6 × 100 + 4 

× 10 + 1

(The correspondence would remain valid if we did not
carry digits when computing higher powers of 11.)

The binomial theorem can be used to approximate
high powers of decimals. For example, to estimate
(2.01)10 we observe:

2.0110 = (2 + 0.01)10

= 210 + 10 × 29 × 0.01 + 28 + 45 × 28 × 0.012 + …
≈ 1024 + 10 × 512 × 0.01 + 45 × 256 × 0.00001
= 1024 + 51.2 + 1.152
≈ 1076

In 1665 SIR ISAAC NEWTON, coinventor of CALCU-
LUS, discovered that it is possible to expand quantities
of the form (x + a)r where r is not equal to a whole
number. This leads to the generalized binomial theorem:

If r is an arbitrary real number, and |x| < |a|, 
then:

The formula is established by computing the TAYLOR

SERIES of f(x) = (x + a)r at x = 0. In 1826 Norwegian
mathematician NIELS ABEL proved that the series con-
verges for the range indicated. Notice that if r is a posi-
tive integer, then the theorem reduces to the ordinary
binomial theorem. (In particular, from the n + 1’th
place onward, all terms in the infinite sum are zero.)

The combinatorial coefficients arising in the 

binomial theorem are sometimes called binomial coeffi-
cients. The generalized combinatorial coefficients appear
in expansions of quantities of the type (x + y + z)n and
(x + y + z + w)n, for example.

See also COMBINATION.

bisection method (dichotomous line search, binary line
search) Often one is required to find a solution to an
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equation of the form f(x) = 0 even if there are no clear
algebraic means for doing so. (For instance, there are
no general techniques helpful for solving + 

+ – 5 = 0. The bisection method provides the
means to find, at least, approximate solutions to such
equations. The method is based on the fact that if two
function values f(a) and f(b) of a CONTINUOUS FUNC-
TION have opposite signs, then, according to the INTER-
MEDIATE VALUE THEOREM, a ROOT of the equation f(x) =
0 lies between a and b. The method proceeds as follows:

1. Find two values a and b (a < b) such that f(a) and
f(b) have opposite signs.

2. Set m = (a + b)/2, the midpoint of the interval, and
compute f(m).

3. If f(m) = 0, we have found a zero. Otherwise, if f(a)
and f(m) have opposite signs, then the zero of f lies
between a and m; repeat steps 1 and 2 using these
new values. If, on the other hand, f(m) and f(b) have
opposite signs, then the zero of f lies between m and
b; repeat steps 1 and 2 using these new values. In
either case, a new interval containing the zero has
been constructed that is half the length of the origi-
nal interval.

4. Repeated application of this procedure homes in on
a zero for the function.

To solve the equation f(x) = + + – 5
= 0, for example, notice that f(1) = –0.268 < 0 and
f(2) = 0.650 > 0. A zero for the function thus lies
between 1 and 2. Set m = 1.5. Since f(1.5) = 0.217 > 0
we deduce that, in fact, the zero lies between 1 and
1.5. Now set m = 1.25 to see that the zero lies between
1.25 and 1.5.

One can find the location of a zero to any desired
degree of accuracy using this method. For example,
repeating this procedure for the example above six
more times shows that the location of the zero lies in
the interval [1.269,1.273]. This shows that to three sig-
nificant figures the value of the zero is 1.27.

The bisection method will fail to locate a root if the
graph of the function touches the x-axis at that location
without crossing it. Alternative methods, such as NEW-
TON’S METHOD, can be employed to locate such roots.

bisector Any line, plane, or curve that divides an
angle, a line segment, or a geometric object into two

equal parts is called a bisector. For example, the equator
is a curve that bisects the surface of the EARTH. A
straight line that divides an angle in half is called an
angle bisector, and any line through the MIDPOINT of a
line segment is a segment bisector. If a segment bisector
makes a right angle to the segment, then it is called a
perpendicular bisector.

Bolyai, János (1802–1860) Hungarian Geometry
Born on December 15, 1802, in Kolozsvár, Hungary,
now Cluj, Romania, János Bolyai is remembered for
his 1823 discovery of NON-EUCLIDEAN GEOMETRY, an
account of which he published in 1832. His work
was independent of the work of NIKOLAI IVANOVICH

LOBACHEVSKY (1792–1856), who published an account
of HYPERBOLIC GEOMETRY in 1829.

Bolyai was taught mathematics by his father
Farkas Bolyai, himself an accomplished mathematician,
and had mastered CALCULUS and mechanics by the time
he was 13. At age 16 he entered the Royal Engineering
College in Vienna and joined the army engineering
corps upon graduation four years later.

Like many a scholar throughout the centuries,
Farkas Bolyai had worked, unsuccessfully, on the chal-
lenge of establishing the PARALLEL POSTULATE as a log-
ical consequence of the remaining four of EUCLID’S
POSTULATES. He advised his son to avoid working on
this problem. Fortunately, János Bolyai did not take
heed and took to serious work on the issue while serv-
ing as an army officer. During the years 1820 and
1823 Bolyai prepared a lengthy treatise outlining the
details of a new and consistent theory of geometry for
which the parallel postulate does not hold, thereby set-
tling once and for all the problem that had troubled
scholars since the time of EUCLID: the parallel postulate
cannot be proved a consequence of the remaining pos-
tulates of Euclid.

In Bolyai’s system of hyperbolic geometry it is
always the case that, for any point P in the plane, there
are an infinite number of distinct lines through that
point all PARALLEL to any given line not through P. (In
ordinary geometry, where the parallel postulate holds,
there is only one, and only one, line through a given
point P parallel to a given direction. This is PLAYFAIR’S
AXIOM.) In his new geometry, angles in triangles sum to
less than 180°, and the ratio of the circumference of a
circle to its diameter is greater than π.

√x + 3√x + 2√x

√x + 3

√x + 2√x
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Just before publishing his work, Bolyai learned that
the great CARL FRIEDRICH GAUSS (1777–1855) had
already anticipated much of this theory, even though he
had not published any material on the matter. Bolyai
decided to delay the release of his work. In 1832 he
printed the details of his new theory only as a 24-page
appendix to an essay his father was preparing. Later, in
1848, Bolyai discovered that Lobachevsky had pub-
lished a similar piece of work in 1829. Bolyai never
published the full version of his original treatise. His
short 24-page piece was practically forgotten until
Richard Blatzer discussed the work of both Bolyai and
Lobachevsky in his 1867 text Elemente der Mathematik
(Elements of mathematics). At that point, Bolyai’s piece
was recognized as the first clear account of the mathe-
matics of a new type of geometry. He is today regarded
as having independently founded the topic.

Bolyai died on January 27, 1860, in Marosvásárhely,
Hungary (now Tirgu-Mures, Romania). In 1945 the
University of Cluj honored Bolyai by including his name
in its title. It is today known as the Babes-Bolyai Univer-
sity of Cluj.

Bolzano, Bernard Placidus (1781–1848) Czech
Analysis, Philosophy, Theology Born on October 5,
1781, in Prague, Bernard Bolzano is remembered as the
first mathematician to offer a rigorous description of
what is meant by a CONTINUOUS FUNCTION. The related
theorem, the INTERMEDIATE-VALUE THEOREM, is some-
times named in his honor.

Bolzano studied philosophy and mathematics at
the University of Prague and earned a doctoral degree
in mathematics in 1804. He also completed three years
of theological study at the same time and was ordained
a Roman Catholic priest two days after receiving his
doctorate. Choosing to pursue a career in teaching,
Bolzano accepted a position as chair of philosophy and
religion at the university later that year.

In 1810 Bolzano began work on understanding the
foundations of mathematics and, in particular, the log-
ical foundations of the newly discovered CALCULUS. He
found the notion of an INFINITESIMAL troublesome and
attempted to provide a new basis for the subject free
from this concept. In his 1817 paper “Rein Analytis-
cher Beweis” (Pure analytical proof), Bolzano explored
the concept of a LIMIT—anticipating the foundational
approach of AUGUSTIN-LOUIS CAUCHY offered four

years later—and proved the famous intermediate value
theorem. Bolzano was also the first to provide an
example of a function that is continuous at every point
but differentiable at no point.

Bolzano also anticipated much of GEORG CAN-
TOR’S work on the infinite. In his 1850 article “Para-
doxien des Unendlichen” (Paradoxes of the infinite),
published by a student two years after his death,
Bolzano examined the nature of infinite sets and the
paradoxes that arise from them. This piece contains the
first use of the word “set” in a mathematical context.

Bolzano died on December 18, 1848, in Prague,
Bohemia (now the Czech Republic). His work paved
the way for providing rigorous underpinnings to the
subject of calculus. In particular, Bolzano identified for
the first time in “Rein Analytischer Beweis” the “com-
pleteness property” of the real numbers.

Bombelli, Rafael (1526–1572) Italian Algebra Born
in Bologna, Italy, in 1526 (the day and month of his
birth date are not known), scholar Rafael Bombelli is
remembered for his highly influential 1572 book L’Alge-
bra (Algebra). In this work, Bombelli published rules for
the solution to the QUADRATIC, CUBIC, and QUARTIC

EQUATIONS, and was one of the first mathematicians to
accept COMPLEX NUMBERS as solutions to equations.

Bombelli began his career as an engineer specializ-
ing in hydraulics and worked on a number of projects
to turn salt marshes into usable land. Having read the
great Ars magna (The great art) by GIROLAMO CAR-
DANO (1501–76), Bombelli decided to write an algebra
text that would make the methods developed there
accessible to a general audience and be of interest and
use to surveyors and engineers. He intended to write a
five-volume piece but only managed to publish three
volumes before his death in 1572.

Bombelli noted that Cardano’s method of solving
cubic equations often leads to solutions that, at first
glance, appear unenlightening. For instance, examina-
tion of the equation x3 = 15x + 4 leads to the solution:

Although scholars at the time rejected such quantities
(because of the appearance of the square root of a neg-
ative quantity) Bombelli argued that such results

x = + − + − −2 121 2 1213 3
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should not be ignored and, moreover, that they do lead
to real solutions. After developing the algebra of com-
plex numbers, Bombelli could show that the answer
presented above, for instance, is just the number x = 4
in disguise. Bombelli went on to show that, in fact,
every equation of the form x3 = ax + b, with a and b
positive, has a real solution, thereby justifying the
method of complex numbers.

In addition to developing complex arithmetic,
Bombelli developed the basic algebra of NEGATIVE

NUMBERS. In particular, he provided a geometric argu-
ment to help explain why a negative number times
itself must be positive—a notion that still causes many
people difficulty today.

Bombelli died in 1572. (The exact date of his
death is not known.) GOTTFRIED WILHELM LEIBNIZ

(1646–1716), codiscoverer of CALCULUS, taught himself
mathematics from Bombelli’s L’Algebra and described the
scholar as “an outstanding master of the analytic art.”

Boole, George (1815–1864) British Logic Born on
November 2, 1815, in Lincolnshire, England, algebraist
George Boole is remembered for his highly innovative
work in the field of logic. In his pioneering piece, An
Investigation of the Laws of Thought, on Which are
Founded the Mathematical Theories of Logic and
Probability, published in 1854, Boole established the
effectiveness of symbolic manipulation as a means to
represent and perform operations of reasoning. Boole is
considered the founder of the field of symbolic logic.

Boole received no formal education in mathemat-
ics. As a young man he read the works of JOSEPH-LOUIS

LAGRANGE and PIERRE-SIMON LAPLACE, and by age 20
began publishing original results. His early work in the
field of DIFFERENTIAL EQUATIONs garnered him
national attention as a capable scholar. In 1845 Boole
was honored with a gold medal from the ROYAL SOCI-
ETY of London, England’s most prestigious academic
society. Four years later, in 1849, he was appointed
chair of the mathematics department at Queens Col-
lege, Cork, Ireland, despite having no university degree.
Boole stayed at this college for the rest of his life,
devoting himself to teaching and research.

Boole began work in mathematical logic before
moving to Ireland. At the time, logic was considered to
be a topic of interest only to philosophers, but in
1847, in his pamphlet The Mathematical Analysis of

Logic, Boole successfully argued that the topic has
merit in the art of mathematical reasoning. By using
symbols to represent statements, Boole developed an
“algebra of logic” whose rules and valid manipula-
tions matched the processes of reasoning. Thus mathe-
matical arguments and lines of thought could themselves
be reduced to simple algebraic manipulations. For
instance, if the symbol x is used to represent “all but-
terflies,” then 1 – x represents all that is not a butter-
fly. If y represents the color blue, then xy is the set of
all objects that are both butterflies and blue, that is, all
blue butterflies. The expression (1 – x)(1 – y) repre-
sents all the nonblue nonbutterflies.

Algebraically the quantity (1 – x)(1 – y) equals
1 – x – y + xy. One could argue that the INCLUSION-
EXCLUSION PRINCIPLE is at play here, saying that the set
of nonblue nonbutterflies is the set of all objects that
are neither butterflies, nor blue, with an adjustment

48 Boole, George
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made to account for the fact that the set of blue butter-
flies has been excluded twice. These adjustments, how-
ever, are awkward. Boole invented a new system of
“algebra” that avoids such modifications. The axioms
it obeys differ from those of ordinary arithmetic.

The algebra Boole invented proved to be of funda-
mental importance. It gave 20th-century engineers the
means to instruct machines to follow commands and
has since been used extensively in all computer design
and electrical network theory. In a real sense, Boole
was the world’s first computer scientist, despite the
fact that computers were not invented for another cen-
tury to come. Boole died unexpectedly in 1864 at the
age of 49 from pneumonia. (The exact date of his
death is not known.)

Boolean algebra In the mid-1800s GEORGE BOOLE

developed a system of algebraic manipulations suitable
for the study of FORMAL LOGIC and SET THEORY, now
called Boolean algebra. He assumed that one is given a
set of elements, which we will denote x, y, z, …, on
which one can perform two operations, today called
Boolean sum, x + y, and Boolean product, x · y. These
operations must satisfy the following rules:

1. The operations are COMMUTATIVE, that is, for all ele-
ments x and y we have x + y = y + x and x · y = y · x.

2. There exist two special elements, denoted “0” and
“1,” which, for all elements x, satisfy x + 0 = x and
x · 1 = x.

3. For each element x there is an inverse element “–x”
which satisfies x + (–x) = 1 and x · (–x) = 0.

4. The following DISTRIBUTIVE laws hold for all ele-
ments in the set: x · (y + z) = (x · y) + (x · z) and x +
(y · z) = (x + y) · (x + z).

One can see that the Boolean operations “ + ” and “ · ”
are very different from the addition and multiplication
of ordinary arithmetic and so cannot be interpreted as
such. However, thinking of Boolean addition as the
“union of two sets” and Boolean product as “the inter-
section of two sets,” with 0 being the empty set and 1
the universal set, we see that the all four axioms hold,
making SET THEORY a Boolean algebra. Similarly, the
FORMAL LOGIC of propositional calculus is a Boolean
algebra if one interprets addition as the DISJUNCTION of
two statements (“or”) and product as their CONJUNC-
TION (“and”).

Other rules for Boolean algebra follow from the
four axioms presented above. For example, one can
show that two ASSOCIATIVE laws hold: x + (y + z) = (x +
y) + z and x · (y · z) = (x · y) · z.

See also DE MORGAN’S LAWS.

Borromean rings The term refers to a set of three
rings linked together as a set, but with the property
that if any single ring is cut, all three rings separate.
The design of three such rings appeared on the coat
of arms of the noble Italian family, Borromeo-Arese.
(Cardinal Carlo Borromeo was canonized in 1610,
and Cardinal Federico Borromeo founded the Am-
brosian Art Gallery in Milan, Italy.) The curious
property of the design attracted the attention of
mathematicians.

It is an amusing exercise to arrange four rings such
that, as a set, they are inextricably linked together, yet
cutting any single ring would set all four free. Surpris-
ingly this feat can be accomplished with any number
of rings.

See also KNOT THEORY.

bound A function is bounded if it takes values no
higher than some number M and no lower than some
second value L. For example, the function f(x) = sin x
is bounded between the values –1 and 1. We call M an
upper bound for the function and L a lower bound.

bound 49
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A function is bounded above if the function pos-
sesses an upper bound (but not necessarily a lower
bound), and bounded below if it possesses a lower
bound (but not necessarily an upper bound). For exam-
ple, f(x) = x2 is bounded below by the value L = 0,
since all output values for this function are greater than
or equal to zero. The EXTREME-VALUE THEOREM

ensures that every CONTINUOUS FUNCTION defined on a
closed INTERVAL is bounded.

A set of numbers is bounded above if every number
in the set is less than or equal to some value M,
bounded below if every number in the set is greater
than or equal to some value L, and bounded if it is
both bounded above and bounded below. For example,
the set S = {0.6, 0.66, 0.666, …} is bounded below by
0.6 and bounded above by 1. The smallest possible
upper bound for a set is called the least upper bound,
and the largest lower bound, the greatest lower bound.
The set S has 2/3 as its least upper bound and 0.6 as its
greatest lower bound.

The REAL NUMBERS have the property that any
subset S of them that is bounded above possesses a
least upper bound, and, similarly, any subset that is
bounded below possesses a greatest lowest bound.
This is a key property that shows that no numbers are
“missing” from the real number line. (See DEDEKIND

CUT.) This is not true of the set of rational numbers,
for instance. The set of all rationals whose square is
less than 2, for example, is bounded above, by 3/2 for
example, but possesses no least upper bound in the set
of rationals: the square root of two is “missing” from
the set of rationals.

A sequence is bounded if, as a set of numbers, it is
bounded. A geometric figure in the plane is bounded if
it can be enclosed in a rectangle of finite area. For
example, a CIRCLE is bounded but a HALF-PLANE is not.

Bourbaki, Nicolas Taking the name of a junior
Napoleonic officer, a group of French mathematicians of
the 1930s adopted the pseudonym of Nicolas Bourbaki
to publish a series of books, all under the title Éléments
de mathématiques (Elements of mathematics), that
attempt to present a complete, definitive, and utterly rig-
orous account of all modern mathematical knowledge.
This project continues today. Contributors to the work
remain anonymous and change over the years. To date,
over 40 volumes of work have been produced.

The material presented through Bourbaki is austere
and abstract. The goal of the founding work was to
develop all of mathematics on the axioms of SET THE-
ORY and to maintain the axiomatic approach as new
concepts are introduced.

The work, devoid of narrative and motivational con-
text, is difficult to read and not suitable for use as text-
books. During the 1950s and 1960s, however, there were
often no graduate-level texts in the developing new fields,
and the volumes of Bourbaki were the only sources of
reference. It is unlikely that today a graduate student in
mathematics would consult the work of Bourbaki.

brachistochrone See CYCLOID.

brackets Any pair of symbols, such as parentheses ( )
or braces { }, that are used in an arithmetic or an alge-
braic expression to indicate that the quantity between
them is to be evaluated first, or treated as a single unit
in the evaluation of the whole, are called brackets. For
example, in the expression (2 + 3) × 4, the parentheses
indicate that we are required to first calculate 2 + 3 = 5
and then multiply this result by 4. In complicated
expressions, more than one type of bracket may be
used in the same equation. For instance, the expression
3{2 + 8[2(x + 3) – 5(x – 2)]} is a little easier to read
than 3(2 + 8(2(x + 3) – 5(x – 2))).

Before the advent of the printing press in the 15th
century, the VINCULUM was used to indicate the order
of operations. Italian algebraist RAFAEL BOMBELLI

(1526–1572) was one of the first scholars to use paren-
theses in a printed algebraic equation, but it was not
until the early 1700s, thanks chiefly to the influence of
LEONHARD EULER, GOTTFRIED WILHELM LEIBNIZ, and
members of the BERNOULLI FAMILY, that their use in
mathematics became standard.

Angle brackets <> are typically only used to list the
components of a VECTOR or a finite SEQUENCE. Matters
are a little confusing, for in the theory of quantum
mechanics, angle brackets are used to indicate the DOT

PRODUCT of two vectors (and not the vectors them-
selves). The left angle bracket “<” is called a “bra” and
the right angle bracket “>” a “ket.”

In SET THEORY, braces { } are used to list the ele-
ments of a set. Sometimes the elements of a sequence
are listed inside a set of braces.
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If x is a real number, then the bracket symbols x,
x, and {x} are used to denote the floor, ceiling, and

fractional part values, respectively, of x.
Square brackets [ ] and parentheses ( ) are placed at

the end points of an INTERVAL on the real number line
to indicate whether or not the end points of that inter-
val are to be included.

See also EXPANDING BRACKETS; FLOOR/CEILING/
FRACTIONAL PART FUNCTIONS; ORDER OF OPERATION.

Brahmagupta (ca. 598–665) Indian Arithmetic, Geo-
metry, Astronomy Born in Ujjain, India, scholar Brah-
magupta is recognized as one of the important
mathematicians of the seventh century. His famous 628
text Brahmasphutasiddhanta (The opening of the uni-
verse) on the topic of astronomy includes such notable
mathematical results as his famous formula for the
AREA of a cyclic QUADRILATERAL, the integer solution to
certain algebraic equations, and methods of solution to
simultaneous equations. This work is also historically
significant as the first documented systematic use of
ZERO and negative quantities as valid numbers in
ARITHMETIC.

Brahmagupta was head of the astronomical obser-
vatory at Ujjain, the foremost mathematical center of
ancient India, and took an avid interest in the develop-
ment of astronomical observation and calculation. The
first 10 of the 25 chapters of Brahmasphutasiddhanta
pertain solely to astronomy, discussing the longitude of
the planets, lunar and solar eclipses, and the timing of
planet alignments. Although rich in mathematical com-
putation and technique, it is the remainder of the work
that offers an insight into Brahmagupta’s far-reaching
understanding of mathematics on an abstract level.

Brahmagupta goes on to describe the decimal PLACE-
VALUE SYSTEM used in India at his time for representing
numerals and the methods for doing arithmetic in this
system. (For instance, he outlines a method of “long
multiplication” essentially equivalent to the approach we
use today.) Brahmagupta permits zero as a valid number
in all of his computations, and in fact gives it the explicit
status of a number by defining it as the result of sub-
tracting a quantity from itself. (Until then, zero acted as
nothing more than a placeholder to distinguish 203 from
23, for instance.) He also explains the arithmetical prop-
erties of zero—that adding zero to a number leaves that
number unchanged and multiplying any number by zero

produces zero, for instance. Brahmagupta also detailed
the arithmetic of negative numbers (which he called
“debt”) and suggested, for the first time, that they may
indeed be valid solutions to certain problems.

Brahmagupta next explores problems in ALGEBRA.
He develops some basic algebraic notations and then
presents a series of methods for solving a variety of lin-
ear and quadratic equations. For instance, he devised
an ingenious technique for finding integer solutions to
equations of the form ax2 + c = y2. (For example, Brah-
magupta correctly asserted that x = 226,153,980 and y
= 1,766,319,049 are the smallest positive integer solu-
tions to 61x2 + 1 = y2.) Brahmagupta also presents the
famous SUMS OF POWERS formulae:

as well as algorithms for computing square roots.
Unfortunately, as was the practice of writing at the

time, Brahmagupta never gave any word of explana-
tion as to how his solutions or formulae were found.
No proofs were ever offered.

In the final sections of Brahmasphutasiddhanta,
Brahmagupta presents his famous formula for the area
of a cyclic quadrilateral solely in terms of the lengths
of its sides. Curiously, Brahmagupta does not state
that the formula is true only for quadrilaterals
inscribed in a CIRCLE.

In a second work, Khandakhadyaka, written in
665, Brahmagupta discusses further topics in astron-
omy. Of particular interest to mathematicians, Brah-
magupta presents here an ingenious method for
computing values of sines.

Brahmagupta’s methods and discoveries were
extremely influential. Virtually every text that dis-
cusses Indian astronomy describes or uses some aspect
of his work.

See also BRAHMAGUPTA’S FORMULA.

Brahmagupta’s formula Seventh-century Indian math-
ematician and astronomer BRAHMAGUPTA derived a for-
mula for the AREA of a QUADRILATERAL inscribed in a
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CIRCLE solely in terms of the lengths of its four sides.
His formula reads:

where a, b, c, and d are the four side-lengths and

is the figure’s semiperimeter.

If p and q are the lengths of the figure’s two diago-
nals then PTOLEMY’S THEOREM asserts that pq = ac + bd.
Brahmagupta’s formula follows from BRETSCHNEIDER’S
FORMULA for the area of a quadrilateral:

by substituting in this value for pq.
If one of the sides of the quadrilateral has length

zero, that is, the figure is a TRIANGLE, then Brah-
magupta’s formula reduces to HERON’S FORMULA.

See also CYCLIC POLYGON.

braid A number of strings plaited together is called a
braid. The theory of braids examines the number of
(essentially distinct) ways a fixed number of strings,
held initially in parallel, can be braided. One can com-
bine two braids on a fixed number of strings by repeat-

ing the pattern of the second braid at the end of the
first braid. If, after completing this maneuver, the act of
physically shaking the system of strings settles the
strands to the unbraided state, then we say that the two
braids are “inverse braids.” For example, the two
braids shown in the diagram are inverse braids.

If a braid consists of n strings, then the symbol σi is
used to record the act of switching of the ith string over
the (i + 1)th string (for 1 ≤ i ≤ n – 1) and σi

–1 for the act
of switching of the same two strings but in the opposite
sense. A general braid is then described as a string of
these symbols (called a “word”). For instance, the two
braids shown in the diagram below, at left, are repre-
sented by the words σ1σ2

–1σ1 and σ1
–1σ2σ1

–1, respec-
tively. A braid with no crossings (that is, in which no
strings cross) is denoted “1,” and the process of combin-
ing braids corresponds precisely to the process of con-
catenating words. Two braids are inverse braids, if, after
performing the suggested symbolic manipulations, their
resulting concatenated word is 1. For instance, in our
example, we have: σ1σ2

–1σ1σ1
–1σ2σ1

–1 = σ1σ2
–1σ2σ1

–1 =
σ1σ1

–1 = 1. It is possible that two different words can
represent the same physical braid. (For instance, on three
strings, the braids σ1σ2σ1 and σ2σ1σ2 are physically
equivalent.)

Each set of braids on a fixed number of strings
forms a GROUP called a braid group. Austrian mathe-
matician Emil Artin (1898–1962) was the first to
study these groups and solve the problem of determin-
ing precisely when two different words represent the
same braid.

Bretschneider’s formula German mathematician
Carl Anton Bretschneider (1808–78) wrote down a for-
mula for the AREA of a QUADRILATERAL solely in terms
of the lengths of its four sides and the value of its four
internal angles. If, reading clockwise around the figure,
the side-lengths of the quadrilateral are a, b, c, and d,
and the angles between the edges are A, B, C, and D
(with the angle between edges d and a being A), then
Bretschneider established that the area K of the quadri-
lateral is given by:

Here is the semiperimeter of the figure 

and θ is the average of any two opposite angles in the 

s
a b c d= + + +

2

K = √(s – a)(s – b)(s – c)(s – d) – abcd cos2(θ)

area = − + − −1
4

4 2 2 2 2 2 2( ) ( )pq b d a c

s
a b c d= + + +

2

area = √(s – a)(s – b)(s – c)(s – d)
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figure: or . (Since the interior 

angles of a quadrilateral sum to 360 degrees, each
quantity yields the same value for the cosine.)

Many texts in mathematics state Bretschneider’s
result without proof. Although algebraically detailed,
the derivation of the result is relatively straightforward.
One begins by noting that area K is the sum of the
areas of triangles ABC and ADC. We have:

Multiplying by four and squaring yields:

16K2 = 4a2b2 sin2B + 4c2d2 sin2D + 8abcd sin B sin D

Call this equation (i). Applying the LAW OF COSINES to
each of the two triangles yields the relationship:

a2 + b2 – 2ab cos B = c2 + d2 – 2cd cos D

which can be rewritten:

a2 + b2 – c2 – d2 = 2ab cos B – 2cd cos D

Call this equation (ii). Also note that, with the aid of
this second equation:

4(s – c)(s – d) = (a + b – c + d)(a + b + c – d)
= a2 + b2 – c2 – d2 + 2ab + 2cd
= 2ab cos B – 2cd cos D + 2ab + 2cd
= 2ab(1 + cos B) + 2cd(1 – cos D)

Similarly:

4(s – a)(s – b) = (–a + b + c + d)(a – b + c + d)
= 2ab(1–cos B) + 2cd(1 + cos D)

Multiplying these two equations together gives:

16(s – a)(s – b)(s – c)(s – d) 
= 4a2b2(1– cos2 B) + 4c2d2(1– cos2 D) 

+ 4abcd((1 + cos B)(1 + cos D) 
+ (1–cos B) (1–cos D))

= 4a2b2 sin2 B + 4c2d2 sin2 D + 
8abcd(1 + cos B cos D)

and substituting back into equation (i) produces:

16K2 = 16(s – a)(s – b)(s – c)(s – d) – 
8abcd (cos B cos D – sin B sin D + 1)

The following identities from trigonometry:

cos B cos D – sin B sin D = cos(B + D)

and

now give:

which directly yields the famous result.
If, further, the opposite angles of the quadrilateral

sum to 180 degrees (in which case the quadrilateral is a
CYCLIC POLYGON), then Bretschneider’s formula reduces
to BRAHMAGUPTA’S FORMULA for the area of a cyclic
quadrilateral:

If one of the sides has length zero, say d = 0, then
the quadrilateral is a triangle and we have HERON’S
FORMULA for the area of a triangle:

This is valid, since every triangle can be inscribed in a
circle and so is indeed a cyclic polygon.

Briggs, Henry (1561–1630) British Logarithms Born
in February 1561 (the exact birth date is not known) in
Yorkshire, England, scholar Henry Briggs is remem-
bered for the development of base-10 logarithms, revis-
ing the approach first taken by the inventor of
logarithms, JOHN NAPIER (1550–1617). Today such
common logarithms are sometimes called Briggsian log-
arithms. In 1617, after consulting with Napier, Briggs
published logarithmic values of the first 1,000 numbers
and, in 1624, in his famous text The Arithmetic of Log-
arithms, the logarithmic values of another 30,000 num-
bers, all correct to 14 decimal places.

K = √s(s – a)(s – b)(s – c)

K = √(s – a)(s – b)(s – c)(s – d)

16 16 16
2
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Briggs graduated from St. John’s College of Cam-
bridge University in 1581 with a master’s degree and
was appointed a lectureship at the same institution 11
years later in 1592 to practice both medicine and math-
ematics. Four years later Briggs became the first profes-
sor of geometry at Gresham College, London, when he
also developed an avid interest in astronomy.

Around this time Napier had just developed his
theory of logarithms as a mathematical device specifi-
cally aimed at assisting astronomers with difficult arith-
metical computations. Briggs read Napier’s text on the
subject in 1614 and, with keen excitement, arranged to
visit the Scottish scholar in the summer of 1615. The
two men agreed that the theory of logarithms would
indeed be greatly simplified under a base-10 system,
and two years later Briggs published his first tables of
logarithmic values in Logarithmorum chilias prima
(Logarithms of numbers 1 to 1,000). Later, in his
famous 1624 piece, Briggs published logarithmic values
for the numbers 1 through 20,000 and from 90,000 to
100,000. (The gap of 70,000 numbers was filled three
years later by the two Dutch scholars, Adriaan Vlacq
and Ezechiel de Decker.)

Briggs was appointed chair of geometry at Oxford
University in 1619. He remained at Oxford pursuing
interests in astronomy and classical geometry until his
death on January 26, 1630. In his inaugural lecture at
Gresham College, ISAAC BARROW (1630–77) expressed
gratitude on behalf of all mathematicians for the out-
standing work Briggs had accomplished through the
study of logarithms.

Brouncker, Lord William (ca. 1620–1684) British
Calculus William Brouncker is best remembered for
his work in the early development of CALCULUS and
also as one of the first mathematicians in Britain to use
CONTINUED FRACTIONs.

Very little is known of Brouncker’s early life,
including the exact year of his birth, for example, and
his nationality. Records do show, however, that he
entered Oxford University at the age of 16 to study
mathematics, languages, and medicine. He received a
doctorate of medicine in 1647, pursuing mathematics
and its applications to music, mechanics, and experi-
mental physics as an outside interest throughout his life.

Brouncker held Royalist views and took an active
part in the political turmoil of the time in England.

With the restoration of the monarchy in 1660 and the
election of King Charles II to the throne, Brouncker was
appointed chancellor to Queen Anne and keeper of the
Great Seal. Brouncker was also appointed president of
the newly created ROYAL SOCIETY of London in 1662.

In mathematics, Brouncker studied infinite SERIES

and made a number of remarkable discoveries. He
devised a series method for computing LOGARITHMs
and a surprising continued-fraction expression for π:

Brouncker used this formula to correctly calculate the
value of π to the 10th decimal place. The great English
mathematician JOHN WALLIS later published these
results on Brouncker’s behalf.

Brouncker also studied DIOPHANTINE EQUATIONs
and found a general method for solving equations of
the form nx2 + 1 = y2. LEONHARD EULER later called
this equation “Pell’s equation,” after English mathe-
matician John Pell (1611–84), not realizing that it was
Brouncker, not Pell, who had studied it so intensively.
Pell’s name, unfortunately, remains attached to this
equation to this day.

Brouncker died on April 5, 1684, in London, Eng-
land. He never received fame as a great mathematician
for he tended to focus on solving problems posed by
others rather than forging original pathways in mathe-
matics research.

brute force The method of establishing the validity
of a claim by individually checking each and every
instance of the claim is called brute force. Mathemati-
cians much prefer devising general arguments and prin-
ciples to demonstrate the validity of a claim, rather
than resort to this method. Some claims, however, seem
amenable only to the technique of brute force. For
instance, the following number-naming puzzle can be
solved only via brute force:

Think of a number between one and 100.
Count the number of letters in its name to
obtain a second number. Count the number of
letters in the name of the second number to
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obtain a third number. Continue this way until
the chain of numbers obtained this way ends
on a number that repeats. This repeating num-
ber, in every case, is the number four.

As every number between one and 100 can be written
in 12 or fewer letters, the second number obtained will
lie between three and 12. One checks, by brute force,
that each of these numbers eventually leads to the num-
ber four.

At present, the brute-force method is the only
known technique guaranteed to yield an optimal solu-
tion to the famous TRAVELING-SALESMAN PROBLEM.
This problem is of significant practical importance.
Unfortunately, even with the fastest computers of
today, the brute-force approach cannot be carried out
in any feasible amount of time.

The famous FOUR-COLOR THEOREM was solved in
the 1970s by reducing the problem to a finite, but
extraordinarily large, number of individual cases that
were checked on a computer by brute force.

See also GOLDBACH’S CONJECTURE.

Buffon needle problem (Buffon-Laplace problem)
In 1733 French naturalist Georges Buffon proposed
the following problem, now known as the Buffon nee-
dle problem:

A needle one inch long is tossed at random
onto a floor made of boards one inch wide.
What is the probability that the needle lands
crossing one of the cracks?

One can answer the puzzle as follows:
Suppose that the needle lands with lowest end a

distance x from a crack. Note that 0 ≤ x ≤ 1.

In the diagram we see that if the needle lands within
an angle as indicated by either sector labeled θ, then it
will not fall across the upper crack, but it will do so if
instead it lands in the sector of angle π –2θ. Thus the
probability that the needle will fall across the crack,
given that it lands a distance x units below a crack, is

. Summing, that is, integrating,

over all possible values of x gives us the total probabil-
ity P we seek:

In principle, this problem provides an experimental
method for computing PI: simply toss a needle onto the
floor a large number of times, say 10,000, and count the
proportion that land across a crack. This proportion 

should be very close to the value . In practice, however,

this turns out to be a very tedious approach.
See also MONTE CARLO METHOD.
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calculus (infinitesimal calculus) The branch of math-
ematics that deals with the notion of continuous
growth and change is called calculus. It is based on the
concept of INFINITESIMALs, exceedingly small quanti-
ties, and on the concept of a LIMIT, quantities that can
be approached more and more closely but never
reached. By treating continuous changes as if they con-
sisted of infinitely small increments, DIFFERENTIAL CAL-
CULUS can be used, for example, to find the VELOCITY

of a moving object at any particular instant. INTEGRAL

CALCULUS represents the reverse process, finding the
aggregate end-result if the continuous change is already
known. For example, by integrating the instantaneous
velocity of an object over a given time period, one finds
the total distance the object moved during this time.

The word calculus comes from the Latin word calx
for “pebble,” which in turn is derived from the Greek
word chalis for “limestone.” Small beads or stones
arranged in a counting board or on an ABACUS were
often used to aid mathematical calculations, and the
word calculus came to refer to all mathematical activ-
ity. Today, however, the word is used almost exclusively
to denote the study of continuous change.

See also HISTORY OF CALCULUS (essay).

cancellation In ARITHMETIC, the process of dividing
the numerator and the denominator of a FRACTION by
a common factor to produce a simpler fraction is called
cancellation. For example, the fraction 18/12, which is
(6 × 3)/(6 × 2), can be simplified to 3/2 by canceling
“6” from the fraction.

An amusing activity in mathematics searches for
fractions that remain unchanged by the action of
“anomalous cancellation.” For example, deleting the
digit 6 from each of the numerator and denominator of
the fraction 65/26 produces the number 5/2. Curiously,
65/26 does equal five halves. Other fractions with this 

property include: , , and . Of 

course deleting digits this way is an invalid mathemati-
cal operation, and the equalities obtained here are
purely coincidental.

In ALGEBRA the word cancellation is used in two
settings. Akin to the process of cancellation for frac-
tions, one may simplify a rational expression of the
form xy/xz by canceling the factor x from both the
numerator and denominator. This gives xy/xz as equal 

to y/z. Thus, for instance, the expression 

simplifies to .

The process of removing two equal quantities from
an equation via subtraction is also called cancellation.
For example, in the equation x + 2y = 5 + 2y, the term
2y can be cancelled to leave x = 5.

Both actions fall under the umbrella of a general
cancellation law. In an abstract setting, a BINARY OPER-
ATION “*” is said to satisfy such a law if whenever a*x
= b*x holds, a = b follows. For the operation of addi-
tion, this reads:

a + x = b + x implies a = b
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History of Calculus

The study of calculus begins with the study of motion, a topic
that has fascinated and befuddled scholars since the time of
antiquity. The first recorded work of note in this direction
dates back to the Greek scholars PYTHAGORAS (ca. 569–475
B.C.E) and ZENO OF ELEA (ca. 500 B.C.E.), and their followers,
who put forward the notion of an INFINITESIMAL as one possi-
ble means for explaining the nature of physical change.
Motion could thus possibly be understood as the aggregate
effect of a collection of infinitely small changes. Zeno, how-
ever, was very much aware of fundamental difficulties with
this approach and its assumption that space and time are
consequently each continuous and thus infinitely divisible.
Through a series of ingenious logical arguments, Zeno rea-
soned that this cannot be the case. At the same time, Zeno
presented convincing reasoning to show that the reverse
position, that space is composed of fundamental indivisible
units, also cannot hold. The contradictory issues proposed by
Zeno were not properly resolved for well over two millennia.

The concept of the infinitesimal also arose in the
ancient Greek study of area and volume. Scholars of the
schools of PLATO (428–348 B.C.E.) and of EUDOXUS OF CNIDUS

(ca. 370 B.C.E.) developed a “method of exhaustion,” which
attempted to compute the area or volume of a curved figure
by confining it between two known quantities, both of which
can be made to resemble the desired object with any pre-
scribed degree of accuracy. For example, one can sand-
wich a circle between two n-gons, one inscribed and one
circumscribed. As one can readily compute the area of a
regular n-gon, the formula for the area of a circle follows by
taking larger and larger values of n. (See AREA.) The figure
of a regular n-gon as n grows differs from that of a true cir-
cle only by an infinitesimal amount. ARCHIMEDES OF SYRACUSE

(287–212 B.C.E.) applied this method to compute the area of a
section of a PARABOLA, and 600 years later, PAPPUS OF

ALEXANDRIA (ca. 300–350 C.E.) computed the volume of a
SOLID OF REVOLUTION via this technique. Although successful
in computing the areas and volumes of a select collection of
geometric objects, scholars had no general techniques that
allowed for the development of a general theory of area and
volume. Each individual calculation for a single specific
example was hailed as a great achievement in its own right.

The resurgence of scientific investigation in the mid-
1600s led European scholars to push the method of exhaus-
tion beyond the point where Archimedes and Pappus had
left it. JOHANNES KEPLER (1571–1630) extended the use of
infinitesimals to solve OPTIMIZATION problems. (He also
developed new mathematical methods for computing the
volume of wine barrels.) Others worked on the problem of
finding tangents to curves, an important practical problem

in the grinding of lenses, and the problem of finding areas of
irregular figures. In 1635, Italian mathematician BONAVEN-
TURA CAVALIERI wrote the first textbook on what we would
call integration methods. He described a general “method
of indivisibles” useful for computing volumes. The principle
today is called CAVALIERI’S PRINCIPLE.

French mathematician Gilles Personne de Roberval
(1602–75) was the first to link the study of motion to geome-
try. He realized that the tangent line to a geometric curve
could be interpreted as the instantaneous direction of
motion of a point traveling along that curve. Philosopher
and mathematician RENÉ DESCARTES (1596–1650) developed
general techniques for finding the formula for the tangent
line to a curve at a given point. This technique was later
picked up by PIERRE DE FERMAT (1601–65), who used the
study of tangents to solve maxima and minima problems in
much the same way we solve such problems today. As a
separate area of study, Fermat also developed techniques
of integral calculus to find areas between curves and
lengths of arcs of curves, which were later developed fur-
ther by BLAISE PASCAL (1623–62) and English mathematicians
JOHN WALLIS (1616–1703) and ISAAC BARROW (1630–77).

At the same time scholars, including Wallis, began
studying SERIES and INFINITE PRODUCTs. Scottish mathemati-
cian JAMES GREGORY (1638–75) developed techniques for
expressing trigonometric functions as infinite sums, thereby
discovering TAYLOR SERIES 40 years before BROOK TAYLOR

(1685–1731) independently developed the same results.
By the mid-1600s, certainly, all the pieces of calculus

were in place. Yet scholars at the time did not realize that all
the varied problems being studied belonged to one unified
whole, namely, that the techniques used to solve tangent
problems could be used to solve area problems, and vice
versa. A fundamental breakthrough came in the 1670s
when, independently, GOTTFRIED WILHELM LEIBNIZ (1646–1716)
of Germany and SIR ISAAC NEWTON (1642–1727) of England
discovered an inverse relationship between the “tangent
problem” and the “area problem.” The discovery of the FUN-
DAMENTAL THEOREM OF CALCULUS brought together the dis-
parate topics being studied, provided a beautiful and
natural perspective on the subject as a whole, and allowed
scholars to make significant advances in solving geometric
and physical problems with spectacular success. Despite
the content of knowledge that had been established up until
that time, it is the discovery of the fundamental theorem of
calculus that represents the discovery of calculus.

Newton approached calculus through a concept of
“flowing entities.” He called any quantity being studied a
“fluent” and its rate of change a FLUXION. Records show that

(continues)



58 cancellation

he had developed these ideas as early as 1665, but he did
not publish an account of his theory until 1704. Unfortunately,
his writing style and choice of notation also made his ver-
sion of calculus accessible only to a select audience. Leib-
niz, on the other hand, made explicit use of an infinitesimal in
his development of the theory. He called the infinitesimal
change of a quantity x a DIFFERENTIAL, denoted dx. Leibniz
invented a beautiful notational system for the subject that
made reading and working with his account of the theory
immediately accessible to a wide audience. (Many of the
symbols we use today in differential and integral calculus
are due to Leibniz.) Leibniz formulated his approach in the
mid-1670s and published his account of the subject in 1684.
Although it is now known that Newton and Leibniz had made
their discoveries independently, matters at the time were not
clear, and a bitter dispute arose over the priority for the dis-
covery of calculus. In 1712 the ROYAL SOCIETY of England
formed a special committee to adjudicate the issue.

Applying the techniques to problems of the real world
became the main theme of 18th-century mathematics. New-
ton’s famous 1687 text Principia paved the way with its anal-
ysis of the laws of motion and the mechanics of the solar
system. The Swiss brothers Jakob Bernoulli (1654–1705)
and Johann Bernoulli (1667–1748) of the famous BERNOULLI

FAMILY, champions of Leibniz in the famous dispute, studied
the newly invented calculus and were the first to give public
lectures on the topic. Johann Bernoulli was hired to teach
differential calculus to the French nobleman GUILLAUME

FRANÇOIS DE L’ HOPITAL (1661–1704) via written correspon-
dence. In 1696 L’Hopital then published the content of
Johann’s letters with his own name as author. Italian math-
ematician MARIE GAETANA AGNESI (1718–99) wrote the first
comprehensive textbook dealing with both differential and
integral calculus in 1755.

The Swiss mathematician LEONHARD EULER (1707–83) and
French mathematicians JOSEPH-LOUIS LAGRANGE (1736–1813)
and PIERRE-SIMON LAPLACE (1749–1827) were prominent in
developing the theory of DIFFERENTIAL EQUATIONs. Euler also
wrote extensively on the subject of calculus, showing how
the theory can be applied to a vast range of pure and applied
mathematical problems. Yet despite the evident success of
calculus, some 18th-century scholars questioned the validity
and the soundness of the subject.

The sharpest critic of Newton’s and Leibniz’s work was
the Anglican Bishop of Coyne, George Berkeley (1685–1753).
In his scathing essay, “The Analyst,” Berkeley demon-
strated, convincingly, that both Newton’s notion of a fluxion

and Leibniz’s concept of an infinitesimal are ill-defined, and
that the foundations of the subject are consequently inse-
cure. (Some historians suggest that Berkeley’s vehement
criticisms were motivated by a personal disdain for the
apparent atheism of the type of mathematician who argues
that science is certain and that theology is based on specu-
lation.) Mathematicians consequently began looking for
ways to put calculus on a sound footing. Significant
progress was not made until the 19th century, when French
mathematician AUGUSTINE LOUIS CAUCHY (1789–1857) sug-
gested that the notion of an infinitesimal should be replaced
by that of a LIMIT. German mathematician KARL WEIERSTRASS

(1815–97) developed this idea further and was the first to
give absolutely clear and precise definitions to all concepts
used in calculus, devoid of any mystery or reliance on geo-
metric intuition. The work of German mathematician RICHARD

DEDEKIND (1831–1916) highlighted the role properties of the
real number system play in ensuring the validity of the INTER-
MEDIATE-VALUE THEOREM and EXTREME-VALUE THEOREM and all
the essential results that follow from them.

Initially, calculus was deemed a theory pertaining only
to continuous change and CONTINUOUS FUNCTIONs. German
mathematician BERNHARD RIEMANN (1826–66) was the first to
consider, and give careful discussion on, the integration of
discontinuous functions. His definition of an integral is the
one typically presented in textbooks today. At the end of the
19th century, French mathematician HENRI LÉON LEBESGUE

(1875–1941) literally turned Riemann’s approach around and
developed a concept of integration that can be applied to a
much wider class of functions and class of settings. In con-
structing a Riemann integral, one begins by subdividing the
range of inputs, the x-axis, into small intervals and adding
areas of rectangles above these intervals of heights given
by the function. This is akin to counting the value of a pock-
etful of coins by taking one coin out at a time, and adding
the outcomes as one goes along. Lebesgue suggested, on
the other hand, subdividing the range of outputs, the y-axis,
into small intervals and measuring the size of the sets on
the x-axis for which the function gives the desired output on
the y-axis. This is akin to counting coins by first collecting
all the pennies and determining their number, all the nickels
and ascertaining the size of that collection, and so forth. In
order to do this, Lebesgue had to develop a general “mea-
sure theory” for determining the size of complicated sets.
His new theory proved to be fundamentally important, and it
now has profound applications to a wide range of mathe-
matical topics. It proved to be especially important to the
sound development of PROBABILITY theory.

See also CALCULUS; DIFFERENTIAL CALCULUS; GRAPH OF A

FUNCTION; INTEGRAL CALCULUS; VOLUME.

History of Calculus
(continued)



and for multiplication, assuming that x is not zero:

a × x = b × x implies a = b

The cancellation law holds for any mathematical
system that satisfies the definition of being a GROUP.
With the guaranteed existence of inverse elements, we
have a*x = b*x yields a*x*x – 1 = b*x*x – 1, which is
the statement a = b. It holds in MODULAR ARITHMETIC

in the following context:

ax ≡ bx (mod N) implies a ≡ b (mod N), 
only if x and N are COPRIME

This follows since the statement ax ≡ bx (mod N) holds
only if x(a – b) is a multiple of N. If x and N share no
prime factors, then it must be the case that the term a –
b contains all the prime factors of N and so is a multiple
of N. Consequently, a ≡ b(mod N). The fact that 4 × 2
is congruent to 9 × 2 modulo 10, without 4 and 9 being
congruent modulo 10, shows that the cancellation law
need not hold if x and N share a common factor.

See also ASSOCIATIVE; COMMUTATIVE PROPERTY;
DISTRIBUTIVE PROPERTY.

Cantor, Georg (1845–1918) German Set theory Born
on March 3, 1845, in St. Petersburg, but raised in Wies-
baden and in Frankfurt, Germany, mathematician
Georg Cantor is remembered for his profound work on
the theory of sets and CARDINALITY. From the years
1874 to 1895, Cantor developed a clear and compre-
hensive account of the nature of infinite sets. With his
famous DIAGONAL ARGUMENT, for instance, he showed
that the set of rational numbers is DENUMERABLE and
that the set of real numbers is not, thereby establishing
for the first time that there is more than one type of infi-
nite set. Cantor’s work was controversial and was
viewed with suspicion. Its importance was not properly
understood at his time.

Cantor completed a dissertation on NUMBER THE-
ORY in 1867 at the University of Berlin. After working
as a school teacher for a short while, Cantor completed
a habilitation degree in 1869 to then accept an
appointment at the University of Halle in 1869. He
worked on the theory of trigonometric SERIES, but his
studies soon required a clear understanding of the
IRRATIONAL NUMBERs. This need turned Cantor to the
study of general sets and numbers.

In 1873 Cantor proved that the set of all ratio-
nals and the set of ALGEBRAIC NUMBERs are both
COUNTABLE, but that the set of real numbers is not.
Twenty years earlier, French mathematician JOSEPH

LIOUVILLE (1809–82) established the existence of
TRANSCENDENTAL NUMBERs (by exhibiting specific
examples of such numbers), but Cantor had managed
to show, in one fell swoop, that in fact almost all
numbers are transcendental.

Having embarked on a study of the infinite, Cantor
pushed forward and began to study the nature of space
and dimension. In 1874 he asked whether the points of
a unit square could be put into a one-to-one correspon-
dence with the points of the unit interval [0,1]. Three
years later Cantor was surprised by his own discovery
that this is indeed possible. His 1877 paper detailing the
result was met with suspicion and was initially refused
publication. Cantor’s friend and colleague, the notable
JULIUS WILHELM RICHARD DEDEKIND (1831–1916),
intervened and urged that the work be printed. Cantor
continued work on transfinite sets for a further 18
years. He formulated the famous CONTINUUM HYPOTH-
ESIS and was frustrated that he could not prove it.

Cantor suffered from bouts of depression and men-
tal illness throughout his life. During periods of dis-
comfort, he turned away from mathematics and wrote
pieces on philosophy and literature. (He is noted for
writing essays arguing that Francis Bacon was the true
author of Shakespeare’s plays.)

Cantor died of a heart attack on January 6, 1918,
while in a mental institution in Halle, Germany. Even
though Cantor’s work shook the very foundations of
established mathematics of his time, his ideas have now
been accepted into mainstream thought. Beginning
aspects of his work in SET THEORY are taught in ele-
mentary schools.

capital See INTEREST.

Cardano, Girolamo (Jerome Cardan) (1501–1576)
Italian Algebra Born on September 24, 1501, in
Pavia, Italy, scholar Girolamo Cardano is remembered
as the first to publish solutions to both the general
CUBIC EQUATION and to the QUARTIC EQUATION in his
1545 treatise Ars magna (The great art). Even though
these results were due to SCIPIONE DEL FERRO
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(1465–1526), NICCOLÒ TARTAGLIA (1499–1557), and
to his assistant LUDOVICO FERRARI (1522–65), Car-
dano unified general methods. He was an outstanding
mathematician of the time in the fields of ALGEBRA,
TRIGONOMETRY, and PROBABILITY.

At the age of 19, Cardano entered Pavia University
to study medicine but quickly transferred to the Uni-
versity of Padua to complete his degree. He excelled at
his studies and earned a reputation as a top debater. He
graduated with a doctorate in medicine in 1526.

Cardano set up a small medical practice in the vil-
lage of Sacco, but it was not at all successful. He
obtained a post as a lecturer in mathematics at the
Piatti Foundation in Milan, where he pursued interests
in mathematics while continuing to treat a small clien-
tele of patients.

In 1537 Cardano published two mathematics texts
on the topics of arithmetic and mensuration, marking
the start of a prolific literary career. He wrote on such
diverse topics as theology, philosophy, and medicine in
addition to mathematics.

In 1539 Cardano learned that an Italian mathe-
matician by the name of Tartaglia knew how to solve
cubic equations, a topic of interest to Cardano since he
and Ferrari, his assistant, had discovered methods for
solving quartics, if the method for cubics was clear.
Tartaglia revealed his methods to Cardano under the
strict promise that the details be kept secret. (At the
time, Renaissance scholars, such as Tartaglia, were
often supported by rich patrons and had to prove their
worth in public challenges and debates. Keeping meth-
ods secret was thus of key importance.) When Cardano
later learned that another scholar by the name of del
Ferro had discovered methods identical to those of
Tartaglia decades earlier, Cardano no longer felt
obliged to keep the solution secret and published full
details in his famous 1545 piece Ars magna (The great
art). Tartaglia was outraged by this act, and a bitter
dispute between the two men ensued.

Although Cardano properly credits Ferrari and
Tartaglia as the first scholars to solve the cubic equa-
tion, it should be noted that Cardano properly identi-
fied general approaches that unified previous methods.
Cardano also recognized that solutions would often
involve COMPLEX NUMBERS and was the first scholar to
make steps toward understanding these quantities. He
died on September 21, 1576, in Rome.

See also RAFAEL BOMBELLI.

Cardano’s formula (Cardano-Tartaglia formula) See
CUBIC EQUATION.

cardinality In common usage, the cardinal numbers
are the counting numbers 1, 2, 3, … These numbers
represent the sizes of FINITE sets of objects. (Unlike the
ORDINAL NUMBERS, however, the cardinal numbers do
not take into account the order in which elements
appear in a given set.)

In the late 1800s German mathematician GEORG

CANTOR (1845–1918) extended the notion of cardinal-
ity to include meaningful examination of the size of
infinite sets. He defined two sets to be of the same car-
dinality if their members can be matched precisely in a
one-to-one correspondence. That is, each element of
the first set can be matched with one element of the
second set, and vice versa. For example, the set of peo-
ple {Jane, Lashana, Kabeer} is of the same cardinality
as the set of dogs {Rover, Fido, Spot}, since one can
draw leashes between owners and dogs so that each
owner is assigned just one dog, and each dog is leashed
to one owner. Each of these sets is said to have cardi-
nality 3. (Both sets are of the same cardinality as the set
{1, 2, 3}.) Two sets of the same cardinality are said to
be equipotent (equipollent, equinumerable, or, simply,
equivalent).

The set of all counting numbers {1, 2, 3, …} is
equipotent with the set of all integers {…, –2, –1, 0, 1,
2, …}. This can be seen by arranging each set of num-
bers in a list and matching elements according to their
positions in the list:

1 2 3 4 5 6 …

0 –1 1 –2 2 –3 …

This procedure shows that any two sets whose elements
can be listed are equipotent. Such a set is said to be
DENUMERABLE, and Cantor denoted the cardinality of
any denumerable set ℵ0, pronounced “aleph null.” Can-
tor’s first DIAGONAL ARGUMENT shows that the set of all
counting numbers, the set of integers, and the set of all
rational numbers are each denumerable sets and so each
have cardinality ℵ0. Mathematicians have shown that
the set of all ALGEBRAIC NUMBERs is also denumerable.

Not all infinite sets, however, are denumerable, as
Cantor’s second diagonal argument shows. For

↔↔↔↔↔↔
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instance, it is not possible to place the set of all real
numbers in a list, and so, in some well-defined sense,
the set of real numbers is “more infinite” than the set
of counting numbers or the rationals. Cantor denoted
the cardinality of the set of real numbers c, for “contin-
uum.” We have:

ℵ0 < c

In general, the cardinality of one set A is said to be less
than the cardinality of another set B if it is possible to
match each element of A with a unique element of B,
but not vice versa. (Thus A is equipotent with a proper
subset of B but not equipotent with B itself.) For exam-
ple, the cardinality of {Jane, Lashana, Kabeer}, which we
denote as 3, is less than the cardinality of the set {Rover,
Fido, Spot, Tess, Rue, Tucker, Jet}, which we denote as
7. Although we can match the owners with distinct
dogs, we cannot match the dogs with distinct owners.

An infinite set has the property that it is equipotent
with a proper subset of itself. (This is usually taken as
the definition of what it means for a set to be infinite.)
For example, since the set of integers is equipotent with
the subset of counting numbers, the set of integers is
indeed an infinite set. The graph of the tangent function 

y = tan x between and shows that each  

point on the y-axis is matched with a unique point on 

the x-axis in the interval , and vice versa. 

Thus the set of all points on the entire number line (the
y-axis) has the same cardinality as the set of all points
just in a finite interval. The set of all real numbers is
indeed an infinite set.

The set of all subsets of a set A is called the “power
set” of A, denoted P(A). For example, the power set
of {a,b,c,} is the set of eight elements: {Ø,{a},
{b},{c},{a,b},{a,c},{b,c},A}. (In general, the power set of
a set with n elements has 2n elements.) In some sense,
the power set of the set of all counting numbers A =
{1,2,3,…} matches precisely with the set of all real
numbers between zero and one. This can be seen as
follows:

Given a subset B of counting numbers, let x be
the real number written as a decimal in base
two whose kth digit is 1 if k belongs to B, and
0 otherwise. (Thus, for instance, the subset of
odd counting numbers yields the real number x

= .1010101… .) And conversely, given a real
number x between zero and one, create a sub-
set B of counting numbers as dictated by the
placement of 1s in its binary expansion. (Thus,
for instance, the real number x = .010000…
corresponds to the subset {2}.)

(There is one technical difficulty with this correspon-
dence. The numbers 0.01000… and 0.001111…, for
instance, represent the same real number, yet corre-
spond to different subsets of the counting numbers.
Mathematicians have shown that this difficulty can be
obviated.) We have:

P(N) = R

where N denotes the set of natural numbers and R the
set of real numbers.

The cardinality of the counting numbers is ℵ0, and
the above argument shows that the cardinality of its
power set is c. This suggests, as for finite sets, that the
power set of a set is always of “larger” cardinality than
the original set. Cantor used the following argument to
prove that this is indeed the case:

Let A be a set and consider its power set P(A).
Since every element a of A gives rise to the ele-
ment {a} of P(A), we can certainly match the
elements A with distinct elements of P(A). We
now show, however, that it is not possible to
reverse the process and match the elements of
P(A) with distinct elements of A.

Suppose, to the contrary, we have speci-
fied a way to associate with each subset of A
a distinct element of A. For example, the sub-
set {a,b,c} might be matched with the element
a, and the subset {a,c,e,g,…} with b. Notice
that the first subset contains the element a
with which it is matched, but the second sub-
set does not contain the element b with which
it is matched.

Let U be the set of all elements of A that
are used in the above correspondence, but are
not elements of the subsets to which they are
assigned. (For instance, b above is an element
of U, but a is not.) The subset U must be
assigned some element of A, call it u. Now ask:
Is u a member of U? The set U cannot contain
u by the very definition of U.

But in that case u satisfies the definition
of being in U. So by not being in U, u must

−



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π π
2 2

,
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2
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2
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be in U, and by being in U, u cannot be in U.
This absurdity shows that there cannot be a
meaningful correspondence that assigns dis-
tinct elements of A to subsets of A after all.

Given an infinite set A, Cantor had thus shown
that the sets P(A), P(P(A)), P(P(P(A))), … form a never-
ending chain of increasingly larger infinite sets. Thus,
in a very definite sense, there are infinitely many differ-
ent types of infinity. At the other end of the spectrum,
the study of denumerable sets shows that every infinite
set contains a denumerable subset. Thus of all the infi-
nite sets, denumerable sets are the “smallest” type of
infinite sets. The CONTINUUM HYPOTHESIS asks whether
or not there is an infinite set with cardinality that lies
somewhere between that of N and P(N) = R.

One might suppose that P(R), the power set of the
set of all points on the real number line, is R2, the set
of all points in the plane, or, equivalently, that the
power set of the set of all points in the unit interval
[0,1] is the set of all points inside the unit square [0,1]
× [0,1]. Surprisingly, this is not the case: there are just
as many points in the unit square as there are in a unit
interval. This is seen as follows:

Associate to each point (x,y) with 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1, each written as an infinite decimal
expansion, x = 0.x1x2x3… and y = 0.y1y2y3…,
the real number r = 0.x1y1x2y2x3y3… in the
interval [0,1], and, conversely, match each real
number r = 0.r1r2r3r4r5r6… with the point
(0.r1r3r5…, 0.r2r4r6…) in the unit square.

(Again there is a technical difficulty caused by those
real numbers that have two different decimal represen-
tations. For instance, one-half can be written both as
0.5000… and 0.4999… Mathematicians have shown
that this difficulty can be obviated.) It turns out that
P(R) corresponds to the set of all possible real-valued
functions y = f(x).

See also INFINITY; PEANO’S CURVE.

cardioid The heart-shaped curve traced by a point on
the circumference of one circle as it rolls around
another circle of equal size is called a cardioid. In
POLAR COORDINATES, the cardioid is given by an equa-
tion of the form r = a(1– cosθ) where a is the common
radii of the circles, and in CARTESIAN COORDINATES by

(x2 + y2 – ax)2 = a2(x2 + y2). The PARAMETRIC EQUA-
TIONS of the curve are x = acosθ(1 + cosθ) and y =
asinθ(1 + cosθ). The curve has area one-and-a-half
times the area of either generating circle, and perimeter
eight times the radius.

The cardioid was first studied extensively by Italian
mathematician Johann Castillon, who also coined its
name in 1741.

See also CYCLOID.

Cartesian coordinates (orthogonal coordinates, rect-
angular coordinates) One of the biggest break-
throughs in the development of mathematics occurred
when geometry and algebra were united through the
invention of the Cartesian coordinate system. Credited
to 17th-century French mathematician and philosopher
RENÉ DESCARTES (whose name Latinized reads Carte-
sius), Cartesian coordinates provide a means of repre-
senting each point in the plane via a pair of numbers.

One begins by selecting a fixed point O in the plane,
called the origin, and drawing through it two perpendic-
ular number lines, called axes, one horizontal and one
vertical, and both with the point O at the zero position
on the line. It has become the convention to set the posi-
tive side of the horizontal number line to the right of O,
and the positive side of the vertical number line above
O, and to call the horizontal axis the x-axis, and the ver-
tical one the y-axis. The Cartesian coordinates of a point
P in the plane is a pair of numbers (x,y) which then
describes the location of that point as follows:

The x-coordinate, or “abscissa,” is the hori-
zontal distance of the point from O along the
horizontal axis. (A positive distance repre-
sents a point to the right of the vertical axis; a
negative distance one to the left.) The y-coor-
dinate, or “ordinate,” is the vertical distance
of the point from O along the vertical axis. (A
positive distance represents a point located
above the horizontal axis, and a negative dis-
tance one located below.)

For example, if the bottom left corner of this page is
the origin of a Cartesian coordinate system, with x-
and y-axes marked in units of inches, then the point
with coordinates (4, 1) lies four inches to the right of
the left edge of the page, and one inch above the bot-
tom of the page.
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Extending this idea to three-dimensions, points in
space can be specified by a triple of numbers (x,y,z)
representing the distances along three mutually perpen-
dicular number lines. The coordinate axes are usually
called the x-, y-, and z-axes. They intersect at a point
O, called the origin, which is zero on all three number
lines. The axes could be oriented to either form a left-
handed or a right-handed system.

Coordinate Geometry
The advent of a coordinate system allowed mathemati-
cians, for the first time, to bring the power of algebra
to the study of geometry. For example, straight lines
are represented as sets of points (x,y) that satisfy equa-
tions of the form y = mx + b. Multiplying the SLOPE m
of one line with the slope of another quickly ascertains
whether or not those two lines are perpendicular, for
example. (The product of the slopes of two perpendicu-
lar lines is –1.)

French mathematician NICOLE ORESME (1323–82)
was the first to describe a way of graphing the relation-
ship between an independent variable and a dependent
one, and thus the first to make steps toward uniting
geometry and algebra. The explicit construction of
what we would call a coordinate system first appeared
with the work of French lawyer and amateur mathe-
matician PIERRE DE FERMAT (1601–65). Starting with
some horizontal reference line to represent an indepen-
dent variable x, Fermat would graphically depict the
relationship of a second variable y to it as a line seg-
ment, held at a fixed angle to the reference line, whose
length would vary according to the variable y as it
slides along the x-axis. Fermat did not think in terms,
however, of identifying a second axis, nor did he
require the line segment representing y to be perpendic-
ular to the x-axis.

In his famous 1637 text La géométrie (Geometry),
René Descartes independently described similar meth-
ods for representing algebraic relationships graphically.
Because the work of Fermat was not published until
after his death, the discovery of coordinate geometry
was attributed to Descartes.

Because Fermat and Descartes interpreted the
unknown variable y in an algebraic relationship as a
physical length, both scholars only ever considered posi-
tive coordinates. English mathematician JOHN WALLIS

(1616–1703) was the first to introduce the possibility of
negative coordinates. The idea of setting a fixed second

axis, the y-axis, perpendicular to the x-axis was not
popular until the mid 1700s. It was an idea that seemed
to evolve gradually. SIR ISAAC NEWTON (1642–1727) is
considered the originator of POLAR COORDINATES.

See also COORDINATES; GRAPH OF A FUNCTION.

Cartesian product (cross product, external direct
product, product set, set direct product) Given two
sets A and B, their Cartesian product, denoted A × B, is
the set of all ordered pairs (a,b), where a ∈ A and b ∈
B. For example, if A = {1,2,3} and B = {α,β}, then:

A × B = { (1,α), (2,α), (3,α), (1,β), (2,β), (3,β) }

This is different from the set B × A.
If sets A and B are both finite, with n and m ele-

ments, respectively, then A × B is a finite set with nm
elements. German mathematician GEORG CANTOR

(1845–1918) showed that if A and B are both infinite
COUNTABLE sets, then their Cartesian product A × B is
again countable.

The Cartesian product of three sets A, B, and C,
denoted A × B × C, is defined as the set of all ordered
triples (a,b,c), with a ∈ A, b ∈ B, and c ∈ C. The
Cartesian product of any finite collection of sets is
defined similarly. Any SEQUENCE can be thought of as
an element of the Cartesian product of a countable
number of sets.

If two sets A and B have a particular structure
(they might both be GROUPs or VECTOR SPACEs, for
instance), then it is usually possible to give the Carte-
sian product A × B the same structure. For example, if
A and B are groups with group operations * and •,
respectively, then A × B has the structure of a group
with group operation given by:

(a1, b1) · (a2, b2) = (a1 * a2, b1 • b2)

The Klein four-group is the Cartesian product of the two-
element group Z2 = {0,1} with itself. (The group opera-
tion for Z2 is addition in mod 2 MODULAR ARITHMETIC.)

See also SET THEORY.

casting out nines The DIVISIBILITY RULES show that
the remainder of any number, when divided by 9, is the
sum of its digits. For example, 59,432,641 leaves a
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remainder of 5 + 9 + 4 + 3 + 2 + 6 + 4 + 1 = 34 when
divided by 9, which corresponds to a remainder of 3 +
4 = 7. Any sets of digits that sum to 9, such as the 5
and the 4 in the first and third positions of the number
above, can be ignored when performing this calcula-
tion, for they will not contribute to the remainder.

The method of “casting out nines” is the process of
deleting groups of digits summing to 9. The sum of the
digits that survive is the remainder that number yields
upon division by 9. For example, 59,432,641 →
932,641 → 934 → 34 shows, again, that this number
leaves a remainder of 3 + 4 = 7 when divided by 9.

This method is often used to check arithmetical
work. For example, we can quickly determine that 563
× 128 cannot equal 72,364. Upon division by 9, 563
leaves a remainder of 5, 128 a remainder of 2, and so
their product leaves a remainder of 5 × 2 = 10, which is
1. Yet 72,364 has a remainder of 4.

Long lists of additions, subtractions, and multipli-
cations can be quickly checked this way. Of course,
errors may still be present if, by chance, remainders
happen to match. For example, casting out nines will
not detect that 632 × 723 = 459,636 is incorrect.

Catalan, Eugène Charles (1814–1894) Belgian Num-
ber theory Born on May 30, 1814, mathematician
Eugène Catalan is best remembered for his work in NUM-
BER THEORY and for the famous series of numbers that
bears his name. In 1844 Catalan conjectured that 8 and 9
are the only two consecutive integers that are both non-
trivial powers (8 = 23 and 9 = 32). Establishing this claim,
today known as the CATALAN CONJECTURE, stymied
mathematicians for over a century. It was only recently
resolved.

Catalan’s career in academia was turbulent. After
entering the École Polytechnique in 1833 he was
expelled the following year for engaging in radical
political activity. He was later given permission to
return to complete his degree and in 1838 was offered
a post as lecturer at the institution, which he accepted.
His political conduct, however, hampered his ability to
advance beyond this entry-level position.

Catalan worked in the field of CONTINUED FRAC-
TIONs and achieved some fame for publishing a sim-
plified solution to LEONHARD EULER’s “polygon
division problem.” This challenge asks for the number
of ways to divide a regular polygon into triangles

using nonintersecting diagonals. While not being the
first to solve the problem (in fact the problem was
first stated and solved by 18th-century Hungarian
mathematician J. A. Segner and then studied by
Euler), Catalan used an approach that was particu-
larly elegant. His 1838 paper on the topic, “Note sur
une équation aux differences finie” (Note on a finite
difference equation), was very influential because of
the method it detailed. The sequence of numbers that
arise in the study of the problem are today called the
CATALAN NUMBERS. They remain his standing legacy.

Catalan died on February 14, 1894, in Liège,
Belgium.

Catalan conjecture In his 1844 letter to Crelle’s
Journal, EUGÈNE CHARLES CATALAN conjectured that
the integers 8 and 9 are the only two consecutive inte-
gers that are both powers (8 = 23 and 9 = 32). He was
not able to prove his claim, and establishing the truth
or falsehood of the conjecture became a longstanding
open problem. In April 2002, amateur mathematician
Preda Mihailescu announced to the mathematics com-
munity that he had completed a proof demonstrating
Catalan’s assertion to be true. Beforehand, Mihailescu
had proved a series of related results, all while working
at a Swiss fingerprinting company and exploring math-
ematics as an outside interest. Mathematicians are cur-
rently reviewing his final step of the work.

Catalan numbers In 1838 EUGÈNE CHARLES CATA-
LAN studied the problem of finding the number of dif-
ferent ways of arranging n pairs of parentheses. For
example, there is one way to arrange one set: ( ), two
ways to arrange two pairs: ( ) ( ) and (( )), and five
ways to arrange three pairs: ((( ))), (( )( )), (( )) ( ), ( )
(( )), and ( ) ( ) ( ). Is there a general formula for the
number of ways to arrange n pairs of parentheses? This
puzzle is today known as “Catalan’s problem.” As
Catalan showed, the solution is given by the formula:

yielding the sequence of numbers C1 = 1, C2 = 2, C3 = 5,
C4 = 14, C5 = 42, …, now called the Catalan numbers. It
is convenient to set C0 = 1. Some algebraic manipulation
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+

2 6 10 4 2
1
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shows that the Catalan numbers can also be expressed in
terms of BINOMIAL COEFFICIENTs:

Thus the Catalan numbers can be found in PASCAL’s
TRIANGLE as the middle entry of every alternate row
divided by one more than the row number, regarding
the apex of the triangle as row zero.

One can show that the Catalan numbers satisfy the
relationship:

C0 = 1
Cn = C0Cn–1 + C1Cn–2 + … + Cn–1C0

The Catalan numbers appear as the solution to a sur-
prising number of different mathematical problems. We
list here just a few examples.

1. Euler’s Polygon Division Problem: How
many ways are there to divide an (n + 2)-
sided polygon into n triangles using nonin-
tersecting diagonals of the polygon?

A three-sided polygon, that is, a triangle, is already
appropriately subdivided. There is one solution to the
problem, namely, do nothing. A square can be subdi-
vided into two triangles two different ways. One can
check that a pentagon can be so subdivided five differ-
ent ways. In general the solution to this puzzle is the
nth Catalan number.

2. Laddered Exponents: How many ways can
one interpret a laddered exponent?

For example, 32 has only one interpretation: it means
3 × 3 = 9. The expression 234

, however, can be inter-
preted two ways: (23)

4
= 4096 or 2(34) =

2417851639229258349412352. In general, a lad-
dered exponent with (n + 1) terms can be interpreted

Cn different ways. (This problem is equivalent to
Catalan’s original parentheses puzzle.)

3. Handshakes across a Table: In how many
different ways can n pairs of people sitting
at a circular table shake hands simultane-
ously? No pair of handshakes may cross.

Two people sitting at a table can shake hands only one
way. Four people can accomplish the feat in only two
ways. (Diagonal handshakes cross.) In general, n pairs of
people can shake hands Cn different ways, for one can
interpret two hands shaking as a pair of parentheses.

4. Stair Climbing: Starting at the base of a
flight of stairs, in how many ways can one
take n steps up and n steps down, in any
order? (You will necessarily return to the
base of the steps on completion of the walk.)

There is one way to take two steps: one step up followed
by one step down, and two ways to take four steps: two
up, two down, or one up, one down, repeated twice. In
general there are Cn ways to accomplish this task.
(Thinking of a left parenthesis as an “up step” and a
right parenthesis as a “down step,” we can see that this
puzzle too is equivalent to Catalan’s original problem.)

5. Summation Problem: Select n numbers from
the set {1,2,3,…,2n} so that their sum is a
multiple of n + 1. Can this be done? If so, in
how many different ways?

Consider the case n = 3, for example. There are five ways
to select three numbers from the set {1, 2, 3, 4, 5, 6} with
sum divisible by four: 1 + 2 + 5 = 8; 1 + 3 + 4 = 8; 1 + 5
+ 6 = 12; 2 + 4 + 6 = 12; 3 + 4 + 5 = 12. In general, these
puzzles can always be solved, and there are Cn ways to
do them.

See also CATALAN CONJECTURE.

catenary The shape of the curve formed by a uniform
flexible cable hanging freely between two points, such as
an electric cable between two telegraph poles, is called a
catenary. GALILEO GALILEI (1564–1642) thought this
curve to be a PARABOLA, but German scholar Joachim
Jungius (1587–1657) later proved that this could not be
the case. Jacques Bernoulli (1654–1705) of the famous

C
n

n

n
n

n
n

n
n

n n

n
n

n

n

n
= ⋅ ⋅ ⋅ ⋅ ⋅ −

+

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −
+

=
+

⋅

=
+

⎛
⎝⎜

⎞
⎠⎟

2 1 3 5 2 1
1

2 4 6 2 1 3 5 2 1
1

1
1

2

1
1

2

L

L L

( )
( )!

( )
!

( )
( )!

( )!
! !

catenary 65



BERNOULLI FAMILY was the first to write down the for-
mula for the catenary. Up to constants, it is given by:

This is the hyperbolic cosine function from the set of
HYPERBOLIC FUNCTIONs. Engineers, in designing sus-
pension bridges such as the Golden Gate Bridge in San
Francisco, make extensive use of this function in their
work. The name catenary comes from the Latin word
catena for “chain.”

Cauchy, Augustin-Louis (1789–1857) French Anal-
ysis, Calculus, Number theory Born on August 21,
1789, French scholar Augustin-Louis Cauchy is remem-
bered as one of the most important mathematicians of

his time. With 789 mathematical papers and seven
influential textbooks to his credit, Cauchy made signifi-
cant contributions to the study of NUMBER THEORY,
ANALYSIS, GROUP THEORY, DIFFERENTIAL EQUATIONs,
and PROBABILITY. In his famous 1821 text Cours d’ana-
lyse (A course of analysis), Cauchy was the first to pro-
vide an exact, rigorous meaning of the terms derivative
and integral as used in CALCULUS through the develop-
ment of the notion of a LIMIT. Cauchy also properly
defined the terms continuity and convergence. His insis-
tence on the absolute need for rigor and clarity in all of
mathematics had a lasting effect and set the standards
of rigor required today of all mathematical research.

After graduating from the L’École Polytechnique
in 1807 with a degree in mathematics, Cauchy pur-
sued a career in engineering. Noted as a promising
practitioner in the field, Cauchy was assigned to the
Ourcq Canal project and by age 21 managed to
receive a high-ranking commission in Cherbourg as a
military engineer.

Despite his busy work life, Cauchy continued to
pursue interests in mathematics. In 1811 he proved a
result on the geometry of polyhedra, which he submit-
ted for publication. He received considerable praise for
this accomplishment and decided to change careers and
pursue research in mathematics full time. A year later
he returned to Paris and began looking for a faculty
position at an academic institution. Cauchy was finally
awarded an assistant professorship at the L’École Poly-
technique in 1815.

All the while, Cauchy continued to produce and pub-
lish mathematical results. The same year as his appoint-
ment, Cauchy won the Grand Prize of the L’Académie
Royale des Sciences for his outstanding mathematical dis-
coveries on the theory of waves. This recognition gar-
nered him some notice in the scientific community, but
real fame came to Cauchy when, another year later, he
solved an outstanding problem posed by PIERRE DE FER-
MAT (1601–1665) on the properties of FIGURATE NUM-
BERS. Cauchy had now proved himself an expert in a
surprisingly large number of disparate fields.

Cauchy published an incredible number of papers
during this early period of his life, at a rate of as many
as two a week. He was so prolific that the editors of
the French journal Comptes Rendu imposed a quota on
him. In response, Cauchy persuaded a family member,
who worked in the publishing field, to create a new
journal that contained nothing but papers by him!
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Augustin-Louis Cauchy, an eminent mathematician of the 19th
century, was the first to use the notion of a “limit,” as it is now
known, to develop a sound model of continuity and convergence
in the theory of calculus. (Photo courtesy of the Science
Museum, London/Topham-HIP/The Image Works)



The main thrust of much of Cauchy’s work was to
make mathematics rigorous and precise. He insisted on
providing clarity, precision, and rigor in all the courses
he taught and in his published work. His famous 1821
text was in fact a course book for students developed
with the intention of “doing calculus the correct way.” It
is fair to say that Cauchy influenced the entire course of
mathematical research by pointing out, and demanding,
the need for absolute clarity and care in the development
of new (and even previously established) ideas. It is said
that the great mathematician PIERRE-SIMON LAPLACE

(1749–1827), after attending a lecture given by Cauchy
on the importance of the convergence of an infinite
series, quickly ran home to check the convergence of all
the infinite series he had used in his already published
popular text Mécanique céleste on celestial mechanics.

In 1826 Cauchy published seminal works in the
field of number theory, and in 1829 he defined, for the
first time, the notion of a complex function of a com-
plex variable.

Cauchy left Paris and the brewing politics of the
royal regime in 1830. Upon his return a year later, he
refused to swear an oath of allegiance to the new
regime and consequently lost his academic position. It
was not until the overthrow of Louis Philippe in 1848
that Cauchy regained his university position. Even
though Cauchy’s publication rate slowed considerably
during this trying time, he did accomplish important
work on the theory of differential equations and appli-
cations to mathematical physics during this period.

Cauchy left a standing mark on the development of
calculus with his work on refining the logical basis of
the subject and greatly influenced the study of complex
functions. A number of fundamental concepts in the
field of analysis are named in his honor, including a pair
of equations known as the Cauchy-Riemann equations
that determine whether or not a complex function is
differentiable. Cauchy died in Sceaux, near Paris,
France, on May 22, 1857. His collected works, Oeuvres
completes d’Augustin Cauchy (The complete works of
Augustin Cauchy), collated under the auspices of the
Académie des Sciences, were published throughout the
years 1882 to 1970 in a total of 27 volumes.

Cavalieri, Bonaventura Francesco (1598–1647) Ital-
ian Geometry Born in Milan, Italy, in 1598 (his exact
birth date is not known), mathematician, and disciple of

GALILEO, Bonaventura Cavalieri is best remembered for
his 1635 work Geometria indivisibilibus continuorum
(A new geometry of continuous indivisibles) in which he
introduced his famous “method of indivisibles” for
determining the areas and volumes of curved figures.
This work is considered a forerunner to the entire theory
of INTEGRAL CALCULUS.

While still a boy, Cavalieri joined the religious
order Jesuati in Milan. In 1616, he transferred to the
monastery in Pisa, where he met Galileo and developed
an interest in mathematics. Even though Cavalieri
taught theology for many years and became a deacon
in the order, he actively pursued employment as a
mathematician. In 1629 he received a position as a
chair of mathematics at Bologna.

By this time Cavalieri had developed his method
of indivisibles. Based on ARCHIMEDES’ method of
exhaustion and JOHANNES KEPLER’s theory of the
infinitely small, Cavalieri’s technique provided a
means to rapidly compute the area and volumes of
certain geometric figures previously deemed too diffi-
cult for analysis. Cavalieri’s famous 1635 work
describing these methods, however, was not well
received and was widely attacked for its lack of rigor.
In response, Cavalieri published a revised piece,
Exercitationes geometricae sex, which successfully
settled all concerns. This second piece was acknowl-
edged as a masterpiece and deemed a necessary text
of study for all 17th-century scholars.

Cavalieri also studied and wrote extensively on the
topics of LOGARITHMs, CONIC SECTIONs, TRIGONOME-
TRY, optics, and astronomy. He developed a general rule
for computing the focal length of lenses, and described
the principles and design of a reflecting telescope.

Cavalieri died on November 30, 1647, in Bologna,
Italy. His name appears in all high-school geometry
textbooks of today for the principle he devised.

See also CAVALIERI’S PRINCIPLE.

Cavalieri’s principle Italian mathematician BONAVEN-
TURA CAVALIERI (1598–1647) identified a general princi-
ple today known as Cavalieri’s principle:

Solids of equal height have equal volumes if
cross-sections made by planes parallel to the
bases at the same distances from these bases
have equal areas.
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It is based on the idea that the volume of a deck of
cards, for example, does not change even if the deck is
skewed. A close examination of VOLUME explains why
Cavalieri’s principle is true.

Cayley, Arthur (1821–1895) British Matrix theory,
Geometry, Abstract algebra, Analysis Born on August
16, 1821, in Richmond, England, Arthur Cayley is
remembered as a prolific writer, having produced 967
papers in all, covering nearly every aspect of modern
mathematics. His most significant work, Memoir on the
Theory of Matrices (1858) established the new field of
matrices and MATRIX algebra. Cayley studied abstract
groups and was the first to study geometry in n-dimen-
sional space with n a number greater than three.

Cayley demonstrated a great aptitude for mathemat-
ics as a child. A schoolteacher recognized his talent and
encouraged Cayley’s father to allow him to pursue stud-
ies in mathematics rather than leave school and enter the
family retail business. Cayley attended Trinity College,
Cambridge, and graduated in 1842. Unable to find an
academic position in mathematics, Cayley pursued a law
degree and practiced law for 14 years. During this time,
however, Cayley actively studied mathematics and
published over 250 research papers. In 1863 he was
finally appointed a professorship in mathematics at
Cambridge.

In 1854, while working as a lawyer, Cayley wrote
“On the Theory of Groups Depending on the Symbolic
Equation θn = 1” and other significant papers that
defined, for the first time, the notion of an abstract
GROUP. At that time, the only known groups were PER-
MUTATION groups, but Cayley realized that the mathe-
matical principles behind these structures also applied
to matrices, number systems, and geometric transforma-
tions. This work allowed Cayley to begin analyzing the
geometry of higher-dimensional space. This, in turn,
coupled with his newly developed matrix algebra, pro-
vided the foundation for the theory of quantum
mechanics, as developed by Werner Heisenberg in 1925.

Cayley was elected president of the British Associa-
tion for the Advancement of Science in 1883. From the
years 1889 to 1895, Cayley’s entire mathematical out-
put was collated into one 13-volume work, The Col-
lected Mathematical Papers of Arthur Cayley. This
project was supervised by Cayley himself until he died
on January 26, 1895, at which point only seven vol-

umes had been produced. The remaining six volumes
were edited by A. R. Forsyth.

See also CAYLEY-HAMILTON THEOREM.

Cayley-Hamilton theorem English mathematician
ARTHUR CAYLEY (1821–95) and Irish mathematician
SIR WILLIAM ROWAN HAMILTON (1805–65) noted that
any square MATRIX satisfies some polynomial equa-
tion. To see this, first note that the set of all square n ×
n matrices with real entries forms a VECTOR SPACE

over the real numbers. For example, the set of 2 × 2
square matrices is a four-dimensional vector space
with basis elements:

and any 2 × 2 matrix is indeed a linear 

combination of these four linearly independent matrices:

In general, the set of all n × n square matrices is an
n2-dimensional vector space. In particular then, for
any n × n matrix A, the n2 + 1 matrices I, A, A2, A3,
…, An2

must be linearly dependent, that is, there is a
linear combination of these elements that yields the
zero matrix:

c0I + c1A + c2A2 + … + cn2An2
= 0

for some numbers c0, …, cn2 . This shows:

Any n × n square matrix satisfies a polynomial
equation of degree at most n2.

Cayley and Hamilton went further and proved that
any square matrix satisfies its own “characteristic
polynomial”:

Let A be an n × n square matrix and set x to be
a variable. Subtract x from each diagonal entry
of A and compute the DETERMINANT of the
resulting matrix. This yields a polynomial in x
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of degree n. Then the matrix A satisfies this
particular polynomial equation.

For example, consider the 2 × 2 matrix . 

Then the “characteristic polynomial” of this matrix is:

One now checks that

is indeed the zero matrix.
See also IDENTITY MATRIX; LINEARLY DEPENDENT

AND INDEPENDENT.

ceiling function See FLOOR/CEILING/FRACTIONAL PART

FUNCTIONS.

center of gravity (balance point) The location at
which the weight of the object held in space can be
considered to act is called the object’s center of gravity.
For example, a uniform rod balances at its midpoint,
and this is considered its center of gravity. A flat rect-
angular plate made of uniform material held parallel to
the ground balances at its center. This point is the fig-
ure’s center of gravity.

Archimedes’ LAW OF THE LEVER finds the balance
point P of a system of two masses m1 and m2 held in
space. The two-mass system can then be regarded as a
single mass m1 + m2 located at P.

The center of gravity of a system of three masses in
the space can be found by finding the balance point of
just two masses, using ARCHIMEDES’ law of the lever,
and then applying the law a second time to find the

center of gravity of this balance point and the third
mass. This procedure can, of course, be extended to
find the center of gravity of any finite collection of
masses. (A location computed this way is technically
the center of mass of the system. If the force of gravity
is assumed to be uniform, then the center of mass coin-
cides with the center of gravity of the system.)

This principle can be extended to locate the center
of gravity of arbitrary figures in the plane (viewed as
flat, uniformly dense objects held parallel to the
ground). If the figure is composed of a finite collection
of rectangles glued together, one locates the center of
each rectangle, the mass of each rectangle, and then
regards the system as a collection of individual masses
at different locations. Applying Archimedes’ law of the
lever as above locates the figure’s center of gravity. If a
figure can only be approximated as a union of rectan-
gles, one can find the approximate location of the cen-
ter of gravity via this principle, and then improve the
approximation by taking the LIMIT result of using finer
and finer rectangles in the approximations. This
approach will yield an INTEGRAL formula for the loca-
tion of the center of gravity.

See also CEVA’S THEOREM; SOLID OF REVOLUTION.

central-limit theorem In the early 1700s scientists
from a wide range of fields began to notice the recur-
ring appearance of the NORMAL DISTRIBUTION in their
studies and experiments. Any measurement that repre-
sents an average value of a sample, or an aggregate
value of a series of results, tends to follow this classical
bell-shaped distribution. The work of MARQUIS DE

PIERRE-SIMON LAPLACE in 1818 and Aleksandr
Mikhailovich Lyapunov in 1901, and others, led to the
establishment of the central-limit theorem:

If an experiment involves the repeated compu-
tation of the average value of N measurements
(a different set of N measurements each time),
then the set of average values obtained very
closely follows a normal distribution—even if
the original experiments do not. The larger the
value of N, the better the approximation to a
normal curve.

One can go further and say that if the original
experiments have mean µ and standard deviation σ, then
the collection of average values also has mean µ, but 
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standard deviation . For example, a factory may 

produce light bulbs packaged in large shipping cartons,
100 per carton. Even though the lifespan of individual
light bulbs may vary wildly following no recognizable
distribution of values, the central limit theorem asserts
that the average lifespan of the bulbs per carton is given
by a normal distribution. Since the height of an individ-
ual is the aggregate effect of the growth rate of a large
number of individual cells, the distribution of heights of
men and woman is essentially normal, as is the distribu-
tion of heights of most anything that grows—cats, maple
trees, or carrots, for example.

Another version of the central-limit theorem is use-
ful when trying to ascertain what proportion p percent
of the entire population possesses a certain property
(such as “Has blood type AB” or “Will vote Republi-
can next November”). As it is impossible to examine
every individual on the globe, or poll every individual
in the nation, one can examine a sample of individuals
and compute the percentage in this sample with the
desired property. The central-limit theorem also asserts:

If many different samples of N individuals are
examined, then the distribution of the percent-
ages of those samples possessing a particular
property very closely follows a normal distri-
bution (and the larger the value of N, the bet-
ter is the approximation to a normal curve).
This distribution has mean p, the true percent-
age of the population with this property, and

standard deviation .

Both versions of the central-limit theorem allow statis-
ticians to make inferences and predictions based on sta-
tistical data.

See also GEORGE PÓLYA; STATISTICS: INFERENTIAL.

Ceva’s theorem Let P, Q, and R be, respectively,
points on sides BC, CA, and AB of a triangle ABC.
(One is permitted to extend one or more sides of the
triangle.) Then the lines connecting P to A, Q to B, and
R to C are CONCURRENT if, and only if:

Here BP, for instance, represents the distance between 

points B and P, and the ratio is considered positive 

if the direction from B to P is the same as the direc-
tion from P to C, and negative if they are in opposite
directions.

This result is due to Italian mathematician Giovanni
Ceva (1647–1734). It is equivalent to the statement that
the operation of finding the CENTER OF GRAVITY of point
masses is ASSOCIATIVE. For instance, given three masses
at locations A, B, and C in a plane, one could locate the
center of mass of the entire system by first computing
the center of mass of just two points and then compute
the center of mass of that result with the third point.
Ceva proved that the same final result is produced no
matter which two points are chosen initially.

Ceva’s theorem can be proved mathematically by
making repeated use of MENELAUS’S THEOREM.

chain rule (function of a function rule) If y = f(u) is
a function of a quantity u, which in turn is a function
of another quantity x, u = g(x) say, then y itself can be
thought of as a function of x as a COMPOSITION of
functions: y = f(g(x)). The chain rule states that the rate
of change of y with respect to the quantity x is given by
the formula:

This can also be written: (f (g(x)))′ = f′(g(x))·g′(x). For
example, to differentiate y = (x2 + 2)100, we can write
y = u100, where u = x2 + 2 and so:

The chain rule can be proved by making use of the for-
mal definition of a derivative as a LIMIT:
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Intuitively, the concept is easy to grasp if we think of
derivatives as rates of change. For example, if y changes
a times as fast as u, and u changes b times as fast as x,
then we expect y to change ab times faster than x.

The chain rule extends to functions of more than
one variable. For example, if z = f(x, y) is a function of
two variables with each of x and y a function of t, then
one can show that the total derivative of z with respect
to t is given by:

See also PARTIAL DERIVATIVE.

change of variable See INTEGRATION BY SUBSTITUTION.

chaos A situation in which a DYNAMICAL SYSTEM can
appear to be random and unpredictable is called chaos.
More precisely, mathematicians define a dynamical sys-
tem to be chaotic if the set of all equilibrium points for
the system form a FRACTAL.

The term chaos was introduced by American math-
ematician James Yorke and Chinese mathematician
Tien-Yien Li in their 1975 seminal paper on iterations
of functions on the real number line.

characteristic polynomial See CAYLEY-HAMILTON

THEOREM.

Chebyshev, Pafnuty Lvovich (Tchebyshev) (1821–
1894) Russian Number theory, Analysis, Statistics
Born on May 16, 1821, in Okatova, Russia, Pafnuty
Chebyshev is remembered for his significant contribu-
tions to NUMBER THEORY, ANALYSIS, PROBABILITY the-
ory, and the development of inferential statistics. In
1850 he proved a conjecture posed by French mathe-
matician Joseph-Louis François Bertrand (1822–1900)
stating that for any value n > 3, there is at least one
PRIME between n and 2n – 2. Chebyshev is also noted
for founding an influential school of mathematics in
St. Petersburg.

Chebyshev entered Moscow University in 1837
and graduated four years later with an undergraduate
degree in mathematics. Driven by an unabashed

desire to achieve international recognition, Cheby-
shev immersed himself in mathematical work. He
earned a master’s degree in 1846 at the same institu-
tion, all the while publishing results on integration
theory and methods, the convergence of TAYLOR

SERIES, and the development of analysis. Chebyshev
also examined the principles of probability theory
and developed new insights that prove the main
results of the theory in an elementary, but rigorous,
way. In particular, Chebyshev was able to offer an
elegant proof of SIMÉON-DENIS POISSON’s weak LAW

OF LARGE NUMBERS.
In 1849 Chebyshev wrote a thesis on the theory

of MODULAR ARITHMETIC, earning him a doctorate in
mathematics from Moscow University, as well as a
prize from the Russian Academy of Science in recog-
nition of its originality and its significance. In his
study of prime numbers, Chebyshev not only estab-
lished Bertrand’s conjecture, but also made signifi-
cant steps toward proving the famous PRIME-NUMBER

THEOREM.
Chebyshev was elected as a full professor in math-

ematics at the University of St. Petersburg in 1850,
and, by this time, had indeed achieved international
fame. He traveled extensively throughout Europe and
collaborated with many scholars on research projects
on topics as diverse as mechanics, physics, mechanical
inventions, and the construction of calculating
machines, as well as continued work in mathematics.
He was awarded many honors throughout his life,
including membership to the Berlin Academy of Sci-
ences in 1871, the Bologna Academy in 1873, the
ROYAL SOCIETY of London in 1877, the Italian Royal
Academy in 1880, and the Swedish Academy of Sci-
ences in 1893. Every Russian university elected him to
an honorary faculty position, and Chebyshev was even
awarded honorary membership to the St. Petersburg
Artillery Academy, as well as to the French Légion
d’Honneur. He died on December 8, 1894, in St.
Petersburg, Russia.

A number of results and concepts are today named
in Chebyshev’s honor. For example, in analysis, the
“Chebyshev polynomials” provide a basis for the VEC-
TOR SPACE of CONTINUOUS FUNCTIONs and have impor-
tant applications to approximation theory. In statistics
and probability theory, CHEBYSHEV’S THEOREM pro-
vides a “weak law of large numbers.”

See also STATISTICS: INFERENTIAL.
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Chebyshev’s theorem (Chebyshev’s inequality) This
result, due to the Russian mathematician PAFNUTY

LVOVICH CHEBYSHEV (1821–94), can be thought of as
an extension of the 68-95-99.7 rule for the NORMAL

DISTRIBUTION to one applicable to all distributions. It
states that if an arbitrary DISTRIBUTION has mean μ and
standard deviation σ, then the probability that a mea-
surement taken at random will have value differing
from μ by more than k standard deviations is at most
1/k2. This shows that if the value σ is small, then all
DATA values taken in an experiment are likely to be
tightly clustered around the value μ.

Manufacturers make use of this result. For exam-
ple, suppose a company produces pipes with mean
diameter 9.57 mm, with a standard deviation of 0.02
mm. If manufacturer standards will not tolerate a pipe
more than four standard deviations away from the
mean (0.08 mm), then Chebyshev’s theorem implies
that on average about 1/16, that is 6.25 percent, of the
pipes produced per day will be unusable.

The LAW OF LARGE NUMBERS follows as a conse-
quence of Chebyshev’s theorem.

See also STATISTICS: DESCRIPTIVE.

chicken See PRISONER’S DILEMMA.

Ch’in Chiu-shao (Qin Jiushao) (1202–1261) China
Algebra Born in Szechwan (now Sichuan), China,
mathematician and calendar-maker Ch’in Chiu-shao is
remembered for his 1243 text Shushu jiuzhang (Mathe-
matical treatise in nine sections), which contains,
among many methods, an effective technique of iter-
ated multiplication for evaluating polynomial equa-
tions of arbitrary degree. (In modern notation, this
technique is equivalent to replacing a polynomial such
as 4x3 + 7x2 – 50x + 9, for instance, with its equivalent
form as a series of nested parentheses: ((4x + 7)x –
50)x + 9. In this example, only three multiplications
are needed to evaluate the nested form of the polyno-
mial compared with the six implied by the first form of
the expression. In practice, this technique saves a con-
siderable amount of time.) This approach was discov-
ered 500 years later in the West independently by
Italian mathematician Paolo Ruffini (1765–1822) and
English scholar William George Horner (1786–1837).
Ch’in Chiu-shao also extended this method to find
solutions to polynomial equations.

His text is also noted for its development of MODU-
LAR ARITHMETIC. In particular, Ch’in Chiu-shao proved
the following famous result, today known as the Chi-
nese remainder theorem:

If a set of integers mi are pair-wise COPRIME, 
then any set of equations of the form
x ≡ ai (mod mi) has a unique solution modulo
the product of all the mi.

For example, this result establishes that there is
essentially only one integer x that leaves remainders
of 1, 11, and 6, respectively, when divided by 5, 13,
and 16 (namely, 726, plus or minus any multiple of
5 × 13 × 16 = 1040).

After serving in the army for 14 years, Ch’in Chiu-
shao entered government service in 1233 to eventually
become provincial governor of Qiongzhou. His 1243
piece Shushu jiuzhang was his only mathematical work.

Chinese mathematics Unfortunately, very little is
known about early Chinese mathematics. Before the
invention of paper around 1000 C.E., the Chinese
wrote on bark or bamboo, materials that were far
more perishable than clay tablets or papyrus. To make
matters worse, just after the imperial unification of
China of around 215 B.C.E., Emperor Shi Huang-ti of
the Ch’ih dynasty ordered that all books from earlier
periods be burned, along with the burying alive of any
scholars who protested. Only documents deemed “use-
ful,” such as official records and texts on medicine,
divination, and agriculture were exempt. Consequently
very little survived beyond this period, although some
scholars did try to reconstruct lost materials from
memory.

The art of mathematics was defined by ancient
Chinese scholars as suan chu, the art of calculation.
Often the mathematics studied was extremely practical
in nature, covering a wide range of applications,
including engineering, flood control, and architecture,
as well astronomy and divination. Practitioners of the
art were capable scientists. Records show, for example,
that the Chinese had invented seismographs to measure
earthquakes by the year 1000 C.E., and used compasses
made with magnetic needles a century later.

Evidence of mathematical activity in China can be
dated back to the 14th century B.C.E.. Tortoise shells and
cattle bones inscribed with tally marks indicate that the
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people of the ancient Shang dynasty had developed a
base-10 notational system utilizing place value. This
establishes that the Chinese were one of the first civiliza-
tions to invent a DECIMAL REPRESENTATION system
essentially equivalent to the one we use today. Like other
civilizations of the time, however, the Chinese had not
developed a notation for zero and so wrote, for exam-
ple, the numbers 43 and 403 the same way, namely as
“|||| |||,” relying on context to distinguish the two.

The most important early Chinese mathematical
text is Jiuzhang suanshu (Nine chapters on the mathe-
matical art) dating from the period of the Han dynasty
(206 B.C.E. to 220 C.E.). The author of the work is
unknown, but it is believed to be a summary of all
mathematical knowledge possessed in China up to the
third century C.E., and may well have been the result of
several authors contributing to the same work. The
text is a presentation of 246 problems replete with
solutions and general recipes for solving problems of a
similar type. The work is generally very practical in
nature, with three chapters devoted to issues of land
surveying and engineering, and three to problems in
taxation and bureaucratic administration. But the text
does describe sophisticated mathematical techniques of
an abstract nature, and it offers many problems of a
recreational flavor. The document thus also clearly
demonstrates that scholars of the time were also inter-
ested in the study of mathematics for its own sake.

Jiuzhang suanshu is clearly not written for begin-
ners in the art of mathematics: many basic arithmetic
processes are assumed known. Another text of the
same period, Chou pei suan ching (Arithmetic classic of
the gnomon and the circular paths of heaven),
describes basic mathematical principles such as work-
ing with fractions (and establishing common denomi-
nators), methods of extracting square roots, along with
basic principles and elements of geometry, and surpris-
ingly, what appears to be a proof of what we today call
PYTHAGORAS’S THEOREM. At the very least, the Chinese
of this period knew the theorem for right triangles with
sides of length 3, 4, and 5 as the diagram of hsuan-
thu—four copies of a 3–4–5 right triangle arranged in a
square—appears in the text. Although this diagram in
itself does not constitute a “proof” of Pythagoras’s the-
orem, the idea embodied in the diagram can nonethe-
less easily be expanded upon to establish a general
proof of the result. For this reason, it is believed that
the Chinese had independently established the same

famous result. This is certainly verified in the text of
Jiuzhang suanshu, as many problems posed in the piece
rely on the reader making use of the theorem.

Many scholars from the second to the 15th cen-
turies wrote commentaries on the work Jiuzhang suan-
shu and extended many of the results presented there.
Perhaps the most famous of these were the commen-
taries of Liu Hui who, in 263 C.E., offered written
proofs of the formulae for the volumes of a square
pyramid and a tetrahedron presented in Jiuzhang suan-
shu, as well as developed a more precise value for π
than presented in the text. Liu Hui later went on to
write Haidao suanjing (Sea island mathematical man-
ual), in which he solved problems related to the survey-
ing and mapping of inaccessible objects using a refined
method of “double differences” arising from pairs of
similar triangles. This extended the work of propor-
tions presented in Jiuzhang suanshu. Liu Hui also
claimed that the material of Jiuzhang suanshu dates
back to 1100 B.C.E., but added that the actual text was
not written until 100 B.C.E. Historians today differ
about how seriously to take his claim.

The text Jiuzhang suanshu also contains recipes for
extracting square and cube roots, and methods for solv-
ing systems of linear equations using techniques very
similar to the methods of LINEAR ALGEBRA we use today.
Liu Hui’s commentary gives justification for many of the
rules presented. Although not formal proofs based on
axioms, it is fair to describe Liu Hui’s justifications as
valid informal proofs. It seems that mathematicians for
the centuries that followed remained satisfied with sim-
ple informal arguments and justifications, and no formal
rigor was deemed necessary.

Chinese scholars also made significant contribu-
tions to the study of COMBINATORICS, NUMBER THEORY,
and ALGEBRA. Mathematician CH’IN CHIU-SHAO (ca.
1200 C.E.) developed inventive methods for evaluating
polynomial expressions and solving polynomial equa-
tions. He also established the famous “Chinese remain-
der theorem” of number theory. The work of LI YE of
the same period also establishes an algebra of polyno-
mials. Although Chinese mathematicians of the time
were familiar with negative numbers, they ignored neg-
ative solutions to equations, deeming them absurd.

The famous text Su-yuan yu-chien (The precious
mirror of the four elements) written by the scholar CHU

SHIH-CHIEH (ca. 1300 C.E.) contains a diagram of what
has in the West become known as PASCAL’S TRIANGLE.
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This text was written 300 years before French mathemati-
cian BLAISE PASCAL was born. (Some historians believe
that this work in fact dates back 200 years earlier to the
writings of mathematician Jia Xian.) Scholars of this time
routinely used the triangle to approximate nth roots of
numbers using the equivalent of the BINOMIAL THEOREM

of today. They preferred their procedural methods of
extracting square roots to solve QUADRATIC equations,
rather than make use of the general quadratic formula.

Soon after JOHN NAPIER (1550–1617) of the West
published an account of his new calculating aid, the
NAPIER’S BONES, the Chinese developed an analogous
system of graded bamboo rods that could be used to
quickly compute long multiplications and divisions. It
is not known if the Chinese invented this system inde-
pendently, or whether the idea was perhaps brought to
them by 17th-century Jesuit missionaries. Along with
the ABACUS developed in China 500 years earlier, the
calculating rods allowed for improved arithmetic com-
putations, especially useful for the precise computa-
tions needed in astronomy.

Early scholar ZU CHONGZHI (ca. 500 C.E.) com-
puted the volume of a sphere by a principle identical to
that of BONAVENTURA CAVALIERI (1598–1647).

See also MAGIC SQUARE.

chi-squared test The chi-squared test is a statistical
test (see STATISTICS: INFERENTIAL) used to determine
whether or not two characteristics of a population are
independent or associated in some way. For example,
imagine a social study looking for a possible correla-
tion between the type of milk people prefer on their
cereal and the number of body piercings they possess.
Five hundred people were surveyed and the results
obtained are displayed in a CONTINGENCY TABLE.

Observe, in this study, that 102/500 = 0.204 of the
participants are fat-free milk users. If milk choice

bears no relationship to body piercings, we would
expect then about 0.204 of the 200 folk with no pierc-
ings to use fat-free milk. We observed a value of 47 (the
observed frequency) but expect a value of 0.204 × 200 =
40.8 (the expected frequency). Similarly, the expected
value for fat-free milk users with more than two pierc-
ings is 0.204 × 150 = 30.6 and for whole milk users
with one or two piercings: (234/500) × 150 = 70.2. In
this way we compute all expected frequencies, here
shown in parentheses:

Denoting the observed frequencies by the letter o and
the expected frequencies by e, we compute the chi-
squared statistic, χ2, as:

where the sum is over all entries in the table. (In the
1800s it was customary to convert all differences to a
positive value by use of the squaring function rather
than the ABSOLUTE VALUE function. This way, techniques
of calculus could be readily applied—it is straightfor-
ward to differentiate the square function, for example.)
A large value for χ2 indicates that there is considerable
discrepancy between observed and expected values, sug-
gesting that the two features of the population are not
independent, i.e., that there is a CORRELATION. A small
χ2 value suggests that there is no correlation.

Our particular example yields the value:

χ 2
2 2 2

2 2 2

2 2 2

47 40 8
40 8

33 30 6
30 6

22 30 6
30 6

40 65 6
65 6

80 49 2
49 2

44 49 2
49 2

113 52 9
52 9

37 70 2
70 2

84 70 2
70 2
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No One or two More than two
piercings piercings piercings

Fat-Free Milk 47 (40.8) 33 (30.6) 22 (30.6) 102

2% Milk 40 (65.6) 80 (49.2) 44 (49.2) 164

Whole Milk 113 (52.9) 37 (70.2) 84 (70.2) 234

200 150 150 500

No One or two More than two
piercings piercings piercings

Fat-Free Milk 47 33 22 102

2% Milk 40 80 44 164

Whole Milk 113 37 84 234

200 150 150 500
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The chi-squared distribution is a DISTRIBUTION repre-
senting the values one would expect χ2 to adopt given
the assumption that the two features being studied are
independent. There is one distribution for each table of
given dimensions. Statistics texts usually present lists of
values for this statistic. It turns out that the χ2 value in
this example is extraordinarily high, suggesting that
this study indicates a strong correlation between milk
choice and body piercings. The chi-squared test does
not give any information about the nature of the corre-
lation detected, only that it seems to exist. Further
examination of the data by alternative methods may
provide details of the association.

See also KARL PEARSON.

chord If A and B are two points on a continuous
curve, then a straight-line segment connecting A to B is
called a chord to the curve. This is not to be confused
with the ARC of the curve connecting A to B.

The CIRCLE THEOREMS show that any chord of a
circle is bisected by a radius that is perpendicular to
it. BERTRAND’S PARADOX shows that the act of select-
ing chords of a circle at random can lead to philo-
sophical difficulties.

See also CIRCLE.

Chu Shih-Chieh (Zhu Shijie) (ca. 1270–1330) Chi-
nese Algebra Often regarded as one of China’s great-
est mathematicians, Chu Shih-Chieh is remembered for
his influential 1303 text Su-yuan yu-chien (Precious
mirror of the four elements). It contains a diagram of
PASCAL’S TRIANGLE, as it has become known in the
West, representing one of the earliest appearances of
the figure in the history of mathematics. In the work,
Chu Shih-Chieh uses the triangle to describe a general
method for extracting roots to equations. He also pre-
sents a system of notation for polynomials in four
unknowns, which he calls the four elements—namely,
the celestial, the earthly, the material, and the human—
and provides effective techniques for manipulating
them to solve problems.

His section on FINITE DIFFERENCES gives formulae
for the sums of the first n terms of each diagonal of
Pascal’s triangle (for instance, that 1 + 2 + 3 + … + n

equals , and that 1 + 3 + 6 + 10 + … + 

equals ), and also provides general 

techniques for summing arbitrary series. He also pro-
vides methods for solving equations via a process of
successive approximations.

Many historians claim that Chu Shih-Chieh’s impres-
sive work represents the peak of ancient Chinese mathe-
matics, noting that relatively little progress was made for
a long time after the publication of this piece. Four years
before the release of Su-yuan yu-chien, Chu Shih-Chieh
wrote a mathematical text intended to help beginners in
the subject. Extremely little is known of his personal life.

circle The set of all points in a plane a fixed distance
r from a given point O forms a closed curve in the
plane called a circle. The length r is called the radius of
the circle, and the point O its center. If the center point
has CARTESIAN COORDINATES 0 = (a,b), then the DIS-
TANCE FORMULA shows that any point (x,y) on the cir-
cle satisfies the equation:

(x – a)2 + (y – b)2 = r2

If the point (x,y) on this circle makes an angle θ with
a horizontal line through the center of the circle, then
we have:

x = a + rcosθ
y = b + rsinθ

These are the PARAMETRIC EQUATIONS of a circle of
radius r and center (a,b).

The DIAMETER of a circle is the maximal distance
between two points on the circle. It equals twice the
radius of the circle. A circle is a figure of CONSTANT

WIDTH.
The length of the curve closed to form a circle is

called the circumference of the circle. Scholars since
the time of antiquity have observed that the ratio of
the circumference of a circle to its diameter is the same
for all circles. This constant value is called PI, denoted
π. We have:

π = 3.14159265…

That all circles yield the same value for π is not imme-
diately obvious. This is a property of EUCLIDEAN

GEOMETRY of the plane, and a careful study of SCALE

explains why it must be true. (The value of π varies

n(n + 1)(n + 2)
6

n(n + 1)
2

n(n + 1)
2
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from 2 to 3.141592… for different circles drawn on
the surface of a SPHERE, for instance, since the diameter
of a circle must be measured as the length of a curved
line on the surface.)

If C is the circumference of a planar circle and
D = 2r is its diameter, then, by definition, π = C/D.
This yields a formula for the circumference of a circle:

C = 2πr

A study of AREA also shows that the area A of a circle
is given by:

A = πr2

It is not immediate that the value π should also appear
in this formula.

A study of EQUIDISTANCE shows that it is always
possible to draw a circle through any three given points
in a plane (as long as the points do not lie in a straight
line), or, equivalently, it is always possible to draw a
CIRCUMCIRCLE for any given TRIANGLE. APOLLONIUS OF

PERGA (ca. 262–190 B.C.E.) developed general methods
for constructing a circle TANGENT to any three objects
in the plane, be they points, lines, or other circles.

Any line connecting two points on a circle is called
a CHORD of the circle. It divides the circle into two
regions, each called a segment. A chord of maximal
length passes through the center of a circle and is also
called a diameter of the circle. (Thus the word diameter
is used interchangeably for such a line segment and for
the numerical value of the length of this line segment.)
A radius of a circle is any line segment connecting the
center of the circle to a point on the circle. Two differ-
ent radii determine a wedge-shaped region within the
circle called a sector. If the angle between the two radii
is θ, given in RADIAN MEASURE, then the area of this 

segment is . The length of the ARC of 

the circle between these two radii is .

Any two points P = (a1,b1) and Q = (a2,b2) in the
plane determine a circle with the line segment connect-
ing P to Q as diameter. The equation of this circle is
given by:

(x – a1)(x – a2) + (y – b1)(y – b2) = 0

The JORDAN CURVE THEOREM establishes that a cir-
cle divides the plane into two regions: an inside and an

outside. (This seemingly obvious assertion is not true for
circles drawn on a TORUS, for example.) Two intersect-
ing circles divide the plane into four regions; three inter-
secting circles can be arranged to divide the plane into
eight regions; and four mutually intersecting circles can
divide the plane into 14 regions. In general, the maximal
number of regions into which n intersecting circles
divide the plane is given by the formula: n2 – n + 2.

The region formed at the intersection of two inter-
secting circles of the same radius is called a lens.

There are a number of CIRCLE THEOREMS describ-
ing the geometric properties of circles. A circle is a
CONIC SECTION. It can be regarded as an ELLIPSE for
which the two foci coincide.

If one permits the use of COMPLEX NUMBERS, then
any two circles in the plane can be said to intersect. For
example, the two circles each of radius one centered
about the points (0,0) and (4,0), respectively, given by
the equations x2 + y2 = 1 and (x – 4)2 + y2 = 1 intersect
at the points (2, i√

–
3) and (2,–i√

–
3).

The three-dimensional analog of a circle is a
SPHERE: the locus of all points equidistant from a fixed
point O in three-dimensional space. In one-dimension,
the analog of a circle is any pair of points on a number
line. (Two points on a number line are equidistant from
their MIDPOINT.)

The midpoint theorem asserts that all midpoints of
line segments connecting a fixed point P in the plane to
points on a circle C form a circle of half the radius of C.

See also APOLLONIUS’S CIRCLE; BRAHMAGUPTA’S
FORMULA; CYCLIC POLYGON; FAREY SEQUENCE; NINE-
POINT CIRCLE; UNIT CIRCLE; VENN DIAGRAM.

circle theorems A CIRCLE is defined as the set of
points in a plane that lie a fixed distance r, called the
radius, from some fixed point O, called the center. This
simple definition has a number of significant geometric
consequences:

1. Tangent Theorems

The point of contact of a TANGENT line with a circle
is the point on that line closest to the center point
O. As a consequence of PYTHAGORAS’S THEOREM,
the line connecting the point of contact to O is at
an angle 90° to the tangent line. This proves:

The tangent to a circle is PERPENDICULAR to
the radius at the point of contact.

θ
π

π θ
2

2⋅ =r r

θ
π

π θ
2

1
2

2 2⋅ =r r
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This is illustrated in the diagram above, left.
The above diagram to the right shows that two

tangents through a common point P outside the circle
produce line segments PA and PB of equal length.
This follows from the fact that the two triangles pro-
duced are both right triangles of the same height with
a shared hypotenuse, and are hence congruent. Thus:

If PA and PB are tangents to a circle at
points A and B, respectively, then PA and
PB have the same length.

2. Inscribed-Angle Theorems
In the diagram below, left, angles α (the peripheral
angle) and β (the central angle) are subtended by the
same ARC. Thus we have:

For angles subtended by the same arc, the
central angle is always twice that of the
peripheral angle.

This is proved by drawing a radius from the cen-
ter O to the point at which angle α lies to create two

isosceles triangles. Following the left-hand side of the
next diagram, and noting that the interior angles of a
triangle sum to 180°, we thus have x + y = α and
(180 – 2x) + (180 – 2y) + β = 360, from which it fol-
lows that β = 2α. A modification of this argument
shows that the result is still true even if the peripheral
angle is located as shown in the right-hand side of
the diagram, or if the arc under consideration is
more than half the PERIMETER of the circle.

The next three results follow (see diagram
below, right):

i. All angles inscribed in a circle subtended by the
same arc are equal,

ii. All angles inscribed by a diameter are right
angles. (This is known as the theorem of Thales.)
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iii. Opposite angles in a cyclic QUADRILATERAL

sum to 180°.

3. Two-Chord Theorem
In the diagram above, we have: ab = cd.

This is proved by connecting the endpoints of
the chords to create two triangles. The inscribed-
angle theorems show that these two triangles are
similar by the AAA rule. Consequently, a/c = d/b.

4. Radius-Chord Theorem
In the right-hand side of the diagram, we see that:

The radius of a circle bisects a chord (that
is, we have a = b) if, and only if, the radius
is perpendicular to the chord.

This is proved by drawing two radii to the endpoints
of the chord to produce a large isosceles triangle. If
the central radius is at 90° to the chord, this produces
two congruent right triangles, and so a = b. Con-
versely, if we are told a = b, then the LAW OF COSINES,
applied to each base angle of the isosceles triangle,
shows that the central radius intercepts the chord at
an angle of 90°.

See also AAA/AAS/ASA/SAS/SSS; CONGRUENT FIGURES;
CYCLIC POLYGON; PTOLEMY’S THEOREM; SECANT; SIMI-
LAR FIGURES.

circumcircle A circle that passes through all three ver-
tices of the triangle is called a circumcircle for the trian-
gle. That three distinct points in the plane determine a
unique circle was first proved by EUCLID in his treatise,
THE ELEMENTS, Book III. Euclid also presented a gen-
eral method for actually constructing the circumcircle of
a triangle. (This result was later generalized by APOLLO-

NIUS OF PERGA, who showed how to construct a circle
tangent to any three points, lines, or circles in the plane.)

The center of the circumcircle of a triangle is called
its circumcenter. Clearly, it is a point EQUIDISTANT from
the three vertices, and so it must lie on each line of
points equidistant from any two vertices. The circum-
center of a triangle can thus be found by drawing the
perpendicular bisectors of the sides of the triangle and
locating where these three lines meet.

By the LAW OF SINES, the radius of the circumcircle

of a triangle is given by , where a is 

a side-length of the triangle and A is the angle opposite
that chosen side. If the remaining two sides of the trian-
gle have lengths b and c, then the area of the triangle 

can be written: . By HERON’S

FORMULA, this area can also be computed via 

where . Equating 

these two equations, solving for sin(A), and substitut-
ing into the formula above produces a formula for the
radius of the circumcircle of a triangle solely in terms
of its side lengths:

The circumcircle of a regular POLYGON is that cir-
cle that passes through all the vertices of the polygon.
The radius of the circumcircle of a square, for example,
of side-length x is r = x/√

–
2.

See also CONCURRENT; LONG RADIUS; TRIANGLE.

circumscribe/inscribe If A and B are two geometric
figures, with A inside B, drawn so that the two figures
have points in common but do not have edges that
cross, then we say that figure A is inscribed in B, or,
alternatively, that figure B is circumscribed about A.
For example, a polygon lying inside a circle with all its
vertices on that circle is said to be inscribed in the cir-
cle, and a circle inside a polygon touching each side of
the polygon is inscribed in the polygon. A circle that
passes through all three vertices of a triangle circum-
scribes that triangle, and the smallest square that sur-
rounds a circle circumscribes that circle.

See also CIRCUMCIRCLE; INCIRCLE.

clock math See MODULAR ARITHMETIC.
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closure property A BINARY OPERATION on a set S is
said to be closed if the combination of two elements in
that set yields another member of that set. For exam-
ple, the set of positive whole numbers is closed under
addition, since the sum of any two positive integers is
itself a positive integer. This set is also closed under
multiplication (the product of two positive whole num-
bers is a positive integer), but not subtraction: if n and
m are positive whole numbers, then n – m could be
zero or negative and thus no longer in the set of posi-
tive whole numbers. (For instance, 3 – 7 = –4.)

For a more unusual example, consider the set S of all
whole numbers that can be expressed as the sum of two
SQUARE NUMBERS. We have S = {0, 1, 2, 4, 5, 8, 9, 10, 13,
16, 17, 20, 25,…}. (For instance, 0 = 02 + 02, 5 = 12 + 22,
20 = 22 + 42, and 25 = 02 + 52 = 32 + 42.) Surprisingly,
this set is closed under multiplication. For example, both
5 and 8 belong to S, and so does 5 × 8 = 40. (We have
40 = 22 + 62.) Also, 10 and 13 belong to S, and so too
does 130. (We have 130 = 32 + 112.) This general
observation follows from the algebraic identity that if
N = a2 + b2 and M = c2 + d2; then N × M = (ac + bd)2 +
(ad – bc)2.

This set S is also closed under exponentiation: if N
and M are each a sum of two squares, then so is NM.
For example, 513 = (12,625)2 + (31,250)2.

See also SQUARE.

coefficient A numerical or constant multiplier of
the variables in a term of an algebraic expression is
called the coefficient of that term. For example, con-
sider the equation 5x3 – 2x + 7 = 0, where x is the
variable, the coefficient of x3 is 5, the coefficient of x
is –2, and the coefficient of x2 is zero. In the equation
3 cos y – 4xy2 = 7, the coefficients of cos y and xy2

are 3 and –4, respectively.
Sometimes the value of a coefficient is not known

and a symbol is used in its stead. For instance, in the
expression ax2 + bx + c with x the variable, the num-
bers a and b are coefficients (and c is a constant term).
Although the values of a, b, and c are not specified, it is
understood that their values do not change even as the
value of x varies.

In a more general context, the term coefficient is
used for any number that serves as a measure of some
property or characteristic of a set of data or a physical
property. For instance, a CORRELATION COEFFICIENT in

STATISTICS gives a measure of the extent to which two
data sets are interdependent, while the heat coefficient
in physics gives a measure as to how well a material
conducts heat.

See also BINOMIAL COEFFICIENT; COMBINATO-
RIAL COEFFICIENT; CONSTANT; LEADING COEFFICIENT;
POLYNOMIAL.

Collatz’s conjecture (“3n + 1” mapping problem)
Consider the following process:

Select a positive integer. If it is odd, triple it
and add one; otherwise, divide the number by
two. Now perform the same operation again
on the result. Repeat this process indefinitely
to produce a sequence of numbers.

The number 7, for example, yields the sequence:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16,
8, 4, 2, 1, 4, 2, 1, 4, 2, 1,…

Notice that this sequence finally falls into a 4-2-1 cycle.
In 1937 German mathematician Lothar Collatz

conjectured that, no matter the starting integer selected,
all sequences lead to the same 4-2-1 cycle. Collatz was
unable to prove this claim, but he was also unable to
find an example of a starting number that does not
behave this way. To this day, no one knows whether or
not Collatz’s conjecture is true. All integers up to 2.702
× 1016 have been checked.

As a first step toward understanding this problem,
mathematicians have proved that 4-2-1 is the only cycle
of reasonable size that could possibly appear; it has
been established that any other cycle that might appear
would be at least 275,000 numbers long.

collinear Any number of points are said to be
collinear if they all lie on the same straight line. Two
points are always collinear. Three points in a plane A =
(a1,a2), B = (b1,b2), and C = (c1,c2) are collinear only if
the lines connecting points A and B and the points con-
necting A and C have the same SLOPE. This means that
the following relationship must hold:

b a
b a

c a
c a

2 2

1 1

2 2

1 1

−
−

= −
−
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Three points A, B, and C in three-dimensional
space are collinear if the triangle they form has zero
area. Equivalently, the three points are collinear if the
angle between the VECTORS

→
AB and

→
AC is zero, and

consequently the CROSS PRODUCT
→

AB ×
→

AC equals
the zero vector.

The collinearity of points in a plane is a topic of
interest to geometers. In the mid-1700s, LEONHARD

EULER discovered that several interesting points con-
structed from triangles are collinear, yielding his
famous EULER LINE. In 1893 British mathematician
James Sylvester (1814–97) posed the question of
whether it is possible to arrange three or more points in
a plane, not all on a line, so that any line connecting
two of the points from the collection passes through a
third point as well. Forty years later Tibor Gallai
(1912–92) proved that there is no such arrangement.

Two or more distinct PLANEs are said to be
collinear if they intersect in a common straight line. In
this case, the vectors normal to each plane all lie in a
plane perpendicular to the common line. Thus one can
determine whether or not a collection of planes is
collinear by noting whether or not the cross products
of pairs of normal vectors are all parallel.

See also GRADIENT; NORMAL TO A PLANE.

combination (selection, unordered arrangement) Any
set of items selected from a given set of items without
regard to their order is called a combination. Repetition
of choices is not permitted. For example, there are six
distinct combinations of two letters selected from the
sequence A,B,C,D, namely: AB, AC, AD, BC, BD, and
CD. (The selection BA, for example, is deemed the
same as AB, and the choice AA is not permitted.)

The number of combinations of k items selected 

from a set of n distinct objects is denoted . The

number , for instance, equals six. The quantity 

is called a combinatorial coefficient and is read as 

“n choose k.” Given their appearance in the BINOMIAL

THEOREM, these numbers are also called binomial
coefficients.

One develops a formula for by counting the 

number of ways to arrange n distinct objects in a
row. There are, of course, n! different ways to do
this. (See FACTORIAL.) Alternatively, we can imagine
selecting which k objects are to be arranged in the 

first k positions along the row (there are ways 

to do this), ordering those k items (there are k! differ-
ent ways to do this), and then arranging the remain-
ing n – k objects for the latter part of the row (there
are (n – k)! different ways to accomplish this). This 

yields different ways to arrange n objects 

in a row. Since this quantity must equal n!, we have 

the formula for the combinatorial 

coefficient.
It is appropriate to define 0! as equal to one. In

this way, the formula just established holds even for
k = n. (There is just one way to select n objects from 

a collection of n items, and so should equal 

one.) It then follows that . (There is just 

one way to select no objects.) Mathematicians set 

to be zero if k is negative or greater than n.

The combinatorial coefficients appear as the entries
of PASCAL’S TRIANGLE. They also satisfy a number of
identities. We list just four, which we shall phrase in
terms of the process of selecting k students to be in a
committee from a class of n students.

1.

(Selecting k students to be in a committee is the same as
selecting n – k students not to be in the committee.)

2.

(Any committee formed either includes, or excludes, a
particular student John, say. If John is to be on the
committee, then one must select k – 1 more students
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from the remaining n – 1 students. If John is not to be
on the committee, then one must select k students from
the pool of n – 1 students that excludes John.)

3.

(There are possible committees of 

any size. But this number can also be computed by
deciding, student by student, whether or not to put that
student in the committee. As there are two possibilities
for each student, in or out, there are 2n possible com-
mittees. These counts must be the same.)

4.

(Suppose, in the committee, one student is to be
selected as chair. In a committee of size k there are k

possible choices for chair. Thus counts the 

total number of committees possible, of any size, with
one student selected as chair. But this quantity can also
be computed by selecting some student to be chair
first—there are n choices for this—and then deciding,
student by student, among the remaining n – 1 students
whether that student should be on the committee. This
yields n2n–1 possibilities.)

Property 1 explains why Pascal’s triangle is sym-
metric. Property 2 shows that each entry in Pascal’s tri-
angle is the sum of the two entries above it, and
property 3 shows that the sum of all the entries in any
row of Pascal’s triangle is a power of two.

In 1778 LEONHARD EULER used the notation 

for the combinatorial coefficients, which, three years 

later, he modified to . In the 19th century, mathe- 

maticians started following Euler’s original notation,
dropping the VINCULUM for the purposes of easing
typesetting. Many textbooks today use the notation

nCk, or Cn
k, or even C(n,k), for the combinatorial

coefficient .

Generalized Coefficients

The generalized combinatorial coefficient ,

where k1,k2,…,kr are nonnegative integers summing to
n, is defined to be the number of ways one can select,
from n items, k1 objects to go into one container, k2

objects to go into a second container, and so forth, up
to kr objects to go into an rth container. (Notice that 

is the ordinary combinatorial coefficient.) 

Mimicking the argument presented above, note that
one can arrange n items in a row by first selecting
which k1 items are to go into the first part of the row
and ordering them, which k2 items are to go in the
next portion of the row and ordering them, and so on. 

This shows that , yielding 

the formula:

Generalized combinatorial coefficients show, for 

example, that there are 

ways to rearrange the letters CHEESES: Of the seven
slots for letters, one must choose which slot is assigned
for the letter C, which one for the letter H, which three
for the letter E, and which two for letter S.

The generalized combinatorial coefficients also
appear in generalizations to the BINOMIAL THEOREM.
For example, we have the trinomial theorem:

where the sum is taken over all triples k1,k2,k3 that
sum to n. The proof is analogous to that of the ordi-
nary binomial theorem.

Multi-Choosing

The quantity , read as “n multi-choose k,” counts

the number of ways to select k objects from a collection
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of n items, where order is not important, but repetition
is allowed. For example, there are 10 ways to multi-
choose two objects from the set A, B, C, and D,
namely: AB, AC, AD, BC, BD, CD, and AA, BB, CC,

and DD. Thus . One can show that a multi-

choose coefficient equals an ordinary combinatorial co-

efficient:

combinatorial coefficient See COMBINATION.

combinatorics (combinatorial analysis) The branch
of mathematics concerned with the theory and prac-
tices of counting elements of sets and the construction
of specified arrangements of objects, along with the
study of COMBINATIONs and PERMUTATIONs, is called
combinatorics. GRAPH THEORY is also regarded as an
aspect of combinatorics.

The technique of “double counting,” that is, count-
ing the same set of objects in two different ways, is a
common practice in combinatorics used to yield inter-
esting results. For example, counting the dots in an n × n
square array along diagonals as opposed to across the
rows gives the surprising formula:

1 + 2 + 3 + … + (n – 1) + n + (n – 1) + … + 3 + 2 + 1 = n2

Counting the number of subsets of a set of n ele-
ments, either by summing the number of subsets con-
taining, in turn, 0, 1, 2, up to n elements, or by noting
that each subset is decided by making n choices
between two options—whether or not each element in
turn is to be in the subset—yields the formula:

EULER’S THEOREM can be considered a result in combi-
natorial geometry.

See also DISCRETE; FIGURATE NUMBERS.

commensurable Two quantities having a common
measure, meaning that they can be measured in terms of

whole numbers of a common unit, are said to be com-
mensurable. For example, the quantities one month and
one week are commensurable because they can both be
measured in terms of a whole number of days. In GEOM-
ETRY, two line segments are said to be commensurable if
there is another segment whose measure goes evenly,
without remainder, into the measures of each segment.
For instance, segments of lengths 20 and 12 in. are com-
mensurable for they can each be evenly divided into
lengths of 1 (or 2 or 4) in. In general, two segments of
lengths a and b units are commensurable if the ratio a/b
is a RATIONAL NUMBER. As √

–
2 is irrational, segments of

length 1 and √
–
2 (respectively, the side-length and the

diagonal of a unit square) are incommensurable.
A study of the EUCLIDEAN ALGORITHM shows that

if given two commensurable line segments of lengths a
and b, say, then repeatedly subtracting the shorter
length from the longer to produce a new pair of lengths
eventually produces two line segments equal in length.
This final shared measure is the largest length that
divides evenly into the two original segments. (If a and
b are whole-number measurements, then the length of
the final measure is the GREATEST COMMON DIVISOR of
a and b.) If, on the other hand, one can demonstrate
that the process of repeatedly erasing the shorter line
segment from the longer will continue indefinitely
without ever producing two line segments equal in
length, then the original two segments cannot be com-
mensurable. Around 425 B.C.E. Greek mathematician
THEODORUS OF CYRENE used precisely this observa-
tion to prove the irrationality of √

–
2.

In NUMBER THEORY, two real numbers a and b are
said to be commensurable if their ratio is rational. For
instance, the numbers √

–
48 and √

–
3/2 are commensu-

rable. No one to this day knows whether or not π and
e are commensurable. The numbers log5(3) and log5(7) 

are incommensurable. (If for some whole 

numbers p and q, then 7q = 3p, which is absurd since
every power of 7 is 1 more than a multiple of 3.)

common denominator Two or more fractions are
said to have a common denominator if the denomi-
nator of each fraction is the same. For example, the 

fractions and have a common denominator of 

12. It is a straightforward matter to add and subtract
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fractions with a common denominator. For instance, 

+ = and – = .

It is possible to rewrite the terms of an arbitrary
collection of fractions so that they all share a common 

denominator. For instance, the rewriting and as 

and , respectively, shows that the two fractions have 

a common denominator 15. In fact, any COMMON

MULTIPLE of 3 and 5 serves as a common denominator 

of and . For instance, we have = and = , 

and = and = .

The LEAST COMMON MULTIPLE of the denominators
of a collection of fractions is called the least common
denominator of the fractions. For example, the least 

common denominator of and is 15, and the least 

common denominator of , , and is 24. One adds 

and subtracts arbitrary fractions by rewriting those
fractions in terms of a common denominator.

common factor (common divisor) A number that
divides two or more integers exactly is called a com-
mon factor of those integers. For example, the numbers
20, 30 and 50 have 2 as a common factor, as well as 1,
5, and 10 as common factors. It is always the case that
the largest common factor a set of integers possesses is
a multiple of any other common factor. In our example,
10 is a multiple of each of 1, 2, and 5. The value 1 is
always a common factor of any set of integers.

The FUNDAMENTAL THEOREM OF ARITHMETIC shows
that any number can be uniquely expressed as a product
of PRIME factors. Any common factor of two or more
integers is a product of primes common to all those inte-
gers, and the largest common factor is the product of all
the primes in common, with repetition permissible. (This
explains why the largest common factor is a multiple of
any other common factor.) If the integers have no primes
in common, then their largest common factor is one.

See also GREATEST COMMON DIVISOR; RELATIVELY

PRIME.

common multiple A number that is a multiple of two
or more other numbers is called a common multiple of

those numbers. For example, 60 is a common multiple
of 5, 6, and 10. The lowest number that is a common
multiple of a given set of numbers is called their LEAST

COMMON MULTIPLE. In our example, 30 is the least com-
mon multiple of 5, 6, and 10. Every common multiple is
a multiple of the least common multiple.

The FUNDAMENTAL THEOREM OF ARITHMETIC

shows that any number can be uniquely expressed as a
product of PRIME factors. Any common multiple of two
or more integers is the product of, at the very least, all
the primes that appear in the factorizations of the given
integers, with the necessary repetitions, with perhaps
additional factors. With no additional factors present,
one obtains the least common multiple.

commutative property A BINARY OPERATION is said
to be commutative if it is independent of the order of
the terms to which it is applied. More precisely, an
operation * is commutative if:

a*b = b*a

for all values of a and b. For example, in ordinary
arithmetic, the operations of addition and multiplica-
tion are commutative, but subtraction and division are
not. For instance, 2 + 3 and 3 + 2 are equal in value,
but 2 – 3 and 3 – 2 are not.

If an operation is both commutative and ASSOCIA-
TIVE, then all products of the same set of elements are
equal. For example, the quantity a*(b*c) equals
(a*c)*b and b*(c*a). In this case, one is permitted to
simply write a*b*c, with terms in any order, without
concern for confusion.

In SET THEORY, the union and intersection of two
sets are commutative operations. In VECTOR analysis,
the addition and DOT PRODUCT of two vectors are com-
mutative operations, but the CROSS PRODUCT operation
is not. The multiplication of one MATRIX with another
is not, in general, commutative.

Geometric operations generally are not commuta-
tive. For example, a reflection followed by a rotation
does not usually produce the same result as performing
the rotation first and then applying the reflection. One
could also say that the operations of putting on one’s
shoes and one’s socks are not commutative.

A GROUP is called commutative, or Abelian, if the
operation of the group is commutative.

See also NIELS HENRIK ABEL; DISTRIBUTIVE PROP-
ERTY; RING.
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comparison test See CONVERGENT SERIES.

completing the square A QUADRATIC quantity of the
form x2 + 2bx can be regarded, geometrically, as the
formula for the area of an incomplete square.

Adding the term b2 completes the picture of an
(x + b) × (x + b) square. We have:

x2 + 2bx + b2 = (x + b)2

This process of completing the square provides a
useful technique for solving quadratic equations. For
example, consider the equation x2 + 6x + 5 = 21. Com-
pleting the square of the portion x2 + 6x requires the
addition of the constant term 9. We can achieve this by
adding 4 to both sides of the equation. We obtain:

x2 + 6x + 5 + 4 = 21 + 4
x2 + 6x + 9 = 25

(x + 3)2 = 25

from which it follows that x + 3 equals either 5 or –5,
that is, that x equals 2 or –8.

The process of completing the square generates a
general formula for solving all quadratic equations.
We have:

The solutions of a quadratic equation ax2 + bx
+ c = 0, with a ≠ 0, are given by:

This formula is known as the quadratic formula. To see
why it is correct, divide the given equation through by
a and add a term to complete the square of resultant 

portion . We have:

For example, to solve x2 + 6x + 5 = 21, subtract 21 from
both sides of the equation to obtain x2 + 6x – 16 = 0. By
the quadratic formula:

The quadratic formula shows that the two roots r1

and r2 of a quadratic equation ax2 + bx + c = 0 (or
the single double root if the DISCRIMINANT b2 –4ac

equals zero) satisfy and . It also 

shows that every quadratic equation can be solved if
one is willing to permit COMPLEX NUMBERS as solu-
tions. (One may be required to take the square root of
a negative quantity.)

There do exist analogous formulae for solving
CUBIC EQUATIONs ax3 + bx2 + cx + d = 0 and QUARTIC

EQUATIONs ax4 + bx3 + cx2 + dx + e = 0 in terms of the
coefficients that appear in the equations. Algebraist
NIELS HENRIK ABEL (1802–29) showed that there can
be no analogous formulae for solving fifth- and higher-
degree equations.

See also FACTORIZATION; FUNDAMENTAL THEOREM

OF ARITHMETIC; HISTORY OF EQUATIONS AND ALGEBRA

(essay); SOLUTION BY RADICALS.
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complex numbers There is no real number x with
the property that x2 = –1. By introducing an “imagi-
nary” number i as a solution to this equation we obtain
a whole host of new numbers of the form a + ib with a
and b real numbers. These new numbers form the sys-
tem of complex numbers. It is customary to use the
variable z to denote an arbitrary complex number:
z = a + ib. If b = 0, then z is a real number. Thus the set
of complex numbers includes the set of real numbers. If
a = 0 so that z is of the form z = ib, then z is said to be
purely imaginary. In general, if z = a + ib, then a is
called the real part of z and b the imaginary part of z.
We write: Re(z) = a and Im(z) = b.

The number i is usually regarded as the square
root of negative one: i = √

–
–1. (One must be careful as

there are, in fact, two square roots of this quantity,
namely i and –i.) The roots of other negative quanti-
ties follow: √

–
–9 = √

–
–1 . √

–
9 = ±3i and √

–
–30 = ± i√

–
30,

for instance.
The set of all complex numbers is denoted C.

Arithmetic can be performed on the complex numbers
by following the usual rules of algebra and replacing i2

by –1 whenever it appears. For example, we have:

(2 + 3i) + (4 – i) = 6 + 2i
(2 + 3i) – (4 – i) = –2 + 4i

(2 + 3i)(4 – i) = 8 + 12i – 2i – 3i2

= 8 + 10i + 3 = 11 + 10i

The QUOTIENT of two complex numbers can be
computed by the process of RATIONALIZING THE

DENOMINATOR:

One can show that with these arithmetic properties,
the set of complex numbers constitutes a mathemati-
cal FIELD.

In the early 18th century, French mathematician
ABRAHAM DE MOIVRE noticed a striking similarity
between complex multiplication and the ADDITION for-
mulae of the sine and cosine functions from TRIGONOM-
ETRY. Given that:

(a + ib) · (c + id) = (ac – bd) + i(ad + bc)

and:

cos(x + y) = cos(x)cos(y) – sin(x)sin(y)
sin(x + y) = sin(x)cos(y) + cos(x)sin(y)

we obtain the compact formula:

(cos(x) + isin(x))(cos(y) + isin(y)) = cos(x + y) + isin(x + y)

This observation formed the basis for the famous for-
mula that now bears his name:

(cos(x) + isin(x))n = cos(nx) + isin(nx)

A few years later LEONHARD EULER (1707–83) took
matters one step further and used the techniques of cal-
culus to establish his extraordinary formula:

eix = cos(x) + isin(x)

from which DE MOIVRE’S FORMULA follows easily.
(Use (eix)n = e i (nx).) Moreover, this result shows that
de Moivre’s formula also holds for noninteger values
of n.

That the cosine and sine functions appear as the
real and imaginary parts of a simple EXPONENTIAL

FUNCTION shows that all of trigonometry can be
greatly simplified by rephrasing matters in terms of
complex numbers. Although some might argue that
complex numbers do not exist in the real world, the
mathematics of the complex number system has proved
to be very powerful and has offered deep insights into
the workings of the physical world. Engineers and
physicists phrase a great deal of their work in terms of
complex number theory. (Engineers prefer to use the
symbol j instead of i.)

It is a surprise to learn that the introduction of a
single new number i as a solution to the equation x2 +
1 = 0 provides all that is needed to completely solve
any POLYNOMIAL equation anxn + an–1xn–1 + … + a1x +
a0 = 0.

The FUNDAMENTAL THEOREM OF ALGEBRA asserts
that a polynomial equation of degree n has precisely n
roots (counted with multiplicity) in the complex num-
ber system.

It is possible to raise a real number to a complex
power to obtain a real result. For example, by EULER’S
FORMULA, we have:

eiπ = cos(π) + isin(π) = –1 + i · 0 = –1
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Also, noting that , we see that 

it is also possible to raise a complex number to a com-
plex power to obtain a real result:

(Technically, since i can also be expressed as 
for any whole number k, there are infinitely different
(real) values for the quantity ii.)

The Geometry of Complex Numbers
Multiplying the entries of the real NUMBER LINE by –1
has the effect of rotating the line about the point 0
through an angle of 180°. It is natural to ask: multipli-
cation by which number creates a 90° rotation about
the point zero?

Call the desired number x. Multiplication by x
twice, that is, multiplication by x × x = x2, would have
the effect of performing two 90° rotations, namely, a

rotation by 180°. Thus multiplication by x2 has the
same effect as multiplication by –1, and the desired
number x must therefore satisfy the equation x2 = –1.
This shows that x = i and that it is natural to interpret
purely imaginary numbers of the form ib as members
of a vertical number line.

This model provides a natural correspondence
between complex numbers and points in the plane. The
horizontal axis is called the real axis, the vertical axis
the imaginary axis, and an arbitrary complex number
z = a + ib appears as the point with coordinates (a,b)
on the plane.

This representation of complex numbers as points
on a plane is called an Argand diagram in honor of
JEAN ROBERT ARGAND (1768–1822) who, along with
surveyor Casper Wessel (1745–1818), first conceived of
depicting complex numbers in this way. The plane of
all complex numbers is also called the complex plane.

The angle θ that a complex number z = a + ib
makes with the positive real axis is called the argument
of the complex number, and the distance r of the com-
plex number from the origin is called its modulus (or,
simply, absolute value), denoted |z|. PYTHAGORAS’S
THEOREM and the DISTANCE FORMULA show that:

Using trigonometry we see that the values a and b can
be expressed in terms of r and θ in a manner akin to
POLAR COORDINATES. We have:

a = r cos θ
b = r sin θ

With the aid of Euler’s formula, this shows that any
complex number z can be expressed in polar form:

z = r cos θ + ir sin θ = reiθ

From this it follows, for instance, that the product of
two complex numbers z1 = r1eiθ1 and z2 = r2eiθ2 has
modulus r1r2 and argument θ1 + θ2:

z1z2 = r1eiθ1r2eiθ2 = r1r2ei(θ1 + θ2)

It is convenient to define the conjugate of a complex
number z = a + ib to be the number –z = a – ib. We have:

z · –z = a2 + b2 = |z|2

|z| = √a2 + b2

e
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and, in polar form, if z = reiθ, then –z = re –iθ. Taking the
conjugate of a complex number has the geometric
effect of reflecting that number across the real axis.

History of Complex Numbers
The first European to make serious use of the square
root of negative quantities was GIROLAMO CARDANO

(1501–76) of Italy in the development of his solutions
to CUBIC EQUATIONs. He noted that quantities that
arose in his work, such as an expression of the

form for instance, could be 

manipulated algebraically to yield a real solution to 

equations. (We have = 4.) 

Nonetheless, he deemed such a manipulation only as a
convenient artifice with no significant practical mean-
ing. French philosopher RENÉ DESCARTES (1596–1650)
agreed and coined the term imaginary for roots of neg-
ative quantities.

During the 18th century, mathematicians continued
to work with imaginary roots, despite general skepti-
cism as to their meaning. Euler introduced the symbol i
for √

–
–1, and Argand and Wessel introduced their geo-

metric model for complex numbers, which was later
popularized by CARL FRIEDRICH GAUSS (1777–1855).
His proof of the fundamental theorem of algebra con-
vinced mathematicians of the importance and validity
of the complex number system.

Irish mathematician SIR WILLIAM ROWAN HAMIL-
TON (1805–65) is credited as taking the final step to
demystify the meaning of the complex-number system.
He extended the notion of the complex numbers as
arising from 90° rotations by showing that any rota-
tion in three-dimensional space can naturally and easily
be represented in terms of complex numbers. He also
noted that the complex numbers are nothing more than
ordered pairs of numbers together with a means for
adding and multiplying them. (We have (a,b) + (c,d) =
(a + c,b + d) and (a,b)·(c,d) = (ac – bd,ad + bc).) In
Hamilton’s work, the number i became nothing more
than the point (0,1).

See also NEGATIVE NUMBERS; STEREOGRAPHIC

PROJECTION.

composite Used in any context where it is possible to
speak of the multiplication of two quantities, the term
composite means “having proper factors.” For exam-

ple, the number 12, which equals 3 × 4, is a COMPOSITE

NUMBER, and y = x2 + 2x – 3 = (x–1)(x + 3) is a com-
posite polynomial (not to be confused with the COMPO-
SITION of two polynomials).

A quantity that is not composite is called irre-
ducible, or, in the context of number theory, PRIME.

composite number A whole number with more than
two positive factors is called a composite number. For
example, the number 12 has six positive factors, and so
is composite, but 7, with only two positive factors, is
not composite. The number 1, with only one positive
factor, also is not composite. Numbers larger than one
that are not composite are called PRIME.

The sequence 8, 9, 10 is the smallest set of three
consecutive composite numbers, and 24, 25, 26, 27, 28
is the smallest set of five consecutive composites. It is
always possible to find arbitrarily long strings of com-
posite numbers. For example, making use of the FAC-
TORIAL function we see that the string

(n + 1)! + 2, (n + 1)! + 3,…,(n + 1)! + (n + 1)

represents n consecutive integers, all of which are com-
posite. (This shows, for example, that there are arbi-
trarily large gaps in the list of prime numbers.)

See also FACTOR.

composition (function of a function) If the outputs
of one function f are valid inputs for a second function
g, then the composition of g with f, denoted g°f, is the
function that takes an input x for f and returns the out-
put of feeding f(x) into g:

(g°f )(x) = g(f(x))

For example, if feeding 3 into f returns 5, and feeding 5
into g returns 2, then (g°f )(3) = 2. If, alternatively, 

f(x) = x2 + 1 and g(x) = 2 + , then

(g°f )(x) = g(f(x))
= g(x2 + 1)

= 2 + 

Typically g° f is not the same as f°g. In our last example,
for instance,

1
x2 + 1

1
x

2 121 2 1213 3+ − + − −

2 121 2 1213 3+ − + − −
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which is a different function. As another example, if M
is the function that assigns to each person of the world
his or her biological mother, and F is the analogous
biological father function, then (M°F)(John) represents
John’s paternal grandmother, whereas (F°M)(John) is
John’s maternal grandfather.

The notation g°f is a little confusing, for it needs to
be read backwards. The function f is called the “core
function” and needs to be applied first, with the
“external function” g applied second. The composition
of three functions f, g, and h is written h°f°g (here h is
the external function), and the repeated composition of
a function f with itself is written f(n). Thus, for exam-
ple, f (4) denotes the composition f°f°f°f. A set of
repeated compositions is called a DYNAMICAL SYSTEM.

Mathematicians have shown that the composition
of two CONTINUOUS FUNCTIONs is itself continuous.
Precisely, if f is continuous at x = a, and g is continuous
at x = f(a), then g°f is continuous x = a.

The composition of two differentiable functions is
differentiable. The CHAIN RULE shows that the DERIVA-
TIVE of g°f is given by (g°f)′ (x) = g′(f(x))·f ′(x).

compound interest See INTEREST.

compound statement See TRUTH TABLE.

computer An electronic device for automatically
performing either arithmetic operations on DATA or
sequences of manipulations on sets of symbols (as
required for ALGEBRA and SET THEORY, for instance),
all according to a precise set of predetermined
instructions, is called a computer. The most widely
used and versatile computer used today is the digital
computer in which data are represented as sequences
of discrete electronic pulses. As each pulse could
either be “on” or “off,” it is natural to think of

sequences of 0s and 1s in working in computer theory
and, consequently, to work with the system of BINARY

NUMBERS to represent data.
A digital computer has a number of separate parts:

1. An input device, such as a keyboard, for entering a
set of instructions (program) and data.

2. A central processing unit (CPU) that codes informa-
tion into binary form and carries out the instruc-
tions. (This unit consists of a series of electronic
circuit boards on which are embedded a large num-
ber of “logic gates,” akin to the CONJUNCTION and
DISJUNCTION configurations.)

3. Memory units, such as disks and magnetic tape.
4. An output device for displaying results, such as a

monitor or a printer.

The study of computer science typically lends itself
to the theoretical capabilities of computing machines
defined in terms of their programs, not the physical
properties of actual computers. The HALTING PROBLEM

and the question of being NP COMPLETE, for instance,
are issues of concern to scientists in this field.

See also ABACUS; CHARLES BABBAGE; DIGIT.

concave/convex A curve or surface that curves
inward, like the circumference of a circle viewed from
the interior, or the hollow of a bowl, for example, is
called concave. A curve or surface that curves outward,
such as the boundary of a circle viewed from outside
the circle, or the surface of a sphere, is called convex.

A geometric shape in the plane or a three-
dimensional solid is called convex if the boundary of
the shape is a convex curve or surface. For example,
triangles, squares, and any regular POLYGON are con-
vex figures. Cubes and spheres are convex solids. Any
shape that is not convex is called concave. A deltoid
QUADRILATERAL, for example is a concave polygon.

A polygon is convex if each of its interior angles
has value less than 180°. Equivalently, a polygon is
convex if the figure lies entirely on one side of any line
that contains a side of the polygon. A POLYHEDRON is
convex if it lies entirely on one side of any plane that
contains one of its faces.

A convex figure can also be characterized by the
property that, for any two points inside the figure, the
line segment connecting them also lies completely
within the figure.
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concave up/concave down The graph of a function
y = f(x) may be described as concave up over an inter-
val if, over that interval, the slope of the tangent line to
the curve increases as one moves from left to right.
Assuming the function is twice differentiable, this
means that the DERIVATIVE f ′(x) is a strictly increasing
function and, consequently, the double derivative satis-
fies f ′′(x)>0. (See INCREASING/DECREASING.) For exam-
ple, the double derivative of f(x) = x2 is always positive,
f ′′(x) = 2>0, and the parabola y = x2 is concave up. A
concave-up graph also has the property that any
CHORD joining two points on the graph lies entirely
above the graph.

The graph of a function y = f(x) is concave down
over an interval if, over that interval, the slope of the
tangent line to the curve decreases as one moves from
left to right. Assuming the function is twice differen-
tiable, this means that f ′(x) is a strictly decreasing func-
tion and, consequently, f ′′(x)<0 for all points on the
interval. As an example, since the double derivative of
f(x) = x3 is negative only for negative values of x (f ′′(x)
= 6x<0 for x<0), we have that the cubic curve y = x3 is
concave down only to the left of the y-axis. A concave-
down graph has the property that any chord joining
two points on the graph lies entirely below the graph.

A point at which the concavity of the graph
changes is called an inflection point or a point of inflec-

tion. (Alternative spelling: inflexion.) If x = a is a point
of inflection for a twice-differentiable curve f(x), then
the double derivative f ′′(x) is positive to one side of
x = a and negative to the other side. It must be the case
then that f ′′(a) = 0. The converse need not hold, how-
ever. The function f(x) = x4, for example, satisfies
f ′′(0) = 0, but the concavity of the curve does not
change at x = 0.

A study of the concavity of a graph can help one
locate and classify local maxima and minima for
the curve.

See also GRAPH OF A FUNCTION; MAXIMUM/
MINIMUM.

concentric/eccentric Two circles or two spheres are
called concentric if they have the same center. Two fig-
ures that are not concentric are called eccentric. The
region between two concentric circles is called an
ANNULUS.

concurrent Any number of lines are said to be con-
current if they all pass through a common point. Many
interesting lines constructed from triangles are concur-
rent. Two lines a1x + b1y = c1 and a2x + b2y = c2 in the
Cartesian plane are concurrent if a1b2 – a2b1 ≠ 0.

See also TRIANGLE.

conditional (hypothetical) In FORMAL LOGIC a state-
ment of the form “If … then…” is known as a condi-
tional or an implication. For example, “If a polygon
has three sides, then it is a triangle” is a conditional
statement.

A conditional statement has two components: If p,
then q. Statement p is called the antecedent (hypothesis,
or premise) and statement q the consequent (or conclu-
sion). A conditional statement can be written a number
of different, but equivalent, ways:

If p, then q.
p implies q.
q if p.
p only if q.
p is sufficient for q.
q is necessary for p.

It is denoted in symbols by: p→q.

conditional 89
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The TRUTH TABLE of the conditional is motivated
by intuition. Consider, for example, the statement:

If Peter watches a horror movie, then he eats
popcorn.

The statement is certainly true if we observe Peter
watching a horror movie and eating popcorn at the
same time (that is, if the antecedent and consequent are
both true), but false if antecedent is true but the conse-
quent is false (that is, Peter is watching a horror movie
but not eating popcorn). This justifies the first two
lines of the truth table below.

The final two lines are a matter of convention. If
Peter is not watching a horror movie, that is, if the
antecedent is false, then the conditional statement as a
whole is moot. FORMAL LOGIC, however, requires us to
assign a truth-value to every statement. As watching a
romance movie and eating (or not eating) popcorn does
not imply that the conditional statement is a lie, we go
ahead and assign a truth-value “true” to the final two
lines of the table:

This convention does lead to difficulties, however. Con-
sider, for example, the following statement:

If this entire sentence is true, then the moon is
made of cheese.

Here the antecedent p is the statement: “the entire sen-
tence above is true.” The consequent is: “the moon is
made of cheese.” Notice that p is true or false depend-
ing on whether the entire statement p→q is true or
false. There is only one line in the truth table for which
p and p→q have the same truth-value, namely the first
one. It must be the case, then, that p, q, and p→q are
each true. In particular, q is true. Logically, then, the
moon must indeed be made of cheese.

See also ARGUMENT; BICONDITIONAL; CONDITION—
NECESSARY AND SUFFICIENT; SELF-REFERENCE.

conditional convergence See ABSOLUTE CONVER-
GENCE.

conditional probability The probability of an EVENT

occurring given the knowledge that another event has
already occurred is called conditional probability.

For example, suppose two cards are drawn from
a deck and we wish to determine the likelihood that
the second card drawn is red. Knowledge of the first
card’s color will affect our probability calculations.
Precisely:

i. If the first card is black, then the probability that the
second is red is 26/51 (there are 26 red cards among
the remaining 51 cards),

ii. If the first card is red, then the probability that the
second is also this color is now only 25/51.

(If we have no knowledge of the color of the first card,
then the chances that the second card is red are 1/2.)

If A and B are two events, then the notation A|B is
used to denote the event: “A occurs given that event B
has already occurred.” The notation P(A|B) denotes the
probability of A occurring among just those experi-
ments in which B has already happened. For instance,
in the example above:

P(the second card is red | the first card is black) = 

P(the second card is red | the first card is black) = 

If, in many runs of an experiment, event B occurs b
times, and events A and B occur simultaneously a
times, then the proportion of times event A occurred
when B happened is a/b. This motivates the mathemati-
cal formula for conditional probability:

As an example, suppose we are told that a card drawn
from a deck is red. To determine the probability that
that card is also an ace we observe:
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That is, the probability that a red card is an ace is
1/13. Of course, counting the number of times “ace”
occurs among the red cards also yields P(ace | red) =
2/26 = 1/13.

Conditional probability is useful in analyzing
more complex problems such as the famous TWO-
CARD PUZZLE.

If two events A and B are INDEPENDENT EVENTS,
then the probabilities satisfy the relation P(A∩B) =
P(A) × P(B). This shows P(A | B) = P(A), that is, the
probability of event A occurring indeed is not altered
by information of whether or not B has occurred.

See also BAYES’S THEOREM.

condition—necessary and sufficient In logic, a
condition is a proposition or statement p required to be
true in order that another proposition q be true. If q
cannot be true without p, then we call p a necessary
condition. If the validity of p ensures that q is true,
then we call p a sufficient condition. For example, for a
quadrilateral to be a rectangle it is necessary for it to
possess two parallel sides, but this condition is not suf-
ficient. (A trapezoid, for example, has two parallel
sides but is not a rectangle.) For a number to be even it
is sufficient that the number end with a four, but this
condition is not necessary.

If p is a sufficient condition for q, then the CONDI-
TIONAL (implication) p→q holds. Mathematicians usu-
ally write: q is true if p is true. If p is a necessary
condition for q, then the implication q→p holds. Math-
ematicians usually write: q is true only if p is true.

If the BICONDITIONAL holds: p↔q, then p is neces-
sary and sufficient for q. For example, for a number to
be divisible by 10 it is necessary and sufficient that the
number end with a zero. Such a statement is usually
written: p if, and only if, q or, compactly, as “p iff q.”

See also FORMAL LOGIC; TRUTH TABLE.

cone In three-dimensional space, a cone is the surface
formed by an infinite collection of straight lines drawn
the following way: each line passes through one point
of a fixed closed curve inscribed in a plane, called the
directrix of the cone, and through a fixed given point
above the plane, called the vertex of the cone. The lines
drawn are called the generators of the cone.

In elementary work, the directrix is usually taken
to be a circle so that the cones produced are circular

cones. A circular cone is “right” if its vertex lies
directly above the center of the circle, and “oblique”
otherwise. Points on the surface of a right circular cone
satisfy an equation of the form x2 + y2 = a2z2, for some
constant a.

Technically, the generators of a cone are assumed
to extend indefinitely in both directions. Thus an arbi-
trary cone consists of two identical surfaces meeting
at the vertex. Each surface is called nappe (French for
“sheet”) or a half-cone. However, if the context is
clear, the word cone often refers to just one nappe, or
just the part of a nappe between the vertex and the
plane of the directrix. The object in this latter case is
sometimes called a finite cone. It is bounded and
encloses a finite volume.

For a finite cone, the planar region bounded by the
directrix is called the base of the cone, and the vertex is
called the APEX of the cone. The vertical distance of the
apex from the base is called the height of the cone, and 

the volume V of a finite cone is given by V = Ah,

where h is the height of the cone and A the area of its
base. (See VOLUME.) Thus:

The volume of any cone is one-third of the 
volume of the CYLINDER that contains it.

ARCHIMEDES OF SYRACUSE (ca. 287–212 B.C.E.)
established that the volume of a SPHERE is two-thirds
the volume of the cylinder that contains it. (By drawing
a cone in this cylinder, Archimedes established that the
area of each horizontal slice of a sphere equals the area
of the ANNULUS between the cone and the cylinder at
the same corresponding height.) The formula for the
volume of a sphere readily follows.

See also CONIC SECTIONS.

conformal mapping (equiangular transformation, iso-
gonal transformation) Any geometrical transforma-
tion that does not change the angles of intersection
between two lines or curves is called a conformal map-
ping. For example, in GEOMETRY, reflections, transla-
tions, rotations, dilations, and inversions all preserve
the angles between lines and curves and so are confor-
mal mappings. MERCATOR’S PROJECTION of the Earth
onto a cyclinder preserves every angle on the globe and
so is a conformal projection.

See also GEOMETRIC TRANSFORMATION.

1
3
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congruence Two numbers a and b are said to be con-
gruent modulo N, for some positive integer N, if a and
b leave the same remainder when divided by N. We
write: a ≡ b (mod N). For example, since 16 and 21 are
both 1 more than a multiple of 5, we have 16 ≡
21(mod5). Also 14 ≡ 8(mod3) and 28 ≡ 0(mod7).

One can equivalently interpret the statement a ≡
b(modN) to mean: “the difference a – b is divisible by
N.” Since –2 and 16, for instance, differ by a multiple
of 9, we have –2 ≡ 16(mod9). Two numbers that are
not congruent modulo N are called incongruent mod-
ulo N.

One can add, subtract, and multiply two congru-
ences of the same modulus N in the same manner
one adds, subtracts, and multiplies ordinary quantities.
For example, noting that 14 ≡ 4(mod10) and 23 ≡
3(mod10), we do indeed have:

14 + 23 ≡ 4 + 3(mod10)
14 – 23 ≡ 4 – 3(mod10)
14 × 23 ≡ 4 × 3(mod10)

Unfortunately the process of division is not preserved
under congruence. For example, 14 ÷ 2 is not congru-
ent to 4 ÷ 2 modulo 10. A careful study of MODULAR

ARITHMETIC explains under which circumstances divi-
sion is permissible.

The arithmetic of congruence naturally occurs in
any cyclic phenomenon. For example, finding the day
of the week for a given date requires working with
congruences modulo 7, and the arithmetic for count-
ing hours as they pass works with congruences mod-
ulo 24 or modulo 12. (This leads to the study of
CLOCK MATH.)

Certain DIVISIBILITY RULES can be explained via
congruences. For example, since 10 ≡ 1 (mod9), any
power of 10 is also congruent to 1 modulo 9: 10n ≡ 1n

= 1 (mod9). Consequently, any number is congruent
modulo 9 to the sum of its digits. For example,

486 = 4 × 102 + 8 × 10 + 6 × 1
≡ 4 × 1 + 8 × 1 + 6 × 1(mod9)
= 4 + 8 + 6(mod9)

Since 4 + 8 + 6 is a multiple of 9, it follows that 486 is
divisible by 9.

See also CASTING OUT NINES; DAYS-OF-THE-WEEK

FORMULA.

congruent figures Two geometric figures are congru-
ent if they are the same shape and size. More precisely,
two POLYGONS are congruent if, under some correspon-
dence between sides and vertices, corresponding side-
lengths are equal and corresponding interior angles are
equal. Two different squares with the same side-length,
for example, are congruent figures.

Note that two plane figures can be congruent with-
out being identical: one figure may be the mirror image
of the other. Two figures are called directly congruent if
one can be brought into coincidence with the other by
rotating and translating the figure in the plane and
oppositely congruent if one must also apply a reflec-
tion. Two identical squares, for example, are directly
congruent no matter where on the plane they are
placed. Two scalene triangles with matching side-
lengths might or might not be directly congruent. There
are a number of geometric tests to determine whether
or not two triangles are congruent as given by the
AAA/AAS/ASA/SAS/SSS rules.

In three-dimensional space, two solids are directly
congruent if they are identical. If each is the mirror
image of the other, they are oppositely congruent.

The term congruent is sometimes applied to other
geometric constructs to mean “the same.” For exam-
ple, two line segments are congruent if they have equal
length, or two ANGLEs are congruent if they have equal
measure.

See also SIMILAR FIGURES.

conic sections Slicing a right circular CONE with a
plane that does not pass through the vertex of the cone
produces curves called the conic sections, or simply
conics. If the slicing plane is parallel to a straight line
that generates the cone, then the resulting conic is a
PARABOLA. Otherwise, if the slicing plane passes
through just one nappe of the cone, the curve produced
is either a CIRCLE or an ELLIPSE, or a HYPERBOLA if the
slicing plane cuts both nappes.

If we think of the cone as light rays emanating
from a light source held at the vertex, then the shadow
cast by a circular ring onto a sheet of card will be a
conic section; the particular conic produced depends on
the angle at which the card is held. The open ring at
the top of a lampshade, for example, casts a hyperbolic
shadow on the wall. In the same way, shadows cast by
solid balls are conic sections.
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The Greek scholars of antiquity were the first to
study conic sections. With no practical applications in
mind, mathematicians pursued the topic solely for its
beauty and its intellectual rewards. Around 225 B.C.E.
APOLLONIUS OF PERGA wrote a series of eight books,
titled The Conics, in which he thoroughly investigated
these curves. He introduced the names parabola,
ellipse, and hyperbola. ARCHIMEDES OF SYRACUSE (ca.
287–212 B.C.E.) also wrote about these curves. Almost
2,000 years later, scientists began finding applications
of conic sections to problems in the real world. In 1604
GALILEO GALILEI discovered that objects thrown in the
air follow parabolic paths (if air resistance can be
neglected), and in 1609 astronomer JOHANNES KEPLER

discovered that the orbit of Mars is an ellipse. He con-
jectured that all planetary bodies have elliptical orbits,
which, 60 years later, ISAAC NEWTON was able to prove
using his newly developed law of gravitation. This cen-
tury, scientists have discovered that the path of an
alpha particle in the electrical field of an atomic
nucleus is a hyperbola.

The conic sections can be described solely by prop-
erties they possess as curves in a plane. We see this by
drawing spheres internally tangent to the cone and tan-
gent to the slicing plane defining the curve. For exam-
ple, given an ellipse, if two internal spheres are tangent
to the plane at points F1 and F2, then for any point P
on the ellipse, its distance from F1 is the same as its dis-
tance from the circle of tangency of the lower sphere,
and its distance from F2 is the same as its distance from
the circle of tangency of the upper sphere. Conse-
quently, the sum of its distances from F1 and F2 equals
the fixed distance between the two spheres as measured
along the side of the cone. This property can be used to
define an ellipse:

An ellipse is the set of all points in the plane
whose distances from two given points, F1 and
F2, have a constant sum.

By drawing spheres, one in each nappe of the cone and
tangent to the slicing plane of a hyperbola, one can
show in an analogous way:

A hyperbola is the set of all points in the plane
whose distances from two given points, F1 and
F2, have a constant difference.

For a parabola, one draws a single sphere tangent to
the slicing plane of the parabola and considers the
point F at which the sphere touches the plane, and the
line L of intersection of the slicing plane with the plane
of the circle along which the sphere is tangent to the
cone. We have:

A parabola is the set of all points in the plane
the same distance from a point F in the plane
and a given line L.

The conic sections have remarkable reflection properties.
See also PROJECTION.

conjunction (“and” statement) In FORMAL LOGIC a
compound statement of the form “p and q” is known
as a conjunction. For example, “A triangle has three
sides and a square has four sides” is a conjunction. A
conjunction is denoted in symbols by p q.

For a conjunction as a whole to be considered true,
each component (or conjunct) p and q must itself be
true. Thus a conjunction has the following TRUTH TABLE:

∨
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A conjunction can be modeled via a series circuit. If T
denotes the flow of current, then current moves through
the circuit as a whole if, and only if, both switches p
and q allow the flow of current (that is, are closed).

See also DISJUNCTION.

connected Informally, a geometric object is “con-
nected” if it comes in one piece. For example, a region in
the plane is connected if, for any two points in that
region, one can draw a continuous line that connects the
two points and stays within the region. For example, a
HALF-PLANE is connected. The set of all real numbers on
the number line different from zero is not connected.

A surface sitting in three-dimensional space, such
as a SPHERE or a TORUS, is connected if any two points
on the surface can be connected by a continuous path
that stays on the surface. A GRAPH is connected if, for
any two vertices, there is a contiguous path of edges
that connects them.

The connectivity of a geometric object is the num-
ber of cuts needed to break the shape into two pieces.
For example, a circle (interior and circumference) and a
solid sphere each have connectivity one. An ANNULUS

and a torus each have connectivity two.

consistent A set of equations is said to be consistent
if there is a set of values that satisfies all the equations.
For example, the equations x + y = 7 and x + 2y = 11

are consistent, since they are satisfied by x = 3 and
y = 4. On the other hand, the equations x + y = 1 and
x + y = 2 are inconsistent.

In FORMAL LOGIC, a mathematical system is said to
be consistent if it is impossible to prove a statement to
be both true and not true at the same time. That is, a
system is consistent if it is free from CONTRADICTION.
Mathematicians have proved, for example, that arith-
metic is a consistent logical system.

See also ARGUMENT; GÖDEL’S INCOMPLETENESS

THEOREMS; LAWS OF THOUGHT; SIMULTANEOUS LINEAR

EQUATIONS.

constant The word constant is used in a number of
mathematical contexts. In an algebraic expression, any
numeric value that appears in it is called a constant. For
example, in the equation y = 2x + 5 with variables x
and y, the numbers 2 and 5 are constants. These num-
bers may be referred to as absolute constants because
their values never change. In general applications, how-
ever, constants may be considered to take any one of a
number of values. For example, in the general equation
of a line y = mx + b the quantities m and b are consid-
ered constants even though they may adopt different
values for different specific applications.

A specific invariant quantity whose value is deter-
mined a priori, such as π or e, is also called a constant.
In physics, any physical quantity whose value is fixed
by the laws of nature, such as the speed of light c, or the
universal gravitational constant G, is called a constant.

The constant term in a POLYNOMIAL is the term
that does not involve any power of the variable. For
example, the polynomials x3 – 5x + 7 and 2z5 – 3z2 + z
have constant terms 7 and 0, respectively.

A constant function is any function f that yields the
same output value, a say, no matter which input value
is supplied: f(x) = a for all values x. The graph of a
constant function is a horizontal line. It is surprising,
for instance, to discover that the function given by 

, defined for all positive numbers x, is a 
constant function. The formula always returns the value
10 no matter which value for the input x is chosen.

constant of integration The MEAN-VALUE THEO-
REM shows that any two antiderivatives of a given

f x x x( ) log=
1

10

p q p ∧q

T T T
T F F
F T F
F F F
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function differ only by a constant. For example, any
antiderivative of the function f(x) = 2x must be of the
form x2 + C for some constant C, called the constant
of integration. An antiderivative is usually expressed
as an INDEFINITE INTEGRAL. In our example we have
∫2xdx = x2 + C.

Care must be taken when working with an arbi-
trary constant of integration. For example, consider 

computing the integral ∫ dx via the method of INTEGRA-

TION BY PARTS. Set u = and v′ = 1 (so that u′ = –

and v = x) to obtain:

Subtracting the integral under consideration suggests the
absurdity: 0 = 1. Of course, this argument failed to take
care of the constants of integration that should appear.

See also ANTIDIFFERENTIATION; INTEGRAL CALCULUS.

constant width A circular wheel has the property
that it has constant height as it rolls along the ground.
Alternatively, one could say that the width of the curve
is the same no matter which way one orients the figure
to measure it. Any shape with this property is called a
curve of constant width. The so-called Reuleaux trian-
gle, constructed by drawing arcs of circles along each
side of an equilateral triangle (with the opposite vertex
as center of each circular arc) is another example of
such a curve. Wheels of this shape also roll along the
ground with constant height.

One can construct wheels of constant height with
the aid of a computer. One begins with the PARAMETRIC

EQUATIONS of a circle of radius 1 and center (0,0) given
by x(t) = 0 + cos(t) and y(t) = 0 + sin(t), for 0 ≤ t <360°.
Certainly the distance between any two points on this
circle that are separated by an angle of 180° is always
2. By changing the location of the center of the circle
slightly, we can preserve this distance property, as long
as we ensure that the center returns to the same loca-
tion every 180°. Thus, for example, the equations:

are the parametric equations of another curve with
the same constant-width property. (The fractional
coefficients were chosen to ensure that the resulting
figure is CONVEX.)

French mathematician Joseph Barbier (1839–89)
proved that all curves of constant width d have the
same perimeter, π d. It is also known that, for a given
width, Reuleaux’s triangle is the curve of constant
width of smallest area.

constructible A geometric figure is said to be con-
structible if it can be drawn using only the tools of a
straightedge (that is, a ruler with no markings) and a
compass. The straightedge allows one to draw line seg-
ments between points (but not measure the lengths of
those segments), and the compass provides the means
to draw circles with a given point as center and a given
line segment from that point as radius.

The Greek scholars of antiquity were the first to
explore the issue of which geometric constructs could
be produced with the aid of these primitive tools alone.
The geometer EUCLID (ca. 300 B.C.E.) explicitly stated
these limitations in his famous text THE ELEMENTS.
Despite the fact that his exercise has no real practical
application (it is much easier to draw figures with rulers
to measure lengths and protractors to measure angles),
the problem of constructibility captured the fascination
of scholars for the two millennia that followed. This
illustrates the power of intellectual curiosity alone for
the motivation of mathematical investigation. Students
in high schools today are still required to study issues of
constructibility.

The compass used by the Greeks was different from
the one we use today; it would not stay open at a fixed
angle when lifted from the page and would collapse.
Thus it was not directly possible to draw several circles
of the same radius, for instance, simply by taking the
compass to different positions on the page. However, in
his work The Elements, Euclid demonstrated how to
accomplish this feat with the Greek collapsible compass.
This shows that any construction that can be accom-
plished with a modern compass can also be accom-
plished with a collapsible compass. For this reason, it is
assumed today that the compass used is a modern one.

A surprising number of constructions can be
accomplished with the aid of a straightedge and com-
pass alone. We list here just a few demonstrations.

x t t t

y t t t
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1. Copy a given line segment AB onto a given line L

Place the compass with point at one endpoint of
the line segment and pencil tip at the other, thus
setting the compass to the length of the line seg-
ment. Label one point A′ on the line L, place the
point of the compass at A′ and use it to mark off a
point B′ on the line. The segment A′B′ is congruent
to the segment AB.

2. Draw a line perpendicular to a given line L
through a given point P on L.

Set the compass at an arbitrary radius and, with
the tip of the compass placed on point P, mark off
two points A and B on line L equidistant from P.
Now draw two circles of the same radius, one with
center at A and the other with center at B. These
circles intersect at two positions X and Y. These
points X and Y are the same distance from each of
X and Y, and so, as the study of EQUIDISTANCE

proves, the line through X and Y (and P) is the per-
pendicular bisector of the line segment AB. In par-
ticular, it is a line through P perpendicular to L.

3. Construct the perpendicular bisector of a given line
segment AB.

The construction described in 2 above accomplishes
this feat.

4. Draw a line perpendicular to a given line L through
a given point P not on L.

Set the compass with its point at P and draw a
large circle that intersects the line L at two points
A and B. Now follow the procedure for 2.

5. Draw an equilateral triangle.

The points A, B, and X described in 2 are the ver-
tices of an equilateral triangle.

6. Copy an arbitrary triangle to a different position
on the page.

Suppose the given triangle has vertices labeled A,
B, and C. Set the compass with point at A and tip
at B. Arbitrarily choose a point A′ elsewhere on the
page, and use the compass to draw a circle with
center A′ and radius equal to length of the segment
AB. Label an arbitrary point on this circle B′. Use
the compass to draw a second circle with center A′,
but this time with radius equal to the length of AC.

We must now select an appropriate point C′ on this
second circle. Draw a third circle with center B′ of
radius equal to the length of BC. Label a point of
intersection between the final two circles C′. Then
A′B′C′ is a congruent copy of the original triangle.

7. Copy a given angle to a different location on 
the page.

Simply regard the angle as part of a triangle and
follow the instructions of part 6.

8. Construct a line parallel to a given line L through a
point P not on L.

Draw an arbitrary line through P that intersects the
line L. Copy the angle these two lines make at
position P and draw a third line through P at this
angle. This produces a diagram of a TRANSVERSAL

crossing a pair of lines possessing equal corre-
sponding angles. By the converse of the PARALLEL

POSTULATE, the two lines are parallel.

9. Construct a line that divides a given angle precisely
in half.

Draw a circle of arbitrary radius with center at the
vertex of the angle. Suppose this circle intersects
the rays of the angles at positions A and B. Now
draw two circles of the same radius centered about
each of these two points. Let P be a point of inter-
section of the two circles. Then the line connecting
the vertex of the angle to P is an angle bisector.
(The SSS principle of similarity shows that the two
triangles produced in the construction are congru-
ent, demonstrating then that the original angle is
indeed divided into two equal measures.)

10. Draw a perfect square.

Draw an arbitrary line segment. This will be the
first side of the square. Label its endpoints A and
B. Using part 2, construct a line through B perpen-
dicular to the line segment. Use a circle centered
about B of radius equal in length to AB to find a
point C on this perpendicular line so that BC is the
same length as AC. This provides the second side
of the square. Repeat this procedure to construct
the remaining two sides of the square.

Not every geometric feat can be accomplished with
straightedge and compass alone. For example, although
it is possible to also construct a regular pentagon and a
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regular hexagon with these primitive tools, the con-
struction of a regular heptagon (a seven-sided polygon)
is impossible. CARL FRIEDRICH GAUSS (1777–1855)
proved that a regular n-gon is constructible if, and only
if, n is a number of the form 2k p1p2…pn, with each pi

a distinct PRIME of the form 22s
+ 1 (such as 3, 5, 17,

257, and 65,537.) Although one can bisect an angle
with straightedge and compass, the problem of TRI-
SECTING AN ANGLE is unsolvable. The two classical
problems of SQUARING THE CIRCLE and DUPLICATING

THE CUBE also cannot be solved.

Constructible Numbers
A real number r is said to be constructible if, given a
line segment on a page deemed to be of unit length, it
is possible to construct from it a line segment of
length r using only the tools of a straightedge and a
compass. For instance, the number 2 is constructible.
(Given a line segment AB of length one, use the
straightedge to extend the length of the line. Draw a
circle of radius equal to the length of AB, centered
about B, to intersect the line at a new point C. Then
the length of AC is 2.) Any positive whole number is
constructible.

Suppose a and b are two constructible numbers
with b > a. (That is, given a line segment of length 1,
we can also produce line segments of lengths a and b.)
Then the following is true:

The numbers a + b, b – a, a × b, , and √
–
a are

constructible.

The diagram at right indicates how to construct these
quantities.

(In the third and fourth diagrams, draw lines par-
allel to the lines connecting the endpoints of the two
segments of lengths a and b. Examination of similar
triangles shows the segments indicated are indeed of
lengths a × b and a/b, respectively. For the fifth dia-
gram, add lines to produce a large right triangle
within the circle with the diameter of length a + 1
as hypotenuse. Application of PYTHAGORAS’S THEO-
REM shows that the segment indicated is indeed of
length √

–
a.)

It follows now that any rational number is con-
structible as is any number that can be obtained from the
rationals by the application of a finite number of addi-
tions, subtractions, multiplications, divisions, and square 

roots. (For instance, the number 

is constructible.) Mathematicians have proved that these
are the only types of real numbers that are constructible.
Mathematicians have also proved that any number that
is constructible is an ALGEBRAIC NUMBER. As π, for
instance, is not algebraic, it is not constructible.

See also AAA/AAS/ASA/SAS/SSS.

7

3
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contingency table A table showing the number of
units from a sample having certain combinations of
attributes is called a contingency table. For example, a
marketing research project records the hair color of
participating men and women and presents the results
in a contingency table:

The CHI-SQUARED TEST can be used to look for correla-
tions between attributes displayed in such tables.

continued fraction A number that is an integer plus
a fraction with denominator that is itself an integer
plus a fraction—and continued this way—is called a
continued fraction. For example,

and

are continued-fraction representations of the quantities
1,402/457 and √

–
2 (as we shall establish below). The

first continued fraction stops after a finite number of
steps, and the second continues forever. A continued
fraction is said to be in standard form if, like the sec-
ond example, all the numerators are equal to one, and
all the integers involved are positive.

Every positive real number x can be written as a
continued fraction in standard form. If x denotes the
largest integer less than or equal to x, and {x} the frac-

tional part of x as given by the FRACTIONAL PART

FUNCTION, then:

As the quantity 1/{x} itself is a positive real number
greater than one, we can, in the same way, write it as
an integer plus another fraction with unit numerator.
Repeated application of this procedure produces a con-
tinued fraction in standard form.

For example, if x = , then we can write 

, and , 

and so on. This produces the standard-form continued
fraction:

It is not difficult to show that if x = a/b is a frac-
tion, then 1/{x} is a new fraction with denominator
smaller than b. Repeated application of this procedure
must eventually produce a continued fraction with
denominator equal to one, so that the procedure ter-
minates. This shows that all numbers that are rational
(that is, equal to a fraction) have continued-fraction
representations that stop after a finite number of
steps. (And, conversely, any such continued fraction
“unravels” to produce a quantity that is rational.)
Consequently:

All quantities with infinitely long continued-
fraction representations are irrational.

For example, one can check that and 

substituting this formula into itself gives the continued
fraction representation presented above:
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Hair Color

Black Brown Blonde Red

Male 25 23 8 2
Female 18 16 14 5
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That this process does not terminate proves that √
–
2 is

not a fraction. In a similar way, one establishes:

and √
–
6 = [2,

—
2,4], showing that these quantities are also

irrational. The number e also has an infinite continued-
fraction representation: e = [2,1,2,1,1,4,1,1,6,1,1,8,1,

1,10,…], as does the golden mean .

Mathematicians have proved that finite continued
fractions in standard form have a curious property:

Reversing the order of the integers that appear
in a finite continued fraction produces a new
fraction with the same numerator as the origi-
nal quantity.

For example, as we have seen, [3,14,1,2,1,7] =
1,402/457, and one calculates that:

equals the fraction 1,402/181.

Continued fractions were systematically studied by
LEONHARD EULER (1707–83), and he was the first to
formally introduce them in a written text. JOSEPH-
LOUIS LAGRANGE (1736–1813) extended much of
Euler’s work. Continued fractions have proved to be
very useful in solving a large selection of DIOPHANTINE

EQUATIONs. They also provide excellent rational
approximations to irrational numbers. For example,
terminating the continued fraction representation for
√
–
2 after a finite number of steps yields good approxi-

mations to the square root of 2:

This particular sequence of fractions, generated by the 

formula , was used by Theon of Smyrna as 

early as the first century C.E. It holds some mysterious
properties. For example, every second term of the
sequence corresponds to a PYTHAGOREAN TRIPLE:

and every other term, rounding the numerator and
denominator each down to the half, yields FIGURATE

NUMBERS that are both square and triangular:
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Unraveling the continued-fraction expansions of other
irrational numbers can yield analogous discoveries.

continuous function Informally, a function is said to
be continuous if one can draw its graph without ever
lifting the pencil from the page. This means that the
graph of the function consists of a single curved line
with no gaps, jumps, or holes.

More precisely, a function is continuous at a point
x = a, if the function is defined at the point a, and the
LIMIT of f(x) as x approaches a equals the value of the
function at a:

limx→af (x) = f(a)

(If, for example, a function has values f(0.9) = 1.9,
f(0.99) = 1.99, f(0.999) = 1.999, and so on, then one
would be very surprised to learn that f(1) equals 18.
The function would not be deemed continuous at x =
1.) A function that is not continuous at a point is said
to be discontinuous, or to have a discontinuity, at that
point. A function that is continuous at every point in
its domain is called continuous.

Mathematicians have proved that:

i. The sum of two continuous functions is continuous.
ii. The product of two continuous functions is 

continuous.
iii. The quotient of two continuous functions is con-

tinuous at each point where the denominator is
not zero.

iv. The COMPOSITION of two continuous functions is
continuous.

Since the straight-line graph f(x) = x is continuous, it fol-
lows from properties i and ii that any POLYNOMIAL func-
tion p(x) = anxn+…+a1x + a0 is continuous. By property
iii, any RATIONAL FUNCTION is continuous at all points
where the denominator is not zero. The functions sin x
and cos x from TRIGONOMETRY are both continuous.

The tangent function, tan x = , is continuous 

at every point other than , the 

locations where cosine is zero.
It is possible to remove a discontinuity of a function

at x = a if the limit limx→a f(x) exists. For example, the 

function f(x) = is not defined at x = 1, since 

the quantity has no meaning. Nonetheless, algebra 

shows that the limit of this function as x approaches
the value 1 exists:

(Dividing through by the quantity x – 1 is valid in this
calculation since, for values of x close to, but not equal
to, 1, the quantity x – 1 is not zero.) Consequently, if
we declare the value of the function to be 2 at x = 1:

we now have a continuous function. A discontinuity
at x = a for a function f is called removable if
limx→a f(x) exists.

The issue of continuity is fundamental to the foun-
dation of CALCULUS. A study of the INTERMEDIATE-
VALUE THEOREM and its consequences illustrates this.

continuum hypothesis A study of DENUMERABLE

sets shows that every infinite set contains a denumer-
able subset. Thus, in a well-defined sense, denumerable
sets are the “smallest” types of infinite sets. The DIAGO-
NAL ARGUMENT of the second kind shows that the set
of real numbers is not denumerable, that is, in a mean-
ingful sense, the CARDINALITY of the real numbers,
denoted c, is “larger” than the cardinality of denumer-
able sets, which is denoted ℵ0. We have:

ℵ0 < c

German mathematician GEORG CANTOR (1845–
1918), father of cardinal arithmetic, conjectured that
there is no type of infinite set “larger” than an infinite
set of denumerable objects, but “smaller” than the con-
tinuum of the real numbers. (That is, there is no cardi-
nal number strictly between ℵ0 and c.) This conjecture
became known as the continuum hypothesis. It can be
stated equivalently as follows:

Any infinite subset of real numbers can either
be put in one-to-one correspondence with the

f x
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set of natural numbers, or can be put in one-
to-one correspondence with the entire set of
real numbers.

Despite his efforts, Cantor was unable to establish
whether or not his continuum hypothesis was true. In
1940 Austrian mathematician KURT GÖDEL proved
that the continuum hypothesis cannot be proved false.
Unfortunately, as GÖDEL’S INCOMPLETENESS THEOREMS

show, this does not mean that the continuum hypothe-
sis is true: there exist statements in mathematics that
are undecidable, that is, ones that cannot be proved
true and cannot be proved false. It was suspected that
the continuum hypothesis might be such an undecid-
able statement. Twenty-three years later in 1963,
American logician Paul Cohen managed to prove that
this is indeed the case. Consequently one can either
deem the continuum hypothesis as true or as false, an
arbitrary choice, and be certain never to run into a
mathematical contradiction as a result.

contour integral (curvilinear integral, line integral)
If C is a curve in the xy-plane and z = f(x,y) is a func-
tion of two variables, then one can attempt to compute
the surface AREA (one side) of a “wall” that follows the
curve C and has “height” the height of the function
above the curve. The integral that computes this, called
a contour integral and denoted ∫c f ds, is constructed by
selecting a large number of points p0, p1,…,pn along
the curve C and approximating the surface under con-
sideration by a collection of rectangular sections. The
ith rectangle can be taken to have base-length the dis-
tance between the points pi and pi+1, which we denote
di, and height f(pi). The surface area is thus 

approximated by the sum . Taking the limit 

as we take finer and finer approximations defines the
desired contour integral.

If the curve C is defined by parametric equations:
x = x(t) and y = y(t) for some parameter t, a ≤ t ≤ b,
then this procedure gives the contour integral as:

In physics and in advanced VECTOR calculus, one
also considers integrating, for example, the work done

in moving a particle along a curve C through a VECTOR

FIELD (force field). Such considerations lead to other
types of integrals, also called line integrals.

contour line A line on a map that joins points of
equal height is called a contour line. Contour lines are
usually drawn for equal intervals of height. This gives
experienced map readers a clear mental picture of the
three-dimensional topography of the land: contour
lines close together, for example, indicate that the slope
of the land is steep.

In mathematics, contour lines are used to portray
the shapes of surfaces sitting in three-dimensional
space. For example, all points of the same height z = c
on the surface z = x2 + y2 satisfy the equation x2 + y2 =
c and so lie on a circle of radius √

–
c. This leads to a con-

tour map for the graph of the function f(x,y) = x2 + y2

consisting of sets of concentric circles about the origin.
The surface described is a PARABOLOID with vertex at
the origin.

contradiction In FORMAL LOGIC, any statement that
yields a TRUTH TABLE with final entries all false is called
a contradiction. For example, the statement (¬p) p is
a contradiction. From any contradiction, it is possible
to prove that any statement in mathematics is true. For
example, one can check that the compound statement
(¬p) p → q is a tautology. Consequently, in mathe-
matics, if one can prove that some statement p and its
negation ¬p are both true, then since both (¬p) p
and (¬p) p → q are valid, no matter what statement
q represents, q is also true by inference. Any contradic-
tion that appears in mathematics would prove, for
example, that 1 = 2, and that every irrational number is
a fraction. Mathematicians sincerely hope that mathe-
matics is free from contradiction.

See also CONSISTENT.

contrapositive The contrapositive of a CONDITIONAL

statement “p implies q” is the statement: “not q implies
not p.” It is the statement obtained by switching the
antecedent with the consequent, and negating each. For
example, the contrapositive of the statement, “If it is a
poodle, then it is a dog,” is “If it is not a dog, then it is
not a poodle.” The contrapositive of a statement is a
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logically equivalent form of the statement, and so can
be used at any time in its stead. (One shows that p → q
and (¬q) → (¬p) have identical TRUTH TABLEs.)

In mathematics it is sometimes convenient to prove
the contrapositive form of a theorem rather than prove
the assertion directly. This approach is called contra-
positive reasoning (or modus tollens), and the proof
presented is a proof by contraposition. For example,
the theorem: if n2 is odd, then n is odd, is best proved
by assuming that n is even (that is, n = 2k for some
integer k) and then showing that n2 is also even.

The contrapositive of a conditional “p implies q”
should not be confused with the inverse of the state-
ment: “not p implies not q.” This variation is not a log-
ically equivalent form of the original conditional.

See also ARGUMENT; CONVERSE; PROOF.

convergent improper integral See IMPROPER

INTEGRAL.

convergent sequence A SEQUENCE of numbers
a1,a2,a3,… is said to converge if the terms of the
sequence become arbitrarily close to, but do not nec-
essarily ever reach, a particular finite value L. For
example, the numbers in the sequence 0.9, 0.99,
0.999,… approach the value 1. We call 1 the LIMIT of
this sequence.

Any sequence that converges is called a convergent
sequence. If a sequence {an} converges to limit L, we
write limn→∞an = L, or, alternatively, an → L as n → ∞,
which is read as “an approaches L as n becomes large.” 

For example, the sequence , , , ,… has limit one 

( ), and the sequence 1,– , ,– , ,…

has limit zero ( as n → ∞). The 

notions of limit and convergence can be made mathe-
matically precise with an “ε –N definition” of a limit.
(See LIMIT.)

A sequence that does not converge is said to
diverge. A divergent sequence could have terms that
grow in size without bound (1,4,9,16,25,…, for exam-
ple), terms that oscillate without converging to a limit 

( ,– , ,– , ,– ,…, for example), or terms that 

oscillate without bound (1,2,1,3,1,4,1,5,1,6,1,7,1,…,
for instance).

See also DIVERGENT; INFINITE PRODUCT; SERIES.

convergent series An infinite SERIES

is said to converge to a value L if the sequence
of PARTIAL SUMS, Sn = a1 + a2+…+an, approaches the
value L in the LIMIT as n→∞. To illustrate, the series 

has partial sums:

which approach the value 1 as n grows. In this sense we 

say that the series converges to 1, and we write: 

If the limit of the partial sums does not exist, then
the series is said to diverge. For example, the series
1 – 1 + 1 – 1 + 1 – … diverges because the partial sums
oscillate between being 1 and 0 and never settle to a
particular value. The series 1 + 2 + 3 + 4 + … diverges
because the partial sums grow arbitrarily large. The 

series diverges for the same reason, which can 

be seen as follows:
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and so Sn → ∞ as n grows.
There are a number of tests to determine whether

or not a given series converges.

The nth-Term Test

If a series converges, then it must be the

case that limn→∞an = 0. Consequently, if the
terms an of the series do not approach zero,
then the series must diverge.

To see why this is true, note that Sn = a1 + a2+…+an–1 + an

= Sn–1 + an. If the partial sums converge to L, then we
must have that limn→∞ an = limn→∞(Sn – Sn–1) = L – L = 0.
This test shows, for example, that the series 

diverges because the terms 

of the series do not become small.

The Comparison Test

This test applies only to series with positive terms.

A series with positive terms converges if 

each term an of the series is less than or equal
to the terms of another series with positive
terms already known to converge.

A series with positive terms diverges if 

each term an of the series is greater than or
equal to the terms of another series with posi-
tive terms already known to diverge.

For example, the series converges because 

, a series which we already know 

converges. The series diverges, since

, which we know diverges.

The Ratio Test
This test applies only to series with positive terms.

A series with all terms positive:

i. converges if exists and equals

a value smaller than 1

ii. diverges if exists and equals 

a value greater than 1

If the limit in question actually equals 1, then
nothing can be concluded from this test.

This test was first developed by French mathematician
AUGUSTIN-LOUIS CAUCHY (1789–1857). It is proved in
CALCULUS texts by making clever comparison to a 

GEOMETRIC SERIES. (Briefly, if for all terms , 

then a2 ≤ ra1, a3 ≤ ra2 ≤ r2a1, a4 ≤ ra3 ≤ r3a1, etc., and
so a1 + a2 + a3 + a4 +… ≤ a1(1 + r + r2 + r3+…), which 

converges.) Consider, for example, the series .

Here the nth term is given by , and we have: 

. By the ratio test, this series converges.

The Root Test
This test applies only to series with positive terms.

A series with all terms positive:

i. converges if exists and equals

a value smaller than 1

ii. diverges if exists and equals 

a value greater than 1

If the limit in question actually equals 1, then
nothing can be concluded from this test.
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The proof of this test relies on making clever compari-
son to a geometric series. (If, for all terms, 

n
√
–
an ≤ r for

some value r, then an ≤ rn and a comparison can be
made.) This test is often used if the series contains
terms involving exponents. For example, consider the 

series . Here the nth term of the series is 

given by , and we have: 

. By the root test, the series must 

converge.

The Integral Test

This test applies only to series with positive terms.

Suppose the terms of a series are given 

by a formula an = f(n), where the function f(x) is
continuous, positive, and decreasing for x ≥ 1:

i. If the IMPROPER INTEGRAL ∫∞
1 f(x)dx con-

verges, then the series converges.

ii. If the improper integral ∫∞
1 f(x)dx diverges, 

then the series diverges.

This can be proved geometrically by drawing rectan-
gles of width 1 just above and just below the graph of
y = f(x) for x ≥ 1, and then comparing the total area
of all the rectangles with the area under the curve. 

To illustrate the test, consider the series . Since 

converges, we have that 

the series converges. In general, one can establish

in this way the p-series test.

The p-Series Test

A series of the form with p a real 

number converges if p > 1 and diverges if p ≤ 1.

A series of the form is called a p-series.

Absolute Convergence Test

Suppose is a series with both positive 

and negative terms. If the corresponding series 

with all terms made positive converges, 

then the original series also converges.

One can use any of the first six tests described above 

to determine whether or not converges. The 

validity of the absolute convergence test is established
in the discussion on ABSOLUTE CONVERGENCE.

Since we have established, for example, that 

converges, the absolute 

convergence test now assures us that the variant series 

also 

converges (as does any other variation that involves the
insertion of negative signs).

The absolute-convergence test does not cover all
cases. It is still possible that a series with negative 

terms, , might converge even though 

diverges. This phenomenon is called CONDITIONAL

CONVERGENCE.

Alternating-Series Test

If the terms of a series alternate in sign 

and satisfy

i. a1 ≥ a2 ≥ a3 ≥ …
ii. an → 0

then the series converges.

(See ALTERNATING SERIES.) This test shows, for 
example, that the alternating HARMONIC SERIES
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corresponding series with all terms positive does not.
It is possible to multiply convergent series by con-

stants, and to add and subtract two convergent series. 

Precisely, if and both converge, and k is a 

number, then:

These properties can be used to evaluate new infinite
sums. For example, in 1740 LEONHARD EULER showed
that a particular value of the ZETA FUNCTION is given 

by . It then follows 

that the alternating form of this series has value:

See also ARITHMETIC SERIES; GEOMETRIC SERIES;
POWER SERIES.

converse (reverse implication) The converse of a
CONDITIONAL statement “p implies q” is the statement:
“q implies p.” It is the statement obtained by reversing
the roles of the antecedent and consequent. The con-
verse of a conditional statement might, or might not, be
true. For example, the converse of the true statement,
“If a triangle has three equal sides, then it has three

equal angles,” is valid—a triangle with three equal
angles does indeed have three equal sides—whereas the
converse of the statement, “If n is divisible by 6, then n
is divisible by 2,” is false—an even number need not be
divisible by 6.

See also ARGUMENT; CONTRAPOSITIVE.

convex See CONCAVE/CONVEX.

coordinates A set of numbers used to locate a point
on a number line, in a plane, or in space are called the
coordinates of that point. For example, the coordinates
of points on a number line could be given by their dis-
tances from a fixed point O (called the origin), with
points on one specified side of O being deemed a posi-
tive distance from O, and the points on the opposite
side of O a negative distance from O.

One way of assigning coordinates to points in the
plane is to establish a fixed point O in the plane (again
called the origin), and two lines of reference (called
axes) that pass through O. Each axis is divided into a
positive side and a negative side by O. Given a point P
in the plane, one draws lines through P parallel to each
of the axes. The distances along which these new lines
intersect the axes specify the location of the point P.

When the axes are drawn at right angles, the sys-
tem is called a Cartesian coordinate system, or a rect-
angular coordinate system. The axes are usually called
the x- and y-axes, and the pair of numbers (x,y) speci-
fying the location of a point P (as x units along one
axis, and y units along the second) are called the
CARTESIAN COORDINATES of P. In three-dimensional
space, the location of points can be specified via three
mutually perpendicular (or oblique) axes passing
through a common point O.

The idea of assigning sets of numbers to points to
specify locations is on old one. By the third century
B.C.E., Greek scholars APOLLONIUS OF PERGA and
ARCHIMEDES OF SYRACUSE had used longitude, lati-
tude, and altitude to define the position of a point on
the Earth’s surface. Roman and Greek surveyors
labeled maps with grid lines, so as to specify locations
via row and column numbers.

See also CYLINDRICAL COORDINATES; DIMENSION;
EARTH; POLAR COORDINATES; RIGHT-HANDED/LEFT-
HANDED SYSTEM; SPHERICAL COORDINATES.
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coplanar See PLANE.

coprime Another name for RELATIVELY PRIME.

correlation See CORRELATION COEFFICIENT; SCATTER

DIAGRAM.

correlation coefficient Any numerical value used to
indicate the extent to which two variables in a study are
associated is called a correlation coefficient. For exam-
ple, a medical study might record the height and shoe
size of adult participants suspecting that there might be
a relationship between these two features. If two vari-
ables are such that when one changes, then the other
does so in a related manner (generally the taller an indi-
vidual, the greater the shoe size on average, say) then
the two variables are said to be correlated. A SCATTER

DIAGRAM is used to detect possible correlations. If the
points of the scatter diagram tend to follow a straight
line, then the two variables are linearly correlated.

KARL PEARSON (1857–1936) developed a measure
to specifically detect linear relationships. If the DATA

values in a study are represented as pairs of values,
(x1,y1),…,(xN, yN), first define:

and

Here –x is the MEAN of the x-values and –y the mean of
the y-values. The quantities Sxx and Syy are called the
VARIANCEs and Sxy the COVARIANCE of the two vari-
ables. Then Pearson’s correlation coefficient, denoted
R2, is given by:

This quantity only adopts values between 0 and 1. A
value of R2 = 1 indicates a perfect linear relationship
between the two variables, with the points in the asso-
ciated scatter diagram lying precisely on a straight line.
A value R2 = 0 indicates that there is no relationship
between the two variables. (In particular, the covari-
ance of the two variables is zero.) All these claims can
be proved through a study of the LEAST SQUARES

METHOD. An R2 value close to 1, say 0.9 or higher,
indicates that a linear correlation is very likely.

See also RANK CORRELATION; REGRESSION; STATIS-
TICS: DESCRIPTIVE.

countable Any set, finite or infinite, whose elements
can be placed in a list is said to be countable. More
precisely, a set S is countable if there is a one-to-one
correspondence between the elements of S and a subset
of the NATURAL NUMBERS (that is, it is possible to
match each element of S with a unique natural num-
ber). For example, the set {knife, fork, spoon} is count-
able because its elements can be matched with the
elements of the subset {1, 2, 3} of natural numbers: list
knife as first, fork as second, and spoon as third, for
instance. The set of all integers is countable, for its ele-
ments can be placed in the list:

0,1, – 1,2, – 2,3, – 3,…

The set of all English words that exist today and might
be of use in the future is countable: list all letters of the
alphabet (possible one-lettered words), then, in alpha-
betical order, all combinations of a pair of letters (the
two-lettered words), followed by all possible combina-
tions of three letters, and so forth, to produce a well-
defined list of all possible strings of letters.

The DIAGONAL ARGUMENT of the first kind shows
that the set of all RATIONAL NUMBERS is countable. The
diagonal argument of the second kind, however, estab-
lishes that the set of REAL NUMBERS is not. In a definite
sense then, the set of reals is an infinite set “larger”
than the set of rationals.

A set is called DENUMERABLE if it is infinite and
countable. Matters are a little confusing, however, for
some authors will interchangeably use the terms count-
able and denumerable for both finite and infinite sets.

The CARDINALITY of an infinite countable set is
denoted ℵ0. A countable set that is not infinite is said
to be FINITE.
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counterexample An example that demonstrates that
a claim made is not true or, at the very least, not always
true is called a counterexample. For instance, although
the assertion = √

–
a + √

–
b happens to be true for

a = 1 and b = 0, this identity is false in general, as the
counterexample a = 9 and b = 16 demonstrates. We can
thus say that the claim = √

–
a + √

–
b is an invalid

statement.
In the mid-1800s French mathematician Alphonse

de Polignac (1817–90) made the assertion:

Every odd number can be written as the sum of
a power of two and a PRIME number.

For instance, the number 17 can be written as 17 = 22 +
13, 37 as 37 = 23 + 29, and 1,065 as 1,065 = 210 + 41.
De Polignac claimed to have checked his assertion for all
odd numbers up to 3 million, and consequently was con-
vinced that his claim was true. Unfortunately it is not,
for the number 127 provides a counterexample to this
assertion, as none of the following differences are prime:

127 – 2 = 125 = 5 × 25
127 – 4 = 123 = 3 × 41
127 – 8 = 119 = 7 × 17
127 – 16 = 111 = 3 × 37
127 – 32 = 95 = 5 × 19
127 – 64 = 63 = 3 × 21

(We need not go further, since the next power of two,
128, is larger than 127.) De Polignac overlooked this
simple counterexample.

No counterexamples have yet been found to the
famous GOLDBACH’S CONJECTURE and COLLATZ’S
CONJECTURE.

covariance If a scientific study records numerical
information about two features of the individuals or
events under examination (such as the height and shoe
size of participating adults, or seasonal rainfall and
crop yield from year to year), then the DATA obtained
from the study is appropriately recorded as pairs of
values. If a study has N participants, with data pairs
(x1, y1),…,(xN, yN), then the covariance of the sample is
the quantity:

where –x is the MEAN x-value and –y the mean y-value.
An exercise in algebra shows that this formula can also
be written:

The covariance is used to calculate CORRELATION

COEFFICIENTs and REGRESSION lines such as for the
LEAST SQUARES METHOD, for instance. Pearson’s corre-
lation coefficient shows that two variables with covari-
ance zero are independent, that is, the value of one
variable has no effect on the value of the other.

See also STATISTICS: DESCRIPTIVE.

Cramer, Gabriel (1704–1752) Swiss Algebra, Geom-
etry, Probability theory Born on July 31, 1704, in
Geneva, Switzerland, scholar Gabriel Cramer is remem-
bered for his 1750 text Introduction à l’analyse des
lignes courbes algébriques (Introduction to the analysis
of algebraic curves), in which he classifies certain types
of algebraic curves and presents an efficient method,
today called CRAMER’S RULE, for solving systems of
linear equations. Cramer never claimed to have dis-
covered the rule. It was, in fact, established decades
earlier by Scottish mathematician COLIN MACLAURIN

(1698–1746).
Cramer earned a doctorate degree at the young age

of 18 after completing a thesis on the theory of sound,
and two years later he was awarded a joint position as
chair of mathematics at the Académie de Clavin in
Geneva. After sharing the position for 10 years with
young mathematician Giovanni Ludovico Calandrini
(senior to him by just one year), Cramer was eventually
awarded the full chairmanship.

The full position gave Cramer much opportunity to
travel and collaborate with other mathematicians
across Europe, such as LEONHARD EULER, Johann
Bernoulli and Daniel Bernoulli of the famous
BERNOULLI FAMILY, and ABRAHAM DE MOIVRE.
Cramer wrote many articles in mathematics covering
topics as diverse as geometry and algebra, the history
of mathematics, and a mathematical analysis of the
dates on which Easter falls.

His 1750 text Introduction à l’analyse des lignes
courbes algébriques was Cramer’s most famous work.
Beginning chapter one with a discussion on the types of
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curves he considers, Cramer presents effective tech-
niques for drawing their graphs. In the second chapter
he discusses the role of geometric transformations as a
means of simplifying the equations to curves (akin to
today’s approach using the notion of PRINCIPAL AXES).
This leads to his famous classification of curves in the
third chapter. Here Cramer also discusses the problem
of finding the equation of a degree-two curve ax2 + bxy
+ cy2 + dx + ey = 0 that passes through five previously
specified points in the plane. Substituting in the values
of those points leads to five linear equations in the five
unknowns a, b, c, d, and e. To solve the problem
Cramer then refers the reader to an appendix of the
text, and it is here that his famous rule for solving sys-
tems of equations appears. Cramer made no claim to
the originality of the result and may have been well
aware that Colin Maclaurin had first established the
famous theorem. (Cramer cited the work of Colin
Maclaurin in many footnotes throughout his text, sug-
gesting that he was working closely with the writings
of Maclaurin.)

Cramer also served in local government for many
years, offering expert opinion on matters of artillery
and defense, excavations, and on the reconstruction
and preservation of buildings. He died on January 4,
1752, in Bagnols-sur-Cèze, France. Although Cramer
did not invent the rule that bears his name, he deserves
recognition for developing superior notation for the
rule that clarified its use.

Cramer’s rule Discovered by Scottish mathematician
COLIN MACLAURIN (1698–1746), but first published
by Swiss mathematician GABRIEL CRAMER (1704–52),
Cramer’s rule uses the DETERMINANT function to find a
solution to a set of SIMULTANEOUS LINEAR EQUATIONS.
An example best illustrates the process.

Consider the set of equations:

2x + 3y + z = 3
x – 2y + 2z = 11
3x + y – 2z = –6

Set A to be the matrix of coefficients:

The determinant of this matrix is not zero: det(A) = 35.
A standard property of determinants asserts that

if the elements of the first column are multiplied by
the value x, then the determinant changes by the fac-
tor x:

Adding a multiple of another column to the first does
not change the value of the determinant. We shall add y
times the second column, and z times to the third to
this first column:

But of course this first column equals the column of
values of the simultaneous equations:

This tells us that the value of x we seek is:

In the same way, the value y is found as the ratio of the
determinant of the matrix A with the second column
replaced by the column of values of the simultaneous
equations and the determinant of A:
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and z is a similar ratio of determinants:

In a general situation, Cramer’s rule states:

If A is the matrix of coefficients of a system of
linear equations, then the value of the ith vari-
able xi in that system of equations is:

provided the determinant of A is not zero.
Here Ai is the matrix A with the ith column
replaced with the column of values of the set
of equations.

Notice that Cramer’s rule shows that there can only be
one solution to a system of equations for which the
determinant of the coefficient matrix is nonzero.

In the study of determinants, Cramer’s rule is used
to prove that a matrix A is invertible if, and only if, its
determinant is not zero.

critical path Suppose that we are given a sequence of
tasks that need to be accomplished in order to complete
a large project, such as building a house or publishing
an encyclopedia, and suppose that these tasks have the
following properties:

1. There is an order of precedence for certain tasks.
2. Some tasks can be carried out simultaneously.
3. The duration of each task is known.

Then the critical path for the project is the longest (in
time) chain of tasks that must be completed in the spec-
ified order. The critical path thus puts a bound on the
minimum amount of time it takes to complete the
entire project.

For example, consider the project of preparing
hamburgers and salad for an evening meal. The follow-
ing table describes the tasks that must be completed,
their prerequisite tasks, and their duration.

The top diagram below provides a useful
schematic of the ordering of the tasks. (Their times
are written in parentheses.) We see from it that the
longest chain, that is, the critical path of the project,
is the sequence D-P-C-E requiring 27 min to com-
plete. That all the tasks in this example can indeed be
accomplished in exactly 27 min is demonstrated in
the second diagram. In general, there is no guarantee
that the time dictated by the critical path is actually
attainable.

Computers are used to look for critical paths in
complex projects.

See also OPERATIONS RESEARCH.

Time to Complete Prerequisite
TASK (in minutes) Tasks

W: wash hands 1 None
D: defrost hamburger 10 None
P: shape meat into patties 5 W, D
C: cook hamburgers 10 P
S: wash and slice 8 W

salad items
M: mix salad 4 S
T: set table 3 W
E: serve meal 2 C, M, T
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cross product (vector product) Many problems in
three-dimensional geometry require physicists and
mathematicians to find a VECTOR that is perpendicular
to each of two given vectors a and b. The cross prod-
uct, denoted a × b, is designed to be such a vector.

One begins by positioning the two vectors a and b
at the same point in space. These vectors define a plane
in space, and one sees that there are two possible direc-
tions for a third vector to point so as to be perpendicu-
lar to this plane. Mathematicians have settled on the
convention of following the “right-hand rule” to deter-
mine which direction to choose:

Take your right hand and point your fingers in
the direction indicated by the first vector a.
Now orient your hand, with your fingers still
pointing in this direction, in such a way that
your palm faces to the side of the plane con-
taining the vector b. (If you curl your fingers,
they will consequently turn through the small-
est angle that leads from a to b.) The direction
in which your thumb now points is the direc-
tion the vector a × b will take.

Thus a × b will be a vector that points in one direction
while b × a will point in the opposite direction. (In fact:
b × a = –a × b.)

Mathematicians have settled on a second conven-
tion to define the magnitude of a × b:

The magnitude of a × b is the area of the PAR-
ALLELOGRAM defined by the vectors a and b.

If θ is the smallest angle between a and b, then the par-
allelogram defined by the two vectors has side-lengths
|a| and |b|. Taking |a| as the base, the height of the par-
allelogram is then given by |b|·sinθ, and consequently
the AREA of the parallelogram is |a|·|b|·sinθ. Thus:

a × b is defined to be the vector of magnitude
|a|·|b|·sinθ with direction given by the right-
hand rule.

For example, if i = <1,0,0> is the unit vector pointing
in the direction of the x-axis, and j = <0,1,0> the unit
vector in the direction of the y-axis, then i × j is a vec-
tor pointing in the direction of the z-axis, with length
equal to the area of the unit square defined by i and j,
namely 1. Thus:

i × j = <0,0,1> = k

If two vectors a and b are parallel, then the angle
between them is zero and a × b = 0.

There is an alternative method for computing cross
products. If a is given by a = <a1,a2,a3> = a1i + a2j + a3k
and b is given by b = <b1,b2,b3> = b1i + b2j + b3k, then
one can check that the DOT PRODUCT of the vector:

(a2b3 – a3b2)i + (a3b1 – a1b3)j + (a1b2 – a2b1)k

with each of a and b is zero. Thus this new vector is
perpendicular to both a and b. Mathematicians have
shown that it also has direction given by the right-hand
rule and magnitude equal to the parallelogram defined
by a and b. Thus this new vector is indeed the cross
product of a and b:

where, for the final equality, we have written the for-
mula in terms of the DETERMINANT of a 3 × 3 matrix.
(To prove that this new vector does indeed match the
quantity a × b, rotate the system of vectors a, b and
a × b so that a points in the direction of the x-axis and
b lies in the xy-plane. Then, for the rotated system we
have: a1 = |a|, a2 = 0, a3 = 0, b1 = |b|cosθ, b2 = |b|sinθ,
b3 = 0. One can now readily check that the formula
above yields a vector of the required length |a|·|b|·sinθ
pointing in the correct direction. One then argues that
the formula continues to hold when the system of three
vectors is rotated back to its original position.) Thus,
for example, if a = <1,4,2> and b = <3,0,1>, then a × b
= <4·1 – 2·0, 2.3 – 1·1, 1·0 – 4·3> = <4,5, – 12>.
According to the DISTANCE FORMULA, this vector has
length = √

–
185, which must be the

area of the parallelogram formed by a and b.

In two-dimensions, the determinant 

gives a vector the same length as
a = <a1,a2> and perpendicular to it. In four-dimensional
space one can always find a fourth vector perpendicu-
lar to each of any given three vectors.

See also ORTHOGONAL; TRIPLE VECTOR PRODUCT;
VECTOR EQUATION OF A PLANE.
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cryptography The practice of altering the form of a
message by codes and ciphers to conceal its meaning to
those who intercept it, but not to those who receive it,
is called cryptography. If letters of the alphabet and
punctuation marks are replaced by numbers, then
mathematics can be used to create effective codes.

In 1977 three mathematicians, Ron Rivest, Adi
Shamir, and Leonard Adleman, developed a public-key
cryptography method in which the method of encoding
a message can be public to all without compromising the
security of the message. The RSA encryption method, as
it is known today, is based on the mathematics of the
MODULAR ARITHMETIC and relies on the fact that it is
extraordinarily difficult to find the two factors that pro-
duce a given large product. It is the primary encryption
method used today by financial institutions to transmit
sensitive information across the globe.

The RSA encryption method is based on the fol-
lowing result from modular arithmetic:

Suppose p and q are distinct PRIME numbers. If
n is a number with neither p nor q a factor,
then n(p–1)(q–1) ≡ 1(mod pq). Moreover, we have
nm(p–1)(q–1)+1 ≡ n(mod pq) for any two natural
numbers n and m, even if n is a multiple of p
or q.

(We prove this result at the end of this entry.) One pro-
ceeds as follows:

1. Encode your message as a string M of numbers.
2. Choose two large prime numbers p and q so that their

product N = pq is larger than M. Let k = (p – 1)(q – 1)
and choose a number e with no common factor to k.
The numbers N and e can be made public.

3. Raise the number M to the eth power, modulo N.
This gives the encoded message M′:

M′ ≡ Me (mod N)

4. Since the GREATEST COMMON DIVISOR of k and e is
one, the EUCLIDEAN ALGORITHM shows that we can
find numbers d and m so that 1 = de – mk. In partic-
ular there is a number d such that ed ≡ 1(mod k).
Keep the number d secret.

5. To decode the message, raise M′ to the dth power.
By the result stated above, this does indeed return
the original message M:

M′d = Med = Mkm+1 = Mm(p–1)(q–1)+1

≡ M (mod N)

If one works with very large prime numbers, say,
10,000-digit primes, it is virtually impossible to factor
the public number N and find k and d. Thus the RSA
system is extremely secure. (This use of large primes
also explains the current excitement over the discovery
of larger and larger prime numbers.) On the other
hand, multiplying and raising large numbers to powers
is easy for computers to do, and so the RSA method is
also very easy to implement.

Proof of Result
Suppose first that n is not a multiple of p and consider
the numbers 1,2,…,p – 1. Multiply each by n. If, for
two numbers x and y in the list, we have nx ≡ ny(mod
p), then n(x – y) is a multiple of p. This can only hap-
pen if x and y are the same number. Thus, up to multi-
ples of p, the products n·1,n·2,…,n·(p – 1) are distinct
and so must represent a rearrangement of the original
list, modulo p. Consequently, n·1·n·2·…·n(p – 1) ≡
1·2·…·(p – 1) (mod p), and the factor np–1 in the left
must be congruent to 1 modulo p: np–1 ≡ 1(mod p).
Similarly, we have nq–1 ≡ 1(mod q) if n is not a multiple
of q. It follows from these two results that if n is not a
multiple of p or q, then:

n(p–1)(q–1) = (np–1)q–1 ≡ 1(mod p)
n(p–1)(q–1) = (nq–1)p–1 ≡ 1(mod q)

which shows that n(p–1)(q–1) – 1 is divisible by both p
and q, and hence by pq. This proves the first claim
made. The second follows by noting that nm(p–1) (q–1)+1 =
n·(np–1)m(q–1) ≡ n (mod p) is a true statement even if n is
a multiple of p, and nm(p–1)(q–1)+1 ≡ n (mod q) is also
true for all values of n. Any quantity nm(p–1)(q–1)+1 – n is
thus always divisible by both p and q.

cube (hexahedron) The third PLATONIC SOLID, the
cube, is the solid figure bounded by six identical square
faces that meet at right angles. It has eight vertices and
12 edges. Because the VOLUME of a cube of side-length
a is given by a3, any number raised to the third power
is sometimes called a cube. The “cubic numbers” are
the cubes of the counting numbers: 0, 1, 8, 27, 64,
125,…

It is possible to subdivide a large cube into 27
smaller cubes with six planar cuts. This number of cuts
cannot be improved upon even if one is permitted to
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“stack” pieces of the cube during the slicing process so
as to cut through several pieces at once. (To see this,
consider the innermost cube among the 27 little cubes.
It has six planar faces, each of which need to be cut. As
no single planar cut will slice two of those faces, a min-
imum of six cuts is indeed required to form the 27 little
cubes.) It is possible, however, to dice a large cube into
4 × 4 × 4 = 64 smaller cubes in fewer than nine slices if
“stacking” is permitted (six will suffice). Nine slices
suffice to dice a cube into 5 × 5 × 5 = 125 smaller
cubes. In general, the minimum number of slices
required to subdivide a large cube into n × n × n = n3

smaller cubes is given by the formula:

3 log2n

making use of the CEILING FUNCTION.
The four-dimensional analog of a cube is a

HYPERCUBE.
See also FLOOR/CEILING/FRACTIONAL PART FUNC-

TIONS; DUPLICATING THE CUBE; PARALLELEPIPED; PRISM.

cube root/nth root The cube root of a number a is a
value x such that x3 = a. We write 

3√
–
a for the cube root

of a.
Every real number a has exactly one real cube root.

For instance, the cube root of 27 is 3 (since 3 × 3 × 3
equals 27), and the cube root of –8 is –2 (since –2 × –2
× –2 equals –8). If one works within the realm of com-
plex numbers, then the FUNDAMENTAL THEOREM OF

ALGEBRA shows that every number has exactly three
complex cube roots. For instance, the three cube roots 

of 27 are , and 3. A study of 

the nth roots of unity shows that the three complex
cube roots of a number lie on the vertices of an equilat-
eral triangle in the complex plane.

In general, the nth root of a number a is a value x
such that xn = a. Again, the fundamental theorem of
algebra shows that every number has exactly n com-
plex nth roots. If a is a real number, then a has a real
nth root if a is positive. (For example, a fourth root of
16 is 2.) If a is a negative real number, then a real nth
root exists only if n is odd. (For example, –243 has a
fifth root, namely –3, but no real fourth root.) The real
nth root of a number a, if it exists, is denoted n√

–
a.

See also CUBIC EQUATION; ROOT; SQUARE ROOT.

cubic equation Any degree-three POLYNOMIAL equa-
tion of the form ax3 + bx2 + cx + d = 0 with a ≠ 0 is
called a cubic equation.

During the Renaissance, scholars sought for a gen-
eral arithmetic formula in terms of the coefficients a, b,
c, and d that would solve all cubic equations (one akin
to the famous QUADRATIC formula for solving degree-
two equations). At the time, however, scholars were not
comfortable working with NEGATIVE NUMBERS, or with
ZERO as a number, and wrote equations in a form that
avoided their appearance. (For instance, the cubic x3 –
2x + 5 = 0 was cast as x3 + 5 = 2x.) Mathematicians
consequently thought that there were eight different
types of cubic equations to solve.

Italian scholar SCIPIONE DEL FERRO (1465–1526)
was the first to make progress in solving certain cubics,
but never published his results. Later, the scholar NIC-
COLÒ TARTAGLIA (ca. 1499–1557) succeeded in solving
some additional classes of cubics. GIROLAMO CAR-
DANO (1501–76) published Tartaglia’s work (without
Tartaglia’s consent) in his epic 1545 piece Ars magna
(The great art) and developed a general approach that
solves all cubic equations. The formula he devised is
today called “Cardano’s formula” or the “Cardano-
Tartaglia formula.” We describe it here using modern
notation:

By dividing the cubic equation through by the lead-
ing coefficient a, we can assume that we are working
with a cubic of the form:

x3 + Bx2 + Cx + D = 0

for numbers , , and . Substituting 

simplifies the equation further to one without

a square term:

y3 + py + q = 0

(Here and .) This form 

of the cubic is called the reduced cubic, and any solu-
tion y to this equation corresponds to a solution 

of the original equation.

Assume that the equation has a solution that can
be written as the sum of two quantities: y = u + v. Sub-
stituting these variables yields:

bx = y – —
3a

2B3 BCq = — – — + D
27 3

B2
p = C – —

3

Bx = y – —
3

dD = —a
cC = —a

bB = —a
− + − −3

2
3 3

2
3
2

3 3
2

i i,  


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(u3 + v3) + (3uv + p)(u + v) + q = 0

This equation will be satisfied if we can choose u and v
so that u3 + v3 = –q and 3uv + p = 0. This yields a pair
of equations for u3 and v3:

Solving for v3 in the first equation and substituting the
result into the second shows that u3 must satisfy the
quadratic equation:

and using the quadratic formula, this gives u3, and con-
sequently v3 = –u3 – q, to be the two numbers:

We must now take the cube root of these quantities.
Note first that any number M has three cube roots: one
real, denoted 

3√
–
M, and two imaginary, w × 3√

–
M, and 

w2 × 3√
–
M, where . Set:

and

One can now check that the three quantities u1 + v1, u2

+ v2, and u3 + v3 represent the three solutions to the
reduced cubic y3 + py + q = 0. They constitute Car-
dano’s formula.
The quantity under the square root sign:

is called the discriminant of the cubic, and it determines
the nature of the solutions:

If ∆ > 0, then the equation has one real root 
and two complex roots.

If ∆ = 0, then the equation has three real roots, 
at least two of which are equal.

If ∆ < 0, then the equation has three distinct 
real roots.

In the third case, one is required to take combinations
of cube roots of complex numbers to yield, surpris-
ingly, purely real answers. For example, Cardano’s
method applied to the equation x3 = 15x + 4 yields as
one solution the quantity:

It is not immediate that this number is x = 4.
This confusing phenomenon of using complex

quantities to produce real results was first explored by
Italian mathematician RAFAEL BOMBELLI (1526–72).
French mathematician FRANÇOISE VIÈTE (1540–1603)
used trigonometric formulae as an alternative approach
to identifying the three distinct real roots that appear in
this puzzling scenario.

Another Method
French mathematician Viète also developed the follow-
ing simpler approach to solving cubic equations. This
method was published posthumously in 1615.
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Take the reduced form of the cubic y3 + py + q = 0
and rewrite it as:

y3 + 3ry = 2t

where and . Substitute to 

obtain the simpler equation:

(z3)2 + 2t(z3) – r3 = 0

which is a quadratic in z3. All one need do now is solve
for z3 and extract its three cube roots.
The solution to the cubic equation is needed in the
solution to the QUARTIC EQUATION.

See also FUNDAMENTAL THEOREM OF ALGEBRA; HIS-
TORY OF EQUATIONS AND ALGEBRA (essay).

curl See DIV.

curve A set of points that form a line, either straight
or continuously bending, is called a curve. The GRAPH

OF A FUNCTION plotted in CARTESIAN COORDINATES,
for example, is a curve. A curve can also be considered
as the path of a moving particle (and, consequently,
PARAMETRIC EQUATIONS can be used to describe it).

As the graph of a function, a curve is called alge-
braic if it is given by a formula y = f(x) with f an alge-
braic function, and transcendental if f is transcendental.
(See ALGEBRAIC NUMBER.) For example, the PARABOLA y
= x2 is algebraic, as is any CONIC SECTION, but the sine
curve y = sin x is transcendental.

A curve that lies in a plane is called a planar curve.
A curve in three-dimensional space that does not
remain in a plane, such as a HELIX, is called skew or
twisted. Any curve that lies in three-dimensional space
is called a space curve (whether or not it is twisted).

A curve is called closed if one can traverse the
curve and return to the same point an indefinite num-
ber of times. For example, a CIRCLE is closed. In some
settings it is appropriate to allow for a point at infinity,
in which case a straight line would also be considered a
closed curve. (One can head to infinity in one direction
and return from infinity from the other direction and
repeat this journey an indefinite number of times.) A
curve with ENDPOINTs is called open.

See also ARC; LOCUS.

cusp See TANGENT.

cyclic polygon A POLYGON is called cyclic if all its
vertices (corners) lie on a circle. As every triangle can
be inscribed in a circle, all triangles are cyclic. So too
are all squares, rectangles, and all regular polygons.
However, not every quadrilateral or higher-sided poly-
gon is cyclic

BRAHMAGUPTA (598–665) gave a formula for the
area of a cyclic quadrilateral. The CIRCLE THEOREMS

show that opposite angles of any cyclic quadrilateral
are supplementary. The converse is also true: any
quadrilateral with opposite angles summing to 180°
is cyclic.

See also BRAHMAGUPTA’S FORMULA; CIRCUMCIRCLE;
PTOLEMY’S THEOREM.

cycloid The shape traced out by a point on the cir-
cumference of a circle rolling along a straight line is
called a cycloid. (In particular, it is the curve traced out
by a piece of gum stuck to the rim of a bicycle wheel.)
This curve has many remarkable geometric properties
and was studied extensively by mathematicians of the
16th and 17th centuries, and later.

GALILEO GALILEI (1564–1642) was the first to
study the curve and gave it its name. In 1644 Galileo’s
disciple Evangelista Torricelli (who invented the
barometer) proved that the area under one arch of the
cycloid equals three times the area of the rolling circle.
In 1658 English architect Christopher Wren showed
that the length of one arch of the cycloid is four times
the diameter of the circle. In 1696 Johann Bernoulli of
the famous BERNOULLI FAMILY posed and solved the
now-famous brachistochrone problem:

Imagine a small ball starting at a point A and
rolling down along a curve to a lower point B
to the right of A. The ball is propelled only by
the force of gravity. What shape curve connect-
ing A to B allows the ball to travel between
them the fastest?

Surprisingly, a straight line does not give the shortest
time, but an upside-down cycloid does.

In 1658 Dutch scientist Christiaan Huygens con-
sidered the cycloid in his work on pendulums. He dis-
covered that a simple pendulum in which the bob is

r
y = — – z

z
q

t = – —
2

p
r = —

3
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forced to follow a cycloid-shaped path always has the
same period irrespective of the length of the pendulum.
This is called the tautochrone property of the cycloid.
(It is also the case that if a ball starts at rest at any
point of an inverted cycloid and travels along the curve
under the force of gravity, then the time it takes to
reach the lowest point of the curve is independent of
the starting location of the ball.)

Related curves can be considered by following the
path traced by a point on the circumference of a circle
as that circle rolls along another circle. If the circle rolls
on the inside of a fixed circle, then the curve traced is
called a hypocycloid. If a circle rolls on the outside of a
fixed circle, then the curve traced is called an epicy-
cloid. In both cases the fixed circle is called the defer-
ent, and the moving circle is the epicycle.

Some special names are given to the curves cre-
ated in particular situations. For example, when the
two circles have the same radius, the epicycloid pro-
duced is heart-shaped and is called a CARDIOID. When
the rolling outer circle has diameter one-fourth that of
the fixed circle, the four-pointed curve produced is
called an astroid. An epicycloid with five cusps is
called a ranunculoid.

The epicycloid was known to APOLLONIUS OF

PERGA of the third century B.C.E., who used it in his
descriptions of planetary motion.

cylinder In three-dimensional space, a cylinder is the
surface formed by an infinite collection of parallel
straight lines, each passing through one point of a fixed
closed curve drawn in a plane. The closed curve is
called the directrix of the cylinder, and the lines drawn
are called the generators of the cylinder. Often the term
cylinder is used for the solid figure of finite volume con-
fined between two parallel planes. In this setting, the
cylinder has three faces: the two parallel planar regions,
each called a base of the figure, and the lateral surface
given by the straight lines that generate the cylinder. The
base of a cylinder need not be a circle. For example, a
CUBE satisfies the definition of being a cylinder.

If the lateral surface is at right angles to the base,
then the cylinder is called a right cylinder. All other
cylinders are called oblique. The height of a cylinder is
the perpendicular distance between the two bases.

All horizontal cross-sections of a cylinder are the
same size and shape as the base of the cylinder. CAVA-
LIERI’S PRINCIPLE then shows that the volume V of a
cylinder is given by V = Ah, where h is the height of the
cylinder and A is the area of its base.

ARCHIMEDES OF SYRACUSE (ca. 287–212 B.C.E.)
showed that the volume of a SPHERE is two-thirds that
of the volume of the cylinder that contains it. The for-
mula for the volume of a sphere readily follows.

See also CONE.

cylindrical coordinates (cylindrical polar coordinates)
In three-dimensional space, the location of a point P can
be described by three coordinates—r, θ, and z—called
the cylindrical coordinates of P, where (r, θ) are the
POLAR COORDINATES of the projection of P onto the xy-
plane, and z is the height of P above the xy-plane. Cylin-
drical coordinates are useful for describing surfaces with
circular symmetry about the z-axis. For example, the
equation of a cylinder of radius 5 with a central axis, the
z-axis can be described by the simple equation r = 5. (As
the angle θ varies between zero and 360°, and the height
z varies through all values, points on an infinitely long
cylinder are described.) The surface defined by the equa-
tion θ = c, for some constant c (allowing r and z to vary),
is a vertical HALF-PLANE with one side along the z-axis,
and the surface z = c is a horizontal plane.

A point P with cylindrical coordinates (r, θ, z) has
corresponding CARTESIAN COORDINATES (x, y, z) given by:

x = r cos θ
y = r sinθ
z = z

These formulae follow the standard conversion formu-
lae for polar coordinates.

It is usual to present the angle θ in RADIAN MEA-
SURE. In this case, a triple integral of the form
∫∫
v
∫ f(x,y,z)dx dy dz over a volume V described in Carte-

sian coordinates converts to the corresponding integral
∫∫
v
∫ f(rcosθ,r sinθ,z) r dr dθ dz in cylindrical coordinates.

The appearance of the term r in the integrand follows
for the same reason that r appears in the conversion of
a DOUBLE INTEGRAL from planar Cartesian coordinates
to polar coordinates.

See also ANGLE; SPHERICAL COORDINATES.
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data (singular, datum) Information of a numerical
nature is called data. For example, records of the daily
numbers of visitors to a tourist attraction, or the mea-
surement of growth rates of a yeast culture under differ-
ent temperature conditions, would be examples of data.
Direct counts from observational studies or measure-
ments from experiments like these are called primary or
raw data. Numerical information describing the raw data
(such as the average value, largest value, range of values,
and so on) is sometimes called secondary data. The sci-
ence of developing methods for collecting, organizing,
and summarizing data is called descriptive statistics.

See also STATISTICS; STATISTICS: DESCRIPTIVE.

days-of-the-week formula It is a challenging exercise
to derive a mathematical formula that determines the day
of the week on which a particular calendar date falls.

As a first step, knowing the day on which January
1 of a year falls, it is reasonably straightforward to
determine on which day any other date of that year
falls. For example, New Year’s Day in the year 2000
was a Saturday. As the days of the week cycle in peri-
ods of seven, it follows that January 8, January 15, and
January 22 of that year were also Saturdays. Since
there are 31 days in January, and because 31 is three
more than a multiple of 7, it follows that February 1,
2000, fell on the weekday three days later than Satur-
day, namely, Tuesday. As there were 29 days in Febru-
ary that year, and 29 is one more than a multiple of 7,
March 1 fell on the weekday that directly follows Tues-

day, namely Wednesday; and April 1, 30 days later, fell
on a weekday two days after Wednesday, namely Fri-
day. In this way we can determine the weekday of any
first day of the month, and from there, the weekday of
any particular day of that month.

It is convenient to label Sunday as “day 0,” Monday
as “day 1,” up to Saturday as “day 6.” As the weekdays
cycle in units of 7, it is also appropriate to ignore all mul-
tiples of 7 and work only with the remainders of num-
bers upon division by 7. (That is, we shall work in a
base-7 system of MODULAR ARITHMETIC.) For example,
dates 16 and 30 days into a year fall on the same week-
day as the day 2 days into the year: all numbers involved
here are 2 more than a multiple of 7. We shall call the
numbers 16, 30, and 2 “equivalent” and write 16 ≡ 2
and 30 ≡ 2, for instance.

January 1, 2000, fell on day 6. As we have noted,
February 1 falls 31 ≡ 3 days later and so lands on day
6 + 3 ≡ 2, Tuesday. March 1 falls another 29 ≡ 1 days
later, and so lands on day 6 + 3 + 1 ≡ 3, Wednesday. In
general, the following table shows the amount by
which a particular date must be adjusted depending on
the month in which it lies:

Month Jan. Feb. March April May June
Add 0 3 3 (4) 6 (0) 1 (2) 4 (5)

Month July Aug. Sept. Oct. Nov. Dec.
Add 6 (0) 2 (3) 5 (6) 0 (1) 3 (4) 5 (6)
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The numbers in parentheses pertain to leap years.
Thus, for example, July 1, 2000, fell on day 6 + 0 = 6,
Saturday; and December 1, 2000, fell on day 6 + 6 ≡ 5,
Friday.

Now it is a matter of determining on which week-
day the first day of any given year fell. Assume, for the
sake of the mathematical argument, that the Gregorian
calendar has been in use for two millennia, and that
January 1 in the year 0 was day d. Consider the day the
weekday of New Year’s Day N years later.

As each ordinary year contains 365 (≡1) days, the
day on which January 1 falls advances one weekday
each year. For each leap year, it advances an additional
day. We need to determine the number of leap years
over a period of N years.

In general, a leap year occurs every 4 years, yielding 

possible occurrences of a leap year, including year 

zero. (Here we are making use of the CEILING FUNC-
TION.) However, no leap year occurs on a year value 

that is a multiple of 100—and this occurs 

times—except if N is a multiple of 1,000, which occurs 

times. (The year 1900, for instance, was not a 

leap year, but the year 2000 was.) The total number of
leap years L that occur in a period of N years from year
zero is thus given by:

For instance, February 29 appeared, in theory,

times 

before the date of January 1, 2000. Thus, the weekday
of January 1, year N, is given by:

d + N + L

(January 1 year zero, was day d. There is an advance
for each of the N years, and an advance of an addi-
tional day for each of the L leap years.)

Knowing that New Year’s day, 2000, was day 6, we
deduce then that the appropriate value of d is given by:

d + 2000 + 482 = 6

That is, working with remainders upon division by 7,
d + 5 + 6 = 6, yielding d = 2. Thus, in our theory, Jan-
uary 1 in the year zero was a Tuesday.

We now have the following ALGORITHM for com-
puting the weekday of any given date. Assume we wish
to compute the weekday of the Dth day, of month M,
in year N.

1. Consider the year number N and compute
its remainder upon division by 7.

2. Compute and its

remainder upon division by 7.
3. Sum the answers of the previous two steps

and add 2. Compute the remainder of this
number, if necessary, when divided by 7.
This is the weekday number of January 1 of
year N.

4. To this weekday number add the day D,
subtract 1, and add the appropriate month
number from the table above. Look at the
remainder upon division by 7, if necessary.
This final result is the weekday number of
the desired day.

For example, for the date of March 15, 2091, N = 2091
≡ 5, L = 523 – 21 + 3 = 505 ≡ 1, yielding January 1 of
that year to be day 2 + 5 + 1 ≡ 1, a Monday. To this we
add 14 days (the number of days later is 1 less than the
date D) with a month adjustment of value 3 (this is not
a leap year). Thus March 15, 2091, will fall on day
1 + 14 + 3 ≡ 4, a Thursday. (Warning: as the Gregorian
calendar was not used before October 15, 1582, this
algorithm cannot be applied to dates earlier than this. )

Simplifying the Procedure
This method can be simplified to some extent. Write
the year number as mcyy, with m for millennia, c for
century, and yy as the two-digit year number. More
precisely, we mean:

N = 1000m + 100c + yy

with 0 ≤ c ≤ 9 and 0 ≤ yy ≤ 99. For example, the year
3261 will be written:

N = 1000 × 3 + 100 × 2 + 61

Notice that
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yielding:

One can check that the quantity 

equals 1 if yy = 00 and c ≠ 0, and zero in every other
case. Rewriting steps 1 and 2 from the above algo-
rithm, we have:

January 1 of year mcyy falls on day number

where ε is 1 if the year is a turn of the cen-
tury, but not the turn of a millennium, and
zero otherwise.

Thus, for example, consider New Year’s Day of the
year 3261. The millennium number here is m = 3, the
century number is c = 2, and we have yy = 61. Also,

, and, since this is not a turn of the 

century, ε = 0. Thus New Year’s Day of this year will
fall on day 2 + (2 × 3) – (2 × 2) + 61 + 16 + 0 ≡ 4, a
Thursday. We can now compute the weekday of any
other day that year if we wish.

An Alternative Method
Mathematician Chris McManus has observed that what-
ever day of the week “March 0” (the last day of Febru-
ary) falls, so do 4/4 (April 4), 6/6 (June 6), 8/8 (August
8), 10/10 (October 10), and 12/12 (December 12). The

same is true of 9/5 (September 5) and 7/11 (July 11), and
their inverses 5/9 and 11/7. (One can remember this
with the mnemonic, “I work from 9 to 5 at the 7-to-11
store.”) So, for example, if you know that December 20,
2002, was a Friday, and you wish to determine the day
on which April 10 of that year fell, quickly compute that
December 12 was a Thursday, yielding April 4 also as a
Thursday, making April 10 a Wednesday.

decibel Denoted dB, a decibel is a measure of the
intensity of sound, with zero decibels representing the
lowest intensity at which a sound can be heard.

Decibels follow a base-10 LOGARITHMIC SCALE.
This means that each increase of 1 dB represents a 10-
fold increase in the intensity of the sound. For example,
a note played at 1 dB is 10 times as strong as the soft-
est sound, and one played at 2 dB is 100 times as
strong as the softest sound. Normal human speech is at
a level of about 60 dB, and a whisper is around 20 dB.
The threshold of pain for the human ear is about 90
dB. Rock concerts have been known to reach levels of
120 dB at a distance of 50 m from the sound system.

The decibel level of a sound is computed by the
formula:

where P is the intensity of the note being played, and P0

is the lowest intensity at which that note can be heard.
An interval of 10 dB is called a bel. Sound inten-

sity was originally measured in terms of bel, the name
being chosen in honor of the American inventor of the
telephone, Alexander Graham Bell. Today, however,
the unit of a decibel is considered more useful and
is the one most commonly used.

decimal representation See BASE OF A NUMBER

SYSTEM.

decomposition (factorization) The result of express-
ing a given object or quantity in terms of simpler com-
ponents is called a decomposition. For example, the
FUNDAMENTAL THEOREM OF ARITHMETIC shows that
any natural number decomposes as a product of prime
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numbers. Also, any rational function decomposes into
a sum of PARTIAL FRACTIONS. The process of GAUSSIAN

ELIMINATION shows that any square MATRIX A decom-
poses into the product of a lower triangular matrix L
and an upper triangular matrix U. An example of such
an LU factorization is:

Any VECTOR decomposes into a sum of basis vectors.
For instance:

<3, 2, 1> = 3 <1, 0, 0> +2< 0, 1, 0> +< 0, 0, 1>

And in GEOMETRY, as any polygon can be divided into
triangles, one could say that all polygons “decompose”
into a union of triangles.

Studying the simpler pieces in the decomposition of
an object can lead to general results about the object.
For instance, knowing that the interior angles of a tri-
angle sum to 180° allows us to immediately deduce
that the interior angles of any quadrilateral (the union
of two triangles) sum to 360°, and that the interior
angles of any pentagon (the union of three triangles)
sum to 540°.

See also FACTORIZATION.

Dedekind, Julius Wilhem Richard (1831–1916)
German Analysis Born on October 6, 1831, in
Braunschweig, now a part of Germany, Richard
Dedekind is remembered for his elegant construction of
the REAL NUMBER system, which is based on an idea
today known as a DEDEKIND CUT. This work repre-
sented an important step in formalizing mathematics.
In particular, it offered the means to finally put CALCU-
LUS on a sound mathematical footing.

Dedekind studied NUMBER THEORY and calculus at
the University of Göttingen. He earned a doctoral
degree in 1852 under the supervision of CARL

FRIEDRICH GAUSS (he was Gauss’s final pupil), and two
years later obtained a habilitation degree granting him
the right to be a member of the university faculty.

In 1858 Dedekind accepted a position at the Poly-
technikum in Zürich. Dedekind realized that the foun-
dations of calculus, in particular, the properties of the
real-number system on which calculus rests, were not

properly understood. When faced with the challenge of
teaching calculus to students at the Polytechnikum for
the first time, Dedekind decided not to sidestep the
issue, but rather develop an approach that would prop-
erly justify the principles of the subject to himself and
to his students. This is when the idea of a Dedekind cut
came to him.

Dedekind published the details of this construc-
tion several years later in his famous 1872 paper
“Continuity and Irrational Numbers.” This paper was
extremely well received and was admired not only for
the brilliant ideas it contained, but also for the man-
ner in which those ideas were detailed. Dedekind
exhibited a talent for explaining mathematical con-
cepts with exceptional clarity.

In 1862 Dedekind returned to his hometown to
accept a position at the Brunswick Polytechnikum. He
remained there for the rest of his life. He never married
and lived his life with one of his sisters, who also
remained unmarried.

Dedekind received many honors for his outstanding
work, including election to the Berlin Academy in 1880,
the Academy of Rome and the Académie des Sciences,
Paris, in 1900, as well as honorary doctorates from the
Universities of Zurich, Brunswick, and Oslo. Dedekind
died in Brunswick, Germany, on February 12, 1916.

Dedekind made a lasting impact on the modern
understanding of the real-number system. Most every
college-level course on the topic of the real numbers
will discuss in detail the issues Dedekind explored.

Dedekind cut During the 1800s it became clear to
mathematicians that in order to prove that CALCULUS

is mathematically sound one needs to properly define
what is meant by a real number and, moreover, show
that the real number system is “complete,” in the
sense that no points are “missing” from it. This is par-
ticularly important for establishing the EXTREME-
VALUE THEOREM, the INTERMEDIATE-VALUE THEOREM,
and the MEAN-VALUE THEOREM. All the key theorems
in calculus rely on these three results.

Although the RATIONAL NUMBERS Q are relatively
easy to define, the system of rationals is certainly not
complete: the square root of 2, for example, is not a
fraction and so is “missing” from the set of rationals.
The task of defining exactly what is meant by an irra-
tional number perplexed scholars for a very long time,
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and the definition of a REAL NUMBER was subject to
much debate.

In 1872 JULIUS DEDEKIND had the very simple and
elegant idea to simply define the irrationals to be the
gaps in the rational number line. He noted that each
“gap,” like the square root of 2 for example, divides the
line of rationals into two pieces—a left piece and a right
piece. One can focus one’s attention on just the left
piece (for those points that are not in it constitute the
right piece) and this left piece L satisfies the following
three properties:

1. It is not empty, nor is it the whole set of points.
2. If a is a number in L, and b<a, then b also belongs

to L.
3. If a is a number in L, it is possible to find another

number c also in L but slightly larger than a.

Dedekind simply defined a real number to be any subset
L of the rational numbers satisfying these three proper-
ties. Such a set is today known as a Dedekind cut.

Every rational number r defines a cut. One can
check that the set r* = {a ∈ Q : a < r} satisfies the three
properties. Thus the set of Dedekind cuts “contains”
all the rational numbers as sets of this type. It also con-
tains other types of numbers. For example, the square
root of 2 is given by the set:

L = {a ∈ Q : a is negative, or a is positive and a2<2}

One can check that any union of cuts, in the context
of SET THEORY, is again a cut. With this surprisingly
simple definition of a real number, Dedekind was
able to prove all the properties of the real-number
system required for establishing the soundness of cal-
culus. In particular, he was able to show that any col-
lection of real numbers with an upper BOUND

necessarily possesses a least upper bound. (This least
upper bound is the union of all the cuts listed in the
collection.)

deductive/inductive reasoning In the scientific meth-
od, there are two general processes for establishing
results. The first, called inductive reasoning, arrives at
general conclusions by observing specific examples,
identifying trends, and generalizing. “The sun has
always risen in the past, therefore it will rise tomor-
row,” for example, illustrates this mode of reasoning.

The inductive process relies on discerning patterns
but does not attempt to prove that the patterns
observed apply to all cases. (Maybe the sun will not
rise tomorrow.) For this reason, a conclusion drawn by
the inductive process is called a conjecture or an edu-
cated guess. If there is just one case for which the con-
clusion does not hold, then the conjecture is false. Such
a case is called a COUNTEREXAMPLE.

To illustrate, in the mid-1700s LEONHARD EULER

observed that the product of two consecutive integers
plus 41 seems always to yield a PRIME number. For exam-
ple, 2 × 3 + 41 = 47 is prime, as is 23 × 24 + 41 = 593
and 37 × 38 + 41 = 1447. By inductive reasoning, we
would conclude that n × (n + 1) + 41 is always prime.
However, this is a false conclusion. The case n=40 pro-
vides a counterexample: 40 × 41 + 41 = 41 × 41 = 1681
is not prime. (Curiously n × (n + 1) + 41 is prime for all
values n between –40 and 39.)

Many intelligence tests ask participants to identify
“the next number in the sequence.” These questions
rely on inductive reasoning, but are not mathematically
sound. For example, given the challenge:

What number comes next in the sequence:
2 4 6?

any answer is actually acceptable (although the test
designers clearly expect the answer “8”). One can
check that the POLYNOMIAL

for example, has values 2, 4, and 6 when n equals 1, 2,
and 3, respectively, and value a when n equals 4. Setting
a to be an arbitrary value of your choice gives justifica-
tion to any answer to this problem. (This particular
polynomial was devised using LAGRANGE’S FORMULA.)

On the other hand, deductive reasoning works to
prove a specific conclusion from one or more general
statements using logical reasoning (as given by FORMAL

LOGIC) and valid ARGUMENTs. For example, given the
statements, “All cows eat grass” and “Daisy is a cow,”
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we can conclude, by deductive reasoning, that Daisy
eats grass.

Deductive reasoning does not rely on the premises
that are made necessarily being true. For example,
“Sydney and Boston are planets, therefore Boston is a
planet” is a valid argument, whereas “Either Boston or
Venus is a planet, therefore Venus is a planet” is invalid.

Mathematicians are not satisfied with conclusions
drawn via inductive reasoning only. They always seek
logical proof to conjectures made. But this certainly
does not bar mathematicians from making conjectures.
For instance, GOLDBACH’S CONJECTURE is an example
of an outstanding conjecture still awaiting mathemati-
cal proof (or disproof).

deformation In TOPOLOGY, any geometric transfor-
mation that stretches, shrinks, or twists a shape, but
does not tear or break apart any lines or surfaces that
make the shape, is called a (continuous) deformation.
For example, it is possible to mold a solid spherical ball
made of clay into the shape of a cube without tearing
any portions of the clay. In this sense, a cube may be
considered a deformation of a sphere. It is not possible,
however, to mold a sphere into the shape of a TORUS

(donut) without creating a tear. Topologists conse-
quently regard a sphere and a torus as distinct shapes
(but a cube and a sphere as the “same” surface).

The notion of a deformation can be made mathe-
matically precise. If, for a fixed set S, one object A is
the image of a map f, and a second object B is the
image of a second map g:

f : S → A
g : S → B

then B is a deformation of A if there is a continuous
function H(s,t) where s ∈S and 0 ≤ t ≤ 1, so that H(s,0)
is the map f, and H(s,1) is the map g. One also says
that the map H “deforms A into B.”

For example, the function H(x,t) = t cos x + (1 – t)
sin x continuously transforms a sine curve into a
cosine curve.

degree measure See ANGLE.

degree of a polynomial The highest power of the
variable that appears (with nonzero COEFFICIENT) in a

POLYNOMIAL is called the degree of that polynomial. For
instance, the polynomial 4x3 – 2x + 7 has degree three,
and the polynomial 7w57 – 154w18 + w5 – 73w4 + πw2

has degree 57. Any nonzero constant can be thought
of as a polynomial of degree zero. In some mathemati-
cal problems it is convenient to regard the constant 0
as a polynomial of degree “negative infinity.” A
POWER SERIES, in some sense, is a polynomial of posi-
tive infinite degree.

degree of a vertex (valence) In any GRAPH, the
number of edges meeting at a particular vertex is called
the degree of that vertex. Summing all the degrees of
vertices in a graph counts the total number of edges
twice. The famous HANDSHAKE LEMMA from GRAPH

THEORY is an amusing consequence of this result.

degrees of freedom The number of independent
variables needed to specify completely the solution set
of a SYSTEM OF EQUATIONS is called the number of
degrees of freedom of the system. For example, the
mathematical system described by the equations:

3x + 2y – z = 7
x + 4y – 3z = 6

has just one degree of freedom: if the value of z is speci-
fied, then x and y are given by x = (8–z)/5 and
y = (11+8z)/10.

In physics, the number of degrees of freedom of a
mechanical system is the minimum number of coordi-
nates required to describe the state of the system at any
instant relative to a fixed frame of reference. For
instance, a particle moving in a circle has one degree of
freedom: its position is completely specified by the
angle between a fixed line of reference and the line con-
necting the center of the circle to the particle. A particle
moving in a PLANE, or on the surface of a SPHERE, has
two degrees of freedom.

See also INDETERMINATE EQUATION.

De Moivre, Abraham (1667–1754) French Geome-
try, Statistics Born on May 26, 1667, French scholar
Abraham De Moivre is remembered for his pioneering
work in the development of analytic geometry and the
theory of probability. He was the first to introduce
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COMPLEX NUMBERS into the study of TRIGONOMETRY,
leading to the famous formula that now bears his
name. He was also the first to describe and use the nor-
mal frequency curve in statistics.

Immigrating to England in 1685, De Moivre
worked as a private tutor in mathematics. He had
hoped to receive a faculty position in mathematics but,
as a foreigner, was never offered such an appointment.
He remained a private tutor all his life, despite the rep-
utation he had garnered as a capable and influential
scholar. He was elected a fellow of the ROYAL SOCIETY

in 1697 and, in 1710, was appointed to a commission
set up by the society to adjudicate on the rival claims of
SIR ISAAC NEWTON and GOTTFRIED WILHELM LEIBNIZ

as the discoverers of CALCULUS.
De Moivre published two notable texts. The first,

Doctrine of Chance (1718), carefully examined the
underlying principles of PROBABILITY theory and soundly
developed fundamental notions such as “statistical inde-
pendence” and the “probability product law,” as well as
established foundations for applications to the theory of
annuities. The second, Miscellanea analytica (1730), suc-
cessfully identified the principles that later allowed him
to write down a formula for the NORMAL DISTRIBUTION,
a task that had stymied scholars before this time. This
second work also contained the mathematics necessary
to establish STIRLING’S FORMULA.

It is said in all seriousness that De Moivre correctly
predicted the day of his own death. Noting that he was
sleeping 15 minutes longer each day, De Moivre sur-
mised that he would die on the day he would sleep for
24 hours. A simple mathematical calculation quickly
yielded the date, November 27, 1754. He did indeed
pass away on that day.

See also DE MOIVRE’S FORMULA.

De Moivre’s formula (De Moivre’s identity) In
1707 French mathematician ABRAHAM DE MOIVRE

discovered the following formula, now called De
Moivre’s formula:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

For positive integers n the formula can be proved by
INDUCTION, making use of the addition formulae for
the sine and cosine functions from TRIGONOMETRY. A
much simpler approach follows by making use of

EULER’S FORMULA cosθ+isinθ = eiθ and realizing that De
Moivre’s result is nothing more than a restatement of
the exponent rule:

(eiθ)
n

= einθ

This shows that the De Moivre’s formula actually holds
for any real value for n.

De Morgan, Augustus (1806–1871) British Alge-
bra, Logic Born on June 27, 1806, in Madura,
India, English citizen Augustus De Morgan is remem-
bered in mathematics for his considerable contribu-
tions to FORMAL LOGIC and ALGEBRA. In 1847 he
developed a formal system of symbolic manipulations
that encapsulated the principles of Aristotelian logic
and included the famous laws that now bear his
name. He is also remembered for properly defining
the process of mathematical INDUCTION and setting
this method of proof in a rigorous context.

De Morgan entered Trinity College, Cambridge, at
the age of 16, and, at the completion of his bachelor’s
degree, applied for the chair of mathematics at the newly
founded University College, London, at the young age of
21. Despite having no mathematical publications at the
time, he was awarded the position in 1827.

De Morgan became a prolific writer in mathemat-
ics. His first text, Elements of Arithmetic, published in
1830, was extremely popular and saw many improved
editions. He later wrote pieces on the topics of CALCU-
LUS and algebra, and his 1849 text Trigonometry and
Double Algebra was also extremely influential. This
latter piece contained a useful geometric interpretation
of COMPLEX NUMBERS. De Morgan also wrote literally
hundreds of articles for the Penny Cyclopedia, a publi-
cation put out by the Society for the Diffusion of Use-
ful Knowledge. He presented many original pieces as
entries in this work. His precise definition of induction,
for instance, appears in an article in the 1838 edition.

Taking an active interest in the general dissemina-
tion of mathematical knowledge, De Morgan cofounded
in 1866 an academic society, the London Mathematical
Society, and became its first president. The society still
exists today and works to facilitate and promote mathe-
matical research.

As a collector of odd numerical facts, De Morgan
noted that being 43 in the year 1849 was a curious
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event, given that the number 1,849 is 43 squared. He
also observed that all those born in the year 1892
would enjoy a similar coincidence in the year 1936,
and those born in 1980 one in the year 2025. (The
number 2,025 is 45 squared.)

De Morgan died in London, England, on March
18, 1871.

See also DE MORGAN’S LAWS.

De Morgan’s laws If A and B are two subsets of a
universal set, and A′ and B′ denote their complements,
then the following two identities, known as De Mor-
gan’s laws, hold:

(A∩B)′ = A′ ∪ B′
(A∪B)′ = A′ ∩ B′

These identities can be used to convert any intersection
of sets into a union of sets, or vice versa.

These laws can be seen to hold true with the aid of
a VENN DIAGRAM (by shading the region outside the
intersection or the union of the two sets), or by a formal
SET THEORY argument. For instance, to prove the first
law, one must establish that any element that belongs to
(A∩B)′ also belongs to A′∪B′, and vice versa. This can
be done as follows:

If x ∈ (A∩B)′, then x ∉ A∩B, meaning that x
does not belong to both A and B. Conse-
quently, x belongs to at least one complement
A′ or B′, and so x ∈ A′∪B′.

Conversely, if y ∈ A′∪B′, then y does not
belong to one (or both) of A and B. Conse-
quently, y is not an element of A∩B, and so
y ∈(A∩B)′.

The second law can be proved similarly.
De Morgan’s laws can be extended to the intersec-

tion or union of more than two sets. We have:

(A∩B∩C∩…∩Z)′ = A∪B′∪C′∪…∪Z′
(A∪B∪C∪…∪Z)′ = A′∩B′∩C′∩…∩Z′

When a set A is interpreted as “the set of all instances
in which a claim p is true,” and B “the set of all
instances in which a claim q is true,” then De Morgan’s
laws in set theory translate to the following two identi-
ties in FORMAL LOGIC:

¬(p q) = (¬p)∨(¬q)
¬(p∨q) = (¬p) (¬q)

A TRUTH TABLE establishes that these corresponding
pairs of compound statements are logically equivalent.
These equivalences are also called De Morgan’s laws.

The formulae presented above were proposed in
1847 by Indian-born British mathematician and logi-
cian AUGUSTUS DE MORGAN (1806–71).

denumerable (enumerable, numerable) A COUNT-
ABLE infinite set is said to be denumerable. Thus a
denumerable set is any infinite set whose elements can
be placed in a list akin to the list of natural numbers 1,
2, 3, … The first DIAGONAL ARGUMENT shows that the
set of RATIONAL NUMBERS is denumerable. The diago-
nal argument of the second kind establishes that the set
of REAL NUMBERS is not. In some definite sense then,
the set of real numbers is a “larger” infinite set than
the infinite set of rationals. A denumerable set is said to
have CARDINALITY ℵ0. Every infinite set contains a
denumerable subset. This can be established as follows:

Suppose X is an infinite set. Let x1 be any ele-
ment of X. Since X is infinite, this is not the
only element of X. Let x2 be another element
of X. Since X is infinite, these are not the only
two elements of X. Let x3 be another element
of X. Thus continuing this way produces a list
of elements of X: x1, x2, x3, … This list repre-
sents a denumerable subset of X.

One can legitimately say, then, that a denumerable set
is the “smallest” type of infinite set. That is, ℵ0 is the
“smallest” transfinite cardinal number.

See also CONTINUUM HYPOTHESIS.

derivative See DIFFERENTIAL CALCULUS.

Desargues, Girard (1591–1661) French Geometry,
Engineering Born on February 21, 1591, in Lyon,
France, mathematician Girard Desargues is considered
the founder of PROJECTIVE GEOMETRY, an innovative,
non-Greek, approach to geometry. His highly original
and famous 1639 text Brouillon project d’une atteinte
aux evenemens des recontres du cone avec un plan

∨
∨
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(Rough draft for an essay on the results of taking plane
sections of a cone) outlined the principles of the new
theory, contained many new results, and offered, for
the first time, a unified theory of the CONIC SECTIONS.
His work, however, was largely ignored at the time of
its release, and the important impact of its ideas was
not properly recognized until the 19th century.

Very little is known of Desargues’s personal life.
Born into a family of wealth, Desargues certainly had
access to an excellent formal education and the free-
dom to explore scholarly interests. His first works in
mathematics, although pertaining to practical themes—
the construction of sundials, stone-cutting techniques,
and the use of perspective in art—were highly theoreti-
cal, densely written, and difficult to read, and conse-
quently were of little use to practitioners in the
respective fields. This may explain why the release of
his famous 1639 piece, written in equally obscure lan-
guage, was largely ignored. Only a few copies of the
text were printed, only one of which survives today.

Desargues’s famous theorem, the “perspective the-
orem” that bears his name, was published in 1648 by
French engraver and painter Abraham Bosse (1602–76)
in his treatise Manière universelle de Mr. Desargues
(General methods of Desargues) on the role of perspec-
tive in art. This single result provided a gateway to a
whole new approach to geometric thinking. Desargues
died in Lyon, France, in September 1661. (The exact
date of his death is not known.)

Desargues’s theorem Named after its discoverer,
French mathematician and engineer GIRARD DESAR-
GUES (1591–1661), this theorem states:

Suppose two triangles ABC and A′B′C′ are posi-
tioned in two- or three-dimensional space so that
the lines joining the corresponding vertices A
and A′, B and B′, and C and C′ pass through a
common point (that is, so that the two triangles
are in “perspective from a point”). Then, if none
of the pairs of sides AB and A′B′, AC and A′C′,
or BC and B′C′ is parallel, then the three points
of intersection of these pairs of sides lie on a
straight line. (That is, the two triangles are in
“perspective from a line.”)

The case of three dimensions is easiest to prove. Noting
that the two triangles cannot lie in parallel planes, one

can show that each point of intersection of a pair of
sides lies on the line of the intersection of the two
planes. The proof of the two-dimensional version of
the theorem is delicate. The converse of Desargues’s
theorem is also true:

If corresponding sides of two triangles have
intersections along the same straight line, then
the lines joining corresponding vertices pass
through a common point.

Desargues’s theorem played a key role in the devel-
opment of PROJECTIVE GEOMETRY. As noted, the theo-
rem does not hold if some pair of lines under
consideration turn out to be parallel. But Desargues
observed that this difficulty can be obviated if one were
to adjoin to space additional points, “points at infin-
ity,” where parallel lines do meet. This inspired Desar-
gues to develop a notion of geometry in which each
pair of points determines a unique line and, moreover,
each pair of lines determine (intersect at) a unique
point. In this system, the notions of “point” and “line”
play dual roles, leading to a general principle of duality
in this new projective geometry:

Interchanging the roles of “point” and “line”
in any theorem of projective geometry leads to
another statement that is also true in projective
geometry.

The dual of Desargues’s theorem is its converse.
See also PERSPECTIVE.

Descartes, René (1596–1650) French Geometry, Alge-
bra, Philosophy Born on March 31, 1596, in La Haye
(now Descartes), France, philosopher René Descartes is
remembered in mathematics for his 1637 influential
work La géométrie (Geometry), in which he introduced
fundamental principles for incorporating ALGEBRA into
the study of GEOMETRY, and vice versa. This work
paved the way for developing the notion of a coordinate
system and, although not featured in his work, CARTE-
SIAN COORDINATES are today named in his honor.
Descartes is also noted for his “rule of signs” for count-
ing the number of solutions to POLYNOMIAL equations,
and for promoting the use of symbols in algebraic
work. He advocated the use of letters to represent vari-
ables, suggesting the convention that letters first in the
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alphabet should refer to known quantities and letters in
the latter part of the alphabet unknown quantities. (For
instance, we today, without question, interpret the
equation ax+b=0 as one containing a variable x, with a
and b assumed to be known quantities.) Descartes also
developed the index notation for EXPONENTS: x2, x3,
and the like. As a philosopher, Descartes was interested
in exploring the deepest underlying principles of all of
scientific knowledge. He felt that mathematics lay at the
base of all understanding.

After receiving a law degree from the University of
Poitiers in Paris in 1616, Descartes traveled to Holland
to enlist in the military school at Breda to study mathe-
matics and mechanics. Duty with the army took him
across Europe for a number of years, but in 1628
Descartes returned to Holland and began a comprehen-
sive treatise on physics, optics, and celestial mechanics.
He decided, however, not to publish this work after
hearing that GALILEO GALILEI (1564–1642) was con-
demned to house arrest for espousing modern scientific
thought. Descartes later modified the piece and pub-
lished a treatise on science in 1637 in which La
géométrie appeared as an appendix.

In 1644 Descartes published Principia philo-
sophiae, a comprehensive tome exploring all aspects in
scientific investigation and knowledge. Divided into
four parts—The Principles of Human Knowledge, The
Principles of Material Things, Of the Visible World,
and The Earth—Descartes’s work argued that mathe-
matics lies at the foundation of all thinking and that
all studies of nature and of the universe can be
reduced to the mathematical principles of mechanics.
This work was extremely influential, but the specific
details of some of the theories Descartes outlined in it
were problematic. For instance, Descartes believed
that forces, such as gravitational forces, could not be
transmitted without some kind of ambient medium.
Thus, he was forced to conclude that vacuums do not
exist, and that the entire universe is filled with matter.
He developed a “vortex theory” in which he argued
that the planets and the Sun are carried through space
by a system of vortices in the ambient medium. This
theory of vortices was accepted for nearly 100 years
in France until SIR ISAAC NEWTON (1642–1727)
demonstrated mathematically that such a dynamical
system is impossible.

In 1649 Descartes moved to Stockholm to accept a
position to tutor Queen Christina of Sweden in mathe-

matics. The cold climate did not suit Descartes well,
and he died a few months later on February 11, 1650,
of pneumonia.

Descartes instigated a philosophical shift as to how
mathematics and analytical thought are utilized in the
role of scientific investigation. Rather than shape scien-
tific theories around what is observed experimentally,
Descartes argued to identify fundamental “self-evident”
principles first and to use logical reasoning to under-
stand the causes behind experimental phenomena. His
desire to carry the topic of geometry into physics as a
part of this process is still felt today: most every branch
of modern physics is described in geometric terms.

Descartes’s rule of signs Discovered by philosopher
and mathematician RENÉ DESCARTES (1596–1650), the
“rule of signs” gives a bound on the maximum number
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of positive roots a POLYNOMIAL equation may possess.
This bound is given by the number of sign changes that
occur when the terms of the polynomial are written in
descending order of degree. As an example, in reading
from left to right, the polynomial equation:

x6 + 7x5 – 2x4 – 6x3 – 7x2 + 8x – 2 = 0

has three sign changes (from positive to negative, nega-
tive to positive, and back again), and so the equation
has at most three positive solutions.

The rule can be extended to count negative roots as
well by replacing “x” with “–x” (which, in effect,
reflects the negative x-axis to the positive side) and
applying the same rule to the polynomial that results.
In the example above, the resultant polynomial is:

(–x)6 + 7(–x)5 – 2(–x)4 – 6(–x)3 – 7(–x)2 + 8(–x) – 2 = 0

that is,

x6 – 7x5 – 2x4 + 6x3 – 7x2 – 8x – 2 = 0

That there are four sign changes indicates that there are
at most four negative solutions to the original equation.

As another example, one can quickly check that
the equation x6 – 64 = 0 has at most one positive solu-
tion (which must be x = 2), and no negative solutions.

Proof of the Rule
Very few mathematics texts present a proof of
Descartes’s famous result. The argument, unfortunately,
is not elementary and relies on techniques of CALCULUS.
We present here a proof that also makes use of the
principle of mathematical INDUCTION.

Descartes’s rule of signs certainly works for polyno-
mial equations of degree one: an equation of the form
ax + b = 0, with a and b each different from zero, has
one positive solution if a and b are of different signs,
and no positive solutions if they are the same sign.

Assume Descartes’s rule of signs is valid for any
polynomial equation of degree n, and consider a poly-
nomial p(x) = an+1xn+1 + anxn + … + a1x + a0 of degree
n + 1. Its derivative p′(x) = (n + 1)an+1xn + nanxn–1 + …
+a1 is a polynomial of degree n and so, by assumption,
has at most k positive roots, where k is the number of
sign changes that occur. Each root of p′(x) represents a
local maximum (hill) or local minimum (valley) of the

original polynomial, and a root of the original polyno-
mial can only occur directly after one such location.
Thus the original polynomial has at most k positive
roots after the location of the first positive root of
p′(x). Whether the graph of p(x) crosses the positive x-
axis just before this first local maximum or minimum
depends on the signs of p(0) = a0 and p′(0) = a1. If
both are positive, then the graph is increasing to a
local maximum just to the right of x = 0, and there is
no additional root. Similarly, there is no additional
root if both are negative. Only if a0 and a1 have oppo-
site signs could the original equation have k + 1 rather
than just k positive roots.

As the sign changes of the derivative p′(x) match
those of p(x), and with the additional consideration of
a possible sign change between a0, and a1, we have that
the number of sign changes of p(x) does indeed match
the number of possible positive roots it could possess.
This proves the rule of signs.

We can further note that if a local maximum to a
graph occurs below the x-axis, or if a local minimum
occurs above the axis, then the polynomial fails to
cross the x-axis twice. Thus, the number of positive
roots a polynomial possesses could miss the number
indicated by the count of sign changes by a multiple of
2. This leads to a more refined version of Descartes’s
rule of signs:

Write the terms of a polynomial from highest
to lowest powers, and let k be the number of
sign changes that occur in reading the coeffi-
cients from left to right. Then that polynomial
has at most k positive roots. Moreover, the
number of positive roots it does possess will be
even if k is even, and odd if k is odd.

A bound on the number of negative roots can
be found substituting –x for x and applying the
same rule to the modified polynomial.

determinant In the study of SIMULTANEOUS LINEAR

EQUATIONS, it is convenient to assign to each square
MATRIX (one representing the coefficients of the terms
of the simultaneous equations) a number called the
determinant of that square matrix. To explain, consider
the simple example of a pair of linear equations:

ax + by = e
cx + dy = f
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Solving for x in the first equation and substituting the
result into the second equation yields the solution:

This, of course, is valid only if the quantity ad – bc is
not zero. We call ad – bc the “determinant” of the 2 × 2
matrix of coefficients:

Notice that this determinant is obtained from the
matrix by selecting two elements of the matrix at a
time, one located in each row and column of the
matrix, and assigning a + or – sign according to
whether the order in which the columns are chosen is
an even or an odd PERMUTATION:

In the same way, a system of three simultaneous
equations:

ax + by + cz = p
dx + ey + fz = q
gx + hy + iz = r

has a solution provided the quantity aei – afh + bfg –
bdi + cdh – ceg is not zero. We call this quantity the
determinant of the 3 × 3 square matrix:

It is obtained from the matrix by selecting three ele-
ments of the matrix at a time, one located in each row

and column of the matrix, and assigning a + or – sign
according to whether the order in which the columns
are chosen is an even or an odd permutation:

Notice that the signs of the products can equivalently
be evaluated in terms of the sign of row permutations.

In general, the determinant of an n × n matrix is
formed by selecting n elements of the matrix, arranged
one per row and one per column, forming the product
of those entries, assigning the appropriate sign, and
adding together all possible results. The determinant of
a square matrix A is denoted det(A) or, sometimes, |A|.

The determinant function satisfies a number of key
properties:

1. If a column or a row of a matrix A is
entirely zero, then det(A) = 0.

(Each product formed in computing the determinant
will contain a term that is zero.)

2. If two columns or two rows of the matrix
are interchanged, then the sign of det(A)
changes.

(If two columns undergo one more interchange, then the
sign of each permutation alters. Since the process of
forming the determinant can equivalently be viewed in
terms of row permutations, the same is true if two rows
are interchanged.)

3. If a matrix A has two identical columns, or
two identical rows, then det(A) = 0.

(Interchange those two columns or two rows. The
matrix remains unchanged, yet the determinant has
opposite sign. It must be the case then that det(A) = 0.)

a b c

d e f

g h i

a b c

d e f

g h i

a b c
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g h i
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−

= −
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It is sometimes convenient to think of the determi-
nant of a matrix A as a function of its columns written
as vectors v1, v2,…, vn. We write det(A) = det(v1, v2,…,
vn). Then, by the above observations, we have:

det(v1,…, 0,…, vn) = 0
det(v1,…, vi,…, vj,…, vn) = –det(v1,…, vj,…, vi,…, vn)

det(v1,…, v,…, v,…, vn) = 0

We also have:

4. det(v1,…, v + w,…, vn) = det (v1,…, v,…, vn)
+ det(v1,…, w,…, vn)

and

5. det(v1,…, kv,…, vn) = k det(v1,…, v,…, vn)

and consequently

6. The value of det(A) is not altered if a multi-
ple of one column is added to another col-
umn: det(v1,…, vi + kvj,…, vn) = det(v1,…,
vi,…, vn)

These results follow from the definition of the deter-
minant. The corresponding results about rows are
also valid.

CRAMER’S RULE shows that the notion of a deter-
minant is precisely the concept needed to solve simulta-
neously linear equations. We have:

A system of simultaneous linear equations has a
(unique) solution if the determinant of the cor-
responding matrix of coefficients is not zero.

Cramer’s rule goes further and provides a formula for
the solution of a system in terms of determinants.

The determinant has another important property.
After some algebraic work it is possible to show:

The determinant of the product of two n × n
matrices A and B is the product of their
determinants:

det(AB) = det(A) × det(B)

The determinant of the IDENTITY MATRIX I is one. If a
square matrix A is invertible, then the equation:

1 = det(I) = det(A · A–1) = det(A) · det(A–1)

shows that det(A) is not zero and that

We have:

If a matrix is invertible, then its determinant is
not zero.

The converse is also true:

If the determinant of a matrix is not zero, then
the matrix is invertible.

To see why this holds, suppose that A is a matrix
with nonzero determinant. Let ei denote the ith column
of the identity matrix. By Cramer’s rule, since the deter-
minant is not zero, the system of equations Ax = ei has a
solution x = si, say. Set B to be the matrix with ith col-
umn si. Then AB = I. This shows at least that A has a
“right inverse” B. To complete the proof, let AT denote
the transpose of A, that is, the matrix obtained from A
by interchanging its rows and columns. Since the deter-
minant can be viewed equivalently well as a function of
the rows of the matrix as its columns, we have that
det(AT) = det(A). Since the determinant of AT is also
nonzero, there is a matrix C so that ATC = I. One can
check that the transpose of the product of two matrices is
the reverse product of their transposes. We thus have:
CTA = (ATC)T = IT = I. This shows that the matrix A also
has a left inverse CT. The left and right inverses must be
equal, since CT = CTI = CT AB = IB = B. Thus the matrix
B is indeed the full inverse matrix to A: AB = BA = I.

See also INVERSE MATRIX.

diagonal Any line joining two nonadjacent vertices
of a POLYGON is called a diagonal of the polygon. For
example, a square has two diagonals, each cutting the
figure into two congruent right-angled triangles, and a
pentagon has five different diagonals. There are no
diagonals in a triangle. In general, a regular ngon has 

distinct diagonals.

A diagonal for a POLYHEDRON is any line joining
two vertices that are not in the same face. A cube, for

n(n – 3)
———–

2

1det(A–1) = ———
det(A)
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example, has four distinct diagonals. A diagonal plane
for a polyhedron is any plane that passes through two
edges that are not adjacent.

diagonal argument The diagram at bottom right
shows that it is possible to match the elements of an
infinitely long line of objects with the elements of a
two-dimensional array of objects in a perfect one-to-
one correspondence (meaning that each and every ele-
ment of the first set is matched with exactly one
element of the second set, and vice versa). In some
sense, this shows that an infinite two-dimensional
array is no “larger” than an infinite one-dimensional
array. Similar constructions can be used to match ele-
ments of higher-dimensional arrays with the elements
of a single infinite line of objects.

The correspondence described is called a diagonal
argument of the first kind. It was first introduced by
German mathematician GEORG CANTOR (1845–1918)
in 1891. This argument shows that the set of positive
RATIONAL NUMBERS is of the same CARDINALITY (that
is, of exactly the same “size”) as the set of NATURAL

NUMBERS:

First list an infinite string including all of the

rationals with numerator 1: , , ,…. Under-

neath this string, list all the rationals with
numerator 2 that do not reduce to a fraction 

with numerator 1: , , ,…, and under-

neath this, write the string of all rationals with
numerator 3 that do not reduce to a fraction 

with numerator 1 or 2: , , , ,…; and so 

forth. The diagonal argument now shows that
the set of all positive rationals can indeed be
presented as a single denumerable list:

, , , , , , ,…

This shows that the set of rationals is COUNTABLE.
One can also use this argument to show that the

union of a countable number of countable sets is itself
countable: simply list the elements of each set in an
infinite string, one per line of a two-dimensional array,
and use the diagonal argument to provide a method of
listing all the elements in the array.

Cantor provided a “diagonal argument of the sec-
ond kind” to show that the set of real numbers is an
infinite set that, in some definite sense, is “larger” than
the set of counting numbers or the set of rationals. For
convenience, work with the set of real numbers in the
INTERVAL [0,1]. Each such real number can be written
as an infinite decimal, using an infinite string of nines
if necessary. For example, 1/3 = 0.3333 … and 1/2 =
0.5 = 0.49999 … Cantor’s second-diagonal argument
proceeds as follows:

Suppose it is possible to produce a complete
list of all the real numbers from the interval
[0,1], each written as an infinite decimal
expansion:

0.a1 a2 a3 a4 a5 a6…
0.b1 b2 b3 b4 b5 b6…
0.c1 c2 c3 c4 c5 c6…
0.d1 d2 d3 d4 d5 d6…
0.e1 e2 e3 e4 e5 e6…

Construct another real number x = 0.α1 α2α3 …
as follows:

Set α1 equal to 1 if a1 is equal to an 8
or a 9, and equal to 8 if a1 is any
other number; set α2 equal to 1 if b2 is

…

4–
1

1–
3

2–
3

3–
1

1–
2

2–
1

1–
1

3–
5

3–
4

3–
2

3–
1

2–
5

2–
3

2–
1

1–
3

1–
2

1–
1
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equal to an 8 or a 9, and equal to 8 if
b2 is any other number; set α3 equal
to 1 if c3 is equal to an 8 or a 9, and
equal to 8 if c3 is any other number;
and so forth.

Then the number x does not appear on the list.
It is not the first number on the list, since x and
0.a1 a2 a3 a4 … differ in the first decimal place;
nor is it the second number in the list, since x
and 0. b1 b2 b3 … differ in the second decimal
place; nor is it the third, fourth, or 107th num-
ber in the list. Thus from any list of real num-
bers, it is possible to construct another real
number that fails to be on the list.

Even if one were to include the number x constructed
above on a new list of real numbers, one can repeat the
diagonal argument again to produce a new real number
y that fails to be on the list. In this way, one can argue
that there are always “more” real numbers than can be
listed. The set of real numbers is thus of greater cardi-
nality than the set of rational numbers. (It is worth
commenting that, at first, it seems easier to simply con-
struct the real number x = 0.α1α2α3 … by selecting α1

to be any digit different from α1, α2 any digit different
from b2, α3 any digit different from c3, and so forth.
Arbitrary choices, however, could lead to ambiguity
and damage the argument. For instance, the number x
produced could be 0.50000 … which already appears
on the list as 0.49999… The approach taken above
carefully obviates this concern.)

Cantor also proved that there is an infinitude of
infinite sets all larger than the infinite set of natural
numbers.

diameter The furthest distance between two points
on the boundary of a geometric figure is called the
diameter of the figure. For example, the diameter of a
square of side-length 1 is the distance between two
opposite corners of the square. This distance is √

–
2. An

equilateral triangle of side-length 1 has diameter equal
to 1. In this context, the diameter of an object is always
a number.

Sometimes the term diameter also refers to the line
segment itself connecting two boundary points of max-
imal distance apart. For example, the diameter of a cir-
cle is any line segment through the center of the circle

connecting two boundary points. A diameter of a
SPHERE also passes through its center.

Circles and spheres are figures of CONSTANT WIDTH.
See also DIAGONAL.

Dido’s problem According to legend, in the year 800
B.C.E., Princess Dido of Tyre fled her Phoenecian home-
land to free herself of the tyranny of her murderous
king brother. She crossed the Mediterranean and
sought to purchase land for a new city upon the shores
of northern Africa. Confronted with only prejudice and
distrust by the local inhabitants, she was given permis-
sion to purchase only as much land as could be sur-
rounded by a bull’s hide. The challenge to accept these
terms and still enclose enough land to found a city
became known as Dido’s problem.

The Roman poet Virgil (70–19 B.C.E.), in his epic
work Aeneid, refers to the legend of Dido and her
clever solution to the problem. He claims that Dido cut
the hide into very thin strips and pieced them together
to form one very long strand, which she then used to
enclose a proportion of land of maximal area, as given
by the shape of a circle. (More precisely, with coastline
as part of the boundary, Dido formed a semicircle with
bull-hide strips.) The portion of land she consequently
purchased for a minimal price was indeed large enough
to build a city. According to Virgil, this story represents
the founding of the city of Carthage, which is now a
residential suburb of the city of Tunis.

In this story, Princess Dido solved the famous
ISOPERIMETRIC PROBLEM:

Of all figures in the plane with a given perime-
ter, which encloses the largest area?

Mathematical analysis of this problem is difficult. It was
not until the late 19th century that mathematicians were
finally able to prove that the solution presented in this
ancient tale—namely, the circle—is the correct shape.

See also ISOPERIMETRIC PROBLEM.

difference In ARITHMETIC, the result of subtracting
one quantity from another is called the difference of the
two quantities. For example, the difference of 105 and
83 is 22. The minus sign is used to denote differences.
For instance, we write: 105 – 83 = 22. The difference
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of two quantities could be negative. We have, for
example, 5 – 7 = –2. The minus sign was first used in a
printed text in 1489 by German mathematician
Johannes Widman (1462–98).

The absolute difference of two quantities a and b is
the ABSOLUTE VALUE of the difference of the two quan-
tities: |a – b|. The absolute difference of 13 and 8, for
example, is 5, as is the absolute difference of 8 and 13.
Some authors use the symbol ~ to denote absolute dif-
ference: 8 ~ 13 = 5.

In SET THEORY, the difference of two sets A and B
(also called the relative complement of B in A) is the set
of elements that belong to A but not to B. This differ-
ence is denoted A\B or A – B. For example, A =
{1,2,3,6,8,} and B = {2,4,5,6}, the A\B = {1,3,8}. Also,
B\A = {4,5}.

The symmetric difference of two sets A and B,
denoted either A�B, A+B, or AΘB, is the set of all ele-
ments that belong to one, but not both, of the two sets
A and B. It is the union of the differences A\B and B\A.
It is also the difference of the union of A and B and
their intersection:

A�B = (A\B)∪(B\A)
=(A∪B) – (A∩B)

For the example above, we have: A�B = {1,3,4,5,8}.
See also FINITE DIFFERENCES.

difference of two cubes The equation x3 – a3 =
(x – a)(x2 + ax + a2) is called the difference of two cubes
formula. One can check that it is valid by EXPANDING

BRACKETS. Since the sum of two cubes can also be writ-
ten as a difference, x3 + a3 = x3 – (–a)3, we have a com-
panion equation x3 + a3 = (x + a)(x2 – ax + a2).

The DIFFERENCE OF TWO SQUARES and the differ-
ence of two cubes formulae generalize for exponents
larger than 3. We have:

xn– an = (x – a)(xn–1 + axn–2 + a2xn–3 + … + an–2x + an–1)

for n ≥ 2. This shows that the quantity x – a is always a
factor of xn – an. This observation is useful for factor-
ing numbers. For example, we see that 651 – 1 is divisi-
ble by 6 – 1 = 5. Since we can also write 651 – 1 =
(63)17 – 117, we have that 63 – 1 = 215 is also a factor
of 651 – 1.

If n is odd, then there is a companion formula:

xn + an = (x + a)(xn–1 – axn–2 + a2xn–3 – … 
– an–2x + an–1)

This shows, for example, that 212 + 1 (which equals
(24)3 + 13) is divisible by 17.

See also MERSENNE PRIME.

difference of two squares The equation x2 – a2 =
(x – a)(x + a) is called the difference-of-two-squares
formula. One can check that it is valid by EXPANDING

BRACKETS. It can also be verified geometrically: place a
small square of side-length a in one corner of a larger
square of side-length x. The area between the two
squares is x2 – a2. But this L-shaped region can be
divided into two rectangles: one of length x and width
(x – a) and a second of length a and width (x – a).
These stack together to form a single (x – a) × (x + a)
rectangle. Thus it must be the case that x2 – a2 equals
(x – a)(x + a).

The conjugate of a sum x + a is the corresponding
difference x – a, and the conjugate of a difference x – a
is the corresponding sum x + a. Multiplying an alge-
braic or numeric quantity by its conjugate and invok-
ing the difference-of-two-squares formula can often
simplify an expression. For example, if we multiply the 

quantity by “one,” we obtain:

(We have “rationalized” the denominator.)
A sum of two squares, x2 + a2, can be regarded as a

difference if one is willing to work with COMPLEX NUM-
BERS. We have: x2 + a2 = x2 – (ia)2 = (x – ia)(x + ia).

See also DIFFERENCE OF TWO CUBES; RATIONALIZ-
ING THE DENOMINATOR.

differential Close to any point x, the graph of a dif-
ferentiable function y = f(x) is well approximated by a
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small straight-line segment tangent to the graph at x.
The slope of this tangent line is the DERIVATIVE f ′(x).
Using the symbol dx to represent a small change in the
x-variable, we see that the corresponding change in the
y-variable is approximately dy = f ′(x)dx. The quantities
dx and dy are called differentials.

GOTTFRIED WILHELM LEIBNIZ (1646–1716) based
his development of the theory of CALCULUS on the idea 

of a differential. Today we use the notation for the 

derivative f ′(x), deliberately suggestive of Leibniz’s ideas.
See also HISTORY OF CALCULUS (essay); NUMERICAL

DIFFERENTIATION.

differential calculus This branch of CALCULUS deals
with notions of SLOPE, rates of change and ratios of
change. For example, a study of VELOCITY, which can
be described as the rate of change of position, falls
under the study of differential calculus, as do other
concepts that arise in the study of motion.

If a quantity y is a FUNCTION of another quantity
x, y = f(x) say, then each change in the x-variable,
x → x + h, produces a corresponding change in the
y-variable: f(x) → f(x + h). The ratio of the changes of 

the two variables is: . Graphically, this 

represents the slope (the “rise” over the “run”) of the
line segment connecting the two points (x,f(x)) and
(x+h,f(x+h)) on the graph of the curve y = f(x).

The slope of this line segment, for a fixed change h
in the x-variable, depends on the shape of the curve
and will typically change from point to point. A very

steep curve will give a large rise for a fixed run, for
example, whereas a curve that rises slowly will give a
low value for slope. In all cases, if the value h is very
small, then the slope of the line segment described
above approximates the slope of the TANGENT line to
the curve at position x. The smaller the value of h, the
better is the approximation.

In another setting, if y = f(t) represents the position
of a car along a highway at time t, then, over h seconds
of travel, the automobile changes position by amount 

f(t + h) – f(t), and the ratio represents 

the average rate of change of position, or the average
velocity, of the car over h seconds of travel. If the value h
is small, then this quantity approximates the actual speed
of the car at time t as read by the speedometer. The
smaller the value of h, the better is the approximation.

The ratio is called a “Newton 

quotient” to honor the work of SIR ISAAC NEWTON

(1642–1727) in the discovery and development of cal-
culus, and the LIMIT,

if it exists, is called the derivative of the function f(x). It
represents the slope of the (tangent line to the) graph
y = f(x) at position x, or, alternatively, the instantaneous
rate of change of the variable y = f(x) at position/time x.

lim
( ) ( )

h
f x h f x

h→
+ −

0

f(x + h) – f(x)
––———

h

f(t + h) – f(t)
––———

h

f(x + h) – f(x)
––———

h

dy
––
dx
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The derivative of a function y = f(x) at position x is 

denoted either or (or, to make the point at 

which the derivative is being computed explicit, 

or ). The derivative is also written f ′(x), which is 

read as “f prime of x.”
As an example, the derivative of the function

y = f(x) = x2 at position x = 7 is given by:

That is, the slope of the tangent line to the curve
y = x2 at x=7 is 14. In general, the derivative of 
f(x) = x2 at an arbitrary point x is given by: 

. A consider-

able amount of algebra is usually needed to compute
these limits. The aim is to cancel h in the denomina-
tor so as to avoid division by zero.

The process of finding the derivative of a function
is called differentiation. A function y = f(x) is called dif-
ferentiable at a point x if the derivative of the function
f ′(x) exists at that position. A function is differentiable
if its derivative can be computed at every point under
consideration. Not every function is differentiable.

For example, the ABSOLUTE VALUE function y = |x|
has no well-defined tangent line at its vertex at position 

x = 0, and limit does 

not exist. (Consider the cases h positive and negative sep-
arately.) It can be shown that every differentiable func-
tion is continuous, but, as the absolute-value function
shows, a continuous function need not be differentiable.

The thrust of differential calculus is thus the com-
putation of the derivatives of functions. The following

table shows the derivatives of some standard functions.
The PRODUCT RULE, QUOTIENT RULE, and the CHAIN

RULE also assist in the computation of derivatives.

Apart from dealing with issues of rates of change,
differential calculus is also used to solve OPTIMIZATION

problems, that is, problems of finding the maximum or
minimum values for a given function (which are called
MAXIMUM/MINIMUM problems).

ANTIDIFFERENTIATION is intimately connected with
INTEGRAL CALCULUS, the general problem of computing
areas under curves and volumes under surfaces. The
FUNDAMENTAL THEOREM OF CALCULUS explains this
connection.

The derivative of a function y = f(x) at the point
x = x1 can alternatively be defined as the limit:

Some authors of mathematics textbooks prefer this def-
inition. Of course, setting x1 = x and x2 = x + h, it is
equivalent to the definition presented above.

See also CONCAVE UP/CONCAVE DOWN; DIFFEREN-
TIAL; DIFFERENTIAL EQUATION; DIRECTIONAL DERIVA-
TIVE; HIGHER DERIVATIVE; HISTORY OF CALCULUS

(essay); IMPLICIT DIFFERENTIATION; INCREASING/
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DECREASING; MAXIMUM/MINIMUM; MEAN-VALUE THEO-
REM; NUMERICAL DIFFERENTIATION; PARTIAL DERIVA-
TIVE; ROLLE’S THEOREM.

differential equation Any equation that contains
one or more derivatives is called a differential equation.
If such an equation involves just a single independent
variable x and a single dependent variable y and its
derivatives, then it is described as “ordinary.” For 

example, the equation – 4x + 3 = 0 is an ordinary 

differential equation.
A solution of a differential equation is any func-

tion y = f(x) that satisfies the equation. For example,
y = 2x2 – 3x is a solution to the above equation. So too
is y = 2x2 – 3x + 5. These solutions were found by 

writing = 4x – 3 and integrating: y = ∫4x – 3dx

= 2x2 – 3x + C. If particular values of x and y are
known, say y = 0 when x = 1, then a value for C is
determined, in this case C = 1, yielding the particular
solution: y = 2x2 – 3x + 1.

The “order” of a differential equation is the order
of the highest derivative that appears in the equation,
and the “degree” of the equation is the power to which
the highest-order derivative is raised. Thus, for example, 

is a third-order differential 

equation of the first degree, and 

is a third-order equation of degree 2.
An equation involving more than one independent

variable and PARTIAL DERIVATIVEs with respect to those
variables is called a partial-differential equation. For 

example, is a second-order

partial differential equation of degree 3.
Differential equations arise in virtually every

branch of science, economics, and engineering. Any
theory that attempts to describe relationships between
the rates of change of continuously varying quantities
leads to a differential equation. For example, one
model of population growth describes the rate of
change of population size P as proportional to the size 

of the population. This leads to the equation , 

where k is some constant. (See POPULATION MODELS.)

Finding solutions to differential equations is an essen-
tial part of scientific investigation.

There are a number of standard techniques for
solving certain types of differential equations. All
involve rearranging terms or transforming the equation
into a form that can be readily integrated. We outline a
selection of some basic techniques.

Directly Integrable Equations: A first-order equation of
the form:

is directly integrable and has solution given by y =
∫f(x)dx. Similarly, a second-order equation of the form:

can be solved by integrating twice.

Separation of Variables: A first-order equation of the
form:

where f is a function of y only and g is a function of x
only, can be solved by integrating both sides of the
equation with respect to x. This yields:

The method of INTEGRATION BY SUBSTITUTION shows
that the left integral can be interpreted simply as an
integral with respect to the variable y, and so we are
permitted to write:

∫f(y)dy = ∫g(x)dx

We can now evaluate these integrals and solve for y.

For example, to solve write, with an abuse

of notation, dy = dx Integration gives ∫ dy = ∫1dx, 

yielding, , or .1y = ——–
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Homogeneous Equations: A first-order equation of the
form:

can be solved by substituting y = vx. This reduces the
equation to one in v and x alone. Separation of vari-
ables will now work.

For example, to solve , which can 

be written , set y = vx to obtain: 

Separation of variables now applies.

Linear Equations: A first-order equation of the form:

can be solved by multiplying through by the integrating
factor e∫f(x)dx. This yields the equation:

which can be rewritten:

This is directly integrable.

For example, the equation has inte-

grating factor , and so the equation 

can be rewritten , yielding , 

or .

Basic Second-Order Equations: A second-order equa-
tion of the form:

can be solved by multiplying through by 2 to
obtain:

Integrating gives:

After taking square roots, one can now separate
variables.

It is often the case that no known techniques will
solve a particular differential equation that arises in a
particular scientific study. In this case, mathematicians
will often assume that the solution function y = f(x) can
be written as a TAYLOR SERIES: y = a0 + a1x + a2x2

+ a3x3 + … By substituting the series into the differen-
tial equation, it is usually possible to compute the val-
ues of at least the first few coefficients a0,a1,a2,…. This
approach is called the “method of undetermined coeffi-
cients.” In this context, the Taylor series used is some-
times called a perturbation function.

digit A symbol that forms part of a number is called
a digit. For example, the number 42.768 has five digits.
Ten digits are used in decimal notation, namely, 0, 1, 2,
3, 4, 5, 6, 7, 8, and 9. In hexadecimal notation
(base 16), the digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, and F. In the system of binary numbers only
two digits are used: 0 and 1. In general, a counting sys-
tem in base b uses b different digits to represent the
numbers 0 through b – 1.

In the vernacular, the word digit means a finger or
a toe. As one learns to count with one’s digits it is not
surprising that the word has come to be used for spe-
cific numbers the fingers represent. The measure of a
digit, defined as the width of one finger, about 3/4 of an
inch, was a standard Old English unit of LENGTH.

A digital watch displays specific symbols (num-
bers) as discrete units of time (seconds) pass, and a
digital computer processes information supplied to it
in the form of numbers. An analog watch, however,
uses the sweeping entity of a moving hand as an ana-
log to the passing of time, and an analog computer, now
generally considered obsolete, uses a varying voltage to
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mimic continuously changing input information, such as
the rate of flow of oil through a pipeline, for example.

See also BASE OF A NUMBER SYSTEM; ERROR.

dihedral Any geometric construct formed by the
intersection of two planes is called dihedral. For exam-
ple, the line of intersection of two nonparallel planes is
called a dihedral line, and the angle between the two
planes is called a dihedral angle (or, sometimes, a dihe-
dron). A dihedral angle can be computed by taking the
DOT PRODUCT of the two normal vectors to the planes.
The dihedral angle of a polyhedron is the angle
between two adjacent faces of the solid.

The word dihedral comes from the Greek prefix di-,
meaning “two,” and the word hedra, meaning “base,”
“seat,” or “surface.”

See also NORMAL TO A PLANE.

dilation See GEOMETRIC TRANSFORMATION; LINEAR

TRANSFORMATION.

dimension The number of coordinates needed to
specify the position of a particular point in space is
called the dimension of that space. Lines and curves are
considered one-dimensional, since the location of any
point on a curve can be specified by a single parameter,
namely, the distance along the curve at which it lies.
Points in two-dimensional space form a surface, and
points in three-dimensional space lie within a volume.

A physical theory is said to be multidimensional if it
describes the universe with a large number of parameters.
Since events in the world occur at specific locations and
specific times, four parameters are needed to describe
them: three spatial parameters x, y, and z and a fourth
parameter t for time. Because of this, “time” is often
cited as being the fourth dimension. However, a theory
that also considers the electric charge q of objects, say,
would be described as “five-dimensional,” and one that
also considers magnetic strength as “six-dimensional.”
Physicists have asserted that we live in a universe that is
as much as 18-dimensional. There is little meaning here
other than that scientists are asserting that all events in
the universe can be described fully through 18 different
variables. There is no specific reason for the fourth vari-
able to always be interpreted as “time.”

To a mathematician, an n-dimensional object is one
that is fully described by n parameters. For example, a
circle sitting in two-dimensional space is described by
an equation with two variables: x2+y2=1. A SPHERE in
three-dimensional space is described by an equation
with three variables: x2+y2+z2=1. Adding more vari-
ables to the equation gives higher-dimensional spheres:
the equations x2+y2+z2+w2=1 and x2+y2+z2+w2+u2 = 1,
for instance, might be said to describe “hyperspheres”
in four- and five-dimensional space. Although one can-
not envision what these objects are, the mathematics of
these objects is little different from the mathematics of
ordinary circles and spheres.

In a geometric context, “dimension” can be
described through the notion of scaling. If we SCALE a
geometric object by a factor k, then its size changes
accordingly: any line of length a becomes a line of
length ka, any planar region of area A becomes a pla-
nar region of area k2A, and any solid of volume V is
replaced by a solid of volume k3V. An object can thus
be described as d-dimensional if its “size” scales
according to the rule:

new size=kd × old size

In this context, it is possible for a geometric object to
have fractional dimension. Such an object is called a
FRACTAL.

See also HYPERCUBE.

Diocles (ca. 240–180 B.C.E.) Greek Geometry Born
on Évvoia (Euboea), a Greek island (the exact birth
date is not known), Diocles is remembered for his work
on CONIC SECTIONS and his innovative solution to the
DUPLICATING THE CUBE problem via the invention of a
new curve called the cissoid curve.

Almost nothing is known of Diocles’ life, and
knowledge of his work (until recently) came to us
chiefly through references made by scholars after his
time. It is known that Diocles was a contemporary of
APOLLONIUS OF PERGA (ca. 260–190 B.C.E.) and may
have spent considerable time at Arcadia, the intellectual
center of Greek culture.

Diocles wrote one significant text, On Burning
Mirrors, which, although chiefly ignored by Greek
scholars, had considerable influence on Arab mathe-
maticians. A translation of this work was only
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recently discovered in the Shrine Library in Mashhad,
Iran, and an English edition of the text was first pub-
lished in 1976.

The piece is organized as a collection of 16 discus-
sions on original results in geometry, chiefly concerned
with the topic of CONIC SECTIONS. One sees that Dio-
cles was the first to prove the reflection property of a
PARABOLA, thereby solving an old problem presented
by ARCHIMEDES OF SYRACUSE (ca. 287–212 B.C.E.) of
finding a mirror surface that produces heat when
placed facing the sun. (It is said that Archimedes pro-
posed using curved mirrors to reflect the Sun’s rays and
burn the sails of enemy ships.) Diocles also describes
his “cissoid” curve in this text and a method of con-
structing, geometrically, the cube root of any given
length with its aid. As the construction of the cube root
of 2 is the chief stumbling block in the solution of the
duplication of the cube problem, the cissoid provides a
solution to this classic challenge. Today we describe the
cissoid as the plane curve with equation y2(2a – x) = x3,
where a is a constant. The appearance of the cube
power makes the construction of cube roots possible.

Some historians suggest Diocles may have used the
terms parabola, hyperbola, and ellipse for the conic
sections before Apollonius, the scholar usually credited
with the invention of these names. Diocles’ work on
conics greatly influenced the development of the sub-
ject. The exact date of Diocles’ death is not known.

Diophantine equation Any equation, usually in sev-
eral unknowns, that is studied and required to have
only integer-valued solutions is called a Diophantine
equation. For example, the JUG-FILLING PROBLEM

requires us to find integer solutions to 3x + 5y = 1, and
the classification of PYTHAGOREAN TRIPLES seeks inte-
ger solutions to x2 + y2 = z2. These are Diophantine
problems. FERMAT’S LAST THEOREM addresses the
nonexistence of integer solutions to the generalized
equation xn + yn = zn for higher-valued exponents.
Problems of this type are named after DIOPHANTUS OF

ALEXANDRIA, author of the first known book devoted
exclusively to NUMBER THEORY.

In 1900 DAVID HILBERT challenged the mathemati-
cal community to devise an ALGORITHM that would
determine whether or not any given Diophantine equa-
tion has solutions. Seventy years later Yuri Matyasevic
proved that no such algorithm can exist.

Diophantus of Alexandria (ca. 200–284 C.E.) Greek
Number theory Diophantus is remembered as the
author Arithmetica, the first known text devoted exclu-
sively to the study of NUMBER THEORY. Ten of the orig-
inal 13 volumes survive today. In considering some 130
problems, Diophantus developed general methods for
finding solutions to some surprisingly difficult integer
problems, inspiring a field of study that has since
become known as DIOPHANTINE EQUATIONs.

Essentially nothing is known about Diophantus’s
life, not even his place of birth nor the date at which he
lived. Author Metrodorus (ca. 500 C.E.), in the Greek
Anthology, briefly described the life of Diophantus
through a puzzle:

His boyhood lasted one-sixth of his life; his
beard grew after one- twelfth more; he married
after one-seventh more; and his son was born
five years later. The son lived to half his
father’s age, and the father died four years
after the son.

Setting L to be the length of Diophantus’s life, we
deduce then that the quantity:

+ + + 5 + + 4

equals the total span of his life. Setting this equal to L
and solving then yields L = 84. Of course the informa-
tion provided here (that Diophantus married at age 26,
lived to age 84, and had a son who survived to age 42)
is likely fictitious. The puzzle, however, is fitting for the
type of problem Diophantus liked to solve.

In his famous text Arithmetica (Arithmetic) Dio-
phantus presents a series of specific numerical prob-
lems, with solutions provided, that cleverly lead the
reader to an understanding of general methods and
general solutions. Diophantus ignored any solution to a
problem that was negative or involved an irrational
square root. He generally permitted only positive ratio-
nal solutions. Today, going further, mathematicians call
any problem requiring only integer solutions a Dio-
phantine equation.

Some of the problems Diophantus considered are
surprisingly difficult. For instance, in Book IV of Arith-
metica Diophantus asks readers to write the number 10
as a sum of three squares each greater than three. He
provides the answer:

L–
2

L–
7

L–
12

L–
6
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Although Diophantus did not use sophisticated alge-
braic notation, he was the first to use a symbol for an
unknown quantity and to introduce a notation for
powers of that unknown. He also used an abbreviation
for the word equals. This represents the first step in
history toward moving from verbal algebra to sym-
bolic algebra.

Diophantus’s text was profoundly influential and,
centuries later, was deemed essential reading for Euro-
pean scholars of the Renaissance. Inspired by an exer-
cise in the text, scholar PIERRE DE FERMAT (1601–65)
scrawled the famous comment in the margin of his per-
sonal copy of Arithmetica that spurred three centuries
of intense mathematical research in number theory. This
comment became known as FERMAT’S LAST THEOREM.

direction cosines Each point P on the surface of a
unit sphere determines a unique direction in three-
dimensional space: if O is the center of the sphere, then
the ray connecting O to P specifies a direction. Con-
versely, the direction of any given line in space corre-
sponds to a point P on the unit sphere.

Setting O to be the origin of a CARTESIAN COORDI-
NATE system, the “direction cosines” of any directed
line in three-dimensional space are simply the coordi-
nates of the point P on the unit sphere that corresponds
to the direction of that line. For example, the direction
cosine of the positive x-axis is (1,0,0), and that of the
negative z-axis is (0,0,–1).

The use of the word cosine in the name of this con-
cept comes from the observation that the direction of a
line through O is completely specified by the three
angles α, β, and γ it makes with each of positive the x-,
y-, and z-axes, respectively. (These angles are assumed
to lie between zero and 180°. They are called the direc-
tion angles.) An exercise in geometry then shows that
the corresponding point P on the unit sphere has coor-
dinates (cos α, cos β, cos γ).

The three direction cosines are not independent.
Two applications of PYTHAGORAS’S THEOREM show
that these numbers satisfy the relation: cos2 α + cos2 β
+ cos2 γ = 1. Thus any two direction cosines determine
the third.

The direction cosines of an arbitrary line are often
denoted (l,m,n). The “direction ratios” or “direction
numbers” of a line are defined as any set of three num-
bers in the ratio l : m : n. The angle θ between two
lines with direction cosines (l1,m1,n1) and (l2,m2,n2) is
given by:

cos θ = l1l2 + m1m2 + n1n2

This is simply the DOT PRODUCT of the two VECTORs
that describe the directions of the lines.

directional derivative The graph of a function z =
f(x,y) is a surface sitting in three-dimensional space.
The directional derivative of f at a point P = (x,y) and
in the direction given by a VECTOR v = < v1, v2 >,
denoted Dvf, is simply the SLOPE of the surface above
the point P in the direction of v. It is assumed that v is
a vector of length 1.

Specifically, if t is a variable, best thought of as
“time,” then the expression P + tv represents a straight-
line path starting at P pointing in the direction of v,
and f(P + tv) is the “slice” of the surface above this
line. The directional derivative is then the DERIVATIVE

of this quantity with respect to t:

(We require v to be a vector of unit length so that the
“speed” at which we traverse the path P + tv is 1 unit
of length per unit time.)

If we take v to be the unit vector in the direction
of the positive x-axis, v = (1,0), then 

, the PARTIAL DERIVATIVE of the  

function with respect to x. Similarly, the directional
derivative in the direction of the positive y-axis is the
partial derivative with respect to y. In general, the CHAIN

RULE shows:
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which can be rewritten as the DOT PRODUCT of two
vectors:

Dvf = �f · v

where is the GRADIENT of f. This pro- 

vides the easiest method for computing the directional
derivative of a function.

Note that �f · v = |�f | · |v| cos(θ), where θ is the
angle between the two vectors. Since the cosine func-
tion has maximal value for θ = 0°, this shows that the
direction v of steepest slope for a graph at a point P
occurs in the direction v = �f. This proves:

The vector �f points in the direction in which f
increases most rapidly.

Similarly, the cosine function has minimal value for θ =
180°, which shows that the steepest decline occurs in
precisely the opposite direction:

The vector –�f points in the direction in which
f decreases most rapidly.

These ideas extend to functions of more than just two
variables.

direct proof Most claims made in mathematics are
statements of the form:

If the premise A is true, then the conclusion B
is true.

A direct proof of such a statement attempts to establish
the validity of the claim by assuming that the premise A
is true and showing that the conclusion B follows from
a series of logical inferences based on A and other pre-
viously established known facts. Typically, a direct
proof has the form:

1. Assume A is true.
2. Show that A implies B.
3. Conclude that B is true.

The main part of the proof is the demonstration that A
implies B.

As a simple example, we prove: if a natural num-
ber n is even, then n2 is a multiple of 4. We will base its

proof on the known fact that any even number is a
multiple of two (as well as the standard algebraic
manipulations).

Proof: Assume that n is even.
Then n can be written in the form n = 2k, for 

some number k.
Consequently, n2 = (2k)2 = 4k2, and so is a 

multiple of four.
This completes the proof.

An INDIRECT PROOF or a PROOF BY CONTRADICTION

attempts to establish that the conclusion B must be true
by showing that it cannot be false.

See also DEDUCTIVE/INDUCTIVE REASONING; CON-
TRAPOSITIVE; LAWS OF THOUGHT; PROOF; QED; THEOREM.

Dirichlet, Peter Gustav Lejeune (1805–1859) Ger-
man Analysis, Number theory Born on February 13,
1805, near Liège, now in Belgium (although he consid-
ered himself German), scholar Lejeune Dirichlet is
remembered for his significant contributions to the
field of ANALYTIC NUMBER THEORY and to the study of
FOURIER SERIES. In particular, he is noted for proving
that any ARITHMETIC SEQUENCE a, a+d, a+2d, a+3d, …
must contain an infinite number of primes, provided
the starting number a and the difference d are RELA-
TIVELY PRIME. (This shows, for instance, that there are
infinitely many prime numbers that are 7 greater than a
multiple of 13.) Dirichlet was the first to provide the
modern definition of a FUNCTION we use today and, in
the study of trigonometric series, was the first to pro-
vide conditions that ensure that a given Fourier series
will converge. For this reason, despite the work of
JEAN-BAPTISTE JOSEPH FOURIER (1768–1830), Dirichlet
is often referred to as the founder of the theory of
Fourier series.

Dirichlet graduated from the gymnasium (high
school) in Bonn at the age of 16 and went to Paris to
study mathematics. He never formally completed an aca-
demic program there and consequently never obtained a
university degree. In 1825, at the age of 20, Dirichlet
received instant fame as a worthy mathematician by
publishing a proof that there can be no positive-integer
solutions to the fifth-degree equation x5 + y5 = z5. This is
a special case of FERMAT’S LAST THEOREM, and Dirich-
let’s work on it represented the first significant step
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,
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toward solving the general problem since the time of
PIERRE DE FERMAT (1601–65), who had established that
there are no solutions to the fourth-degree equation, and
LEONHARD EULER (1707–83), who had proved that
there are no solutions to the third-degree equation.
Dirichlet was later able to extend his work to the degree-
14 equation, but to no other cases.

In honor of his achievement, Dirichlet was
awarded an honorary doctorate from the University of
Cologne, and with an advanced degree in hand, Dirich-
let then pursued an academic career. He was appointed
professor of the University of Berlin in 1828, where he
remained for 27 years. In 1855 Dirichlet succeeded
CARL FRIEDRICH GAUSS (1777–1855) as chair of math-
ematics at the University of Göttingen.

Dirichlet developed innovative techniques using the
notion of a LIMIT in the study of NUMBER THEORY that
allowed him to make significant advances in the field.
He presented his famous result on ARITHMETIC

SEQUENCES to the Academy of Sciences on July 27,
1837, and published the work in the two-part paper
“Recherches sur diverses applications de l’analyse
infinitésimale à la théorie des nombres” (Inquiry on
various applications of infinitesimal analysis to number
theory) during the 2 years that followed. Dirichlet also
found applications of this work to mechanics, to the
solution of DIFFERENTIAL EQUATIONs, and to the study
of Fourier series. He consistently published papers on
both number theory and mathematical physics
throughout his career. His most notable works include
the 1863 book Vorlesungen über Zahlentheorie (Lec-
tures on number theory), the 1846 article “Über die
Stabilität des Gleichgewichts” (On the stability of the
solar system), and the 1857 article “Untersuchungen
über ein Problem der Hydrodynamik” (Investigation
on a problem in hydrodynamics).

Dirichlet died on May 5, 1859, in Göttingen, Ger-
many. Given the significance of his mathematical work,
many mathematicians of today regard Dirichlet as the
founder of analytic number theory.

discontinuity See CONTINUOUS FUNCTION.

discrete A set of numerical values in which there are
no intermediate values is said to be discrete. For exam-
ple, the set of INTEGERs is discrete, but the set of all

REAL NUMBERS is not: between any two real numbers,
no matter how close, there is another real number. Any
finite set of values is considered discrete.

Since a COUNTABLE set of values can be put in one-
to-one correspondence with the integers, a countable
set is usually regarded as discrete. This can be confus-
ing, however, since the countable set of RATIONAL

NUMBERS, for instance, is discrete in this second sense,
but not in the first: between any two rational numbers 

p and q lies another rational ( , for instance). One 

must rely on the context of the problem under study to
determine whether or not the set of rational numbers
should be regarded as discrete.

In STATISTICS and PROBABILITY theory, a set of DATA

or set of EVENTs is called discrete if the underlying pop-
ulation is finite or countably infinite. The results of
tossing a die, for instance, form a discrete set of events,
since the die must land on one of six faces. In contrast,
for example the range of heights of Australian women
aged 36 is not discrete but continuous.

In GEOMETRY, an ISOMETRY with the property that
each point is moved more than some fixed positive dis-
tance further away is called a discrete transformation.
For example, a translation is discrete, but a rotation or
reflection is not.

Discrete geometry is the study of a finite set of
points, lines, circles, or other simple figures.

discriminant A QUADRATIC equation of the form
ax2 + bx + c = 0 has solutions given by the quadratic
formula:

The quantity under the square root sign, b2 –4ac, is
called the discriminant of the equation. If the discrimi-
nant of a quadratic is positive, then the equation has two
distinct real roots. For example, the equation 2x2 –5x + 2
= 0 has discriminant 3 and the two real solutions x = 2
and x = 1/2. If the discriminant of a quadratic is zero,
then the equation has just one real root. For instance,
x2 –6x + 9 = 0, with discriminant zero, has only x = 3 as
a root. (It is a DOUBLE ROOT.) If the discriminant is nega-
tive, then the quadratic has no real solutions. It does,
however, have (distinct) complex solutions. For example,

x
b b ac

a
= − ± −2 4

2

p +q
––––

2
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x2 + x + 1 = 0, with discriminant –3, has solutions

and .

More generally, the discriminant of any POLYNO-
MIAL equation is defined to be the product of the differ-
ences squared of all the possible pairs of roots of the
equation. For example, if a CUBIC EQUATION has three
roots r1, r2, and r3 (possibly repeated), then the dis-
criminant of cubic is the product:

(r1 – r2)2(r2 – r3)2(r3 – r1)2

It is possible to find a formula for the discriminant in
terms of the coefficients appearing in the equation. For
the case of a quadratic, it turns out to be precisely the
quantity b2 – 4ac described above.

disjunction (“or” statement) A compound statement
of the form “p or q” is known as a disjunction. For
example, “I visited Sydney or Melbourne” is an exam-
ple of a disjunction.

Disjunctions can be interpreted in one of two ways.
If a disjunction “p or q” is read as

p or q, but not both

(“I visited just one of the two cities”), then it is said to
be “exclusive,” and the disjunction is called an “exclu-
sive or” (sometimes denoted XOR). Interpreted as

p or q, or possibly both

(“I visited at least one of the cities”), then the disjunc-
tion is said to be “inclusive” and is called an “inclusive
or.” In FORMAL LOGIC (and in most of mathematics),
disjunctions are always used in the inclusive sense. It is
denoted in symbols by p ∨ q and has the following
TRUTH TABLE:

A disjunction can be modeled via a parallel circuit.
If T denotes the flow of current, then current moves
through the circuit as a whole precisely when one, or
both, switches p and q admit current flow.

See also CONJUNCTION.

displacement The distance traveled by a moving
object is sometimes called its displacement. Physicists
often use the symbol s to denote displacement. The rate
of change of displacement is called VELOCITY.

See also DIFFERENTIAL CALCULUS.

distance formula The distance d between two given
points P1 = (x1,y1) and P2 = (x2,y2) in the plane is the
length of the line segment that connects P1 to P2. If one
regards this line segment as the hypotenuse of a right
triangle with one leg horizontal, that is, parallel to the
x-axis, and one leg vertical, parallel to the y-axis, then
PYTHAGORAS’S THEOREM can be employed to find a
formula for d. The length of the horizontal leg is the
difference of the x-coordinates x2 – x1 or x1 – x2,
whichever is positive, and the length of the vertical leg
is the difference of the y-coordinates, y2 – y1 or y1 – y2.
Thus, by Pythagoras’s result, we have:

This is called the two-dimensional distance formula.
For example, the distance between the points (–3,5)
and (2,1) is = = .
Notice that, as one would expect, the distance formula
is symmetric in the sense that the distance between P1

and P2 is the same as the distance between P2 and P1.
The set of all points (x,y) in the plane a fixed distance r
from a given point C = (a,b) form a CIRCLE with radius

√41√52+ (–4)2√(2 – (–3))2 + (1 – 5)2
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r and center C. The distance formula gives the equation
of such a circle as r = , or (x – a)2 +
(y – b)2 = r2.

In three-dimensional space, the distance d between
two points P1 = (x1,y1,z1) and P2=(x2,y2,z2) is found via
two applications of Pythagoras’s theorem. For instance,
the distance between the points O = (0,0,0) and A =
(a,b,c) is found by first noting that P = (a,b,0) is the
point directly below A lying in the xy-plane, and that
the triangle OPA is a right triangle. By the two-dimen-
sional distance formula, the distance between O and P
is = . The length of the ver-
tical line connecting P to A is c, and the length of the
hypotenuse OA is the distance d we seek. By Pythagoras’s
theorem we have: d2 = ( )2

+ c2 = a2 + b2 + c2.
Thus: d = .

A slight modification of this argument shows that
the general three-dimensional distance formula for the
distance between two points P1 = (x1,y1,z1) and P2 =
(x2,y2,z2) is:

d = 

The set of all points (x,y,z) in space a fixed distance r
from a given point C = (a,b,c) form a SPHERE with radius
r and center C. The distance formula gives the equation
of such a sphere as (x – a)2 + (y – b)2 + (z – c)2 = r2.

The distance formula generalizes to points in n-
dimensional space as the square root of the sum of the
differences of the n coordinates squared. This works even
for one-dimensional space: the distance between two
points x1 and x2 on the number line is d = .
This is precisely the ABSOLUTE VALUE |x2 – x1|.

The LENGTH of a VECTOR v = < a,b,c > is given by
the distance formula: If we place the vector at location
O = (0,0,0) so that its tip lies at A = (a,b,c), then its
length is |v| = .

Distance of a Point from a Plane in 
Three-Dimensional Space
The distance of a point P from a plane is defined to be the
distance between P and the point N in the plane closest to
P. Suppose that the point P has coordinates P = (x0,y0,z0)
and the VECTOR EQUATION OF A PLANE is ax + by + cz + d
= 0 where n = < a,b,c > is the normal to the plane. Then
N is the point (x1,y1,z1) in the plane with vector 

90° to the plane. This means that the vector is 

parallel to n, and so = kn for some constant k. This

gives the equation <x0 – x1,y0 – y1,z0 – z1> = k <a,b,c>,
and so x1 = x0 – ka,y1 = y0 – kb, and z1 = z0 – kc. Since
N = (x1,y1,z1) lies in the plane, this point also satisfies
the equation of the plane. Algebraic manipulation then 

shows that . By the distance 

formula, the distance between P and N is:

This establishes:

The distance of a point P = (x0,y0,z0) from
the plane ax + by + cz + d = 0 is given by the
formula:

Distance of a Point from a Line in 
Two-Dimensional Space
The distance of a point P from a line is defined to be
the distance between P and the point N in the line clos-
est to P. The EQUATION OF A LINE is a formula of the
form ax + by + c = 0. An argument analogous to the
one presented above establishes:

The distance of a point P = (x0,y0) from the
line ax + by + c = 0 is given by the formula:

See also COMPLEX NUMBERS.

distribution Any table or diagram illustrating the
frequency (number) of measurements or counts from
an experiment or study that fall within certain preset
categories is called a distribution. (See STATISTICS:
DESCRIPTIVE.) For example, the heights of 1,000 8-year-
old children participating in a medical study can be
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recorded via a histogram. The categories considered are
conveniently chosen intervals of height ranges, such as
36.1–40.0 in., 40.1–44.0 in., and so on, for example.

If the DATA gathered is numerical and can adopt a
continuous array of values, including fractional values
(for example, height can adopt fractional values—48
3/4 in., or 52.837 in. are possible measurements), then
one can choose narrower and narrower interval ranges
for categories. In the LIMIT, the histogram becomes
then the graph of a smooth curve representing the dis-
tribution of measurements over a continuous spectrum
of values. In some sense, the total area under the curve
represents the total number of measurements observed,
and the area above an interval [a,b] represents the
number of measurements that have value greater than a
and less than b. To make this more precise, it is appro-
priate to scale the distribution so that the total area
under the curve is one (that is, one draws histograms
with vertical bars of heights representing the percentage
of measurements recorded within that category—”rela-
tive frequencies”—with the total area under such a his-
togram representing 100 percent). The ideal curve
obtained in the limit is called a “probability density
function.” The area under the curve above an interval
[a,b] here represents the PROBABILITY that a measure-
ment taken at random falls within the range [a,b].

A numerical quantity that can adopt a continuous
array of values (such as height, weight, or temperature)
is usually called a continuous random variable. One
ascertains the distribution (probability density func-
tion) of a random variable by conducting experiments
or studies—for example by recording the heights of
1,000 8-year-old children—or from mathematical rea-
soning, making use of the CENTRAL-LIMIT THEOREM,
the NORMAL DISTRIBUTION, or perhaps the BINOMIAL

DISTRIBUTION, for example. Often the distribution of a
random, variable is unknown, and “hypothesis testing”

is used to check the validity of an assumption that a
SAMPLE follows a particular distribution. This is part of
inferential statistics.

If a random variable has probability density func-
tion given by a formula f(x), then the area under the
curve to the left of a value x gives a new function F(x)
called the cumulative distribution function. The quan-
tity F(x) represents the probability that a measurement
taken at random has value less than or equal to x.

See also STATISTICS: INFERENTIAL.

distributive property Given a mathematical system
with two operations, such as addition and multiplica-
tion, or union and intersection, we say that one opera-
tion distributes over the second if applying the first
operation to a set of elements combined via the second
produces the same result as applying the first operation
to the individual members of the combination, and
then combining them via the second. For example, in
ordinary arithmetic, multiplication distributes over addi-
tion. We have, for instance:

3 × (2 + 5 + 4) = 3 × 2 + 3 × 5 + 3 × 4

that is, tripling a sum of numbers produces the same
result as tripling each individual number and then sum-
ming. (In arithmetic, the distributive property corre-
sponds to the operation of EXPANDING BRACKETS.)
Notice that addition is not distributive over multiplica-
tion, however. For instance: 4 + (6 × 7)≠(4 + 6) × (4 + 7).
(The first quantity equals 4 + 42 = 46, whereas the sec-
ond is 10 × 11 = 110.)

In arithmetic, the distributive property is usually
expressed as a multiplication applied to the sum of just
two terms:

a × (b + c) = a × b + a × c

That it applies to a sum of three or more terms follows
from applying this basic law more than once. For
instance:

a × (b + c + d) = a × ((b + c) + d)
= a × (b + c) + a × d
= a × b + a × c + a × d

Multiplication also distributes over addition “from the
right.” We have:

distributive property 143

A distribution as a limit



(a + b) × c = c × (a + b)
= c × a + c × b
= a × c + b × c

In SET THEORY, “intersection” distributes over “union”
both from the left and from the right:

A∩(B∪C) = (A∩B)∪(A∩C)
(A∪B)∩C = (A∩C)∪(B∩C)

As a mnemonic device, it is helpful to think of the
phrase “distributes over” as synonymous with “sprin-
kles over.” We have: multiplication “sprinkles over”
additions and intersection “sprinkles over” union. In
any RING, the distributive property is the single axiom
that combines the two defining operations.

See also ASSOCIATIVE; COMMUTATIVE PROPERTY.

div A VECTOR FIELD assigns to every point (x,y,z) in
space a vector F = <f1(x,y,z),f2(x,y,z),f3(x,y,z)>. The
divergence of F, denoted div F, is the quantity:

given as a sum of PARTIAL DERIVATIVEs. Physicists have
shown that this quantity represents the amount of flux
leaving an element of volume in space. For example, if
F represents the velocity field of a turbulent fluid, and ρ
is the density of the fluid, then ρdivF, calculated at a
point P, is the rate at which mass is lost from an
(infinitely small) box drawn around P. (At any instant,
fluid is flowing into and out of this box.)

The divergence operator is often written as though
it is a DOT PRODUCT of two vectors:

divF = � · F

where is the del operator. The CROSS

PRODUCT of � with F is called the curl of F:

If F is the velocity field of a turbulent liquid, then
physicists have shown that 1/2 curl F, calculated at a

point P, is the angular velocity of an element of fluid
located at P, that is, it is a measure of the amount of
turning it undergoes.

See also GRADIENT.

divergent This term simply means “does not con-
verge.” For example, an infinite SEQUENCE is said to
diverge if it has no LIMIT, and an infinite SERIES

diverges if the sequence of partial sums diverges.
A divergent sequence is said to be “properly diver-

gent” if it tends to infinity. For example, the sequence
1,2,3, … is properly divergent (but the sequences 1,
–1,1, –1,1, … and 1, –2,3, –4,5, … are not). One also
describes a series as properly divergent if the corre-
sponding sequence of partial sums has this property.
For example, the series 1 + 2 + 4 + 8 + 16 +… is prop-
erly divergent.

An INFINITE PRODUCT is divergent if it has value
zero or does not converge. An IMPROPER INTEGRAL

diverges if the limit defining it does not exist.
See also CONVERGENT SEQUENCE.

divisibility rules A number is said to be divisible by
n if, working solely within the integers, the number
leaves a remainder of zero when divided by n. For
example, 37 leaves a remainder of 1 when divided by
3, and so is not divisible by 3. On the other hand, 39,
leaving a remainder of zero, is divisible by 3.

There are a number of rules to quickly test the
divisibility of numbers by small integers. We present
divisibility rules for the first 12 integers.

Divisibility by 1
All numbers are divisible by 1.

Divisibility by 2
As all multiples of 10 are divisible by 2, it suffices to
check whether or not the final digit of a number is divisi-
ble by 2. For example, 576 = 57 × 10 + 6. That 6 is a
multiple of 2 ensures that 576 is too. We have the rule:

A number is divisible by 2 only if its final digit
is 0, 2, 4, 6 or 8.

Divisibility by 3
That 10, 100, 1000,… all leave a remainder of 1 when
divided by 3 allows us to quickly determine the remain-
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der of any number divided by 3. For example, 3,212
equals 3 × 1000 + 2 × 100 + 1 × 10 + 2 × 1 and so leaves
a remainder of 3 × 1 + 2 × 1 + 1 × 1 + 2 × 1 = 8 when
divided by 3. This is the sum of its digits. Of course, a
remainder of 8 is equivalent to a remainder of 2. We
have:

The remainder of any number divided by 3 is
the sum of its digits. Thus a number is divisi-
ble by 3 only if the sum of its digits is a multi-
ple of 3.

One can make repeated use of this rule to check for
divisibility. For example, 55,837 leaves a remainder of
5 + 5 + 8 + 3 + 7 = 28 when divided by 3. This corre-
sponds to a remainder of 2 + 8 = 10, which, in turn, is
a remainder of 1 + 0 = 1.

This rule shows that scrambling the digits of any
multiple of 3 produces a new number that is still a mul-
tiple of 3.

Divisibility by 4
As any multiple of 100 is divisible by 4, it suffices to
check whether or not the final two digits of a number
represent a two-digit multiple of 4. For example,
18,736 equals 187 × 100 + 36. As 36 is a multiple of 4
(it can be divided by 2 twice), we are sure then that
18,736 is a multiple of 4. We have:

A number is divisible by 4 if its final two digits
represent a two-digit number that can be
divided by 2 twice.

Divisibility by 5
Any number N can be written in the form N = 10a + b
where b is the final digit in N. (For example, 739 = 73
× 10 + 9.) As 10 is divisible by 5, we need only check
whether or not the final digit b is divisible by 5. This
gives:

A number is divisible by 5 only if its final digit
is 0 or 5.

Divisibility by 6
For a number to be divisible by 6 it must both be even
and a multiple of 3. This gives:

A number is divisible by 6 only if it is an even
number whose digits sum to a multiple of 3.

Divisibility by 7
Every number N is of the form N = 10a + b, that is, a
multiple of 10 plus a single digit. As 7a and 7b are
clearly divisible by 7, we have that 10a + b leaves the
same remainder as 10a + b – 7a – 7b = 3(a – 2b) does
when divided by 7. Thus it suffices to check whether
the quantity 3(a – 2b) is a multiple of 7. This can only
occur if a – 2b is a multiple of 7. Noting that a is the
original number N with its final digit removed and b is
the final digit of N, we have the rule:

To test whether or not a number is divisible by
7, remove the last digit and subtract twice that
digit from the number remaining. Then the
original number is divisible by 7 only if the
result of this operation is divisible by 7.

For example, to test whether or not 68,978 is divisible
by 7, remove the 8 and subtract twice this, 16, from
6,897, the number remaining. This gives 6,897 – 16 =
6,881. We can test whether or not 6,881 is a multiple
of 7 the same way: 6,881 → 688 – 2 = 686, and once
more: 686 → 68 – 12 = 56. That the final result, 56, is
divisible by 7 assures us that 68,978 is a multiple of 7.

Divisibility by 8
As any multiple of 1,000 is divisible by 8, it suffices to
check whether or not the final three digits of a number
represent a three-digit multiple of 8. For example,
648,728 equals 648 × 1000 + 728. As 728 can be
divided by 2 three times, and hence is a multiple of 8,
we have that 648,728 is divisible by 8.

A number is divisible by 8 if its final three dig-
its represent a three-digit number that can be
divided by 2 three times.

Divisibility by 9
Given that 10, 100, 1000,… all leave a remainder of
one when divided by 9, the divisibility rule for 9 is
identical to that of 3.

The remainder of any number divided by 9 is the
sum of its digits. Thus a number is divisible by 9
only if the sum of its digits is a multiple of 9.

Again, one may make repeated use of this rule. For
example, 76,937 leaves a remainder of 7 + 6 + 9 + 3 +
7 = 32 when divided by 9, which, in turn, corresponds
to a remainder of 3 + 2 = 5. This rule is often used to
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check arithmetical work via the method of CASTING

OUT NINES.

Divisibility by 10
Any number N can be written in the form N = 10a + b,
where b is the final digit of N. Thus a number is divisi-
ble by 10 only if its final digit is a multiple of 10. We
have:

A number is divisible by 10 only if its final
digit is a zero.

Divisibility by 11
The numbers 100, 1000,… alternately leave remainders
of 1 and –1 when divided by 11. (For example, 100 is 1
more than a multiple of 11, but 1,000 is 1 less.) Thus
the remainder of a number when divided by 11 is
obtained as the alternate sum of its digits. For example,
69,782, which equals 6 × 10,000 + 9 × 1,000 + 7 × 100
+ 8 × 10 + 2 × 1, leaves a remainder 6 × 1 + 9 × (–1) +
7 × 1 + 8 × (–1) + 2 × 1 = 6 – 9 + 7 – 8 + 2 = –2 when
divided by 11. (This is equivalent to a remainder of 9.)
We have:

The remainder of any number when divided by
11 is the alternate sum of its digits. Thus a
number is divisible by 11 only if the alternate
sum of its digits is a multiple of 11.

Divisibility by 12
A number is divisible by 12 only if it is divisible by
both 3 and 4. Thus we have:

A number is divisible by 12 only if its final two
digits represent a two-digit multiple of 4, and
the sum of all the digits of the number is a
multiple of 3.

The divisibility rule for 7 can be extended to other
numbers as well. For example, N = 10a + b is divisible
by 17 only if 10a + b – 51b = 10(a – 5b) is. This, in
turn, shows that N is divisible by 17 precisely when
quantity a – 5b, obtained by deleting and subtracting 5
times the final digit, is divisible by 17. Notice here that
51 is the first multiple of 17 that is 1 more than a mul-
tiple of 10.

In the same way we can use that fact that 111 is
the first multiple of 37 that is 1 more than a multiple of
10 to obtain a similar divisibility rule for 37, for exam-

ple. Divisibility rules for all PRIME numbers, except 2
and 5, can be created this way.

division The process of finding the QUOTIENT of two
numbers is called division. In elementary arithmetic,
the process of division can be viewed as repeated SUB-
TRACTION. For instance, 60 divided by 12 equals 5
because 12 can be subtracted from this number five
times before reaching zero: 60 – 12 – 12 – 12 – 12 – 12
= 0. We write: 60 ÷ 12 = 5. Division can also be
described as the process of finding how many subsets
or magnitudes are contained within a set or given
quantity. For instance, 5 ÷ 1/2 = 10 because 10 lengths
of one-half are contained in a length of 5 units.

If a number a is divided by a number b to produce
a quotient q, a ÷ b = q, then a is called the dividend
and b the divisor. The quotient can also be expressed as
a FRACTION, a/b, or a RATIO, a:b. In general, the quo-
tient q of two numbers a and b satisfies the equation
q × b = a. Thus division may also be thought of as
the inverse operation to MULTIPLICATION. Thus, since
5 × 12 = 60, for instance, 5 is indeed the quotient of 60
and 12. This reasoning also shows that, since 0 × b = 0
for any nonzero number b, we have 0 ÷ b = 0. Unfortu-
nately, one cannot give meaning to the quantity 0 ÷ 0.
(Given that 53 × 0 = 0, we may be forced to conclude
that 0 ÷ 0 = 53. At the same time, since 117 × 0 = 0,
we also have that 0 ÷ 0 = 117. We have inconsistency.)
It is also not possible to give meaning to the term a ÷ 0
for any nonzero value a. (If a ÷ 0 = q, then q × 0 = a,
yielding a CONTRADICTION.)

The LONG DIVISION algorithm provides a means to
divide large integers. The process of division can be
extended to NEGATIVE NUMBERS, FRACTIONs, REAL

NUMBERS, and COMPLEX NUMBERS. In all settings, the
number 1 acts as an identity element—provided it
operates as a divisor: a ÷ 1 = a for all numbers a.

The symbol ÷ is called the “obelus” and first
appeared in print in Johann Heinrich Rahn’s 1659 text
Teutsche algebra.

See also DIVISIBILITY RULES; DIVISOR; DIVISOR OF

ZERO; EUCLIDEAN ALGORITHM; FACTOR; FACTORIZA-
TION; FACTOR THEOREM; RATIONAL FUNCTION; REMAIN-
DER THEOREM.

divisor Another name for FACTOR.

146 division



divisor of zero Two quantities, neither of which are
zero, yet multiply together to give zero as their product
are called divisors of zero. In ordinary arithmetic, divi-
sors of zero never arise: if a × b = 0, then at least one of
a or b must be zero. In MODULAR ARITHMETIC, however,
divisors of zero can exist. For example, 3 × 2 equals zero
in arithmetic modulo 6. Two nonzero matrices may mul-
tiply to give the zero MATRIX, and the product of two
nonzero functions could be the zero function.

The presence of zero divisors in a mathematical
system often complicates the arithmetic one can per-
form within that system. For example, for arithmetic
modulo 10, 2 × 4 equals 2 × 9, but dividing by 2, a
divisor of zero in this system, leads to the erroneous
conclusion that 4 and 9 are equal in this system. In
general, one can never perform division when a divisor
of zero is involved.

dot product (inner product, scalar product) Denoted
a · b, the dot product of two VECTORs a and b is the sum
of the products of respective components of the vectors.
Precisely, if a = <a1,a2,…,an> and b = <b1,b2,…,bn>,
then a · b is the number:

a · b = a1b1 + a2b2+…+ anbn

The result of the dot product operation is always a real
number (scalar). For example, the dot product of the
two vectors a = < 1,4> and b = < 2,3> is a · b = 1 · 2 +
4 · 3 = 14.

The dot product arises in many situations. For
example, a local delicatessen receives the following
lunch order form:

One could interpret the order as a five-dimensional vec-
tor <2,0,1,3,0> to be matched with a five-dimensional
“cost vector” <2.80,3.15,1.95,2.50,3.60>. The total

cost of the order is then the dot product of these two
vectors:

2 × 2.80 + 0 × 3.15 + 1 × 1.95 + 3 × 2.50 + 0 × 3.60 =
$15.05

Geometrically, the dot product gives a means of
computing the angle between two vectors. For exam-
ple, two two-dimensional vectors a = < a1,a2 > and b =
< b1,b2 >, with angle θ between them, form a triangle
in the plane with side-lengths given by the DISTANCE

FORMULA: |a| = , |b| = , and |a – b|  
= .

By the LAW OF COSINES we have:

|a – b|2 = |a|2 + |b|2 – 2|a| |b| cos(θ)

from which it follows that:

a · b = a1b1 + a2b2 = |a| |b| cos(θ)

Thus the angle between two vectors a and b can be
computed via the formula:

This formula also holds true for three- and higher-dimen-
sional vectors. For example, consider the unit vector i =
<1,0,0> in three-dimensional space pointing in the direc-
tion of the x-axis, and j = <0,1,0> the corresponding vec-
tor pointing in the direction of the y-axis. As the angle

cos( )
| || |

θ = ⋅a b
a b

√(a1 – b1)2 + (a2 – b2)2

√b1
2 + b2

2√a1
2 + a2

2

How Many? Cost

2 Ham @$2.80 ———
Turkey @$3.15 ———

1 Egg Salad @$1.95 ———
3 Tuna @$2.50 ———

Roast Beef @$3.60 ———
Total Cost: ———
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between these two vectors is 90°, their dot product i · j
will be zero (i · j = 1.0 + 0.1 + 0.0 = 0). In general:

Two vectors a and b are at right angles if, 
and only if, their dot product a · b is zero.

The dot product has the following commutative and
distributive properties:

a · b = b · a
a · (b + c) = a · b + a · c

See also CROSS PRODUCT; NORMAL TO A PLANE;
ORTHOGONAL; TRIPLE VECTOR PRODUCT; VECTOR

EQUATION OF A PLANE.

double integral The volume under a graph z = f(x,y)
of two variables (which is drawn as a surface sitting in
three-dimensional space) above a region R in the xy-
plane is computed via a double integral, denoted:

One approximates this volume by subdividing the
region R into small rectangular pieces, drawing a rect-
angular cuboid above each rectangle with height reach-
ing the surface, and summing the volumes of each of
these cuboids. As one takes finer and finer approxima-
tions, this process produces better and better approxi-
mations to the true volume under the graph. The limit
of this process is the double integral:

where dAk denotes the area of the kth rectangular
region used to approximate R.

GOTTFRIED WILHELM LEIBNIZ (1646–1716) showed
that if the region R is itself a rectangle, say, given by
a ≤ x ≤ b and c ≤ y ≤ d, then the double integral can be
computed as either of the two iterated integrals:

(In an iterated integral, one integrates one variable at a
time, regarding the second variable as a constant.) This

result holds true for other shaped regions R as well, as
long as they are not too complicated.

For example, the volume under the graph z = xy
above the rectangle R = [1,2] × [2,3] is:

Notice that the integration is performed from the
inside out.

A triple integral of a function of 

three variables f(x,y,z), computed over a volume V in
space, can often be computed as a triple iterated inte-
gral, integrating each variable in turn. Again, the order
of the integration, typically, does not matter.

See also GEORGE GREEN.

double point A location on a curve where the curve
either crosses itself, or is tangential to itself, is called a
double point. In the first case, the point of intersection
is called a node, and the curve has two distinct tangents
at that point. In the second case, the point of contact is
called a tacnode or an osculation. The two tangents to
the curve coincide at this point.

See also ISOLATED POINT; SINGULAR POINT; TANGENT.

double root See ROOT.

dummy variable A variable appearing in a mathe-
matical expression is a dummy variable if it is assigned
no specific meaning and if the letter being used for it
could equally well be replaced by another letter. An
index of SUMMATION, for instance, is a dummy variable: 

the sum of denoting 13 + 23 + 33 + 43, for exam- 

ple, could equally well be represented as or 

, say. The variable used for the integrand of a 

DEFINITE INTEGRAL is a dummy variable. The two
expressions ∫10 x2 dx and ∫10 t2 dt, for instance, represent
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the same definite integral, a number, and so x and t are
dummy variables. (The variable x, however, is not a
dummy variable in the INDEFINITE INTEGRAL ∫x2 dx.
This expression is a function of the specific variable x.)

duplicating the cube (Delian altar problem, doubling
the cube) One of the problems of antiquity (like
SQUARING THE CIRCLE and TRISECTING AN ANGLE) of
considerable interest to the classical Greek scholars is
the task of constructing a cube whose volume is twice
that of a given cube. Legend has it that this problem,
known as duplicating the cube, arose during the Greek
plague of 428 B.C.E. It is said that the oracle of Delos
instructed the people of Athens to double the size of the
cubic altar to Apollo as an attempt to appease the god.
They were unable to accomplish this feat.

APOLLONIUS OF PERGA (ca. 260–190 B.C.E.) solved
the problem with the use of CONIC SECTIONS, but schol-
ars later decided to add the restriction that only the
primitive tools of a straightedge (that is, a ruler with no
markings) and a compass be used in its solution. The
difficulty of the problem increased significantly.

If we assume that the side-length of the original
cube is a units long, then one is required to construct a
new length b so that b3 = 2a3. Consequently, b = 

3√—
2a,

and so the problem essentially reduces to the challenge
of constructing a length 

3√—
2 units long using only a

straightedge and compass.
The theory of CONSTRUCTIBLE numbers shows that,

in this setting, any quantity of rational length can be
constructed, and that if two lengths l1 and l2 can be
produced, then so too can their sum, difference, prod-
uct and quotient, along with the square root of each
quantity. It seems unlikely that a length of 

3√—
2, being

neither rational, nor the square root of a rational num-
ber, could be produced. Indeed, in 1837, French mathe-
matician Pierre Laurent Wantzel (1814–48) proved that
the number 

3√—
2 is not constructible and, consequently,

that the problem of duplicating the cube is unsolvable.
(To see that 

3√—
2 is not rational, assume to the contrary 

that it can be written as a ratio of two integers: 
3√—

2 = .

Then 2q3 = p3. If the number p has m factors of 2, then
the quantity p3 has 3m factors of 2. Consequently, so
too must 2q3. But this is impossible, as the number of
factors of 2 in 2q3 must be 1 more than a multiple of 3.
This absurdity shows that 

3√—
2 cannot be a ratio of two

integers. A similar argument shows that 
3√
–
2 does not

equal the square root of a rational quantity either.)

Dürer, Albrecht (1471–1528) German Geometry Born
on May 21, 1471, in Nürnberg, Germany, artist
Albrecht Dürer is remembered in mathematics for his
significant accomplishments in the development of
descriptive GEOMETRY and its applications to the theory
of art. In four famous texts, Dürer explained the theory
of proportions and described ruler-and-compass tech-
niques for the construction of regular polygons. He
explored the art of placing figures in a manner that is
pleasing to the eye, thereby beginning a developing the-
ory of PERSPECTIVE, and began a study of the shadows
cast by three-dimensional objects. Dürer is noted as the
first scholar to publish a mathematics book in German,
and also as the first Western scholar to give an example
of a MAGIC SQUARE.

Dürer studied painting and woodcut design as a
young man. He apprenticed with the leading producer
of altarpieces of his time, Michael Wolgemut, until the
age of 20 and learned to appreciate the role mathemat-
ics could play in the design of artistic works. After read-
ing the works of EUCLID (ca. 300–260 B.C.E.), as well as
a number of famous texts on the theory of architecture,
Dürer traveled to Italy, the site of the Renaissance
revival of mathematics, to study the mathematics of
shape, motion, and perspective. Around 1508 Dürer
began collating and processing all the material he had
studied with the aim of producing one definitive text on
the mathematics of the visual arts. This work was never
completed, but he did later publish his four volumes on
the theory of proportions Underweysung der Messung
mit Zirckel und Richtscheyt in Linien, Ebnen, und
gantzen Corporen (Treatise on mensuration with the
compass and ruler in lines, planes, and whole bodies)
in 1525.

Dürer is noted for his inclusion of the following
array of numbers in the background of his 1514
engraving Melancholia:

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

p
–q
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Each row and column, as well as the two main diago-
nals, sum to 34, and so this array represents a fourth-
order magic square. It is the first example of a magic
square ever recorded in Western Europe. (It has the
added feature of including the year the engraving was
completed in the two middle cells of the bottom row.)

Dürer died in Nürnberg, Germany, on April 6,
1528. His theory of proportions allowed artists who
succeeded him to easily perform the transformations on
figures needed to translate them across a canvas and
maintain the correct sense of perspective. (Prior to
Dürer, artists accomplished this feat purely by intuition
or by trial and error.) In doing so, Dürer had provided
a well-thought-out theory of geometric perspective that
was also valued by mathematicians.

dyadic Any quantity related to the concept of base 2 is
sometimes referred to as dyadic. For example, the dyadic
rationals are those fractions whose denominators are 

powers of 2. Thus = and = , for 

instance, are dyadic rationals, but is not.

Folding a strip of paper 1 ft long in half produces
a crease at the position of the dyadic rational 1/2. If
one continues to fold the left or right end of the strip
to previously constructed crease marks, then crease
marks appear at all the dyadic rationals (and only the
dyadic rationals).

This paper-folding activity is intimately connected
to the construction of BINARY NUMBERS. For instance,
to create a crease mark along a strip of paper at the
position of the dyadic rational 13/16, write the numer-
ator 13 in binary:

13 = 11012

(This is equivalent to writing the fraction 13/16 as a
binary “decimal:” 13/16 = .1101 in base 2.) Now read
the binary expansion backwards, interpreting the digit
1 as the instruction “lift right and fold” and the digit 0
as “lift left and fold.” In this example we have:

1 : Lift the right end of the strip and fold to produce 
a crease at position 1/2.

0 : Lift the left end and fold to the previous crease. 
This produces a new crease at position 1/4.

1 : Lift the right end and fold to the previous crease.
This produces a new crease at position 5/8.

1 : Lift the right end and fold to the previous crease.
This produces a new crease at position 13/16, 
as desired.

In general:

The binary representation of the numerator of
any dyadic rational represents instructions for
the construction of that dyadic rational along a
strip of paper.

In some limiting sense, this procedure also works for
fractions that are not dyadic. For example, the number
1/3 written as decimal in base 2 is .010101… If one
were to read this as a set of instructions to “fold right
and fold left indefinitely,” then the sequence of creases
produced do indeed converge to the position 1/3.

dynamical system Any process in which each suc-
cessive state is a function of the preceding state is
called a dynamical system. For instance, the feedback
from a microphone as part of a public announcement
system is a dynamical system: the amplifier transmits
minute erroneous sounds, which the microphone
hears and amplifies, which it then hears and amplifies,
and so on.

In mathematics, if f is a mapping from a space X to
itself, then the ITERATION of f defines a dynamical sys-
tem—the successive states of the system are the iterates
of f arising from a given starting point x:

x,f(x),f(f(x)),f(f(f(x))),…

For example, the mapping f(x) = x of the real number 

line to itself, starting with x = 1, gives the iterates 1, ,

, ,…. If X is a circle in the plane and f is the function 

that rotates that circle 10° clockwise, then the iterates of
any point on the circle constitute 36 evenly spaced
points on that circle.

The “orbit” of a point x is the sequence of iterates
it produces. If the system reaches an equilibrium, that
is, tends toward a stable state, or if it cycles between a
number of states, then the equilibrium point (or sets of
equilibrium points) are called “attractors” of the sys-

1–
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1–
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1–
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173–—
210

173–—
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tem. For example, the number zero is an attractor for 

the system given by f(x) = x: no matter the starting 

value, all iterates converge to the value zero.
The iterates of very simple functions f can exhibit

extremely surprising behavior. Take, for instance, the
iterates of the function f(x) = 1 – cx2, with initial value
x = 0. (Here c is a constant. Each value of c determines
its own dynamical system.)

Set c = 0.1. The first five iterates of the system xn+1

= 1 – 0.1xn
2 are:

0, 1.000, 0.900, 0.919, 0.916, 0.916

The system seems to stabilize to the value 0.916. One
checks that the same type of behavior occurs if we
repeat this exercise for c set to any value between 0 and
0.75. There is a marked change in behavior for c =
0.75, however—the system no longer converges to a
single value but rather oscillates between two values:
0.60 and 0.72. We say that the value c = 0.75 is a bifur-
cation point and that the system has undergone
“period doubling.”

At the value c = 1.25, the system bifurcates again
to yield systems that oscillate between four separate

values. For higher values of c, the system continues to
bifurcate, until finally a so-called CHAOS is reached,
where the results jump around in a seemingly haphaz-
ard manner. This phenomenon is typical of many
dynamical systems: the behavior they exhibit is highly
dependent on the value of some parameter c. (Such
dynamical systems are said to be “sensitive” to the
parameter set.)

Researchers have shown that many natural pro-
cesses that appear chaotic, such as the turbulent flow
of gases and the rapid eye movements of humans, can
be successfully modeled as dynamical systems, usually
with very simple underlying functions defining them.
Meteorologists model weather as a dynamical system,
which helps them make forecasts. However, extreme
sensitivity to parameters can easily lead to erroneous
predictions: one small change in the value of just one
parameter may produce very different outcomes. The
so-called butterfly effect, for instance, claims that the
minute changes in air pressures caused by a butterfly
flapping its wings might be all that is needed to tip a
meteorological dynamical system into chaos.

Iteration of functions with COMPLEX NUMBERS

leads to a study of FRACTALs.

1–
2
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e (Euler’s number) Swiss mathematician LEONHARD

EULER (1707–83) introduced a number, today denoted e,
that plays a fundamental role in studies of compound
INTEREST, TRIGONOMETRY, LOGARITHMS, and CALCULUS,
and that unites these disparate fields. (EULER’S FORMULA,
for instance, illustrates this.) The number e has approxi-
mate value 2.718281828459045 … and can be defined
in any of the following different ways:

1. The number e is the limit value of the expression 

raised to the nth power, as n increases 

indefinitely:

2. If L(a) denotes the area under the curve y =  1/x
above the interval [1,a], then e is the location on the
x-axis for which L(e) = 1.

3. If f(x) is a function that equals its own DERIVATIVE, 

that is, f(x) = f(x), then f(x) is an EXPONENTIAL

FUNCTION with base value e: f(x) = ex.

4. e is the value of the infinite sum 1 + + + 
+ ….

Definition 1 is linked to the problem of computing
compound interest. As we show below, definition 2
defines the natural logarithm, and definition 3 arises
from studies of natural growth and decay, and conse-
quently the consideration of EXPONENTIAL FUNCTIONs.

The fourth definition arises from the study of TAYLOR

SERIES. One proves that all four definitions are equiva-
lent as follows:

First consider the curve y = 1/x. It has the remarkable
property that rectangles touching the curve and just under
it have the same area if the endpoints of the rectangles are
in the same ratio r. For example, in the first diagram on
the opposite page, the rectangles above the intervals [a,ra] 

and [b,rb] each have area . By taking narrower and  

narrower rectangles, all in the same ratio r, it then fol-
lows that the area under the curve above any two inter-
vals of the form [a,ra] and [b,rb] are equal.

Following definition 2, let L(x) denote the area
under this from position 1 to position x. (If x is less
than 1, deem the area negative.) Notice that L(1) = 0.
Also, set e to be the location on the x-axis where the
area under the curve is 1: L(e) = 1.

Notice that the area under the curve from 1 to
position ab, L(ab), is the sum of the areas under the
curve above the intervals [1,a] and [a,ab]. The first area
is L(a) and the second, by the property above, equals
L(b). We thus have:

L(ab) = L(a) + L(b)

This shows that L is a function that converts multipli-
cation into addition, which is enough to prove that it is
the LOGARITHMIC FUNCTION base e. We have L(x) =
loge(x). This function is called the natural logarithm
function and is usually written ln(x).

r – 1–––r

1
–
3!

1
–
2!

1
–
1!

d
––
dx

e
nn

n

= +



→∞lim 1

1

1
1+



n

152

E



By the FUNDAMENTAL THEOREM OF CALCULUS, the
derivative of an area function is the original function
and so we have:

ln(x) = 

Now consider the corresponding exponential func-
tion y = ex. By taking logarithms, we obtain ln(y) = x.

Differentiating yields = 1, and so = y = ex. This 

establishes definition 3 stating that f(x) = ex is the func-
tion that equals its own derivative.

Now that we know the derivative of y = ex, we can
compute its Taylor series. We obtain:

Setting x = 1 establishes definition 4.
It remains now to establish definition 1. From the

graph of the curve y = 1/x, it is clear that the region 

between x = 1 and x = 1 + is sandwiched between a 

rectangle of area and a rectangle of 

area = × 1 = . Thus:

Multiplying through by n yields:

As n becomes large, the quantity approaches 

the value 1. It must be the case, then, that 

approaches a value for which its logarithm is 1.

Consequently equals 1. This gives:

With regard to the issue of compound interest, it 

is necessary to compute the limit .limn
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We have:

This represents the value of an investment of $1 after 1
year accruing continuously compounded interest at an
interest rate of r percent per annum.

One can use the fourth definition to prove that e is
an IRRATIONAL NUMBER. One begins by assuming, to 

the contrary, that e is a fraction of the form and 

multiplies the formula presented in definition 4 by q!.
The fractional parts that remain cannot add to a
whole number.

In 1873 French mathematician Charles Hermite
(1822–1901) proved that e is a TRANSCENDENTAL

NUMBER.

Earth Our planet, the third from the Sun, is often
assumed to have the shape of a perfect SPHERE, but
detailed measurements show it to be the shape of an
oblate spheroid with equatorial radius 3,963 miles
(6,378 km) and polar radius 3,950 miles (6,357 km).
Its mean orbital distance from the Sun is 9.296 × 107

miles (1.496 × 108 km), one “astronomical unit,” and
its mass is 1.317 × 1025 lb (5.976 × 1024 kg).

The Earth takes 23 hours, 56 minutes, and 4.1 sec-
onds to complete a sidereal day, that is, one full rota-
tion about its axis as measured relative to the fixed
stars. The solar day, the time it takes for a point P on
the surface of the Earth initially facing the Sun to
return to that position is, by definition, precisely 24
hours. The difference in time measurements is
explained by the fact that the Earth advances in its
orbit as it rotates: the Earth must turn slightly more
than 360° to bring P back to face the Sun as the planet
moves forward.

The first known attempt to calculate the circum-
ference of the Earth was made by the Greek scholar
ERATOSTHENES OF CYRENE (ca. 275–195 B.C.E.).
Eratosthenes observed that at the summer solstice,
noon on June 21 of every year, the Sun shone directly
to the bottom of a well in the city of Syene (present
day Aswan). This meant that the Sun was directly

overhead at this time. He also noted that at the same
time in Alexandria, a city approximately 500 miles
due north of Syene, objects cast shadows, meaning
that the Sun was not directly overhead at this loca-
tion. These observations provided Eratosthenes the
means to compute the radius of the Earth. He
assumed that the Sun was sufficiently far away from
our planet that the rays of light that reach us from it
can be regarded as essentially parallel. Eratosthenes
measured the angle cast by shadows at Alexandria
(by using an object of known height and measuring
the length of the shadows cast) and found the angle
to be 1/50 of a full turn, about 7.2°. The circumfer-
ence of the Earth follows: if 1/50th of a full turn cor-
responds to a distance of 500 miles, then a full turn
must correspond to a distance of 50 × 500 = 25,000
miles.

Geographical Coordinates
The lines of latitude and longitude form a system of
COORDINATES on the Earth. The “parallels of lati-
tude” are circles parallel to the equator, labeled
according to a measurement of angle. Stated pre-
cisely, if O is the center of the Earth, P is a point on a
circle of latitude, P′ is the point on the equator
directly south of P, and α is the angle POP′, then the
circle of latitude containing P is labeled α. The lati-
tude of any point can thus be 0° (on the equator) up
to 90° north (the North Pole) or 90° south (the South
Pole). New York City, for example, has a latitude of
40°45′06′′ N.

Conveniently, the North Star lies directly above the
North Pole. By measuring the angle of elevation of the
North Star (90° at the North Pole, 0° at the equator),
one can quickly determine the latitude of any location
in the Northern Hemisphere. Using sextants to measure
elevation, sailors of the past relied on the North Star to
help determine their locations. The meridians, or lines
of longitude, run from the North Pole to the South
Pole, perpendicular to the circles of latitude. Each
meridian is a semicircle. The equator is divided into
360°, with the meridian passing through Greenwich,
England (called the prime meridian), deemed angle
zero, and the angle of any other meridian ranges from
180° east to 180° west. Stated precisely, the longitude
of a point P on the sphere is given by the angle P′OG′,
where P′ is the point on the equator directly south or
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north of P, and G′ is the point on the equator south of
Greenwich. New York City, for example, has longitude
73°59′39′′ W.

The longitude of a point P on the Earth’s surface
can be measured by identifying the time difference
between high noon at P and high noon at Greenwich.
As the day is divided into 24 1-hour periods, each
delay of 1 hour corresponds to 1/24 of a full turn
about the Earth’s circumference. Thus, at 360/24 = 15°
longitude west, for instance, the Sun reaches its highest
point in the sky 1 hour later than it does at Greenwich;
at 30° longitude west, it occurs 2 hours later, and so
forth. After about 1735, sailors were able to carry
accurate chronometers to keep track of Greenwich
time. By measuring the time of high noon at any given
location, sailors could accurately determine the longi-
tude of that location.

See also OBLATE/PROLATE.

eccentricity For any CONIC SECTION, the ratio of the
distance of a point on the curve from a fixed point, the
focus, to its distance from a fixed line, the directrix, is
constant. The value of this ratio, denoted e, is called
the eccentricity of the curve, and it gives a measure of
the curve’s shape. For a PARABOLA, e equals one. If e
lies between zero and one, then the curve is an ELLIPSE.
If e is greater than one, then the curve is a HYPERBOLA.
The eccentricity of a CIRCLE is defined to be zero. (In
this context, the eccentricity e is not to be confused
with LEONHARD EULER’s number e.)

Egyptian fractions Any fraction with unit numerator, 

such as , , and , is called an Egyptian fraction. 

The Egyptians of 4,000 years ago expressed all frac-
tional quantities as sums of distinct Egyptian fractions. 

For example, was written + , and as + 

+ .

In 1202, FIBONACCI began his own investigation of
Egyptian fractions and was the first to prove that every
fraction can indeed be expressed as a finite sum of dis-
tinct Egyptian fractions. (It is not clear whether the
ancient Egyptians ever questioned this.) He showed
that subtracting a quantity of the form 1/n, with n as
small as possible, from a given fraction always pro-

duces a new fraction with a smaller numerator. Thus
repeated application of this procedure must eventually
produce a fraction with unit numerator itself.

As an example, for the fraction 5/17 we have:

– = ( is too large a quantity to subtract.)

and

– = ( is too large a quantity to subtract.)

giving:

= + + 

Such representations need not be unique. For example, 

equals both + + and + .

See also EGYPTIAN MATHEMATICS.

Egyptian mathematics Our knowledge of ancient
Egyptian mathematics from around 2000 B.C.E. comes
chiefly from the RHIND PAPYRUS. There we learn, for
example, that the Egyptians followed a very natural sys-
tem for denoting numerals: 1 was a vertical stroke |, 2
was two of them ||, 3 was |||, and 4 was ||||, and separate
symbols were used for 5, 6, 7, 8, and 9, and for 10,
20,…, 100, 200,…, 1000, and so on. All other numbers
were represented as groups of these symbols, usually
arranged in order from largest to smallest. Like the
ROMAN NUMERAL system, the Egyptian system did not
use a PLACE-VALUE SYSTEM (the symbol for 5, for exam-
ple, denoted “5” no matter where it appeared in the
number). It is very difficult to do pencil-and-paper cal-
culations without place-value notation, but the Egyp-
tians always used a calculating board, much like an
ABACUS, to perform arithmetic calculations, and needed
only to record the results. They were therefore not hin-
dered by their cumbersome numerical system. The
ancient Egyptians were adept at multiplication, using a
method of successive doubling to calculate products.
This method is today called EGYPTIAN MULTIPLICATION.

Division problems lead to FRACTIONs. It did not
occur to the ancient Egyptians to express fractions with
numerators and denominators. In the Rhind papyrus,
the mathematician Ahmes simply placed a dot over a
number to indicate its reciprocal, except in the case of 

the fractions , , , and , each of which had its 1–
4
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own symbol. Thus the Egyptians only dealt with frac-
tions of the form (with the exception of two-thirds). 

Fractions with unit numerators are known today as
EGYPTIAN FRACTIONS. All other fractional quantities
were expressed as sums of distinct Egyptian fractions. 

For example, , which equals + , was written 

, and as .

The Egyptian’s ability to compute such expressions
is impressive. The Rhind papyrus provides reference
lists of such expressions, and the first 23 problems in
the document are exercises in working with such frac-
tional representations.

The ancient Egyptians were adept at solving LIN-
EAR EQUATIONs. They used a method called false posi-
tion to attain solutions. This involves guessing an
answer, observing the outcome from the guess, and
adjusting the guess accordingly. As an example, prob-
lem 24 of the Rhind papyrus asks:

Find the quantity so that when 1/7 of itself is
added to it, the total is 19.

To demonstrate the solution, the author suggests a
guess of 7. That plus its one-seventh is 8, by far too
small, but multiplying the outcome by 19/8 produces
the answer of 19 that we need. Thus 7 × (19/8) must be
the quantity we desire.

The majority of problems in the Rhind papyrus are
practical in nature, dealing with issues of area (of rect-
angles, trapezoids, triangles, circles), volume (of cylin-
ders, for example), slopes and altitudes of pyramids
(which were built 1,000 years before the text was writ-
ten), and number theoretic problems about sharing
goods under certain constraints. Some problems, how-
ever, indicate a delight in mathematical thinking for its
own sake. For example, problem 79 asks:

If there are seven houses, each house with
seven cats, seven mice for each cat, seven ears
of grain for each mouse, and each ear of grain
would produce seven measures of grain if
planted, how many items are there altogether?

This problem appears in FIBONACCI’s Liber abaci, writ-
ten 600 years before the Rhind papyrus was discovered.
A version of this problem also appears as a familiar
nursery-rhyme and riddle, “As I Was Going to St. Ives.”

Egyptian multiplication The RHIND PAPYRUS indi-
cates that the ancient Egyptians of around 2000 B.C.E.
used a process of “successive doubling” to multiply
numbers. They computed 19 × 35, for example, by
repeatedly doubling 35:

Since 19 = 16 + 2 + 1, summing 560 + 70 + 35 = 665
gives the product. This method shows that knowledge
of the two-times table is all that is needed to compute
multiplications. RUSSIAN MULTIPLICATION follows an
approach similar to this method.

See also EGYPTIAN MATHEMATICS; ELIZABETHAN

MULTIPLICATION; FINGER MULTIPLICATION; MULTIPLICA-
TION; NAPIER’S BONES; RUSSIAN MULTIPLICATION.

eigenvalue (e-value, latent root) See EIGENVECTOR.

eigenvector (e-vector, latent vector, characteristic vec-
tor, proper vector) For a square n × n MATRIX A, we
say a nonzero VECTOR x is an eigenvector for A if there
is a number λ such that Ax =  λx. The number λ is
called the eigenvalue associated with that eigenvector. If
x is an eigenvector of A, then we have that (A – λI)x =
0, where I is the IDENTITY MATRIX. This shows that the
matrix A – λI is not invertible, and so must have zero
determinant: det(A – λI) = 0. This is a polynomial equa-
tion in λ of degree n, called the “characteristic polyno-
mial” of A. As there can only be at most n solutions to
such an equation, we have that an n × n matrix A has at
most n distinct eigenvalues. Mathematicians have
proved that associated with each possible eigenvalue
there is at least one corresponding eigenvector. More-
over, it has been established that eigenvectors associated
with distinct eigenvalues are linearly independent.

The study of eigenvectors and eigenvalues greatly
simplifies matrix manipulations. Suppose, for example,
a square 3 × 3 matrix A has three distinct eigenvalues
λ1, λ2, and λ3. Set D to be the diagonal matrix

1 35
2 70
4 140
8 280

16 560

4 18 468
• • •
+ +4–

133 15
• •
+

1–
15

1–
3

2–
5

1–n
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and set B to be the matrix whose columns are the cor-
responding eigenvectors of A. Then it is possible to
show that:

A = BDB–1

This observation allows one to compute high powers of
A with very little work. For instance, the quantity A100,
for instance, is just a product of three matrices:

A100 = (BDB–1)100

= BD100B–1

noting that D100 is simply:

This work also allows mathematicians to define the
square root of a matrix:

(provided the square roots of the eigenvalues are
defined), or to define new quantities, such as the loga-
rithm of a matrix:

Such actions have proved useful in the study of theoret-
ical physics and engineering.

The prefix eigen is German for “characteristic” or
“own.” The eigenvalues and eigenvectors of a matrix
completely characterize the matrix.

See also CAYLEY-HAMILTON THEOREM; INVERSE

MATRIX; LINEARLY DEPENDENT AND INDEPENDENT.

Einstein, Albert (1879–1955) German Relativity,
Quantum mechanics Born on March 14, 1879, in
Ulm, Germany, Albert Einstein is recognized as an
outstanding mathematical physicist whose work on
the special and general theories of relativity com-
pletely revolutionized how scientists think about
space, matter, and time. Although he regarded himself
as a physicist, Einstein’s work inspired many signifi-
cant developments in modern mathematics, including
the development of TENSOR analysis as the appropri-
ate means to describe the curvature of space.

The classical school environment did not suit Ein-
stein well. In 1895 he failed the entrance exam for a
Swiss technical school, where he hoped to study electri-
cal engineering. After attending a second school at
Aarau, he did eventually manage to enter the Zurich
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Albert Einstein, an eminent mathematical physicist of the 20th
century, revolutionized our understanding of space, matter, and
time through his theories of special and general relativity. (Photo
courtesy of Topham/The Image Works)



school to graduate there in 1900 with a degree in
teaching. Unable to find a university position, Einstein
accepted a job at the Swiss Patent Office in Bern in
1902 and remained there for 7 years.

During his time at the patent office, Einstein stud-
ied theoretical physics in the evenings, without the ben-
efit of close contact with the scientific literature or
colleagues, and managed to produce and publish, all in
the year 1905, five truly outstanding papers:

• “Über einen die Erzeugung und Verwandlung des
Lichtes betreffenden heuristischen Gesichtspunkt”
(On a heuristic concerning the production and trans-
formation of light), published in Annalen der Physik,
March 1905.

• “Die von der molekularkinetischen Theorie der
Wärme gefurdete Bewegung von in ruhenden Flüs-
sigkeiten suspendierten Teilchen” (On the movement
of small particles suspended in a stationary liquid
demanded by the molecular kinetic theory of heat),
published in Annalen der Physik, May 1905.

• “Zur Elektrodynamik bewegter Körper” (On the
electrodynamics of moving bodies), published in
Annalen der Physik, June 1905.

• “Ist die Trägheit eines Körpes von seinem Energiein-
halt abhängig?” (Does the inertia of a body depend
upon its energy-content?), published in Annalen der
Physik, September 1905.

• “Eine neue Bestimmung der Moleküldimensionen”
(A new determination of molecular dimension), writ-
ten in April 1905, published in Annalen der Physik,
April 1906.

The first paper was concerned with the puzzling
photoelectric effect observed by scientists of the time.
Heinrich Hertz (1857–94) noticed that the number of
electrons released from a section of metal bombarded
with a beam of light was determined not by the inten-
sity of the beam, but rather by its wavelength. Max
Planck (1858–1947) also observed that electromagnetic
energy was emitted from radiating objects according to
discrete quantities, again in direct proportion to the
wavelength of the radiation. Einstein proposed that
light and radiation itself travel in discrete bundles,
which he called quanta, and described the mathematics
that would consequently explain these phenomena.

In his second paper, Einstein developed mathemati-
cal equations that correctly described the motion of
atoms and molecules under “Brownian motion.” In his
third paper, Einstein proposed his theory of special rela-
tivity. He noted that because light is able to travel

through a vacuum, there is no natural frame of refer-
ence for measuring its speed. (The speed of sound, for
instance, is measured with respect to the medium of air
through which it passes.) Also, since it is impossible to
determine whether one is stationary in space or moving
through space at a uniform velocity, it follows then that
all observers must observe light traveling at the same
speed. From this, Einstein developed a series of
“thought experiments” that clearly establish that
observers traveling at different speeds must hence
record different values when measuring quantities such
as length and time. (For instance, imagine a light beam
bouncing back and forth between two fixed mirrors set
at a distance so that the time taken to bounce between
the two mirrors is 1 sec. Suppose that a second observer
moves past the “clock” with uniform speed. According
to this observer, the clock moves past her at uniform
speed. A straightforward calculation shows that, since
the speed of light is unchanged for this observer, she
would see the light beam taking longer than 1 sec to
complete a cycle between the two mirrors.) The fourth
paper developed the special theory of relativity further,
culminating with his famous equation E =  mc2, show-
ing that energy and mass are equivalent (with a factor
of the speed of light squared incorporated).

Einstein submitted his final paper as a doctoral the-
sis to the University of Zurich to receive a Ph.D. By
1909 Einstein had been recognized as a leading scien-
tific thinker. He resigned from the patent office and
was appointed a full professor at the Karl-Ferdinand
University in Prague in 1911. That same year, based on
his theory of relativity, Einstein made a prediction
about how light rays from distant stars would bend
around the Sun, hoping that some day astronomers
might be able to observe this effect and verify that his
theory of relativity is correct. He also began working
on incorporating the role of acceleration (nonuniform
motion) into his special theory to develop a general
theory of relativity. After a number of false starts, Ein-
stein finally published a coherent general theory in
1915. Four years later, during a solar eclipse, British
scientists were able to observe the bending of light rays
just as Einstein had predicted. The popular press cov-
ered the story, and Einstein immediately received world
attention for his achievement.

In 1921 Einstein received the Nobel Prize not for
his relativity theory, but, surprisingly, for his work on
the photoelectric effect. He also received the Copley
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Medal from the ROYAL SOCIETY of London in 1925,
and the Gold Medal from the Royal Astronomical
Society in 1926.

With the rise of anti-Semitism in Europe, Einstein
accepted a position at the Institute of Advanced Study
at Princeton, N.J., in 1933. He stayed there until his
death on April 18, 1955.

One cannot exaggerate the effect that Einstein’s
work has had on modern physics. One of his principal
goals was to unite the discrete description of particles
and matter with the continuous description of electro-
magnetic radiation and develop a single unified theory
of the two. The result is quantum mechanics. Intense
work continues today to incorporate other physical
forces, such as gravity, into a grand unified theory.

elementary matrix See GAUSSIAN ELIMINATION.

The Elements No doubt the most influential mathe-
matics text of all time, The Elements, written by EUCLID

(ca. 300–260 B.C.E.), provided the model for all of math-
ematical thinking for the two millennia that followed it.
Mathematicians agree that this work defines what the
pursuit of PURE MATHEMATICS is all about. More than
2,000 editions of The Elements have been printed since
the production of its first typeset version in 1482.

Written in 13 volumes (called “books”) The Ele-
ments represents a compilation of all the mathematics
that was known at the time. Organized in a strict logi-
cal structure, Euclid begins the work with a set of basic
definitions, “common notions,” and axioms (EUCLID’S
POSTULATES), and deduces from them, by the process of
pure logical reasoning, some 465 propositions (THEO-
REMs) on the topics of plane geometry, number theory
(typically presented in terms of geometry), and solid
geometry. The work is revered for its clarity, precision,
and rigor.

The work is extremely terse in its presentation.
There is no discussion or motivation, and results are
simply stated and proved, often referring to a figure
accompanying the statement. Each proof ends with a
restatement of the proposition studied along with the
words, “which was to be proved.” The Latin transla-
tion of this phrase is quod erat demonstrandum, and
many mathematicians today still like to end a formal
proof with the abbreviation Q.E.D.

Although it is generally believed that no result pre-
sented in The Elements was first proved by Euclid, the
organization of the material and the logical develop-
ment presented is original. Euclid’s choice of beginning
postulates shows remarkable insight and a deep wis-
dom of the subject. His recognition of the need to for-
mulate the controversial PARALLEL POSTULATE, for
instance, shows a level of genius beyond all of those
who tried to prove his choice irrelevant during the two
millennia that followed. (It was not until the 19th cen-
tury, with the development of NON-EUCLIDEAN GEOME-
TRY, did mathematicians realize that the parallel
postulate was an essential assumption in the develop-
ment of standard planar geometry.)

The first six books of The Elements deal with the
topic of plane geometry. In particular, Books I and II
establish basic properties of triangles, parallel lines,
parallelograms, rectangles, and squares, and Books III
and IV examine properties of circles. In Book V, Euclid
examines properties of magnitudes and ratios, and
applies these results back to plane geometry in Book
VI. Euclid presents a proof of PYTHAGORAS’S THEOREM

in Book I.
Books VII to X deal with NUMBER THEORY. The

famous EUCLIDEAN ALGORITHM appears in book VII,
and EUCLID’S PROOF OF THE INFINITUDE OF PRIMES in
book IX. Book X deals with the theory of irrational
numbers, and Euclid actually proves the existence of
these numbers in this work.

The final three volumes of The Elements explore
three-dimensional geometry. The work culminates with
a discussion of the properties of each PLATONIC SOLID

and proof that there are precisely five such polyhedra.

elimination method for simultaneous linear
equations Another name for GAUSSIAN ELIMINATION.

Elizabethan multiplication Also known as the gal-
ley method and the lattice method, this multiplication
technique was taught to students of mathematics in
Elizabethan England. To multiply 253 and 27, for
example, draw a 2 × 3 grid of squares. Write the first
number along the top, and the second number down
the right side. Divide each cell of the grid diagonally.
Multiply the digits of the top row, in turn, with each of
the digits of the right column, writing the products in
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the appropriate square cells of the grid as two-digit
entries. (Thus compute 3 × 2 as 06, for example.)

Add the entries in each diagonal starting with the
bottom right diagonal. Write down the units figure and
carry any tens figures that appear to the next diagonal.
The answer, 6,831, now appears along the left column
and bottom row.

This procedure works for multidigit multiplications
of any size. Its success relies on the DISTRIBUTIVE PROP-
ERTY of arithmetic and the process of EXPANDING

BRACKETS. In our example,

253 × 27 = (2 × 102 + 5 × 10 + 3) × (2 × 10 + 7)
= (2 × 2) × 103 + (2 × 7) × 102 + (3 × 2) × 10 

+ (5 × 2) × 102 + (5 × 7) × 10
+ 3 × 7

Each diagonal corresponds to a powers-of-10 place,
with entries placed in an upper portion of a square cell
corresponding to carried figures to the next powers-of-
10 position. Try computing a multiplication problem
both the Elizabethan way and the usual way, side-by-
side, to see that the two methods do not differ.

See also EGYPTIAN MULTIPLICATION; FINGER MULTI-
PLICATION; MULTIPLICATION; NAPIER’S BONES; RUSSIAN

MULTIPLICATION.

ellipse As one of the CONIC SECTIONS, an ellipse is
the plane curve consisting of all points P whose dis-
tances from two given points F1 and F2 in the plane
have a constant sum. The two fixed points F1 and F2

are called the foci of the ellipse. An ellipse also arises as
the curve produced by the intersection of a plane with
a single nappe of a right circular CONE.

Using the notation |PF1| and |PF2| for the lengths of
the line segments connecting P to F1 and F2, respectively,
the defining condition of an ellipse can be written:

|PF1| + |PF2| = d

where d denotes the constant sum.
The equation of an ellipse can be found by intro-

ducing a coordinate system in which the foci are
located at positions F1 = (–c,0) and F2 = (c, 0), for some
positive number c. It is convenient to write d = 2a, for
some a > 0. If P = (x,y) is an arbitrary point on the
ellipse, then the defining condition states:

+ = 2a

Moving the second radical to the right-hand side,
squaring, and simplifying yields the equation:

Squaring and simplifying again yields: 

+ 

Noting that a is greater than c, we can set the positive
quantity a2 – c2 as equal to b2, for some positive num-
ber b. Thus the equation of the ellipse is:

+ = 1
y2
–
b2

x2
–
a2

= 1
y2

––
a2 – c2

x2
–
a2

( )x c y a
c
a

x− + = −2 2

√(x – c)2 + y2√(x + c)2 + y2
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Conversely, one can show that any equation of this
form, with a > b, does indeed yield an ellipse with foci
at positions (± , 0), and whose points P have 

distances from the foci a constant sum 2a. If, on the
other hand, b > a, the equation is again an ellipse, but
this time with foci along the y-axis at (0,± ).
The common sum of distances is 2b. (If a equals b, the
curve is a CIRCLE.)

The equation shows that an ellipse crosses the x-
axis at x = ±a and the y-axis at y = ±b. The numbers a
and b are called the semimajor axis and the semiminor
axis, respectively.

Ellipses have the following reflection property: any
ray of light emanating from one focus is reflected off the
side of the ellipse directly toward the other focus. This
can be proved by solving an OPTIMIZATION problem.
Any room with walls curved in the shape of an ellipse
has the property that any whisper uttered at one focus
can be heard by anyone located at the second focus: not
only do sound waves bounce off the curved wall directed
from one focus to the other, but they also travel the same
distance and so arrive synchronized at the second focus.
The Mormon Tabernacle in Salt Lake City, Utah, and
the Whispering Gallery in the U.S. Capitol building in
Washington, D.C., are built to have this property.

Elliptical mirrors are used for the treatment of kid-
ney stones. By positioning a mirror so that the kidney
stone lies at one focus, medical practitioners can place
a high-intensity sound wave generator at the second
focus. Waves from the generator pass harmlessly
through the patient’s body to then concentrate at the
stone and destroy it.

An ellipse can be drawn using a pencil, a string and
two thumbtacks. Tacking each of the two ends of the
string at fixed locations (the foci), one pulls the string
taut with the tip of the pencil, and then slowly moves
the pencil around, all the while keeping the string taut.
The curve traced is an ellipse, with constant sum of the
distances from the foci being the length of the string.

In the process of deriving the equation of an
ellipse, we presented the equation

Set . This is called the 

ECCENTRICITY of the ellipse and has value between zero
and 1. The above equation can be rewritten:

The numerator of the quantity on the left side is the dis-
tance of a given point P from a focus, and the denomina-
tor is the distance of the point P from the vertical line x =
–a/e, called a directrix of the ellipse. This formulation
provides an alternative characterization of the ellipse:

An ellipse is the set of all points P such that the
ratio of its distance from a fixed point (the
focus) to its distance from a fixed line (the direc-
trix) equals a constant e with value 0 < e < 1.

The ECCENTRICITY of a circle is defined to be e = 0.
If e = 1, this characterization gives a PARABOLA. For
e > 1, we have a HYPERBOLA.

See also APOLLONIUS’S CIRCLE; PROJECTION.

ellipsoid Any geometrical surface or solid sitting in
three-dimensional space possessing the property that
any plane that slices it produces a cross-section that is
either an ELLIPSE or a circle is called an ellipsoid. Such a
figure has three axes of symmetry.

An ellipsoid, centered about the origin (0,0,0) has
equation:

+ + = 1

The points (±a,0,0), (0,±b,0) and (0,0,+c) are the loca-
tions where the ellipsoid crosses the x-, y-, and z-axes,
respectively.

One can create an ellipsoid by rotating an ellipse
about one of its axes. This produces a figure with two of
the three quantities a, b, c equal in value. An ellipsoid
produced in this way is called a spheroid, but not every
ellipsoid is a spheroid. If all three quantities a, b, and c
have the same value r, the ellipsoid is a SPHERE of radius r.

Mathematicians have shown that the volume of an
ellipsoid is given by (4/3)πabc. (Compare this with the
equation for the volume of a sphere.) Since the time of
LEONHARD EULER (1707–83), mathematicians have
attempted to find a simple formula for the surface area
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of a general ellipsoid. This has proved to be a very dif-
ficult problem, and no closed-form formula exists. (The
surface area of an ellipse can only be expressed in
terms of a difficult “elliptic integral.”)

empty set (null set) Any set that contains no ele-
ments is called an empty set. For example, the set of all
real numbers greater than three and less than two is
empty, as is the set of all people with gills.

A set A is said to be a subset of a set B, written
A B, if all elements of A belong to B. Consequently
any empty set is a subset of any other set. In particular,
if A and B are both empty, then A B and B A, and
the two empty sets are equal. This shows that there is
only one empty set. It is usually denoted as Ø, but it
can also be written as { }.

The set with the empty set as its one member is
written {Ø}, and the set with the set containing the
empty set as its lone member is written {{Ø}}. In this
way we construct a chain of sets:

Ø, {Ø}, {{Ø}}, {{{Ø}}},…

which naturally corresponds to the sequence of count-
ing numbers 0, 1, 2, 3, … In this context one could
argue that all of mathematics arises from the empty set.
It is an interesting exercise then to give a numerical
interpretation to a two-member set of the form
{Ø,{Ø}}, for instance.

A set that is not empty is called nonempty.
See also SET THEORY.

endpoint See INTERVAL.

epicycle See CYCLOID.

epsilon-delta definition See LIMIT.

equality Two quantities are said to be equal if, in
some meaningful sense, they are equivalent. For exam-
ple, the quantities 2 + 3 and 5 have the same value and
so are equal. The two sets {a,b,c} and {c,a,b} are equal
since they contain the same elements. The symbol = is

used to denote the equivalence of two quantities, and
so we write 2+3 = 5 and {a,b,c} = {c,a,b}.

Two algebraic expressions are said to be equal if
one can be transformed into the other by the standard
rules of algebra. For instance, (x + 1)2 + 3 = x2 + 2x +
4. Two functions are said to be equal if they have the
same domains and produce the same output value for
each input. For example, the functions f(x) = 9x and 

, defined on positive values of x, are
equal.

The symbol = (a pair of parallel line segments to
denote equality) was introduced in 1557 by Welsh math-
ematician ROBERT RECORDE (ca. 1510–58) “because
noe 2 thynges can be more equalle.”

See also EQUATION.

equating coefficients Two polynomials f(x) = anxn +
an–1xn–1 + … + a1x + a0 and g(x) = bnxn + bn–1xn–1 + …
+ b1x + b0 are identical as functions, that is, give the
same output values for each input value of x, only if
the coefficients of the polynomials match: an = bn, an–1

= bn–1,…,a0 = b0. (The general study of POLYNOMIALs
establishes this.) The process of matching coefficients if
two polynomials are known to be the same is called
“equating coefficients.”

For example, if x2 equals a polynomial of the form
A + B(x – 1) + C(x – 1)(x – 2), then, after EXPANDING

BRACKETS, we have x2 = Cx2 + (B – 3C)x + (A – B +
2C). Equating coefficients yields: C = 1, B – 3C = 0
(and so B = 3), and A – B + 2C = 0 (and so A = 1).
Thus x2 = 1 + 3(x – 1) + (x – 1)(x – 2). (This technique
is often used in the method of PARTIAL FRACTIONS.)

As another example, if α and β are the roots of a
quadratic equation of the form x2 – mx + n, then: x2 –
mx + n = (x – α) (x – β) = x2 – (α + β)x + αβ. We con-
clude then that m is the sum of the roots, and n their
product.

equating real and imaginary parts Two COMPLEX

NUMBERS a + ib and c + id are equal only if a = c and b
= d. Using this fact is called “equating real and imagi-
nary parts.” For example, if (x + iy)(2 + 3i) = 4 + 5i,
then we must have 2x – 3y = 4 and 3x + 2y = 5.

LEONHARD EULER (1707–83) made clever use of
this technique to find formulae for PYTHAGOREAN

g x x
x

x( )
log

log=
+2 3

3

⊃⊃

⊃
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TRIPLES. Also, using his famous formula eiθ = cos(θ) +
isin(θ), today called EULER’S FORMULA, many trigono-
metric identities can be established quickly by equat-
ing real and imaginary parts. As another application, 

consider the series . Since cos(nθ) is the real 

part of einθ, the series in question is the real part of 

the GEOMETRIC SERIES . Evaluating, gives

Thus we have .

equation A mathematical statement that asserts that
one expression or quantity is equal to another is called
an equation. The two expressions or quantities involved
are connected by an equals sign, “=.” For instance, the
statement (a + b)2 = a2 + 2ab + b2 is an equation, as are
the statements 2x + 3 = 11 and 10 = 2 × 5.

An equation that is true for all possible values of
the variables involved is called an IDENTITY. For
instance, y2 – 1 = (y – 1)(y + 1) is an identity: this equa-
tion is true no matter which value is chosen for y. An
equation that is true only for certain values of the vari-
ables is called a conditional equation. For instance, the
equation 2x + 3 = 11 is conditional, since it is true only
if x is four. The equation 2c + d = 6 is also a condi-
tional, since it holds only for certain values of c and d.

The numbers that make a conditional equation
true are called the solutions or roots of the equation.
For example, the solution to 2x + 3 = 11 is x = 4. An
equation may possess more than one solution, and the
set of all possible solutions to a conditional equation is
called its solution set. For example, the equation y2 = 9
has solution set {3, – 3}, and the solution set of the
equation 2c + d = 6 is the set of all pairs of numbers of
the form (c, 6 – 2c).

The basic principle in solving an equation is to
add, subtract, multiply, or divide both sides of the
equation by the same number until the desired variable
is isolated on one side of the equation. For example,
the equation 2x + 7 = 5x + 1 can be solved by subtract-

ing 1 from both sides to give 2x + 6 = 5x, then sub-
tracting 2x from both sides to obtain 6 = 3x, and,
finally, dividing both sides by 3 to obtain the solution x
= 2. This approach works well for LINEAR EQUATIONs
of one variable. For QUADRATIC equations, and POLY-
NOMIAL equations of high degree, one may also be
required to take square and higher roots in the process
of solving the equation. Not all equations, however,
can be solved algebraically, in which case one can seek
only a GRAPHICAL SOLUTION.

It should be noted that performing the same arbi-
trary operation on both sides of an equation need not
necessarily preserve the validity of the equation. For
example, although the statement 9 = 9 is certainly
valid, taking a square root on both sides of this trivial
equation could be said to yield the invalid result –3 = 3.
Although 2(x – 1) = 3(x – 1) is true for the value x = 1,
dividing through by the quantity x – 1 yields the 

invalid conclusion 2 = 3. And finally, since = , 

selecting the numerator of each side of the equation
yields the absurdity 12 = 3. Care must be taken to
ensure that the operations being used in solving an
equation do indeed preserve equality.

Even if the application of the same operation on
both sides on an equation is deemed valid, such an act
may nonetheless yield a new equation not necessarily
exactly equivalent to the first. For instance, starting with
a = b, squaring both sides yields the equation a2 = b2,
which now means a = b or a = –b. Mathematicians use
the symbol “⇒” to denote that one equation leads to a
second, but that the second need not imply the first. For
example, it is appropriate to write: a = b ⇒ a2 = b2. (But
a2 = b2 ⇒/ a = b.) The symbol “⇔” is used to indicate
that two equations are equivalent, that is, that the first
implies the second, and that the second implies the first.
For example, we have: 4x = 12 ⇔ x = 3.

See also CUBIC EQUATION; HISTORY OF EQUATIONS

AND ALGEBRA (essay).

equation of a line A straight LINE in two-dimen-
sional space has the property that the ratio of the dif-
ference in y-coordinates of any two points on the line
(rise) to the difference of their x-coordinates (run) is
always the same. That is, the SLOPE of a straight line is
constant and can be computed from any two given
points on the line. Precisely, if (a1,b1) and (a2,b2) are
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two points on the line, and (x,y) are the coordinates of
an arbitrary point on the line, then we have:

= 

This provides the “two-point form” equation of the line.
For example, the equation of the line passing through 

the points (2,3) and (–1,5) is = = .

The quantity is the slope m of the line. 

Thus one can rewrite the two-point form of the equation 

as . Rearranging yields:

y – b1 = m(x – a1)

This is called the “point-slope form” equation of the
line. For example, the equation of a line of slope 4 that
passes through the point (5,7) is simply y – 7 = 4(x – 5).
Working with this form of equation is useful if the slope
of the line is already specified.

Rearranging the point-slope equation yields y = mx
+ (ma1 + b1). Denoting the constant ma1 + b1 simply as
b yields the equation:

y = mx + b

Noting that if x = 0, then we have y = b. This shows
that the constant b is the y-intercept of the line. For
this reason, the above equation is called the “slope-
intercept form” equation of the line. Thus, for exam-
ple, the equation of a line with slope –1 crossing the
y-axis at position 3 is y = –x + 3.

One disadvantage of the slope-intercept form is
that it does not allow one to write down the equation
of a vertical line, that is, one that does not intercept the
y-axis at all. Returning to the two-point form and
cross-multiplying yields the equation (a2 – a1)(y – b1) =
(x – a1)(b2 – b1). EXPANDING BRACKETS and rearrang-
ing terms again yields the general equation:

cx + dy = r

for some constants c, d, and r. This is called the general
form of the equation of a line. For instance, the equa-
tion of the vertical line three units to the right of the y-
axis is obtained by selecting c = 1, d = 0, and r = 3, to
yield the equation x = 3.

Some authors prefer to divide the general form of
the equation of a line through by the constant r and
change the names of the remaining labels so that the
equation reads:

+ = 1

This is called the intercept form of the equation of a line.
In three-dimensional space a line is specified by a

point (a,b,c) on the line and a VECTOR by v = <v1,v2,v3>,
representing the direction of the line. Thus the coordi-
nates (x,y,z) of any other point on the line are given by:

x = a + tv1

y = b + tv2

z = c + tv3

for some value of the real number t. These are the PARA-
METRIC EQUATIONS of the line. (The parametric equa-
tions of a line in two-dimensional space are analogous.)

If the vector v is computed via the difference of
coordinates of the point (a,b,c) and a second point
(a1,b1,c1) on the line—i.e., v1 = a1 – a,, v2 = b1 – b, and
v3 = c1 – c—then solving for t in the parametric equa-
tions yields:

= = 

These are the “two-point form” equations of a line in
three-dimensional space.

See also DIRECTION COSINES; LINEAR EQUATION;
SIMULTANEOUS LINEAR EQUATIONS; SKEW LINES; VECTOR

EQUATION OF A PLANE.

equation of a plane See VECTOR EQUATION OF A

PLANE.

equiangular A POLYGON is said to be equiangular if
all of its interior angles are equal. For example, a rect-
angle is equiangular (each interior angle equals 90°), as
is an EQUILATERAL triangle (each interior angle equals
60°). A polygon is called regular if it is both equiangu-
lar and equilateral.

A point (x,y) in the Cartesian plane is said to be a
lattice point if both x and y are integers, and a polygon
drawn in the plane is said to be a lattice polygon if its

z – c
–—
c1 – c

y – b
–—
b1 – b

x – a
–—a1 – a

x—b
x—a

y – b1–—x – a1

b2 – b1––—a2 – a1

2––
3

5 – 3
–—
–1 – 2

y – 3
–—
x – 2

b2 – b1––—a2 – a1

y – b1–—x – a1
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vertices lie at lattice points. Mathematicians have
proved that it is impossible to draw an equiangular lat-
tice polygon with n sides if n is a number different
from 4 or 8. (Any four-sided equiangular lattice poly-
gon is a rectangle, and any eight-sided equiangular lat-
tice polygon has eight interior angles, each equal to
135°.) The square and the octagon are the only two
regular lattice polygons.

See also CARTESIAN COORDINATES.

equidecomposable Two geometric figures are said
to be equidecomposable if it is possible to dissect one
figure into a finite number of pieces that can be rear-
ranged, without overlap, to form the second figure. For
example, an equilateral triangle of side-length 1 is
equidecomposable with a square of the same area.

In the picture, a is of length and b is of 

length . (The challenge to convert an equilateral 

triangle into a square by dissection was a puzzle first
posed by English puzzlist Henry Ernest Dudeney in 1907.
The challenge is also known as Haberdasher’s puzzle.)

Scottish mathematician William Wallace
(1768–1843) proved that any two polygons of the
same area are equidecomposable. Mathematicians
have since proved that the result remains valid even
for figures with curved boundaries. In particular,
Hungarian mathematician Miklov Laczovich demon-
strated in 1988 that almost 1050 pieces are needed to
convert a circle into a square.

Surprisingly, the corresponding result in three
dimensions does not hold, even for simple polyhedra.

German mathematician Max Dehn (1878–1952)
proved, for instance, that a cube and a regular tetrahe-
dron of the same volume are not equidecomposable.

equidistant Two points P and Q are said to be
equidistant from a third point O if they are the same
distance from O. We write: |PO| = |QO|.

Given a single point O in a plane, the set of all
points equidistant from O is a CIRCLE with O as its
center. Given two points A and B in a plane, the set of
all points equidistant from A and B is the perpendicu-
lar bisector of the line segment AB, that is, a straight
line perpendicular to AB and passing through the mid-
point of AB. (To see this, let M be the midpoint of the
line segment AB, and let P be any point in the perpen-
dicular bisector to AB. Suppose that |PM| = x and |AM|
= y = |MB|. Then, by PYTHAGORAS’S THEOREM, we
have |PA| = = |PB|, and so P is equidistant
from A and B. One can also use Pythagoras’s theorem
to check that any point not on this line is not equidis-
tant from those two points.)

Given three points A, B, and C in a plane, not in a
straight line, there is just one point P equidistant from
all three. (To see this, draw the perpendicular bisectors
of AB and BC, and let P be the unique point at which
they intersect. Then P is equidistant from A and B, and
P is also equidistant from B and C. Consequently, P is
the same distance from all three points.) Noting that
the points A, B, and C can be viewed as the vertices of
a TRIANGLE, this proves:

The three perpendicular bisectors of the sides
of any triangle meet at a common point P.

(This observation is used to prove that the three ALTI-
TUDEs of any triangle are also CONCURRENT.)

Taking matters further, suppose the common dis-
tance of P from each of the three points A, B, and C is
r. It then follows that a circle of radius r centered about
P passes through each of these points. This proves:

For any triangle ABC there exists a single circle
that passes through each of its vertices A, B,
and C.

This circle is called the CIRCUMCIRCLE of the triangle,
and the point P, the common point of intersection of
the three perpendicular bisectors of the triangle, is
called the circumcenter of the triangle.

√x2 + y2

3 1
4

4 −

3 3
4

4−
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In three-dimensional space, the set of all points
equidistant from a single point O is a sphere with O as
its center. Given two points A and B, the set of all
points equidistant from them is a plane that passes
through the midpoint of the line segment AB and is
perpendicular to it. Given three points A, B, and C, not
all in a straight line, the set of all points P equidistant
from all three is a straight line perpendicular to the
plane formed by the three points and passing through
the circumcenter of the triangle ABC. There need not
be a point equidistant from four given points in three-
dimensional space.

The distance of a point from a line is the length of
a line segment from the point meeting that line at right
angles. Again, using Pythagoras’s theorem and similar
triangles, one can show that the set of all points
equidistant from two intersecting lines in a plane is a
pair of perpendicular lines that each pass through the
point of intersection of the two lines, and each bisects
an angle formed by the lines. Furthermore, arguing as
above, one can prove:

In any triangle, the three lines that bisect the
interior angles of the triangle meet at a com-
mon point.

(Consider first the point of intersection of just two
angle bisectors. This point must, in fact, be equidistant
from all three sides of the triangle, and so lies on the
third angle bisector.)

See also EULER LINE; INCIRCLE.

equilateral A POLYGON is said to be equilateral if all
of its sides have the same length. For example, a square
is equilateral, as is a triangle with each interior angle
equal to 60°. A polygon is called “regular” if it is both
equilateral and EQUIANGULAR.

A point (x,y) in the Cartesian plane is said to be a
“lattice point” if both x and y are integers, and a poly-
gon drawn in the plane is said to be a “lattice polygon”
if its vertices lie at lattice points. Mathematicians have
proved that it is impossible to draw an equilateral lat-
tice polygon with an odd number of sides, although
equilateral lattice polygons with any even number of
sides do exist. The square and the octagon are the only
two regular lattice polygons.

See also CARTESIAN COORDINATES.

equivalence relation See PAIRWISE DISJOINT.

Eratosthenes of Cyrene (ca. 275–195 B.C.E.) Greek
Geometry, Number theory, Astronomy, Geographer
Born in Cyrene, in North Africa, (the exact birth date
is not known), Eratosthenes is remembered as the first
person to calculate the circumference of the Earth. (See
EARTH.) Using the known distance between two partic-
ular cities, the lengths of shadows cast by the noonday
sun at those cities, and simple geometric reasoning,
Eratosthenes determined the circumference of the Earth
to be 250,000 “stadia.” Unfortunately, the exact length
of a “stade” is not known today, and so it is not possi-
ble to be certain of the accuracy of this result. If we
take, as many historians suggest, that the likely length
of this unit is 515.6 ft (157.2 m), then Eratosthenes’
calculation is extraordinarily accurate.

Eratosthenes traveled to Athens in his youth and
spent many years studying there. Around 240 B.C.E. he
was appointed librarian of the greatest library of the
ancient world, the Library of Alexandria. Early in his
scholarly career, Eratosthenes wrote the expository
piece Platonicus as an attempt to explain the mathe-
matics on which PLATO based his philosophy. Although
this work is lost today, scholars of later times referred
to it frequently and described it as an invaluable source
detailing the mathematics of geometry and arithmetic,
as well as the mathematics of music. In this work,
Eratosthenes also described the problem of DUPLICAT-
ING THE CUBE and provided a solution to it making use
of a mechanical device he invented.

Eratosthenes also worked on the theory of PRIME

numbers and discovered a famous “sieve” technique
for finding primes. This method is still used today and
is named in his honor.

Along with measuring the circumference of the
Earth, Eratosthenes also devised ingenious techniques
for determining the distance of the Earth from the Sun
(which he measured as 804 million stadia), the distance
between the Earth and the Moon (780,000 stadia), and
the tilt of the Earth’s axis with respect to the plane in
which the Earth circles the Sun (which he measured as
11/83 of 180°, that is, 23° 51′ 15′′). Eratosthenes also
accurately mapped a significant portion of the Nile
River and correctly identified the occurrence of heavy
rains near its source as the reason for its erratic flood-
ing near its mouth. He compiled an astronomical cata-
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log listing over 675 specific stars and devised an effec-
tive calendar system that included leap years.

As an extraordinarily well-rounded scholar,
Eratosthenes wrote literary works on the topics of
theater and ethics, and also wrote poetry. His famous
poem “Hermes” was inspired by his studies of
astronomy.

It is believed that Eratosthenes stayed in Alexan-
dria for the entire latter part of his life. The exact date
of his death is not known.

Erdös, Paul (1913–1996) Hungarian Discrete math-
ematics, Number theory Born on March 25, 1913, in
Budapest, Hungary, prolific mathematician Paul Erdös
(pronounced “air-dish”) is remembered as one of the
greatest problem-solvers and problem posers of all
time. With an uncanny ability to create problems that
led to productive new areas of mathematics research,
Erdös is credited as founder of the field of “discrete
mathematics,” the mathematics of computer science.
With no permanent home, Erdös traveled the globe
multiple times throughout his life, collaborating and
writing papers with scholars from all countries. His
colleagues invented the term Erdös number to describe
their close connections to him, assigning an Erdös
number of 1 to all those who had coauthored a paper
with Erdös, the number 2 to those who had worked
with someone who had worked with Erdös, and so on.
According to his obituary in the New York Times, 458
mathematicians can claim an Erdös number of 1, and
over 4,500 scholars an Erdös number of 2.

Erdös entered the University of Budapest in 1930
at the age of 17, and within just a few years, he began
making significant contributions to the field of NUMBER

THEORY. At age 20 he discovered a new and elementary
proof of conjecture of Joseph Bertrand (1822–1900),
stating that at least one PRIME lies between any number
n and its double 2n. (Russian mathematician PAFNUTY

LIVOVICH CHEBYSHEV established the validity of this
claim, by complicated means, in 1850.) Later in life,
Erdös also found an elementary proof of the famous
PRIME NUMBER THEOREM.

In 1934, at the young age of 21, Erdös was
awarded a Ph.D. in mathematics from the University of
Budapest. Because of his Jewish heritage, Erdös was
forced to leave Hungary, and he accepted the offer of a
postdoctoral fellowship in Manchester, England. As the

situation in Europe worsened, Erdös decided to move
to the United States in 1938.

Erdös never accepted a permanent academic posi-
tion. He preferred to devote his entire waking hours to
the pursuit of mathematics and traveled from one
mathematics conference or seminar to another, building
up a growing circle of collaborators. In the latter part
of his life, Erdös owned nothing more than a suitcase
of clothes and traveled from university to university,
and from the home of one mathematician to another.
He developed a reputation as a brilliant mathematician
and an appalling houseguest. Sleeping only 3 to 5
hours a day, Erdös would often wake his mathematical
hosts at all hours of the night, eager to get cracking on
more mathematical research. By the end of his life,
Erdös had worked on over 1,500 mathematical papers.
He died in Warsaw, Poland, on September 20, 1996.

Erdös won many prizes during his life, including
the 1951 Cole Prize from the American Mathematical
Society for his 1949 paper “On a New Method in Ele-
mentary Number Theory which Leads to an Elemen-
tary Proof of the Prime Number Theorem,” and the
1983 Wolf Prize of $50,000 from the Wolf Foundation.
He was also awarded a salary from the Hungarian
Academy of Sciences. With no need of money, Erdös
often gave it away, either to students in need, or as
prizes for solving problems he had posed, of which
there were many. Mathematicians today are still pub-
lishing papers inspired by those challenges.

error The difference between the approximate value
of a quantity and the true numerical value of that
quantity is called the error of the approximation. There
is some confusion in the literature, however, as to how
to interpret this definition. If x is an approximation of
the value X, then some texts work with the difference
X – x when speaking of the error, whereas other texts
use the difference x – X. (Thus, the error in using 3.6
as an approximation for 3.59, say, could be deemed as
either 0.01 or –0.01.) For this reason, many authors
prefer to work with the “absolute error,” |X – x|, and
avoid the issue of sign altogether.

The term error is also used for the uncertainty in a
measurement. For example, one can typically read tem-
perature only to the nearest degree Fahrenheit. Thus a
temperature recording of 75°F should be written, or at
least interpreted as, (75 ± 0.5)°F to indicate that there
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is a possible error of as much as half a degree. When a
measurement is written in decimal notation, it is gener-
ally understood that the absolute error does not exceed
a half unit in the last digit. Thus, for example, a
recording of 2.3 indicates that the error does not
exceed ±0.05, whereas recording 2.30 indicates that the
error does not exceed ±0.005. In this context, the final
digit recorded is usually understood to be reliable.

If a number representing a measurement does not
have a decimal part, then a dot is sometimes used to
indicate up to which point the digits are reliable. For
example, in recording a measurement as 23

.
00, we are

being told that the 3 is the final reliable digit and that
the error in this measurement could be as much as ±50
(half the 100s place). A recorded measurement of 230

.
0,

on the other hand, indicates that the first zero is reli-
able and that the error in this measurement is at most
±5 (half the 10s place).

The digits up to, and including, the reliable digit
are called the significant figures of the measurement.
Thus the measurement 23

.
00 has two significant figures,

for example, whereas the recorded measurement 230
.
0

has three significant figures. If a result is expressed in
SCIENTIFIC NOTATION, p × 10n, it is generally under-
stood that all the digits of p are significant. For exam-
ple, in writing a value 0.0170 as 1.70 × 10–2, we are
indicating that the final 0 is the result of a measure-
ment, and so this digit is reliable. The quantity 0.0170
thus has three significant digits (and the error of this
measurement is at most ±0.00005). Similarly a
recorded measurement of 0.00030300, for example,
has five significant figures. (The initial three zeros of
the decimal expansion serve only to place the decimal
point correctly. The remaining five digits represent the
result of recording a measurement.)

When calculating with approximate values, it is
important to make sure that the result does not imply
an unrealistic level of precision. For example, if the
dimensions of the room are measured as 14.3 ft by
10.5 ft, multiplying length by width gives the area of
the room as 150.15 ft2. The answer presented this way
suggests a level of accuracy up to the nearest 1/100,
which is unreasonable given that the initial measure-
ments are made to the nearest 1/10. Generally, the
result of a calculation should be presented as no more
accurate than the least accurate initial measurement.
For example, in adding measurements 230

.
0 and 1068,

the result should be recorded as 337
.
0 (the number

3368 is rounded to the nearest 10). In multiplying 14.3
and 10.5, each with three significant figures, the result
should be written 15

.
0 ft2 (again three significant figures).

See also PERCENTAGE ERROR; PRECISION; RELATIVE

ERROR; ROUND-OFF ERROR.

Euclid (ca.300–260 B.C.E.) Greek Geometry The geo-
meter Euclid is remembered as author of the most
famous text in the whole of mathematics, THE ELE-
MENTS. In 13 books, the work covers all that was known
in mathematics at his time, from elementary geometry
and number theory, to sophisticated theories of propor-
tion, irrationals, and solid geometry. But Euclid is revered
today primarily for his unique approach in organizing
the material he presented. Starting with a small set of def-
initions, “common notions,” and AXIOMs (basic state-
ments whose truth seems to be self-evident), Euclid
derived by pure logical reasoning some 465 propositions
(THEOREMs) in mathematics. This established standards
of rigor and powers of deduction that became the model
of all further work in mathematics for the two millennia
that followed. It can be said that The Elements defines
what PURE MATHEMATICS is about.

Close to nothing is known of Euclid’s life. It is
believed that he lived and taught in Alexandria, a Greek
city near the mouth of the Nile in what is now Egypt,
and may have been chief librarian of the great library at
the Alexandria Academy. Many ancient historical texts
describing the work of Euclid confuse the mathemati-
cian Euclid of Alexandria with philosopher Euclid of
Megara, who lived about 100 years earlier. Moreover,
Euclid was a very common name at the time, and there
were many prominent scholars from a variety fields
throughout this period. Because of the subsequent con-
fusion and the lack of specific information about the
mathematician Euclid, some historians have put for-
ward the theory that Euclid was not, in fact, a historical
figure, but the name adopted by a team of mathemati-
cians at the library of Alexandria who published a com-
plete work under the single name Euclid. (Compare this
with the fictitious NICOLAS BOURBAKI of the 20th cen-
tury). This is not the popular view, however.

The Elements was deemed a standard text of study
for Greek and Roman scholars for 1,000 years. It was
translated into Arabic around 800 C.E. and studied
extensively by Arab scholars. With the revival of scien-
tific interest during the Renaissance, Euclid’s work
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became the model of logical thinking in Europe. More
than 2,000 different editions of the text have appeared
since the first typeset version produced in the year 1482,
and many great scientists of the West, including SIR

ISAAC NEWTON (1642–1627) for instance, described
their mastering the work of Euclid as a significant part
of their development of scientific thinking. Study of The
Elements was an integral part of the standard U.S. high-
school mathematics curriculum up until the 1950s.

Other works attributed to Euclid of Alexandria that
have survived today include Data, on the properties of
figures; On Divisions, studying the geometric theory of
dividing the areas of figures into certain proportions;
and Optics, the first Greek work on the theory of PER-
SPECTIVE. It is also known that Euclid produced at least
five other texts in geometry, including a four-book trea-
tise on CONICS, as well as a work on music and another
discussing general scientific principles.

See also EUCLID’S POSTULATES.

Euclidean algorithm In his third book of THE ELE-
MENTS, EUCLID describes a systematic procedure for
finding the GREATEST COMMON DIVISOR of any two
positive integers. The method is as follows:

1. Write down the pair of numbers.
2. Subtract the smaller number from the larger.
3. Rewrite the pair of numbers but replace the larger

number with the answer from step two.
4. Repeat steps two and three until you have two iden-

tical numbers. This repeated value is the greatest
common factor of the two original numbers.

As an example, we calculate the greatest common fac-
tor of 42 and 60:

42:60 → 42:18 → 24:18 → 6:18 → 6:12 → 6:6

Their greatest common factor is 6. Each step of the
procedure produces a pair of numbers with smaller dif-
ference. Eventually, a pair with difference zero will
result. The Euclidean algorithm is therefore sure to
stop after a finite number of calculations.

Why the Algorithm Works
Suppose two numbers a and b eventually produce the
value z via this procedure:

a : b → c : d → … → u : v → z : z

Then it is not too difficult to show that z is indeed the
greatest common factor of a and b.

Firstly, if a and b are both multiples of any number
n, then so is their difference. This means that all the
pairs of numbers produced by this procedure remain
multiples of n. In particular, z is a multiple of n. (In the
example above, both 42 and 60 are multiples of 3, for
example. All the numbers produced via the procedure
remain multiples of 3. They are also multiples of 2 and
of 6.) This establishes that z is at least as large as any
common factor of a and b.

Secondly, working backward through the proce-
dure, we see that the penultimate pair u : v is obtained
from z : z via addition. (Look at the example above.)
Thus both u and v are multiples of z. Working all the
way back, we have in fact that all the numbers appear-
ing in the list must be multiples of z, including both a
and b. Thus z is a common factor.

These two conclusions show that z is indeed the
greatest common factor we seek. As a bonus, the above
two paragraphs also show that the greatest common
factor of two numbers is a multiple of any other com-
mon factor.

Linear Combinations
A surprising consequence of the Euclidean algorithm is
that it also gives a constructive method for writing the
greatest common factor of two positive integers a and b
as a linear combination of the original numbers.

Keeping track of the subtractions performed in the
example above, we have:

42 : 60 → 42 : 18 = (42) : (60–42)
→ 24 : 18 = (42) – (60 – 42) : (60 – 42)

= (2 × 42 – 60) : (60 – 42)
→ 6 : 18 = (2 × 42 – 60) – (60 – 42) : (60 – 42)

=(3 × 42 – 2 × 60) : (60 – 42)
→ 6 : 12 = (3 × 42 – 2 × 60) : (60 – 42) – 

(3 × 42 – 2 × 60)
= (3 × 42 – 2 × 60) : (3 × 60 – 4 × 42)

→ 6: 6 = (3 × 42 – 2 × 60) : (3 × 60 – 4 × 42)
– (3 × 42 – 2 × 60)

= (3 × 42 – 2 × 60) : (5 × 60 – 7 × 42)

Thus we can write 6 = 3 × 42 – 2 × 60 (and also 6 = 5 ×
60 – 7 × 42.) In general, this shows that it is always
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possible to write the greatest common factor of two
numbers a and b in the form:

xa + yb

for some integers x and y. This fact is useful for solving
the famous JUG-FILLING PROBLEM, for example.

See also FUNDAMENTAL THEOREM OF ARITHMETIC.

Euclidean geometry The GEOMETRY based on the
definitions and AXIOMs set out in Euclid’s famous work
THE ELEMENTS is called Euclidean geometry. The
salient feature of this geometry is that the fifth postu-
late, the PARALLEL POSTULATE, holds. It follows from
this that through any point in the plane there is pre-
cisely one line through that point parallel to any given
direction, that all angles in a triangle sum to precisely
180°, and that the ratio of the circumference of any cir-
cle to its diameter is always the same value π.

Two-dimensional Euclidean geometry is called
plane geometry, and the three-dimensional Euclidean
geometry is called solid geometry. In 1899 German
mathematician DAVID HILBERT (1862–1943) proved
that the theory of Euclidean geometry is free from
CONTRADICTION.

See also EUCLID; EUCLID’S POSTULATES; HISTORY OF

GEOMETRY (essay); NON-EUCLIDEAN GEOMETRY.

Euclidean space (Cartesian space, n-space) The VEC-
TOR SPACE of all n-TUPLES (x1,x2,…,xn) of real numbers
x1, x2,…,xn with the operations of addition and scalar
multiplication given by:

(x1, x2,…, xn) + (y1,y2,…,yn) = (x1, + y1, x2 + y2,…,
xn + yn)

k(x1, x2,…,xn) = (kx1, kx2,…,kxn)

and equipped with the notion of distance between
points x = (x1, x2,…,xn) and y = (y1, y2,…,yn) as given
by the DISTANCE FORMULA:

d(x,y) = 

is called a Euclidean space.
Elements of a two-dimensional Euclidean space can

be identified with points in a plane relative to a set of
CARTESIAN COORDINATE axes. The vector space of all

n-tuples of COMPLEX NUMBERS under an analogous set
of operations is called a complex Euclidean space.

Euclid’s postulates EUCLID of Alexandria (ca.
300–260 B.C.E.) began his famous 13-volume piece
THE ELEMENTS with 23 definitions (of the ilk, “a point
is that which has no part” and “a line is that which has
no breadth”) followed by 10 AXIOMs divided into two
types: five common notions and five postulates. His
common notions were:

1. Things that are equal to the same thing are equal to
one another.

2. If equal things are added to equals, then the wholes
are equal.

3. If equal things are subtracted from equals, then the
remainders are equal.

4. Things that coincide with one another are equal to
one another.

5. The whole is greater than the part.

Euclid’s postulates were:

1. A straight line can be drawn to join any two points.
2. Any straight line segment can be extended to a

straight line of any length.
3. Given any straight line segment, it is possible to

draw a circle with center one endpoint and with the
straight line segment as the radius.

4. All right angles are equal to one another.
5. If two straight lines emanating from the endpoints of

a given line segment have interior angles on one given
side of the line segment summing to less than two
right angles, then the two lines, if extended, meet to
form a triangle on that side of the line segment.

(His fourth postulate is a statement about the homogene-
ity of space, that it is possible to translate figures to dif-
ferent locations without changing their basic structure.)

It is worth noting that Euclid deliberately avoided
any direct mention of the notion of infinity. His word-
ing of the second postulate, for instance, avoids the
need to state that straight lines can be extended indefi-
nitely, and his fifth postulate, also known as the PARAL-
LEL POSTULATE, avoids direct mention of parallel lines,
that is, lines that never meet when extended indefinitely.

From these basic assumptions Euclid deduced, by
pure logical reasoning, 465 statements of truth (THEO-

√(x1 – y1)2 + (x2 + y2)2+…+(xn – yn)2
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REMs) about geometric figures. The systematic approach
he followed and the rigor of reasoning he introduced
was hailed as a great intellectual achievement. His model
of mathematical exploration became the standard for all
mathematical research for the next 2,000 years.

Euclid’s fifth postulate was always regarded with
suspicion. It was never viewed as simple and as self-evi-
dent as his remaining four postulates, and Euclid himself
did his utmost to avoid using it in his work. (Euclid did
not invoke the fifth postulate until his 29th proposition.)
Over the centuries scholars came to believe that the fifth
postulate could be logically deduced from the remaining
four postulates and therefore did not need to be listed as
an axiom. Many people proposed proofs for it, includ-
ing the fifth-century Greek philosopher Proclus, who is
noted for his historical account of Greek geometry.
Unfortunately his proof was flawed, as were the proofs
proposed by Arab scholars of the eighth and ninth cen-
turies, and by Western scholars of the Renaissance.

In 1733 Italian teacher and scholar GIROLAMO SAC-
CHERI (1667–1733) believed that because Euclid’s
axioms model the real world, which he thought to be
consistent, they cannot lead to a CONTRADICTION. If the
first four postulates do indeed imply that the fifth pos-
tulate is also true, then assuming the four postulates
together with the negation of the fifth postulate should
lead to a logical inconsistency. Unfortunately, in follow-
ing this tact, Saccheri never came across a contradiction.

In 1795 Scottish mathematician and physicist John
Playfair (1748–1819) proposed an alternative formula-
tion of the famous fifth postulate (today known as PLAY-
FAIR’S AXIOM). This version of the axiom is considerably
easier to handle, and its negation is easier to envision. In
an attempt to follow Saccheri’s approach, Russian math-
ematician NICOLAI IVANOVICH LOBACHEVSKY

(1792–1856) and Hungarian mathematician JÁNOS

BOLYAI (1802–1860), independently came to the same
surprising conclusion: the first four of Euclid’s postulates
together with the negation of Playfair’s version of the
fifth postulate will not lead to a contradiction. This
established, once and for all, that the fifth postulate is an
INDEPENDENT AXIOM and cannot be deduced from the
remaining four postulates. More important, by explor-
ing the geometries that result in assuming that the fifth
postulate does not hold, scholars were led to the discov-
ery of NON-EUCLIDEAN GEOMETRY.

In the late 1800s the German mathematician DAVID

HILBERT (1862–1943) noted that, despite its rigor,

Euclid’s work contained many hidden assumptions. He
also realized, despite Euclid’s attempts to describe them,
that the notions of “point,” “line,” and “plane” cannot
be properly defined and must remain as undefined
terms in any theory of geometry. In his 1899 work
Grundlagen der Geometrie (Foundations of geometry)
Hilbert refined and expanded Euclid’s postulates into a
list of 28 basic assumptions that define all that is needed
in a complete account of Euclid’s geometry. His axioms
are today referred to as Hilbert’s axioms.

See also EUCLIDEAN GEOMETRY; HYPERBOLIC

GEOMETRY; SPHERICAL GEOMETRY.

Euclid’s proof of the infinitude of primes Around
the third century B.C.E., EUCLID proved that there is no
such thing as a largest PRIME number, meaning that the
list of primes goes on forever. He presented his proof as
Proposition IX.20 in his book THE ELEMENTS, and he
was the first to recognize and prove this fact about
prime numbers.

Euclid’s proof relies on the observation that any
number N is either prime, or factors into primes. His
argument proceeds as follows:

Suppose to the contrary that there is a largest
prime number p. Then the finite list 2, 3, 5, 7,
…, p contains all the prime numbers. But con-
sider the quantity:

N = 2 × 3 × 5 × 7 ×…× p + 1

It is not divisible by any of prime numbers in
our list (it leaves a remainder of one each
time), and so it has no prime factor. It must be
the case then that N is prime. Thus we have
created a new prime number larger than the
largest prime p. This absurdity shows that our
assumption that there are only finitely many
primes must be false.

Euclid’s argument is a classic example of a PROOF BY

CONTRADICTION. His argument also provides an
ALGORITHM for generating new primes from any finite
list of primes. For example, from the list of primes 2,
3, 7, Euclid’s argument yields N = 2 · 3 · 7 + 1 = 43 as
a new prime, and from the list 2,3,7,43, we have N =
2 · 3 · 7 · 43 + 1 = 1807 = 13 × 139, yielding 13 as a
new prime.
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Euclid’s argument can be developed further to obtain
other interesting facts about prime numbers. For exam-
ple, we can prove:

There are infinitely many primes that leave a
remainder of 3 when divided by 4. (That is,
there are infinitely many primes of the form
4n + 3.)

Again, suppose to the contrary, that the list of such
primes is finite: 3, 7, 11,…,p, and this time consider
the quantity. N = 4 × (3 × 7 × 11 ×…× p) –1. If this
number is prime, then we have found a new prime of
the required form. If it is not, then it factors into
primes: N = p1 × p2 ×…× pk. Notice that since N is not
divisible by 3, none of its prime factors is equal to 3. It
also cannot be the case either that all of the prime fac-
tors pi leave a remainder of 1 when divided by 4 (for
then N would also leave a remainder of 1). Thus at
least one of these prime factors is a prime of the form
4n + 3 not already in our list of such primes. It must
be the case then that the list of such primes goes on
forever.

In a similar way (though it is a little more compli-
cated) one can also prove:

There are infinitely many primes of the form
6n+5.

(Use N = 2 × 3 × 5 ×…× p – 1.) PETER GUSTAV LEJEUNE

DIRICHLET (1805–59) generalized these results to prove
that if a and b are any two RELATIVELY PRIME whole
numbers, then there are infinitely many primes of the
form an + b.

See also FUNDAMENTAL THEOREM OF ARITHMETIC.

Eudoxus of Cnidus (ca. 408–355 B.C.E.) Greek Geo-
metry, Number theory, Astronomy Born in Cnidus, in
Asia Minor (now Turkey), Eudoxus is remembered as
one of the greatest mathematicians of antiquity. All of
his original work is lost, but it is known from later writ-
ers that he was responsible for the material presented in
Book V of EUCLID’s famous treatise THE ELEMENTS. In
his theory of proportions, Eudoxus developed a coher-
ent theory of REAL NUMBERS using absolute rigor and
precision. The full importance of this sophisticated
work came to light some two millennia later, when
scholars of the 19th century attempted to resolve some

fundamental difficulties with the theory of CALCULUS.
They discovered that Eudoxus had already anticipated
these fundamental problems and had made significant
steps toward resolving them. Eudoxus is also remem-
bered as the first to develop a “method of exhaustion”
for computing the AREA of curved figures.

As a young man Eudoxus traveled to Tarentum,
now in Italy, to study number theory, geometry, and
astronomy with ARCHYTAS OF TARENTUM, a follower
of PYTHAGORAS. Both men worked to solve the famous
problem of DUPLICATING THE CUBE and, in fact,
Eudoxus came up with his own geometric solution to
the challenge using special curved lines as an aid.
(Although the problem calls for the use of nothing
more than a compass and a straight edge, this partial
solution was nonetheless a significant achievement.)

Eudoxus studied the theory of proportions. This
blend of GEOMETRY and NUMBER THEORY calls two
lengths a and b COMMENSURABLE if they are each a
whole-number multiple of some smaller length t: a = mt
and b = nt. In this approach, two ratios a : b and c : d
are said to be equal if they are the same multiples of
some fundamental lengths t and s: a = mt, b = nt and c
= ms, d = ns.

For a long time it was believed that all lengths were
commensurable and hence all ratios could be com-
pared. Consequently, the Pythagorean discovery of two
incommensurable lengths, namely 1 and √

–
2, the side

length and the diagonal of a unit square, caused a crisis
in the mathematical community. As HIPPASUS OF

METAPONTUM (ca. 470 B.C.E.) discovered, there is no
small value t such that 1 = mt and √

–
2 = nt. (This is

equivalent to the statement that the number √
–
2 cannot

be written as a fraction n/m.)
Eudoxus came to resolve the crisis of comparing

ratios even if they are not commensurable by avoiding
all use of a common length t. He defined ratios a : b
and c : d to be equal if, for every possible pairs of inte-
gers n and m:

i. ma < nb if mc < nd
ii. ma = nb if mc = nd
iii. ma > nb if mc > nd

With this formulation, Eudoxus was able to compare
lines of any length, either rational or irrational, and
obviate all philosophical difficulties associated with
incommensurable quantities. Mathematician JULIUS

WILHELM RICHARD DEDEKIND (1831–1916) based his
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theory of DEDEKIND CUTs on this approach developed
by Eudoxus.

In geometry, Eudoxus was the first to establish that
the volume of a cone is one-third the volume of the
cylinder that surrounds it, and also that the volume of
a pyramid is one third the volume of a prism of the
same base and height. ARCHIMEDES OF SYRACUSE (ca.
287–212 B.C.E.) made use of these results in his famous
treatise On the Sphere and Cylinder, citing Eudoxus as
the person who first proved them.

Eudoxus maintained an active interest in astron-
omy throughout his life. He built an observatory in the
city of Cnidus and made careful note of the motion of
the planets and stars across the night skies. Outside of
mathematics, Eudoxus is best known for his ingenious
theory of planetary motion based on a system of 27
nested spheres. Using advanced techniques in three-
dimensional geometry, Eudoxus was able to use this
model to explain the puzzling retrograde motion of the
heavenly bodies.

Euler, Leonhard (1707–1783) Swiss Analysis, Geom-
etry, Number theory, Graph theory, Mechanics, Physics
Born on April 15, 1707, in Basel, Switzerland, genius
Leonhard Euler was, beyond comparison, the most pro-
lific mathematician of all time. With over 850 books
and papers to his name, Euler made fundamental con-
tributions to virtually every branch of mathematics of
his day. He formalized the notion of a FUNCTION (and
introduced the notation f(x) for it), and thereby
changed the focus of mathematics from a study of fixed
curves and lines to a more powerful study of transfor-
mation and change. (He was the first, for instance, to
regard the special functions from TRIGONOMETRY as
functions.) Euler published works on ANALYSIS, DIFFER-
ENTIAL CALCULUS, INTEGRAL CALCULUS, DIFFERENTIAL

EQUATIONs, NUMBER THEORY, GEOMETRY, LOGIC, COM-
BINATORICS, approximations for π, planetary motion
and astronomy, navigation, cartography, mechanics,
and more. He introduced and made popular many of
the standard symbols we use today (such as i for √

–
–1, π

for PI, E for his famous number, and Σ for SUMMATION).
It is simply not possible in a short piece to give proper
justice to the phenomenal quantity of contributions
Euler made to the study of mathematics.

Euler obtained a master’s degree in philosophy
from the University of Basel in 1723, following the

path his father set for him to study theology. Euler’s
interests, however, lay with mathematics, and Euler
remained at the university another three years to pur-
sue a course of study in the subject. In 1727 he sub-
mitted an entry for the Grand Prize of the Paris
Academy of Sciences on the best arrangement of
masts on a ship. Euler won second prize, which gar-
nered the attention of the scientific community as an
outstanding young graduate. Euler accepted a position
at the St. Petersburg Academy of Science that year and
was promoted to a full professor of the academy just
three years later.

In 1736 Euler published Mechanica (Mechanics), a
landmark piece that introduced rigorous mathematical
techniques as a means for studying the subject. He won
the Grand Prize of the Paris Academy in 1738, and
again in 1740, and by this time was a highly regarded
scholar. At the invitation of Frederick the Great, Euler
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joined the Berlin Academy of Science in 1741. He
remained there for 25 years, assuming the leadership of
the academy in 1759.

During his time at Berlin, Euler wrote over 350
articles and several influential books on a wide variety
of topics in both pure and applied mathematics. In
1753 he invented the paddle wheel and the screw pro-
peller as means of propelling ships without wind. In
1761 he developed a method of using observational
data about the planet Venus to determine the distance
of the Earth from the Sun, and also to make measure-
ments of longitude on the Earth’s surface.

In 1766 Euler returned to St. Petersburg, but soon
afterward fell ill and lost his eyesight. Despite being
blind, Euler continued to produce significant pieces of
work. (He published approximately 500 books and
papers while blind.) Euler also worked to popularize the
scientific method and wrote, between the years 1768
and 1772, his famous three-volume piece Letters to a
German Princess on the topic of popular science. Euler
remained at St. Petersburg until his death in 1783.

Euler’s name is attached to at least one fundamen-
tal concept in nearly every branch of mathematics. For
instance, EULER’S THEOREM is a key result in GRAPH

THEORY, linking the number of vertices and edges of a
graph to the number of regions it produces. The num-
ber e plays a fundamental role in the theory of differen-
tial calculus, differential equations, PROBABILITY theory,
STATISTICS, the theory of SUBFACTORIALs and derange-
ments, the study of COMPOUND INTEREST, and the
study of COMPLEX NUMBERS through EULER’S
FORMULA, for instance. In number theory, EULER’S
CONSTANT plays a key role in the study of the HAR-
MONIC SERIES, for instance. Euler found a formula for
the “Euler totient function” that provides, for a num-
ber n, the count of numbers less than n that are RELA-
TIVELY PRIME to n and showed its importance in the
theory of MODULAR ARITHMETIC. Euler’s name is inti-
mately associated with the study of the ZETA

FUNCTION, with the gamma function in the examina-
tion of the FACTORIAL function, with the study of
LATIN SQUARES, and with the construction of even PER-
FECT NUMBERS. (No one to this day knows whether or
not examples of odd perfect numbers exist.)

Less well known is Euler’s polynomial, n2 – n + 41,
which produces a PRIME output for every integer input
from –39 through to 40. The 40 × 117 × 240 rectangu-
lar block, called “Euler’s brick,” has the property that

any diagonal drawn on the face of this solid also has
integer length. Euler showed that there are infinitely
many such blocks with integer side-lengths and integer
face diagonals. (No one to this day knows whether or
not there exists an Euler brick with internal space diag-
onals also of integer length.)

Euler died in St. Petersburg, Russia, on September
18, 1783. It is not an exaggeration to say that Euler
offered profound insights on practically every branch
of mathematics and mathematical physics studied at his
time and, moreover, paved the way for many new
branches of mathematics research. In 1915 the Euler
Committee of the Swiss Academy of Science began col-
lating and publishing his complete works. Divided into
four series—mathematics, mechanics and astronomy,
optics and sound, and letters and notebooks—76 vol-
umes of work have been released thus far (covering
approximately 25,000 pages of written material), and
the committee projects another eight volumes of mate-
rial still to be released.

Eulerian path/circuit See GRAPH THEORY.

Euler line For any triangle the following are true:

1. The three MEDIANS OF A TRIANGLE meet at a point
G, the centroid of the triangle.

2. The three ALTITUDEs of a triangle meet at a point H,
the orthocenter of the triangle.

3. The perpendicular bisectors of each side of a triangle
meet at a point O, the circumcenter of the triangle.
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These statements are proved through a study of the
median of a triangle, the altitude of a triangle, and the
consideration of EQUIDISTANT points, respectively.

In the mid-1700s LEONHARD EULER (1707–83)
made the astounding discovery that furthermore, for
any triangle, the three points G, H, and O are
COLLINEAR, that is, lie on a straight line. This line is
called the Euler line of the triangle.

Euler proved this observation as follows: If, by
chance, the points O and G coincide, then each median
of the triangle is also an altitude. This means that the
triangle is symmetric about each median, and so must
be equilateral. Consequently, the point H occurs at the
same location as O and G, and the three points, triv-
ially, lie on a straight line. If, as is more likely the case,
O and G do not coincide, then draw a line through
them and consider a point J on this line that is situated
so that the length of the segment GJ is twice that of
OG. Let M be the midpoint of the base of the triangle.

From a study of the medians of a triangle, we know
that length of the segment AG to that of GM in the dia-
gram above is in ratio of 2 to 1. Consequently, the two
shaded triangles are similar, and, in particular, angles
AJG and GOM match. By the converse of the PARALLEL

POSTULATE, lines OM and AJ are parallel. Since OM
makes an angle of 90° to the base of the triangle, so too
must line AJ, making this line an altitude to the triangle.

Nothing in this argument thus far has relied on
vertex A being the object of focus. The same reasoning
shows that the altitude from vertex B also passes
through the point J, as does the altitude from vertex C.
This shows that the point J is in fact the orthocenter H
of the triangle. Consequently, O, G, and H do indeed
all lie on the same straight line.

Euler’s constant In drawing rectangles of width 1
that just cover the curve y = 1/x, one sees that the
“excess area” above the curve fits inside the first rect-
angle of height 1, and so sums to a finite value no
larger than 1. The amount of excess area, denoted γ, is
called Euler’s constant. To eight decimal places, it has
value 0.57721566. No one knows whether γ is a ratio-
nal or irrational number.

As the area under the curve from x = 1 to x = n is 

∫n1dx = ln n, we have that 1 + + + … + is 

approximately equal to ln(n). More precisely, the sum
of the areas of the first n rectangles is given by:

1 + + + …+ = lnn + γ + error

where the “error” is the term minus all the “excess 

areas” above the curve from position n onward. Notice
that these excess areas all fit within the rectangle of 

height , so this error is no bigger than . In particular, 

it is negligibly small if n is large.
See also HARMONIC SERIES.

Euler’s formula In 1748 LEONHARD EULER noted
that the TAYLOR SERIES for the functions ex, sin x, and
cos x are intimately connected. Since

setting x = iθ, where i is the square root of –1 and θ is a
real number (usually thought of as an angle), yields:
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The formula eiθ = cosθ + isinθ is today known as
Euler’s formula. It has some interesting consequences:

Setting θ = π, we obtain: eiπ = cosπ + isinπ =
–1 + i · 0 = –1. Mathematicians often deem this
as one of the most beautiful facts of mathemat-
ics: it is a remarkably simple equation that
connects the mysterious, and pervasive, num-
bers e, π, i, and –1.

Setting θ = yields , which shows that 

. Thus raising a complex
number to a complex power can yield a real
answer as a result.

Euler’s formula provides a very simple means for
deriving (and memorizing) certain identities from
TRIGONOMETRY. For example, since

eiA · eiB = ei(A + B)

we have:

(cosA + isinA) · (cosB + isinB) = cos(A + B) + isin(A + B)

Expanding the brackets on the left and collecting terms
that contain i and those that do not quickly yields:

cos(A + B) = cosA · cosB – sinA · sinB
sin(A + B) = sinA · cosB + cosA · sinB

Similarly, the equations (eiA)2 = ei(2A), (eiA)3 = ei(3A), and
so forth yield double-angle and triple-angle formulae,
for example.

Euler’s formula is also used to represent complex
numbers. For example, if z is a point in the complex
plane a distance r from the origin, making an angle θ
with the x-axis, then its x- and y-coordinates can be
written:

x = r cosθ
y = r sinθ

and the complex number is thus:

z = x + iy = r cosθ + ir sinθ = reiθ

This is called the polar form of the complex number. If
one multiples two complex numbers, z = reiθ and
w = seiτ, we see that z · w = rsei(θ+τ), that is:

The product of two complex numbers is a new
complex number whose distance from the ori-
gin is the product of the distances from the ori-
gin of the two original numbers, and whose
angle with the x-axis is the sum of the two
angles made by the two original numbers.

Euler’s formula makes the derivation of this fact swift
and easy.

See also COMPLEX NUMBERS; DE MOIVRE’S FOR-
MULA; E HYPERBOLIC FUNCTIONS.

Euler’s theorem (Euler’s formula, Euler-Descartes for-
mula) A GRAPH is a collection of dots, called vertices,
connected in pairs by line segments, called edges, sub-
sequently dividing the plane into a finite number of
regions. In 1752 LEONHARD EULER showed that if a
graph drawn on the plane has v vertices, e edges, and
divides the plane into a total of r regions (this includes
the large “outer region”), then:

v – e + r = 1 + c

where c is the number of “connected components” of
the graph, that is, the number of distinct pieces of
which it is composed. For example, the graph shown
is composed of two “distinct pieces” (c = 2) and has
nine vertices, 13 edges, and divides the plane into
seven distinct regions, and indeed v – e + r equals 3,
one more than c.

The formula is easily proved via an INDUCTION

argument on the number of edges: if a graph has no
edges, then it consists solely of v disconnected points.
Thus it has c = v components and divides the plane into
just one region. The formula v – e + r = 1 + c holds
true. One checks that adding an edge either divides a
region into two (thereby increasing the value of r by
one), creates an extra region if that edge is a loop
(again increasing the value of r by 1), or connects two
disconnected components of the graph (thereby
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decreasing the value of c by 1). In all cases the formula
v – e + r = 1 + c remains balanced.

The formula is usually applied to a graph that is
connected, that is, has only one component (c = 1). In
this case the formula reads:

v – e + r = 2

and this version of the equation is usually called Euler’s
theorem.

The vertices, edges, and faces of a POLYHEDRON can
be thought of as a connected graph. For example, a
cube with its top face removed and pushed flat onto a
plane yields a graph with eight vertices and 12 edges
dividing the plane into six regions. (The large “outer”
region corresponds to the top face of the cube that was
removed.) We still have: v – e + r = 2. In general, for any
polyhedron with v vertices, e edges, and f faces we have:

v – e + f = 2

This was first observed by RENÉ DESCARTES in 1635.
Euler had no knowledge of Descartes’s work when he
developed the formula in the more general setting of
graph theory. For this reason, this famous formula is
also called the Euler-Descartes formula.

This result holds true only for graphs that lie on
the plane (or polyhedra that can be pushed flat onto a
plane). One can show that for connected graphs drawn
on a TORUS, for example, the formula must be adjusted
to read: v – e + r = 0. For example, if a polyhedron

contains a hole (say, a cube with a square hole drilled
through it), one has: v – e + f = 0. (There is one techni-
cal difficulty here: one needs to be sure that each region
or face under consideration is not itself an ANNULUS.
One may need to draw in extra edges to break regions
into suitable form.)

even and odd functions A function y = f(x) is said
to be even if, for each x, the function takes the same
value at both x and –x, that is, f(–x) = f(x) for all val-
ues of x. The graph of an even function is consequently
symmetrical about the vertical axis. The functions x2, 

cos(x), and , for example, are even functions.

A function y = f(x) is said to be odd if, for each x,
the function takes opposite values at x and –x, that is,
f(–x) = –f(x) for all values of x. The graph of an odd
function is consequently symmetric with respect to a
180° rotation about the origin. The functions x, x3, 

sin(x), and , for example, are odd 

functions.
Any function g(x) can be expressed as the sum of

an even and an odd function. Let:

Then feven(x) is even, fodd(x) is odd, and g(x) = feven(x) +
fodd(x).

The FOURIER SERIES of any even function contains
only cosine terms, and the Fourier series of any odd
function only sine terms. The absolute value of any odd
function f(x) is an even function, that is, if y = |f(x)|,
then y is even.

even and odd numbers Working solely in the realm
of the whole numbers, a number is said to be even if it
is divisible by 2, and odd if it leaves a remainder of 1
when divided by 2. For example 18 is divisible by 2 and
so is even, and 23 leaves a remainder of 1 and so is odd.

There is a physical interpretation to the evenness or
oddness of a number: An even number of pebbles, say,
represents a pile that can be split into two equal
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parts—18 pebbles split into two piles of 9, for exam-
ple. An odd pile of pebbles leaves an extra pebble when
one attempts to accomplish this feat: 23 pebbles splits
into two piles of 11, with one left over. This interpreta-
tion shows that the number zero is even: an empty pile
of pebbles can be split into two equal piles of nothing.

Combining together several piles of pebbles, each
of which can be evenly split, produces a large pile that
still can be so separated. This shows that the sum of
any collection of even numbers is even. Combining two
odd piles of pebbles produces a result that is even—the
two “errant” pebbles combine to produce a result that
can be evenly split. The sum of three odd numbers
leaves a single errant pebble, however, and so is odd. In
summary we have:

The sum of any number of even numbers 
is even.

The sum of an even number of odd numbers 
is even.

The sum of an odd number of odd numbers 
is odd.

These simple ideas are quite powerful. For example, we
can quickly ascertain that:

The sum of the numbers 1 through 100 will 
be even.

(This sum contains 50 even numbers and 50 odd 
numbers.)

It is impossible to make change for a dollar
using a combination of 13 pennies, nickels and
quarters.

(Thirteen coins of odd denomination will sum to an odd
amount. It is impossible then to reach a sum of 100.)

If 15 arbitrary sheets are torn from a textbook,
then the sum of the missing page numbers is
necessarily odd.

(Each sheet contains an odd page number on one side
and an even page number on the other. The sum of 15
odd numbers and 15 even numbers is necessarily odd.)

Seventeen cups are placed upside-down on a
tabletop. Turning four cups over at a time, it is
impossible to reach a state in which every cup
is upright.

(To be left upright, each cup must be turned over an odd
number of times in the process of the game. Thus an odd
number of inversions must occur in all, being a sum of
17 odd numbers. But an odd total will never occur when
turning an even number of cups over at a time.)

See also PARITY.

event Any subset of the SAMPLE SPACE of all possible
outcomes of an experiment is called an event. For exam-
ple, the act of casting a die has sample space {1, 2, 3, 4,
5, 6}—all six possible scores—and the event “the score is
even” is the subset {2, 4, 6}. An event could be a single
outcome (“rolling a two,” for example, is the subset {2}),
the whole sample space (“rolling a number less then
10”), or the empty set (“rolling a multiple of seven”).

The probability of an event E occurring is the ratio
of the number of outcomes in that event to the total
number of outcomes possible. This ratio is denoted 

P(E). For example, in casting a die, P(even) = = , 

P({5,6}) = = , and P(multiple of 7) = = 0.

SET THEORY is useful for analyzing the chances of
combinations of events occurring. If A and B represent
two events for an experiment, then:

The intersection A ∩ B represents the event
“both A and B occur.”

The union A ∪ B represents the event “either
A or B occurs.”

The complement A′ represents the event “A
does not occur.”

To illustrate: if, in casting a die, A is the event {2, 4, 6}
and B the event {5,6}, then A ∩ B = {6}, A ∪ B = {2, 4,
5, 6}, and A′ = {1, 3, 5}.

The following probability laws hold for two events
A and B:

i. P(A ∩ B) = P(A) + P(B) – P(A ∪ B).
ii. When A and B are disjoint events, that is have no

outcomes in common, then P(A ∪ B) = P(A) + P(B).
iii. P(A′) = 1 – P(A).
iv. When A and B are INDEPENDENT EVENTS, P(A ∩ B)

= P(A) × P(B).

The study of PROBABILITY explains these rules.
See also CONDITIONAL; MUTUALLY EXCLUSIVE

EVENTS; ODDS.
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expanding brackets The geometric figure of a rectan-
gle explains the process of expanding brackets. Take, for
example, a 23-by-42 rectangle. Its AREA is given by the
product 23 × 42. This product can easily be computed
by thinking of 23 as 20 + 3 and 42 as 40 + 2. This corre-
sponds to subdividing the rectangle into four pieces:

We thus have (20 + 3) × (40 + 2) = 20 × 40 + 20 ×
2 + 3 × 40 + 3 × 2, which equals 800 + 40 + 120 + 6,
or, 966, which is indeed 23 × 42.

Note that each of the four terms in the sum is the
product of one number in the first set of parentheses
(20 or 3), and one number in the second set (40 and 2),
with all possible pairs of numbers appearing. This prin-
ciple holds in general. For example, the quantity (x +
y)(a + b + c) equals the sum of six products: xa + xb +
xc + ya + yb + yc (this corresponds to subdividing a
rectangle into six pieces), and (r + s + t + u + v)(k + l +
m + n + o + p + q) is the sum of 35 individual products.

This principle extends to any number of sets of
parentheses. For example:

(2 + 3) × (4 + 5) × (6 + 7) = 2 × 4 × 6 + 2 × 4 × 7 + 2 
× 5 × 6 + 2 × 5 × 7 + 3 × 4
× 6 + 3 × 4 × 7 + 3 × 5 × 6
+ 3 × 5 × 7

(Again select one term from each set of parentheses,
making sure to include all possible combinations.) This
corresponds to subdividing a cube into eight pieces.

It also holds for products containing single terms
along with sets of parentheses. For example, we have:
(a + b) × x × (c + d) = a × x × c + a × x × d + b × x × c +
b × x × d.

Many schools teach mnemonic devices for cor-
rectly expanding brackets. These can be more compli-

cated than simply understanding the simple process
at hand.

See also DISTRIBUTIVE PROPERTY; NESTED

MULTIPLICATION.

expected value (expectation, mean) The expected
value of a game of chance involving monetary bets is
the average or MEAN profit (or loss) per game you
would expect if the game were played a large number
of times. The expected value illustrates the extent to
which a game is set to, or against, your favor. To
demonstrate: imagine you have the opportunity to play
the following dice game:

You toss a single die and look at the score cast.
If a 1 comes up you win $10, and if a 2
appears you win $5. If any other number is
cast, you pay a fee of $3 for playing the game.

Is this a game worth playing?
With 600 plays of this game, one would expect

close to one-sixth of those rolls (around 100 of them)
to yield a 1, and hence a gain of $10, another sixth of
the rolls (that is, about 100 rolls) to yield a 2 and a
gain of $5, and two-thirds of the rolls (around 400 of
them) to result in a loss of $3 (that is, a –$3 profit).
The average profit over 600 rolls would thus be:

that is, a gain of 50 cents per game. This positive
expected value shows that the game is indeed worth play-
ing. Note, however, that one might still lose money while
playing the game. What has been demonstrated here is
that, for the long run, the game is set to your favor.

Note the appearance of the fractions 1/6, 1/6, and
4/6 in our computation of expected value. These are
the probabilities of each identified outcome actually
occurring. Such probabilities always appear when com-
puting expected value. In general, if an experiment
yields numerical values x1, x2,…,xn, with pi being the
probability that outcome xi occurs, then the expected
value of the experiment is given by:

x1p1 + x2p2 +…+ xnpn
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For example, in tossing a pair of dice, the expected
sum is:

(The possible sums are the numbers 2 through 12, with
the probability of casting 2 being 1/36, a 3 being 2/36,
and so on.)

Expected value is usually denoted by the letter μ from
the GREEK ALPHABET. If an experiment has an infinite
number of possible outcomes, then the expected value
is given by an infinite sum (SERIES). The BINOMIAL DIS-
TRIBUTION is an example of this. If the random phe-
nomenon can produce a continuous array of values (for
example, the height of an individual can be any value,
including fractional ones), then the expected value is
given by an INTEGRAL:

μ = ∫∞
– ∞x p(x) dx

Here p(x) is the probability density function of the
random variable under consideration for the given
DISTRIBUTION.

The notion of expected value was first developed
by Dutch scientist Christiaan Huygens (1629–95) in his
treatise On Reasoning in a Dice Game.

See also HISTORY OF PROBABILITY AND STATISTICS

(essay).

exponent (index) For a real number b and a posi-
tive whole number m, the shorthand bm is used for
the repeated multiplication of b with itself m times:
bm = b × b ×…× b (m times). Thus, for example, 25 =
2 × 2 × 2 × 2 × 2 = 32, (–1)3 = (–1) × (–1) × (–1) = –1, 

, and 101 = 10. In the expression bm, 

m is called the exponent, or the index, and b is called
the base of the exponent. We also call bm a power
of b.

The product of two expressions bm and bn with the
same base b is itself a repeated multiplication of the
number b. Precisely:

This establishes the multiplication rule for exponents:

To multiply two expressions with the same
base, retain the common base and add together
the exponents: bm × bn = bm + n.

The power rule for exponents, (bm)n = bmn, follows.
(One must add m with itself n times.) The multiplica-
tion rule is considered fundamental and allows us to
define exponential quantities bm for values of m other
than whole numbers. We follow the principle that the
multiplication rule is to always hold.

Consider, for example, the expression 20. This
quantity has no meaning when interpreted as “the mul-
tiplication of two with itself zero times.” However, one
can assign a meaningful value to this expression by
multiplying it with another power of two. For example,
according to the multiplication rule, it must be the case
that 20 × 25 = 20+5 = 25. This says that 20 × 32 = 32,
which tells us that 20 must equal one. The multiplica-
tion rule thus leads to the rule:

The zero exponent for any nonzero base equals
1: b0 = 1.

To make sense of the quantity 2–1, again invoke the
multiplication rule. We have, for example, 2–1 × 23 =
2–1+3 = 22. This reads: 2–1 × 8 = 4. It must be the case
then that 2–1 = 1/2. Similar calculations show that 2–2

must equal 1/4, and that 2–3 must equal 1/8. In general, 

. This works for any nonzero base b.

A negative exponent indicates that a reciprocal 

must be taken: b–n = .

We can make use of this observation to compute , 

for example. Rewriting, we have 

.

To divide two expressions with the same
base, retain the common base and subtract 

the exponents: = bn – mbm
–
bn
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The multiplication rule also allows us to make sense of
fractional exponents. Consider the quantity 2 . It must
be the case that 2 × 2 = 21 = 2. Thus 2 is a value
that, when multiplied by itself, equals 2. Consequently
2 = √

–
2. Similarly, 2 is a value that, when multiplied

by itself three times, equals 2, and so 2 = 
3√—

2, the cube
root of 2. In general, 2 equals the nth root of 2. This
works for any nonzero base.

A fractional exponent indicates that a root is 
to be taken: b = 

n
√—

b.

We use the power rule to make sense of other types of
fractional exponents. For example, the quantity 27

can be computed as 

. In general, we have:

Finally, to compute a quantity raised to an irrational
power, one approximates the exponent by a fraction,
computes the corresponding exponential expression,
and takes the LIMIT as one uses better and better
approximations. For example, writing √

–
2 = 1.414…, 

we see that any of the fractions 1, , , ,… can 

be used to approximate √
–
2 with better and better degrees

of accuracy. We define 2√–2 to be the limit of the values: 

21 = 2, , , 

, ….

The multiplication and power rules are valid even
for irrational exponents. For example, we have:

The Greek mathematician ARCHIMEDES OF SYRA-
CUSE (287–212 B.C.E.) was one of the first scholars to
use a special word for the power of a number. He
called the quantity 10,000, 104, a myriad, and he used
the phrase “myriad of myriads” for 10,000 squared,
104 × 104 = 108. The ancient Greeks, for whom mathe-
matics was synonymous with geometry, called the

square of an unspecified quantity a tetragon number,
meaning a “four-corner number.” DIOPHANTUS OF

ALEXANDRIA (ca. 200–284 C.E.) used the Greek word
dynamis, meaning “power,” for the square of an
unknown, and called a third power a “cube,” a fourth
power a “power-power,” and fifth and sixth powers
“power-cube” and “cube-cube,” respectively.

It took many centuries for scholars to begin using
symbols to denote unknown quantities. German
mathematician Michael Stifel (ca. 1487–1567) was
the first to develop a notational system for powers of
an unspecified quantity x. He denoted the fourth
power of x simply as xxxx. Other scholars developed
alternative notational systems. Scholars eventually
settled on the notational system French mathemati-
cian and philosopher RENÉ DESCARTES (1596–1650)
introduced in 1637, the one we use today. Although
Descartes considered only positive integral expo-
nents, later that century the English mathematician
SIR ISAAC NEWTON (1642–1727), inspired by the
work of JOHN WALLIS (1616–1703), showed that the
same notational system can be extended to include
negative, fractional, and irrational exponents. LEON-
HARD EULER (1707–83) later allowed for the possibil-
ity of complex exponents.

See also COMPLEX NUMBERS; EXPONENTIAL FUNC-
TION; LOGARITHM.

exponential function Any function or quantity that
varies as the power of another quantity is called expo-
nential. Precisely, if b is a positive number different
from one, then the function f(x) = bx is called the expo-
nential function with base b. The function is defined
for all real numbers x. (This would not be the case if
b were negative: the value b , for example, would

not make sense.) The graphs of y = 2x and y
x
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illustrate the essential differences between the cases
b > 1 and 0 < b < 1.

Many types of growth and decay occur at a rate
that involves exponential variation. For example, a
colony of bacteria might reproduce at a rate that dou-
bles the size of the colony every 24 hours. If initially
500 organisms are present, then after 1 day the culture
grows to a size of 1,000 organisms, after 2 days to a
size of 2,000 organisms, and by the end of day three
there are 4,000 organisms. In general, the population
size by the end of day N is given by 500 × 2N. Any for-
mula of the form ABx with b > 1 and A constant is said
to represent exponential growth. This formula is a sim-
ple example of a POPULATION MODEL.

The analogous formula with 0 < b < 1 represents
exponential decay. The decay of radioactive material is
a typical example of this. For example, if 50 percent of
the radioactivity produced by a nuclear explosion dis-
appears after 5 days, then after 10 days only 25 percent
of radioactivity remains, and 12.5 percent remains
after 15 days. The percentage of radioactivity present 

after N days is given by the formula . The level of

radioactivity decreases but will never reach zero.
The DERIVATIVE of an exponential function f(x) = bx

can be computed via IMPLICIT DIFFERENTIATION after
first taking a LOGARITHM. Precisely, if y = bx, then

lny = x · lnb. Differentiation yields · = lnb, and so 

= y · lnb = bx · lnb. That is:

This formula for the derivative is greatly simplified
if one works with base b = e, where e is defined to be
the number such that ln e = 1. We have:

The derivative of ex is ex. Consequently, the
graph of the exponential function f(x) = ex has
the property that the slope of the graph at any
point is the same as the value of the function at
that point.

The function f(x) = ex is sometimes called the expo-
nential function. Because the derivative of this function
is particularly simple, it is not surprising that the num-
ber e is ubiquitous throughout studies in CALCULUS.

exponential series The TAYLOR SERIES of the func-

tion f(x) = ex, given by 

is called the exponential series. The RATIO TEST from the
study of CONVERGENT SERIES shows that this series con-
verges for all values of x. LEONHARD EULER (1707–83)
made use of this series to prove his famous formula eix =
cosx + isinx, today called EULER’S FORMULA.

expression Any meaningful combination of symbols
that represent numbers, operations on numbers, or
other mathematical entities is called an expression. For
example, 2 + x and ab+ c are expressions. One could
argue that x + y = 2 is an expression, although mathe-
maticians may prefer to call it an equation. Similarly,
3√
–
8 could be called an expression even though it is

equivalent to a single number. In FORMAL LOGIC, com-
pound statements are sometimes called expressions.
For example, ¬(p (q ∨ r)) is an expression.

The word express is often used in the sense “to
transform.” For example, the product (x – y)(x + y) can
be expressed equivalently as the DIFFERENCE OF TWO

SQUARES: x2 – y2.

exterior angle An ANGLE contained between one side
of a POLYGON and the extension of an adjacent side is
called an exterior angle of the polygon. Since two edges
of a polygon meet at a vertex, there are two exterior
angles at each vertex. One can easily see, however, that
these two angles are equal in value.

The sum of exterior angles in a convex polygon is
360°, since these angles correspond to one full turn.
This result is also true for concave polygons if one
deems angles that turn to the left as positive and ones
that turn to the right as negative.

The EXTERIOR-ANGLE THEOREM, first proved by
the geometer EUCLID (ca. 300–260 B.C.E.), states that

∨

e x
x x xx = + + + + +1
2 3 4

2 3 4

! ! !
K

d
dx

b b bx x( ) = ⋅ ln

dy
––
dx

dy
––
dx

1–
y

1
2

5





N

182 exponential series

Exterior angles



the exterior angle at one vertex of a triangle is greater
in value than that of an interior angle at either of the
remaining two vertices.

See also CONCAVE/CONVEX.

exterior-angle theorem In his famous work THE

ELEMENTS, the geometer EUCLID (ca. 300–260 B.C.E.)
established the following result, which he called the
exterior-angle theorem:

For a given triangle ABC with interior angles x
and y and exterior angle z as shown, we have z
> x and z > y.

The result is proved as follows:

Let M be the midpoint of side BC, and extend
a line from point A through M to a new point
D so that AM and DM are the same length.
Consider triangles AMB and DMC. They share
two sides of the same lengths and a common
angle at M. By the SAS principle for similarity,
the two triangles are congruent figures. Conse-
quently, angle MCD matches angle MBA,
which is y. Since z is clearly larger than angle
MCD, we have that z > y.

An analogous argument based on a line
drawn through the midpoint of side AC estab-
lishes that z is also greater than x.

This theorem has one very important consequence.

If two lines cut by a transversal produce equal
alternate interior angles, then the two lines
are parallel.

In the diagram above, if the two angles labeled x are
indeed equal, then the lines cannot meet to the right to
form a triangle: the exterior angle x cannot be greater

than the interior angle x. Similarly, the lines cannot
meet to the left to form a triangle by the same reason.
(Work with the angle 180 – x.) It must be the case then
that the lines are parallel.

This result is the CONVERSE of Euclid’s famous, and
controversial, PARALLEL POSTULATE.

It is important to note that Euclid proved the
exterior-angle theorem and its consequence without
assuming that the parallel postulate holds. If one is
willing to assume that the three angles in a triangle
always sum to 180° (a statement equivalent to the par-
allel postulate), then the proof of the exterior angle
theorem is TRIVIAL.

extraction The process of finding the ROOT of a
number or the solution to an algebraic equation is
sometimes called extraction. For example, extracting
the square root of 3 is the process of finding its square
root. (One might use HERON’S METHOD, for example,
to compute  √

–
3 = 1.7320508…)

The term digit extraction is often used to describe
any method that allows one to compute a specific digit
of a number without computing earlier digits. For
example, in 1995 mathematician Simon Plouffe discov-
ered the following remarkable formulae for π:

It has led mathematicians to a technique that com-
putes the Nth digit of π in base 16 without having to
calculate the preceding N – 1 digits. (In base 16, the
number π appears as 3.243F6A8885A308D … where
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A represents 10, B represents 11, and so forth, with F
representing 15. Each decimal place is a power of a
sixteenth.) Unfortunately no analogous technique is
currently known to compute the ordinary base-10 dig-
its of π with ease.

extrapolation The process of estimating the value
of a function outside a known range of values is called
extrapolation. For example, if the temperature of a
cup of tea was initially 200°F and then was measured
to be 100°F and 50°F 10 and 20 minutes later, respec-
tively, then one might guess that its temperature after
30 minutes would be 25°F. Methods of extrapolation
are normally far less reliable than INTERPOLATION, the
process of estimating function values between known
values. Scientists generally prefer to avoid making pre-
dictions based on extrapolation. Meteorologists, how-
ever, must use extrapolation techniques to make
weather predictions. Long-range forecasts are gener-
ally considered unreliable.

See also POPULATION MODELS.

extreme-value theorem This theorem asserts that a
CONTINUOUS FUNCTION f(x), defined on a closed
INTERVAL [a,b], reaches a maximum value and a mini-
mum value somewhere within that interval. That is,
there is a point c in the interval [a,b] such that f(x),
≤ f(c), for all x in [a,b], and there is another point d in
[a,b] such that f(x) ≥ f(d) for all x in [a,b]. For exam-
ple, the extreme-value theorem tells us that, on the
interval [1,5] say, the function f(x) = 3x · cos(x2 + sinx)
does indeed adopt a largest value. It does not tell us,
however, where that maximum value occurs. A point at
which a function has a maximum or minimum value is
called an extremum.

The theorem is intuitively clear if we think of a
continuous function on a closed interval as one whose
graph consists of a single continuous piece with no

gaps, jumps, or holes: in moving a pencil from the left
end point (a,f(a)) to the right end point (b,f(b)), one
would not doubt that there must be a high point on
the curve where f(x) reaches its maximum value, and
a low point where it attains its minimum value. A rig-
orous proof of the theorem, however, relies on the
notion of the completeness of the real numbers (mean-
ing that no points are missing from the real line). This
is a subtle property, one that was not properly under-
stood until the late 1800s with the invention of a
DEDEKIND CUT. For example, the function f(x) = 2x –
x2 = x(2 – x) has no maximum value on the interval
[0, 2] if the value 1 is excluded from our considera-
tions. Although this seems an artificial example, one
still needs to be sure that this type of problem can
never occur.

It is vital that the function under consideration be
continuous and that the interval under study be closed
for the theorem to be true. For example, the (discontin-
uous) function

does not reach a maximum value in the closed interval 

[0,2]; nor does the (continuous) function f(x) = , 

defined on the open interval (0,2), since the function is
arbitrarily large for values x close to zero.

The INTERMEDIATE-VALUE THEOREM is a compan-
ion result to the extreme-value theorem. It asserts that
not only does a continuous function on a closed inter-
val actually attain maximum and minimum values, but
it also takes on every value between those two extreme
values. ROLLE’S THEOREM and the MEAN-VALUE THEO-
REM follow from the extreme-value theorem if we fur-
ther assume that the function under consideration is
differentiable.

See also DIFFERENTIAL CALCULUS; MAXIMUM/
MINIMUM.

1–
x

f x
x x x

x
( ) =

− ≠
=





2 1

0 1

2 if 

 if 

184 extrapolation



face A flat surface on the outside of a solid figure,
typically a POLYHEDRON, is called a face of the figure.
For example, a cube has six identical faces, and a cylin-
der has two faces. (The lateral surface of a cylinder is
not flat.) In the mid-1700s, Swiss mathematician LEON-
HARD EULER established that if all the outside surfaces
of a convex solid are flat, then the number of faces f
the figure possesses is given by the formula:

f = 2 – v + e

Here v is the number of vertices and e is the number of
edges the figure has.

The angle between two edges of a polyhedron meet-
ing at a common vertex is sometimes called a face angle.

In GRAPH THEORY, any region of plane bounded by
edges of a planar graph is sometimes called a face of
the graph. EULER’S FORMULA v – e + f = 2 also holds
for connected planar graphs if one is willing to regard
the large unbounded region outside the graph as a face.

See also DIHEDRAL.

factor The term factor is used in two mathematical
settings: NUMBER THEORY and ALGEBRA. In number
theory, if a, b, and n are whole numbers and if a times
b equals n, then a and b are called factors of n. For
example, 3 and 4 are both factors of 12 (since 12 = 3 ×
4), as are the numbers 1, 2, 6, and 12 (2 × 6 = 12 and 1
× 12 = 12). Any number that divides the given number
evenly is a factor. For this reason, factors are sometimes
called divisors.

The factors of a given number have a geometric
interpretation. For example, one can arrange 12 peb-
bles into six different rectangular arrays: a 1 by 12
rectangle, a 2 by 6 rectangle, a 3 by 4 rectangle, a 4 by
3 rectangle, a 6 by 2 rectangle, and finally a 12 by 1
rectangle. The dimensions of these rectangles are pre-
cisely the factors of 12. This interpretation shows that
the factors of a number come in pairs—unless, one of
the rectangles formed is a perfect square (in which case,
one factor is “paired with itself”). This shows:

Square numbers have an odd number of fac-
tors. All other numbers have an even number
of factors.

For example, 36, which equals 6 × 6, has an odd num-
ber of factors: 1 and 36, 2 and 18, 3 and 12, 4 and 9,
and 6. This simple observation solves the famous
prison warden puzzle:

A prison warden and 100 inmates, residing in
cells numbered 1 through 100, agree to per-
form the following experiment over 100 days.
In the process of the experiment some cell
doors will be left unlocked and the prisoners
agree not to escape.

On the first day, the prison warden will turn
the key of each cell door and leave all the
doors unlocked.

On the second day, the warden will turn the
key of every second door. This will lock doors
numbered 2, 4, …, 100 and leave the odd-
numbered doors open.
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On the third day, starting with door number
3, he will turn the key of every third door. This
will leave a mixture of doors locked and
unlocked.

On the fourth day he will turn the key of
every fourth door, on day five the key of every
fifth door, and so on, all the way until day 100,
when he will turn the key of every 100th door,
namely, just the final door. At this time, any
prisoner who finds his door open will be
allowed to go free.

Which doors will be left unlocked as a result
of this experiment?

Observe that the warden will turn the key to door
number n on each day d that is a factor of n. For exam-
ple, the key of door number 39 will be turned on days
1, 3, 13, and 39 only, and the key of door number 25
on days 1, 5, and 25. For a door to be left unlocked at
the end of the experiment its key must be turned an
odd number of times. As only the square numbers have
an odd number of factors we have that prisoners 1, 4,
9, 16, 25, 36, 49, 64, 81, and 100 are set to go free.

Any number n always has 1 and itself as factors.
These are called “improper factors.” Any other factor
of n, if there is one, is called a “proper factor.” For
example, 1 and 12 are improper factors of 12, and 2,
3, 4, and 6 are proper factors. A number, different
from 1, that possesses proper factors is called “com-
posite,” or a COMPOSITE NUMBER, and one that does
not is called PRIME. For example, the number 25 has a
proper factor, namely 5, and so is composite; whereas 7
has only two factors, both of which are improper, and
so is prime.

Any proper factor of a composite number, if not
itself prime, can be written as a product of two smaller
factors. Repeated application of this process shows that
any number different from 1, if not already prime, can
be written as a product of prime numbers. For example:

180 = 30 × 6 = (6 × 5) × (2 × 3) = 2 × 3 × 5
× 2 × 3.

The FUNDAMENTAL THEOREM OF ARITHMETIC asserts
that every integer greater than 1 factors into primes in
only one way (up to the order of the primes). A factor-
tree is a diagram that describes this factoring process
pictorially. Two students drawing different factor trees
for the same number will arrive at the same list of
primes at the bases of their trees.

In algebra, a factor is a POLYNOMIAL that divides
another given polynomial exactly. For example, 2x + 1
and x – 1 are both factors of 2x2 – x – 1, since 2x2 – x
– 1 = (2x + 1)(x – 1). It is generally agreed that the fac-
tors of a polynomial should themselves be nonconstant
polynomials with coefficients that are real numbers.

A polynomial that cannot be factored is called irre-
ducible. For example, x2 + 1 cannot be factored over
the real numbers and so is irreducible. If one permits
COMPLEX NUMBERS as coefficients, then the situation
changes: we can write: x2 + 1 = (x + i)(x – i). The FUN-
DAMENTAL THEOREM OF ALGEBRA asserts that every
polynomial factors in the realm of complex numbers.

See also COMMON FACTOR; DIVISIBILITY RULES;
FACTOR THEOREM; GREATEST COMMON DIVISOR; LONG

DIVISION; PERFECT NUMBER; PRIME.

factorial If n is a natural number, then the symbol n!
(read as “n factorial”) denotes the product of all posi-
tive integers from 1 to n:

n! = 1 · 2 · 3·…·n

For example, 6! = 1·2·3·4·5·6 = 720. The order in
which the terms of the product are multiplied is imma-
terial. (We have that 6! also equals 6·5·4·3·2·1.)

Factorials naturally arise when counting the num-
bers of ways a collection of objects can be arranged.
Given n objects, there are n choices for which object we
wish to regard as “first.” Once this selection is made,
n – 1 choices remain for which object to select as sec-
ond, and after the first and second are chosen, there
remain n – 2 choices for third. This process continues
until two objects remain, yielding two choices for which
to regard second-to-last, and just one object to select as
last. By the MULTIPLICATION PRINCIPLE, there are thus
n · (n – 1) · (n – 2) · … · 2 · 1 = n! different PERMUTA-
TIONs (or arrangements, or orders) of n objects.

If one wishes to arrange just r objects chosen from a
collection of n different things, there are n choices for
which object to regard as first, n – 1 choices for which to
regard as second, and so on, to n – r + 1 choices for
which object to deem rth, yielding a total of n · (n – 1)·
… ·(n – r + 1) different arrangements of r objects selected
from n. This formula can be more compactly written as:

n!
––—
(n – r)!
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When r equals n (arrange all n objects) this formula 

reads . To coincide with our previously computed 

answer of n!, it is natural to define 0! as equal to 1.
The exclamation-point notation for factorial was

first used by Christian Kramp in 1808, in his paper
“Élémens d’arithmétique universelle,” though other
notations for n! popular at the time, and later, included
n_|, n′, Π(n) and Γ(n+1).

LEONHARD EULER (1707–83) attempted to general-
ize the factorial function to noninteger values. At the
age of 22 he discovered the following LIMIT quantity
that helps achieve this:

(He called this expression the gamma function to
honor ADRIEN-MARIE LEGENDRE’s use of the symbol Γ
for factorial.) This expression has the property, as you
may check, that Γ(x + 1) = x · Γ(x) for all positive 

real values x. Also . 

Consequently, Γ(m) = (m – 1)! for all positive integers m.
Thus, for example, Γ(7) = 6! = 720. It is now possible to 

also define quantities such as and (√
–
2)! using this 

expression.
INTEGRATION BY PARTS shows that the IMPROPER

INTEGRAL ∫∞
0 e–t t m– 1 dt also has value (m – 1)!. Mathe-

maticians have shown that Euler’s gamma function and
the corresponding improper integral agree for all posi-
tive real values x:

Γ(x) = ∫+∞
0 e–ttx – 1 dt

This integral has the unexpected value √
–
π when x = . 

Thus we may conclude, for example, that 

, and .

See also BINOMIAL THEOREM; PERMUTATION;
STIRLING’S FORMULA.

factorization The process or the result of writing a
number or a POLYNOMIAL as a product of terms is

called factorization. For example, the FUNDAMENTAL

THEOREM OF ARITHMETIC asserts that every whole num-
ber can be written as a product of PRIME numbers and,
up to the order of the terms, this factorization is unique.
(For instance, 132 = 2 × 2 × 3 × 11.) Thus every whole
number has a unique “prime factorization.” The FUN-
DAMENTAL THEOREM OF ALGEBRA asserts that, in the
realm of COMPLEX NUMBERS, every polynomial factors
completely into linear terms. (For instance, 2x3 – x2

– 13x – 6 = (x – 3)(x + 2)(2x + 1) and x2 – 4x + 5 =
(x – 2 + i)(x – 2 – i).) If one wishes to remain in the
realm of the REAL NUMBERS, then every polynomial with
real coefficients is guaranteed to factor into a product of
linear terms and irreducible QUADRATIC terms. (For
instance, x4 – 1 = (x2 + 1)(x – 1)(x + 1).)

See also DECOMPOSITION; FACTOR THEOREM.

factor theorem The REMAINDER THEOREM shows
that if a POLYNOMIAL p(x) is divided by a term of the
form x – a for some constant a, then the remainder
term is the constant p(a):

p(x) = (x – a)Q(x) + p(a)

Thus if the value of the polynomial is zero at x = a,
that is, p(a) = 0, then the polynomial factors as p(x) =
(x – a)Q(x). This leads to the following factor theorem:

A linear term x – a is a factor of a polynomial
p(x) if, and only if, p(a) = 0.

For example, for p(x) = 2x3 – 4x2 – 10x + 12, we have
p(1) = 0, p(–2) = 0, and p(3) = 0. Consequently, x – 1, x
+ 2, and x – 3 are each factors of the polynomial. (In
this example we have p(x) = 2(x – 1)(x + 2)(x – 3).)
Since 2 and –2 are clearly each zeros of x6 –64, this
polynomial must be divisible by (x – 2)(x + 2) = x2 – 4.

See also FUNDAMENTAL THEOREM OF ALGEBRA.

fair division (cake cutting) A classic puzzle asks for
a fair way to divide a piece of cake between two greedy
brothers. The “you cut, I choose” scheme asks one
brother to slice the cake into what he believes to be
two equal parts and has the second brother choose one
of the two pieces. The first is then guaranteed to
receive, in his measure, precisely 50 percent of the cake
and the second brother, if he has a different estimation
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of half, has the advantage of receiving more then 50
percent of the slice according to his own measure. One
can avoid this perceived advantage with a different
sharing scheme. In the following “knife holding”
scheme, each brother is guaranteed to feel that he has
the advantage:

Each brother holds a knife vertically across the
cake at the location he believes cuts the cake
precisely in half. (If the brothers have different
estimation of what constitutes “half,” then the
knives will be at different locations.) Cutting
the cake anywhere between these two positions
guarantees each brother a piece, in his estima-
tion, greater than a 50 percent.

This scheme generalizes to sharing among any
number of players. For instance, it is possible to share a
cake among three players in such a manner that each
player honestly believes he is receiving more than one-
third of the cake.

Each player holds a knife vertically across the
cake at the location he believes cuts off
exactly one-third of the cake from the left.
The cake is then cut between the two leftmost
positions, giving that piece to the player hold-
ing the leftmost knife. This player has
received, in his estimation, more than one-
third of the cake, and each of the remaining
two players believes that more than two-
thirds of cake remains. The second two broth-
ers then perform the cake division scheme
described above for two players.

Any cake-sharing scheme among n players that guaran-
tees each player, in his estimation, at least 1/n of the
cake is called a fair-division scheme.

The scheme described above among three players,
however, is not “envy free.” Although each player
believes that he received more than his fair share of the
cake, it is not assured that he also believes that he
received the largest piece ever cut. (Every fair division
scheme between two players is envy free.) Complicated
envy-free fair-division schemes do exist for sharing
cake among any number of players. There are also fair-
division methods for dividing collections of indivisible
objects (such as the furniture in an estate) among two
or more people using cash payments to even up the
final division.

Farey sequence (Farey series) For a given positive
whole number n, the sequence of all proper fractions,
written in reduced form, with denominators no larger
than n and arranged in order of magnitude is called the
nth Farey sequence. For example, the fifth Farey
sequence is:

, , , , , , , , , ,

These sequences have a number of arithmetic properties. 

For instance, if and are consecutive terms of a 

Farey sequence, then the numbers ad and bc, arising
from taking their cross product, are always consecutive 

integers. (For example, the consecutive pair and 

yield consecutive integers 9 and 10.) Also, if , , 

are three successive terms of a Farey sequence, then the 

middle term is the mediant fraction . (For 

instance, the term between and is = = .) 

This observation allows one to quickly build up from
one Farey sequence to the next: simply compute the
mediants between all terms present and retain those
whose denominators are not too large.

The Farey sequence was first studied by C. Haros
in 1802, but interest in the topic did not stir until
British geologist John Farey (1766–1826) published his
1816 piece, “On a Curious Property of Vulgar Frac-
tions” in Philosophical Magazine. (Farey was unaware
of Haros’s work.) In 1938 American mathematician
Lester R. Ford presented a remarkable geometric inter-
pretation of the Farey sequence:

Above each reduced fraction on the number 

line, draw a circle of radius touching the 

number line at that point. Despite expectation,
these circles never overlap, although they do
often touch. Moreover, two circles at positions 

and touch precisely when ad and bc are 

consecutive integers, and furthermore the
largest circle that fits in the space between
them above the number line is the circle at the 

mediant .
a + c–——
b + d

c–
d

a–
b

1–
b2

a–
b

2–
3

6–
9

3 + 3–——
5 + 4

3–
4

3–
5

a + e–––
b + f

c–
d

e–
f

c–
d

a–
b

2–
3

3–
5

c–
d

a–
b

1–
1

4–
5

3–
4

2–
3

3–
5

1–
2

2–
5

1–
3

1–
4

1–
5

0–
1

188 Farey sequence



(These claims can be proved by making use of the DIS-
TANCE FORMULA to establish that the distance between
the centers of two touching circles equals the sum of
the radii of the two circles.)

Fermat, Pierre de (1601–1665) French Number the-
ory, Calculus, Probability theory Born on August 17,
1601, in Beaumont-de-Lomagne, France, Pierre de Fer-
mat is remembered as a leading mathematician in the
first half of the 17th century, recognized for his founding
work in the theory of numbers. Fermat is also responsi-
ble for some pioneering work in CALCULUS and the the-
ory of tangents to curves, PROBABILITY theory, and
analytic GEOMETRY. His 1679 piece Isagoge ad locos
planos et solidos (On the plane and solid locus), pub-
lished posthumously, foreshadowed the work of RENÉ

DESCARTES (1596–1650) on the application of algebra to
geometry, allowing him to define algebraically important
curves such as the HYPERBOLA and the PARABOLA. In
optics, he is acknowledged as the first scholar to formu-
late the “fundamental property of least time,” stating
that light always follows the shortest paths. Perhaps
most notably, Fermat is remembered for the enigmatic
comment he scribed in the margin of one of his reading
books claiming to have solved a novel problem in num-
ber theory. Search for a solution to this problem (if not
the one Fermat had in mind) spurred three centuries of
important and spirited research in mathematics. FER-
MAT’S LAST THEOREM was finally resolved in 1994.

Fermat received a bachelor’s degree in civil law
from the University of Orléans in 1631 and began
work as a lawyer for the local parliament of Toulouse
that same year. He followed this career path through-
out his entire life—accepting a position as a criminal
court judge in 1638 and, finally, the high position of
king’s counselor in 1648. Fermat’s work in mathemat-
ics was an outside interest.

Fermat first developed a passion for reading and
“restoring” classic Greek texts. This meant completing
the mathematics of any passages that were missing
from the records that survived from ancient times. His
work on the text Plane loci by APOLLONIUS OF PERGA

(ca. 262–190 B.C.E.) garnered the attention of the
mathematics community at the time, not only for the
restoration work itself, but also for the new geometric
methods Fermat had devised for computing tangents to
curves and solving maxima/minima problems. Fermat

developed a correspondence with French monk MARIN

MERSENNE (1588–1648), who served the role of dis-
persing mathematical information to the notable schol-
ars of the time. Despite the attention Fermat received,
he did not seek fame by publishing any of his work.
(He published one small piece in his life, which he did
anonymously.) Fermat shared his discoveries and
results with Mersenne and other scholars, but not his
methods for obtaining them. This both inspired and
frustrated mathematicians at the time.

In 1654 notable scholar BLAISE PASCAL (1623–62)
wrote to Fermat with some mathematical questions
about gambling and games of chance. The correspon-
dence that ensued led to the joint development of a
new mathematical theory of probability. Fermat is
today considered one of the founders of the field. How-
ever, Fermat had developed a great interest in the the-
ory of numbers, in particular, the properties of whole
numbers. This topic was of little interest to mathemati-
cians at the time—perhaps because of its lack of appar-
ent immediate application—but Fermat attempted to
spark interest in the subject by posing challenging ques-
tions to his contemporaries. He asked scholars to
prove, for instance, that the equation x2 + 2 = y3 has
only one positive integer solution. His colleagues, how-
ever, regarded questions such as these as too specific to
be of serious concern and often dismissed then. Fermat,
on the other hand, realized that understanding the
solutions to such specific questions provides a gateway
to great insight on the very general and mysterious
properties of whole numbers. It was not until Fermat’s
son Samuel published Fermat’s annotated copy of the
Arithmetica by the classic scholar DIOPHANTUS OF

ALEXANDRIA (ca. 200–284 C.E.)—the text containing
the famous marginal note—that interest in number the-
ory was revived and Fermat’s brilliant work on the
topic was fully recognized.

Fermat died in Castres, France on January 12,
1665. The claim posed in the note scrawled in the mar-
gin of Arithmetica is called Fermat’s last theorem. It
inspired over three centuries of intense mathematical
research in the field of NUMBER THEORY.

See also MAXIMUM/MINIMUM.

Fermat’s last theorem Since ancient times, scholars
have been aware of many, in fact infinitely many, dif-
ferent integer solutions to the equation x2 + y2 = z2.
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(Solutions to this equation are called PYTHAGOREAN

TRIPLES.) Around 1637 PIERRE DE FERMAT conjectured
that no positive integer solutions exist, however, for
the equations

xn + yn = zn

with n greater than two. In his copy of the translated
works of DIOPHANTUS OF ALEXANDRIA, next to a prob-
lem about Pythagorean triples, Fermat wrote his now
famous note:

On the other hand, it is impossible to separate
a cube into two cubes, or a fourth power into
two fourth powers, or generally any power
except a square into two powers with the
same exponent. I have discovered a truly
admirable proof of this, but the margin is too
narrow to contain it.

For over 350 years mathematicians tried to reproduce
Fermat’s alleged proof. The claim itself became known
as Fermat’s last theorem, and it was one of the greatest
unsolved problems of all time. Although the problem
lends itself to no obvious practical applications,
attempts to solve it helped motivate the development of
a great deal of important mathematics.

It is generally believed that Fermat did not have a
proof of the theorem. In his correspondences with col-
leagues he mentions only the cases n equals 3 and 4
and provides no details of proof even for those special
cases. Fermat, again as a marginal note in his copy of
Diophantus’s work, does provide a detailed proof of
another challenge posed by Diophantus, one about tri-
angles of rational side length. Although not explicitly
mentioned, the proof of the n equals 4 case follows
readily from mathematical argument he provides. It is
thought that Fermat was aware of this.

With the case n = 4 taken care of, it is not difficult
to see that one need only study the cases where n is an
odd prime. For example, if it is known that x7 + y7 = z7

has no positive integer solutions, then x42 + y42 = z42

can have no positive integer solutions either. (Rewrite
the latter equation as (x6)7 + (y6)7 = (z6)7.)

In the mid-1700s, LEONHARD EULER proved that
the equation with n = 3 has no positive integer solu-
tions. The extensive work of MARIE-SOPHIE GERMAIN

(1776–1831) during the turn of the century allowed
mathematicians to later show that the theorem holds

for all values of n less than 100. During the 19th and
20th centuries mathematicians developed the fields of
algebraic geometry and arithmetic on curves. In 1983,
Gerd Faltings proved the so-called Mordell conjecture,
an important result with the following immediate con-
sequence: any equation of the form xn + yn = zn with n
> 3 has, at most, a finite number of positive integer
solutions. This led mathematicians a significant step
closer to proving Fermat’s last theorem for all values of
n: is it possible to show that that finite number is zero
in every case? Finally, in 1995, almost 360 years since
Fermat’s claim, the English mathematician ANDREW

WILES, with the assistance of Richard Taylor, presented
a completed proof of Fermat’s last theorem. It is, not
surprisingly, very long and highly advanced, relying
heavily on new mathematics of the century. Needless to
say, the proof is certainly beyond Fermat’s abilities.
Although Wiles’s proof is deservedly regarded as a high
point of 20th-century mathematics, mathematicians
still search for a simplified argument.

Ferrari, Ludovico (1522–1565) Italian Algebra Born
on February 2, 1522, in Bologna, Italian scholar
Ludovico Ferrari is remembered as the first person to
solve the QUARTIC EQUATION. He worked as an assis-
tant to GIROLAMO CARDANO (1501–76), who pub-
lished Ferrari’s solution in his famous 1545 work Ars
magna (The great art).

Assigned to be a servant at the Cardano household
at age 14, Ferrari soon impressed his master with his
agile mind and with his ability to read and write. Car-
dano decided to train Ferrari in the art of mathematics.
In exchange, Ferrari helped Cardano prepare his
manuscripts. Four years after his arrival, and with the
blessing of Cardano, Ferrari accepted a post at the Piatti
Foundation in Milan as public lecturer in geometry. Fer-
rari, however, continued to work closely with Cardano.

Ferrari discovered his solution to the quartic equa-
tion in 1540, but it relied on the methods of solving the
CUBIC EQUATION that had been developed by NICCOLÒ

TARTAGLIA (ca. 1499–1557) and revealed to Cardano in
secrecy. (Mathematicians at the time were supported by
patrons and protected their methods as trade secrets:
they were often required to prove their worth by solving
challenges no other scholar could solve.) Unable to pub-
lish the result without breaking a promise, Ferrari and
Cardano felt stymied. However, a few years later, Fer-
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rari learned that another scholar SCIPIONE DEL FERRO

(1465–1526) had also developed methods of solving
certain types of cubic equations. Although essentially
identical to the work of Tartaglia, Ferrari and Cardano
decided to publish the solution to the quartic, attribut-
ing the work on the cubic needed to del Ferro, with
whom no promise of secrecy had been made.

Tartaglia was outraged, and a bitter dispute that
lasted for many years ensued between Tartaglia and Fer-
rari. On August 10, 1548, as was common at the time,
Tartaglia challenged Ferrari to an open contest and pub-
lic debate as an attempt to demonstrate that he was in
fact the expert on cubic equations. But it was clear from
the contest that Ferrari had a more complete under-
standing of both cubic and quartic equations. Tartaglia
left before the contest was over, and victory was given
to Ferrari. He immediately garnered national fame and
was given many offers of employment, including a
request from the emperor himself to act as royal tutor.
Ferrari, however, accepted no position offered at the
time, left mathematics, and accepted a lucrative position
as tax assessor to the governor of Milan.

Ferrari died in Bolgna, Italy, in October 1565 (the
exact date is not known) and is remembered in mathe-
matics solely for his work on the quartic equation.

Ferro, Scipione del (Ferreo, dal Ferro) (1465–1526)
Italian Algebra Born on February 6, 1465, in Bolo-
gna, Italy, Scipione del Ferro is remembered as the first
mathematician to solve the CUBIC EQUATION. Unfortu-
nately none of his writings survive today, and we learn
of his work chiefly through the manuscripts of GIRO-
LAMO CARDANO (1501–76) and LUDOVICO FERRARI

(1522–65).
Del Ferro was appointed lecturer in arithmetic and

geometry at the University of Bologna in 1496, a posi-
tion he retained for all his life. Little is known of his
academic work. Letters to other scholars at the time
suggest that del Ferro studied methods for rationalizing
rational expressions, ruler-and-compass constructions
in geometry, and methods for solving cubic equations.

Mathematicians of del Ferro’s time were familiar
with the general solution to a QUADRATIC equation of
the form ax2 + bx + c = 0. (It should be mentioned,
however, that 16th-century scholars did not use zero as
a number in an expression, nor permitted the use of
negative numbers. Thus the equation x2 – 3x + 2 = 0,

for instance, was written x2 + 2 = 3x.) Mathematicians
also knew that, with the appropriate use of substitu-
tion, any cubic equation could be reduced to one of
two forms: x3 + ax = b or x3 = ax + b. (Here, again, a
and b are positive.) Del Ferro was the first mathemati-
cian to solve equations of the first type. Some histori-
ans suggest that he was able to solve equations of the
second type as well.

Del Ferro recorded all his results in a personal
notebook, which he bequeathed to his son-in-law Han-
nibal Nave, also a mathematician. Nave later shared
the contents of the notebook with Cardano and Fer-
rari. After seeing the method of solving the cubic fully
explained, Cardano and Ferrari realized that del Ferro
had in fact solved the famous cubic equation some 30
years before NICCOLÒ TARTAGLIA (ca. 1499–1557),
their contemporary, had claimed to do the same. In
1545 Cardano published Ars magna (The great art),
outlining Ferrari’s solution to the QUARTIC EQUATION

making use of del Ferro’s methods for the cubic.
Del Ferro died in Bologna, Italy, some time between

October 29 and November 16, 1526. He is remembered
in mathematics solely for his work on cubic equations.

Fibonacci (Leonardo Fibonacci, Leonardo of Pisa)
(ca. 1170–1250) Italian Arithmetic, Number theory
Born in Pisa, Italy (the exact birth date is not known),
mathematician Leonardo of Pisa, better known by his
nickname Fibonacci, is best remembered for his help
in introducing the HINDU-ARABIC NUMERAL system to
the merchants and scholars of Europe. He strongly
advocated the system in his famous 1202 text Liber
abaci (The book of counting), a treatise on the tech-
niques and practices of arithmetic and algebra, which
proved to be extremely influential. This work also
contained a large collection of arithmetical problems,
including one that leads to the famous sequence of
numbers that bears his name. Considered the most
important mathematician of the middle ages,
Fibonacci also wrote extensively on the topics of
EUCLIDEAN GEOMETRY and DIOPHANTINE EQUATIONs.
He is recognized as the first scholar in the West to
make advances in the field of NUMBER THEORY since
the time of DIOPHANTUS OF ALEXANDRIA.

Although born in northern Italy, Fibonacci was
raised and educated in northern Africa, where his
father, a merchant and a government representative,
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held a diplomatic post. As he grew older, Fibonacci
also traveled to Greece, Egypt, Syria, France, and Sicily,
and took special note of the arithmetic systems used by
local merchants of those areas. He became convinced
that the number system used by the Arabs with its
roots from India—the actual way they wrote numbers
and the way they manipulated them to perform calcula-
tions—was far superior to any other arithmetic system
he had encountered, including the clumsy system of
ROMAN NUMERALS in use at the time in Europe. Upon
his return to Pisa around the year 1200, Fibonacci
began writing his famous piece. Its aim was to simply
explain the Hindu-Arabic numerals, the role of a
PLACE-VALUE SYSTEM, and illustrate its superior
approach. The text begins simply:

These are the nine figures of the Indians: 9, 8,
7, 6, 5, 4, 3, 2, 1. With these nine figures, and
with this sign 0, … any number may be writ-
ten, as will be shown.

Divided into four sections, the work outlines the meth-
ods of addition, multiplication, subtraction, and divi-
sion. It also discusses fractions (including a discussion
on EGYPTIAN FRACTIONS), as well as some geometry
and algebra. (Some parts of the text are written from
right to left, indicating, perhaps, the extent to which
Fibonacci was influenced by Arabic scholars.)
Although complete acceptance of the Hindu-Arabic
system in the West did not occur until about 300 years
later, Fibonacci’s work in this area is recognized as the
first significant step in this direction.

Fibonacci also wrote extensively in the fields of
number theory, trigonometry, and geometry. It is said
that the advances Fibonacci presented in his 1225
piece Liber quadratorum (The book of square num-
bers) were of such interest and value that they sparked
renewed interest in theoretical mathematics and
revived Western mathematics from its slumber during
the Middle Ages.

During his life Fibonacci was recognized as a great
scholar. Word of his abilities reached the Emperor
Frederick II, seated in Palermo, who invited him to
compete against other mathematicians of the day in a
mathematical tournament. Fibonacci correctly solved
all three challenges put before him, garnering him fur-
ther attention and fame. In 1240 Fibonacci was

awarded a salary from the city of Pisa in recognition of
his services to the community.

All of Fibonacci’s texts, and their reproductions,
were written by hand. Copies of Liber abaci still sur-
vive today.

Fibonacci’s name is derived from the shortening of
the Latin filius Bonacci, meaning the son of Bonaccio,
his father’s family name. During his life, Fibonacci was
also known as Leonardo of Pisa or, in Latin, Leonardo
Pisano. Sometimes, Fibonacci also identified himself as
Leonardo Bigollo, following the Tuscan word bigollo
for “a traveler.”

By introducing the Hindu-Arabic numeral to
Europe, his influence on Western mathematics was pro-
found. He died in the city of Pisa, Italy, likely in the
year 1250. (The exact date of death is not known.)

See also FIBONACCI NUMBERS.

Fibonacci numbers Any one of the numbers that
appears in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, …, where each number, after the second, is the sum
of the two preceding numbers, is called a Fibonacci
number. If Fn denotes the nth Fibonacci number, then
we have

Fn = Fn–1 + Fn–2

with F1 = F2 = 1.
These numbers arise from a famous rabbit-breed-

ing problem described in FIBONACCI’s text Liber abaci:

How many rabbits would be produced in the
nth month if, starting from a single pair, any
pair of rabbits of one month produces one pair
of rabbits for each month after the next?

(The initial pair of rabbits, for example, do not pro-
duce another pair of rabbits until month 3. This same
pair produces a new pair for each month thereafter.)

In any month, the totality of rabbits present con-
sists of all pairs of the previous month together with all
the new offspring. The number of offspring equals the
population size of two months previous. Thus the solu-
tion to the problem is the sequence described above.

Any problem whose nth case solution is the sum of
the two previous case solutions produces the Fibonacci
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sequence. For example, there are Fn ways to climb n – 1
steps, one or two steps at a time (consider beginning the
climb with either a single step or a double step). There
are also Fn ways to tile a 1 × (n – 1) row of squares with
1 × 1 tiles and 1 × 2 dominoes, and there are Fn

sequences of 0s and 1s n-digits long beginning and end-
ing with 1 and containing no two consecutive 0s.

Regarding a 1 as “tails” and 0 and “heads,” and
ignoring the initial and final 1s, this latter example can
be used to show that the PROBABILITY of not getting
two heads in a row when tossing a coin n times is 

. One can also use it to show that there are Fn+2

subsets of {1,2,…,n} lacking two consecutive numbers
as members.

Perhaps the most surprising appearances of
Fibonacci numbers occur in nature. The seeds in a sun-
flower’s head, for example, appear to form two systems
of spirals—often with 55 spirals arcing in a clockwise
tilt, and 34 spirals with a counterclockwise tilt. (Large
species of sunflowers have 89 and 144 spirals, again
consecutive Fibonacci numbers.) This appears to be
typical of all natural objects containing spiral floret,
petal, or seed patterns: pineapples, pinecones, and even
the spacing of branches around the trunk of a tree. The
botanical name for leaf arrangement is phyllotaxis.

It is useful to ask whether it is possible to find a
value x so that the sequence 1,x,x2,x3,… satisfies the
same recursive relationship as the Fibonacci numbers,
namely that every term after the second equals the
sum of the two preceding terms. This condition there-
fore requires x to be a number satisfying the equation
1 + x = x2. By the QUADRATIC formula there are two
solutions:

It follows that any combination of the form aϕn + bτn

satisfies the same recursive relation as the Fibonacci
sequence. Choosing the constants a and b appropri-
ately, so that the first two terms of the sequence pro-
duced are both 1, yields the following formula, called
Binet’s formula, for the nth Fibonacci number:

(It is surprising that this formula yields an integer for
every value of n). One can use this result to show that 

the ratio of Fibonacci numbers approaches the 

value ϕ as n becomes large. This happens to be the
GOLDEN RATIO.

The properties of the Fibonacci numbers are so
numerous that there is a mathematical periodical, The
Fibonacci Quarterly, devoted entirely to their contin-
ued study.

See also PASCAL’S TRIANGLE; POLYOMINO.

field See RING.

Fields medals These are prizes awarded to young
researchers for outstanding achievement in mathemat-
ics. The awards are regarded as equivalent in stature to
Nobel Prizes (which do not exist for mathematics).

“International medals for outstanding discoveries in
mathematics” were first proposed at the 1924 Interna-
tional Congress of Mathematicians meeting in Toronto.
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This pineapple has five diagonal rows of hexagonal scales in one
direction and eight rows in the other direction. (Note that the
sixth unmarked row of scales in the left picture is not a new row;
it is a continuation of the bottommost row of scales.)



Canadian mathematician John Charles Fields
(1863–1932) later donated funds to support this idea,
and the awards were created and named in his honor. It
was agreed that two gold medals would be awarded
every four years—at each quadrennial meeting of the
International Congress of Mathematicians. The first
awards were given in 1936 and, following a wartime
hiatus, were resumed in 1950. In 1966, due to the sig-
nificant expansion of mathematical research, it was
agreed that up to four medals could be awarded at any
given meeting.

The award itself consists of a cash prize and a
medal made of gold. A picture of ARCHIMEDES OF

SYRACUSE, along with the quotation, “Transire suum
pectus mundoque potiri” (Rise above oneself and take
hold of the world), appears on one side of the medal.
On the reverse side is the inscription, “Congregati ex
toto orbe mathematici ob scripta insignia tribuere” (the
mathematicians of the world assembled here pay trib-
ute for your outstanding work).

Following Fields’s wish, the awards are presented
in recognition of existing work completed by a mathe-
matician, as well as potential for future achievement.
For this reason, the awards are usually given to mathe-
maticians under the age of 40.

A board of trustees set up by the University of
Toronto administers the awards, and a committee of
mathematicians appointed by the International
Congress of Mathematicians presents the medals to
recipients.

Laurent Lafforgue of the Institut des Hautes
Études Scientifiques, Buressre-Yvette, France, and
Vladimir Voevodsky of the Institute of Advanced
Study, Princeton, New Jersey, were the 2002 recipients
of the award. Lafforgue made significant contributions
to the so-called Langlands program, a series of far-
reaching conjectures proposed by Robert Langlands in
1967 that, if true, would unite disparate branches of
mathematics. Voevodsky was awarded the prize for his
work in algebraic geometry, a field that unites number
theory and geometry.

figurate numbers Arranging dots to create geomet-
ric figures leads to a class of numbers called figurate
numbers. For example, the triangular numbers are
those numbers arising from triangular arrangements of
dots, and the square numbers those from square arrays.

Other geometric shapes are possible, leading to other
sequences of figurate numbers.

Figurate numbers were of special importance to the
Pythagoreans of sixth century B.C.E. Believing that
everything in the universe could be explained by the
“harmony of number,” they imparted special impor-
tance, even personality, to the figurate numbers. For
example, 10, being the sum of the first four counting
numbers 1 + 2 + 3 + 4, in their belief united the four
elements—earth, water, fire, and air—and so was to be
held in the greatest of reverence. (They named this
number tetraktys, “the holy four.”)

Many arithmetic properties of sums can be read-
ily explained by the figurate numbers. For example,
the nth triangular number, Tn, is given by the sum: 1
+ 2 + … + n. As two triangular configurations placed
together produce an n × (n + 1) array of dots, 2Tn, =
n × (n + 1), we have:

T n
n n

n = + + + = +
1 2

1
2

L
( )
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The nth square number is given by the formula: Sn = n
× n = n2. Looking at the diagonals of the square reveals
the sum:

1 + 2 +…+ (n – 1) + n + (n – 1) +…+ 2 + 1 = n2

Also hidden in a square is the sum of the first n odd
numbers. We thus have:

The sum of the first n odd numbers is n2.

Adding one to each of these summands gives the sum
of the first n even numbers. Thus we have:

The sum of the first n even numbers is n2 + n.

There is a nice interplay between the triangular and
square numbers. For example, the sum of any two con-
secutive triangular numbers is always a square number:
1 + 3 equals 4, 3 + 6 equals 9, and 6 + 10 equals 16,
for instance. In general:

Tn–1 + Tn = Sn

The center diagram in the figure at the bottom of page
194 explains why this is the case.

Similarly, one can arrange eight copies of the one
triangle to form a square with its center removed to
prove that 8Tn is always one less than a square number.
In the same way, one can also establish that the follow-
ing combination of three consecutive triangular num-
bers is always square: Tn–1 + 6Tn + Tn+1.

The numbers 1 = T1 = S1, 36 = T8 = S6 and 1225 =
T49 = S35 are both square and triangular, as are 41,616
and 1,413,721. Mathematicians have proved, using
CONTINUED FRACTIONs, that there are infinitely num-
bers with this property.

The alternate triangular numbers 1, 6, 15, 28, …
are sometimes called the Bohlen numbers. The nth
Bohlen number x is divisible by n and is the unique 

multiple of n satisfying: 1 + 2 +…+ = x.

In 1796 KARL FRIEDRICH GAUSS proved that every
natural number is the sum of at most three triangular
numbers, and JOSEPH-LOUIS LAGRANGE in 1770 proved
that every natural number is the sum of no more than
four square numbers.

One can extend the scope of figurative numbers to
three dimensions to produce the cube numbers, tetrahe-

dral numbers, and the like. The nth cube number is
given by the formula n3 . It is a three-dimensional cubi-
cal array of dots, with each layer being a square array
of dots. (Thus n layers of n2 dots gives a total of n × n2

= n3 elements.) The nth tetrahedral number is produced
by stacking together the first n triangular numbers:
T1 + T2 +…+ Tn. This gives the sequence:

1, 4 = 1 + 3, 10 = 1 + 3 + 6, 20 = 1 + 3 + 6 + 10,…

One can prove that the nth tetrahedral number is given 

by the formula n(n + 1)(n +2).

Both the triangular numbers and the tetrahedral
numbers appear as diagonals in PASCAL’S TRIANGLE. The
successive stacking of tetrahedral numbers produces
hypertetrahedral numbers: 1, 5, 15, 35, … These corre-
spond to four-dimensional geometric arrangements of
dots. They also appear as a diagonal in Pascal’s triangle.

See also NESTED MULTIPLICATION; PERFECT NUMBER;
SQUARE; TRIANGLE.

finger multiplication Having memorized the 2-, 3-,
4-, and 5-times tables, there is a popular finger met-
hod for computing all values of the 6- through 10-
times tables. It is based on the following rule for
encoding numbers:

A closed fist represents 5 and any finger raised
on that hand adds 1 to that value.

Thus a hand with one finger raised, for example, repre-
sents 6. A hand with three fingers raised represents 8.
To multiply two numbers between 5 and 10, one then
follows these steps:

1. Encode the two numbers, one on each hand.
2. Count 10 for each finger raised.
3. Count the number of unraised fingers on each hand

and multiply together the two counts.
4. Add the results of steps two and three. This is the

desired product.

For example, “6 times 8” is represented as one raised
finger on the left hand, three on the right hand. There
are four raised fingers in all, yielding the number 40 for
step 2. The left hand has four lowered fingers, and the
right has two fingers lowered. We compute 4 × 2 = 8.
Thus the desired product is 40 + 8 = 48. Similarly, “8

1–
6

x–
n
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times 8” is computed as 60 + 2 × 2 = 64, “9 times 7” as
60 + 1 × 3 = 63, and “6 times 7” as 30 + 3 × 4 = 42.
Notice that one is never required to multiply two num-
bers greater than five. That the method works is
explained by the algebraic identity:

(5 + a)(5 + b) = 10(a + b) + (5 – a)(5 – b)

The identity (N + a)(N + b) = 2N(a + b) + (N – a)(N – b)
shows that we can extend this method to use of a differ-
ent number of digits on each hand. For example, with
N = 10, using fingers and toes, one can readily compute
17 × 18 as “seven raised fingers” and “eight raised
toes.” Counting each raised digit as 20 (2N) we have:
17 × 18 = 20 × 15 + 3 × 2 = 306.

See also EGYPTIAN MULTIPLICATION; ELIZABETHAN

MULTIPLICATION; MULTIPLICATION; NAPIER’S BONES;
RUSSIAN MULTIPLICATION.

finite Intuitively, a set is said to be finite if one can
recite all the elements of the set in a bounded amount
of time. For instance, the set {knife, fork, spoon} is
finite, for it takes only a second or two to recite the ele-
ments of this set. On the other hand, the set of natural
numbers {1, 2, 3, …} is not finite, for one can never
recite each and every element of this set.

Despite our intuitive understanding of the concept,
it is difficult to give a precise and direct mathematical
definition of a finite set. The easiest approach is to
simply define a finite set to be one that is not INFINITE,
since the notion of an infinite set can be made clear.
Alternatively, since there is a well-defined procedure
for mechanically writing down the string of natural
numbers 1, 2, 3, …, one can define a finite set to be
any set S whose elements can be put in one-to-one cor-
respondence with a bounded initial segment of the
string of natural numbers. For instance, matching
“knife” with 1, “fork” with 2, and “spoon” with 3,
the set {knife, fork, spoon} is finite because its ele-
ments can be matched precisely with the string of nat-
ural numbers {1, 2, 3}.

finite differences To analyze the terms of a
SEQUENCE, it can be useful to create a table of successive
differences (in the sense of “right minus left”) between
the terms of the sequence, and subsequent differences of

the differences. For example, for the sequence
1,2,4,8,15,26,42,64,… we obtain the difference table:

From the pattern that is now apparent, it is clear that
the next number in the original sequence will be
64 + 29 = 93.

The entries in the first row under the original
sequence are said to be the “first finite differences”; the
second row under the sequence depicts the “second
finite differences,” and so forth. All the terms that
appear in a table of finite differences are completely
determined by the values that appear in the leading
diagonal. For instance, if the values a, b, c, … shown
below are known, then the remainder of the table must
appear as follows:

The coefficients that appear in the top row match
the entries in each row of PASCAL’S TRIANGLE, which are
given by the BINOMIAL COEFFICIENTs. This suggests that
it would be enlightening to examine the finite difference 

tables of the sequences . We obtain:

n

0
1 1 1 1 1

0 0 0 0

0 0 0

0 0






: ...

...

...

...

n n n

0 1 2



















, , ,L

a a b a b c a b c d a b c d e

b b c b c d b c d e

c c d c d e

d d e

e

+ + + + + + + + + +

+ + + + + +

+ + +

+

2 3 3 4 6 4

2 3 3

2

...

...

...

...

...

1 2 4 8 15 26 42 64

1 2 4 7 11 16 22

1 2 3 4 5 6

1 1 1 1 1

0 0 0 0

0 0 0

...

...

...

...

...

...

196 finite



Each such sequence produces a table with a straightfor-
ward leading diagonal: one that is zero in all places
except for the appearance of a single 1. Using this to our
advantage, recall that the leading diagonal of the
sequence 1, 2, 4, 8, 15, 26, 42, 64, … is 1,1,1,1,0,0,0,…,
which is the sum of the leading diagonals for the four 

sequences given by . Thus the nth 

term in our original sequence must equal the sum of the
nth terms of each of the four sequences, namely:

Thus we now have a formula for the sequence 1, 2, 4,
8, 15, 26, 42, 64,…

In general, one can use this technique to find a for-
mula for any sequence whose difference table eventu-
ally contains a row of constant finite differences. Not
all sequences, however, have this property. For exam-
ple, the difference table for the sequence of FIBONACCI

NUMBERS cycles indefinitely:

One must employ alternative techniques to compute
formulae for such sequences.

first- and second-derivative tests See MAXIMUM/
MINIMUM.

Fisher, Sir Ronald Aylmer (1890–1962) British
Statistics, Genetics Born on February 17, 1890, in
London, England, Sir Ronald Fisher is considered the
most important statistician of the early 20th century.
His landmark 1925 text Statistical Methods for
Research Workers established methods of designing
experiments and analyzing results that have been used
extensively by scientists ever since. Fisher was also an
able geneticist and made significant contributions to
the fields of selection and genetic dominance.

After obtaining a degree in astronomy from Cam-
bridge in 1912, Fisher developed an interest in the
theory of errors in astronomical observation. This
work led him to a general interest in statistical prob-
lems and the analysis of ERROR in all disciplines,
including those arising in biology. In 1919 Fisher
accepted a position at the Rothamsted Agricultural
Experiment Station as a biologist. There he developed
his key ideas in the theory of genetics while also
founding the theory of experimental design described
in his 1925 piece.

Fisher was professor of genetics at University Col-
lege, London, from 1933 to 1943, and then professor
of genetics, University of Cambridge, until 1957. Upon
his retirement, Fisher moved to Australia to become a
research fellow at the Division of Mathematics and
Statistics, CSIRO, Adelaide.

His method of multivariate analysis allowed scien-
tists, for the first time, to properly analyze problems
involving more than one variable, and his notion of
“likelihood” provided the means to draw general con-
clusions on the basis of relative probabilities of differ-
ent events. Fisher also contributed to the science of
HYPOTHESIS TESTING by identifying and analyzing new
key DISTRIBUTIONS. His work, without doubt, trans-
formed statistics from a general science into a practical
and powerful scientific tool. He is considered the
founder of modern statistics.

Fisher was elected a fellow of the ROYAL SOCIETY

in 1929, and was awarded the Royal Medal of the
Society in 1938, the Darwin Medal of the Society in
1948, and the Copley Medal of the Society in 1955.
He was knighted in 1952 in recognition of his influen-
tial work in statistics and for his development of a
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statistical theory of natural selection. Fisher died in
Adelaide, Australia, on July 29, 1962.

See also HISTORY OF PROBABILITY AND STATISTICS

(essay); KARL PEARSON.

fixed point Any point that is mapped to itself by a
given TRANSFORMATION is called a fixed point. For
example, the points x = 0 and x = 1 are fixed points
for the function f(x) = x2. Any point on the line of
REFLECTION for a reflection in a plane is a fixed point
for that reflection.

Any continuous map f that maps points in the unit
interval [0,1] to points in the same interval must pos-
sess a fixed point. (By the INTERMEDIATE-VALUE THEO-
REM, the graphs of y = f(x) and y = x for 0 ≤ x ≤ 1 must
intersect.) This is a special case of a more general result
proven by Luitzen Egbertus Jan Brouwer in 1915 stat-
ing that, for all values n, any continuous map f:[0, 1]n

→ [0,1]n must possess at least one fixed point. (For
n = 2, [0,1]2 = [0,1] × [0,1] is the unit square in the
plane, and for n = 3, [0,1]3 = [0,1] × [0,1] × [0,1] is a
unit cube in three-dimensional space.) This theorem has
the following amusing consequences:

Consider two square sheets of paper, one lying
directly on top of the other. Initially each point
of the upper sheet lies directly above its corre-
sponding point on the lower sheet. Now crum-
ple the top sheet and rest the crumpled ball
anywhere on the lower sheet. By the Brouwer
fixed-point theorem there is still at least one
point of the crumpled sheet lying directly above
its corresponding point on the bottom sheet.

As a thought experiment, imagine the
molecules of the liquid in a cup of coffee as the
points in a three-dimensional cube. After the
coffee is stirred, the Brouwer fixed point theo-
rem assures that at least one molecule will
return to its original location.

See also ITERATION.

floor/ceiling/fractional part functions The floor
function, also known as the greatest-integer function,
takes a real number x and returns the greatest integer
not exceeding x. This quantity is denoted: x. For
example, 7.2 = 7, 7.9998 = 7 and 7 = 7. Also,
–6.34 = –7.

The ceiling function, also known as the least-
integer function, takes a real number x and returns the
least integer not smaller than x. This quantity is 
denoted: x. For example, 7.2 = 8, 7.998 = 8 

and 7 = 7. Also, –6.34 = –6. The fractional part of
a real number x, denoted {x}, is given by: {x} = x – x.
For example, {7.2} = 0.2, {7.998} = 0.998 and {7} = 0.
Also, {–6.34} = 0.66.

The names “floor” and “ceiling,” as well as the
notation for these functions, were introduced by Ken-
neth Iverson in his 1962 computer science text A Pro-
gramming Language. These functions often arise in 

applications of counting. For example, there are 

multiples of 4 less than, or equal, to N, and, for any
two real numbers x and y with x < y, the closed interval
[x, y] contains y – x + 1 integers.

See also DAYS-OF-THE-WEEK FORMULA.

floor function See FLOOR/CEILING/FRACTIONAL PART

FUNCTIONS.

fluxion In his version of CALCULUS, SIR ISAAC NEW-
TON thought of variable x as a flowing quantity, or a
fluent, and called the rate of change of x the “fluxion”
of x. He used the notation .x for the fluxion of x, ẍ for
the fluxion of the fluxion of x, and so forth. Thus if
x = f(t), where x is the distance and t the time for a
moving object, then .x is the instantaneous VELOCITY of
the object, and ẍ its instantaneous ACCELERATION.
Today the term fluxion is considered obsolete, and we
use the word DERIVATIVE in its stead. The raised-dot
notation for derivative, however, is still used by physi-
cists for denoting derivatives with respect to time.

See also CALCULUS; HISTORY OF CALCULUS (essay).

focal chord Any CHORD of a conic curve—a
PARABOLA, an ELLIPSE, or a HYPERBOLA—that passes
through a FOCUS of the conic is called a focal chord.

See also CONIC SECTIONS; FOCAL RADIUS.

focal radius Any line from the FOCUS of a conic
curve—a PARABOLA, an ELLIPSE, or a HYPERBOLA—to a
point on the conic is called a focal radius.

See also CONIC SECTIONS; FOCAL CHORD.


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focus (plural, foci) Each CONIC SECTION has associ-
ated with it one or two special points each called a
focus of the conic.

See also ELLIPSE; HYPERBOLA; PARABOLA.

formal logic (symbolic logic) In mathematics, the
systematic study of reasoning is called formal logic. It
analyzes the structure of ARGUMENTs, as well as the
methods and validity of mathematical deduction and
proof.

The principles of logic can be attributed to ARISTO-
TLE (384–322 B.C.E.), who wrote the first systematic
treatise on the subject. He sought to identify modes of
inference that are valid by virtue of their structure, not
their content. For example, “Green and blue are colors;
therefore green is a color” and “Cows and pigs are rep-
tiles; therefore cows are reptiles” have the same structure
(“A and B, therefore A”), and any argument made via
this structure is logically valid. (In particular, the second
example is logically sound.) This mode of thought
allowed EUCLID (ca. 300–260 B.C.E.) to formalize geom-
etry, using deductive proofs to infer geometric truths
from a small collection of AXIOMs (self-evident truths).

No significant advance was made in the study of
logic for the millennium that followed. This period was
mostly a time of consolidation and transmission of the
material from antiquity. The Renaissance, however,
brought renewed interest in the topic. Mathematical
scholars of the time, Pierre Hérigone and Johann Rahn
in particular, developed means for representing logical
arguments with abbreviations and symbols, rather than
words and sentences. GOTTFRIED WILHELM LEIBNIZ

(1646–1716) came to regard logic as “universal mathe-
matics.” He advocated the development of a “universal
language” or a “universal calculus” to quantify the
entire process of mathematical reasoning. He hoped to
devise new mechanical symbolism that would reduce
errors in thinking to the equivalent of arithmetical
errors. (He later abandoned work on this project,
assessing it too daunting a task for a single man.)

In the mid-1800s GEORGE BOOLE succeeded in cre-
ating a purely symbolic approach to propositional
logic, that part which deals with inferences involving
simple declarative sentences (statements) joined by the
connectives:

not, and, or, if … then…, iff

(These are called the NEGATION, CONJUNCTION, DISJUNC-
TION, CONDITIONAL, and the BICONDITIONAL, respec-
tively.) He successfully applied it to mathematics, thereby
making a significant step to achieving Leibniz’s goal.

In 1879 the German mathematician and philoso-
pher Gottlob Frege constructed a symbolic system for
predicate logic. This generalizes propositional logic by
including QUANTIFIERs: statements using words such as
some, all, and, no. (For example, “All men are mortal”
as opposed to “This man is mortal.”) At the turn of the
century DAVID HILBERT sought to devise a complete,
consistent formulation of all of mathematics using a
small collection of symbols with well-defined meanings.
English mathematician and philosopher BERTRAND

RUSSELL, in collaboration with his colleague ALFRED

NORTH WHITEHEAD, took up Hilbert’s challenge. In
1925 they published a monumental work. Beginning
with an impressively minimal set of premises (“self-evi-
dent” logical principles), they attempted to establish
the logical foundations of all of mathematics. This was
an impressive accomplishment. (After hundreds of
pages of symbolic manipulations, they established the
validity of “1 + 1 = 2,” for example.) Although they
did not completely reach their goal, Russell and White-
head’s work has been important for the development of
logic and mathematics.

Six years after the publication of their efforts, how-
ever, KURT GÖDEL stunned the mathematical commu-
nity by proving Hilbert’s (and Leibniz’s) goal to be
futile. He demonstrated once and for all that any for-
mal system of logic sufficiently sophisticated to incor-
porate basic principles of arithmetic cannot attain all
the statements it hopes to prove. His results are today
called GÖDEL’S INCOMPLETENESS THEOREMS. The vision
to reduce all truths of reason to incontestable arith-
metic was thereby shattered.

Understanding the philosophical foundations of
mathematics is still an area of intense scholarly research.

See also ARGUMENT; DEDUCTIVE/INDUCTIVE REA-
SONING; LAWS OF THOUGHT.

formula Any identity, general rule, or general expres-
sion in mathematics that can be applied to different
values of one or more quantities is called a formula.
For example, the formula for the area A of a circle is:

A = πr2
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where r represents the radius of the circle. The
QUADRATIC formula for the roots of a quadratic equa-
tion of the form ax2 + bx + c = 0 is:

foundations of mathematics The branch of mathe-
matics concerned with the justification of mathematical
rules, AXIOMs, and modes of inference is called founda-
tions of mathematics. The paradigm for critical mathe-
matical analysis came from the work of the great
geometer EUCLID (ca. 300–260 B.C.E.) who, in his work
THE ELEMENTS, demonstrated that all geometry known
at his time can be logically deduced from a small set of
self-evident truths (axioms). LEONHARD EULER

(1707–83) produced fundamental results in disparate
branches of mathematics and often saw connections
between those branches. He too searched for small col-
lections of concepts that were fundamental and, hope-
fully, common to all fields. In the late 1800s and at the
turn of the century with the discovery of RUSSELL’S
PARADOX in SET THEORY, mathematicians were led to
apparent paradoxes and inconsistencies within the
seemingly very basic notions of “set” and “number.”
This led to the fervent study of the fundamental princi-
ples of elementary mathematics and even to the study of
the process of mathematical thinking itself (FORMAL

LOGIC). In the 1930s Austrian mathematician KURT

GÖDEL (1906–78) stunned the mathematical commu-
nity by proving, essentially, that any formal system of
mathematics that incorporates the principles of arith-
metic will contain statements that can neither be proved
nor disproved, and, in addition, such a system will nec-
essarily be incapable of establishing that it is free from
CONTRADICTIONs. Despite these disturbing conclusions,
the study of the founding principles of mathematics is
still an active area of research today.

See also GEORG CANTOR; GÖDEL’S INCOMPLETE-
NESS THEOREMS; BERTRAND ARTHUR WILLIAM RUSSELL;
ALFRED NORTH WHITEHEAD; ERNST FRIEDRICH FERDI-
NAND ZERMELO.

four-color theorem For centuries, cartographers have
known that four colors suffice to color any geographical
map (that is, any division of the plane into regions). It is

required that regions sharing a common length of
boundary be painted different colors (but two regions
meeting at a point, such as the states Arizona and Col-
orado on a map of the United States, may be painted the
same tint). Cartographers had also observed that the
same is true for any map drawn on a SPHERE (the globe).

The question of whether this observation could be
proved true mathematically was first posed by English
scholar Francis Guthrie in 1852. Mathematicians
AUGUSTUS DE MORGAN (1806–71) and ARTHUR CAY-
LEY (1821–95) worked to solve the problem and, in
1872, Cayley’s student Alfred Bray Kempe (1849–1922)
produced the first attempt at a proof of the four-color
conjecture. Unfortunately, 11 years later English scholar
Percy Heawood (1861–1955) found that Kempe had
made an error in his work. In 1890 Headwood later
proved that five colors will always suffice to color a pla-
nar map, but the proof that just four will actually suf-
fice eluded him. Heawood also looked beyond just
planar and spherical maps and made a general conjec-
ture that if a surface contains g holes (such as TORUS

with g = 1 hole, or a sphere with g = 0 holes), then any
map drawn on that surface can be colored with

colors, and that there do exist examples of maps on
these surfaces that do require precisely this many col-
ors. (The brackets indicate to round down to the near-
est integer.)

In 1968 two mathematicians, Gerhard Ringel and
J. W. T. Youngs, proved Heawood to be correct for all
surfaces with two or more holes and for the torus.
Unfortunately, their work did not apply to the case of a
sphere and of a KLEIN BOTTLE. It was not until the next
decade when, in 1976, mathematicians Kenneth Appel
and Wolfgang Haken finally established that four col-
ors do indeed suffice to color any map on a sphere (and
hence the plane, since, by placing a small hole in the
center of one of the regions to be painted, a punctured
sphere can be stretched and flattened onto the plane,
and, vice versa, a planar region can be stretched and
molded into a punctured sphere).

Appel and Haken’s proof was deemed controver-
sial at the time, since it used some 1,200 hours of
computer time to check nearly 2,000 complicated spa-

7 48 1
2

+ +











g

x
b b ac

a
= − ± −2 4

2

200 foundations of mathematics



tial arrangements. (It was argued that since no single
human being could possibly verify that the computer
had completed this work correctly, then the outcome
produced is not a valid proof.) Most mathematicians
today accept the validity of Appel and Haken’s work
and consider the famous four-color problem solved.
(The search for a simple and elegant proof easily
checked by human hand, however, continues.)

It is interesting to note that Heawood’s conjecture
actually fails for the single case that remains: it is
known that six colors suffice to color any map drawn
on a Klein bottle (g = 1 ), not seven, as predicted by
the formula.

See also FLOOR/CEILING/FRACTIONAL PART

FUNCTIONS.

Fourier, Jean Baptiste Joseph (1768–1830) French
Analysis, Engineering Born on March 21, 1768,
French scholar Joseph Fourier is remembered in mathe-
matics for his fundamental contributions to the theory
of heat conduction and his study of trigonometric
series. His groundbreaking advances in these topics
appear in his famous 1822 treatise Théorie analytique
de la chaleur (Analytic theory of heat). Today, FOURIER

SERIES play a fundamental role in the study of physics
and engineering, as well as in the development of theo-
retical mathematics.

Placed in a military school as an orphan at age 10,
Fourier exhibited a strong interest in mathematics at
this early age. He taught at the same military school for
four years before entering the newly established
teacher-training school L’École Normale (later renamed
L’École Polytechnique) in 1794. There Fourier received
instruction in mathematics from JOSEPH-LOUIS

LAGRANGE (1736–1813) and excelled in all his studies.
In 1797, when Lagrange stepped down as chair of
analysis and mechanics, Fourier was appointed the new
department chair.

This position was short-lived, however, for the fol-
lowing year Fourier was assigned to Napoleon’s army
in the invasion of Egypt. He was charged to oversee a
variety of archeological and scientific investigations,
and it was during this period of his life, while stationed
in the Egyptian desert, that Fourier developed a fasci-
nation for the mathematics of heat transfer.

Taking a highly original approach, Fourier ana-
lyzed conduction by representing complicated oscillat-

ing quantities as sums of simpler components. This led
him to his theory of trigonometric series. In 1807
Fourier detailed the results of his work in the paper
“On the Propagation of Heat in Solid Bodies,” but the
mathematicians of the day, including Lagrange, were
not convinced of the validity of his approach. Fourier
rewrote the paper in 1811, and even received a prize
for its content, but still received criticism from the
mathematics community for its lack of rigor and lack
of generality. For another 10 years Fourier worked to
establish the mathematical foundations of his work
and detail the reasoning behind his methods. Finally,
in 1822, after the publication of his famous treatise,
all criticisms of his mathematics were settled, and
Fourier’s approach was accepted as valid and funda-
mentally important.

Fourier was elected to the powerful position of sec-
retary to the Académie of Sciences that same year, and
in 1827 he was honored with membership to the
ROYAL SOCIETY of London.

It has been conjectured that Fourier, ironically, may
have contracted the exotic illness myxedema while in
Egypt, which, among several symptoms, induces an
extreme sensitivity to cold. It is said that Fourier kept
his living quarters almost unbearably hot and always
bundled himself in many layers of clothing. Fourier
died of a heart attack on May 16, 1830.

Fourier series have found numerous applications to
physics and engineering. Practically every branch of sci-
ence that contends with the transfer of energy through
waves (such as acoustics, seismic studies, wireless com-
munications, spectroscopy) utilizes Fourier’s methods.
In a more abstract setting, Fourier series are now seen
as just one of infinitely many possible approaches to
decomposing elements of a VECTOR SPACE of functions
in terms of basis elements. This shift in perspective
has led to new insights into the study of quantum
mechanics.

Fourier series When a musician plays two strings on
a violin simultaneously, just one sound wave reaches
our ears—the combined effect of the two notes.
Nonetheless, the human brain is able to decode the
information it receives to “hear” two distinct notes
being played. That is, the human brain is able to recog-
nize complicated sound waves as sums of simpler basic
sound waves.
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In the 18th century, French mathematician and
physicist JEAN LE ROND D’ALEMBERT (1717–83), and
the Swiss mathematician LEONHARD EULER (1707–83)
worked to describe complicated vibrations of strings
as sums of simpler functions. The Swiss mathemati-
cian Daniel Bernoulli (1700–82) of the famous
BERNOULLI FAMILY introduced the use of trigonomet-
ric functions in this study, an approach that was later
fully developed by French mathematician and physi-
cist JEAN BAPTISTE JOSEPH FOURIER (1768–1830),
although his work was motivated by the study of heat
conduction. Fourier showed that many functions
could be represented as infinite sums of sine and
cosine functions.

The result of writing a function as a sum of
trigonometric functions is today called a Fourier series.
As the trigonometric functions cycle in value every 2π
in RADIAN MEASURE, it is assumed in these studies that
the functions under consideration are themselves peri-
odic with period 2π.

Assume f(x) is such a function. Then a Fourier
series for f is an expression of the form:

One finds the values of the constants a0,a1,a2,…b1,b2,…
by integrating. For example, since ∫π

–π cos(kx) dx = 0 =
∫π
–π sin(kx) dx, we have:

yielding: a0 = ∫ π
–π f(x)dx. Multiplying through by 

sin(x) and integrating gives:

showing that b1 = ∫ π
–π f(x)sin(x)dx.

One can show that the functions {1,cos(x),cos(2x),
…,sin(x),sin(2x),…} are ORTHOGONAL in the sense that
the integral of the product of any two different func-
tions from this set is zero. This observation allows us
to compute all the values a0,a1,a2,…,b1,b2,… by this
method of multiplying through by a trigonometric
function and integrating. We have, in general:

Mathematicians have shown that if f(x) and its
DERIVATIVE f ′(x) are both CONTINUOUS FUNCTIONs,
then the expansion

is valid. They have also shown that, if interpreted
appropriately, the expansion remains valid even if f or
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f′ are not continuous for a finite number of locations in
the interval [–π,π]. This shows, for example, that func-
tions that zig-zag like a sawtooth, or jump up and
down in value like a staircase, for example, can still be
well approximated by a sum of trigonometric func-
tions. For example, take f(x) to be the V-shaped func-
tion f(x) = |x| on the interval [–π,π], with this section of
graph repeated over the entire number line to produce
the picture of a sawtooth. One checks:

giving:

at least on the interval [–π,π]. Note, as a curiosity, that
if we place x = 0 into this formula we obtain the
remarkable identity:

= 1 + + + +…

See also ZETA FUNCTION.

fractal If we SCALE the picture of a geometric object
by a factor k, then its size changes accordingly: any line
of length a becomes a line of length ka, any planar
region of area A becomes a planar region of area k2A,
and any solid of volume V is replaced by a solid of vol-
ume k3V. An object can thus be described as d-dimen-
sional if its “size” scales according to the rule:

new size = kd × old size

At the turn of the 20th century, mathematicians discov-
ered geometric objects that are of fractional dimension.
These objects are called fractals. One such object is Sier-
pinski’s triangle, devised by Polish mathematician Vaclav
Sierpinski (1882–1969). Beginnning with an equilateral
triangle, one constructs it by successively removing cen-

tral triangles ad infinitum. The final result is an object
possessing “self-similarity,” meaning that the entire fig-
ure is composed of three copies of itself, in this case each
at one-half scale. If the dimension of the object is d and
the size of the entire object is S, then according to the
scaling rule above, the size of each scaled piece 

is . As the entire figure is composed of three 

of these smaller figures, we have . This 

tells us that 2d = 3, yielding d = ≈ 1.58. Thus the 

Sierpinski triangle is a geometric construct that lies some-
where between being a length and an area.

In 1904 Swedish mathematician Nils Fabian Helge
von Koch (1870–1924) described a fractal curve con-
structed in a similar manner. Beginning with a line seg-
ment, one draws on its middle third two sides of an
equilateral triangle of matching size and repeats this
construction ad infinitum on all line the segments that
appear. The result is called the Koch curve. It too is
self-similar: the entire figure is composed of four copies
of itself, each at one-third scale. The object has fractal 

dimension d = ≈ 1.26.

The Cantor set, invented by German mathemati-
cian GEORG CANTOR (1845–1918), is constructed from
a single line segment, by removing its middle third and
the middle thirds of all the line segments that subse-
quently appear. The result is a geometric construct,
resembling nothing more than a set of points, but again
with the same self-similarity property: the entire con-
struct is composed of two copies of itself, each at one-
third scale. The Cantor set is a fractal of dimension 

d = ≈ 0.63. It is not large enough to be considered 

one-dimensional, but it is certainly “more” than a dis-
connected set of isolated points.

Fractals also arise in the theory of CHAOS and the
study of DYNAMICAL SYSTEMs. French mathematician
Gaston Maurice Julia (1892–1978) considered the
iterations of functions f that take COMPLEX NUMBERS

as inputs and give complex numbers as outputs. If z is
a complex number and the set of points f(z), f (f(z)),
f (f (f(z))), … are all plotted on a graph, then two pos-
sibilities may occur: either the sequence is unbounded,
or the points jump about in a bounded region. The set
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of all values z that lead to a bounded sequence is
called the “Julia set” for f. It is a region in the com-
plex plane that is almost always a fractal. Even simple
functions such as f(z) = z2 + c, with different values of
the constant c, can yield surprisingly varied and beau-
tiful structures.

Polish-born French mathematician Benoit Mandel-
brot considered, alternatively, all the complex values c
for which the repeated application of the function
f(z) = z2 + c, beginning with the point z = 0, yields a
bounded sequence. Plotting all such points c describes a
subset of the complex plane today called the Mandel-
brot set. It has an extremely complicated structure. In
particular, its boundary is a fractal.

The Sierpinski triangle also arises from an iterative
procedure known as the “chaos game:”

Pick a point at random inside an equilateral tri-
angle (diagram (1) above) and then draw the
point halfway between it and one of the ver-
tices of the triangle picked at random. (This
point will lie somewhere in the shaded region
of diagram (2) above.) Now draw the point
halfway between this new point and another
vertex picked at random. (This point will lie
somewhere in the shaded region of diagram (3)
above.) Imagine we continue this process indef-
initely. Sierpinski’s triangle represents all possi-
ble “final” destinations of this point as this
game is played an infinite number of times.

Many objects in nature seem to possess the self-
similarity properties of fractals. For example, the
boundary shape of a cloud looks just as irregular under
magnification as it does when looked at directly. Scien-
tists have found it possible to assign fractal dimensions
to various objects in nature. The study of fractals has

since found applications to the study of crystal forma-
tion, fluid mechanics, urban growth, linguistics, eco-
nomics, and many other diverse areas.

Much of the work in fractal geometry was pio-
neered by Benoit Mandelbrot, who also coined the
term fractal.

fractal dimension See FRACTAL.

fraction Any number written as a QUOTIENT, that is,
as one number a divided by another b, is a fraction. We
write a/b and call the dividend a the numerator of the
fraction and the divisor b the denominator of the frac-
tion. It is assumed that b is not zero.

It is appropriate to regard fractions simply as
answers to division problems. For example, if six pies
are shared equally among three boys, then each boy
receives two pies. We write: 6/3 = 2. Similarly, if one
pie is shared among two boys, then the amount of pie
each boy receives is written 1/2. We, appropriately, call
this quantity “half.” Clearly if a pies are shared with
just one boy, then that boy receives all a pies. This
yields the observation:

Unit Denominator Rule: = a

Every fractional property can be explained with this
simple pie-sharing model. For instance, we have:

Cancellation Law: For any nonzero value x and 

fraction we have = .

For instance, if a pies are shared among b boys, then
doubling the number of pies and doubling the number

a–
b

xa–
xb

a–
b

a–
1
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of boys does not alter the amount of pie each boy 

receives: = . We have, in effect, “cancelled” a 

common factor from the numerator and denominator
of the fraction. This principle also shows that it is pos-
sible to express the same fraction in an infinite number 

of equivalent forms. For instance, , , , , and 

all represent the same fraction.

In continuing the model of sharing pies, we see that
if a1 pies are shared among b boys, then another a2 pies
are shared among the same boys, then in effect a1 + a2

pies were shared among those boys. This yields the rule:

Addition of Like Fractions: + = 

thereby providing a method for adding fractions shar-
ing the same denominator. To add fractions with differ-
ent denominators, convert each fraction to forms that
share a COMMON DENOMINATOR and then add. For 

instance, to sum and write + = + 

= + to obtain the answer . This yields 

the rule:

Addition of Unlike Fractions: + = 

Subtraction is performed in a similar manner.
If, in sharing pies, one wished to double the

amount of pie each boy receives, one could simply dou-
ble the number of pies available. This suggests the rule:

Product Rule: x × = 

This shows, along with the cancellation law, multiply-
ing a fraction by its denominator produces its numera-
tor as a result:

Denominator Product Rule: b × = = = a

The product rule also shows how to multiply for 

fractions. For instance, to compute × observe 

that by the product rule. Multiplying 

the numerator and denominator each by three gives 

, which is . This process is summarized:

Multiplication of Fractions: × = 

The following division rule for fractions is proved in a
similar manner:

Division of Fractions: 

(Multiply the numerator and denominator each by b

to obtain . Now multiply the numerator and 

denominator each by d to yield .)

Types of Fractions
In writing a generic fraction a/b, it is often assumed
that a and b are each a WHOLE NUMBER. If this is
indeed the case, then the fraction is called a “common”
fraction (or sometimes a “simple” or a “vulgar” frac-
tion). Each common fraction represents a RATIONAL

NUMBER. Although there are infinitely many rational
numbers, surprisingly, they occupy absolutely no space
on the NUMBER LINE.

A common fraction with positive numerator and
denominator is called “proper” if its numerator is less
than its denominator, and “improper” otherwise. (Thus
a proper fraction represents a quantity less than one,
and an improper fraction a quantity greater than or
equal to one.) A “mixed number” is a number consist-
ing of an integer and a proper fraction. For example,
31/2 is a mixed number.

A zero fraction is a fraction with numerator equal
to zero. If no pies are shared among b boys, then each
boy receives zero pie. Thus every zero fraction is equal
to zero: 0/b = 0.

An “undefined” fraction is a fraction with denomi-
nator equal to zero. Such a fraction is invalid, for it
cannot have any meaningful value. (If, for instance, 2/0
had value x, then multiplying through by the denomi-
nator yields the absurdity 2 = 0 × x = 0. Also, dividing

ad–
bc

a

b
c
d

×

a
b
c
d

a
b

d
c

ad
bc

= × =

ac–
bd

c–
d

a–
b

2 × 4–––
3 × 7

3
2
3

4

3 7

× ×

×

2
3

4
7

2
3

4

7
× =

×

4–
7

2–
3

a–
1

ba–
b

a–
b

xa–
b

a–
b

da + bc––
bd

c–
d

a–
b

31–
40

15–
40

16–
40

5 × 3–––
5 × 8

8 × 2–––
8 × 5

3–
8

2–
5

3–
8

2–
5

a1 + a2–––
b

a2–
b

a1–
b

120–
200

30–
50

9–
15

6–
10

3–
5

a–
b

2a–
2b

fraction 205



zero by zero could, allegedly, have any desired value.
For example, one could argue that 0/0 = 17 by noting
that 0 × 17 = 0 is a true statement. There is no single
appropriate value for this quantity.)

A “unit” fraction, also known as an EGYPTIAN

FRACTION, is a proper fraction with numerator equal to
one. A “complex” fraction is one in which the numera-
tor or denominator, or both, is a fraction. For example, 

is a complex fraction. The division-of-fractions 

rule provides the means to simplify complex fractions.
See also CANCELLATION; CONTINUED FRACTION;

DECIMAL REPRESENTATION; PARTIAL FRACTIONS; PER-
CENTAGE; RATIO; RATIONALIZING THE DENOMINATOR;
REDUCED FORM.

fractional part function See FLOOR/CEILING/
FRACTIONAL PART FUNCTIONS.

frequency In STATISTICS, the absolute frequency of an
observed value is the number of times that value
appears in a data set. For example, in the sample 4, 6,
3, 4, 4, 1, 7, 3, 7, 9, 8, 4, 4, 5, 2, the absolute fre-
quency of the observation 4 is five, and that of 8 is one.
The relative frequency of an observed value is the pro-
portion of times it appears. This is computed by divid-
ing the absolute frequency of the observation by the
total number of entries in the data set. For example,
the relative frequency of 4 in the above data set is
5/15 = 1/3, and that of 8 is 1/15.

One can compute the relative frequency of entries
in an infinite data set by making use of a LIMIT. For
example, mathematicians have proved that 5.8% of
the powers of two 1, 2, 4, 8, 16, 32, 64, 128,… begin
with a 7. (The first power to do so is 246.) By this they
mean that if one were to examine the first N powers of
two, approximately 5.8 percent of them begin with a
7. This approximation is made more exact by taking
larger and larger values of N.

In physics the term frequency is defined as the
number of cycles that occur per unit time in a system
that oscillates (such as a pendulum, a wave, a vibrating
string, or an alternating current). The symbol used for
frequency is usually f, although the Greek letter ν is
often employed for the frequency of light or other elec-
tromagnetic radiation. A unit of frequency is called a
hertz (Hz).

frequency distribution See STATISTICS: DESCRIPTIVE.

frequency polygon See STATISTICS: DESCRIPTIVE.

frieze pattern (band ornament) A design on an infi-
nite strip that consists of repeated copies of a single motif
is called a frieze pattern. (In classical architecture, a frieze
is a horizontal structure, usually imprinted with decora-
tion, resting along the top of some columns. The modern
equivalent is a horizontal strip of wallpaper used to deco-
rate the top portion of a wall just below the ceiling.)

Mathematicians are interested in the SYMMETRY

properties of frieze patterns. Each frieze pattern, by def-
inition, is symmetrical under a TRANSLATION T in the
direction of the strip. A frieze pattern might also be
symmetrical about a horizontal REFLECTION (H), a ver-
tical reflection (V), a ROTATION of 180° about a point in
the design (R), a GLIDE REFLECTION (G), or some collec-
tion of these five basic transformations. The first frieze
pattern shown below possesses all five symmetries.

Not all combinations of T, H, V, R, and G, represent
the symmetries of a frieze pattern. For instance, a frieze
pattern cannot possess the symmetries T and H alone,
for the composition of these two symmetries produces a
glide reflection, and so the pattern must possess symme-
try G as well. Similarly, any frieze pattern that possesses
symmetries H and V must also possess symmetry R,
since the combined effect of a vertical and a horizontal
reflection is a rotation. Reasoning this way, one can
prove that there are only seven combinations of symme-
try types a frieze pattern could possess. These are:

T alone T, H, and G
T and V T, V, R, and G
T and R T, H, V, R, and G
T and G

3/5–
4/7
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For this reason, mathematicians say that there are only
seven possible frieze patterns.

A wallpaper pattern is the two-dimensional ana-
logue of a frieze pattern. Mathematicians have proved
that there are exactly 17 different wallpaper patterns.

frustum If a geometric solid is cut by two parallel
planes, then the portion of the solid between the two
planes is called a frustum. A frustum is also produced
by cutting the solid by one plane parallel to the BASE of
the solid. For example, a conical frustum, is the shape
produced by slicing the top off a cone (with the cut
made parallel to the base). A pyramidal frustum is
made by slicing off the top of a pyramid, again with
the cut made parallel to the base.

The altitude h of a frustum is the distance between
the two parallel planes. The volume of a conical or
pyramidal frustum is given by the formula:

where A1 and A2 are the areas of the upper and lower
faces.

See also CONE; SOLID OF REVOLUTION; VOLUME.

F-test See STATISTICS: INFERENTIAL.

function (mapping) Any procedure or a rule that
assigns to each member of one set X one, and only one,
element of another set Y is called a function. For exam-
ple, the relation “is the mother of” is a function from
the set X of all the people of the world to the set Y of
all women: each person is “assigned” one, and only
one, biological mother. The rule that squares numbers
takes members of the set X = {1,2,3,4} to correspond-
ing elements of the set Y = {1,4,9,16}.

If f is a symbol used to denote a function from a set
X to a set Y, then we write f: X → Y and call X the
domain of f and Y the codomain of f. We also say that f
“maps” elements of X to elements of Y. If a specific ele-
ment x of the set X is mapped to the element y in Y, then
we write y = f(x). (Mathematicians sometimes call x an
“input” and the value y the corresponding “output.”)
For instance, if f is the squaring function described

above, then we have f(2) = 4 and f(3) = 9. If “M”
denotes the “is the mother of” function, and Lawrence’s
mother is Trenyce, then we can write M(Lawrence) =
Trenyce. Sometimes mathematicians will use arrows
with tabs to emphasize the notion of a mapping and
write, for example, M: Lawrence |→ Trenyce.

Notice that not all elements of Y need be the result
of a mapping. (Not all women are mothers, for exam-
ple.) Also, it is possible for two or more elements of X
to be mapped to the same element of Y. (Two people
could have the same mother, for instance.) The set of
all possible outputs f(x) for a given function f is called
the range (or the IMAGE) of the function. For example,
the range of the “is the mother of” function M, is the
set of all women who have given birth.

In mathematics one typically studies functions
between sets of numbers, usually described by formu-
lae. For example, the squaring function is described by
the equation f(x) = x2, or just y = x2. The function y =
3x + 2, for example, describes the rule “assign to any
number x the number y two more than three times x.”
In this context, x is called the independent variable and
y the dependent variable. (Its value is dependent on the
value of x.) A GRAPH OF A FUNCTION is a pictorial rep-
resentation of a function that operates on numbers.

Equations, such as y = x2 and y = 3x + 2, in which
the dependent variable is expressed in terms of the
independent variable, are said to be in “explicit form.”
In contrast, expressions for which both the indepen-
dent and dependent variables appear on one side of the
equality sign are said to be in “implicit form.” For
instance, the equations 2x – y = 5 and x2 + y2 = 9 are in
implicit form. Implicit equations might, or might not,
define y as a function of x. For example, the first equa-
tion presented above can be rewritten y = 2x – 5, yield-
ing the explicit form of a function. The second relation,
however, does not represent a function: there is no
unique value of y associated to each value of x. (For
example, with x = 0, y could be either 3 or –3.)

Any set of ordered pairs (x,y) satisfying some
given constraint is called a relation. For example, the
set of all ordered pairs (x,y) satisfying the equation x2

+ y2 = 9 is a relation. Graphically, this relation repre-
sents a circle of radius three. A relation is a function if
it is never the case that two distinct ordered pairs have
the same x-coordinate value (that is, no single x-value
has two different y-values associated to it). This condi-
tion is sometimes called the “vertical line test.” For

1
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example, the points (0,–3) and (0,3) on the circle of
radius three have the same first-coordinate value, and
the vertical line at x = 0 intercepts the graph of the cir-
cle at two locations. The circle is a relation, but it is
not a function.

A function f:X → Y is said to be “onto” (or “sur-
jective”) if every element of the codomain Y is the

image of some element of X. (That is, every element y
in Y is of the form y = f(x) for some x in X.) For exam-
ple, the squaring function thought of as a map from the
set {1,2,3,4} to the set {1,4,9,16} is onto. It is not onto,
however, when thought of as a map from the set of all
real numbers to the set of all real numbers: no negative
number results from the squaring operation.

208 function

History of Functions
Since the time of antiquity, scholars were interested in
identifying rules or relationships between quantities. For
example, the ancient Egyptians were aware that the cir-
cumference of a circle is related to its diameter via a fixed
ratio that we now call PI, and Chinese scholars, and later
the Pythagoreans, knew that the three sides of a right trian-
gle satisfy the simple relationship given by PYTHAGORAS’S
THEOREM. Although these results were not expressed in
terms of formulae and symbols (the evolution of algebraic
symbolism took many centuries), scholars were aware that
the value of one quantity could depend on the value of other
quantities under consideration. Although not explicit, the
notion of a “function” was in mind.

In the mid-1300s French mathematician NICOLE ORESME

discovered that a uniformly varying quantity (such as the
position of an object moving with uniform velocity, for
instance) could be represented pictorially as a “graph,” and
that the area under the graph represents the total change of
the quantity. Oresme was the first to describe a way of
graphing the relationship between an independent variable
and a dependent one and, moreover, demonstrate the use-
fulness of the task.

In 1694 German mathematician GOTTFRIED WILHELM

LEIBNIZ, codiscoverer of CALCULUS, coined the term function
(Latin: functio) to mean the SLOPE of the curve, a definition
that has very little in common with our current use of the
word. The great Swiss mathematician LEONHARD EULER

(1707–83) recognized the need to make the notion of a rela-
tionship between quantities explicit, and he defined the
term function to mean a variable quantity that is dependent
upon another quantity. Euler introduced the notation f (x) for
“a function of x,” and promoted the idea of a function as a
formula. He based all his work in calculus and ANALYSIS on
this idea, which paved the way for mathematicians to view
trigonometric quantities and logarithms as functions. This
notion of function subsequently unified many branches of
mathematics and physics.

In 1822 French physicist and mathematician JEAN BAP-
TISTE JOSEPH FOURIER presented work on heat flow. He repre-

sented functions as sums of sine and cosine functions, but
commented that such representations may be valid only for
a certain range of values. This later led German mathemati-
cian PETER GUSTAV LEJEUNE DIRICHLET (1805–1859) to propose
a more precise definition:

A function is a correspondence that assigns a
unique value of a dependent variable to every
permitted value of an independent variable.

This, on an elementary level, is the definition generally
accepted today.

In the late 19th century, German mathematician GEORG

CANTOR (1845–1918) attempted to base all of mathematics on
the fundamental concept of a SET. Because the terms vari-
able and relationship are difficult to specify, Cantor pro-
posed an alternative definition of a function:

A function is a set of ordered pairs in which every
first element is different.

This idea is based on the fact that the graph of a function
is nothing more than a collection of points (x,y) with no
two y-values assigned to the same x-value. Cantor’s defi-
nition is very general and can be applied not only to num-
bers but to sets of other things as well. Mathematicians
consequently came to think of functions as “mappings”
that assign to elements of one set X, called the domain of
the function, elements of another set Y, called the
codomain. (Each element x of X is assigned just one ele-
ment of Y.) One can thus depict a function as a diagram of
arrows in which an arrow is drawn from each member of
the domain to its corresponding member of the codomain.
The function is then the complete collection of all these
correspondences.

Advanced texts in mathematics today typically present
all three definitions of a function—as a formula, as a set of
ordered pairs, and as a mapping—and mathematicians will
typically work with all three approaches.

See also GRAPH OF A FUNCTION.



A function f:X → Y is said to be “one-to-one” (or
“injective”) if no two different elements of X yield the
same output. For example, the “is the mother of” func-
tion is not one-to-one: two different people could have
the same mother. The squaring function, thought of as
a map from the set {1,2,3,4} to the set{1,4,9,16}, is one-
to-one. It is not one-to-one, however, when thought of
as a number from the set of all real numbers to the set
of all real numbers: the numbers 2 and –2, for exam-
ple, yield the same output.

A function that is both one-to-one and onto is
called a “bijection” (or sometimes a PERMUTATION). A
bijection f:X → Y has the property that each element of
Y “comes from” one, and only one, element of X. Thus
it is possible to define the inverse function, denoted f–1:
Y → X, which associates to each element y of Y the ele-
ment of X from whence it came. Algebraically, if the
dependent variable y is given as an explicit formula in
terms of x, then the inverse function determines the
independent variable x as a formula in terms of y. For
example, the inverse of the function y = 3x + 2 is given
by x = (y – 2)/3. (That is, the inverse operation of
“tripling a number and adding two” is to “subtract
two and then divide by three.”) The roles of the vari-
ables x and y have switched, and thus the graph of the
inverse of a function can be found by switching the x-
and y-axes on the graph of the original function.

In the theory of CARDINALITY, bijections play a key
role in determining whether or not two sets X and Y
have the same “size.”

See also ALGEBRAIC NUMBER; HISTORY OF FUNC-
TIONS (essay).

fundamental theorem of algebra (d’Alembert’s the-
orem) The following important theorem in mathe-
matics is deemed fundamental to the theory of algebra:

Every polynomial p(z) = anzn + an–1zn–1 +…+
a1z + a0 with coefficients ai either real or com-
plex numbers, an ≠ 0, has at least one root.
That is, there is at least one complex number α
such that p(α) = 0.

By the FACTOR THEOREM we must then have p(z) =
(z – α)q(z) for some polynomial q(z) of degree n – 1.
Applying the fundamental theorem of algebra to the
polynomial q(z), and again to each polynomial of
degree greater than one that appears, shows that the

polynomial p(z) factors completely into n (not necessar-
ily distinct) linear factors. We have as a consequence:

Every polynomial p(z) = anzn + an–1zn–1 +…+
a1z + a0 with coefficients ai either real or com-
plex numbers, an ≠ 0, factors completely as
p(z) = an(z – α1)(z – α2)…(z – αn) for some
complex numbers α1, α2, …, αn.

Consequently, in the FIELD of complex numbers, every
polynomial of degree n has precisely n roots (when
counted with multiplicity). For instance, the polyno-
mial z4 – 2z3 + 2z2 – 2z + 1 factors as (z – 1)(z – 1)
(z – i)(z + i) with the root 1 appearing twice. Mathe-
maticians call a field algebraically closed if every
degree-n polynomial with coefficients from that field
has precisely n roots in that field. The set of complex
numbers is thus algebraically closed. (The field of real
numbers, however, is not. The polynomial p(x) = x2 + 1,
for instance, does not factor within the reals.)

The fundamental theorem of algebra was first con-
jectured by Dutch mathematician Albert Girard in 1629
in his investigation of imaginary roots. CARL FRIEDRICH

GAUSS (1777–1855) was the first to prove the result in
his 1799 doctoral thesis. He later re-proved the result
several times throughout his life using a variety of dif-
ferent mathematical approaches, and he gave it the
name the “fundamental theorem of algebra.” In France,
the result is known as d’Alembert’s theorem to honor
the work of JEAN LE ROND D’ALEMBERT (1717–83) and
his many (unsuccessful) attempts to prove it.

To prove the theorem, it suffices to consider a com-
plex polynomial with leading coefficient equal to one:
p(z) = zn + an –1zn– 1 +…+ a1z + a0. (Divide through by
an if necessary.) Notice that if a0 = 0, then the polyno-
mial has one root, namely z = 0, and there is nothing
more to establish. Suppose then that a0 is a complex
number different from zero.

Using EULER’S FORMULA, regard the variable z as a
complex number of the form z = Reiθ = R(cosθ + isinθ),
where R is a nonzero real number and θ is an angle.
Notice that as θ varies from zero to 360°, z = R(cosθ +
isinθ) traces a circle of radius R and zn = Rneinθ =
Rn(cos(nθ) + isin(nθ)) wraps around a circle of radius Rn

n times. Notice, too, that if R is large, then p(z) = zn + 

an–1zn–1 +…+ a1z + a0 = zn

is well approximated as zn(1 + 0 +…+ 0 + 0) = zn. Thus
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as θ varies from zero to 360°, again for R large, p(z)
closely traces a circle of large radius Rn (again winding
around n times). If R is sufficiently large, this circle is
sure to enclose the point (0,0) in the complex plane. If
R shrinks to the value zero, then the trace of p(z) as θ
varies is a circle of radius 0 about the point p(0) = a0.
That is, the trace of p(z) is the point a0 in the complex
plane. Between these two extremes, there must be some
intermediate value of R for which the trace of p(z)
passes through the origin (0,0). That is, there is α value
on the circle of this radius R for which p(α) = 0. This
proves the theorem.

fundamental theorem of arithmetic (unique factor-
ization theorem) This fundamental result from arith-
metic asserts:

Every integer greater than one can be
expressed as a product of prime factors in one
and only one way, up to the order of the fac-
tors. (If the number is already prime, then it is
a product with one term in it.)

For example, the number 100 can be written as 2 × 2 ×
5 × 5. The fundamental theorem of arithmetic asserts
that the number 100 cannot be written as a product of
a different set of primes.

Many elementary school children are familiar
with the process of factoring with the aid of a factor
tree. It is often taken as self-evident that the prime
numbers one obtains as factors will always be the
same, no matter the choices one makes along the way
to construct the tree. However, a proof of this is
required.

It is straightforward to see that any number n has,
at the very least, some prime factorization: If n is
prime, then n is a product of primes with one term in
it. If n is not prime, the n can be written as a product
of two factors: n = a × b. If both a and b are prime,
there is nothing more to do. Otherwise, a and b can
themselves be factored. Continue this way. This process
stops when all factors considered are prime numbers.

That the prime factorization is unique follows from
the following property of prime numbers:

If a product a × b equals a multiple of a prime
number p, then one of a or b must itself be a
multiple of p.

(To see why this is true, suppose that a is not already a
multiple of p. Since p is prime, this means that the only
factor p and a can have in common is 1. By the
EUCLIDEAN ALGORITHM we can thus find numbers x
and y so that 1 = px + by. Multiplying through by b
gives: b = pbx + aby. The first term in this sum is a
multiple of p, and so is the second since ab is. This
shows that b must be a multiple of p, if a is not.)

Suppose, for example, we found the following two
prime factorizations of the same number:

7 × 13 × 13 × 29 × 29 × 29 × 41 = 19 × 19 × 23 
× 23 × 37 × 61

The quantity on the left is certainly a multiple of 7,
which means the quantity on the right is too. By the
property described above, this means that one of the
factors: 19, 23, 37, or 61 is a multiple of seven. Since
each of these factors is prime, this is impossible. In gen-
eral, this line of reasoning shows that the primes
appearing in two factorizations of a number must be
the same. (It also shows, for example, that no power of
7 could ever equal a power of 13, and that no power of
6 is divisible by 14.)

EUCLID, of around 300 B.C.E., was aware that the
prime factorizations of numbers are unique.

Note that, in these considerations, it is vital that 1
not be regarded as prime—otherwise every number
would have infinitely many different representations as
a product of prime factors. (For example, we could
write: 6 = 2 × 3 = 1 × 2 × 3 = 1 × 1 × 2 × 3, and so on.)

Writing numbers in terms of their prime factoriza-
tions helps one quickly identify common factors and
common multiples. For example, if a = p1

n1p2
n2…pk

nk

and b = p1
m1p2

m2…pk
mk, with the numbers ni and mi

possibly zero (this ensures that each number is
expressed via the same list of primes), then the GREAT-
EST COMMON DIVISOR of a and b is the number:

gcd(a,b) = p1
α1p2

α2…pk
αk

with each αi the smaller of ni and mi, and the LEAST

COMMON MULTIPLE of a and b is:

lcm(a,b) = p1
β1p2

β2…pk
βk

with each βi the larger of ni and mi. This proves the
relationship:
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The fundamental theorem of arithmetic is used to
prove the irrationality of roots of integers. Precisely,
one can show that the square root of a positive integer
a is a rational number if, and only if, a is a perfect
square (that is, a = b2 for some whole number b). This
is established as follows:

Suppose that √
–
a is a fraction. Then √

–
a = n/m

for some whole numbers n and m:
Squaring and simplifying gives am2 = n2. The

prime factorization of n gives a prime factoriza-
tion of n2 with the property that every prime
that appears does so an even number of times.
As this is the prime factorization of am2, and
the primes that appear in m2 already do so an
even number of times, it follows that the primes
that appear in the factorization of a do so an
even number of times as well. Selecting one
prime from each pair of primes that appears
produces a whole number b with the property
b2 = a. Thus the assumption that √

–
a is rational

leads us to conclude that a is a perfect square.

Consequently, since the number 2, for instance, is not a
perfect square, it cannot be the case that √

–
2 is rational.

Thus √
–
2 must be an irrational number. (A similar argu-

ment establishes that 
n
√
–
a is rational if, and only if, a is a

perfect nth power.)
See also COMMON FACTOR; COMMON MULTIPLE;

FACTOR.

fundamental theorem of calculus The theory of
CALCULUS develops methods for calculating two impor-
tant quantities associated with curves, namely, the
slopes of tangent lines to curves and the areas of
regions bounded by curves. Although isolated problems
dealing with these issues have been studied since the
time of antiquity (see HISTORY OF CALCULUS essay), no
unified approach or technique for solving them was
developed for a very long time. A breakthrough came
in the 1670s when GOTTFRIED WILHELM LEIBNIZ in
Germany and SIR ISAAC NEWTON in England indepen-
dently discovered a fundamental inverse relationship
between the tangent problem (differentiation) and the
area problem (integration). Their result, today known

as the fundamental theorem of calculus, binds together
the two parts of the subject and is no doubt the most
important single fact in the whole of mathematics.
Leibniz and Newton each recognized the importance of
the result, developed the ideas that follow from it, and
applied the consequent results to solve problems in sci-
ence and geometry with what can only be described as
spectacular success. Their discovery of the fundamental
theorem is, in essence, the discovery of calculus.

The theorem has two parts. Let y = f(x) be a con-
tinuous curve. If A(x) represents the area under the
curve from position a to position x, then the RATE OF

CHANGE of area, , is given by:

Noting that the area under the curve between positions
x and x + h can be approximated as a rectangle of
width h and height f(x), we have A(x + h) – A(x) ≈

f(x)·h. Thus . The details of 

the argument can be made rigorous to prove:

The rate of change of the area under a curve
y = f(x) with respect to x is f(x).

Loosely speaking, “taking the DERIVATIVE of an INTE-
GRAL returns the original function.” In particular, the
function A(x) is one of the antiderivatives of f(x). The
MEAN-VALUE THEOREM, however, shows that if F (x) is
any other antiderivative of f(x), then it must differ from
A(x) only by a constant: A(x) = F(x) + c. Noting that
A(a) = 0, we obtain: A(x) = F(x) – F(a). In particular,
the area under the curve y = f(x) from x = a to x = b is
A(b) = F(b) – F(a) . As this area is usually denoted
∫b

a f(x)dx, this establishes the second part of the funda-
mental theorem of calculus:

If f(x) is a continuous function, and F (x) is any
antiderivative of f(x), then ∫b

a f(x)dx = F(b) – F(a).

This second observation is the key result: it trans-
forms the very difficult problem of evaluating areas (via
limits of sums) into the much easier problem of finding
antiderivatives. For example, to compute the area
under the parabola y = x2 from x = 3 to x = 12, simply

dA
dx

f x h
h

f xh≈ ⋅ =→lim
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note that is an antiderivative of the 

function in question, F′(x) = x2. The desired area is

thus units squared. The entire

thrust of INTEGRAL CALCULUS is consequently trans-
formed to the study of DIFFERENTIAL CALCULUS

employed in reverse.
See also ANTIDIFFERENTIATION.

fundamental theorem of isometries Let ABC be a
triangle in the plane. Then the location of any point P
in the plane is completely determined by the three num-
bers that represent its distances from the vertices of the
triangle. Any GEOMETRIC TRANSFORMATION that pre-
serves distances is called an isometry. If an isometry
takes points A, B, and C to locations A′, B′, and C′,
respectively, then it also takes the point P to the unique
point P′ with matching distances from A′, B′, and C′.
Thus an isometry is completely determined by its effect
on its vertices of any triangle in the plane.

Three REFLECTIONs, at most, are ever needed to
map three vertices A,B, and C of one triangle to three

vertices A′, B′ and C′ of another congruent triangle.
(First reflect along the perpendicular bisector of AA′ to
take the point A to the location A′. Next, reflect along
a line through A′ to take the image of B to B′. One
more reflection may be needed to then send the image
of C to C′.) This observation proves the fundamental
theorem of isometries:

Every isometry of the plane is the composition
of at most three reflections.

fuzzy logic In 1965, Iranian electrical engineer Lofti
Zadeh proposed a system of logic in which statements
can be assigned degrees of truth. For example, whether
or not Betty is tall is not simply true or false, but more
a matter of degree.

Fuzzy-set theory assigns degrees of membership to
elements of fuzzy sets. These degrees range from 1,
when the element is in the set, to zero when it is out of
the set. Betty’s membership in the set of tall people is a
matter of degree.

See also LAWS OF THOUGHT.
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Galilei, Galileo (1564–1642) Italian Mechanics, Astro-
nomy Born on February 15, 1564, in Pisa (now in
Italy), Galileo Galilei is remembered for his 1638 Dis-
corsi e dimostrazione matematiche intorno a due nuove
scienze (Dialogues on two new sciences) presenting a
new approach to the study of kinematics through a
combination of experiment and mathematical theory.
He formulated and verified the law of acceleration of

falling bodies , established that projectiles

follow parabolic paths, and was the first to notice that
the period of a pendulum is independent of the weight of
the bob. Although not the inventor of the telescope, he
was the first to develop a workable design of the device
that allowed him to make (outstanding) astronomical
observations. In particular, he accrued significant empiri-
cal evidence that supported the Copernican theory that
the planets travel around the Sun. His belief in this the-
ory brought him in conflict with the Roman Catholic
Church and led to his consequent trial and house arrest.

Galileo was sent by his parents to the University of
Pisa to study medicine at the age of 17, but this course
of study never appealed to him. He left the University
without obtaining a degree and began teaching mathe-
matics and mechanics in Sienna. In 1586 he wrote La
balancitta (The little balance), in which he described
the methods of ARCHIMEDES OF SYRACUSE (287–212
B.C.E.) for finding the relative densities of substances
with a balance. This piece garnered him significant
attention in the scientific community, and in 1589 he
was appointed chair of mathematics at the University

of Pisa. He remained at this post for 3 years before
accepting the prestigious position as professor of math-
ematics at the University of Padua.

During his 18 years at Padua, Galileo developed his
theories of motion. Using inclined planes to slow the rate
of descent, Galileo observed that all objects fall at the
same rate of acceleration. From this, using mathematics
verified by experiment, he deduced his famous law that
the distance traveled by a falling object is proportional
to the square of the time of its fall. From this it follows
that objects tossed in the air move in parabolic arcs.

In 1609 Galileo received word that Dutch scholars
had invented a spyglass capable of magnifying images
of distant objects. Intrigued, Galileo set to constructing
his own version of the spyglass and eventually pro-
duced a piece (which he called a “perspicillum”) with a
magnification power of eight or nine—far superior to
the capabilities of the Flemish telescope. Galileo turned
his piece to the heavens and commenced a series of
remarkable astronomical discoveries.

In his 1610 book Sidereus nuncius (Starry messen-
ger), Galileo described the topography of the Moon,
established that the Milky Way is composed of stars,
and announced his discovery of four moons orbiting
Jupiter. For savvy political reasons, he named these
moons the “Medicean stars,” in honor of Cosimo de
Medici, the grand duke of Tuscany. This work garnered
Galileo considerable fame and, just one month after the
book was released, Galileo was appointed chief mathe-
matician at Pisa and “mathematician and philosopher”
to the grand duke of Tuscany.
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Later that year Galileo turned his telescope toward
Saturn, observed its rings, and then turned toward
Venus. He discovered that Venus shows phases like
those of the Moon, which could only be possible if this
planet were to orbit the Sun, not the Earth. Galileo
had gathered convincing evidence to support the
Copernican theory of the solar system. Although the
religious authority at the time viewed this model as
antithetical to the Holy Scripture (in which the Earth
is perceived as lying at the center of the universe),
church leaders were tolerant of scholars who used
alternative theories in the guise of mathematical tools
for calculating the orbits of the planets. Galileo, unfor-
tunately, went further and later proclaimed in a private
communication that he was convinced that the theory

was a statement of physical reality. Unfortunately, the
letter was intercepted by the church, and for the 15
years that followed, the Catholic Church reviewed
Galileo’s work carefully and demanded that he follow
church teaching at all times. In 1632, Galileo
attempted to publish the text Dialogo (Dialogue) on
the theory of planetary motion, cleverly written so as
to never actually make the claim that the Copernican
system is the physical reality), but the church, feeling
that the boundary had been crossed, immediately
banned its sale, and tried Galileo for heresy. He was
found guilty and was placed under house arrest for the
remainder of his life. Galileo did, however, manage to
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Galileo Galilei, an eminent scientist of the 17th century, was the
first to combine theory with experiment to understand dynamics.
He established that acceleration due to gravity is independent of
mass and that projectiles follow parabolic arcs. Galileo also
developed the telescope and made significant, and controversial,
astronomical observations. (Photo courtesy of Topham/The
Image Works)

Galileo managed to smuggle his controversial manuscript Dialogo
out of Italy, where its sale was banned, for publication in Holland.
(Photo courtesy of the Science Museum, London/Topham-HIP/The
Image Works)



publish his famous 1638 piece by having it smuggled
out of Italy and printed in Holland.

Galileo died on January 8, 1642. He is remembered
for having a profound impact on the very nature of sci-
entific investigation, linking together mathematics, spec-
ulative philosophy, and physical experiment in the study
of the natural world. On October 31, 1992, on the
350th anniversary of Galileo’s death, Pope John Paul II
publicly acknowledged that the Catholic Church was in
error to convict Galileo of heresy for his theory on the
motion of the planets.

Galois, Évariste (1811–1832) French Abstract alge-
bra Born on October 25, 1811, in Bourg La Reine,
France, scholar Évariste Galois is remembered for his
famous results that led not only to the conclusion that
there can be no general formula that solves all fifth-
degree POLYNOMIAL equations (even though there do
exist such formulae for solving QUADRATIC, CUBIC, and
QUARTIC EQUATIONs), but more importantly to the clas-
sification of which specific equations can be so solved.
His seminal 1829 work on the solutions of equations
founded the field of GROUP THEORY.

Galois enrolled in his first high-school mathemat-
ics course at the age of 17 and just a year later pub-
lished an original paper, “Démonstration d’un
théorème sur les fractions continues périodiques”
(Proof of a theorem on periodic continued fractions),
on the study of CONTINUED FRACTIONs. His teachers at
the time, unfortunately, did not understand his work
and did not regard him as a gifted student. (Admit-
tedly, Galois had difficulty articulating his sophisti-
cated ideas). Galois hoped to attend the prestigious
École Polytechnique, the leading university of Paris at
the time, but failed the entrance exam twice. He
enrolled, instead, at the École Normale, but was later
expelled for objecting to the university policy prohibit-
ing students from joining the Paris rebellion against
King Charles X. He joined the Artillery of the
National Guard, a radical wing of the military. In
1831, Galois was imprisoned for wearing its uniform
when support for the guard was made illegal.

Previously Galois had read the work of NIELS HEN-
RIK ABEL (1802–29) on the study of algebraic solutions
to equations. The SOLUTION BY RADICALS problem was
on his mind and, while incarcerated, Galois wrote a
manuscript detailing his thoughts on the problem. Dur-

ing this time Galois fell in love with the daughter of the
resident physician of the prison, Stephanie-Felice du
Motel, but, as letters show, the feelings were not recip-
rocated. For reasons that are unclear today, Galois
fought a duel in her honor soon upon his release. He
was wounded in that duel and died the following day,
May 31, 1832.

Galois’s brother later copied the prison manuscript
and sent it to prominent mathematicians of the time. If
it were not for his brother’s initiative, the bulk of
Galois’s work would have been lost to us today. French
mathematician JOSEPH LIOUVILLE (1809–82) published
Galois’s seminal piece in 1846.

Galton, Sir Francis (1822–1911) British Statistics
Born on February 16, 1822, in Sparkbrook, England,
Francis Galton is remembered in mathematics for his
pioneering work in applying statistical techniques to
the analysis of biological problems. Galton’s insights
and contributions to the nature of statistical analysis
paved the way for the development, and consequent
widespread use, of statistics throughout the biological
and social sciences in the 20th century.

Galton completed a basic bachelor’s degree at
Cambridge, taking only enough mathematics courses to
meet distribution requirements. (He never received seri-
ous training in mathematics.) After inheriting a consid-
erable amount of money from his father, Galton
journeyed through southwestern Africa and garnered
considerable fame as an intrepid explorer. He devel-
oped an interest in the study of human hereditary and
began considering the issue of selective breeding as a
means to improve the human race. (Such pursuits were
deemed acceptable at his time.) Galton also developed
a simple mathematical model of ancestral hereditary
based on the idea that each parent contributes 1/4 of a
genetic trait to a child, each grandparent of 1/16 the
trait to the child, and so forth, so that the sum of con-
tributions from all ancestors is unity:

Galton received a knighthood for this work in 1909.
The University of London established the Francis

Galton Laboratory for National Eugenics in his honor in
the late 1800s. The eminent statistician KARL PEARSON
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(1857–1936), much of whose work was greatly influ-
enced by Galton’s studies, was once director of the
laboratory.

Galton died in Surrey, England, on January 17,
1911.

See also HISTORY OF PROBABILITY AND STATISTICS

(essay).

gambler’s ruin A class of problems in PROBABILITY

theory, all known as problems of gambler’s ruin, con-
tains questions of the following ilk:

A gambler with $5 repeatedly bets $1 on a
coin toss. Each time he plays he has a 50 per-
cent chance of winning a dollar and a 50 per-
cent chance of losing a dollar. The gambler will
play until he either has $10 or has gone broke.
What is the probability that he will succeed in
doubling his money?

Problems like these are typically solved as follows: let
P(k) be the probability of reaching the $10 goal when
the gambler currently has k dollars in hand. We wish to
compute P(5). Note three things:

1. P(0) = 0. (With zero dollars, the gambler has lost
and will not win.)

2. P(10) = 1. (With $10 in hand, the gambler has won.)

3.

(With k dollars in hand, there is a 50 percent chance
the gambler will lose a dollar and will have to try to
win with k–1 dollars in hand, and a 50 percent
chance that he will win a dollar and will continue
play with k + 1 dollars in hand.)

Thus we have eleven values, P(0),P(1),…,P(10), with
the first value equal to zero, the last equal to 1, and all
intermediate values equal to the average of the two
values around it. One can check that there is only one
sequence of numbers satisfying these conditions, 

namely: 0, , ,…, = 1. This shows that P(1) = , 

P(2) = and, in particular, that P(5) = = .

Notice that with one dollar in hand there is only a
1/10 chance that the gambler will win $10 before going
broke. One can similarly show that there is only a one

in 100 chance that a gambler will win $100, and a one
in 1,000 chance that he will win $1000. Casinos are
well aware that gamblers are reluctant to stop playing
with small profits—especially if a player has had a
string of losses and is down to his or her last dollar.
The gambler’s ruin shows that in all likelihood, gam-
blers will end up broke before receiving profits they are
content with.

See also HARMONIC FUNCTION; RANDOM WALK.

game theory Game theory is the branch of mathe-
matics that attempts to analyze situations involving
parties with conflicting interests for which the outcome
of the situation depends on the choices made by those
parties. Situations of conflict arise in nearly every real-
world problem that involves decision making, and
game theory has consequently found profound applica-
tions to the study of business competition, economics,
politics, military operations, property division, and
even the study of personal relationships. Although it is
difficult to provide a complete analysis of all the types
of games that arise, complete solutions exist for simple
“matrix games” (which we describe below) involving a
small number of players. These simple games can be
used to model more-complicated multiplayer situations.

Game theory was first studied in 1921 by French
mathematician Félix Edouard Émile Borel (1871–1956),
but the importance of the topic was not properly
acknowledged until the 1944 release of the monumental
work Theory of Games and Economic Behavior by
JOHN VON NEUMANN (1903–57) and Oskar Morgen-
stern (1902–77). These two scholars completely ana-
lyzed situations of conflict satisfying the following basic
conditions:

i. There are a finite number of players.
ii. Each player can select one of a finite number of

possible actions. The choice of actions available to
each player need not be the same.

iii. All players are aware of the actions, and the conse-
quences, others may choose to take.

iv. Each player is a rational thinker and will select the
action that best suits his or her interests.

v. At the play of the game, no participant knows what
actions will be taken by the other players.

vi. The outcome of the game can be modeled as a set
of payments (positive, zero, or negative) to each of
the players.
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If the sum of payments to all players is zero, then the
game is called a zero-sum game. This means that any
player’s win must be balanced by a loss for some
other players.

The simplest type of game is a two-player zero-sum
game. The choice of actions and the possible results of
the game can be summarized in a “payoff matrix” A, in
which the rows represent the possible actions one
player, player R, can take; the columns the possible
actions of the second player, player C; and the (i,j)-th
entry of the matrix Aij represents the amount player C
must pay to player R if R selects row i and C selects
column j in the play of the game. (If Aij is negative,
then player R pays C a certain amount.) For example,
the following table represents a two-person zero-sum
game for which each player can take one of three possi-
ble actions:

As a first attempt to analyze this game, consider
the actions that player R can take. She hopes that the
game will result in the largest positive number possible
(in this case 5), for this is the amount player C must
pay R if this is the result of the game. Thus player R is
tempted to select action 1 (especially since R is aware
that player C’s optimal outcome of –3 lies in column
1). Of course, player C is aware that player R is likely
to think this way, and would be loath to select column
1 as her action for fear of having 5 be the outcome of
the game. Player R is aware that player C will think
this way, and will suspect then that player C will
choose column 2, knowing the she will likely select row
1, and so R, to foil this plan, is tempted to choose an
action different from 1 after all. And so on. As one
sees, one can quickly enter a never-ending cycle of sec-
ond guessing.

Instead of aiming to maximize her profit from the
game, another approach player R could adopt is to
minimize her losses. For example, if player R takes
action 1, she could potentially lose 1 point (if C hap-
pens to choose column 2). If R chooses row 2, the
worst outcome would be no gain or loss, and if she
chooses row 3, she could potentially be down three

points. Thus the maximal minimum outcome for player
R occurs with the choice of row 2. This line of reason-
ing is called the “maximin strategy.” Similarly, the
choice of column 2 results in the minimal maximum
outcome in player C’s favor. Thus following a “mini-
max strategy,” player C would choose column 2, and
the outcome of the game is consequently 0.

The entry 0 in the above payoff matrix is called a
saddle point. It is a minimum in its row and a maxi-
mum in its column. If a payoff matrix contains a saddle
point, then the optimal strategy for each player is to
take actions corresponding to the saddle point. The
value of the saddle point, for a game that possesses
such a point, is called the value of the game.

Not every payoff matrix for a two-person game pos-
sesses a saddle point. For instance, the following game
corresponding to two possible actions for each player
has no saddle point, and following the minimax or the
maximin strategies is not optimal for either player.

(The maximin strategy for player R suggests that she
select row 1, and the minimax strategy for player C
that she take column 1 yielding the result 1 for the
game. Player C, however, can anticipate this and is
tempted then to change choice to column 2 to obtain
the preferable result of –2. Player R, of course, is aware
that player C will likely do this, and so will change her
choice to row 2 to obtain the outcome 4, and so forth.
The two players again are trapped in an endless cycle
of second guessing.)

The appropriate strategy in such a game lacking a
saddle point is a mixed strategy, in which each player
decides to select an action by random choice, appropri-
ately weighted so as to maximize her expected profit
from the game. For instance, suppose player R decides
to select row 1 with PROBABILITY p and row 2 with
probability 1 – p. Under this strategy, if player C
chooses column 1, then the expected value of player R’s
profit is E1 = 1 × p + (–3) × (1 – p) = 4p – 3. If, on the
other hand, player C were to select column 2, then the
expected profit for player R is E2 = (–1) × p + 4 × (1 –
p) = 4p – 5p. These expected outcomes are equal if we
choose p = 7/9. Thus, by selecting row 1 with this

1 2
1 1 –2
2 –3 4

1 2 3
1 5 –1 1
2 1 0 4
3 –3 –2 2
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probability, player R can be guaranteed an expected 

profit of , regardless of what 

player C does. Similarly, following a mixed strategy,
player C should select column 1 with probability 5/9 so
as to minimize her expected loss.

In 1928 von Neumann proved the famous “mini-
max theorem”:

If each player adopts her best mixed strategy
in a zero-sum two-person game, then one
player’s expected gain will equal the other’s
expected loss.

The shared expected outcome of such a game is called
the “value” of the game.

Games that are not zero-sum games are called vari-
able-sum games. The PRISONER’S DILEMMA and CHIC-
KEN are examples of such partial-conflict games. In
them, one searches for dominant strategies, hoping to
encounter an equilibrium for the game.

In recent decades the theory of games has success-
fully been extended to n-person variable-sum games
and to games with a continuous range of possible
actions and strategies. Game theory is now a standard
course offered in university economics departments.

See also FAIR DIVISION.

Gardner, Martin (1914– ) American Recreational
mathematics Born on October 21, 1914, in Tulsa,
Oklahoma, freelance writer Martin Gardner is regarded
today as solely responsible for cultivating and nurturing
interest in 20th-century recreational mathematics. With
numerous articles and more than 65 books to his credit,
Gardner has achieved worldwide fame as a writer who
can make the complex issues of science and mathemat-
ics accessible and meaningful to the general audience.
Although not a mathematician, Gardner is often cred-
ited with having done more to promote and prompt the
general pursuit of mathematics than any scholar in the
field.

Gardner graduated from the University of Chicago
with a bachelor’s degree in philosophy in 1936. After
serving in the U.S. Navy for four years, Gardner
returned to Chicago and began a career as a freelance
writer, at first editing and writing short works of fiction.
In 1958 Gardner accepted the position of mathematical-

games columnist for Scientific American, despite never
having taken a mathematics course in college. His first
piece explaining the mathematics of a Soma cube, a
cube dissection puzzle named after a fictitious addictive
drug, illustrated his natural ability to discuss and clarify
complex issues with ease. This initial piece garnered him
national attention, and Gardner remained a columnist
for the publication for 25 years. His articles were
extremely influential and have since been collected and
republished (multiple times) as books.

Well-versed in the practices of illusion and magic,
Gardner has also published works on magic, the math-
ematics of magic, as well as texts that discuss, and
debunk, the claims and practices of pseudoscience. He
has written two novels, The Flight of Peter Fromm
(1994) and Visitors from Oz (1998), and some works
on the topics of philosophy and literature. His best-sell-
ing work is The Annotated Alice—Alice’s Adventures
in Wonderland and through the Looking Glass (1965).

Gardner currently lives in Hendersonville, North
Carolina, and continues his work as a freelance writer.
Despite a lack of formal training in mathematics, Gard-
ner has made some original mathematical discoveries,
of a recreational flavor, that have been published in
scholarly periodicals.

Gauss, Carl Friedrich (1777–1855) German Num-
ber theory, Geometry, Algebra, Analysis, Statistics,
Physics, Astronomy Born on April 30, 1777, in
Brunswick, Duchy of Brunswick (now Germany), Carl
Friedrich Gauss is recognized today as the greatest pure
mathematician and physicist of his time. His contribu-
tions to both fields were enormous. At the age of 18,
he invented the LEAST SQUARES METHOD and made the
new discovery that a 17-sided regular polygon can be
constructed with straightedge and compass alone, sig-
naling that he had accomplished great advances in the
theory of CONSTRUCTIBLE numbers. In 1801 he pub-
lished his masterpiece Disquisitiones arithmeticae
(Arithmetical investigations) in which he proved the
FUNDAMENTAL THEOREM OF ARITHMETIC, the FUNDA-
MENTAL THEOREM OF ALGEBRA, and introduced the
theory of MODULAR ARITHMETIC. In later work, he pro-
posed general solutions to the problem of determining
planetary motion, developed theories of statistics that
led to the discovery of the Gaussian DISTRIBUTION, and
studied potential theory and electricity and magnetism
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in physics. He also worked out, but did not publish,
the principles of HYPERBOLIC GEOMETRY independently
of JÁNOS BOLYAI (1802–60) and NIKOLAI IVANOVICH

LOBACHEVSKY (1792–1856), and developed the theory
of COMPLEX NUMBERS and complex functions.

Gauss demonstrated a talent for mathematics at an
early age. (It is said that he astonished his elementary
school teachers by summing the integers from 1 to 100
in an instant by observing that the sum amounts to 50
pairs of numbers each summing to 101.) Before leaving
high school, Gauss had independently discovered the
PRIME NUMBER THEOREM, the BINOMIAL THEOREM,
important results in modular arithmetic, and the gen-
eral arithmetic–geometric-mean inequality. He entered
the University of Göttingen in 1795 but, for reasons
that are not clear to historians, left before completing a
degree to return to his hometown of Brunswick. He
submitted a doctoral dissertation to the University of
Helmstedt on the topic of the fundamental theorem of
algebra, which was accepted in absentia. Gauss pub-
lished his masterpiece Disquisitiones arithmeticae soon
afterward.

In 1801 Gauss created a sensation in the commu-
nity of astronomers when he correctly predicted the
orbital positions of the asteroid Ceres, discovered Jan-
uary 1, 1801, by Italian astronomer Giuseppe Piazzi.
Piazzi had the opportunity to observe an extremely
small portion of its orbit before it disappeared behind
the sun. Other astronomers published predictions
about where it would reappear several months later, as
did Gauss, offering a prediction that differed greatly
from common opinion. When the comet was observed
again December 7, 1801, it was almost exactly where
Gauss had predicted. Although Gauss did not reveal
his method of prediction at the time, it is known that
he used his method of least squares to make the com-
putation. In 1807 Gauss left Brunswick to head the
Göttingen observatory, and in 1809 he published his
general text on the mathematics of astronomy, Theoria
motus corporum coelestium (Theory of the motion of
heavenly bodies).

While at the observatory, Gauss continued work on
mathematics. He began developing a theory of surface
curvature and GEODESICs, and studied the convergence
of SERIES, integration techniques, STATISTICS, potential
theory, and more. In 1818 he was asked to conduct a
geodesic survey of the state of Hanover, and 14 years
later, he assisted in a project to map the magnetic field

of the Earth. His mathematical work on the theory of
differential geometry allowed Gauss to prove a number
of properties that the Earth’s field must possess, which
allowed him to correctly predict the value of the field at
different locations, as well as the location of the mag-
netic South Pole. (Moreover, he proved mathematically
that there can only be two magnetic poles.)

Gauss remained at Göttingen for the latter part of
his career. He was awarded many honors throughout
his life, including election as a foreign member of the
prestigious ROYAL SOCIETY of London in 1804 and
receiving the Copley Medal from the society in 1838.
He also won the Copenhagen University Prize in 1822.
Gauss published over 300 significant pieces of work,
mostly written in Latin, and kept a large number of
unpublished notebooks and correspondences that
proved to be as mathematically rich as much of his
published work.

Gauss died in Göttingen on February 23, 1855. It is
impossible to exaggerate the influence Gauss has had on
almost every branch of mathematics and mathematical
physics. He was a master at solving difficult problems
that lay at the heart of complex mathematical ideas, and
the very completeness and thoroughness of his work
paved the way for significant advances in mathematics.
A number of fundamental concepts in number theory,
differential geometry, and statistics (such as Gaussian
reciprocity, Gaussian curvature, and the Gaussian distri-
bution) are today named in his honor.

Gaussian elimination (pivoting) Named in honor
of CARL FRIEDRICH GAUSS (1777–1855), the process
of Gaussian elimination provides the means to find
the solution (if one exists) for a system of n SIMULTA-
NEOUS LINEAR EQUATIONS in n unknowns by multiply-
ing selected equations with carefully chosen constants
and subtracting equations to eliminate variables. The
method is best explained with an example. Consider
the following system of three linear equations in three
unknowns:

y + 3z = 0
2x + 4y – 2z = 18
x + 5y + 3z = 14

Interchange the first two equations so that the variable
x appears in the first row:
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2x + 4y – 2z = 18
y + 3z = 0

x + 5y + 3z = 14

Divide the first equation through by 2 so that the coef-
ficient of the leading variable x is 1.

x + 2y – z = 9
y + 3z = 0

x + 5y + 3z = 14

Eliminate the appearance of the variable x from the
third equation by subtracting the first equation from it.
That is, replace the third equation with the equivalent
statement: (x + 5y + 3z) – (x + 2y – z) = 14 – 9, that is,
3y + 4z = 5. We have:

x + 2y – z = 9
y + 3z = 0

3y + 4z = 5

The second equation contains y as the leading variable
with a coefficient of 1. Eliminate y from the third equa-
tion by subtracting from it three copies of the second
equation, that is, replace the third equation with the
equivalent statement, (3y + 4z) – 3(y + 3z) = 5 – 3 · 0,
that is, –5z = 5. We now have:

x + 2y – z = 9
y + 3z = 0

–5z = 5

Divide the third equation through by –5 so that the
leading variable in it is z with a coefficient of 1:

x + 2y – z = 9
y + 3z = 0

z = –1

The solution to the system of equations is now easy to
compute. By a process of back substitution, we see that
z = –1, from which it follows from the second equation
that y = –3z = 3, and from the first equation that x = 9
– 2y + z = 9 – 6 – 1 = 2. One checks that this is indeed
the solution to the original set of equations.

Some Terminology
An elementary row operation is any maneuver on a set
of simultaneous linear equations that:

1. Interchanges two equations
2. Multiplies (or divides) an equation through by a

nonzero quantity
3. Adds or subtracts a multiple of one equation from

another

The process of Gaussian elimination uses elemen-
tary row operations to transform a system of linear
equations into an equivalent system in “echelon form,”
that is, one in which each equation leads, in turn, with
one of the variables with coefficient 1. Via the process
of back substitution, it is then straightforward to deter-
mine the solution to the system of equations. The pro-
cess illustrated above works for any number of
equations with the same number of unknowns. It is
possible that during the process of Gaussian elimina-
tion, a system of equations might yield an absurd state-
ment (such as 0 = 9, for instance), in which case one
would conclude that the system has no solutions, or
possibly a vacuous statement (such as, 0 = 0), in which
case one would conclude that the system of equations
has infinitely many solutions.

Note that it is possible to take the process of Gaus-
sian elimination further and reduce a system of equa-
tions to a system in which each variable appears just
once on each line. For instance, in our example, we
obtained:

x + 2y – z = 9
y + 3z = 0

z = –1

Subtracting two copies of the second equation from the
first yields:

x +     – 7z = 9
y + 3z = 0

z = –1

and now adding seven copies of the third equation to
the first, and subtracting three copies of the third equa-
tion from the second, yields:

x = 2
y = 3

z = –1

The solution to the system is now apparent.
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Consequences for Matrix Theory
Any system of linear equations can be represented via a
coefficient MATRIX and a column of constant values.
For instance, for our example:

y + 3z = 0
2x + 4y – 2z = 18
x + 5y + 3z = 14

the coefficient matrix, call it A, is given by:

the column of constant values, call it b, is:

Any elementary row operation performed on the origi-
nal set of equations corresponds to an operation on the
rows of the coefficient matrix A and the column matrix
b. For instance, in the example above, our first opera-
tion was to interchange the first and second rows. This
can be accomplished by multiplying A and b each by
the PERMUTATION matrix

We have:

Similarly, the elementary row operation of dividing the
first row through by 2 is accomplished by multiplica-
tion with the matrix

and the act of subtracting the first equation from the
first is accomplished by multiplication with the matrix:

In this way one can see that every elementary row oper-
ation corresponds to multiplication by an elementary
matrix. This observation has an important consequence.

The inverse of a square matrix A is simply the
product of the elementary matrices that reduce
A to the identity matrix.

Our example explains this. We used elementary row
operations to reduce the system of equations to the
equivalent system:

x = 2
y = 3

z = –1

That is, we found a collection of eight elementary
matrices E1, E2, …, E8 such that application of these
eight matrices reduced the matrix of coefficients A to
the IDENTITY MATRIX I.

E8E7E6E5E4E3E2E1A = I

If we let B be the matrix E8E7E6E5E4E3E2E1, then
we have BA = I, which means that B = A–1, the INVERSE

MATRIX to A. (As the DETERMINANT of the identity
matrix I is 1, the equation E8E7E6E5E4E3E2E1A = I
shows that the determinant of A cannot be zero. Thus,
as the study of determinants shows, the matrix A does
indeed have an inverse.) Notice that the matrix B is the
same elementary row operations applied to the matrix
I. This result provides a constructive method for com-
puting the inverse to a matrix A.

To compute the inverse of a matrix A, write the
matrix A and the matrix I side by side. Perform
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elementary row operations on the two matrices
simultaneously. Reduce A to an identity matrix.
The second matrix produced is the inverse
matrix to A.

As an example, we compute the inverse matrix to the
matrix of coefficients above:

Thus

Solving Systems of Linear Equations 
via Inverse Matrices
In our example:

y + 3z = 0
2x + 4y – 2z = 18
x + 5y + 3z = 14

if x denotes the column vector of the variables:

then the system can be compactly written:

Ax = b

Multiplying through by the inverse matrix A–1 yields:

again making the solution to the system apparent. Of
course, the work of computing the inverse matrix is
equivalent to the original process of Gaussian elimina-
tion. This approach, however, has the advantage that it
can be readily applied to a different set of constant val-
ues b without repeating the elimination process.

general form of an equation A formula that
describes the general relationship between variables
without specifying the constants involved is called the
general form of the equation. For example, the general
form of a QUADRATIC equation in variable x is ax2 + bx
+ c = 0. (The equation 2x2 – 3x + 4 = 0, for instance, is
a specific quadratic equation.) The formula for the
AREA A of a CIRCLE, A = πr2, where r is the radius of
the circle, is also an equation in general form.

general linear group (full linear group) The set of
all invertible n × n square matrices with real or com-
plex entries forms a GROUP under the operation of
MATRIX multiplication. This group is called the nth-
order general linear group and is denoted GLn. It is
straightforward to see that the four group axioms do
indeed hold:

Closure. If A and B have inverses, then so does their
product AB: (AB)–1 = B–1A–1.

Identity. The identity matrix I is invertible and so
belongs to this set.
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Associativity. This rule holds for all matrices, and
hence for invertible matrices in particular.

Inverses. The inverse of a matrix A is itself invertible,
and so belongs to the set: (A–1)–1 = A.

A study of DETERMINANTs and CRAMER’S RULE

shows that a matrix is invertible if, and only if, its
determinant is not zero. Thus the nth-order general lin-
ear group may be defined as the set of all n × n square
matrices with nonzero determinants. The subset of all
square matrices with determinant equal to 1 forms a
subgroup of GLn called the special linear group,
denoted SLn.

geodesic The shortest curve connecting two points
on a surface, and lying wholly on that surface, is called
a geodesic. For example, PYTHAGORAS’S THEOREM

shows that a straight line gives the shortest path
between two points on a plane, and thus straight lines
are the geodesics of a plane. On a SPHERE, geodesics are
sections of great circles. (Planes fly along geodesic arcs
across the Earth’s surface.) One envisions a geodesic as
the path a band of stretched elastic would adopt if held
at the two points in question and forced to remain on
the surface under study.

On a plane there is always only one geodesic
between any two given points. On a sphere there are
infinitely many geodesics that connect the two poles of
the sphere, for example. (If the two points chosen are
not antipodal, however, then the geodesic connecting
them is unique.)

A geodesic dome is a domelike structure made of
straight-line structural elements held in tension. The
straight line segments approximate geodesics of the
dome.

geometric distribution See BINOMIAL DISTRIBUTION.

geometric mean See MEAN.

geometric sequence (geometric progression) A SE-
QUENCE of numbers in which each term, except the
first, is a fixed multiple of the previous one is called a
geometric sequence. The constant ratio of terms is

called the common ratio. For example, the sequence
1,3,9,27,… is geometric, with common ratio 3. The 

sequence 1, , , ,... is also geometric, with common 

ratio .

A geometric sequence with first term a and com-
mon ratio r has the form: a, ar, ar2, ar3,… The nth term
an of the sequence is given by an = arn–1. (It is common,
however, to start the count by calling the first term of
the sequence the “zero-th term,” so that a0 = ar0 = a
and the nth term of the sequence is given by the for-
mula: an = arn.) A geometric sequence can also be
described as exponential. The common ratio r is the
base of the EXPONENTIAL FUNCTION f(n) = arn.

If the value r lies between –1 and 1, then the terms
arn of geometric sequence approach the value 0 as n
becomes large. If r = 1, then the geometric sequence is
the constant sequence a,a,a,… For all other values of r,
the sequence diverges.

The sum of the terms of a geometric sequence is
called a geometric series:

a + ar + ar2 + ar3 +…

In the study of CONVERGENT SERIES, the ratio test shows
that this series sums to a finite value if –1 < r < 1. The
value S of the sum can be computed as follows:

If S = a + ar + ar2 + ar3 +…, then rS = ar + ar2 + ar3 + ar4

+… Subtracting yields: S – rS = a, and so S = 

In particular we have 1 + r + r2 + r3 + … = .

If r is a fraction of the form (with N ≥ 2), then this
formula can be rewritten:

This particular expression can also be justified with a
physical demonstration, which we illustrate here for
the case N = 3:

John takes a piece of paper and tears it into
thirds. He hands one piece to Andrea, another
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to Beatrice, and tears the third piece into thirds
again. He hands one piece to Andrea, a second
to Beatrice, and tears the third remaining piece
into thirds again. He repeats this process indef-
initely. Eventually, John will give all the paper
away—half to Andrea and half to Beatrice. But
the quantity of paper Andrea receives and the
quantity Beatrice receives can also be com-
puted as a third, plus a third of a third, plus a
third of a third of a third, and so forth. Thus it 

must be the case that + + equals .

A repeating decimal can be thought of as a sum of a
geometric sequence. For example, the decimal 0.111… 

equals the series + + , which, 

according to the formula above, is . (Consequently the

repeating decimal 0.999… equals 9 times this, 9 × ,
which is 1: 0.999… = 1.)

The sum S of just the first n terms of a geometric
series, a + ar + ar2 +…+ arn–1 can be computed from the
formula S – rS = a – arn. Provided that r ≠ 1, this gives:

(If –1 < r < 1, then rn → 0 as n grows. This again shows 

that a + ar + ar2 + ar3 + … = a · = .) For 

example, the sum 1+ + + … + equals 

. A similar calculation solves a 

famous “chessboard puzzle”:

Legend has it that the game of chess was
invented for an Indian maharaja who became
so delighted with the game that he wanted to
reward the inventor with whatever he desired.
The inventor asked for nothing more than one
grain of rice on the first square of the chess-
board, two grains on the second square, four
on the third, and so forth, each square contain-
ing double the number of grains than the previ-
ous square. Given that there are 64 squares on

a chessboard, how many grains of rice did the
inventor in fact request?

According to the formula, the inventor asked for 1 + 2 

+ 4 + 8 +…+ 263 grains of rice. This equals 

= 264 – 1 = 18,446,744,073,709,551,615 grains, which
is the equivalent of about 25 billion cubic miles of rice,
an inconceivable quantity. The inventor fooled the
maharaja into making a promise he could not possibly
honor.

See also ARITHMETIC SEQUENCE; CONVERGENT SE-
QUENCE; SERIES.

geometric series See GEOMETRIC SEQUENCE.

geometric transformation A specified procedure
that shifts points in the plane to different positions
(and thereby changing the location, and possibly the
shapes, of geometric figures) is called a geometric trans-
formation. More precisely, a geometric transformation
is a FUNCTION that associates with each point of the
plane some other point in the plane. (One may require
the function to be one-to-one and onto.)

For example, the function that shifts each point of
the plane one unit to the right is a geometric transfor-
mation (called a translation). This transformation pre-
serves the shapes of all geometric figures.

Any geometric transformation that preserves dis-
tances between points in the plane (and hence the
shape and size of geometric figures) is called an isome-
try or a rigid motion. One that multiplies all distances
between points by a constant factor (called the dilation
factor) is called a similitude, and a transformation that
takes straight lines to straight lines is called a LINEAR

TRANSFORMATION. All isometries are linear transfor-
mations, for example. These ideas also extend to trans-
formations in three-dimensional space.

While he never made explicit use of the concept in
his writings, the idea of a geometric transformation
came from the work of the Greek geometer EUCLID (ca.
300–260 B.C.E.).

We list here some classical examples of geometric
transformations.

Reflection in a Line
Given a line l in the plane, a reflection in this line takes
a point P on one side of l to the corresponding point P′
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on the opposite side of l such that the segment connect-
ing P to P′ is PERPENDICULAR to l and bisected by it.
The points on l itself are left unmoved. Any reflection is
an isometry that transforms geometric figures to their
mirror images. The line used in performing the reflec-
tion is called the line of reflection.

In a CARTESIAN COORDINATE system, a reflection
about the x-axis takes a point with coordinates (x,y) to
the point (x,–y), and a refection about the y-axis
changes the sign of the x-coordinate: (x,y) becomes
(–x,y). The analog of a reflection in a line in three-
dimensional space is a reflection in a plane.

Translation
A geometric transformation that moves all points in the
plane a fixed distance in a fixed direction is called a
translation. No points are left unmoved by a transla-
tion. A translation is an isometry, and all geometric fig-
ures are transformed to new figures with the same size,
shape, and orientation as the originals.

If l1 and l2 are two PARALLEL lines in the plane, d
units apart, a reflection in the first line, followed by a
reflection in the second, has the same effect as translat-
ing all points in the plane a distance of 2d units in a
fixed direction perpendicular to the two lines. Thus
every translation is equivalent to the COMPOSITION of
two reflections.

In a Cartesian coordinate system, a translation
takes a point with coordinates (x,y) to the point (x + a,
y + b) for some fixed values a and b.

Rotation
A rotation about a point O through an angle θ is the
geometric transformation that maps a point P in the
plane to the point P′ such that P and P′ are the same
distance from O, and the angle POP′ has measure θ. (A
counterclockwise turn is applied if θ is positive; a
clockwise turn of θ is negative.) Only the location of
the point O remains unchanged under a rotation,
unless the angle θ is a multiple of 360°, in which case
all points are fixed.

A rotation is equivalent to two reflections about 

lines that intersect at O making an angle of between 

them. Every rotation is an isometry. The analog of a
rotation about a point in three-dimensional space is a
rotation about a line.

Glide Reflection
A reflection in a line followed by a translation in a
direction parallel to that line is called a glide reflection.

Reflection in a Point
A reflection in a point O in the plane is the isometry
that takes a point P in the plane to the corresponding
point P′ such that O lies at the MIDPOINT of the line
segment connecting P and P′. A reflection in a point is
equivalent to a rotation of 180° about that point.

Dilation
A dilation with center O and dilation factor k > 1 is the
geometric transformation that leaves O fixed, and
moves any point P further away from O, by a factor k,
along the ray from O through P. Thus a dilation
stretches figures uniformly outward from O. It is possi-
ble, for example, to convert a square into a rectangle
via a dilation. (A dilation with dilation factor k
between O and 1 “shrinks” all points closer to O.) A
dilation is not an isometry.

Circular Inversion
Also called an “inversion in a circle” or a “reflection in
a circle,” a circular inversion in a circle, with center O
and radius r, takes a point P in the plane a distance d
from O, and maps it to the point P′ a distance r2/d
from O along the same ray from O through P. Thus
points inside the circle are taken outside, and vice
versa. Points on the circle itself are left unmoved by the
transformation. The image of the center O under a cir-
cle inversion is undefined.

A circular inversion is not an isometry but proves to
be a useful mapping in the study of GEOMETRY. It has
the property that circles and straight lines in the plane
are converted to new circles and new straight lines.

See also FRIEZE PATTERN; FUNDAMENTAL THEO-
REM OF ISOMETRIES; SYMMETRY; TRANSFORMATION OF

COORDINATES.

geometry The branch of mathematics concerned with
the properties of space and of figures, lines, curves, and
points drawn in space is called geometry. Plane geome-
try examines objects drawn in a plane (lines, circles,
polygons, and the like), solid geometry deals with fig-
ures in three-dimensional space (polyhedra, lines,
planes, and surfaces), and SPHERICAL GEOMETRY studies

θ
––
2
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the properties of lines and shapes drawn on the surface
of a SPHERE. The word geometry comes from the Greek
words ge meaning “earth” and metria meaning “mea-
sure.” As the origin of the word suggests, the study of
geometry evolved from very practical concerns with
regard to the accurate measurement of tracts of land,
navigation, and architecture.

The Greek mathematician EUCLID (ca. 300–260
B.C.E.) formalized the study of geometry to one of pure
logical reasoning and deduction. In his famous work,
THE ELEMENTS, Euclid collated a considerable volume
of Greek knowledge on the subject and showed that all
the results known at the time could be deduced from a
very small collection of self-evident truths or AXIOMs,
which he stated explicitly. Any result that can be

deduced from these axioms is today described as
Euclidean. Euclid’s rigorous approach to geometric
investigation remained the standard model of study for
two millennia.

See also EUCLIDEAN GEOMETRY; EUCLIDEAN SPACE;
EUCLID’S POSTULATES; HISTORY OF GEOMETRY (essay);
NON-EUCLIDEAN GEOMETRY; PARALLEL POSTULATE;
PROJECTIVE GEOMETRY.

Germain, Marie-Sophie (1776–1831) French Num-
ber theory, Mathematical physics Born on April 1,
1776, in Paris, France, scholar Marie-Sophie Germain is
remembered in mathematics for her significant contri-
butions to the topic of NUMBER THEORY. Most notably,
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History of Geometry

The study of GEOMETRY is an ancient one. Records show that
Egyptian and Babylonian scholars of around 1900 B.C.E. had
developed sound principles of measurement and spatial rea-
soning in their architecture and in their surveying of land.
Both cultures were aware of PYTHAGORAS’s THEOREM and had
developed tables of PYTHAGOREAN TRIPLES. (The Egyptians
used knotted ropes to construct “3-4-5 triangles” to create
RIGHT ANGLES.) Ancient Indian texts on altar construction and
temple building demonstrate sophisticated geometry knowl-
edge, and the famous volume JIUZHANG SUANSHU (Nine chap-
ters on the mathematical art) from ancient China also
includes work on the Pythagorean theorem.

In ancient Greece, mathematical scholars came to
realize that many properties of shapes and figures could be
deduced logically from other properties. In his epic work
THE ELEMENTS the Greek geometer EUCLID (ca. 300–260 B.C.E.)
collated a large volume of knowledge on the subject and
showed that each and every result could be logically
deduced from a very small set of basic assumptions (self-
evident truths) about how geometry should work. Euclid’s
work was rigorous and systematic, and the notion of a logi-
cal PROOF was born. EUCLID’S POSTULATES and the process of
logical reasoning became the model of all further geomet-
ric investigation for the two millennia that followed. His
method of compiling and organizing all mathematical
knowledge known at his time was a significant intellectual
achievement. Euclid’s rigorous approach was, and still is,
modeled in other branches of mathematics. Scholars in SET

THEORY, the FOUNDATIONS OF MATHEMATICS, and CALCULUS, for
instance, all seek to follow the same process of formal rea-

soning as the correct approach to achieve proper under-
standing of these topics.

The next greatest breakthrough in the advancement of
geometry occurred in the 17th century with the discovery
of CARTESIAN COORDINATES as a means to represent points as
pairs of real numbers and lines and curves as algebraic
equations. This approach, described by French mathemati-
cian and philosopher RENÉ DESCARTES (1596–1650) in his
famous 1637 work La géométrie (Geometry), united the
then-disparate fields of algebra and geometry. Unfortu-
nately, Descartes’s interests lay only in advancing methods
of geometric construction, not in developing a full alge-
braic model of geometry. This latter task was pursued by
French mathematician PIERRE DE FERMAT (1601–65), who had
also outlined the principles of coordinate geometry in an
unpublished manuscript that he had circulated among
mathematicians before the release of La géométrie. Fermat
later published the work in 1679 under the title Isagoge ad
locus planos et solidos (On the plane and solid locus). The
application of algebra to the discipline provided scholars a
powerful new tool for solving geometric problems, and also
provided them with a large number of different types of
curves for study.

Fermat’s work in geometry inspired work on the the-
ory of DIFFERENTIAL CALCULUS and, later, led to the study of
“differential geometry” (the application of calculus to the
study of shapes and surfaces). This was developed by the
German mathematician and physicist CARL FRIEDRICH GAUSS

(1777–1855).
Neither Descartes nor Fermat permitted negative val-

ues for distances. Consequently, neither scholar worked
with a full set of coordinate axes as we use them today. The



her work paved the way for other scholars in the field
to establish the validity of FERMAT’S LAST THEOREM for
all values n < 100, the only substantial step made
toward solving the problem during the 19th century.
Germain also worked to develop a mathematical theory
of elasticity. She is noted as one of the very few women
scholars in mathematics before the 20th century.

At the age of 13, after reading an account of the
life and death of ARCHIMEDES OF SYRACUSE, Germain
said she felt impelled to become a mathematician. She
pursued her studies by first teaching herself Latin and
Greek and then reading the works of SIR ISAAC NEW-
TON, LEONHARD EULER, and EUCLID. As a woman,
Germain was not permitted to enter a university, but
she did manage to continue her study of mathematics

by reading course notes borrowed from students who
attended the École Polytechnique in Paris. Mathemati-
cian JOSEPH-LOUIS LAGRANGE (1736–1813) presented a
course on ANALYSIS at the university, and Germain sub-
mitted to him a thesis on the topic under the
pseudonym Louis LeBlanc, a male name. Lagrange was
greatly impressed by the contents of the paper and
sought out its author. He was not at all perturbed to
discover that “M. LeBlanc” was a woman. In fact, he
was so impressed with her work that he offered her
personal counsel in the study of advanced mathematics.

Again under her male pseudonym, Germain later
established a correspondence with the German mathe-
matician CARL FRIEDRICH GAUSS (1777–1855), with
whom she developed and shared much of her work in
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notions of negative distance and negative area were first
put forward by SIR ISAAC NEWTON (1642–1727) and GOTTFRIED

WILHELM LEIBNIZ (1646–1716), the coinventors of CALCULUS.
The 19th century saw other major advances in geome-

try. It had long been noted that Euclid’s fifth postulate, the
so-called PARALLEL POSTULATE, is not necessary for a great
deal of geometry. Many Arab scholars of the first millen-
nium attempted, without success, to show that the fifth pos-
tulate could be logically deduced from the remaining four
(thereby rendering it unnecessary), as did European schol-
ars of the Renaissance. In 1795 Scottish mathematician
John Playfair showed that the fifth postulate is equivalent to
the statement that, through any point, one can draw one,
and only one, line through that point parallel to a given line.
(This is today called PLAYFAIR’S AXIOM.) Although not elimi-
nating the need for the fifth postulate, Playfair showed that
it could be understood in a more tractable form.

In 1829 Russian mathematician NIKOLAI IVANOVICH

LOBACHEVSKY (1792–1856) took a bold step and considered a
geometric world in which the fifth postulate is false. He
assumed that through a given point more than one line
could be drawn parallel to a given line. In doing this,
Lobachevsky discovered a new, consistent mathematical
system free from contradiction, one as logically valid as the
geometry of Euclid. (This geometry is today called HYPER-
BOLIC GEOMETRY.) The philosophical impact of Lobachevsky’s
work was enormous: he had shown that mathematics need
not be based on a single set of physical truths, and that
other equally valid mathematical systems do exist based on
alternative, carefully chosen axioms. Lobachevsky had also
shown that Euclid’s fifth postulate cannot be established as
a consequence of the remaining four axioms: he had pre-

sented a valid example of a system in which the first four of
Euclid’s postulates hold, but the fifth does not.

Surprisingly some of Lobachevsky’s ideas were antici-
pated well before the 19th century. The great Persian math-
ematician and poet OMAR KHAYYÁM (ca. 1048–1122)
established a number of results that we recognize today as
non-Euclidean. These results were later translated into
Latin, and extended upon, by Italian priest GIROLAMO SAC-
CHERI (1667–1733). Unfortunately, neither scholar discovered
the validity of NON-EUCLIDEAN GEOMETRY, as each was
focused instead on trying to establish Euclid’s fifth postulate
as a consequence of the remaining four.

The German mathematician BERNHARD RIEMANN

(1826–66) discovered an alternative form of non-Euclidean
geometry in which Euclid’s fifth postulate fails in a different
way. In a system of SPHERICAL GEOMETRY it is never possible
to draw a line through a given point parallel to a given line.

Riemann’s contributions to the advancement of geom-
etry were significant. In his famous 1854 lecture “Über die
Hypothesen welche der Geometrie zu Grunde liegen” (On
the hypotheses that lie at the foundation of geometry), Rie-
mann put forward the view that geometry can be the study
of any kind of space of any number of dimensions, and later
developed the mathematics needed to properly describe
the shape of space. ALBERT EINSTEIN (1879–1955) later used
this work to develop his theory of relativity.

See also AFFINE GEOMETRY; ARABIC MATHEMATICS; BABYLO-
NIAN MATHEMATICS; JÁNOS BOLYAI; DIMENSION; EGYPTIAN MATHE-
MATICS; THE ELEMENTS ; GEOMETRIC; TRANSFORMATION; GREEK

MATHEMATICS; HISTORY OF EQUATIONS AND ALGEBRA (essay);
INDIAN MATHEMATICS; PERSPECTIVE; POSTULATE; PROJECTIVE

GEOMETRY; THEOREM; TOPOLOGY.



number theory. Gauss, too, eventually discovered her
true identity, but this did not diminish his respect for
her as a fine scholar. In 1808 the Institut de France set a
competition to find a mathematical theory for the the-
ory of elasticity. Although the necessary mathematics to
solve the challenge was not available to scholars at the
time, Germain devoted a decade of work toward solv-
ing the problem and managed to make significant steps
in developing a beginning theory on the subject. Unfor-
tunately, much of her work was ignored by the Institut.

Germain never married nor obtained a professional
position; she was supported financially by her father
throughout her life. Germain died of breast cancer in
Paris, France, on June 27, 1831. Her death certificate
listed her occupation merely as “property holder.”

glide reflection A reflection in a line followed by a
translation in a direction parallel to that line is called a
glide reflection.

See also GEOMETRIC TRANSFORMATION.

gnomon The L-shaped figure that remains when a
PARALLELOGRAM (usually a square) is removed from
the corner of a larger similar parallelogram is called a
gnomon. For example, in a square 2 × 2 array of
dots, the three dots surrounding any corner dot form
the shape of a gnomon. (Notice, incidentally, that 4 =
1 + 3.) Adding a gnomon of five dots to the 2 × 2
array produces a square 3 × 3 array (and we have that
9 = 1 + 3 + 5), and adding to this a gnomon of seven
dots yields a 4 × 4 array (yielding 16 = 1 + 3 + 5 + 7).
This process shows that, in general, the nth square
number equals the sum of the first n odd numbers.

The pointer on a sundial is also called a gnomon.
It, and the shadow it casts, together form the shape of
an L.

See also FIGURATE NUMBERS.

Gödel, Kurt (1906–1978) Austrian-American Logic
Born on April 28, 1906, in Brünn, Austria-Hungary
(now Brno, Czech Republic), Kurt Gödel is today con-
sidered the most important logician of the 20th cen-
tury. His famous pair of incompleteness theorems
stunned the mathematical community, dashing the
hopes of all those who had been fervently searching for

a set of fundamental axioms from which all mathemat-
ics could be logically deduced.

Gödel exhibited a talent for academic work at an
early age and had completed the equivalent of a univer-
sity curriculum before leaving secondary school. In
1923 he entered the University of Vienna to pursue a
degree in physics, but changed to mathematics in 1926
when he was introduced to the field of FORMAL LOGIC.
It soon became clear to the faculty of the department
that Gödel would make considerable contributions to
the field. In the summer of 1929 Gödel completed a
doctoral dissertation on the topic and was awarded a
Ph.D. the following year. His thesis outlined the details
of his first famous discovery, but the revolutionary
impact of his work was not fully understood by the
larger mathematical community until he published the
result a year later.

Gödel had proved that any mathematical system
sufficiently sophisticated to incorporate the principles
of arithmetic will always contain statements that can
neither be proved nor disproved. He later also showed
that no mathematical system could be proved to be
consistent, that is, free from CONTRADICTION, by mak-
ing use of just the axioms of the system. It had been a
200-year-long dream, since the time of GOTTFRIED

WILHELM LEIBNIZ in fact, to place the whole of mathe-
matics on a firm axiomatic base. Gödel had proved, in
essence, that such a dream can never be realized.

After joining the faculty of the University of Vienna
for three years, Gödel accepted, in 1933, a position at
the Institute for Advanced Study in Princeton, New Jer-
sey. After suffering a nervous breakdown, he returned
to Vienna after only a year, but later returned to the
Institute in 1942 to escape war-torn Europe. Gödel
became an American citizen that same year.

Many awards were bestowed upon him throughout
his life. In 1950 he was one of two recipients of the
first Einstein Award, and he was awarded honorary
doctorates from Yale University in New Haven, Con-
necticut, and Harvard University in Cambridge, Mas-
sachusetts, in the two years that followed. He was
elected to the National Academy of Sciences in 1955.

It is said that Gödel held fixed opinions about many
matters of life, and felt himself to always be right—
especially in the disciplines of mathematics and
medicine. Gödel was of a nervous disposition, and after
enduring severe bleeding from a duodenal ulcer, he
decided to maintain an extremely strict diet of his own
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devising. He developed a general distrust of doctors
and, toward the end of his life, became convinced that
he was being poisoned. Gödel eventually stopped eating
altogether and died of starvation on January 14, 1978.

Gödel’s work in mathematical logic strikes at the
very core of the subject. His name and his results are
familiar to any undergraduate student having taken a
first course in formal logic.

See also GÖDEL’S INCOMPLETENESS THEOREMS.

Gödel’s incompleteness theorems In 1900, DAVID

HILBERT posed 23 problems for future mathematicians.
The second of his 23 problems challenged the mathe-
matical community to find a logical base for the disci-
pline of mathematics, that is, to develop a formal
system of symbols, with well-defined meaning and
well-defined rules of manipulation, on which all of
mathematics could be based. Mathematicians, such as
BERTRAND ARTHUR WILLIAM RUSSEL and his colleague
ALFRED NORTH WHITEHEAD, took on the challenge
and made some progress in this direction. But in 1931
KURT GÖDEL stunned the mathematical community by
proving once and for all that such an aim could never
be achieved.

Gödel’s first incompleteness theorem states that
any mathematical system sufficiently sophisticated to
incorporate the principles of arithmetic will necessarily
contain statements (theorems) that can neither be
proved nor disproved. Informally, this means that it
will never be possible to program a computer to
answer all mathematical questions.

His second incompleteness theorem (which is actu-
ally a consequence of the first) asserts that no system of
mathematical logic incorporating the principles of
arithmetic will ever be capable of establishing its own
consistency. That is, the proof that a system of mathe-
matics is free from CONTRADICTION will require
axioms and principles not contained in the system.

Gödel proved his theorems by assigning numbers
to the symbols used in a mathematical system (com-
mas, digits, left and right parentheses, etc.), and then
devising an ingenious method of assigning numbers to
all mathematical statements (combinations of symbols)
in the system. It was then possible to show that the
mathematical system contains a statement of the form:
“This sentence cannot be proved.” Of course, it is
impossible to prove or disprove such a statement.

Gödel’s work dashed centuries of hope of finding
a small set of basic axioms on which to base all of
mathematics.

See also CONSISTENT; FORMAL LOGIC; TRUTH TABLE.

Goldbach, Christian (1690–1764) Prussian Number
theory Born on March 18, 1690 in Königsberg, Prus-
sia (now Kaliningrad, Russia), Christian Goldbach is
best remembered in mathematics for the famous
unsolved conjecture that bears his name.

Goldbach studied in St. Petersburg and became a
professor of mathematics and historian at the univer-
sity in 1725. He traveled extensively throughout
Europe and established personal contact with a number
of prominent mathematicians of the time. Although
Goldbach studied infinite sums, the theory of equa-
tions, and the theory of curves, his most important
work was in the field of NUMBER THEORY, much of
which was conducted through correspondence with the
Swiss mathematician LEONHARD EULER (1707–83).
One particular letter later garnered international atten-
tion. In it, Goldbach mentioned that every even number
seems to be the sum of two PRIME numbers. For
instance, he noted that 4 equals 2 + 2, 6 equals 3 + 3,
10 equals 3 + 7, and 1,000 equals 113 + 887. Unable
to find an instance where this was not the case, Gold-
bach asked Euler whether or not this was indeed a
property of all even numbers. Euler attempted to
resolve the issue but found that he was unable to estab-
lish the claim, nor find a COUNTEREXAMPLE to it. Later,
English mathematician Edward Waring published the
problem in his popular 1770 text Meditationes alge-
braicae (Meditations on algebra), properly attributing
the problem to Goldbach. The challenge garnered con-
siderable notoriety. Today called GOLDBACH’S CONJEC-
TURE, the problem remains one of the most famous
unsolved challenges in mathematics.

Goldbach died in Moscow, Russia, on November 20,
1764. Apart from the conjecture that bears his name,
Goldbach is also remembered for his correspondence
with PIERRE DE FERMAT (1601–1655) and for being one
of the few mathematicians at the time to understand the
implications of Fermat’s approach to number theory.

Goldbach’s conjecture In his 1742 letter to LEON-
HARD EULER, Prussian mathematician CHRISTIAN
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GOLDBACH (1690–1764) conjectured that every even
number greater than 2 is the sum of two PRIME num-
bers. For example, 4 = 2 + 2, 6 = 3 + 3,…, 20 = 3 +
17,…, 50 = 13 + 37,…, 100 = 3 + 97, and so forth. No
one to this day has been able to establish whether this
claim holds true for each and every even number. The
problem has since become known as Goldbach’s con-
jecture, and it remains one of the most famous
unsolved mathematical problems of today. Between
March 20, 2000, and March 20, 2002, a $1-million
prize was offered to anyone who could solve Gold-
bach’s conjecture. The prize went unclaimed.

Goldbach’s conjecture is equivalent to the chal-
lenge of proving that every integer greater than 5 is the
sum of three primes. (If the number is odd, subtract 3
and write the resultant number as a sum of two primes.
If it is even, subtract 2.)

The source of the difficulty with this problem is
that primes are defined in terms of multiplication,
while the problem involves addition. It is often very
difficult to establish connections between these two
separate operations on the integers.

In 1931, Russian mathematician L. Schnirelmann
(1905–38) proved that every positive integer is the sum
of at most 300,000 primes. Although this result seems
ludicrous in comparison to the original problem, it is a
significant first step to solving the conjecture: it shows
at least that it is possible to put a bound on the number
of primes representing the integers.

In 1937 another Russian mathematician, Ivan
Vinogradoff (1891–1983), proved that every suffi-
ciently large number can be written as a sum of four
primes. What constitutes “sufficiently large” is not
known (Vinogradoff’s work only shows that there can-
not be infinitely many integers that require more than
four prime summands)—but at least a small bound has
been placed on “most” integers. In 1973 Jing-Run
Chen proved that every sufficiently large even number
is the sum of a prime and a number that is either prime
or has two prime factors.

Work on solving the Goldbach conjecture contin-
ues. As of the year 2003, it has been confirmed by com-
puter that the conjecture holds true for all numbers up
to 6 × 1016.

See also BRUTE FORCE.

golden ratio (divine proportion, extreme and mean
ratio, golden mean, golden section) A line segment

connecting two points A and B is said to be divided by
a third point P in the golden ratio if the ratio of the
whole length AB to the length AP is the same as the
RATIO of the length AP to the length PB:

= 

The value of this ratio is denoted ϕ (the Greek letter
phi) and can be computed as follows:

Set the length PB to be one unit. Then, since 

= ϕ, the length AP is ϕ units, and the length 

of the entire segment AB is ϕ + 1. We have:

= 

yielding the QUADRATIC equation ϕ2 = ϕ + 1.
This has two solutions. Selecting the solution
that is larger than 1 yields:

ϕ = = 1.618033988…

(The second solution to this quadratic equation is 

= 1 – ϕ = –0.618033988….)

The golden ratio was studied and made famous by
the Pythagoreans, the followers of the Greek mathe-
matician PYTHAGORAS (ca. 500 B.C.E.). They discov-
ered it in their study of the PENTAGRAM, the figure that
appears when one draws in the diagonals of a regular
pentagon. The sides of a pentagram divide each other
in the golden ratio.

The following method shows how to construct a
point P that divides a given line segment AB into the
golden ratio:

Given a line segment AB, draw a perpendicular
line through A. Find the MIDPOINT M of AB
and locate on the perpendicular line a point C
whose distance from A is the same as the
length AM. (Use a circle with center A and
radius AM as an aid.) Now draw a circle with
center C and radius BC to locate a second
point D on the perpendicular line such that
length BD equals length BC. Let P be the point
on the line segment AB such that length AP
equals length AD. (Use a circle with center A
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and radius AD to find this point.) Then point
P divides the segment AB in the golden ratio.

(To see why this works, suppose that the line segment
AB is of unit length, and the length of AP is x. Then
triangle ABC is a right triangle with hypotenuse 

+ x. PYTHAGORAS’S THEOREM now shows that x =

ϕ – 1 = , giving = ϕ.)

Noting that the construction of midpoints, circles,
and perpendicular lines can all be accomplished with a
straight edge (that is, a ruler with no markings) and a
compass alone, the above procedure shows that the
golden ratio is a CONSTRUCTIBLE number.

Dividing the relation ϕ2 = ϕ + 1 through by ϕ yields

ϕ = 1 + . Substituting this formula into itself multiple 

times establishes:

\

Repeating this process indefinitely shows that the
golden ratio has the following simple CONTINUED

FRACTION expansion:

If one terminates this expansion after a finite number
of steps, then ratios of the FIBONACCI NUMBERS appear: 

, and so forth. (That this pattern persists can 

be proved by INDUCTION.) We have:

An induction argument also proves that:

ϕn = Fnϕ + Fn–1

Substituting the formula ϕ = √
–
1+ϕ into itself multiple

times gives an expression for ϕ as a sequence of nested
radicals akin to VIÈTE’S FORMULA for π. We have:

The golden ratio also occurs in TRIGONOMETRY as 

, for 

instance.
The number ϕ also appears in a number of unex-

pected places in nature and throughout mankind’s
artistic pursuits. Since the golden ratio is well approxi-
mated by the fraction 16/10, some scholars suggest that
the ancient Egyptians of 3000 B.C.E. used the golden
ratio repeatedly in the construction of their tombs. The
“golden chamber” of the tomb of Rameses IV measures
16 ells by 16 ells by 10 ells, that is, approximately the
ratio ϕ : ϕ : 1; other tombs are found in the approxi-
mate ratio ϕ2 : ϕ : 1; and Egyptian furniture found in
those tombs often had overall shape based on the ratio
ϕ : 1 : 1. German artist ALBRECHT DÜRER (1471–1528)
wrote a four-volume text, Treatise on Human Propor-
tions, detailing occurrences of the ratio ϕ in the human
body. (He claimed, for instance, that ratio of the length
of the human face to its width is approximately ϕ, and
also that the elbow divides the human arm, shoulder to
fingertip, in the golden ratio.) Artists of that time came
to view the golden ratio as a “divine PROPORTION” and
used it in all forms of artistic work. The GOLDEN RECT-
ANGLE was deemed the rectangular shape most pleasing
to the eye.

golden rectangle Any rectangle whose sides are in 

the ratio 1 to ϕ, where ϕ = is the GOLDEN

RATIO, is called a golden rectangle. Such a rectangle has
the property that excising the largest square possible
from one end of the figure leaves another rectangle in
the same proportion. (The remaining rectangle has pro-
portions ϕ – 1 to 1. Since the golden ratio satisfies the 

equation ϕ2 = ϕ + 1, we have: = .) By this 

method, new golden rectangles can be constructed from
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a given golden rectangle ad infinitum. Drawing arcs
between the nonadjacent corners of the squares pro-
duces a spiral with the remarkable property that it cuts
any radius from the center of the spiral at the same
ANGLE (approximately 73°).

Throughout history the golden rectangle has been
considered to have a particularly pleasing shape. The
pillars of the Greek Parthenon of the 5th century
B.C.E. are spaced to produce golden rectangles in its
facade (although no one can be certain that the
designers intended this to be the case). Many Euro-
pean scholars of the 1500s based much of their work
on the golden rectangle, and German engraver
ALBRECHT DÜRER (1471–1528) used the golden ratio
in his analysis of PROPORTIONS found in the human
body. Many rectangles used today in magazine adver-
tisements, for instance, are surprisingly close to
golden rectangles.

The golden rectangle also appears in the fifth PLA-
TONIC SOLID, the icosahedron. If all the edges of the
figure are assumed to be one unit long, then the dis-
tance between any given edge and the (parallel) edge
opposite to it on the other side of the figure is ϕ. Thus
any two opposite edges of an icosahedron form two
sides of a golden rectangle.

A “golden triangle” is an isosceles triangle whose
sides to its base are in the ratio ϕ to 1. Such a triangle
has internal angles 72°, 36°, and 72°. If one of the base
angles is bisected, then the figure is divided into two
smaller triangles, one of which is a new golden triangle.

See also SPIRAL OF ARCHIMEDES.

googol/googolplex In 1938 Milton Sirotta, nine-
year-old nephew of American mathematician Edward
Kasner, coined the term googol for the number 1 fol-
lowed by 100 zeros (10100). At the same time he coined
the term googolplex for the number 1 followed by a
googol zeros (10googol = 10(10100)). Physicists believe that
there are only about 1080 particles in the entire uni-
verse, considerably less than a googol.

Gosset, William Sealy (1876–1937) British Statis-
tics Born on June 13, 1876, in Canterbury, England,
William Gosset is remembered for his important work
in statistics, most notably his invention of the t-test,
details of which were published in 1908 under the title
STUDENT’S T-TEST.

Gosset studied chemistry and mathematics at
New College, Oxford, before accepting a position as
a chemist at the Guinness brewery in Dublin in 1899.
His interests in statistics were motivated by the prac-
tical problems of measuring and maintaining produc-
tion quality. Rather than test each and every sample
of product from the brewery, Gosset looked for
mathematical techniques that would allow him to
deduce reliable information based on just a small
number of samples. His famous t-test is the result of
his efforts. In an effort to protect trade secrets, the
brewery forbade its employees to publish, but Gosset
printed his method nonetheless under the pseudonym
of “Student.”

Gosset’s work was deemed of great value to the
brewery. In 1922 he was given an assistant in statistics,
and he was allowed to build up a small department of
statistics within the company. The Student t-test is
today considered a fundamental technique in the reper-
toire of tools used by industry and science when deal-
ing with concerns of quality control and general
statistical inference.

In 1935 Gosset left Ireland to manage a new
Guinness brewery in London. He died two years later
on October 16, 1937. His statistical analysis of vari-
ance had a profound effect on the practices of 20th-
century industry.

See also HISTORY OF PROBABILITY AND STATISTICS

(essay).

grad See GRADIENT.
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gradient The SLOPE of a line is sometimes called its
gradient or grade. For example, the gradient of the line
connecting the two points A = (a1,a2) and B = (b1,b2),
denoted mAB, is given by:

Three points A, B, and C in the plane are COLLINEAR if
the gradients mAB and mAC are equal.

In the setting of multivariable calculus—the study
of CALCULUS applied to FUNCTIONS of more than one
variable—the gradient of a function f(x,y,z) of three
VARIABLES, also called the “grad of f,” is defined to be
the VECTOR of its PARTIAL DERIVATIVEs. It is denoted
grad(f) or �f and is given by:

Such a quantity proves to be useful in computing the
DIRECTIONAL DERIVATIVE of a function. In physics, �f
is also used to describe the spatial variation in the mag-
nitude of a force, such as a gravitational force or a
magnetic force. The study of directional derivatives
shows that the quantity �f calculated at a point repre-
sents the direction from that point in which the rate of
change of the force f is a maximum.

See also DIV.

graph (network) Any diagram of points and line seg-
ments connecting pairs of points is called a graph. The
points are usually called vertices or nodes, and the line
segments are called edges. More than one edge is
allowed to connect the same pair of vertices to yield a set
of multiple edges. One can also permit an edge connect-
ing a vertex to itself via a loop. Edges can intersect, but
the places where they cross are not considered vertices.
For example, the following picture is a graph. It has just
six vertices and comes in two disconnected pieces.

A graph that comes in just one piece is called con-
nected. This means that it is always possible to travel
from any one vertex to any other by traversing a
sequence of edges.

Graphs can be used to codify information. For
example, a graph might represent the network of possi-

ble flight routes between cities, the flow of information
between departments in a large organization, or even
the set of acquaintances among people attending a
party. (Each vertex represents a person in the room,
and an edge is drawn between two vertices if the corre-
sponding two people know each other.) The general
study of graphs can translate into interesting facts
about travel possibilities, streamlining data flow,
acquaintanceships, and the like.

The degree (or valence) of a vertex is the number of
edges that meet at that vertex. Loops are counted twice.

A graph is called complete if every vertex is con-
nected to each and every other vertex by a single edge.
For example, the complete graph on four vertices looks
like a square with the two diagonals drawn in. Each
vertex has degree three.

A graph is called planar if it can be drawn on a
plane without two edges crossing. The complete graph
on four vertices is planar if one draws one of the diago-
nals “outside the square.” The THREE-UTILITIES PROB-
LEM is an example of a graph that is not planar.

A cycle in a graph is a sequence of edges that starts
and ends at the same vertex and does not travel over
the same edge twice. Finding an “Euler circuit,” i.e., is,
a cycle that traverses each and every edge in a graph
precisely once, is an old problem. (See GRAPH THEORY.)

A connected graph containing no loops or cycles is
called a tree. These graphs look like a series of forking
branches, and hence the name tree. Any tree diagram,
such as a PROBABILITY, tree is an example of a graph
that is a tree. It follows from EULER’S THEOREM that
any connected graph with n vertices and n–1 edges
must be a tree.

See also CRITICAL PATH; EULERIAN PATH/CIRCUIT;
HAMILTONIAN PATH/CIRCUIT; TOURNAMENT.
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graphical solution Any solution to a pair of simulta-
neous equations found by plotting the graph of each
equation and visually inspecting the location of a point
of intersection is called a graphical solution. For exam-
ple, in plotting the graphs of y = 2x + 3 and y = 9 – 4x,
one sees that the lines intersect at the point (1,5) and so
x = 1, y = 5 is a solution to the pair of equations. A
graphical approach is often the only feasible method of
solving a complicated pair of equations. Graphing cal-
culators are equipped with a “trace” button that allows
one to quickly find the coordinates of points of inter-
section up to some degree of accuracy.

A single equation f(x) = 0 can be solved graphically
by locating the x-intercepts of the function. For exam-
ple, to find the square root of 2, one can plot a graph
of the function f(x) = x2 –2 and attempt to identify the
location of the positive x-intercept.

This graphical method makes it clear that a pair of
SIMULTANEOUS LINEAR EQUATIONS:

ax + by = p
cx + dy = q

has either one solution (the lines intersect at a unique
point), no solutions (the lines are parallel), or infinitely
many solutions (the lines coincide).

A DIFFERENTIAL EQUATION of the form = f(x,y) 

can be solved graphically. We seek a curve y = g(x) in 

the plane whose slope at any point (x, y) is given 

by f(x,y). Thus if, for a large selection of points (x,y)
across the plane, we draw short line segments of slope
f(x,y), the shapes of curves following these slopes may
be visually apparent. If we are also told the value of the
function y = g(x) at one particular point (x, y), then fol-
lowing the slope of the line segments from that point
onward describes a particular solution to the equation.

See also BISECTION METHOD; NEWTON’S METHOD.

graph of a function A drawing or a visual represen-
tation that shows the relationship between two or more
variables is called a graph. It is usual to draw the graph
of a FUNCTION of a single variable y = f(x) on a CARTE-
SIAN COORDINATE system with an x-axis and a y-axis at
right angles. The graph of the function is then the set of
all points (x,y) that satisfy the equation y = f(x) drawn
as a curve in the plane. For example, the set of all

points (x, y) that satisfy y = x2 forms a PARABOLA,
while the graph of the function y = 3x is a straight line
through the origin with slope 3.

A general approach to graphing a function is to
make a table of (x, y) pairs that satisfy the equation
under consideration and then to locate these points on
a coordinate system. If sufficiently many points are
drawn, then a smooth curve connecting the dots is
likely to be a good representation of the function.
Graphing calculators employ this technique when dis-
playing the graph of a function.

As one develops familiarity with basic equations,
graphing simple formulae becomes a matter of routine.
For example, one can establish that a LINEAR EQUA-
TION of the form y = mx + b yields a straight-line graph
of slope m crossing the y-axis at position b, and that an
equation of the form x2 + y2 = r2 represents a CIRCLE of
radius r. To determine the graphs of more-complicated
functions, scholars—for many decades—could only
resort to the tedious task of making tables and plotting
individual points until a general picture emerged. The
advent of CALCULUS, however, at the turn of the 18th
century brought with it the power to quickly identify
and examine the basic shape and structure of compli-
cated graphs. By examining the first DERIVATIVE of a
function, for instance, one can determine where the
graph increases and decreases, as well as the location of
any local maxima and minima. The second derivative
provides information about the shape of the curve—
whether it is concave up or concave down. This infor-
mation, together with knowledge of the x- and
y-intercepts of the curve and any ASYMPTOTEs it might
possess, is enough to draw a reasonably accurate pic-
ture of the graph without having to plot individual
points. Application of these newly discovered tech-
niques from calculus was literally an eye-opening expe-
rience for scholars of the time.

French mathematician NICOLE ORESME (ca.
1323–82) was the first to draw the graph of a function
and to find an interesting interpretation for the area of
the region under it. French lawyer and amateur mathe-
matician PIERRE DE FERMAT (1601–65) developed the
idea further, defining a general procedure for associat-
ing curves to formulae. Given a relationship between
two variables A and B, say, Fermat drew a horizontal
reference line for the independent variable A and imag-
ined a second line sliding along this reference line at a
fixed angle whose length B varied according to the

dy
–– 
dx

dy
––
dx
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relationship defined. He did not require that the line
representing B be at right angles to the reference line.
French mathematician and philosopher RENÉ

DESCARTES (1596–1650) independently developed the
same technique, but he had the further insight to intro-
duce algebraic symbolism to describe relationships via
formulae and to label graphs appropriately. Descartes
too, however, envisioned functions as sliding lengths
along a single reference line. It was not until decades
later that mathematicians began drawing an explicit
second coordinate axis, the y-axis, at a fixed 90° angle
to the horizontal reference x-axis.

Quantities other than functions can also be
graphed. For example, an inequality of the form y < x
+ 3 defines the HALF-PLANE below the line y = x + 3.
The graph of a function of two variables z = f(x, y) is a
surface sitting in three-dimensional space. For example,
the graph of the function z = x2 + y2 is a PARABOLOID.

A logarithmic graph is one in which both axes of
the coordinate system are marked in LOGARITHMIC

SCALE. Such plots are particularly useful for examining
equations of the form y = axn. A polar-coordinate
graph is a plot of an equation of the form r = f(θ) given
in POLAR COORDINATES. Polar-coordinate graph paper
assists in plotting such graphs.

Graphs of other types of numerical relationships
are studied in descriptive statistics.

See also CONCAVE UP/CONCAVE DOWN; COORDI-
NATES; GRAPHICAL SOLUTION; HISTORY OF FUNCTIONS

(essay); INCREASING/DECREASING; MAXIMUM/MINIMUM;
STATISTICS: DESCRIPTIVE.

graph theory The mathematical study of graphs is
called graph theory. The field was founded in 1736 by
the Swiss mathematician LEONHARD EULER (1707–83)
with his solution to the famous seven bridges of
Königsberg problem:

The old German city of Königsberg (now the
Russian city of Kaliningrad) was built on the
two banks of the river Pregel and on two
islands in the river. The different parts of the
city were connected by seven bridges. A debate
ensued among the residents as to whether it
was possible to walk a complete tour of the
city crossing each and every bridge precisely
once. (It wasn’t deemed necessary to return to
one’s starting location.) Most people felt that

this was impossible, but could this be proved
to be the case?

Euler’s insight into solving the problem came by
reducing the city plan to a GRAPH, that is, a diagram of
points (vertices) and edges, with each point represent-
ing a land mass, and each edge a bridge. Any stroll
through the city thus corresponds to a journey along
the edges of the graph. The Königsberg bridge problem
is therefore equivalent to asking:

Is it possible to draw the above graph without
lifting pencil from page and without tracing
over the same edge twice?

Euler was able to solve the more general problem
of classifying all those graphs that can be so traced. He
observed that, in tracing such a path, any edge drawn
entering a vertex must be matched by an edge exiting
that vertex. Thus all the edges meeting at each vertex
are matched in pairs unless one starts or ends a jour-
ney at a particular vertex, in which case one edge
remains unmatched. Thus a graph that can be so
traced must contain just two vertices of odd degree—
these will be the start and end of the journey; or no
vertices of odd degree—the path starts and ends at the
same location. Any graph containing more than two
vertices of odd degree cannot be drawn without lifting
pencil from page. In particular, the seven bridges of
Königsberg problem cannot be solved (all four vertices
have odd degree).

Any path that traces through a graph following
each edge precisely once is known today as an Eulerian
path. If the path starts and ends at the same vertex it is
called an Eulerian circuit. Euler went further to show
that all connected graphs possessing precisely two ver-
tices of odd degree do indeed have Eulerian paths, and
that graphs with all vertices of even degree do possess
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Eulerian circuits. If a graph represents transportation
routes in a city or across a nation, for example, then
seeking Eulerian circuits for the graph can have impor-
tant practical use.

In 1857 WILLIAM ROWAN HAMILTON explored the
issue of finding paths through graphs that do not nec-
essarily trace each edge, but instead visit each vertex in
the graph once, and only once. Today such a path is
called a Hamiltonian path, or a Hamiltonian circuit if
it is a path that returns to the starting vertex. Although
mathematicians have developed some theorems that
give conditions under which Hamiltonian paths will
exist, no one to this day knows a simple algorithm that
enables us to find them. Each graph must still be exam-
ined individually, and finding a Hamiltonian path—if
one exists—is usually a matter of inspired guessing.

Simple counting can lead to important results in
graph theory. For example, summing the degrees of all
the vertices in a graph counts the total numbers of ends
of edges. As every edge has two ends, we have:

In any graph, the sum of the degrees of all the
vertices equals twice the number of edges in
the graph.

In particular, the sum of all the degrees of vertices must
be an even number. Consequently, there cannot be an
odd number of odd numbers in this sum.

In any graph, the number of vertices of odd
degree is even.

This result has an amusing interpretation. Thinking
of edges in a graph as handshakes between people, we
have established the so-called HANDSHAKE LEMMA:

At any instant, the number of people on this
planet, living or deceased, who have partici-
pated in an odd number of handshakes is even.

A POLYHEDRON can be thought of as a graph drawn
on a SPHERE—each corner of the polyhedron is a ver-
tex, and each edge of the figure is an edge of the
graph. If a polyhedron consists of only t triangular
faces, then 3t counts the number of edges of the figure
twice (each triangle has three edges, and each edge
borders two triangles). Thus 3t = 2e, where e is the
number of edges. This shows that t must be an even
number. We have:

It is impossible to cover a sphere with an odd
number of triangles.

Euler also went on to show that for any graph drawn
on a plane or a sphere (with no edges of the graph
intersecting):

v – e + r = 2

where v is the number of vertices the graph possesses, e
its number of edges, and r the number of regions
defined by the graph—including the large “outer”
region if the graph is drawn on a plane. This is called
EULER’S FORMULA. If the graph is drawn instead on a
TORUS, this formula is modified to read: v – e + r = 0.

Graph theory is a discipline under intense contin-
ued study. Its many applications vary from the purely
theoretical to the very concrete and practical. Routing
problems, information-flow problems, and electronic
circuit design, for example, can all be effectively ana-
lyzed and refined through the study of this field.

See also EULERIAN PATH/CIRCUIT; HAMILTONIAN

PATH/CIRCUIT; THREE-UTILITIES PROBLEM; TOPOLOGY;
TOURNAMENT; TRAVELING-SALESMAN PROBLEM.

greatest common divisor (greatest common factor,
highest common factor) The largest FACTOR common
to a given set of integers is called the greatest common
divisor of those integers. For example, the numbers 72,
120, and 180 have factors 1, 2, 3, 4, 6, and 12 in com-
mon, with 12 being the greatest common divisor. We
write gcd(72, 120, 180) = 12.

One can find the greatest common divisor of two
or more integers simply by listing the factors of each
integer and identifying the largest factor they have in
common. Alternatively, if the prime decompositions of
the integers are known, then their greatest common
divisor can be determined as the product of the primes
they have in common. For example, noting that:

72 = 2 × 2 × 2 × 3× 3
120 = 2 × 2 × 2 × 3× 5
180 = 2 × 2 × 3 × 3× 5

we see that these three numbers share, as prime factors,
two 2s and one 3. Their greatest common divisor is
thus gcd (72,120,180) = 2 × 2 × 3 = 12. (This second
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approach shows that any common factor of a given set
of integers is a divisor of the greatest common factor.)

The EUCLIDEAN ALGORITHM can be used to find
the greatest common divisor of two integers if either of
these methods is infeasible. Repeated use of the
Euclidean algorithm will find the greatest common
divisor of more than two integers.

The Euclidean algorithm also shows that it is
always possible to write the greatest common divisor
of two integers a and b as a linear combination of a
and b, that is, it is always possible to find integers x
and y so that:

gcd(a,b) = ax + by

Similarly, the greatest common factor of any finite set
of integers a1,a2,…,an can be expressed as a linear com-
bination of the form gcd(a1,a2,…,an) = a1x1 + a2x2+
…+anxn. In our example:

12 = gcd(72, 120, 180)
= 72 × (1) + 120 × (1) + 180 × (–1)

See also FUNDAMENTAL THEOREM OF ARITHMETIC;
JUG-FILLING PROBLEM; RELATIVELY PRIME.

Greek alphabet To honor the mathematical scholars
of Greek antiquity, mathematicians today often use let-
ters of the Greek alphabet to represent variables and
symbols in equations. Typically, lowercase letters are
used to represent variables (such as angles, COMPLEX

NUMBERS, and quantities studied in STATISTICS), and
uppercase letters are used for standard arithmetical and
statistical operations. The uses can vary from author to
author, however.

The following table lists the letters of the Greek
alphabet along with the common uses of some 
characters.

See also GREEK MATHEMATICS.

Greek mathematics The ancient Greeks of ca. 600
B.C.E. to ca. 480 C.E. set the current standards of logical
rigor in mathematics. Although many ancient cultures
practiced and developed mathematics, it was the Greeks
who developed the explicit art of “proof” and explored
the power of pure deductive reasoning to its fullest.
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Upper Lower 
Case Case Name Pronunciation Use

A α alpha AL-fuh α: often denotes 
an angle

B β beta BAY-tuh β: often denotes 
an angle

Γ γ gamma GAM-uh γ: often denotes an 
angle

Γ: the GAMMA

FUNCTION

∆ δ delta DEL-tuh δ: a small quantity 
(EPSILON-DELTA

DEFINITION)
∆: denotes change

Ε ε epsilon EP-sil-on ε: a small quantity
(EPSILON-DELTA

DEFINITION)
Ζ ζ zeta ZAY-tuh ζ: the ZETA

FUNCTION

Η η eta AY-tuh
Θ θ theta THAY-tuh θ: often denotes an

angle (POLAR

COORDINATES)
Ι ι iota eye-OH-tuh ι: a small quantity
Κ κ kappa KAP-uh
Λ λ lambda LAM-duh λ: wavelength 

(in physics)
Μ µ mu MYOO µ: denotes "microns”; 

Möbius function
Ν ν nu NYOO ν: frequency

(physics)
Ξ ξ xi kuh-SEYE
Ο ο omicron OM-ee-KRON
Π π pi PIE π: the ratio of a circle

to its diameter
Π: (infinite) product

Ρ ρ rho ROH ρ: radius of a sphere
(SPHERICAL

COORDINATES)
Σ σ sigma SIG-ma σ: STANDARD

DEVIATION

Σ: SUMMATION

Τ τ tau TAU
Υ υ upsilon OOP-si-LON
Φ ϕ phi FEE ϕ: often denotes an

angle (SPHERICAL

COORDINATES)
Χ χ chi K-EYE χ: CHI-SQUARED TEST

Ψ ψ psi SIGH ψ: wave function 
(physics)

Ω ω omega oh-MAY-guh ω: a complex 
number; the first
transfinite 
ORDINAL NUMBER.



We should mention that when speaking of “Greek
mathematics,” historians include any mathematician
who wrote in the Greek language and followed the
Greek tradition of mathematical thought. Greek was
the common language of the Mediterranean world dur-
ing ancient times, and many intellectuals from different
parts of that region are today considered Greek schol-
ars. For instance, the great Archimedes was from Syra-
cuse, now a part of Italy, and EUCLID (ca. 300–260
B.C.E.) is believed to have lived in Alexandria, Egypt.

There are very few original records of Greek work.
Initially, knowledge was transmitted only orally from
teacher to student. Around 450 B.C.E. the Greeks
adopted the ancient Egyptian practice of writing on
papyrus scrolls. Unfortunately, papyrus—a grasslike
plant grown in the Nile Delta region—decays rapidly
away from the exceptionally dry climate of Egypt. The
Greeks combated this problem by repeatedly making
copies of their works but, because of the effort
involved, copied only those pieces they deemed of
utmost importance. The first mathematical work pre-
served and honored this way was Euclid’s masterpiece
THE ELEMENTS of ca. 300 B.C.E. Historians have had
to rely on commentary made by later scholars to
deduce what was accomplished mathematically before
the time of Euclid.

Greek scholars approached all of mathematics
through the study of GEOMETRY. Even their work on
the properties of whole numbers, ratios, and propor-
tions, as well as mechanics and astronomy was done in
a geometric style. A “number,” for instance, was liter-
ally a line segment, and a “ratio” was understood in
terms of COMMENSURABLE segments. It is interesting to
note that Greek scholars took careful steps to avoid
speaking directly of the infinite. (The fifth-century
B.C.E. paradoxes on the nature of motion and the
infinitely small developed by ZENO OF ELEA deeply
affected Greek thinking.) For instance, Euclid stated
that any line segment could be extended to any arbi-
trary length, but never spoke of lines that were
infinitely long. In EUCLID’S PROOF OF THE INFINITUDE

OF PRIMES, Euclid stated that from any finite list of
PRIME numbers one can always construct one more, but
never spoke of the set of primes as infinite.

Many historians regard THALES OF MILETUS (ca.
625–547 B.C.E.) as the first Greek mathematician of
note. Commentaries suggest that Thales identified, and
proved, seven key geometric propositions, including

that the base angles of an ISOSCELES TRIANGLE are
always equal and that the inscribed angle from the
diameter of a CIRCLE is always a right angle, for
instance. The great scholar and mystic PYTHAGORAS

lived a century later, and he and his followers are cred-
ited with the discovery of the famous result about right
triangles (today called PYTHAGORAS’S THEOREM) and
the discovery of IRRATIONAL NUMBERS. A great deal of
mystery surrounds the life and legend of Pythagoras.
He founded a semireligious sect called the Pythagorean
Brotherhood (women were equal members) based on
certain mystic significances ascribed to whole numbers
and their ratios.

The great philosopher PLATO (428–348 B.C.E.)
wrote a great deal about mathematics in his famous dia-
logues, demonstrating a deep personal respect for the
subject. The five regular polyhedra—the PLATONIC

SOLIDs—are named in his honor. In his philosophical
treatises, Plato used the example of mathematics as
something that cannot be discovered by the senses, but
can nonetheless be discovered by the power of logical
reasoning. He also believed mathematics to be an essen-
tial part of a cultured person’s education. Philosopher
ARISTOTLE (384–322 B.C.E.) adopted the same view and
used mathematics as examples in his development of
FORMAL LOGIC and his analysis of ARGUMENTs.

Today, the Greek scholar Euclid is considered to be
the most influential mathematics scholar of all time. In
his famous work The Elements, Euclid collated all
mathematical knowledge known at his time into a sin-
gle tome. Although an impressive feat, it was the orga-
nization of the text that had the greatest impact.
Beginning with a small collection of “self-evident
truths,” Euclid showed that all mathematical knowl-
edge of his time could be deduced by pure logical rea-
soning alone. This work demonstrated the power of the
mind and set the model for all mathematical research in
the future. Mathematicians today still work to the stan-
dards of rigor as set by Euclid. Next to the Bible,
Euclid’s The Elements is the most widely published
book of all time.

After producing The Elements, Euclid continued
work on the CONIC SECTIONS, on optics, and on general
problems in geometry. He continued interest in CON-
STRUCTIBLE numbers and no doubt contemplated the
classic Greek problem of SQUARING THE CIRCLE. (In
The Elements Euclid had demonstrated general proce-
dures for squaring arbitrary polygonal figures.) This
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challenge, as well as the problems of TRISECTING AN

ANGLE and DUPLICATING THE CUBE, spurred a great
deal of significant further research in mathematics for
centuries to come.

ARCHIMEDES OF SYRACUSE (ca. 287–212 B.C.E.)
solved the problem of squaring the parabola, as well as
made significant advances in computing the areas and
volumes of curved figures and solids. (He also
“solved” the problem of squaring the circle by making
use of his ARCHIMEDEAN SPIRAL. Unfortunately, his
method went beyond the use of a straightedge and
compass alone, and so is not a permissible solution to
the original problem.)

APOLLONIUS OF PERGA (ca. 262–190 B.C.E.) con-
tinued work on conic sections and is credited for prop-
erly defining an ELLIPSE, a HYPERBOLA, and a
PARABOLA. Around the same time, Greek astronomer
Hipparchus wrote a table of “chord values” (the
equivalent to a modern table of sine values), which he
used to solve astronomical problems. This represented
the beginning development of TRIGONOMETRY in
Greek mathematics, but also marked an end of fervent
mathematical development in the Greek tradition. For
the five centuries that followed, new developments
were limited to straightforward advances in astron-
omy, trigonometry, and algebra, with just a few
notable exceptions.

In the second century C.E., Greek astronomer
CLAUDIUS PTOLEMY corrected and extended Hip-
parchus’s table and clarified the mathematics that is
used to produce such a table. He is also known as one
of the first scholars to make a serious attempt at prov-
ing Euclid’s PARALLEL POSTULATE. In the third century,
DIOPHANTUS OF ALEXANDRIA produced his famous
text Arithmetica (Arithmetic), from which the study
of DIOPHANTINE EQUATIONs was born. In the mid-
fourth century, the enthusiastic PAPPUS OF ALEX-
ANDRIA attempted to revive interest in ardent
mathematical research of the Greek style. He pro-
duced his treatise Synagoge (Collections) to act as a
commentary and guide to all the geometric works of
his time and included in it a significant number of
original results, extensions of ideas, and innovative
shifts of perspective. Unfortunately, he did not suc-
ceed in his general goal. After Pappus, of note is
HYPATIA OF ALEXANDRIA (370–415), the first woman
to be named in the history of mathematics, credited
for writing insightful commentaries on the works of

Apollonius and Diophantus, and PROCLUS (ca.
410–485), who is noted for his detailed commentary
on the work of Euclid and his own attempt to prove
the parallel postulate.

The beginning of the fifth century marks a clear
end to the tradition of Greek mathematics.

See also ARCHYTAS OF TARENTUM; DEDUCTIVE/
INDUCTIVE REASONING; ERATOSTHENES OF CYRENE;
EUCLID’S POSTULATES; EUCLIDEAN ALGORITHM EUCLI-
DEAN GEOMETRY; EUDOXUS OF CNIDUS; HERON OF

ALEXANDRIA; HIPPASUS OF METAPONTUM; HIPPO-
CRATES OF CHIOS; HISTORY OF EQUATONS AND ALGE-
BRA; MENELAUS OF ALEXANDRIA; PAPPUS’S THEOREMS;
PTOLEMY’S THEOREM; PYTHAGOREAN TRIPLES; THEO-
DORUS OF CYRENE; ZENO’S PARADOXES.

Green, George (1793–1841) British Calculus Born
in July 1793 (his exact birth date is not known) in
Nottingham, England, George Green is remembered
today for his influential 1828 paper “Essay on the
Application of Mathematical Analysis to the Theory of
Electricity and Magnetism,” in which he developed the
notion of “potential” and proved a fundamental math-
ematical result today known as Green’s theorem.

Green left school at the age of nine and worked in
his father’s bakery for the next 30 years. Historians do
not know how Green developed an understanding of
mathematics, nor how he had access to current work in
the field, but in 1828 he published one of the most
important scientific papers of the time. Apart from
advancing the mathematical understanding of electro-
magnetism, important for physicists, Green also estab-
lished a fundamental mathematical technique for
computing CONTOUR INTEGRALs and DOUBLE INTE-
GRALs. The famous theorem that bears his name states
that if a region R in the xy-plane is bounded by a curve
C, and if functions P(x,y) and Q(x,y) have continuous
PARTIAL DERIVATIVEs, then:

This result appears in every multivariable calculus text-
book of today.

After reading the famous 1828 piece, mathemati-
cian Sir Edward Bromhead invited Green to continue
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work in the field of mathematical physics, and over the
next six years they together produced three papers on
the topics of electricity and hydrodynamics. At the
advice of Bromhead, Green entered Cambridge Univer-
sity in 1833, at age 40, to start an undergraduate
degree in mathematics. Green published six more
papers after completing the program. He died on May
31, 1841, in Nottingham.

Gregory, David (1659–1708) British Calculus, Geom-
etry Born on June 3, 1659, in Aberdeen, Scotland,
David Gregory is remembered for his expository writ-
ings. In 1684 he published Exercitatio geometrica
(Exercises in geometry), outlining many of the results of
JAMES GREGORY, his uncle, on infinite SERIES. He also
published some of SIR ISAAC NEWTON’s results on
mathematics and astronomy, and he was the first to
teach the “modern” Newtonian theories at Cambridge.
In 1703 he issued the first-ever complete collection of
all of EUCLID’s works.

Gregory studied at Marischal College, part of the
University of Aberdeen, and accepted a professorship
of mathematics at the University of Edinburgh in 1683.
He lectured on the topics of mathematics, mechanics,
and hydrostatics. In 1691 he was elected Savilian Pro-
fessor at Oxford, the same year he was awarded mem-
bership to the ROYAL SOCIETY of London.

In 1702 Gregory published Astronomiae physicae
et geometricae elementa (Astronomical physics and ele-
ments of geometry), which was a popular account of
Newton’s work, and a year later, his edition of the col-
lected works of Euclid. Gregory strongly supported
Newton in the debate over whether it was he, or Ger-
man mathematician GOTTFRIED WILHELM LEIBNIZ,
who had first discovered CALCULUS.

Gregory also completed his own work on the study
of series, and published work on the topic of optics. He
died on October 10, 1708, in Berkshire, England.

Not noted as an outstanding mathematician, Gre-
gory is remembered primarily for the role he played in
preserving the papers and recording the verbal commu-
nications passed to him by his uncle James Gregory
and by Sir Isaac Newton.

Gregory, James (1638–1675) British Calculus Born
in November 1638 (the exact date is not known), Scot-
tish mathematician James Gregory independently discov-

ered and explained important concepts in CALCULUS

before the subject was later fully developed by founders
SIR ISAAC NEWTON and GOTTFREID WILHELM LEIBNIZ.
Gregory was aware of the FUNDAMENTAL THEOREM OF

CALCULUS, was the first to distinguish between conver-
gent and divergent SERIES, and knew of TAYLOR SERIES

40 years before BROOK TAYLOR published his results. In
mathematics he is remembered, in particular, for the
series that bears his name. Outside of mathematics, Gre-
gory is best remembered for his theoretical description of
a revolutionary type of reflecting telescope.

Gregory was home-schooled in mathematics before
undertaking studies at Marischal College in Aberdeen.
He studied the mathematics of optics and in 1661 pub-
lished a text on the subject, Optica promota (The
advancement of optics), written in a purely mathemati-
cal style. Beginning with five postulates and 37 defini-
tions, Gregory developed the theory of reflection and
refraction of light in a systematic and rigorous manner,
culminating with the description of a new principle for
the construction of a telescope.

In 1664 Gregory traveled to Italy to stay at the
University of Padua to pursue interests in mathematics.
During this time Gregory developed the foundations of
“infinitesimal geometry,” the details of which he pub-
lished as Geometriae pars universalis (The universal
part of geometry). Today we would describe this book
as a systematic treatment of topics in calculus.

Gregory was the first to discuss the convergence
and divergence of series, work which led him in 1671
to the discovery of series expansions of functions. He
refrained from publishing his discoveries, however,
having heard a rumor that Newton may have already
developed similar results. (Actually Newton was not
aware of the key theorem needed to put this theory on
a sound footing and so was unable to develop the the-
ory.) Brook Taylor later discovered the same key
result and published his description of the topic in
1715.

Throughout his short life, Gregory maintained an
interest in astronomy. He died at the age of 36 in late
October 1675, shortly after suffering a stroke he
incurred while observing the moons of Jupiter with
some students. Gregory did not achieve fame as a
mathematician during his life. It is only in retrospect
that historians today realize the important influence he
had in helping Newton develop his ideas.

See also GREGORY SERIES.
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Gregory series (Leibniz’s series) Named after the
Scottish astronomer and algebraist JAMES GREGORY

(1638–75), the MACLAURIN SERIES for arctan(x) is
sometimes called the Gregory series:

This expression is valid for –1 ≤ x ≤ 1. Placing x = 1
into the formula yields the following remarkable for-
mula for PI:

Often the name “Gregory series” is used to mean this
particular expression.

See also INVERSE TRIGONOMETRIC FUNCTIONS;
MADHAVA OF SANGAMAGRAMMA; TAYLOR SERIES.

group Research in pure mathematics is motivated
by one question: what makes mathematics work the
way it does? By identifying the key principles that
underpin one type of mathematical system—be it
geometry and symmetry, or numbers and arithmetic—
mathematicians establish connections between dis-
parate fields: known facts about any one system
satisfying a set of basic principles translate immedi-
ately to analogous facts about a second system satisfy-
ing analogous principles. For example, a study of
arithmetic shows that the operation of addition satis-
fies the same four basic principles as multiplication.
Thus any known fact about addition is accompanied
by a known fact about multiplication (and this corre-
sponding result about multiplication consequently
requires no new proof.)

Motivated by the workings of arithmetic, mathe-
maticians define a group to be any set, often denoted
G, whose elements can be combined in some way that
mimics the addition or the multiplication of the inte-
gers. Specifically, if we denote the result of combining
the elements a and b of G by the symbol a*b, then G is
a group if the following four axioms hold:

1. Closure: For all a and b in G, the element a*b is
also a member of G.

2. Associativity: For all a,b,c in G we have: a*(b*c) =
(a*b)*c.

3. Existence of an identity: There is an element e in G
so that a*e = a = e*a for all a in G.

4. Existence of inverses: For any a in G there is an ele-
ment b in G such that a*b = e and b*a = e.

To honor the work of Norwegian scholar NIELS

HENRIK ABEL (1802–29), mathematicians call G
“Abelian” if a fifth axiom also holds:

5. Commutativity: For all a and b in G we have: a*b
= b*a.

These axioms do indeed capture the working prin-
ciples behind both addition and multiplication. For
example, interpreting “*” as addition with “e” as the
number zero, the set of all integers satisfies the axioms
of an Abelian group. (In this setting the inverse of an
integer a is usually denoted –a.) The set of all real num-
bers with zero removed forms an Abelian group under
multiplication. In this context, * is interpreted as the
product operation, “e” is the number 1, and the inverse
of an element a is the number 1/a.

A group could be abstract. For example, the set of
four elements G = {e,a,b,c} is an Abelian group under
an operation * given as follows:

The set of elements G = {1, –1, i, – i, j, – j, k, –k} with
group operation *, given by multiplication as QUATER-
NIONs, is an example of a non-Abelian group. The set
of all 2 × 2 invertible matrices with real entries is also
a non-Abelian group under the operation of MATRIX

multiplication.
GROUP THEORY is the study of the general structure

of groups and all the results that follow from the four
(or five) basic axioms. The subject is incredibly rich, and
many mathematicians today devote their entire research
careers to the further development of this topic.

Group theory has profound applications to phy-
sics and science. Any physical system that possesses

* e a b c

e e a b c
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b b c e a
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symmetry of some kind, for instance, can be analyzed
through the tools and techniques of this topic. For
example, the six symmetries of an equilateral triangle
form a (non-Abelian) group: there are two rotations, a
clockwise and a counterclockwise rotation of 60°; three
reflections, one about each altitude of the triangle; and
an identity operation corresponding to conducting no
action at all. By declaring the operation “*” to be the
effect of performing one action followed by the other,
one can check that all four group axioms hold for this
system. (The fifth axiom, however, does not hold, since
the performance of rotation followed by a reflection, for
instance, gives a result different from the performance
of that same reflection followed by the rotation.) The
analysis of symmetry plays an important role in crystal-
lography and quantum mechanics. Researchers in these
fields deem group theory an essential tool in their work.

The set of symmetries of any regular n-sided POLY-
GON forms a group called the nth dihedral group. It
has 2n members consisting of n rotations (including the
identity element) and n reflections. The set of rotations
in and unto itself forms a group of just n elements.
Notice that n is a factor of 2n. In general, any subset H
of a group G that itself satisfies the four axioms of a
group is called a subgroup of G. French mathematician
JOSEPH-LOUIS LAGRANGE (1736–1813) proved that if H
is a subgroup of a group G, then the number of ele-
ments in H evenly divides the count of elements in G.

This result has interesting consequences when applied
to systems of symmetry, or to groups arising from the
study of NUMBER THEORY and MODULAR ARITHMETIC.

See also ABSTRACT ALGEBRA; FIELD; GENERAL LIN-
EAR GROUP; HOMOMORPHISM; ISOMORPHISM; RING.

group theory The general study of GROUPs and the
results that follow from the basic axioms that define
them is called group theory. Many of the key princi-
ples behind group theory were first identified by the
German mathematician CARL FRIEDRICH GAUSS

(1777–1855) in his studies of NUMBER THEORY and
MODULAR ARITHMETIC. The development of a group
theory as a subject in its own right, however, is usually
attributed to the young French mathematician
ÉVARISTE GALOIS (1811–32); who devised the innova-
tive tools necessary to study solutions to algebraic
equations in depth and from an abstract perspective.

By identifying the abstract principles that make
algebra and arithmetic work the way they do, group
theory provides a powerful tool for analyzing any
mathematical system that satisfies the same basic
axioms. Applying group theory to the symmetries of a
physical system, for example, can often lead to impor-
tant consequences in physics.

See also ABSTRACT ALGEBRA; FIELD; GROUP; RING.
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Hadamard, Jacques (1865–1963) French Number
theory, Analysis, Mathematical physics Born on Dec-
ember 8, 1865, in Versailles, France, Jacques Hadamard
is remembered as one of the two mathematicians who
independently proved the famous PRIME NUMBER THEO-
REM first conjectured by the German mathematician
CARL FRIEDRICH GAUSS. Belgian scholar CHARLES-JEAN

DE LA VALLÉE-POUSSIN was the second mathematician to
prove the result.

Hadamard received a doctoral degree in 1892 from
the École Normale Supérieure after completing a disser-
tation on complex functions and TAYLOR SERIES. The
same year he also completed work on the Riemann ZETA

FUNCTION and the Riemann hypothesis, earning him the
Grand Prix des Sciences Mathématique from the institu-
tion. Hadamard soon came to also realize that, with the
recent developments in the field of complex functions,
all the necessary pieces were now in place to develop a
proof of the famous outstanding prime number conjec-
ture made by Gauss. (Vallée-Poussin independently
made the same realization.) Hadamard presented his
proof of the famous result in 1896. Later that same year
Hadamard was appointed as professor of astronomy
and rational mechanics at the University of Bordeaux.

Throughout his career Hadamard also made signifi-
cant contributions to the field of matrix theory by identi-
fying a class of matrices that can be used in
COMBINATORICS to create “block designs” and have
applications to PROBABILITY theory. He also studied VEC-
TOR SPACE theory (defining the term functional for a lin-
ear function on a vector space) and contributed to the

study of mathematics education. Hadamard wrote over
300 scientific papers. In 1906 he was elected president of
the French Mathematical Society, and 3 years later was
appointed chair of the Collège de France. He stayed in
that position for only 3 years, before accepting the posi-
tion as professor of analysis at the École Polytechnique.
He was elected to the Paris Academy of Sciences in 1912.

Hadamard died in Paris, France, on October 17,
1963. His proof of the prime number theorem is con-
sidered his most outstanding achievement.

half-plane The plane that lies on one side of a given
line is called a half-plane. If the points on the line itself
are considered part of the region, then we say that the
half-plane is “closed.” An “open” half-plane excludes
the points on the line.

If the equation of the given line is ax + by = c, then
the set of points (x,y) that satisfy ax + by > c form an
open half-plane on one side of the line, and those
points (x,y) satisfying ax + by < c form an open half-
plane on the other side. If c is positive, then this second
inequality represents the half-plane that contains the
origin (we have a · 0 + b · 0 = 0 < c), and if c is nega-
tive, then the first inequality contains the origin. If c
equals zero, one must substitute in different values for
x and y to determine which inequality represents which
half-plane. The inequalities ax + by ≥ c and ax + by ≤ c
represent closed half-planes.

In three-dimensional space, a half-space is the
region of space that lies on one side of a plane. The
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half-space can be either closed or open according to
whether or not points of the plane should be consid-
ered as part of this region.

Hall’s matching theorem (Hall’s marriage theorem)
In 1935 English mathematician Philip Hall estab-
lished the following result, now known as Hall’s
matching theorem:

Given n sets A1, A2, … , An with the property
that the union of any k of them (1 ≤ k ≤ n)
contains at least k distinct elements, it is
always possible to select n distinct objects, one
from each set.

The condition placed on these sets is not trivial—some
sets could be empty, or the same element could appear
in more than one set, for example.

The theorem is certainly true for the case n = 1: a
single set satisfying the condition of the theorem con-
tains at least one element. Two sets satisfying the con-
ditions of the theorem together contain at least two
distinct elements. As neither set is allowed to be empty,
one set contains one element, and the other another
distinct element. Thus the theorem also holds true for
the case n = 2. One can build up a general proof of the
theorem using a proof by INDUCTION.

The validity of the theorem can be demonstrated
with an amusing game of solitaire: divide a shuffled deck
of cards into 13 piles of four cards. The challenge is to
select an ace from one pile, a two from another, a three
from a third, all the way down to king from a 13th pile.
Hall’s matching theorem ensures that this game can
always be won, no matter how the cards are shuffled.
(Think of each pile as a set containing one, two, three,
or four elements—the distinct denominations that
appear in that pile. Among any k piles it must be the
case that at least k distinct denominations appear.)

Hall gave another interpretation to his theorem
(explaining the alternative name to the result):

Suppose n women each list the names of the
men they would like to marry. As long as any k
women mention at least k distinct names
among them, 1 ≤ k ≤ n, then it is possible to
make satisfactory matches for all.

See also SEMI-MAGIC SQUARE.

halting problem In 1936 computer theorist Alan Tur-
ing contemplated whether or not it would ever be possi-
ble to write a computer program that could read any
other program and determine whether that program will
come to a stop or will run forever (by falling into an infi-
nite loop, for example). This question has since become
known as the halting problem. Turing concluded that
such a program could not possibly exist. He reasoned via
a clever ARGUMENT of SELF-REFERENCE:

Suppose a program HALT(P) exists that can 
read a computer program P and print yes or
no according to whether P will or will not
halt. Consider then another program, which
we will call TROUBLE, that takes a pro-
gram P and does the following:

TROUBLE (P):
If HALT(P) = “yes” then perform an infinite 

loop.
If HALT(P) = “no” then halt.

That is, TROUBLE takes a program P and 
goes into an infinite loop if P is a program
that halts, and it halts if P is a program that
does not. Now ask: what does TROUBLE
(TROUBLE) do? We have that TROUBLE
halts if TROUBLE does not halt, and does
not halt if it does! This absurdity shows that
no such program HALT(P) could exist.

There are technical difficulties with this argument (one
must be careful to properly distinguish between the roles
of a program and the input of a program, for example),
but Turing was able to overcome these concerns and
show that this argument is fundamentally sound.

Hamilton, Sir William Rowan (1805–1865) Irish
Algebra, Graph theory, Number theory, Mathematical
physics Born on August 4, 1805, in Dublin, Ireland,
William Rowan is generally considered Ireland’s great-
est mathematician of all time. He is remembered for
his development of an entirely new algebraic system,
the QUATERNIONS, which, seven decades later, proved
to be crucial for the development of quantum mechan-
ics and the mathematical physics of the internal struc-
ture of an atom.

Hamilton was a child prodigy, mastering 12 differ-
ent languages by the age of 13. During the teen years,
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he read the works of EUCLID in the original Greek, the
works of SIR ISAAC NEWTON in Latin, and the works of
PIERRE-SIMON DE LAPLACE in French. He found a sub-
tle error in Laplace’s classic text Mécanique céleste, and
wrote a letter to the astronomer royal of Ireland, John
Brinkley, explaining the error and how it should be cor-
rected. Brinkley immediately recognized Hamilton’s
genius as a rising mathematician and publicly dubbed
him the “first mathematician of his age.”

Hamilton entered Trinity College at the age of 18
to study optics and mathematics. His original work in
these fields as an undergraduate, which included two
papers “Systems of Right Lines in a Plane” and “The-
ory of Systems of Rays,” was regarded as so significant
and innovative as to warrant his immediate appoint-
ment as a professor of astronomy at the college before
the completion of his basic degree.

Along with his work in optics, Hamilton made sig-
nificant contributions to the field of GRAPH THEORY

and to the algebra of COMPLEX NUMBERS, publishing
results on the latter topic in his 1837 paper “Prelimi-
nary and Elementary Essay on Algebra as the Science
of Pure Time.” In 1842 he took on the difficult chal-
lenge of trying to create an algebraic system for three-
dimensional space that had the same algebraic properties
as the complex numbers in two-dimensional space. [A
point (x,y) in the plane can be matched with the com-
plex number x + iy. This thus provides a means to “mul-
tiply” to two points in space: (x1, y1) · (x2, y2) = (x1x2 –
y1y2, x1y2 + x2y1).] Although he was never able to find a
solution to this “multiplication of triples” problem, his
efforts did lead him to the remarkable discovery of a dif-
ferent type of number system suitable for four-dimen-
sional space. He called this system the quarternions, and
found some surprising connections to mathematical
physics. In particular he observed that each quaternion
corresponds naturally to a physical transformation in
three-dimensional space and that the multiplication of
two quaternions matches perfectly with the composition
of the two physical transformations they represent. Thus
the geometry of three-dimensional physical space can be
reduced to the algebraic study of the algebra of quater-
nions. Hamilton was convinced his work would revolu-
tionize mathematical physics. Although it does have
applications to the field today, sadly, his work did not
have the impact he hoped.

Hamilton received many awards throughout his
life, most notably a knighthood in 1835 and election to

the National Academy of Sciences in the United States
as its first foreign member. He wrote poetry for solace
throughout his life, and argued publicly that the lan-
guage of mathematics is just as artistic as the language
expressed through poetry. His close friend poet William
Wordsworth (1772–1834) did not agree. Hamilton
died near Dublin on September 2, 1865.

Hamiltonian path/circuit See GRAPH THEORY.

ham-sandwich theorem As a generalization of the
INTERMEDIATE-VALUE THEOREM and the two-pancake
theorem that follows from it, mathematicians have
proved the following result, called the ham-sandwich
theorem:

Given any three objects sitting in three-dimen-
sional space, there exists a single plane that
simultaneously slices the volume of each object
exactly in half.

For example, there is a single plane that simultaneously
slices the Eiffel tower, the planet Neptune, and this
book each precisely in half by volume. The theorem
gains its name from the following interpretation:

It is possible, in a single planar cut, to divide
each of two pieces of bread and a slab of ham
into two pieces of equal volume. This is pos-
sible no matter the shape of the food pieces
and no matter where in space the three items
are placed.

The result generalizes to higher dimensions:

Given any N objects sitting in N-dimensional
space, it is always possible to find an (N – 1)-
dimensional “plane” that simultaneously slices
the “volume” of each object in half.

(With N = 2, this is the two-pancake theorem.)

handshake lemma This amusing result states that,
at any instant, the number of people on this planet, liv-
ing or deceased, who have taken part in an odd total
number of handshakes is necessarily even. This lemma
can be proved with the aid of GRAPH THEORY.
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Hardy, Godfrey Harold (1877–1947) British Anal-
ysis, Number theory Born on February 7, 1877, in
Cranleigh, England, eminent mathematician Godfrey
Hardy is remembered for his significant contributions
to the fields of NUMBER THEORY, inequalities, and to
the study of the Riemann ZETA FUNCTION and the Rie-
mann hypothesis. Hardy also encouraged the Indian
mathematician SRINIVASA AIYANGAR RAMANUJAN to
come to England, and collaborated with him for five
years to produce a number of significant results, most
notably on the theory of PARTITIONs. In 1940 Hardy
published A Mathematician’s Apology, which remains,
to this day, one of the most vivid and eloquent descrip-
tions of how a mathematician thinks.

Hardy entered Trinity College, Cambridge, in 1896
to pursue an advanced degree in mathematics. After pub-
lishing a number of papers on the topics of INTEGRALs,
SERIES, and general topics of ANALYSIS, Hardy published,
in 1908, the undergraduate textbook A Course of Pure
Mathematics, which explained, in a rigorous manner, the
concepts of function, LIMIT, and the elements of analysis.
This work was very influential and is said to have trans-
formed the entire nature of university teaching.

In 1911 Hardy began a 35-year-long collabora-
tion with English mathematician John Littlewood
(1885–1977), leading to a change of focus in the field
of number theory. Together they produced over 100
joint publications. This work also tied in nicely with
the research Hardy was conducting in 1914 with
Ramanujan, also on topics in number theory.

Hardy was recognized as an important figure in
mathematics. In 1910 he was elected a fellow of the
ROYAL SOCIETY of London, received the Royal Medal
of the Society in 1920, the De Morgan Medal of the
Society in 1929, and the Sylvester Medal of the Soci-
ety in 1940 for his work in pure mathematics. Seven
years later he was awarded the Copley Medal of the
Society for his contributions to the field of analysis.

Hardy died in Cambridge, England, on December 1,
1947. He is generally recognized as the leading English
pure mathematician of his time. His 1932 book The The-
ory of Numbers, cowritten with E. M. Wright, is consid-
ered a classic text and is still used by graduate students
and researchers in the field of number theory today.

harmonic function A function defined at a discrete
number of locations is said to be harmonic if the value

of the function at any one location equals the average
of the function values at its neighboring locations. For
example, if 10 students sit in a circle, then their “age
function” would be harmonic if the age of any one stu-
dent equals the average age of his or her two neigh-
bors. (A little thought shows that this is only possible if
the age of each student is the same. A harmonic func-
tion for points arranged in a circle must be constant.)

Harmonic functions play an important role in the
study of RANDOM WALKs and calculating odds in gam-
bling. Imagine, for example, a gambler playing a simple
game of tossing a coin to either win a dollar or to lose a
dollar. We ask: with $3 in hand, what are her chances of
reaching the $10 mark before going broke? To compute
this, let P(N) denote the PROBABILITY of achieving the
goal starting with N dollars in hand. Clearly P(0) = 0
and P(10) = 1. We wish to compute P(3).

The key is to note that P(N) is a harmonic function
on its 11 values zero through 10. This follows because
there are equal chances for the gambler to lose or win a
dollar and thus to next play with either N – 1 or N + 1
dollars in hand. Consequently:

and so each quantity P(N) is indeed the average of the
values just preceding and succeeding it. Some thought
shows that the values P(0) = 0 up to P(10) = 1 must be
strictly increasing by equal intervals of one-tenth. The 

values P(N) are thus P(N) = . In particular, P(3) = ,

showing that there is only a 30 percent chance that the
gambler will achieve her goal before losing all her cash.

harmonic mean See MEAN.

harmonic sequence (harmonic progression) A SE-

QUENCE of numbers of the form , , ,… with 

integers a1,a2,a3,… forming an ARITHMETIC SEQUENCE

is called a harmonic sequence. The numbers a1,a2,a3,…
have a constant difference between them. For example, 

1, , , ,… is a harmonic sequence, as is , ,

,… and , , , ,…. The word harmonic is 1–––
100

1–
75

1–
50

1–
25

1–
13

1–
10

1–
7

1–
4

1–
4

1–
3

1–
2

1–a3

1–a2

1–a1

3–
10

N–
10

P N P N P N
P N P N

( ) ( ) ( )
( ) ( )= − + + = − + +1

2
1

1
2

1
1 1

2

246 Hardy, Godfrey Harold



used because the nth harmonic produced by a violin
string is the tone produced by the string that is 1/n
times as long.

The corresponding SERIES for any harmonic

sequence necessarily diverges. In the study of CONVERGENT

SERIES, the comparison test shows that this must be the 

case. (Compare a series of the form with

, which we know diverges.)

See also HARMONIC SERIES.

harmonic series The particular infinite sum 1 + +

+ + + … is called the harmonic SERIES. The  

word harmonic is used because the nth harmonic pro-
duced by a violin string is the tone produced by the
string that is 1/n times as long.

Even though the terms of this series approach zero,
the series does not sum to a finite value. This can be
seen by grouping the terms of the series into sections of
length two, four, eight, 16, and so on, and making a
simple comparison:

That the series diverges means that summing suffi-
ciently many initial terms of the series will produce
answers arbitrarily large (although it may take a large
number of terms to do this). For example, summing
the first four terms produces an answer larger than 2,
the first 11 terms an answer larger than 3, the first
13,671 terms an answer larger than 10, and the first

1.53 × 1043 terms an answer larger than 100. Clearly
the series diverges to infinity very slowly.

In 1734 LEONHARD EULER showed that, for large
values of n, the nth PARTIAL SUM of the harmonic series
can be well approximated by a LOGARITHM:

where γ ≈ 0.577 is a constant (called EULER’S CON-
STANT) and the error in this approximation is no larger
than 1/n. (Notice that ln(n) + γ → ∞ as n grows. This
again shows that the series diverges.)

The partial sums of the harmonic series are called
the harmonic numbers, and are denoted Hn. The first
10 harmonic numbers are:

One can use an induction argument to show that if
2k ≤ n < 2k+1, then the denominator of Hn (written in
reduced form) is a multiple of 2k. Consequently, no
denominator (except for the first) can be 1. This proves:

No harmonic number, other than the first, is
an integer.

The divergence of the harmonic series solves the amus-
ing rubber-band problem:

An infinitely tiny ant starts at one end of a rub-
ber band, 1 ft long, and crawls a distance of 1
in. toward the other end. It then pauses, and the
band is stretched 1 ft longer (to a total length of
2 ft), carrying the ant along with it to the 2-in.
position. The ant then crawls for another inch,
to the 3-in. position, and pauses while the band
is stretched another foot longer. This process of
walking an inch and pausing while the band
stretches a foot continues indefinitely. (We
assume the band is infinitely elastic.) Will the
ant ever make it to the end of the rubber band?
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Note that in the first leg of the journey, the ant
covers 1/12th of the length of the band, and that this
proportion remains the same as the band is stretched.
During the second leg of the journey, the ant covers
now only 1/24th of the length of the band (1 in. of 24
in.), 1/36th of the length during the third length, and so
on. Thus after n legs of the journey, the ant covers the 

fraction of the band. The 

ant reaches the finish only if Hn ever surpasses the
value 12. As the harmonic series diverges, this must
indeed be the case.

Although the harmonic series diverges, the ALTER-
NATING SERIES test from the study of CONVERGENT SERIES

shows that the alternating harmonic series, given by

1 – + – + – +…

converges. We can use Euler’s approximation formula
to find its value. First note:

where the error is no larger than 2/n and so converges
to zero as n grows. Consequently, the even partial
sums of the series approach the value In(2). The sum 

of an odd number of terms equals 

ln2 + error + and so too

approaches ln2 as n becomes large. Thus we have:

1 – + – + – + … = ln(2)

This example is often used to illustrate the difference
between conditional and ABSOLUTE CONVERGENCE of a
series. In that setting, it can also be used to provide an
amusing “proof” that 1 equals 2.

See also MERCATOR’S EXPANSION.

helix A spiral-shaped curve sitting in three-dimensional
space is called a helix. The name is the Greek word for
a “spiral” or a “twist.”

A cylindrical helix lies on a cylinder and cuts
across straight lines drawn along the length of the
cylinder at a constant angle α. A spiral staircase and
the thread on a straight screw are examples of cylindri-
cal helices. A conical helix is a spiral curve on a CONE,
and a spherical helix is a spiral on a SPHERE that cuts
lines of longitude at a constant angle.

A cylindrical helix has PARAMETRIC EQUATIONS: x
= a cost, y = a sint, and z = bt, where a and b are con-
stants, and t is the parameter. A conical helix is given
by: x = aet cost, y = aet sint, and z = et.

Heron of Alexandria (ca.10–75 C.E.) Greek Geome-
try, Number theory, Physics, Engineering Sometimes
called Hero, Heron of Alexandria is remembered in
mathematics for his three-volume text Metrica, redis-
covered in 1896. The work discusses and develops in
great detail the principles of geometry, number, and
numerical approximation. It also contains the earliest
known proof of the famous formula that bears Heron’s
name. Outside of mathematics, Heron is best known
for his contributions to mechanics and fluid mechanics.

Demonstrating a wide range of scientific interests,
Heron wrote studies in optics, pneumatics (the study
and use of gas and fluid pressures), astronomy, survey-
ing techniques, and planar and solid geometry, but it is
the work presented in Metrica that proves his genius as
a mathematical intellect. Book I of this famous piece
computes the areas of triangles, quadrilaterals, and reg-
ular polygons, as well as the surface areas of cones,
prisms, spheres, and other three-dimensional shapes.
His famous formula for the area of a triangle solely in
terms of its side-lengths is presented in this section,
along with a general method for computing the square
root of a number to any prescribed degree of accuracy.
(This procedure is today called HERON’S METHOD.

Book II of Metrica derives formulae for the volume
of each PLATONIC SOLID, as well as the volumes of
cones and spherical segments, and Book III extends
EUCLID’s study of geometric division. Heron also pre-
sents a method for determining the cube root of a num-
ber in this third volume.

Heron also wrote a number of important treatises
on mechanics, many of which survive today. His text
Pneumatica represents a careful (but, in places, inaccu-
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rate) study of pressure in fluids, along with a descrip-
tion of a collection of trick gadgets and toys illustrating
specific scientific principles. He also describes designs
for over 100 practical machines, including pneumatic
pulleys and lifts, wind organs, coin-operated machines,
fire engines, and steam-powered engines that operate in
a way similar to today’s jet engine.

Some of Heron’s texts have the appearance of draft
lecture notes, leading some historians to suspect that he
may have taught at the famous Museum of Alexandria.
Little is actually known of Heron’s life.

Heron’s formula (Hero’s formula) In his work Met-
rica, HERON OF ALEXANDRIA (ca. 100 C.E.) presented a
formula for the AREA of a TRIANGLE solely in terms of
the side-lengths of the triangle. Today known as
Heron’s formula, it reads:

area = 

where a, b, and c are the sides of the triangle, and 

s = (a + b + c) is its “semiperimeter.” The formula is a 

special case of BRAHMAGUPTA’S FORMULA, discovered
500 years later.

Heron’s formula can be proved as follows: if θ is the
angle between the sides of length a and b, then the area 

of the triangle is given by area = ab sin(θ). The LAW

OF COSINES asserts that c2 = a2 + b2 –2ab cos(θ). Solving
for sin(θ) and cos(θ), and substituting into the standard
identity from TRIGONOMETRY, cos2(θ) + sin2(θ) = 1,
yields, after some algebraic work, Heron’s result.

See also BRETSCHNEIDER’S FORMULA; MEDIAN OF A

TRIANGLE; QUADRILATERAL; TRIANGLE.

Heron’s method (Hero’s method) In Book I of his
volume Metrica, HERON OF ALEXANDRIA gives a
method for approximating the SQUARE ROOT of a num-
ber. It works as follows:

Estimate the value of the square root. Divide
this guess into the number under considera-
tion, and take the average of the result and the
initial estimate. This will produce a better
approximation to the square root.

Repeated application of this method pro-
duces an estimate to any desired degree of
accuracy.

In symbols, Heron claims that if x approximates 

the square root of a number N, then is a better 

approximation. For example, taking 3 as an approxima-

tion to the square root of 10, we obtain 

as an improved estimate. Repeating the procedure yields 

as an even better approxima-

tion. (In fact, √
–
10 ≈ 3.16227766.)

To show why this method works, let .

Then , which shows that if the 

error x – √
–
N is small, then the error y – √

–
N will be even

smaller. (We are assuming here that x is a value greater
than 1.)

This method was known to the Babylonians of
2000 B.C.E. It is also equivalent to NEWTON’S METHOD

when applied to the function f(x) = x2 – N.
See also BABYLONIAN MATHEMATICS.

higher derivative Taking the DERIVATIVE of the same
function more than once, if permissible, produces the
higher derivatives of that function. The first, second
and third derivatives of a function f(x) are denoted,
respectively, f ′(x), f ′′(x) and f ′′′(x), and for n ≥ 4, the
nth derivative as f (n)(x). For example, the third deriva-
tive of f(x) = x4 + sin x is f ′′′(x) = 24x – cos x. This
notation for the repeated derivative is due to JOSEPH-
LOUIS LAGRANGE (1736–1813). GOTTFRIED WILHELM

LEIBNIZ (1646–1716), coinventor of CALCULUS, used the

notation for the higher derivatives, and French 

mathematician Louis Arbogast (1759–1803) wrote
Dn f(x). All three notational systems are used today.

Hilbert, David (1862–1943) German Formal logic,
Geometry, Mathematical physics, Algebraic number
theory Born on January 23, 1862, in Königsberg,
Prussia (now Kaliningrad, Russia), mathematician
David Hilbert is remembered as one of the founding
fathers of 20th-century mathematics. In 1899 Hilbert
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published his famous Grundlagen der Geometrie
(Foundations of geometry), in which he provided a
completely rigorous axiomatic foundation of the sub-
ject clarifying the hidden assumptions that EUCLID

had made in his development of the subject two mil-
lennia earlier. Moreover, Hilbert advanced the topic of
FORMAL LOGIC and used his results to prove that his
approach to geometry is CONSISTENT given that the
arithmetic of the real numbers is free of contradic-
tions. In 1900 Hilbert posed 23 problems to the math-
ematicians of the 20th century that he felt lay at the
heart of vital mathematical research. Two of his prob-
lems were solved almost immediately, but the remain-
ing 21 challenges did indeed stimulate important
mathematical thinking. Many of his challenges are
still unsolved today. Hilbert also greatly influenced
the development of quantum theory in theoretical
physics: his notion of a “Hilbert space” provided the
right conceptual framework for the subject. Hilbert
also made important contributions to the fields of spe-
cial relativity and general relativity.

Hilbert received a doctorate of mathematics from
the University of Königsberg in 1885 after writing a
thesis in ABSTRACT ALGEBRA. He was appointed to a
faculty position at the university, where he remained
for 10 years before accepting the position as chair of
mathematics at the University of Göttingen in 1895.
Hilbert taught and worked at Göttingen for the
remainder of his career.

His 1897 text Zahlbericht (Number theory) was
hailed as a brilliant synthesis of current thinking in
algebraic number theory, and the original results it con-
tained were acknowledged as outstanding. Hilbert’s
abilities to grasp the subtleties of a sophisticated math-
ematical theory, develop penetrating insights, and pro-
vide new innovative and stimulating perspectives on a
subject were apparent. Throughout his career Hilbert
worked on a wide variety of disparate subjects, making
groundbreaking contributions to each before moving
on to the next. He published his famous work on
EUCLIDEAN GEOMETRY in 1899.

In 1900 Hilbert was invited to address the Paris
meeting of the International Congress of Mathemati-
cians. During his speech he detailed 10 mathematical
problems that he felt were of great importance. (He
expanded the list to 23 problems when he published his
address.) These problems include the CONTINUUM

HYPOTHESIS, GOLDBACH’S CONJECTURE, a search for

the axiomatization of physics, and a search for a gen-
eral algorithm for solving DIOPHANTINE EQUATIONs.
Some important progress, and in many cases, complete
solution, has been made on all the challenges posed
except for one, the so-called Riemann hypothesis,
which asks for the locations of the roots of the ZETA

FUNCTION. This remains, perhaps, the most famous
unsolved problem of today.

Later in life Hilbert worked on formal logic and on
the foundations of theoretical physics. Between 1934
and 1939 he published two volumes of Grundlagen der
Mathematik (Foundations of mathematics), cowritten
with Paul Bernays (1888–1977), which were intended
to develop a proof of the consistency of mathematics.
(GÖDEL’S INCOMPLETENESS THEOREMS showed, how-
ever, that such a goal is unattainable.) His development
of functional analysis provided the correct mathemati-
cal framework for the theory of quantum mechanics.

Hilbert received many honors throughout his
career, including a special citation from the Hungarian
Academy of Sciences in 1905. Upon his retirement in
1929, the city of Göttingen named a street after him,
and the city of Königsberg, his birthplace, declared him
an honorary citizen. He died in Göttingen on February
14, 1943. He is remembered for shaping the very nature
of 20th-century research in the pure mathematics.

Hilbert’s infinite hotel (Hilbert’s paradox) German
mathematician DAVID HILBERT (1862–1943) observed
that studies of the infinite can often lead to nonintu-
itive and surprising conclusions. His famous infinite-
hotel paradox illustrates some of his ideas:

Imagine a hotel with an infinite number of
rooms. Suppose every room is occupied. Is it
possible for the hotel to accommodate one
more guest?

If the rooms are numbered 1, 2, 3, and so on, Hilbert
pointed out that, despite the inconvenience, each exist-
ing guest can be moved from room n to room n + 1,
thereby leaving room 1 free for a latecomer. There is
indeed room for another single guest. One can go fur-
ther: suppose a tourist bus, with an infinite number of
tourists on board, arrives at the hotel. Moving each
hotel guest from room n to room 2n, instead, leaves all
the odd-numbered rooms vacant for the infinite num-
ber of new arrivals.
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If an infinite number of tourist buses, each contain-
ing an infinite number of tourists, arrive at the same
time, one can still find room to accommodate the mul-
titude of new guests:

Move all the existing hotel guests to the even-
numbered rooms.

Place the tourists from the first bus into
the rooms given by the powers of 3: 3, 9, 27,…

Place the tourists from the second bus into
the rooms given by the powers of 5: 5, 25,
125,…

Next use all rooms numbered the powers
of 7, of 11, of 13, and so on, down along the
list of all the PRIME numbers. As, according to
EUCLID’S PROOF OF THE INFINITUDE OF PRIMES,
there are infinitely many primes, and no two
powers of different primes are the same, this
allocation scheme does the trick.

See also CARDINALITY; FUNDAMENTAL THEOREM OF

ARITHMETIC; INFINITY; PARADOX; TRISTRAM SHANDY

PARADOX.

Hindu-Arabic numerals The numeral system we
use today is called the Hindu-Arabic numeral system.
Using a base-10 PLACE-VALUE SYSTEM, numbers are
expressed via combinations of the symbols 0, 1, 2, 3, 4,
5, 6, 7, 8, and 9, organized so as to represent groupings
of powers of 10. For instance, the number 574 repre-
sents the five groups of 100, seven groups of 10, and
four single units.

This numerical system originated from India
around 600 C.E., almost in the exact same form as we
use it today. The system was transmitted to the Arabs
two centuries later as they worked to translate the San-
skrit works on astronomy into Arabic. The Arab math-
ematician MUHAMMAD IBN M–

US
–
A AL-KHW

–
ARIZM

–ı
(ca. 800) wrote an influential treatise describing the
Hindu numeral system, and used it in his famous book
Hisab al-jabr w’al-muqābala (Calculation by restora-
tion and reduction), from whose title the modern word
algebra is derived. As Western scholars began translat-
ing the Arabic texts into Latin, word of the efficient
numeration system spread across Western Europe. Ital-
ian scholar FIBONACCI (ca. 1170–1250) avidly pro-
moted their use. By the end of the 17th century, the
Hindu-Arabic numeral system completely replaced the

cumbersome system of ROMAN NUMERALS that were
the standard in Europe for over 1,500 years.

See also BASE OF A NUMBER SYSTEM; DECIMAL REP-
RESENTATION; NUMBER; ZERO.

Hippasus of Metapontum See PYTHAGORAS.

Hippocrates of Chios (ca. 470–410 B.C.E.) Greek
Geometry Born in Khíos (Chios), Greece, Hippo-
crates is remembered as the first mathematician to have
found the area of a curved figure, namely, that of a
LUNE. He also made first steps toward properly analyz-
ing the problem of SQUARING THE CIRCLE.

Very little is known of Hippocrates’ life. It is
thought that Hippocrates may have first worked as a
merchant before developing an interest and talent for
geometry later in his life. Although he wrote only one
text on the topic (unfortunately lost to us today), many
scholars throughout history referred to his work in
their own studies.

Hippocrates was interested in the famous problem of
squaring the circle, that is, finding a method of construct-
ing a square of the same area as a given circle. Although
he was unable to solve this problem, he did manage to
show that, in many instances, it is possible to “square a
lune.” For example, in the diagram below, figure ABCD
is a square, and the shaded region is the lune formed by
one circular arc with center D and a second circular arc
with center O, the center of the square. Hippocrates,
using geometric reasoning, showed that the area of the
lune matches the area of the smaller square shown.
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(One can check this algebraically by labeling the
radius of the larger circular arc r and computing the
side-length of the large square, the area of the sector
DAC, the area of the semicircle ABC, and consequently
the area of the lune.)

In applying this type of analysis to a number of dif-
ferent lunes, Hippocrates managed to prove that the
ratio of the areas of two different circles is the same as
the ratio of their radii squared. This new result was a
significant achievement. Some historians believe that
EUCLID may have drawn on the work of Hippocrates
when he described and proved this result in his famous
text THE ELEMENTS.

histogram See DISTRIBUTION; STATISTICS: DESCRIPTIVE.

homogeneous A POLYNOMIAL in several variables
p(x,y,z,…) is called homogeneous if all terms in the poly-
nomial have the same total degree. For example, each
term of the polynomial x3 + 5x2y – xy2, has total degree
three, and so represents a homogeneous polynomial.

More generally, a function of several variables
f(x,y,z,…) is homogeneous if there is a natural number n
such that the following relation holds for any nonzero
constant k:

f(kx,ky,kz,…) = kn f(x,y,z,…)

For example, the function is 

homogeneous.
Identifying homogeneous functions can be helpful

in solving DIFFERENTIAL EQUATIONs. Any formula that
represents the MEAN of a set of numbers is required to
be homogeneous.

In physics, the term homogeneous describes a sub-
stance or an object whose properties do not vary with
position. For example, an object of uniform density is
sometimes described as homogeneous. In cooking,
when creaming butter and sugar, for instance, one aims
to produce a homogeneous mixture.

homomorphism A map f between two sets S and T,
each equipped with some kind of algebraic structure, is
called a homomorphism (Greek, homos, “same”; mor-

phé, “form” or “shape”) if it preserves the algebraic
relations within the sets. For example, if the algebraic
operation is “multiplication” in the set S and “addi-
tion” in the set T, and if z is the product of two ele-
ments in S, z = x × y, then f(z) should correspond to the
sum of the two corresponding elements in T:

f(x × y) = f(x) + f(y)

The LOGARITHM function, for example, is a
homomorphism from the set of positive real numbers
under multiplication to the set of all real numbers
under addition.

If f is the doubling function, f(x) = 2x, on real
numbers, then f is a homomorphism under addition,
but not under multiplication:

f(x + y) = 2(x + y) = 2x + 2y = f(x) + f(y)
f(x × y) = 2 × x × y ≠ f(x) × f(y)

The squaring map f(x) = x2 preserves multiplication but
not addition.

A map between two GROUPs is called a homomor-
phism if it preserves the algebraic operations of the
groups. A map f : S → T between two RINGs is called a
homomorphism if it preserves both the additions and
multiplications of the system:

f(x + y) = f(x) + f(y)
f(x × y) = f(x) × f(y)

for all elements x and y of the ring S.
See also ISOMORPHISM.

Hypatia of Alexandria (ca. 370–415 C.E.) Greek Phi-
losophy, Commentary Born about 370 in Alexandria,
Egypt, Hypatia is remembered as the first woman in the
history of mathematics to have made significant contri-
butions to the field, both as a scholar and as a teacher.
She was the daughter of mathematician and astronomer
Theon of Alexandria. Hypatia wrote influential com-
mentaries on her father’s work and also on the work of
APOLLONIUS OF PERGA (ca. 263–190 B.C.E.) and DIO-
PHANTUS OF ALEXANDRIA (ca. 200–284 C.E.).

Little is known of Hypatia’s life. She likely received
instruction in mathematics from her father, and cer-
tainly maintained a close working relationship with
him throughout her life. It is known that she assisted
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him in writing his 11-part commentary on the mathe-
matical work of CLAUDIUS PTOLEMY (85–165 C.E.) and
on his production of a revised version of EUCLID’s The
Elements. Hypatia produced her own commentaries on
classical pieces, including Diophantus’s famous Arith-
metica, Apollonius’s Conics, and astronomical works
by Ptolemy. All of her work, however, is today lost, and
we know of them only through references made by
later scholars.

Around 400 C.E. Hypatia headed the Platonist
school at Alexandria, where she consulted on scientific
matters and lectured on philosophy and mathematics.
During this time, Christianity surfaced as the dominant
religion of the region, and fanatics felt threatened by
her intellect and scholarship. Around 415 C.E. Hypatia
was brutally murdered by a group of religious follow-
ers who deemed her philosophical views pagan. Many
historians suggest that the death of Hypatia marks the
beginning of Alexandria’s decline as the great center of
scholarship and learning of antiquity.

It is worth mentioning that at least one other
woman is known to have played an active role in
mathematics during the Greek times. In his work Col-
lection, PAPPUS OF ALEXANDRIA (300–350 C.E.) gives
acknowledgment to a female scholar by the name of
Pandrosion. Essentially nothing is known about her.

hyperbola As one of the CONIC SECTIONS, the hyper-
bola is the plane curve consisting of all points P whose
distances from two given points F1 and F2 in the plane
have a constant difference. The two fixed points F1

and F2 are called the foci of the hyperbola. The hyper-
bola also arises as the curve produced by the intersec-
tion of a plane with the two nappes of a right circular
CONE.

Using the notation |PF1| and |PF2| for the lengths of
the line segments connecting P to F1 and F2, respec-
tively, the defining condition of a hyperbola can be
written as one of two equations:

|PF1| – |PF2| = d or |PF2| – |PF1| = d

where d denotes the constant difference. Each equation
defines its own curve, or branch, of the same hyperbola.

The equation of a hyperbola can be found by intro-
ducing a coordinate system in which the foci are
located at positions F1 = (–c, 0) and F2 = (c,0), for some

positive number c. It is convenient to write d = 2a, for
some a > 0. If P = (x,y) is an arbitrary point on the
hyperbola, then, according to the DISTANCE FORMULA,
the defining conditions read:

Moving the second radical to the right-hand side,
squaring, and simplifying yields the equation:

Squaring and simplifying again yields . 

Noting that c is greater than a, we can set the positive
quantity c2 – a2 as equal to b2, for some b > 0. Thus the
equation of the hyperbola is:

Conversely, one can show that any equation of this form
does indeed yield a hyperbola with foci at positions
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(± ,0), and whose points P have distances with 

common difference 2a from the foci. This equation
also reveals that the hyperbola has slant ASYMPTOTEs
y = ± x.

Hyperbolas have the following reflection property:
any ray of light that approaches the convex side of one
branch along a line pointing toward one focus is
reflected directly toward the other focus. (This property
can be proved in a similar way that the reflection prop-
erty of a PARABOLA is proved.)

Hyperbolas appear in the folding of a thin piece of
paper. Draw a circle and a dot outside the circle on a
sheet of paper. Fold the dot onto the circle and crease
the paper. Open up the fold and do this again, this time
folding the dot to a different point on the circle. As you
do this many times, one branch of a hyperbola will
emerge along the side of all the creases. The marked
dot is one focus of the hyperbola, and the center of the
circle is the other. The radius of the circle is the con-
stant difference of distances of a point on the hyper-
bola from the two foci.

In the process of deriving the equation of a hyper-
bola, we presented the equation:

valid for one branch of the figure at least. Set 

. This is called the ECCENTRICITY

of the hyperbola and has a value greater than 1. The
above equation can be rewritten:

The numerator of the quantity on the left side is the
distance of a given point P from a focus, and the
denominator is the distance of the point P from the ver-
tical line x = , called a directrix of the hyperbola. 

This formulation provides an alternative characteriza-
tion of the hyperbola:

A hyperbola is the set of all points P such that
the ratio of its distance from a fixed point (the

focus) to its distance from a fixed line (the
directrix) equals a constant e > 1.

See also APOLLONIUS’S CIRCLE; ELLIPSE.

hyperbolic functions In analogy to the fact that the
sine and cosine functions of TRIGONOMETRY represent
the coordinates of a point on the unit circle, x2 + y2 = 1,
the hyperbolic functions represent the coordinates of a
point on the right branch of a HYPERBOLA, x2 – y2 = 1.

Specifically, the x-coordinate of a point on the
curve, at an “angle” t, is called the hyperbolic cosine
function, and is denoted cosh(t), and the y-coordinate
is called the hyperbolic sine function, denoted sinh(t).
We have:

cosh2(t) – sinh2(t) = 1

One can also see that cosh(–t) = cosh(t) and sinh(–t) =
–sinh(t).

Mathematicians sometimes define the hyperbolic
sine and cosine functions via the formulae:

One can check that these formulae do indeed satisfy the
equation of a hyperbola x2 – y2 = 1 with x > 0, and so
must indeed be the coordinates of its points. (These 
equations are reminiscent of the formula 

and , which follow from 

EULER’S FORMULA for ordinary trigonometric functions.)
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Taking the DERIVATIVE we see:

and

In analogy to the ordinary trigonometric functions, math-
ematicians define four additional hyperbolic functions:

The hyperbolic cosine curve arises in nature as the
shape of the curve formed by a chain hanging freely
between two points. This curve is called a CATENARY.

See also OSBORNE’S RULE.

hyperbolic geometry (Lobachevskian geometry) Inde-
pendently discovered in 1823 by Hungarian mathemati-
cian JÁNOS BOLYAI (1802–60) and in 1829 by Russian
mathematician NIKOLAI IVANOVICH LOBACHEVSKY

(1792–1856), hyperbolic geometry is a NON-EUCLIDEAN

GEOMETRY in which the famous PARALLEL POSTULATE fails
in the following manner:

Through a given point not on a given line,
there is more than one line parallel to that
given line.

French mathematician JULES HENRI POINCARÉ

(1854–1912) later provided a simple model for this
geometry and the means to easily visualize geometric
results in this theory. The “Poincaré disk” consists of
all the points in the interior of the UNIT CIRCLE. A
“point” in geometry is any point inside this circle, and
a “line” is to be interpreted as a circular arc within
the circle with endpoints perpendicular to the bound-
ary of the circle. Any diameter of the boundary circle
is also considered a line. Distances are not measured
with a traditional ruler: points on the boundary circle
are considered to be infinitely far from the center of
the circle.

Bolyai and Lobachevsky showed that all but the
fifth of EUCLID’S POSTULATES hold in the hyperbolic
geometry and, moreover, that this model of geometry is
consistent (that is, free of CONTRADICTIONs). This
establishes that the parallel postulate cannot be logi-
cally deduced as a consequence of the remaining
axioms proposed by Euclid.

In hyperbolic geometry, all angles in triangles sum
to less than 180°, and the ratio of the circumference of
any circle to its diameter is less than π. (Moreover, the
value of this ratio is not the same for all circles.) Also,
it is possible for two perpendicular lines to be parallel
to the same line.

Physicists, following the work of ALBERT EINSTEIN,
suggest that the geometry of our universe is hyperbolic:
that it appears to us as Euclidean is a result of the fact
that we occupy such a small portion of it. (This is anal-
ogous to the fact that it is difficult to recognize the
Earth as round when living on it.)

See also EUCLIDEAN GEOMETRY; PLAYFAIR’S AXIOM;
SPHERICAL GEOMETRY.

hyperboloid The SOLID OF REVOLUTION obtained by
rotating a HYPERBOLA about one of its axes is called a
hyperboloid. If the rotation is performed about the axis
that lies between the two branches of the curve, then
the resulting surface is called a hyperboloid of one
sheet. It resembles a cylinder “pinched” at the center so
as to curve inward. Points on this surface satisfy an 

equation of the form + = + 1 for some 

constants a, b, and c. If, instead, the rotation is per-
formed about the axis that connects the two foci of the
hyperbola, then the resulting surface has two distinct
parts, each resembling a bowl. This surface is called a
hyperboloid of two sheets. Points on this surface satisfy 

the equation + = – 1.

One can construct a model of a hyperboloid of
one sheet by holding two metal rings, one directly
above the other, and tying vertical strings from points
on the lower ring to their corresponding points on the
top ring. If one then rotates the top ring so that the
vertical strings begin to tilt, the model begins to “con-
strict.” The resulting surface is a hyperboloid of one
sheet. One can also see this surface by tying a string
around a handful of uncooked spaghetti strands.
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When the strands tilt, the surface of a hyperboloid of
one sheet appears.

See also ELLIPSOID; PARABOLOID.

hypercube The higher-dimensional analog of SQUARE

in two dimensions and a CUBE in three dimensions is
called a hypercube.

A unit square in the plane has four vertices at loca-
tions (0,0),(1,0),(0,1) and (1,1). A unit cube in three-
dimensional space has eight vertices at locations
(0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1)
and (1,1,1). By analogy, a hypercube of side-length 1
sitting in four-dimensional space has 16 vertices given
by: (0,0,0,0), (1,0,0,0), (0,1,0,0),…,(1,1,1,1).

Some people find it helpful to interpret the fourth
coordinate as time. In this context, each particular
value of the fourth coordinate represents a given
instant in time, and the remaining three coordinates
describe an ordinary object in three-dimensional space.
A four-dimensional hypercube can thus be thought of
as an ordinary cube moving through time. (One can
also apply this interpretation to ordinary squares and
cubes of lower dimension. For example, a line segment
is the result of a point sliding horizontally over time, a

square is the result of a horizontal line segment sliding
in the direction of the positive y-axis over time, and a
cube is the result of a two-dimensional square sliding in
the direction of the positive z-axis over time.) A four-
dimensional hypercube is also called a tesseract.

A square in two-dimensional space has four ver-
tices and four edges. A cube in three-dimensional space
has eight vertices and six square faces. One can show
that a tesseract has eight vertices and six cubic “faces,”
and that, in general, an n-dimensional hypercube has
2n vertices and 2n faces, each itself a hypercube of one
dimension less.

Four line segments hinged end-to-end fold to
make a square. Six squares arranged in a “cross” fold
to make a cube. Eight cubes arranged in an analogous
way—four in a row with the four remaining cubes
attached to the four exposed faces of the second
cube—fold in four-dimensional space to make a
hypercube. All in all, there are 261 different ways to
arrange eight ordinary cubes that fold in four-dimen-
sional space to make a hypercube. Each arrangement
is called a NET.

hypotenuse The longest side of a triangle that con-
tains a 90° angle, that is, a right triangle, is called the
hypotenuse of the triangle. PYTHAGORAS’S THEOREM

shows that this longest side lies opposite the right
angle. (If the three side-lengths of a right triangle are a,
b, and c, with c opposite the right angle, then c2 = a2 +
b2. This establishes that c is indeed larger than both a
and b.) The two remaining sides of a right triangle are
called the legs of the triangle.

The word hypotenuse is derived from the Greek
term hypoteinousa meaning “under tension” (the prefix
hypo-means “under” and teinein means “to stretch”).

Mathematicians have shown that an integer c can
be the length of the hypotenuse of a right triangle with
integer side-lengths if, and only if, in the prime FAC-
TORIZATION of c, no PRIME that appears an odd num-
ber of times is 3 more than a multiple of 4.

See also PYTHAGOREAN TRIPLES.

hypothesis testing See STATISTICS: INFERENTIAL.

256 hypercube

By rotating the top disc of this 1872 string model, one can trans-
form a cylinder of chords into the shape of a hyperboloid. (Photo
courtesy of the Science Museum, London/Topham-HIP/The
Image Works)



identity An equation that states that two mathemati-
cal expressions are equal for all possible values of any
variables that occur in them is called an identity. For
example, the DIFFERENCE OF TWO SQUARES formula
x2 – y2 = (x – y)(x + y) and the trigonometric equation
sin2θ + cos2θ = 1 are identities. Sometimes the symbol ≡
is used instead of = to indicate that the statement is an
identity. It is read as “identically equal to.”

A numerical statement, one involving no variables
at all, might still be called an identity if it illuminates
something interesting about the numbers involved. For
example, the following relationship could be called an
identity because of the unexpected appearance of the
number π:

See also EQUATION; IDENTITY ELEMENT.

identity element (identity, neutral element) An ele-
ment of a set that, combined with any other element of
the set, leaves that element unchanged is called an iden-
tity element. More precisely, given a BINARY OPERATION

“*” on a set S, we say that e in S is an identity element if:

a*e = a
e*a = a

for all elements a of the set.

For example, the number zero is an identity ele-
ment for the set of real numbers under the operation of
addition: we have that a + 0 = a = 0 + a for all numbers
a. With respect to multiplication, 1 is an identity ele-
ment, since a × 1 = a = 1 × a for all numbers a. (The
number zero is sometimes called an “additive identity”
and the number 1 a “multiplicative identity.”)

In matrix theory the IDENTITY MATRIX is an identity
element under multiplication for the set of all square
matrices of a particular size. In SET THEORY, the EMPTY

SET is an identity under the operation of taking union.
Any GROUP is required to have an identity element.

It is impossible for a mathematical system to pos-
sess two different identity elements with respect to the
same binary operation. If, for instance, e and f are both
identity elements for a set S, then e*f equals e (since f is
an identity element), and it also equals f (since e is an
identity element). Thus e and f are the same.

In some mathematical theories it is desirable to dis-
tinguish between a “left identity,” that is an element eL

such that eL*a = a for all elements a, and a “right iden-
tity” eR that satisfies a*eR = a for all a. Of course, if the
theory satisfies the COMMUTATIVE PROPERTY, then eL and
eR are equal and represent an identity for the system.

See also INVERSE ELEMENT.

identity matrix (unit matrix) A square MATRIX with
each main diagonal element equal to 1 and all other
entries equal to zero is called an identity matrix. Such a
matrix is usually denoted I or Id, or even Idn if the
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ORDER OF A MATRIX is n. For example, the 3 × 3 iden-
tity matrix is:

If A is a matrix with m rows and n columns, then
matrix multiplication shows we have:

AIn = A
ImA = A

that is, multiplication with the appropriate identity
matrix leaves any other matrix unchanged. If all the
matrices under consideration have the same number of
rows as columns, say n of each, then In acts as an IDEN-
TITY ELEMENT for that set under matrix multiplication.

Any 2 × 2 matrix A of the form:

or

satisfies A2 = I2. Thus any such matrix can be thought
of as a SQUARE ROOT of the 2 × 2 identity matrix. If
one is willing to permit the use of COMPLEX NUMBERS,
then the following matrix is an example of a cube root
of the 3 × 3 identity matrix:

This matrix satisfies the relation A3 = I3.

image (range) The set of all values that a FUNCTION

could adopt is called the image of the function. For
example, the image of the function y = x2 defined for

all REAL NUMBERS is the set of all numbers greater than
or equal to zero. The term is also used for the output of
a specific input for the function. For instance, in the
example above, the image of the number 3 is 9.

In dealing with functions of real numbers, the term
range is preferred over image. Often mathematicians
will use the word image only when thinking of a prob-
lem geometrically. For example, if the function is a
GEOMETRIC TRANSFORMATION such as a reflection in a
line, then one would speak of the image of geometric
figures under this transformation. In this example, the
image of any circle is another circle, and the image of a
straight line is another straight line.

implication See CONDITIONAL.

implicit differentiation When two variables x and y
satisfy a single equation F(x,y) = 0, it may be possible
to regard the equation nonetheless as defining y as a
function of x, even though no explicit formula of this
type may be apparent. (See IMPLICIT FUNCTION.) In
such a case, one can go further and differentiate the
equation as a whole, regarding y as a function of x and
using the CHAIN RULE in the process to find a formula 

for the derivative . This process is known as 

implicit differentiation. For example, if xy3 + 7x2y = 1,
then differentiating yields:

and so:

(assuming the denominator is not zero).
Implicit differentiation is useful for finding the

derivatives of inverse functions, for example. For
instance, if y = sin–1(x), then sin(y) = x. Differentiating 

yields cos(y) = 1, and so, 

.

Sometimes a function is more easily differentiated
if one first applies a logarithm and then differentiates
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implicitly. This process is called logarithmic differentia-
tion. For example, to differentiate y = xx, write ln(y) = 

ln(x)x = xln(x). Then ⋅ = ln(x) + x ⋅ , and so, 

.

implicit function A formula of the form F(x,y) = 0 is
said to define the variable y implicitly as a function of
x. For example, the equation xy = 1 implicitly defines 
the dependent variable y as y = . However, matters 

can be confusing, for a single equation may define y as
several possible functions of x (for example, the equa-
tion x2 + y2 = 1 suggests that either y = or 

y = – ), and in some instances, it might not even
be possible to solve for an explicit formula for y (for
example, it is not at all clear that x2y2 + ycos(xy) = 1
does indeed give a formula for y).

Mathematicians have proved that as long as the
function F(x,y) has continuous PARTIAL DERIVATIVEs,
and that there is some point (a,b) for which F(a,b) = 0 

and ≠ 0 at (a,b), then the equation F(x,y) = 0 does 

indeed define y as a function of x, at least for values of
x within a small neighborhood of x = a. Moreover, the
process of IMPLICIT DIFFERENTIATION is valid for these
values of x. This result is known as the implicit func-
tion theorem.

improper integral (infinite integral, unrestricted inte-
gral) In the theory of INTEGRAL CALCULUS it is per-
missible to extend the notion of a definite integral
∫b
a f(x)dx to include functions f(x) that become infinite

in the range under consideration, [a,b], or, alternatively,
to consider integration over an infinite range: [a,∞),
(–∞,b], or even (–∞,∞). Such integrals are called
improper integrals. One deals with such integrals by
restricting the range of integration and taking the limit
as the interval expands to the required size.

Consider, for example, the integral . The 

integrand becomes unbounded as x approaches 

the value zero, and so, in the normal way, the integral 

is not well defined. However, the function is 

bounded on the interval [L,1] for any 0 < L < 1, and 

the integral is valid. We have: 

= 2 – 2√
–
L . The improper integral under consideration

is then defined to be the LIMIT as L → 0, from

above, of these values: 

. 

In general, if an integrand f(x) is infinite at an end
point a, then the improper integral ∫b

a f(x)dx is defined
as the limit:

∫b
a f(x) dx = limL→a+ ∫bL f(x)dx

or, if infinite at the end point b, then the improper inte-
gral is defined as the limit:

∫b
a f(x)dx = limL→b– ∫L

a f(x)dx

If the limit exists, then the improper integral is said to 

converge. (Thus, for example, is a convergent 

improper integral.) If the limit does not exist, then the
improper integral is said to diverge. (One can check, 

for example, that diverges.)

To illustrate the second type of improper integral, 

consider, for example, the quantity . This is to 

be interpreted as the limit:

which can be readily computed: 

. (We

interpret this as saying that the total area under the 

curve y = to the right of x = 1 is 1.)

In general, improper integrals of this type are com-
puted as follows:

∫∞
a f(x)dx = limL→∞ ∫L

a f(x)dx
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If the limits exist, then the improper integrals are said to 

converge. (Thus, for example, is a convergent 

improper integral.) If the limit does not exist, then the
improper integral is said to diverge. (One can check, for 

example, that diverges.) The integral test used 

in the study of CONVERGENT SERIES makes use of
improper integrals of this type.

It is possible to define even more-general improper
integrals by considering integrands that take the value
infinity at several places within the range of integration,
possibly over an infinite range of integration. One inter-
prets such improper integrals as the sum of several limits.

Incan mathematics The Incan Empire ruled the region
of Peru and its surroundings before the Spanish conquest
of the continent in 1532. It was an extraordinarily
sophisticated civilization. The Inca people had highly
developed systems of agriculture, transportation, road
construction, textile production, and administration, yet,
surprisingly, had no form of writing. Consequently, with
absolutely no cultural records or documents available,
very little is known of the mathematics of these people.

It is known that the Inca recorded numerical infor-
mation with a device known as a quipu, which consisted
of a collection of strings all tied to a common central
object, usually another rope. Administrators simply tied
knots in the strings to record numbers, with each string
representing a different count. Knots were grouped in
clusters to represent quantities of powers of 10. Thus,
for example, the number 283 was represented (back-
ward) by a cluster of three knots placed near the free end
of a string (three units), a space, a cluster of eight knots
in the center of the string (eight 10s), another space, and
finally two knots at the top of the string (two 100s). The
Incas, in effect, were following the DECIMAL REPRESEN-
TATION system we use today. A large space indicated a
digit of zero (to distinguish 208 from 28, for instance).

Strings of different colors were used to signify
what the knots on that string were counting. For
example, white strings may have represented the
counts of cattle, while green strings may have repre-
sented the levels of punishment to be executed for
committing a certain crime.

Each town in the Incan Empire had its own quipca-
mayoc, a “keeper of the knots,” who recorded census

information about the population, the produce, and
weapons of the town. Quipues recording this informa-
tion were sent every year, by relay runners, to the capi-
tal of the empire, Cuzco.

The extent to which the Incan people manipulated
numbers and performed calculations is unclear. A
Spanish priest by the name of José de Acosta, who
lived among the Incas from 1571 to 1586, describes in
his book, Historia natural y moral de las Indias, resi-
dents shuffling kernels of corn on the ground as though
manipulating the beads of an ABACUS. Obviously some
kind of numerical computation was being conducted,
but Acosta did not understand the method and was
unable to explain what exactly was being done.

The Inca thought of numbers in very concrete terms.
The concept of “two-ness,” for instance, did not exist
for the Inca, and the count of 2 applied to very specific
things. This is evidenced by the fact that the Inca had
several different words for two, which were used to dis-
tinguish different contexts—the two objects that make a
pair, the 2 that came from one object divided in half, and
the one object and its specific partner that make a pair,
for instance. There was no single all-encompassing word
for the state of having two parts.

It is likely that the Inca people kept astronomical
records, a topic of interest to most ancient cultures, but
there is no direct evidence of this.

incircle A circle that lies inside a triangle and touches
all three sides is called the incircle of that triangle. The
center of that circle is called the incenter of the triangle,
and its radius is called the inradius of the triangle.

It is relatively straightforward to see that for any
triangle there is precisely one circle in the triangle that
touches all three sides. (Erase one side of the triangle
and note that there are infinitely many circles that fit
into the wedge formed by the two remaining sides. In
redrawing the third side, observe that precisely one of
those circles lies tangent to that additional edge.)

The incenter of a triangle is a point that lies the
same distance from each of the three sides of the trian-
gle. Note that any point that is EQUIDISTANT from just
two intersecting lines lies on the angle bisector of those
lines (that is, on a line that cuts the angle between the
two given lines in half). Consequently, we have that the
incenter of any triangle lies on each of the angle bisec-
tors of the vertices of the triangle. This establishes:

1
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The three angle bisectors of a triangle are CON-
CURRENT.

An excircle for a triangle is a circle that lies outside
the triangle and is tangent to one side of the triangle
and tangent to extensions of the remaining two sides. A
triangle has three distinct excircles.

In a more general context, if it is possible to draw a
circle inside a POLYGON tangent to each side of the poly-
gon, then that circle is called an incircle of the polygon.
Every regular polygon has an incircle. There is no incir-
cle for a nonsquare rectangle.

See also CIRCUMCIRCLE.

inclination/declination The angle θ between a ray
emanating from the origin of a CARTESIAN COORDI-
NATE system and the positive x-axis as measured in an
anticlockwise direction is called the inclination of the
ray. An angle measured in the clockwise direction is
called its declination. These terms are rarely used in
mathematics today.

A PLANE that is not horizontal is called an inclined
plane, and the angle that the line of greatest slope
within the plane makes with the horizontal is called the
angle of inclination of the plane.

inclusion-exclusion principle If n(A) denotes the
number of elements in a finite set A, then the number
of elements in the union A ∪ B of two sets is given by:

n(A ∪ B) = n(A) + n(B) – n(A ∩ B)

(Counting the number of elements in each of A and B
counts the elements that belong to both twice. One must

compensate for this double count.) Similarly, the number
of elements in the union of three sets is given by:

n(A ∪ B ∪ C) = n(A) + n(B) + n(C)
–n(A ∩ B) – n(B ∩ C) 
– n(A ∩ C + n(A ∩ B ∩ C)

(One can establish this either by reasoning through
which elements are counted multiple times, or by not-
ing that A ∪ B ∪ C = (A ∪ B) ∪ C and applying the
previous observation:

n((A ∪ B) ∪ C) = n(A ∪ B) + n(C) – n((A ∪ B) ∩ C)
= n(A ∪ B) + n(C) – n((A ∩ C) ∪ (B ∩ C))

Two more applications of the formula for the union of
two give the result.)

In general, an INDUCTION argument shows that the
number of elements in the union of n sets is given by:

n(A1 ∪ A2 ∪…∪ Ak) = n(A1) + n(A2 +…+ n(Ak)
–n(A1 ∩ A2) – n(A1 ∩ A3) –…

– n(Ak–1 ∩ Ak)
+ n(A1 ∩ A2 ∩ A3) +…

+ n(Ak–2 ∩ Ak–1 ∩ Ak

+ (–1)kn(A1 ∩ A2 ∩…∩ Ak)

This formula is called the general inclusion-exclusion
principle. It can be interpreted as follows:

The number of elements of a finite set that pos-
sess at least one of k possible properties is equal
to the number possessing exactly one property,
minus the number possessing exactly two prop-
erties, plus the number possessing precisely
three properties, and so on, up to the count of
those elements possessing all k properties.

This powerful counting principle has important appli-
cations in PROBABILITY theory.

increasing/decreasing A SEQUENCE of numbers {an}
is said to be increasing if a1 ≤ a2 ≤ a3 ≤ …, that is, each
term in the sequence is greater than or equal to the one
that precedes it. It is called strictly increasing if a1 < a2

< a3 < … The constant sequence 1,1,1, …, for example,
is considered increasing.

…
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Increasing sequences have the pleasing property
that their convergence (or divergence) is easy to identify:

An increasing sequence converges if, and only
if, it is bounded above.

(See BOUND and CONVERGENT SEQUENCE.) This seems
clear geometrically. If on the real number line the
sequence of numbers {an} moves steadily to the right yet
does not penetrate a barrier at position B, then the
numbers must “pile up” at some limit value L ≤ B.
Conversely, if an increasing sequence converges to a
value L, then all the terms of the sequence lie to the left
of L on the number line and hence are bounded above
by L. (These statements can be proved rigorously by
making use of the “completeness” of the real number
line via the notion of a DEDEKIND CUT.)

A sequence {an} is said to be decreasing if a1 ≥ a2 ≥
a3 ≥ …, that is, each term in the sequence is less than or
equal to the one that precedes it. It is called strictly
decreasing if a1 > a2 > a3 >…. Similarly one can show
that a decreasing sequence converges if, and only if, it
is bounded below. A sequence that is either increasing
or decreasing is called monotonic.

A real-valued function f is said to be increasing
over an interval if, over that interval, greater input
values produce greater (or possibly equal) output val-
ues, that is, if a and b are two values in the interval
with a < b, then f(a) ≤ f(b). If it is always the case
that f(a) < f(b), then the function is said to be strictly
increasing on the interval. The MEAN-VALUE THEO-
REM shows that a differentiable function f is increas-
ing precisely on those intervals where the DERIVATIVE

is nonnegative, f ′ (x) ≥ 0, and strictly increasing if
f ′ (x) > 0.

A real-valued function f is said to be decreasing
over an interval if greater input values produces smaller
(or possibly equal) output values of the function, that is,
if a < b, then f(a) ≥ f(b). If it is always the case that f(a)
> f(b), then the function is said to be strictly decreasing
on the interval. The MEAN-VALUE THEOREM shows that
a differentiable function f is decreasing precisely on
those intervals for which f ′ (x) ≤ 0, and strictly decreas-
ing if f ′ (x) < 0.

A function that is either increasing or decreasing
on an interval is called monotonic on that interval.

See also DIFFERENTIAL CALCULUS; GRAPH OF A

FUNCTION; MAXIMUM/MINIMUM.

increment A small finite change in the value of a vari-
able or in the value of a function is called an increment.
If the variable is x, then an increment of x is usually
denoted ∆x or δx. If f is a function of x, then the corre-
sponding increment of f, denoted ∆f, equals ∆f = f(x +
∆x) – f(x). The LIMIT of the ratio ∆f/∆x, as the incre-
ment ∆x decreases to zero, is called the DERIVATIVE of f.
A negative increment is sometimes called a decrement.

See also DIFFERENTIAL.

indefinite integral See ANTIDIFFERENTIATION; INTE-
GRAL CALCULUS.

independent axiom An AXIOM of a mathematical
theory is said to be independent if it cannot be derived
from the remaining axioms of a theory as a logical con-
sequence. For instance, the existence of NON-
EUCLIDEAN GEOMETRIES establishes that Euclid’s
famous PARALLEL POSTULATE is independent of his four
remaining postulates. In general, this is the approach
mathematicians take to show that an axiom A in a
mathematical system is independent of the remaining
axioms: present an example of another consistent
mathematical theory proved to be free of contradic-
tions in which all axioms except A hold and for which
A is false. (Consequently, it cannot be the case that
these axioms do imply that A is true, for then one has a
system in which both A and not A hold.)

See also EUCLID’S POSTULATES.

independent events Two experiments run in succes-
sion are deemed independent if the outcomes obtained
from one experiment do not affect the outcomes
obtained in the second. For example, the results from
casting a die do not influence the results obtained in
later tossing a coin. These two actions are independent.

In PROBABILITY theory we say two EVENTs A and B
are independent if knowledge of A having occurred has
no influence on the likelihood of B next occurring. For
example, in two rolls of die casting, an even number on
the first roll and casting a 6 on the second are indepen-
dent events—the chances of rolling a six are 1/6, no
matter the result of the first roll.

Two events that are not independent are called
dependent. For example, the event “Sally is wearing a
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raincoat” is likely to be dependent on the event “it is
raining.” CONDITIONAL PROBABILITY is used to analyze
dependent events.

Experiments that involve drawing objects from a
finite source, such as balls from a bag, or cards from a
deck, without replacing the objects withdrawn, often
yield dependent events. For example, the events “the
first card drawn from a deck of cards is red” and “the
second card drawn is red” are dependent—the proba-
bility that the second card selected is the desired color
could either be 26/51 or 25/51 , depending on whether
the first card drawn is black or red.

A careful study of PROBABILITY shows that two inde-
pendent events A and B satisfy the probability relation:

P(A and B) = P(A) × P(B)

Mathematicians take this relation as the definition of
two events A and B being independent.

indeterminate equation An equation, or a SYSTEM

OF EQUATIONS, with an infinite number of solutions is
called indeterminate. For instance, the equation:

x + 2y = 5

is indeterminate (for each real number t there is the
solution x = 5 – 2t and y = t), as is the system of two
equations:

a + b + c = 1
2a + 3b – c = 0

in variables a, b, and c. (All triples of the form (a,b,c) = 

(t, , ) are solutions.)

The single equation x2 + y2 + z2 + w2 = 0 is not
indeterminate: it has the unique (real) solution x = y = z
= w = 0.

See also DEGREES OF FREEDOM.

index (plural, indices) A number that indicates a
place or describes the characteristic or the nature of a
function is called an index. For example, a SEQUENCE

of numbers might be denoted {an}, with the index n
denoting the place in the sequence. (Thus a7, for
instance, would represent the seventh number in the
list.) An EXPONENT is sometimes called an index. For

example, one might say that the function f(x) = x5 has
index 5 to indicate that quantities are being raised to
the fifth power. The radical function g(x) = 

3√
–
x, for

example, has index 3, and the logarithmic function
h(x) = log10 x has index 10.

In statistics and business, an index is a figure used
to show the variation in some quantity over a period of
time, usually standardized relative to some base value.
For example, a retail price index is used to measure
changes in the cost of household items. For the base
year, the index is usually set at 100. If, for instance, the
cost of dish detergent in the base year is $1.60, and the
price rises to $1.76 and to $2.00 in the two subsequent
years, then the price index for this item would be 100,
110, and 125 in each of those years, respectively.

It is possible to design an index that gives a general
measure of the value of more than one commodity
simultaneously. For example, the Dow Jones index of
the New York Stock Exchange is an indicator of the
worth of a representative selection of industrial, trans-
portation, and utility stocks.

Indian mathematics The entire course of Western
mathematics was profoundly affected by a single Indian
invention, that of the place-value decimal system. That
every possible number can be expressed via a set of just
10 symbols, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, by making
careful use of the place of each symbol, seems such a
simple notion nowadays that it is hard to appreciate its
profound importance. This elegant notation system
provided the means for Indian scholars to perform
complicated arithmetical computations with relative
ease, which in turn led to significant developments in
numerical techniques, approximation methods, and the
theory of arithmetic. Only when other cultures adopted
the place-value decimal system from India could they
accomplish the same mathematical feats that this cul-
ture had already developed.

The earliest dated evidence of mathematical activ-
ity in the Indian subcontinent goes back to the Indus
civilization of 2500 B.C.E. Bronze weights and graded
rods (rulers) from the period show that these people
were already working with a decimal system. The Indus
people worked with a basic unit of length 1.32 in. long
(today called the “Indus inch”), 10 of which make their
version of a “foot.” Excavations show that the weights
and graded rods were used extensively in construction.

2 – t
——

3
1 – 4t
——–

3
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The earliest written records of Indian culture are
the religious texts the Vedas, dating between 1500
B.C.E. and 800 B.C.E. Although not mathematical in
content, appendices to the texts give specific rules for
constructing altars, exhibiting a thorough understand-
ing of the basic principles of geometry. Early versions
of the digits 0 through 9 were used at this time.

By 600 C.E., the Vedic religion had gone into
decline, and Jainism came to the fore. During this
period mathematics was driven by the needs of the
religion and its demands for careful astronomical
observations to pinpoint the exact times of religious
observances and the development of an accurate cal-
endar. The decimal representation system was now
fully developed, and scholars were able to make pre-
cise and surprisingly accurate calculations. The math-
ematician A–RYABHATA (ca. 500 C.E.), for instance, had
developed a theory of TRIGONOMETRY to aid astro-
nomical calculations, had developed methods for
extracting square roots, evaluated π to a high degree
of accuracy, and was able to find integer solutions to
a large class of equations that arose from astronomi-
cal theories.

One written text from this period was discovered
in 1881 in the town of Bakhshali, now in Pakistan.
Written on birch bark, the Bakhshali manuscript shows
that mathematicians were also comfortable with frac-
tions, basic algebraic manipulations (they used a dot to
represent an unknown quantity), and sophisticated
approximation formulae. For example, the manuscript
describes, in words, the following approximation for
the square root of a number N:

Here a2 is the largest perfect square smaller than N and
b = N – a2. For example, we have:

which is correct to seven decimal places.

Two mathematical research centers were formed in
India during the era of Jainism, both astronomical
observatories. A–ryabhata headed the first center at
Kusumapura in the northeast of the Indian subconti-
nent, and mathematician Varahamihira, who also made
contributions to astronomy and trigonometry, headed
the second center at Ujjain, also in the north.

Varahamihira was succeeded by the seventh-cen-
tury mathematician BRAHMAGUPTA, who, in his famous
work Brahmasphutasiddhanta (The opening of the uni-
verse), introduced and explained the arithmetic of non-
positive numbers. He was the first mathematician in
history to give zero the status of a number, defining it
to be the result of subtracting a quantity from itself.
Brahmagupta’s work also includes a formula for the
area of a cyclic quadrilateral in terms of its sides (today
called BRAHMAGUPTA’S FORMULA), and presents meth-
ods for solving linear and quadratic equations, as well
as systems of equations. Brahmagupta also developed
sophisticated interpolation techniques for computing
sine values in trigonometry.

For the next 200 years, Indian scholars worked
to refine further methods of trigonometry and tech-
niques of astronomical calculation. The mathemati-
cian BH–ASKARA II of the 12th century made advances
in number theory, algebra, combinatorics, and astron-
omy, and wrote a comprehensive text summarizing
the state of mathematics and astronomy in India at his
time. Soon afterward, other Indian scholars developed
these ideas further. Jaina mathematicians also clarified
the standard EXPONENT rules and manipulated expo-
nents in a manner that suggests today that they were
also familiar with the basic principles of LOGARITHMs.

The 14th-century scholar MADHAVA OF SANGAMA-
GRAMMA made significant advances in ANALYSIS. He
produced the infinite series expansions of trigonometric
and inverse trigonometric functions (today called TAY-
LOR SERIES), discovered the BINOMIAL THEOREM, and
even produced GREGORY’S SERIES for π, which he used to
approximate its value to a considerably accurate degree.

During the first millennium India had very little
contact with the cultures of the West. News of the deci-
mal representation system, however, did manage to
spread to other countries relatively quickly. A
manuscript written in Syria in 662 discusses the new
method of calculation, and there is evidence that the
decimal system was being used in Cambodia and other
Asian countries soon afterward. By the ninth century,
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the decimal system was in common use in the Islamic
world, and from there it was quickly transmitted to
Europe. Arab scholars maintained a keen interest in the
work of Indian mathematicians for the centuries that
followed and took an active role in preserving and
translating many Indian texts.

See also ARABIC MATHEMATICS; BASE OF A NUMBER

SYSTEM.

indirect proof (proof by contradiction, reductio ad
absurdum) Most claims made in mathematics are
statements of the form:

If the premise A is true, then the conclusion B
is true.

An indirect proof of such a statement attempts to
establish the validity of the claim by assuming that the
premise A is true and showing, consequently, that the
conclusion B cannot be false. One does this by explor-
ing the logical consequences of assuming A and “not
B” until, at some point, a contradiction (such as, 1 + 1
= 3, for instance) is reached. Based on the belief that
mathematics should be free from absurdities, mathe-
maticians generally accept this approach as sufficient
for establishing the validity of B.

As an example, we prove: for a natural number n,
if n2 is even, then n is even. We base the proof on
known facts about even and odd numbers, and the
standard algebraic manipulations.

Proof: assume that n2 is even, and assume, to
the contrary, that n is not.

Then it must be the case that n is odd.
Consequently, n is one more than a multiple of
2 and can be written in the form 2k + 1, for
some number k.

This means that n2 is given by n2 = (2k +
1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 and so is
also one more than a multiple of 2.

We conclude that n2 is both even and
odd—clearly a contradiction.

It cannot be the case, then, that n is odd.
It must therefore be even.

Notice in this proof that we assumed premise A to
be true, and arrived at the contradiction that “not A”
also holds. An indirect proof that arrives at a contra-
diction of this type is usually called a “proof using the

contrapositive”: we established the validity of “A
implies B” by demonstrating that the CONTRAPOSITIVE

“not B implies not A” holds. EUCLID’S PROOF OF THE

INFINITUDE OF PRIMES is an example of an indirect
proof that does not rely on the contrapositive. EUCLID

(300–260 B.C.E.) was the first mathematician to exten-
sively employ the technique of indirect proof.

A DIRECT PROOF attempts to establish the validity
of a proposition “if A, then B” by assuming that the
premise A is true and following its logical consequences
until statement B is established. Not all propositions,
however, are amenable to a direct approach. For exam-
ple, given that a squared number n2 is even (that is, n2

= 2m, say) it is not immediate how one should proceed
to establish directly that n is consequently even.

Any indirect proof relies on the assumption that a
statement that cannot be false must be true. Some
philosophers and mathematicians who study the LAWS

OF THOUGHT seriously question this assumption.
See also CONTRADICTION; DEDUCTIVE/INDUCTIVE

REASONING; PROOF; QED; THEOREM.

induction (complete induction, finite induction, math-
ematical induction) The method of proof known as
mathematical induction has been used by scholars since
the earliest times, but it was not until 1838, thanks to
the work of English logician and mathematician
AUGUSTUS DE MORGAN, that the principle was prop-
erly identified and described. In a formal context, the
principle of mathematical induction asserts:

If a set S of numbers satisfies the following two
properties:

i. The number 1 belongs to S.
ii. If a number k belongs to S, then so

does its successor k + 1.

then it must be the case that S contains all the
natural numbers 1, 2, 3,…

(This principle appears as an AXIOM in GIUSEPPE

PEANO’s set of postulates for the construction of the
natural numbers.) Often the set S is taken to be a set of
natural numbers n for which some property or formula
P(n) is true: S = {n: P(n) holds}.

To illustrate the principle of induction, we shall
prove that, for every natural number n, we have that 

1 + 2 + 3 +…+ n equals n(n + 1). Let P(n) represent 1–
2
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this assertion and set S to be the set of all natural num-
bers for which this assertion is true:

P(n): 1 + 2 + 3 +…+ n = n(n + 1)

S = {n: the formula P(n) is true}

Our aim is to show that all natural numbers belong to
S (that is, that P(n) is true for all natural numbers n).
We must establish two things:

1. The number 1 belongs to S.

Entering n = 1 into the formula yields the patently 

true statement 1 = × 1 × (1 + 1). Thus P(1) is true 

and 1 ∈ S.

2. Assume that the number k belongs to S. That is,
assume that the formula

1 + 2 +…+k = k(k + 1)

is true. Does it necessarily follow that the corre-
sponding formula for k + 1 is valid? That is, can we
then deduce, under this assumption, that

1 + 2 +…+ k + (k + 1) = (k + 1)((k + 1) + 1)

will hold?

To achieve this, start with the equation P(k), assumed
to be valid, and add the quantity k + 1 to both sides.
This gives:

1 + 2 +…+ k + (k + 1) = k(k + 1) + (k + 1)

After rearranging and regrouping terms on the right,
this reads:

1 + 2 +…+ k + (k + 1) = (k + 1)(k + 2)

which is the statement P(k + 1). By the principle of
mathematical induction, it now follows that the set S
does indeed contain all the natural numbers, that is,
P(n) is a valid formula for all values of n.

The principle of mathematical induction is a pow-
erful technique that can establish the validity of an infi-
nite number of statements in one fell swoop. As
illustrated above, it is particularly useful for establish-

ing formulae and equations involving the natural num-
bers. One disadvantage, however, is that this method of
proof gives no indication as to what the appropriate
formula to be proved should be: the inductive method
of proof offers no insight, for instance, as to why the
formula for the sum of the first n counting numbers is 

n(n + 1). One must arrive at candidates for formulae 

via other means.
The inductive process is often likened to knocking

down a chain of dominoes. To successfully topple a
row of standing dominoes one must:

1. Knock down the first domino
2. Be certain that the dominoes are appropriately

spaced so that when any one domino falls, it is sure
to knock down the next

If one can establish that these two properties hold,
then all dominoes in a chain (even an infinitely long
one) will fall.

Despite the elegance and simplicity of the principle,
one must still apply care when utilizing the principle of
mathematical induction. The following amusing argu-
ment, for instance, illustrates what can go wrong:

Claim: all horses are the same color.

We “prove” this as follows: Let S be the set of all natu-
ral numbers for which the following statement is true.

P(n): if n horses stand in a field, then all horses
in that field are the same color.

Clearly P(1) is true: if only one horse is standing in a
field, then all horses in that field are the same color.
Now make the assumption, despite its absurdity, that
P(k) is true, that is, any k horses in a field must be the
same color. Now consider k+1 horses in a field. Remove
one horse, Chester, say. This leaves k horses in the field,
which, by our assumption, must all be the same color.
Return Chester to the field and remove a different
horse. This again leaves k horses in the field, which, by
assumption, must all be the same color. This shows that
Chester is the same color as the first k horses, and in
fact that all k+1 horses are the same color. We have,
from P(k), established that P(k+1) follows. By the prin-
ciple of mathematical induction, it now follows that
P(n) is true, no matter the value of n. In particular, all
the horses in the world are the same color.

1–
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1–
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To examine this argument, note that it is indeed the
case that P(1) is valid, and it is true that P(k) implies
P(k+1)—for almost all values of k. The fault in the
argument above is that although P(2) establishes P(3),
and P(3) establishes P(4), and so forth, it is not the case
that P(1) establishes P(2): removing one horse from a
field containing just two horses does not, alas, establish
that both horses are the same color. In our chain of
dominoes, all but the first two dominoes are properly
spaced: the first domino does not topple the second
domino during its fall, and the chain remains standing.
This illuminates that one must always be careful that
any argument presented in a proof by induction is
indeed valid for all values of k.

See also PROOF; SUMS OF POWERS.

inductive reasoning See DEDUCTIVE/INDUCTIVE

REASONING.

inequality A mathematical statement that one quan-
tity or expression is greater than or less than another is
called an inequality. The following symbols are used:

a > b, a is greater than b
a < b, a is less than b

a ≥ b, a is greater than or equal to b
a ≤ b, a is less than or equal to b

Inequalities satisfy a number of ORDER PROPERTIES.
An inequality is called closed or unconditional if it

holds for all values of the variables, if any, that appear
in the equation. For instance, the inequalities 3 ≤ 5,
x2 + 1 > x2, and 5 + y2 > 4y are closed inequalities for
they are always true. Inequalities that are not closed are
called open or conditional. The set of values of the vari-
ables that appear in the inequality that make the state-
ment true is called the solution set of the inequality. For
example, the open inequality 2x + 1 > 7 has as a solu-
tion set the set of all real numbers x for which x > 3.
The solution set of the open inequality a2 + b2 < 0 is the
EMPTY SET.

Open inequalities can be solved in much the same
manner as equations. As the order properties show, one
can add or subtract the same quantity to both sides of
the inequality and preserve the inequality, or can multi-
ply the inequality through by a positive quantity. Multi-
plying through by a negative quantity changes the sense

of the inequality. (For example, if a < b, then subtracting
the quantity a + b from both sides yields –b < –a. This
shows that the effect of multiplying through by –1 is to
reverse the sense of the inequality.) For example, one can
solve the inequality 2x + 1 > 7, as follows:

2x + 1 > 7
2x > 6

× 2x > × 6

x > 3

indeed yielding the solution set {x:x > 3}.
It is worth noting that if a · b > 0, then we can be

sure that a and b are either both positive or both nega-
tive. If, on the other hand, a · b < 0, then we can be
sure that a and b have opposite signs. These observa-
tions are essential for solving inequalities involving a
single variable raised to the second power. For exam-
ple, to solve the open inequality x2 + x – 2 > 0, factor
the QUADRATIC to obtain (x + 1)(x – 2) > 0 and exam-
ine the two possible scenarios. Either x + 1 and x – 2
are both greater than zero (yielding that x must be
greater than 2), or x + 1 and x – 2 are both less than
zero (yielding that x must be less than –1). Thus the
solution set to the inequality is the set of all real num-
bers x with x > 2 or x < –1.

A single inequality in two variables defines a region
in the plane. For example, the inequality 2x + y ≥ 3 is
satisfied by the points (0,3), (5,0), and (2,2), for
instance. In this example, the complete solution set is
the closed HALF-PLANE sitting above the line y = –2x +
3 in the plane.

There are a number of standard inequalities in
mathematics:

Triangle inequality: For any triangle with side-lengths
a,b, and c we have: a + b > c.
Arithmetic-geometric mean inequality: For nonnegative
numbers a1,a2,…,an we have:

Bernoulli’s inequality: For any real number x greater
than 1 and positive integer n:

(1 + x)n > 1 + nx

a a a
a a a

nn
n n

1 2
1 2⋅ ⋅ ≤ + + +

L
L
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(This can be proved by truncating the MACLAURIN

SERIES:

(1 + x)n = 1 + nx + n(n – 1)x2

+ n(n – 1)(n – 2)x3 + …,

One can also show that the inequality is also true for
–1 < x < 0).
Cauchy-Schwarz inequality: For any two VECTORS a
and b, their DOT PRODUCT satisfies:

|a · b| ≤ |a| × |b|

Thus, for any two lists of numbers a1,a2,…,an and
b1,b2,…,bn we have:

Weierstrass’s product inequality: For any list of num-
bers a1,a2,…,an with 0 ≤ ak ≤ 1 for all k, we have:

(1 – a1)(1 – a2)…(1 – an) ≥ 1 + a1 + a2+…+an

(This can be proved by INDUCTION on the number of
elements in the list.)
Napier’s inequality: For any two positive real numbers
a and b we have:

Exponential inequalities: For a positive real number x
and a real number c, we have:

xc < 1 + c(x – 1) if 0 < c < 1
xc > 1 + c(x – 1) if c > 1

(This is a generalization of Bernoulli’s inequality.)

Isoperimetric inequality: For any closed geometric fig-
ure in the plane with perimeter P, its area A is less than
the area of a circle of the same perimeter:

Equality holds if, and only if, that figure is a circle.

A mathematical statement that two quantities or
expressions are never equal is called an inequation. For
instance, the statement 3 ≠ 5 is an inequation.

Mathematicians and physicists often write a >> b if
a is significantly larger than b and a << b is a is signifi-
cantly smaller. For example, ≈ n if n >> 0.
There is a joke among mathematicians to use the sym-
bol ≤≥ to mean “less than, greater than, or possibly
equal to” when one is not sure of the numerical answer
to a problem.

See also ARITHMETIC-GEOMETRIC MEAN INEQUAL-
ITY; ISOPERIMETRIC PROBLEM; TRIANGLE INEQUALITY.

inference In logic, the general process of developing
an ARGUMENT to draw a conclusion from a set of
premises is called inference. The process could be
deductive or inductive.

In statistics, inference is the process of coming to a
conclusion about a population based on a study of a
sample. Sometimes the conclusion itself is called an
inference. Inferential statistics is the science of making
inferences and predictions about a population based on
numerical information gathered from a sample.

See also DEDUCTIVE/INDUCTIVE REASONING; POPU-
LATION AND SAMPLE; STATISTICS: INFERENTIAL.

infinite product The product of an infinite number
of factors, a1 × a2 × a3 ×…, is called an infinite product.
The nth number in the product is called the nth term of
the product, and the product of the first n terms, Pn =
a1 × a2 ×…× an is called the nth partial product. In
1812 CARL FRIEDRICH GAUSS introduced the notation 

for an infinite product (and for the nth 

partial product).
An infinite product might have a value of zero (1 ×

× × ×…, for example), might be infinite in 

value (1 × 2 × 3 × 4 ×…, for example), or could oscillate
in value (1 × (–1) × 1 × (–1) ×…, for instance). Only if
the partial products Pn approach a finite nonzero value
L as n → ∞ is the infinite product said to converge (to
the value L). Otherwise the infinite product diverges.

For example, the infinite product has nth 

partial product:
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which approaches the value as n → ∞. Thus we can 

write .

By taking the LOGARITHM, we see that an infinite 

product with positive terms converges if, and 

only if, the SERIES converges. (This is why 

mathematicians do not deem convergence to zero as a
valid form of convergence for an infinite product: the 

value of the sum would then be –∞) Mathe-

maticians have shown that a series converges 

absolutely exactly if converges.

In 1656 English mathematician JOHN WALLIS dis-
covered the following remarkable representation for 

as an infinite product:

This expression is today called WALLIS’S PRODUCT.
See also ABSOLUTE CONVERGENCE; ZETA FUNCTION.

infinitesimal A positive quantity, supposedly infin-
itely small yet not itself zero, is called an infinitesimal.
The abstract existence of such quantities played an
important, yet troublesome, role in the early develop-
ment of CALCULUS. The theoretical difficulties incurred
by them were later made moot when AUGUSTIN-LOUIS

CAUCHY (1789–1857) introduced the notion of a LIMIT.
Cauchy’s work put calculus on a sound theoretical set-
ting and removed the need to ever speak in terms of
infinitesimals. The notion is now considered obsolete.
(Although mathematicians have recently developed a
theory of nonstandard analysis that does, in some sense,
include a valid concept of an infinitesimal, after all.)

See also FLUXION; HISTORY OF CALCULUS (essay).

infinity In common usage, the word infinite is used to
denote something that is unbounded, limitless, and end-
less. For example, the set of counting numbers 1, 2, 3, …
is unbounded (after any given counting number there is
always another), and the set of these numbers is said to
be infinite. In geometry, a straight line is usually per-
ceived as without end, and so it is infinite in extent. In
the physical world, however, there is no clear example of
infinite quantity (or, if there were, we as humans would
never be able to fully perceive it). Physicists have come to
believe, for instance, that there are only a finite number
of atoms in the universe (on the order of 1087 atoms) and
that the universe is closed in shape and not of infinite
extent. If this is indeed the case, then it would never be
possible to draw an infinite line (there are not enough
atoms for the ink), and if the universe is indeed bounded,
the line may eventually loop back on itself. Nonetheless,
the infinite is an abstract concept we feel we can, on
some level, comprehend. It does, however, bring with it
many paradoxical difficulties, as demonstrated by
ZENO’S PARADOXES, HILBERT’S INFINITE HOTEL, and the
TRISTRAM SHANDY PARADOX, for example.

The notion of something that is unlimited arises in
mathematics in a number of varied settings. For instance:

1. Limits: In 1655 English mathematician John
Wallis introduced the symbol ∞ as shorthand for the
phrase “becoming large and more positive.” This nota-
tion is used today, in particular, in the study of LIMITs. 

For example, the statement limn→∞ = 5 is 

to be read: “the quantity approaches the 

value 5 as n becomes large and positive.” The equation 

limn→∞ = –∞ reads: “the function becomes

large and negative as x becomes large and positive.”
This means that for any negative number –M one cares
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to choose, one can always find a larger value of x for 

which is, and remains, less than –M for ever 

larger values of x.
2. Geometry: In DESARGUES’S THEOREM, French

mathematician GIRARD DESARGUES (1591–1661) found
it convenient to regard parallel lines as intersecting at
some point of infinity. Thus in the theory of PROJEC-
TIVE GEOMETRY, the notion of points “infinitely far
away” is given meaning and context.

3. Set theory: Italian astronomer and physicist
GALILEO GALILEI (1564–1642) observed that every
counting number can be matched with its square,
showing in some sense that the infinite set of counting
numbers is no more infinite than the subset of square
numbers:

In the 19th century, British algebraist AUGUSTUS DE

MORGAN (1806–71) and German mathematicians
JULIUS WILHELM RICHARD DEDEKIND (1831–1916) and
GEORG CANTOR (1845–1918) realized that this is a
common property of infinite sets, and that it is appro-
priate to use this property as the definition of what it
means for a set to be infinite:

A set is infinite if its elements can be matched,
without repetition, with the elements of a
proper subset of itself.

This definition has the advantage that it makes clear
what it means for a set to be finite.

A set is finite if it is not infinite.

(A comment should be made on this point. Although we
all have a clear intuitive understanding of what it means
for a set to be FINITE, it is not at all easy to provide a
direct mathematical description of this concept. However,
it is possible to show that no set of the form {1,2,3,…,n}
is infinite, that is, there is no means to match the ele-
ments of this set with the elements of a proper subset of
itself without producing repetition. This is done with an
INDUCTION argument on n. One can use this as a link
between this indirect approach and our intuitive under-

standing.) Cantor went further to develop an astounding
theory of CARDINALITY that shows, among other things,
that there are many different types of infinite sets, some
deserving of being called “more infinite” than others.

The notion of the infinite has been studied and used
since antiquity. ARCHIMEDES OF SYRACUSE (ca.287–212
B.C.E.) used the notion of an infinitely small quantity to
develop formulae for the areas and volumes of curved
figures and solids. (In some vague sense, one can view a
circle, for instance, as a regular polygon with infinitely
many sides, all infinitely short in length. It is better,
however, to view the circle as the LIMIT figure of a
sequence of regular polygons.) The geometer EUCLID

(ca.300–260 B.C.E.) proved that the set of PRIME num-
bers is infinite, and ZENO OF ELEA (ca. 490–425 B.C.E.)
contemplated the infinite in his studies of time, space,
and motion.

Although the scholars of Greek antiquity utilized
the infinite, they were wary of it. Euclid, for example,
went to great pains to phrase matters in a way that
never made mention of a quantity that was actually infi-
nite. For instance, he proved that from any given finite
collection of primes, one can always construct one more
(rather than state that the set of prime numbers is infi-
nite), and in his famous work THE ELEMENTS, he never
made mention of lines that continue indefinitely; he
only spoke of extending line segments further if needed.
(This subtle turn of phrase proved to be important to
GEORG FRIEDRICH BERNHARD RIEMANN with his 19th-
century invention of SPHERICAL GEOMETRY.) ARISTOTLE

(384–322 B.C.E.) argued that the “actual infinite” did
not exist, and that one can only argue in terms of
potentiality: given a finite part, one can always provide
more. This point of view held fast for almost two mil-
lennia. Cantor’s work on the actual infinite, inspired by
the beginning ideas of Dedekind and De Morgan, was
deemed revolutionary at its time.

inflection (inflexion) See CONCAVE UP/CONCAVE DOWN.

inflection point (point of inflection) A point on a
curve at which the tangent line to the curve changes
from rotating in one sense (clockwise or counterclock-
wise) to rotating in the opposite sense. The concavity
of the curve changes at such a point.

See also CONCAVE UP/CONCAVE DOWN.
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information theory The branch of PROBABILITY the-
ory that deals with the transmission, processing, and
checking of messages sent electronically is called infor-
mation theory. The field was established in 1948 by
American mathematician CLAUDE EDWARD SHANNON,
who first showed that it is possible to encode all types of
information (words, sounds, pictures) into simple
sequences of 0 and 1 bits that can then be transmitted
along a wire as pulses. (Up to then, scientists thought it
would be necessary to transmit electromagnetic waves
along wires.) To adjust for erroneous noise that is often
transmitted along with the message, mathematicians
have since developed probability techniques that deter-
mine the likelihood that the message received is free
from errors. Over the decades, mathematicians have also
developed efficient redundancy checks to help detect and
correct errors. These techniques are far more efficient
than simply repeating the message for comparison.

Information theory is also used to measure the
amount of information a signal of any kind might
contain. Transmitting and correctly receiving a single
letter of the alphabet—that is, one of any 26 letters—
contains more information, for instance, than the
receipt of a single binary digit, 0 or 1. Mathemati-
cians use logarithms to measure information content
and say that receipt of a letter of the alphabet contains 

as much information as receipt of a 

binary digit. (We have .) This assumes that 

each letter in the alphabet is equally likely to occur. In
general, if the probability of the letter a being sent is
p1, the letter b is p2, and so forth, then the measure of
informational content is given by:

– p1 log2 p1 – p2 log2 p2 –…– p26 log2 p26

(This agrees with the previous value of 4.7 computed
when each probability pi has value 1/26.) This quantity
is a measure of the entropy of the initial data set.

The field of information theory has obvious applica-
tions to work in telegraphy, radio transmission, and the
like, but it has also recently been used to analyze human
speech, in the study of languages, and in cybernetics.

instantaneous value The value of a varying quan-
tity, such as VELOCITY, at a particular instant in time is

called its instantaneous value. An instantaneous value
is a DERIVATIVE.

integer (directed number, signed number) Any of the
positive or negative WHOLE NUMBERs, or ZERO, is called
an integer: …–3,–2,–1,0,1,2,3,… More precisely, once
the NATURAL NUMBERs have been defined via PEANO’S
POSTULATES, say, one can define an integer to be any
quantity that can be expressed as the sum or difference
of two natural numbers. (For instance, the number –5
can be regarded, formally, as the pair of natural num-
bers 3 and 8 written in the form 3–8. It can be defined
equally well by the pair 1–6 or the pair 12–17, for
example.) The difference of any two integers is always
another integer, which constitutes a mathematical RING.
The set of integers is denoted Z (from the German word
Zahlen for “numbers”). German mathematician GEORG

CANTOR (1845–1918) showed that the set of integers is
COUNTABLE and so has CARDINALITY ℵ0.

The TAYLOR SERIES of has the 

integers appearing as coefficients:

(This series is valid for –1 < x < 1.) This shows, for 

instance, that in setting x = , the fraction has the 

integers appearing in turn in each decimal place: 

= 0.12345.... (Unfortunately our practice of “carry-

ing digits” disguises the fact that the pattern we see
continues.)

See also FLOOR/CEILING/FRACTIONAL PART FUNC-
TIONS.

integral See ANTIDIFFERENTIATION; INTEGRAL CAL-
CULUS.

integral calculus The calculation of sums of infi-
nitely small quantities, INFINITESIMALs, is called inte-
gral calculus. For example, consider the problem of
finding the length of a curved path using only a straight
yardstick. One could approximate the distance along
the curve by marking a number of points along the
curve, measuring the straight-line segments between
them, and summing the lengths of these segments.
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An even better approximation could be made using
more points and consequently shorter line segments.
The actual length of the curve would be the LIMIT value
of these improved approximations as we use shorter
and shorter line segments connecting more and more
points on the curve (the sum of infinitely short line seg-
ments). Similarly, the area under a curve drawn in the
plane can be approximated as the sum of the areas of a
finite number of rectangles drawn under the curve.
Using narrower and narrower rectangles will give bet-
ter and better approximations. The actual area under
the curve is the limit value of these approximations (the
sum of infinitely narrow rectangles).

Any process that involves segmenting a quantity
into manageable pieces, summing, and taking the limit
of these sums as the process is refined falls under the
category of integral calculus. Traditionally, integral
calculus is first taught as the process of finding the
area under a curve y = f(x) over an interval [a,b]. The
area denoted

∫b
a f(x) dx

is called a definite integral, and is defined to be the
limit, as h tends to zero, of the sums of the areas of
rectangles of width at most h, used to approximate the
area of the curve as described above. Such an approxi-
mation with rectangles is called a Riemann sum, in
honor of the German mathematician BERNHARD RIE-
MANN (1826–66), whose work led mathematicians to
show that this approach is indeed mathematically
sound, in particular that, under reasonable conditions,
all ways of approximating the area under the curve
lead to the same limit value.

GOTTFRIED WILHELM LEIBNIZ (1646–1716), one of
the inventors of CALCULUS, introduced the symbol ∫ to
represent an integral. He thought of it as an elongated

S denoting sum, and he called the theory of integration
calculus summatorius. Swiss mathematician Johann
Bernoulli (1667–1748) of the famous BERNOULLI FAM-
ILY worked with Leibniz in developing the theory, but
he preferred the name calculus integralis and the use of
a capital letter I as the sign of integration. (In Latin, the
word integralis means “making up a whole.”) The two
gentlemen settled on a happy compromise of using
Bernoulli’s name for the theory and Leibniz’s symbol
for the integral.

The idea of using a limit to calculate the areas of
curved figures, or the lengths of curved paths, has been
used by scholars from the time of ARCHIMEDES OF

SYRACUSE in the third century B.C.E. to the time of
PIERRE DE FERMAT in the middle of the 17th-century. In
practice, however, the techniques employed to perform
these calculations have always been extremely difficult
and complicated. The great achievement of Leibniz and
ISAAC NEWTON (1642–1727), independent discoverers
of calculus, was to recognize that integration is simply a
process of reverse differentiation, today called ANTIDIF-
FERENTIATION. This result, known as the FUNDAMENTAL

THEOREM OF CALCULUS, essentially states that to find
the area under a curve y = f(x) over an interval [a,b],
look for a function F(x) whose DERIVATIVE is f(x). Then:

∫b
a f (x)dx = F(b) – F(a)

The function F(x) is called an antiderivative of f. The
right-hand side of this equation is often abbreviated
as F(x)|ba . Thus, for example, the area under the
parabola y = x2 from x = 0 to x = 2, is given by 

. This remarkable 

result obviates all need to work with complicated
limits.

To highlight the interplay between integration and
reverse differentiation, the antiderivative of a function
f(x) is usually denoted ∫f(x)dx and is called the indefi-
nite integral of f. It is defined up to a CONSTANT OF

INTEGRATION. Thus ∫f(x)dx is a function whose deriva-
tive is f(x) (whereas the definite integral ∫b

a f(x)dx is a
number equal to the area under the curve y = f(x) over
the interval [a,b)]). The thrust of integral calculus is the
development of methods for finding the antiderivatives
of functions.

Since the derivative of the sum of two functions is
the sum of the derivatives, and the derivative of a
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function multiplied by a number k is just k times its
derivative, we have:

∫f (x) + g(x)dx = ∫f(x)dx + ∫g(x)dx
∫k · f (x)dx = k ∫f (x)dx

The corresponding results for definite integrals also
hold true. This follows from the fundamental theorem
of calculus (since these results are true for the
antiderivatives), but they can also be seen to be valid
by geometric arguments. (For example, if the values of
a graph are multiplied by a number k, that is, if the
function y = f(x) is replaced by y = k · f (x), then the
area under the graph increases by a factor of k.)

The following table shows some common integrals:

There are a number of techniques for finding the
indefinite integrals of more-complicated functions such

as INTEGRATION BY PARTS and INTEGRATION BY SUB-
STITUTION.

See also ANTIDIFFERENTIATION; CALCULUS; DIF-
FERENTIAL CALCULUS; DOUBLE INTEGRAL; HISTORY OF

CALCULUS (essay); IMPROPER INTEGRAL; NUMERICAL

INTEGRATION.

integral test See CONVERGENT SERIES.

integrand The function that is to be integrated is
called the integrand. For example, the expression f(x)
in either of the integrals ∫f (x)dx or ∫ba f (x)dx is the
integrand.

See also ANTIDIFFERENTIATION; INTEGRAL CALCULUS.

integration by parts This technique of integration is
useful for finding the integral of the product of two
functions. It makes use of the PRODUCT RULE for differ-
entiation in reverse. Specifically, the product rule reads:

(u(x) · v(x)) = u′(x)v(x) – u(x)v′(x)

Integrating both sides and rearranging thus yields:

∫u(x)v′(x)dx = u(x)v(x) – ∫u′(x)v(x)dx

(A CONSTANT OF INTEGRATION will appear when all
integrals are finally computed.) Thus one can make
effective use of this formula if the integral ∫u′(x)v(x)dx
turns out to be much easier to compute. For example,
to evaluate ∫x cos x dx, write: u(x) = x and v′(x) =
cos(x), yielding u′(x) = 1 and v(x) = sin(x) (again ignor-
ing a constant of integration for the moment) so that:

∫xcos(x)dx = xsin(x) – ∫1· sin(x)dx = xsin(x) + cos(x) + C

One typically chooses the factor that is easy to differen-
tiate to be u(x) and the factor that is straightforward to
integrate for v′(x).

The integration-by-parts formula can be used even
if the integrand is composed of a single factor. One can
“insert a 1” into the integrand to imagine that there is
a second factor equal to the constant function 1. To
illustrate, to compute ∫ln(x)dx write: ∫ln(x)dx = ∫ln(x) ·
1dx and set:

d
––
dx
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f (x) ∫f (x)dx

x r

ln |x| + C

e x e x + C

e ax e ax + C

ax + C

ln x x lnx – x + C

sin x –cos x + C

cos x sinx + C

tan x –ln |cos x | + C

csc x ln |csc x – cot x | + C

sec x ln |sec x + tan x | + C

cot x ln |sin x | + C

sin2 x x – sin 2x + C

cos2 x x + sin 2x + C

sinh x cosh x + C

cosh x sinh x + C
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Then:

The integration-by-parts formula can be applied more
than once to complete an integration problem. For
example, to evaluate ∫ex cos(x)dx, one application of
the technique yields:

∫ex cos(x)dx = ex sin(x) – ∫ex sin(x)dx

Applying the integration-by-parts technique to the sec-
ond integral yields:

∫ex cos(x)dx = ex sin(x) – ∫ex sin(x)dx
= ex sin(x) – [–ex cos(x) – ∫ex (–cos(x))dx]
= ex (sin(x) + cos(x)) – ∫ex cos(x) dx

Algebra now shows that the integral we seek is given by:

The method of integration by parts was discovered by
English mathematician BROOK TAYLOR (1685–1731).

See also ANTIDIFFERENTIATION; INTEGRAL CAL-
CULUS; INTEGRATION BY SUBSTITUTION; RECURRENCE

RELATION.

integration by substitution (change of variable, sub-
stitution rule for integration) This technique of inte-
gration is used to find the integral of a function easily
recognized as a COMPOSITION of two simpler functions.
It is essentially the CHAIN RULE for differentiation
employed in reverse. Specifically, the chain rule states:

Integrating both sides yields:

Noting that, since f is the antiderivative of f′, the right-
hand side of this formula can be thought of as the
indefinite integral of f′ evaluated with u as the variable.
Thus it is valid to write:

This equation is the change-of-variables equation for
integration. For example, we can use it to evaluate 

∫2x(1 + x2)4 dx. Setting u(x) = 1 + x2, giving = 2x,
the integral reads:

Notice that the notation we used here mimics the prop-
erties of fractions: we are permitted to replace a term 

dx under an integral sign by the term dx.

When using this technique, one typically chooses
u(x) to be a function that simplifies a complicated part
of the INTEGRAND, and then adjusts matters so that the 

factor appears explicitly. For example, to evaluate 

∫x2 dx, it is natural to set u(x) = x3 – 1. Then 

= 3x3, and we have:
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When computing a definite integral via this tech-
nique, it is advisable to compute the indefinite integral
first and then, at the end of the process, work with the
limits of integration. For example, the definite integral 

∫5
1 x2 dx does not equal ∫5

1√
–
u du, since the 

values x = 1 to x = 5 refer to the x-variable and not to
the new u-variable. We compute:

See also ANTIDIFFERENTIATION; INTEGRAL CALCU-
LUS; INTEGRATION BY PARTS.

intercept A point at which two figures intersect is
called an intercept. The term is usually reserved for
the locations at which the GRAPH OF A FUNCTION

crosses the x-axis and the y-axis in a system of
CARTESIAN COORDINATES, to form what are called the
x- and y-intercepts. If a straight line has x-intercept
(a, 0) and y-intercept (0, b), then the equation of the 

line is given by + = 1. This is called the “intercept 
form” of its equation.

The y-intercept of an arbitrary function y = f(x) is
the point (0, f (0)).

interest A fee paid for the use of money is called
interest. For instance, mortgage companies charge home
buyers a fee for borrowing money, and credit card com-
panies charge customers a fee for the privilege of using
company money to make purchases. In reverse, banks
pay customers money for maintaining a balance in a
savings account. (The customers have, in effect, lent
money to the institution.) In any such arrangement, the
amount borrowed or invested is called the principal or
capital, and the fee, expressed as a percentage rate, that
is, as a number of dollars per hundred to be paid each
year of the loan, is called the interest rate.

There are two types of interest. The first, simple
interest, is computed only on the principal. For exam-
ple, if a customer borrows $3,000 for 3 years under
simple interest computed at 15 percent per annum, then
the customer has agreed to pay 0.15 × 3,000 = $450 for
each year of the loan, plus return the original $3,000 at

the end of the 3-year period. The customer thus pays a
total of $4,350 at the end of the 3 years.

In general, the total interest I paid on a principal
amount P at an annual interest rate R (expressed as a
decimal) for T years is given by the formula:

I = P × R × T

(In our example, I = 3,000 × 0.15 × 3 = 1,350.) At the
end of the loan, the amount A owed is:

A = P + I = P + P × R × T = P(1 + RT)

It is rare today, however, that a lending institution will
provide loans with fees computed by simple interest.
Typically, one is also expected to pay interest on any
interest incurred as the loan progresses.

Compound interest is calculated by adding the
interest to the principal and recalculating the interest
at the end of agreed “conversion periods.” For exam-
ple, a credit card company may charge 18 percent
interest per annum, but will compound the interest
monthly (at a rate of 18/12 = 1.5% per month).
Thus, after borrowing $1,000, say, a customer is
expected to return the principal plus 0.015×1,000 =
$15 in interest, that is, a total of $1,015, at the end
of the first month. In failing to do so, the customer
will then be expected to return this amount, plus an
additional 1.5% on this amount, that is, a total of
1,015 × (1 + 0.015) = $1,030.23 at the end of the
second month. At the end of each month passed, 

the amount owed increases by a factor of 

. After 1 year, that is 12 months, the balance

on the credit card will thus be =

$1,195.62.
In general, if a principal amount of P dollars is bor-

rowed at an interest rate of R percent per year
(expressed as a decimal), and the interest is compounded
n times a year for T years, then the amount A owed at
the end of that time period is given by the formula:

A P
R
n

nT

= +





1

1 000 1
0 18
12

12

,
.× +





1 0 015= +( . )

1
0 18
12

+





.
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1
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Consider now a bank that offers its savings
account customers an annual interest rate of 10 percent
compounded weekly. A $1,000 investment after 1 

year would thus yield . 

If the interest is instead computed daily, customers 

receive a slightly better return: 

= $1,105.16, and an even better return if the interest is
compounded hourly, or even every minute. The maxi-
mum possible return is achieved when interest is com-
puted every instant.

In the mid-1700s Swiss mathematician LEON-
HARD EULER tackled the problem of computing con-
tinuously compounded interest and showed that as 

n becomes large, the quantity A = P(1 + )nT

approaches the value PeRT. (A study of the number e
establishes this claim.) The formula:

A = PeRT

thus represents the balance of an investment, or a loan,
after T years, under the ideal state of interest com-
pounded continuously. Thus our $1,000 investment,
after 1 year, compounded continuously at a rate of 10
percent per annum, yields a return of 1,000 × e0.10×1 =
$1,105.17. Banks today use this formula to compute
interest on savings accounts.

The practice of charging a fee for the use of money
is an ancient one. Records show that many civiliza-
tions, the Hebrews, the Greeks, the Romans, and even
the Babylonians of 2000 B.C.E., for instance, charged
simple interest on loans. The Romans called the prac-
tice usury and often fees were as high as 60 percent.
Some religious orders, including Christianity, Judaism,
and Islam, questioned the ethics of the practice, arguing
that one should only be charged a fee for the use of
something that could be worn out or lose value due to
wear and tear. (At the time, money was not seen to lose
any value during the course of a loan.) For many cen-
turies the practice of charging a fee for the use of
money was forbidden by these orders.

During the growth of industry and trade during the
Middle Ages and the Renaissance, attitudes changed.
More and more people requested cash loans to take
part in new opportunities, and lenders felt it appropri-

ate to be compensated for not taking part in those
opportunities themselves. Lenders again started charg-
ing fees. The church relaxed its attitude toward usury,
and new establishments, called banks, were formed to
handle, store, and loan money. The term interest from
the Latin phrase id quod interest meaning “that which
is between” soon replaced the term usury. Today the
word usury is used only in a negative context of charg-
ing illegally high interest rates.

See also E.

interior angle The ANGLE formed by two sides of a
POLYGON lying inside the polygon is called an interior
angle. For example, all four interior angles of a RECT-
ANGLE equal 90°.

If an interior angle is greater than 180°, then that
angle is called a “re-entrant angle” and the polygon is
concave. Any interior angle less than 180° is called
“salient.”

Each interior angle of an n-sided regular polygon 

equals × 180°.

See also CONCAVE/CONVEX; TRANSVERSAL.

intermediate-value theorem (Bolzano’s theorem)
Named after the Czech mathematician BERNHARD

PLACIDUS BOLZANO (1781–1848), the intermediate-
value theorem asserts that if f(x) is a CONTINUOUS func-
tion defined on a closed INTERVAL, then this function
assumes every value between f(a) and f(b); that is, if N
is any number between f(a) and f(b), then there is at
least one point c between a and b such that f(c) = N.
For example, the function f(x) = x2 is continuous on
the interval [3,4] and has f(3) = 9 and f(4) = 16. Since
11 is between 9 and 16, the intermediate value theorem
ensures us of the existence of a number c, between 3
and 4, such that f(c) = c2 = 11, that is, it proves that the
square root of 11 exists.

The theorem is intuitively clear if we think of a con-
tinuous function on a closed interval as one whose
graph consists of a single continuous piece with no
gaps, jumps, or holes: in moving a pencil from the left
endpoint (a, f(a)) to the right endpoint (b, f(b)), it seems
obvious that the pencil tip adopts all “heights” between
initial height f(a) and final height f(b). In climbing the
face of a mountain, say, one must indeed pass through

n – 2
––  n

R–n

1 000 1
0 10
365

365

,
.× +





=

1 000 1
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1 105 06
52

,
.

$ , .× +
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
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every intermediate height from the base to the apex. A
rigorous proof of the theorem, however, relies on the
notion of the “completeness” of the real numbers
(meaning that no points, like the square root of 11, are
missing from the real line). This is a subtle property, one
that was not properly understood until the late 1800s
with the construction of a DEDEKIND CUT.

The intermediate-value theorem is useful for locat-
ing roots of equations. For example, consider the func-
tion f(x) = x3 +2 x – 5. It is continuous on the interval
[1,2] and satisfies f(1) < 0 and f(2) > 0. It follows then
that the equation x3 + 2x – 5 = 0 has a root some-
where between 1 and 2. By working with smaller and
smaller intervals, one can often use this method to
determine the location of a root with a good degree of
precision. The BISECTION METHOD, for example,
employs this technique.

The intermediate-value theorem has a number of
amusing consequences:

In theory, it is always possible to slice a pan-
cake, no matter how irregular its shape,
exactly in half with a single straight-line cut.

Hold a knife to the left of the pancake so that 100 per-
cent of the cake lies to its right. Now slide the knife, in
parallel, across the pancake until it lies on the other
side of the cake. At this location, zero percent of the
pancake lies to the right of the knife. By the intermedi-
ate-value theorem, there must be some intermediate
location for the knife that yields the value of 50 percent
lying to its right. That is, there is, in theory, a knife
position that cuts the pancake exactly in half.

Note that this result does not depend on the angle
we initially hold the knife—vertically, horizontally, or
diagonally. We have in fact shown that it is always pos-
sible to slice a pancake in half with a knife held at any
previously set angle.

In theory, it is always possible to simultaneously
slice two pancakes each exactly in half with a
single straight-line cut, no matter the shapes of
the pancakes nor their location on the table.

This result is known as the two-pancake theorem.
The previous result assures us we are always able to
slice the first pancake exactly in half, pointing the knife
at any angle we care to choose. The concern is that the
knife might or might not cut the second pancake. Sup-

pose we find a direction, deem this angle zero degrees,
that slices the first pancake in half, but misses the sec-
ond pancake entirely, with 100 percent of the second
pancake lying to the right of the knife, say. Turn the
knife 180°. We now have a knife cut (same line, oppo-
site direction) that slices the first pancake exactly in
half, with the second pancake lying entirely to its left,
that is, zero percent to the right. By the intermediate-
value theorem, there must be an intermediate angle
between zero degrees and 180° that slices the first pan-
cake exactly in half, and has 50 percent of the second
pancake lying to its right—that is, one that simultane-
ously slices the second pancake in half as well.

At any instant, there are two points on the
Earth’s equator directly opposite each other
with exactly the same air temperature.

For each position θ degrees longitude on the equa-
tor, let f (θ) be the air temperature at this position
minus the air temperature at the opposite point of the
equator, at θ + 180°:

f(θ) = temp(θ) – temp(θ + 180°)

Notice that f (θ + 180°) equals the same value, but
opposite in sign, to f(θ):

f(θ + 180°) = temp(θ + 180°) – temp(θ) = –f(θ)

Thus the function f (θ) moves from positive to negative
values. By the intermediate-value theorem, there must
be an intermediate location where the function is zero.
This is the desired position on the Earth’s equator.

See also EXTREME-VALUE THEOREM; FIXED POINT;
HAM-SANDWICH THEOREM; SPHERE.

interpolation The process of estimating the value of
a function between two values already known is called
interpolation. For example, if the temperature of a cup
of tea was initially 200°F, and two minutes later it was
180°F, one might guess that its temperature at the one-
minute mark was 190°F, based in the assumption that
the temperature decreases steadily over time. This rep-
resents that simplest method of interpolation, called
linear interpolation: we presuppose that the variation
of the function can be described as a straight line pass-
ing through the known values.
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If a function f has values f(a) and f(b) at locations a
and b, the linear interpolation estimates the value of
the function at x, between a and b, as:

If the graph of f is smooth and the interval [a,b] is
small, then linear interpolation generally gives a good
approximation of the true value. If, however, the inter-
val is large, it is less likely that this will remain the
case. For example, given that 32 = 9 and 34 = 81, linear
interpolation suggests that 33 (which equals 27) is 

approximately 9 + (81 –9) =45.

Improved methods of interpolation take into
account other data values. For example, JOSEPH-LOUIS

LAGRANGE’s interpolation method, called LAGRANGE’S
FORMULA, estimates function values by fitting a POLY-
NOMIAL to all the known data values. Alternatively, if it
is suspected, for example, that the function is exponen-
tial, that is, of the form y = bx, then linear interpolation
works well for the logarithm of the function: the rela-
tionship log y = b log x is linear.

EXTRAPOLATION is the process of estimating func-
tion values outside of the range of values observed.

See also REGRESSION.

interval Any single segment of the number line is
called an interval. More precisely, an interval is a set of
numbers containing all real numbers between two
given numbers. The given numbers are called end-
points, and they might, or might not, be regarded as
part of the interval. For example, the set of all real
numbers between, and including, 2 and 5 is an interval;
as is the set of all real numbers strictly greater than 9
but less than or equal to 23.

An interval is called closed if both endpoints are
included. Square brackets are used to indicate that this
is the case. For example,

[a,b]

denotes the set of all real numbers x that satisfy a ≤ x ≤ b.
On a number line, the endpoints are marked by blacked-
in circles to indicate that they are included.

An interval is open if neither endpoint is included.
Parentheses are used to indicate that this is the intent.
For example:

(a,b)

denotes the set of all real numbers x that satisfy a < x <
b. On a number line, the endpoints are marked by open
circles to indicate that they are not included.

If a variable x satisfies either a ≤ x < b or a < x ≤ b
then it is said to be located in a half-open interval
denoted, respectively:

[a,b) or (a,b]

On a number line, a blacked-in circle marks the end-
point that is included in the interval and an open circle
the endpoint that is excluded.

With this notational system, the two intervals
described in the opening paragraph are thus denoted
[2,5] and (9,23]. Some texts use reverse square brackets
instead of parentheses to denote the exclusion of end-
points—thus an open interval is denoted ]a,b[, and a
half-open interval as [a,b[, for example.

The length of an interval is the distance between its
endpoints. For example, the interval (9, 23] has length
14, as do the intervals [9, 23], [9, 23), and (9, 23).

Incorporating the symbol ∞ for infinity allows one
to denote unbounded intervals. For example, [a, ∞)
denotes the set of all real numbers x larger than or
equal to a; (–∞,a) denotes the set of all real numbers x
strictly less than a; and so on. Sometimes mathemati-
cians write (–∞,∞) for the set of all real numbers. (One
typically does not place a square bracket next to the
infinity symbol, although it is possible to define a num-
ber system that allows for inclusion of ∞ as a valid
number for consideration.)

An interval can consist of a single point (the inter-
val [1,1] for example) or can be the empty set (the
interval [4,1] for example). The intersection of any two
intervals is an interval, but the union of two intervals
might or might not be an interval.

See also CARDINALITY; INTERMEDIATE-VALUE

THEOREM.

invariant A property, quantity, or relationship that is
not changed by collection of specific operations or
transformations, or by how that property is observed,
is called an invariant. For example, the distance
between two points in a plane does not change under a
ROTATION. Thus distance is invariant of rotations. (It is
not, however, invariant of DILATIONs, for instance.) An

3 – 2–––
4 – 2

f x f a
x a
b a

f b f a( ) ( ) ( ) ( )≈ + −
−

−( )
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application of EULER’S THEOREM shows that any soccer
ball design that uses hexagons and pentagons, no mat-
ter how irregular those shapes may be, with three edges
meeting at each vertex, must include precisely 12 pen-
tagons. (The number of hexagons can vary.) The count
of pentagons is thus an invariant in soccer ball design.

Some invariants can be quite surprising. For exam-
ple, consider the following theoretical exercise:

Suppose 10 ft of length is added to a rope
that was just long enough to wrap snugly
around the equator of the Earth. Imagine that
the rope is again wrapped around the equator,
but this time—due to its extra length—it hov-
ers just above the ground. How high is the
gap between the ground and the suspended
rope?

To answer this question, let R denote the radius of the 

Earth. The length of the extended rope is 2πR + 10 =  

feet, which corresponds to the circumference

of a circle of radius R + feet. This shows that the 

rope hovers ≈ 1.6 ft off the ground. Notice that the 

answer, apart from being surprisingly large in value,
does not depend on the value of R. This means that the
size of the planet is immaterial. Thus if 10 ft of length
is added to a rope that fits snugly around the equator
of any planet—Mars, Jupiter, or a planet the size of a 

pea—the extended rope will always hover ft off the 

ground. This value is an invariant for the problem.
As another example, consider the following famous

“splitting game”:

Write the number 12 at the top of a page and
below it write a pair of positive whole numbers
that sum to 12, say, 7 and 5. On the side of the
paper record the product 7 × 5 = 35. Now
write below 7 a pair of numbers that sum to 7,
say, 3 and 4, and record the product 3 × 4 =
12. Continue in this manner, “splitting” each
number that appears in the diagram into two
and recording the product of the pair of num-
bers chosen. Do this until the number 1
appears 12 times. The following represents one
possible such splitting diagram:

Now sum all the products recorded. What
value is obtained?

Surprisingly, no matter which splitting diagram one
constructs, the sum of products is an invariant of the
game and will always have value 66. (The number 66
happens to be the 11th TRIANGULAR NUMBER. In gen-
eral, if one begins this game with a number N, then the
invariant that arises in the game is the (N –1)th trian-
gular number.)

inverse element An element of a set that, when com-
bined with another element produces the IDENTITY ELE-
MENT of the set, is called an inverse element. More
precisely, if a set S comes equipped with a BINARY

OPERATION “*” and an identity element e, then an
inverse for an element a of the set is another element b
such that a*b = b*a = e.

For example, for the set of numbers under the
operation of addition, the inverse of any number a is its
negative –a. In this context, the identity element is zero
and we do indeed have:

a + (–a) = (–a) + a = 0

Under the operation of multiplication, the identity ele-
ment is 1, and the inverse of any (nonzero) number a is 

its reciprocal :

a × = × a = 1

Each and every element of a GROUP is required to have
an inverse. The inverse of the identity element is itself.

1–
a

1–
a

1–
a

5–π

5–π

5–π

2
5π
π

R +
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
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It is not possible for a single element a to have two
different inverses b1 and b2. This is established by not-
ing that e = a*b2 so that b1 = b1*e = b1*(a*b2) =
(b1*a)*b2 = e*b2 = b2.

From the symmetry of the definition, we have that if
b is the inverse of a, then a is also the inverse of b. Con-
sequently, the inverse of an inverse is the original ele-
ment. Phrased in terms of addition, this reads –(–a) = a
and in terms of multiplication as:

The inverse of an element a is often denoted a–1, espe-
cially if the binary operation under consideration can be
interpreted as a type of multiplication. For example, the
inverse of a square MATRIX A, if it exists, is denoted A–1.

inverse function (inverse mapping, reverse function)
A FUNCTION f with domain D and range R, f : D → R,
is said to be invertible or to have an inverse function if,
for each possible output y of the function, y ∈ R, there
is one, and only one, input x ∈ D, that produces that
output. We write x = f –1(y) for the input x that pro-
duces the given output y. (Thus x = f –1(y) if, and only
if, f(x) = y.) This then defines a function f –1: R → D,
called the inverse function to f. In some sense, the
inverse function “undoes” the original function.

For example, consider the function on real numbers
that doubles an input and adds 3: f(x) = 2x + 3. The out-
put 11 is produced from the input of 4, and so we have
f –1(11) = 4. In general, an output of y is produced 

from an input x = , and so f –1(y) = . (This 

formula is obtained by solving for x in the equation: 

y = 2x + 3 to yield x = .)

Since f –1(y) is the input that produces the output y,
and x is the input that produces the output f(x), the fol-
lowing relations hold:

f(f –1(y)) = y for all values y in the range of f

and

f –1(f(x)) = x for all x in the domain of f

This explains the awkward notation for the inverse
function: In the study of the COMPOSITION of functions,

f m denotes the composite f0 f0…0f (m times), and we
have f m

0 f n = f m+n. To give meaning to the quantity f 0,
this rule states that f0 f 0 = f 1

0 f 0 = f 1+0 = f, suggesting
that we should set f 0(x) = x for all values x. Conse-
quently, the statement f –1

0 f 1 = f 0 suggests that f –1(f(x))
= x for all x, indicating that f –1 is the appropriate
notation for the inverse function. The superscript of
–1 should not be confused with the operation of 

inversion. (We write (f(x))–1 to denote , and leave 

f –1(x) to mean the inverse function of f.)
It is customary to denote the input of a real function

as the variable x and the output as the variable y. This
can lead to some confusion. For instance, to compute
the inverse function of y = f(x) = x3 + 2 we solve for the
input x in the equation in terms of the output y to yield,
x = , but we interchange the x and y variables so
that x denotes the new input and y the new output: y =

. This yields the formula f –1(x) = for the
inverse function.

As the formulae y = f(x) and x = f –1(y) represent
exactly the same equation, the two formulae yield
exactly the same curves when plotted against a pair of
x- y-coordinate axes. Following the convention to
interchange the x- and y-variables for the second equa-
tion to write y = f –1(x) is tantamount to interchanging
the x- and y-axes in the graph of the curve. Flipping the
graph across the diagonal line y = x returns the y-axis
to the vertical position and the x-axis to the horizontal
position, but also flips the curve drawn across the diag-
onal line. Thus the graphs of y = f(x) and y = f –1(x) are
mirror images of each other across a diagonal line.

Not every function possesses an inverse function.
For example, there is no inverse function to the squar-
ing function y = x2: some outputs arise from more than
one possible input. (The output of 4, for instance,
arises from the two inputs 2 and –2.) However, it is
often possible to restrict a function to a certain portion
of its domain and define an inverse function for that
restricted domain. For instance, for the squaring func-
tion, if we require that only nonnegative inputs are to
be considered, then an inverse function does exist: we
have y = √

–
x (the positive square root) as inverse func-

tion. One defines the INVERSE TRIGONOMETRIC FUNC-
TIONS, for example, by restricting to a suitable portion
of the domain.

If the function y = f(x), then the derivative of the
inverse function y = f –1(x) is given by:

3√x – 2
3√x – 2

3√y – 2

1
––
f(x)

y – 3
–––

2

y – 3
–––

2
y – 3
–––

2

1
1
a

= a
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provided that the quantity in the denominator is not
zero. This formula can be established by making use of
the CHAIN RULE in the statement f(y) = x. (Differentiating 

gives: f ′(y) · y′ = 1 and so y′ = , which is the above 

formula.)
A simple version of a general inverse-function theo-

rem states that if the derivative of a function y = f(x) is
nonzero at a point x = a, then an inverse function exists,
at least when the domain is restricted to a small interval
about a. (Since the derivative of f(x) = x2 is zero at x =
0, it is not possible to define an inverse function to the
squaring function about the point x = 0.)

inverse hyperbolic functions (area hyperbolic func-
tions) Defined in an analogous way to the INVERSE

TRIGONOMETRIC FUNCTIONS, the inverse hyperbolic
functions are the inverse functions of the HYPERBOLIC

FUNCTIONS. For instance, the inverse hyperbolic sine of
a number x, written arc sinh x or sinh–1x, is a value a
whose hyperbolic sine is x: sinh a = x. Similarly, the
inverse hyperbolic cosine of x is a value a with cosh a =
x, and the inverse hyperbolic tangent of x is a value a
such that tanh a = x. (Technically, for a given value x
there are two different values a for which cosh a = x,
one positive and one negative. By convention, the posi-
tive value is always chosen.)

Since the hyperbolic sine function is defined on all
real values and yields all real values as possible out-
puts, the function sinh–1 x is defined for all real values
of x. On the other hand, the hyperbolic cosine function
only yields output values greater than or equal to 1,
and consequently the inverse hyperbolic cosine func-
tion cosh–1 x is defined only for values of x ≥ 1. Simi-
larly, the inverse hyperbolic tangent function tanh–1 x is
defined only for –1 < x < 1.

The inverse hyperbolic functions have the follow-
ing DERIVATIVEs:

These can be established by making use of the relation
cosh2 y – sinh2 y = 1. For instance, to compute the
derivative of y = sinh–1 x, write sinh y = x and then dif-
ferentiate this equation making use of the CHAIN RULE. 

This yields cosh y · = 1, thereby establishing:

as claimed.
It is possible to give alternative formulations of the

inverse hyperbolic functions. Noting that cosh y =

and sinh y = , we have cosh y + sinh y 

= ey or y = ln(cosh y + sinh y). Set y = sinh–1 x. Then

sinh y = x and cosh y = = , yielding:

sinh–1 x = ln(x + )

which is valid for all values of x. Similarly,

cosh–1 x = ln(x + )

valid for x ≥ 1, and

valid for – 1 < x < 1.

inverse matrix (matrix inverse) A square MATRIX A
is said to be invertible (or nonsingular) if there is a
matrix B such that AB = BA = I, where I is the IDEN-
TITY MATRIX. The matrix B is called the inverse matrix
to A. There is at most one inverse matrix to given
matrix A. (If B1 and B2 are both inverse matrices, then
B1 = IB1 = B2AB1 = B2I = B2.) If an inverse matrix for a
matrix A exists, then it is denoted A–1. A study of
DETERMINANTs shows that a matrix is invertible if, and
only if, its determinant is not zero.

The matrix inverse of a 2 × 2 matrix

A
a b

c d
=
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with determinant det(A) = ad – bc is the matrix:

The process of GAUSSIAN ELIMINATION provides a rela-
tively straightforward method for computing the
matrix inverse of any square matrix of a larger size.

If, in a system of n SIMULTANEOUS LINEAR EQUA-
TIONS Ax = b, the matrix A of coefficients is invertible,
then the system has solution given by x = A–1b. In par-
ticular, if ej denotes the column vector whose only
nonzero entry is a 1 in the jth position, then xj = A–1ej

is the jth column of A–1. That is, the jth column of this
inverse matrix is a solution to the system of equations
Axj = ej. By CRAMER’S RULE, the ith entry of this col-
umn, that is the (i,j)th entry of the inverse matrix, is the
ratio of determinants:

where A| ij is the matrix A with the ith column replaced
by ej. Computing det(A| ij) is equivalent, up to a plus or
minus sign, to computing the determinant of the matrix
obtained from A by deleting its ith column and jth row.
This value is sometimes called the (i,j)th cofactor of A.

If A is invertible, then it is impossible to find a
nonzero column vector x such that Ax = 0. (Otherwise,
x = A–1 0 = 0.) This observation is important for the
study of EIGENVECTORs and EIGENVALUEs.

See also GENERAL LINEAR GROUP.

inverse of a statement See CONTRAPOSITIVE.

inverse square law Any relationship between two
physical variables for which one is proportional to the
RECIPROCAL of the square of the other is referred to as
an inverse square law. For example, the law of gravita-
tion as developed by SIR ISAAC NEWTON (1642–1727)
asserts that the magnitude F of the gravitational force
between two bodies of masses m and M is given by:

Here G is the gravitational constant (equal to 6.67 ×
10–11 m3kg–1sec–2) and r is the distance between the
two masses. This is an inverse square law. The illumi-
nation provided by a source of light decreases by the
inverse of the square of the distance from the source
and so too is an inverse square relationship.

inverse trigonometric functions An INVERSE FUNC-
TION to any trigonometric function is called an inverse
trigonometric function. For instance, the inverse sine of
a number x, written arcsinx or sin–1x, is an ANGLE a for
whose sine is x: sina = x. Since the sine curve adopts val-
ues only between –1 and 1, the inverse sine function is
defined only for values –1 ≤ x ≤ 1. One should also note
that for any value x there are infinitely many angles a
with sin a = x. It is usually assumed then that the 

angle a is chosen so that – ≤ a ≤ . (This is called the 

range of principal values for sine.) Similarly the inverse
cosine of a number x with –1 ≤ x ≤ 1, written arccos x
or cos–1 x, is an angle a, usually chosen in the principal
range for cosine, 0 ≤ a ≤ π, with cos a = x. Since the tan-
gent function adopts all real values, the inverse tangent
function is defined for any real number x, and arctan x,
or tan–1 x, is defined to be that angle a in the principal

range for tangent, – ≤ a ≤ , such that tan a = x.

The inverse trigonometric functions have the fol-
lowing DERIVATIVEs:

These can be established by making use of the relation
sin2 y + cos2 y = 1. For instance, to compute the deriva-
tive of y = sin–1 x, write sin y = x and then differentiate
this equation making use of the CHAIN RULE. This 

yields cos y = 1, thereby establishing:

as claimed. The TAYLOR SERIES of the arctan function
gives GREGORY’S SERIES.
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One can establish a number of forward-inverse
identities for the trigonometric functions. As examples
we have:

For instance, if a = cos–1 x, then cos a = x = . Thus 

angle a appears in a right triangle with hypotenuse 1
and adjacent leg of length x. By PYTHAGORAS’S THEO-
REM, the length of the opposite leg is and so 

sin a = = , establishing the first rela- 

tion. The remaining identities are proved similarly.

See also INVERSE HYPERBOLIC FUNCTIONS.

irrational number Any number that cannot be
expressed as a RATIO of two integers is called an
irrational number. As the study of RATIONAL NUM-
BERS shows, the irrational numbers are precisely
those numbers whose decimal expansions do not ter-
minate or fall into a repeating cycle of values. For
example, the number with the decimal expansion
0.113133133313333133333133… is irrational. The
study of rational numbers also shows that, in a very
real sense, “most” numbers are irrational.

A famous proof, often attributed to Hippasus of
Metapontum (ca. 470 B.C.E.), shows that √

–
2 is irra-

tional. THEODORUS OF CYRENE (ca. 465–398 B.C.E.)
established the same result geometrically, and also
showed that the numbers √

–
3 through to √

–
17 (exclud-

ing √
–
4, √

–
9, and √

–
16) are irrational. The FUNDAMEN-

TAL THEOREM OF ARITHMETIC can be used to prove
that the mth root of a positive integer n is rational if,
and only if, n is already the mth power of an integer. 

(If 
m√
–
n = for some integers a and b, then am = nbm.

Writing each of a, b, and n as a product of primes, and
noting that the primes that consequently appear on the
left side of this equation must match those that appear
on the right, we conclude that each prime factor of n
appears in n a multiple of m times. This establishes
that n = cm for some integer c.) The same reasoning
shows that a number such as log25 is irrational. (If 

log25 = , then 2a = 5b, contradicting the fundamental 

theorem of arithmetic.)
Truncating the decimal expansion of an irrational

number produces a rational arbitrarily close to that
irrational number. For example, 1.4, 1.41, 1.414, … is
a sequence of rational numbers converging to √

–
2 =

1.41421356…
In 1737 LEONHARD EULER established that the

number e is irrational, and in 1761 JOHANN HEINRICH

LAMBERT (1728–77) proved the irrationality of π. No
one to this day knows whether or not the numbers 2e,
πe, and π√

–
2 are irrational. (It is known that eπ and e · π

are irrational.) Surprisingly, the rationality or irra-
tionality of EULER’S CONSTANT γ is still not known.

It is possible for an irrational number raised to an
irrational power to be rational. For example, if x =
(√
–
2)√

–
2 turns out to be rational, then we have an exam-

ple of such a phenomenon. If x, on the other hand, is
not rational, then it is irrational and x√

–
2 = (√

–
2)√

–
2)√

–
2 =

(√
–
2)2 = 2 is an example of what we seek. (Unfortu-

nately this indirect line of reasoning does not indicate
which of the two possibilities actually occurs.)

See also ALGEBRAIC NUMBER; CONTINUED FRAC-
TION; E; NUMBER; REAL NUMBERS; SURD; TRANSCEN-
DENTAL NUMBER.

isolated point (acnode) A point that satisfies the
equation of a curve but is not on the main arc of the
curve is called an isolated point. For example, the curve
has y2 = x3 – x2 has x = 0, y = 0 as a solution, with no
other solution near this position. The point (0,0) is an
isolated point for the equation.

See also DOUBLE POINT.

isometry (congruence transformation) A GEOMETRIC

TRANSFORMATION, such as a translation, rotation, or a
reflection, that preserves the distances between points
in space is called an isometry. Isometries thus have the
property of preserving the shape and size of geometric
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figures. (If, for instance, three points A, B, and C repre-
sent the vertices of an equilateral triangle of side-length
1, then the images A′, B′, and C′ of the three points
under an isometry again form an equilateral triangle of
side-length 1.)

The FUNDAMENTAL THEOREM OF ISOMETRIES

shows that any isometry in the plane is the result of at
most three reflections. Any isometry that preserves the
location of three planar points leaves all points in the
plane unchanged. No isometry can preserve the loca-
tion of only two points. If an isometry preserves the
location of just one point, then that isometry must be a
rotation about that point.

isomorphism A one-to-one and onto correspondence
between the elements of two sets equipped with BINARY

OPERATIONs that preserved the operations on those sets
is called an isomorphism. For example, the map f:n →
2n matches each natural number with an even number
(and, in reverse, each even number is paired with a
unique natural number) and, moreover, preserves the
operation of addition between the two sets: We have f
(n + m) = f(n) + f(m) for all natural numbers n and m.
Thus, with respect to addition, f is an isomorphism
between the two sets. (Note, however, that f does not
preserve products and so is not an isomorphism with
respect to multiplication.)

The LOGARITHM function ln x provides a map
between the set of all positive real numbers and the set of
all real numbers. The logarithm converts multiplications
in the first set into additions in the second set: ln(xy) = ln
x + ln y. The set of positive reals under multiplication is
thus isomorphic to the set of all reals under addition.

The word isomorphism is derived from the Greek
words isos meaning “same” or “equal” and morphos
meaning “shape” or “structure.”

See also HOMOMORPHISM.

isoperimetric problem A classical problem in math-
ematics, called the isoperimetric problem, asks:

Of all figures drawn in the plane with a given
perimeter, which encloses the largest area?

The origin of this problem dates back to antiquity
with the famous legend of Princess Dido and DIDO’S
PROBLEM.

The topic of isoperimetrics (prefix iso: the same)
was systematically studied by the 17th- and 18th-cen-
tury Swiss family of mathematicians, the BERNOULLI

FAMILY. They discovered and classified many curves
satisfying certain maximum and minimum properties,
but did not solve the isoperimetric problem. LEON-
HARD EULER (1707–83) also contributed to this field,
using the techniques of CALCULUS.

JAKOB STEINER (1796–1863) used purely geometric
methods to establish the following partial answer: if
there were a shape that offered maximal area for a
given perimeter, then that shape must be a circle.
Steiner thought that he had completely solved the
isoperimetric problem, that the answer must be a circle,
but several years later German mathematician KARL

THEODOR WILHELM WEIERSTRASS (1815–97) pointed
out that the assumption that problems always have
solutions can lead to absurdities. The following amus-
ing example illustrates his concern:

Consider the question: of all positive integers,
which is the largest? If there is an answer to
this problem, then it cannot be a number n dif-
ferent from 1, for then n2 is an integer larger
than n. This leaves only the integer 1 as the
answer to the question.

Weierstrass realized that it could very well be the case
that the isoperimetric problem has no solution, despite
Steiner’s work, and so perhaps even the circle can be
replaced with a shape of greater area for the same
perimeter. To completely solve the isoperimetric prob-
lem, Weierstrass realized one must also prove that a
solution to the problem exists. Finally, in 1870, Weier-
strass was able to do this by developing a new mathe-
matical theory today called the “calculus of variations.”
The solution to the problem, known by ancient schol-
ars, was, at long last, established as mathematically
correct.

Simple variations of the isoperimetric problem
are easier to handle. Consider, for example, the ques-
tion: of all rectangles of perimeter 40 ft, which has
the largest area? This can be answered via an exercise
in algebra: Any rectangle has two long sides and two
short sides. If the perimeter is 40 ft, then two sides
are longer than 10 ft, and two are shorter than 10 ft
(unless the figure is a square). Writing the dimensions
of the rectangle as 10 + x ft long, and 10 – x ft wide,
for some number x, its area is then given by the formula
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(10 – x)(10 + x) = 100 – x2. We see now that the area
is maximal precisely when x is zero, that is, the figure
is a square.

An exercise in geometry shows that of all triangles of
a given perimeter, the equilateral triangle has largest area.

See also SOAP BUBBLES; STEINER POINT.

isosceles trapezoid (isosceles trapezium) A trapezoid
with the two nonparallel sides of equal length is called
an isosceles trapezoid. The figure has a line of symmetry
perpendicular to the parallel sides. Any isosceles trape-
zoid can be considered a truncated ISOSCELES TRIANGLE.

See also TRAPEZOID/TRAPEZIUM.

isosceles triangle A triangle possessing two sides of
equal length is called isosceles. The name is derived
from the Greek terms iso meaning “same” and skelos
meaning “leg.” Some scholars insist that a triangle be
called isosceles only if two, but not all three, of its sides
are equal in length, but this is really only a matter of
taste. (A triangle with all three sides equal in length is
called equilateral.) The base angles of an isosceles tri-
angle are equal. This can be established as follows:

Suppose triangle ABC is isosceles with sides AB
and BC equal in length. Regard a diagram of
this triangle as the picture of two triangles,
ABC and CBA superimposed on top of one
another. These two triangles share pairs of sides
that match in length, and share a common
angle (at B) between those two sides. Thus, by
the SAS principle from the study of similarity,
the two triangles are congruent. Consequently,
all corresponding angles between the triangles
match. In particular, the angle at vertex A must
match the angle at vertex C.

If one slides the vertex B in a direction parallel to the
base AC, then the perimeter of the triangle changes 

(although the AREA of the figure, A = × base × height 

does not). The study of OPTIMIZATION shows that the
sum of distances |AB| + |BC | is at a minimum when the
triangle is isosceles. We have:

Of all triangles with a given base and a fixed
height, the isosceles triangle has the least
perimeter.

To minimize the entire perimeter of a triangle without
changing its area, one can adjust each vertex of the
triangle (by sliding the vertex along a line parallel to
the opposite side) so that it is an apex of an isosceles
triangle. This produces an equilateral triangle and
thereby establishes:

Of all triangles of a fixed area, the equilateral
triangle has the least perimeter.

It is possible to arrange five points in a plane so
that any three points chosen at random among them
form the vertices of an isosceles triangle. (The points lie
at the vertices of a regular pentagon.) It is impossible to
accomplish the same feat with six or more points.

See also AAA/AAS/ASA/SAS/SSS; CONGRUENT FIGURES;
TRIANGLE.

iteration The repeated application of a mathematical
procedure in which each step is applied to the output
of the previous step is called iteration. For example,
HERON’S METHOD for computing the square roots of
numbers is an iterative procedure.

The iterates of a function f, beginning with the
value x0, are defined by the sequence of values:

x1 = f(x0), x2 = f(x1) = f(f(x0)), x3 = f(x2) = f(f(f(x0))),…

If this sequence converges to a value a, say, then:

a = limn→∞ xn = limn→∞ f(xn –1) = f(a)

(We are assuming here that f is a CONTINUOUS FUNC-
TION.) Thus iteration provides a means for solving

1–
2

iteration 285

Isosceles triangle



equations of the form x = f(x). For example, repeatedly
pushing the “cosine” button on a calculator will pro-
duce values that approach a solution to the equation
x = cos x. (As the calculator can only display eight or
10 decimal places, this means that the values shown

on the screen will eventually stabilize.) NEWTON’S
METHOD is often cited as the most widely used itera-
tive procedure.

See also CONVERGENT SEQUENCE; DYNAMICAL SYS-
TEM; RECURSIVE DEFINITION.
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Jacobi, Carl Gustav Jacob (1804–1851) German
Analysis Born on December 10, 1804, in Potsdam,
Prussia (now Germany), Carl Jacobi is remembered for
his important work on the theory of elliptic functions
and for applying his work in astonishing ways to the
theory of numbers. He proved a famous conjecture of
PIERRE DE FERMAT (1601–65) stating that every num-
ber can be written as the sum of four perfect squares.
(Previously, CARL FRIEDRICH GAUSS had proved that
every number is the sum of the three triangular FIGU-
RATE NUMBERS.) He also made important contributions
to the theory of dynamics in physics and made a care-
ful study of the theory of DETERMINANTs. The general-
ized CHANGE OF VARIABLE formula for DOUBLE

INTEGRALs (and higher-multiple integrals) contains a
determinant that today is named in his honor.

Jacobi completed his entire secondary education
within 1 year but was forced to wait several years
before reaching the minimum of age of 16 to enter the
University of Berlin. During this time Jacobi read
advanced works in mathematics and conducted research
work on polynomial equations. Jacobi received his doc-
torate from Berlin in 1825 and took a teaching position
at the University of Königsberg a year later. By this
time, Jacobi had already made some fundamental dis-
coveries in the field of NUMBER THEORY. He com-
menced his work on elliptic functions soon afterward.

The change-of-variables formula in INTEGRAL CAL-
CULUS states that if f is a function of a variable u,
which in turn is a variable of x, then the integral of f
with respect to u can be computed as:

Here the limits of integration change to reflect the
change of variable. In his study of determinants,
Jacobi showed, in two dimensions, that if f(u,v) is a
function of two variables, with u and v each functions
of x and y, then the appropriate change-of-variable
formula becomes:

where R is a region in the uv-plane, S is the correspond-

ing region in the xy-plane, and represents the 

determinant of the 2 × 2 MATRIX of PARTIAL DERIVA-
TIVEs. An analogous result applies for triple- and
higher-multiple integrals. Such determinants are
today called Jacobians. Although French mathemati-
cian AUGUSTIN-LOUIS CAUCHY (1789–1857) had dis-
covered these transformation formulae earlier, it was
Jacobi who first developed the theory of functional
determinants fully in his comprehensive 1841 publi-
cation De determinantibus functionalibus (Functional
determinants).
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Jacobi was passionate about theoretical research
and once uttered the following defense for pursuing sci-
ence for its own sake: “The sole aim of science is the
honor of the human mind, and from this point of view
a question about numbers is as important as a question
about the system of the world.”

Jacobi died of smallpox on February 18, 1851.

Jiuzhang suanshu (Chiu-chang Suan-shu) See CHI-
NESE MATHEMATICS.

Jordan, Marie Ennemond Camille (1838–1922)
French Topology, Abstract algebra, Engineering Born
on January 5, 1838, in Lyon, France, Camille Jordan is
remembered for his work on PERMUTATION groups and
the theory of equations. He revived interest in the
important work of ÉVARISTE GALOIS and extended
many of his ideas and offered substantial new contribu-
tions. Jordan’s later work on ANALYSIS includes the
famous theorem that now bears his name.

Jordan trained and worked throughout his life as
an engineer. His interests in GROUP THEORY were moti-
vated by the mathematical study of crystal structures.
In many respects he defined this field of study with the
publication of his 1870 text Traité des substitutions et
des equations algebraique (Treatise on permutations
and algebraic equations), the first book ever published
on the topic. This work stimulated significant further
mathematical research on the subject for the entire cen-
tury that followed. Jordan was awarded the Poncelet
Prize from the Académie des Science for the piece.

After the release of his famous work Jordan contin-
ued work in algebra, establishing important results in
the fields of LINEAR ALGEBRA, NUMBER THEORY, DIF-
FERENTIAL EQUATIONS, mechanics, and FOURIER SERIES.
Work in these latter fields led him to the topics of
TOPOLOGY and analysis, and the study of continuous
groups, which occupied the final part of his career.

Jordan died in Paris, France, on January 22, 1922.
From 1961 to 1964 René Garnier and Jean Dieudonné
collated all of Jordan’s work and released the four-vol-
ume series Oeuvres de Camille Jordan (The work of
Camille Jordan).

One point of confusion should be settled. Although
Jordan did work in the field of matrix algebra, the
method of GAUSSIAN ELIMINATION, often called Gauss-

Jordan elimination, is not named after Camille Jordan,
but rather surveyor Wilhelm Jordan (1842–99). W. Jor-
dan used this elimination method to properly analyze
measurement errors. (The “Jordan canonical form” of
a matrix, however, is due to Camille Jordan.)

See also JORDAN CURVE THEOREM.

Jordan curve theorem In 1893 French mathemati-
cian MARIE ENNEMOND CAMILLE JORDAN stated a fun-
damental result:

Any loop drawn in the plane that does not
intersect itself divides the plane into two dis-
tinct parts: an inside and an outside.

This utterly obvious theorem, now called the Jordan
curve theorem, is surprisingly difficult to prove. Its
validity says something significant about the geometry
and structure of the surface on which the curve is
drawn. For example, circles drawn on a plane or a
sphere certainly divide those surfaces into two parts,
but this need not be the case for a circle drawn on a
TORUS, for example: a “loop” that circumnavigates the
donut does not separate the surface into two distinct
pieces. One must first develop a clear understanding of
the geometry of space before results such as the Jordan
curve theorem can be proved. This is a subtle and diffi-
cult issue. American mathematician Oswald Veblen
(1880–1960) was the first to prove the theorem valid.

Josephus problem This famous mathematical puzzle
is based on the difficult story of Josephus Flavius, a
Jewish military leader fighting against the Romans in
the town of Jotapata during the first century C.E. It is
said that the battle, which took place in the spring of
67, was lost. Rather than submit their fates to the
hands of the Romans, Josephus’s men took brief refuge
in a cave, where they voted to commit group suicide.
Although Josephus did not agree with this plan, he
offered no open opposition to it. Instead, he suggested
that they proceed in as orderly a fashion as possible.
He proposed that they sit in a circle and humanely kill
every third man until only one person was left. That
person would then commit suicide. Josephus, it is said,
cleverly positioned himself so that he would be the
final survivor. Rather than commit suicide, he surren-
dered to the Romans.
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This story leads to the following general mathemati-
cal problem:

Suppose N participants, numbered 1, 2, …, N,
sit in a circle and begin counting off every nth
person. Each person so selected is called
“out” and leaves the game. Counting contin-
ues until the last participant is declared the
winner of the game. Given the size of the
group, is it possible to predict beforehand
who the winner will be? Assume the count
begins with player 1.

The following table shows the position of the winner,
counting every third person, for games involving N = 1
through N = 15 people:

N 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
W(N) 1  2  2  1  4  1  4  7  1  4  7  10  13  2  5

The numbers arising can be analyzed as follows: A
game with N players becomes a game with N–1 players
as soon as the first person is called out, except that the
start of the N–1 game is moved three places along.
Thus, if W(N) denotes the winner of an N-player game,
we have W(N) = W(N–1) + 3. One may need to adjust
this formula, however, to take into account possible
“counting around the full circle.” For example:

Clearly W(1) = 1.

Adding 3 gives W(2) = 4. But, counting around
the circle, we see that position four in a two-
player game is really player 2. Thus W(2) = 2.

Adding three gives W(3) = 5. But, counting
around the circle, we see that position five in a
three-player game is really player 2. Thus W(3)
= 2,

and so on.

In this way we can compute all the entries of the table
without having to perform the game. Other versions of
the game can be analyzed similarly.

Jourdain’s paradox In 1913 French mathematician
Philip Jourdain proposed a variation of the famous
LIAR’S PARADOX, now sometimes called the card para-
dox. On one side of a card is printed: “The statement
on the other side of this card is true,” and on the

reverse side: “The statement on the other side of this
card is false.” Neither sentence can be true or false, for
the statement on the reverse side implies the opposite.

It is worth pointing out that if, instead, both sen-
tences read: “The statement on the other side of this
card is false,” then no paradox occurs; it is simply the
case that just one of the sentences is actually false, and
the other is true. If, on the other hand, both sentences
read: “The statement on the other side of this card is
true,” then both statements could be true, or both
could be false.

See also SELF-REFERENCE.

jug-filling problem A famous category of decanting
problems contains puzzlers of the following ilk:

Given a 3-gallon jug and a 5-gallon jug (with-
out any markings), is it possible to draw
exactly 1 gallon of water from a well?

As one is not given the means to measure the exact
contents of a partially filled jug, we are left with only
three allowable maneuvers:

1. Completely fill an empty jug from the well
2. Completely empty a full jug into the well
3. Pour water from one jug into another, completely

filling or emptying one jug in the process

This particular problem has an easy solution: com-
pletely fill the 3-gallon jug and pour its contents into
the 5-gallon jug. Refill the 3-gallon jug and pour part
of its contents to fill up the 5-gallon jug. This leaves
(and we are certain of this) precisely 1 gallon of water
in the 3-gallon jug and 5 gallons of water in the sec-
ond. Now empty the 5-gallon jug.

In this solution the 3-gallon jug was filled twice
and the 5-gallon jug emptied once. If we count +1 each
time a jug is filled and –1 for each time it is emptied,
the solution described above can thus be represented by
the equation:

2 × 3 + (–1) × 5 = 1

Surprisingly any solution to the DIOPHANTINE EQUA-
TION x × 3 + y × 5 = 1 corresponds to a solution to
the jug-filling problem. (For example, (–3)×3 + 2×5 =
1 represents a solution in which the 5-gallon jug is
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completely filled twice and the 3-gallon jug completely
emptied three times.) Since 1 is the GREATEST COM-
MON FACTOR of 3 and 5, the EUCLIDEAN ALGORITHM

provides solutions to the equation x × 3 + y × 5 = 1,
and hence to the jug-filling problem.

As a variation we ask: is it possible to obtain
exactly 1 gallon of water using a 9-gallon jug and a 15-
gallon jug? This would require finding a solution to the
equation x × 9 + y × 15 = 1. If there were a solution to
this problem, then 1 would be a combination of two

multiples of 3, and so itself a multiple of 3. This, of
course, is absurd, and there is no solution to this prob-
lem. This type of argument can be used to show that d
gallons of water can be obtained from an a-gallon jug
and a b-gallon jug if, and only if, d is a multiple of the
greatest common factor of a and b.

See also BICONDITIONAL.

Julia set See FRACTAL.
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al-Kashi, Jamshid Mas’ud (ca. 1380–1429) Iranian
Arithmetic, Astronomy Born in Kashan, Iran, al-
Kashi is best remembered in mathematics for his early
use of decimals to represent fractions and to approxi-
mate real numbers, two centuries before European
scholars developed the same technique. His famous
text, The Key to Arithmetic, completed March 2, 1427,
describes all the mathematics necessary for those study-
ing astronomy, surveying, architecture, and accounting.
Al-Kashi developed iterative techniques for extracting
nth roots and for solving CUBIC and QUARTIC EQUA-
TIONs, and gave an estimate for the value of π correct
to 16 decimal places. (This far surpasses the achieve-
ment of the ancient Greek and Chinese scholars who
approximated π as a fraction correct, in decimal nota-
tion, to six decimal places.)

That al-Kashi and his contemporaries chose to
represent quantities as decimals indicates an important
and sophisticated shift in the historical understanding
of “number.” For instance, writing π explicitly as a
decimal, just as any number can be so written,
changed the status of π from a physical geometric con-
struct (the ratio of the circumference of a circle to its
diameter) to an ordinary member of the class of REAL

NUMBERS. Al-Kashi adopted a perspective where all of
mathematics was thus unified by the study of the real-
number system.

Al-Kashi was very interested in astronomy and
viewed much of his mathematical work as a tool for
assisting astronomical calculations. Techniques of
TRIGONOMETRY played a prominent role. In his text

The Treatise on the Chord and Sine, al-Kashi presented
tables of sine values and listed a value of sin(1°) accu-
rate to 16 decimal places. This allowed for extremely
accurate astronomical calculations. On a purely mathe-
matical note, al-Kashi also worked on the TRISECTING

AN ANGLE problem, noting that the obstacle behind it
reduces to one of solving a cubic equation. Applying
iterative techniques, al-Kashi was able to provide an
innovative approach to the problem, one that would
find approximate solutions to any prescribed degree of
accuracy. European scholars working on the same
problem throughout the Middle Ages and the Renais-
sance were unaware of al-Kashi’s work.

Kendall’s method See RANK CORRELATION.

Kepler, Johannes (1571–1630) German Astronomy,
Calculus Born on December 27, 1571, in Württem-
berg, Germany, Johannes Kepler is best remembered
for his three laws of planetary motion: that planets
travel in elliptical orbits with the Sun at one focus;
that they do so at a rate so that the line joining the
planet to the Sun sweeps out equal areas in equal units
of time; and that the square of the period of a plane-
tary orbit is proportional to the cube of the width of
the ELLIPSE it traverses. These laws were all based on
detailed observation of the orbit of Mars. As a mathe-
matician, Kepler is noted for giving the first clear
proof of how LOGARITHMs work, for his study of the
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geometry of the PLATONIC SOLIDs, for his discovery of
two nonconvex regular polyhedra, and for his mathe-
matical treatment of the close-packing properties of
SPHEREs. (He also explained why the honeycomb shape
is the most efficient design for dividing a planar region
into separate cells.) More importantly, Kepler devised
a method for computing the volumes of many SOLIDs
OF REVOLUTION with the aid of INFINITESIMALs. Today
this is seen as a significant contribution to the develop-
ment of CALCULUS.

Kepler studied astronomy and theology at the Uni-
versity of Tübingen, Germany. At the time, only six
planets were known to astronomers, and all were
assumed to be in circular orbit about the Sun. In 1596
Kepler published Mysterium cosmographicum (Mys-

tery of the cosmos), in which he presented a mathemat-
ical theory explaining the relative sizes of the planets’
orbits. Convinced that God had created the universe
according to a mathematical plan, Kepler posed that if
a sphere were drawn about the path of Saturn and a
CUBE inscribed in this sphere, then the orbit of Jupiter
lies on a sphere inscribed in this cube. Moreover,
inscribing a TETRAHEDRON in this second sphere and a
sphere within the tetrahedron captures the orbital path
of Mars. Continuing in this way, with a dodecahedron
between Mars and Earth, an icosahedron between
Earth and Venus, and an octahedron between Venus
and Mercury, Kepler produced a model for orbit sizes
that is accurate to within 10 percent of observed val-
ues, well within experimental error. As there are only
five Platonic solids, this model also explained why, sup-
posedly, there were only six planets. Of course Kepler’s
Platonic model of the solar system is not correct—three
more planets were later discovered and, as Kepler him-
self later established, no orbit of a planet is circular.

Kepler moved to Prague near the turn of the cen-
tury to work with one of the foremost astronomers of
the time, Tycho Brahe (1546–1601). When Brahe died,
Kepler succeeded him as imperial mathematician.

Brahe had kept extensive records on the orbit of
Mars, and from them, Kepler was forced to conclude
that its orbit was an ellipse. He also noted, from the
data, that the velocity of the planet altered in such a
way that the line connecting the Sun to the planet swept
out equal areas in equal times. These two laws, when
extended to all planets, are today called Kepler’s first
two laws. He published them in his 1609 piece Astrono-
mia nova (New astronomy). Ten years later he added a
third law: the squares of the times taken by the planets
to complete an orbit are proportional to the cubes of
the lengths of the major axes of their elliptical orbits.

Kepler had no explanation as to why these laws
were true other than the compelling evidence of the
data. It was not until SIR ISAAC NEWTON (1642–1727)
formulated his famous law of gravitation that Kepler’s
laws could be mathematically deduced.

During his marriage ceremony in 1613 to his sec-
ond wife Susanna (his first wife Barbara died in 1611),
Kepler noticed that the servants would measure the vol-
ume of a wine barrel by slipping a rod diagonally
through the bunghole and measuring the length that fit.
He began to wonder why this method worked. This led
him to his study of the solids of revolutions and the
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noted for his introduction of three laws of planetary motion. These
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publication of his famous 1615 piece Nova stereome-
tria doliorum (New stereometry of wine barrels). This
work was later developed further by BONAVENTURA

CAVALIERI (1598–1647).
In 1614 JOHN NAPIER published his account of log-

arithms, a mathematical device he invented with the
aim of helping astronomers with their large numerical
calculations. Kepler was delighted to learn of Napier’s
work and helped provide a mathematical explanation
of Napier’s method. Kepler also published tables of log-
arithmic values accurate to eight decimal places.

Kepler died on November 15, 1630, in Regens-
burg, Germany. His second law of planetary motion
played a crucial role in shaping Sir Isaac Newton’s
thinking in the development of his theory of mechanics.
Although Newton made no direct mention of Kepler’s
work in his early writings, he credited Kepler as the
source of inspiration for his ideas in a lecture he gave
to the members of the ROYAL SOCIETY before the
release of his famous 1687 work Principia.

al-Khw–arizm–ı, Muhammad ibn M–us–a (ca. 780–850)
Arab Algebra Born in Khw–arizm, (now Khiva), Uzbe-
kistan, Arab scholar Muhammad ibn M–us–a al-Khw–arizm–ı
is remembered for writing two extraordinarily influential
texts. The first, Al-jam’ w’al-tafriq ib hisab al-hind (Addi-
tion and subtraction in Indian arithmetic), introduced the
Indian system of numerals to the West, and a second
work that sparked the development of algebra. The title
of his second work, Hisab al-jabr w’al-muq–abala (Calcu-
lation by restoration and compensation), when translated
into Latin, produced the very word algebra we use today.

Al-Khw–arizm–ı was a scholar at the House of
Wisdom in Baghdad, a learning academy and library
founded by the Caliph al-Mamun in 813. (This institu-
tion was the first library constructed anywhere in the
world since the destruction of the famous Library of
Alexandria.) Housing a large collection of Greek philo-
sophical and scientific texts, the library hired Arab
scholars to translate manuscripts into Arabic and to
conduct further research in the topics covered.
Al-Khw–arizm–ı was one such scholar who took particular
interest in the works on mathematics and astronomy.

In his first famous pieces, Al-jam’ w’al-tafriq ib
hisab al-hind, al-Khw–arizm–ı described and explained
the advantages of the decimal-place system as used in
India for writing numbers and doing arithmetic. This

work was translated into Latin some 300 years later
and became the primary source for Europeans who
wanted to learn the new numeration system. It is inter-
esting to note that although this work uses a symbol
for zero (in Arabic called sifr) al-Khw–arizm–ı did not
regard it as a number and used it only as a placeholder
(to distinguish 203 from 23, for instance).

Al-Khw–arizm–ı intended that his second famous
piece, Hisab al-jabr w’al-muq–abala, also be used as a
teaching guide. It aimed to offer an array of techniques
and methods for solving very practical problems in
matters of trade, inheritance, law, surveying, and archi-
tecture. Beginning at an extraordinarily elementary
level, al-Khw–arizm–ı first defined the natural numbers
and the act of counting to then move on to the main
topic of the first section of the piece, namely, solving
elementary linear and quadratic equations. It is impor-
tant to note that all of al-Khw–arizm–ı’s mathematics
was done entirely in words, and no symbols were ever
used. He called a number a “unit,” an unknown a
“root,” and a quantity squared a “square.”

To solve equations al-Khw–arizm–ı used two opera-
tions which he called al-jabr and al-muq–abala. The
first, “completion,” is the process of removing any neg-
ative terms from an equation. In modern notation, this
converts x2 – 5x = 3 to x2 = 3 + 5x, for instance. The
second, “balancing,” is the process of subtracting posi-
tive terms of the same power when they occur on each
side of an equation. In modern notation, this means
rewriting 5x2 + 7 = 3x2 + x, for instance, as 2x2 + 7 =
x. With these two maneuvers, al-Khw–arizm–ı reduces all
linear and quadratic equations into six basic types,
which he lists. The remainder of this part of the text is
devoted to solving these equations. Today’s standard
practice of COMPLETING THE SQUARE is described in
this section.

The next part of al-Khw–arizm–ı ’s text consists of
applications and worked examples. Because many of
the problems were geometric in nature, al-Khw–arizm–ı
would dismiss negative solutions to problems and
allow only positive answers. He recognized that
quadratic equations may yield two solutions to a prob-
lem. Al-Khw–arizm–ı also computed areas of simple geo-
metric figures, as well as the volume of a sphere, the
cone, and the pyramid, in this section. The final section
of the text focuses on the complicated Islamic rules for
inheritance and does not develop any new mathemati-
cal content.
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By the 10th century, Spain was under Islamic con-
trol, and European scholars interested in the intellectual
culture of the Islamic world traveled to Spain to study
the Arabic texts. It was there that Al-Khw–arizm–ı ’s
works were discovered and translated into Latin.

Al-Khw–arizm–ı also wrote texts on astronomy, the
sundial, the Jewish calendar, and on geography. He
computed the latitudes and longitudes of over 2,400
specific localities in preparation for the construction of
an accurate world map.

The word algorithm is believed to be derived from
al-Khw–arizm–ı ’s name. Medieval European scholars,
attempting to translate the Arab scholar’s name into
Latin, called the practice of using Hindu-Arabic
numerals “algorism,” from which, in turn, any general
practice or procedure became known as an “algo-
rithm.” That a version of his name became part of our
Western vocabulary illustrates the extent to which
al-Khw–arizm–ı ’s work influenced the development of
arithmetic and algebra in Europe.

Klein, Felix Christian (1849–1925) German Abstract
algebra, Geometry, Topology Born on April 25, 1849,
scholar Felix Klein is remembered for uniting the dis-
parate fields of GEOMETRY and ALGEBRA through the
study of GEOMETRIC TRANSFORMATIONs. He showed that
the abstract analysis of the algebra of transformations
through GROUP THEORY leads to a clear understanding
of both EUCLIDEAN GEOMETRY and NON-EUCLIDEAN

GEOMETRY. In particular, he proved that ordinary
Euclidean geometry can be proved CONSISTENT, that is,
free of contradiction, if, and only if, non-Euclidean
geometry is consistent. This demonstrated, for the first
time, that the controversial non-Euclidean theories of
geometry were of equal importance to the theory of
ordinary Euclidean geometry. In topology, the KLEIN

BOTTLE is named in his honor.
Klein received a doctorate in mathematics from

the University of Bonn in 1868 after completing a the-
sis exploring applications of geometry to mechanics.
After a short period of military service, Klein accepted
a position as professor of mathematics at Erlangen, in
Bavaria, in 1872. It was here that he began his work
on the analysis of geometric transformations and the
unification of Euclidean and non-Euclidean geome-
tries. His approach to the subject with a focus on
“group invariants” was extremely influential, and

work in this field continues today. (It is called Klein’s
“Erlangen program.”)

In 1886 Klein accepted the position as department
chair at the University of Göttingen, where he remained
until his retirement in 1913. He tutored students from
his home in the years that followed.

In addition to conducting high-level research in
mathematics, Klein also wrote mathematical pieces
intended for the general public and founded a mathemat-
ical encyclopedia that he supervised until his death. Klein
was honored with election to the ROYAL SOCIETY in
1885 and received the Copley Medal from the Society in
1912. He died on June 22, 1925, in Göttingen, Germany.

See also KLEIN-FOUR GROUP.

Klein bottle The MÖBIUS BAND is a three-dimensional
object possessing just one surface and just one edge. A
SPHERE and a TORUS (donut shape), on the other hand,
are objects with two surfaces—an outside surface and
an inside surface—possessing no edges. The Klein bottle
is an alternative three-dimensional object with only one
surface, akin to that of a Möbius band, but possessing
no edges.

One can easily model these surfaces mentioned
with a pair of trousers. For example, sewing together
the two leg openings produces a circular tube with
a hole for the waist. This hole can be patched with a
piece of material to produce a complete model of a
torus. A Klein bottle is produced by bringing one trouser
leg up, over, and through the waist of the trousers and
pushing it down through the tube of the second leg
before sewing the two leg openings together. Again,
the hole for the waistband represents a hole in the
surface, but the object produced is nonetheless a
(punctured) Klein bottle. Unfortunately it is no longer
physically possible to patch the hole with a piece of
material. This shows that the Klein bottle does not
properly exist in a three-dimensional universe. (One
can imagine, however, that the material that would
make a patch for the hole of the waist has been
“plucked” up into the fourth-dimension. In this
sense, the Klein bottle is a valid mathematical object
in four-dimensional space.)

One can check with this model that the ideal sur-
face of a Klein bottle would indeed be one-sided: an
ant crawling on one side of trouser material could
reach any other part of the trousers, on either side of
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the material, without ever cheating by crossing over the
edge of the hole given by the waist band.

If one cuts a pair of trousers sewn to make a (punc-
tured) Klein bottle in half along the line that follows the
inner and outer seams of the trousers, then the model
falls into two pieces, each of which is easily seen to have
arisen from a Möbius band. This shows that a Klein bot-
tle can also be thought of as the union of two Möbius
bands adjoined along their edges. (If one physically
attempts to sew together two Möbius bands, one soon
finds it is necessary to puncture a band to produce a hole
akin to the hole for the waist of a pair of trousers.)

Klein-four group (viergruppe) There are essentially
only two GROUPs with just four elements. The first is
the “cyclic group” C4 given by the rotational symme-
tries of a square, C4 = {1, R, R2, R3}, where R repre-
sents a 90° rotation of a square in a clockwise direction
and 1 is the IDENTITY ELEMENT, a rotation of zero
degrees. As a rotation of 360° is equivalent to no
action, we have that R4 = 1. Multiplication in this
group is given by the product rule of exponents. We
have, for example, that R2 × R3 = R5 = R.

The second group with just four elements is called
the Klein-four group. Denoting its elements as 1, a, b,
and c, with 1 being the identity element, it has a multi-
plication table given by:

This group can also be represented by a set of symme-
tries of a square. Set a to mean a reflection about a
vertical axis, b a reflection about a horizontal axis,
and c a rotation of 180°. We have, for instance, that a
vertical reflection followed by a rotation of 180° is the
equivalent of a horizontal reflection (c × a = b), and
that two reflections about the same axis lead to the
identity (a × a = b × b = 1).

knot theory The branch of TOPOLOGY that studies
the properties of closed loops embedded in three-

dimensional space is called knot theory. Each loop
studied, called a knot, represents the path traced by a
piece of string interlaced in space (without self-intersec-
tion) whose free ends have been joined together. If one
tangled piece of string can be physically transformed
into an exact copy of a second tangled string (or at
least a mirror image of that second tangle), then we say
that the two knots the strings represent are equivalent.
At present, no one knows a general procedure guaran-
teed to determine with relative ease whether or not two
given knots are equivalent.

Knots can be depicted on a two-dimensional page
as a picture of a loop that crosses over and under itself.
It is conventional to draw the picture of a given knot
with as few crossings as possible. A picture with just
one or two crossings is equivalent to an untangled loop
(the “unknot”). There is only one knot (up to equiva-
lence) with three crossings and only one with four
crossings. Each are shown above. There are two dis-
tinct knots requiring a minimum of five crossings, three
requiring a minimum of six crossings, and seven requir-
ing a minimum of seven crossings. After this, the num-
ber of distinct knots with a given minimum number of
crossings when drawn on a page grows rapidly.

Knots were first studied by CARL FRIEDRICH GAUSS

(1777–1855) and his student Johann Listing (1808–82).
In 1877 Scottish physicist Peter Tait classified all knots
with up to seven crossings. He also conjectured that no
“alternating knot” (that is, one whose path alternately
crosses over and under itself) is equivalent to the
unknot. A century later, New Zealand mathematician
Vaughn Jones proved him to be correct.

In 1928 American mathematician James Waddell
Alexander discovered a theoretical means to associate to
each knot a POLYNOMIAL in such a manner that if two

× 1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1
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knots are equivalent, then the polynomials associated to
them turn out to be the same. This thus provided an
algebraic means to distinguish knots: if two knots have
different Alexander polynomials, then they are not
equivalent. In the 1960s British mathematician John
Horton Conway discovered an explicit method for
implementing Alexander’s polynomials, and in 1984
Vaughn Jones developed an alternative (simpler) choice
of polynomial to associate with each knot. (It was with
the “Jones polynomial” that Jones was able to establish
Tait’s claim.) The same year, eight mathematicians inde-
pendently discovered another polynomial that general-
izes Jones’s approach. (This polynomial is called the
HOMFLYPT polynomial—an acronym of their names.)
Unfortunately, it is not yet known whether Jones’s tech-
nique provides a perfect correspondence between dis-
tinct knots and distinct polynomials—it is feasible that
two nonequivalent knots could produce the same Jones’s
polynomial. (No one has yet seen an example of this.)

Knot theory is an active area of current research. It
is used in the practical study of complicated molecules
such as DNA, in the analysis of electrical circuits, and
in the planning of street and highway networks.

Although the mirror image of a knot is deemed
equivalent to the original knot, mathematicians have
proved that no knot (except the unknot) can be physi-
cally deformed into its mirror image. It is also interest-
ing to note that no knots exist in two-dimensional
space or four-dimensional space (meaning that any
knot in these spaces can be deformed into the unknot).

See also BRAID.

Koch curve See FRACTAL.

Kolmogorov, Andrey Nikolaevich (1903–1987) Rus-
sian Probability theory, Analysis, Dynamical systems
Born on April 25, 1903, in Tambov, Russia, scholar
Andrey Kolmogorov is remembered for his significant
contributions to the field of PROBABILITY theory and his
groundbreaking work in the study of DYNAMICAL SYS-
TEMs. He also contributed to the study of FOURIER

SERIES, ANALYSIS, and TOPOLOGY. Applying his work to
planetary studies, Kolmogorov was also able to establish
the mathematical stability of our solar system.

Kolmogorov began his working career as a railway
conductor. In his spare time, however, he studied math-

ematics and physics, and managed to write a treatise
on SIR ISAAC NEWTON’s laws of mechanics. In 1920 he
entered Moscow State University. By the time he com-
pleted his undergraduate degree he had published eight
influential papers on the topics of SET THEORY and
analysis. Kolmogorov published another 10 papers
before receiving his doctoral degree in 1929.

Two years later Kolmogorov was appointed a pro-
fessor of mathematics at Moscow State University. At
this time, he began work on writing Grundbegriffe der
Wahrscheinlichkeitsrechnung (Foundations on the the-
ory of probability), in which he attempted, successfully,
to build up the entire theory of probability from a
finite set of axioms using nothing but logical rigor. Kol-
mogorov received national fame when the work was
published in 1933. The piece was translated into the
English language by Nathan Morrison in 1950.

In 1938 Kolmogorov was appointed department
head of probability and statistics at the newly estab-
lished Steklov Mathematical Institute in Russia. Soon
afterward Kolmogorov’s attention turned to the study
of turbulence, and in 1941 he wrote two important
papers on the nature of turbulent airflow from jet
engines, laying down the founding principles of the the-
ory of dynamical systems. He later applied this work to
the study of planetary motion.

Kolmogorov received many awards for his out-
standing work. In 1939 he was elected to the U.S.S.R.
Academy of Science, and over the following years, he
received eight prizes from the state and the academy.
He was also elected to a number of foreign academies,
including the Royal Statistical Society of London in
1956, the American Academy of Arts and Sciences in
1959, the Netherlands Academy of Sciences in 1963,
the ROYAL SOCIETY of London in 1964, and the French
Academy of Sciences in 1968. Kolmogorov was also
awarded the Balzan International Prize in 1962.

Kolmogorov died in Moscow, Russia, on October
20, 1987. His work paved the way for continued
research in the fields of Fourier analysis, “Markov
chains” in probability theory, and topological analysis.

Kronecker, Leopold (1823–1891) German Number
theory Born on December 7, 1823, in Liegitz, Prussia
(now Legnica, Poland), mathematician and philosopher
Leopold Kronecker is noted as a scholar for his consid-
erable contributions to the field of NUMBER THEORY. As

296 Koch curve



a philosopher, he is also remembered as the first to cast
doubts on the existence of TRANSCENDENTAL NUMBERs
and on hierarchies of infinite sets, notions first put for-
ward by KARL THEODOR WILHELM WEIERSTRASS

(1815–97) and GEORG CANTOR (1845–1918). At one
point, Kronecker even went as far as to deny the exis-
tence of IRRATIONAL NUMBERs.

Kronecker entered Berlin University in 1841 and
received a doctoral degree in mathematics after complet-
ing a thesis on the topic of algebraic number theory 4
years later. Rather than pursue an academic career, Kro-
necker decided to return to Liegitz to help with the fam-
ily banking business. Over the 10 years that followed, he
became quite wealthy and then had the luxury to pursue
mathematics on his own without the need to ever accept
a university position. In 1855 he returned to Berlin and
published a series of influential papers in quick succes-
sion, which garnered him national attention. In 1861
Kronecker was elected as a member of the prestigious
Berlin Academy, which earned him the right to teach at
Berlin University, even though he was not a faculty
member. (In 1883, some 20 years later, Kronecker was
awarded an official position with the university.) Kro-
necker was also elected to the Paris Academy in 1868,
and to the ROYAL SOCIETY of London in 1884.

During the 1870s Kronecker took a keen interest in
the new, indirect approaches mathematicians were
using to prove the existence of certain types of num-
bers. But he soon came to feel that such nonconstruc-
tive practices were philosophically flawed. For
instance, Cantor had demonstrated that the set of real
numbers is “more infinite” than the set of ALGEBRAIC

NUMBERs, and hence, numbers that are not algebraic
(so-called transcendental numbers) must exist.

In Kronecker’s view, mathematics could only ever
be based on finite quantities with a finite number of
operations applied to them. An argument such as
Cantor’s, therefore, in Kronecker’s thinking, had no
meaning. Even when CARL LOUIS FERDINAND VON

LINDEMANN (1852–1939) proved in 1882 that the
specific number π is transcendental, Kronecker com-
plimented Lindemann on his beautiful proof but
added that, in fact, he had accomplished nothing,
since transcendental numbers do not exist.

Kronecker was adamant in his views and, in his
1887 piece Über den Zahlbergriff (On number theory),
he attempted to persuade the mathematical community
of the absolute necessity of only using direct and finite

techniques. He is famous for once having remarked that
“God created the integers. All else is the work of man” as
an attempt to bring mathematical thinking back to con-
crete principles. Both Weierstrass and Cantor felt under
personal attack by Knonecker and thought that he was
deliberately undermining their own research programs.

Although many mathematicians today would not
agree with Kronecker’s views, they were taken seri-
ously at the time, and the ideas that Kronecker put
forward were later expanded upon in the century that
followed. The practice of using only direct and finite
approaches to prove results in mathematics is today
called constructivism.

Kronecker died on December 29, 1891, in Berlin,
Germany.

Kruskal’s count In the early 1980s, Princeton physi-
cist Martin Kruskal discovered a remarkable mathe-
matical property that all passages of written text seem
to possess. This phenomenon is now referred to as
Kruskal’s count.

To illustrate the principle, review, for example, the
familiar nursery rhyme:

Twinkle twinkle little star,
How I wonder what you are,
Up above the world so high,
Like a diamond in the sky.
Twinkle twinkle little star,
How I wonder what you are.

Perform the following steps:

1. Select any word from the first or second line and
count the number of letters it contains.

2. Count that many words forward through the pas-
sage to land on a new word. (For example, choosing
the word star, with four letters, will transport you to
the word what.)

3. Count the number of letters in the new word, and
move forward again that many places.

4. Repeat this procedure until you can go no further
(that is, counting forward will take you off the
nursery rhyme).

5. Observe the final word on which you have landed.

Surprisingly, no matter on which word you start this
counting task, the procedure always takes you to the
same word in the final line, namely, the word you.
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Kruskal observed that this same phenomenon seems
to occur with any sufficiently large piece of text—count-
ing forward in this way from any choice of beginning
word lands you at the same place at the end of the page.
This provides an amusing activity for several people to
perform simultaneously, all working with the same text,
but starting with different choices of initial word.

The phenomenon can be explained as follows:
imagine that on a first run through the text, all the
words encountered are circled. Landing on any one of
these circled words in a subsequent run of the experi-

ment will take the player to the same final word. What
then is the likelihood that a second run through the
experiment will not “hit” any of the previously circled
words? If the passage is sufficiently large, say involving
20 steps, the chances of “missing” a circled word every
time is likely to be very small, especially since the typi-
cal English passage contains reasonably short words.
Estimates computing this PROBABILITY show that it
likely has a value smaller than 0.1 percent. Thus, with
about 99.9 percent certainty, two paths through a pas-
sage of text will coincide at some point.
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Lagrange, Joseph-Louis (1736–1813) Italian-French
Analysis, Mechanics, Abstract algebra, Number theory
Born on January 25, 1736, in Turin, Italy, Joseph-Louis
Lagrange is remembered for, among other things, his
definitive 1788 text Mécanique analytique (Analytical
mechanics), in which he lays out a purely formal and
completely rigorous exposition of how and why things
move. In effect, the work summarizes the entire state of
the post-Newton mechanics of the 18th century. The
publication is also famous for featuring no figures or
diagrams. (Lagrange apparently felt that the formulae
he developed captured physical reality sufficiently well
that pictures were not necessary.) He also published two
important memoirs in 1769 and 1770, which he com-
bined into a single 1798 treatise, Traité de la résolution
des équations numériques de tous les degrés (Treatise on
the resolution of numeric equations of all degree), on
the theory of equations, in which he developed general
principles for solving POLYNOMIAL equations up to
degree four via principles that we today would label
GROUP THEORY. The famous “Lagrange’s theorem”
from the study of groups appears in this work, as does
the famous INTERPOLATION formula that bears his
name. He also made significant contributions in the
field of NUMBER THEORY, proving in 1770, for instance,
that every positive integer is the sum of four square
numbers. Also, in 1771, he was the first to prove what
is today called “Wilson’s theorem,” that a number n is
PRIME if, and only if, (n – 1)! + 1 is divisible by n.

Although Lagrange was born in Turin and spent
the early part of his life there, he eventually settled in

Paris and identified himself as French. He was intro-
duced to the topics of physics and mathematics at the
College of Turin. He first studied the principles of the
TAUTOCHRONE and, by 1754, had published some
important discoveries about the topic. He shared the
results with LEONHARD EULER (1707–83), who was
suitably impressed. At the young age of 19, Lagrange
was appointed professor of mathematics at the Royal
Artillery School in Turin. There he made significant
progress on the general study of mechanics and wrote a
number of influential papers. In 1756 he was elected to
the Berlin Academy under Euler’s recommendation.

During the 20 years that Lagrange stayed at the
Berlin Academy, he worked on a wide variety of topics.
He lay down the foundations of a subject to become
known as “dynamics” and made significant contribu-
tions to the studies of fluid mechanics, to the integra-
tion of differential equations, and to the solution of
systems of differential equations, as well as to the study
of vibrating strings and the propagation of sound. In
1766 he succeeded Euler as director of mathematics at
the Berlin Academy, and in 1772 he shared one of the
biennial prizes from the Paris Académie des Sciences
with Euler for his work on the “three-body problem”
from physics. He won a prize again from the Paris
Académie in 1774 for his work on the motion of the
moon, and again in 1780 for his mathematical study of
planetary motion.

In 1787 Lagrange left Berlin to take a position at
the Académie des Sciences in Paris. He published his
work Mécanique analytique the following year. He also
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worked with the Paris Académie to standardize the
weights and measures of the day. The committee for-
mulated the metric system and advocated the general
use of a decimal base.

Lagrange’s significant achievements were recog-
nized by the emperor Napoleon in 1808, when he was
named to the Legion of Honour and a count of the
empire. Five years later he was also named Grand
Croix of the Ordre Impérial de la Réunion. He died in
Paris, France, on April 10, 1813.

Lagrange’s impact in mathematics, especially in
mathematical physics, is still felt today. Many funda-
mental concepts in mechanics and multivariable calcu-
lus—such as the Lagrangian (the difference between
kinetic energy and potential energy of a set of parti-
cles), the Lagrangian description (a measure of defor-
mation of a physical body), and Lagrange multipliers
in calculus—play a vital role in the current study of
these subjects.

See also LAGRANGE’S FORMULA.

Lagrange’s formula (Lagrange’s interpolation formula)
Given a collection of points on the plane, it is sometimes
desired to find the formula for a function that passes
through each of those points. For example, a scientist
may seek a formula for a function that fits all the data
values obtained from an experiment. In the late 1700s,
Italian-French mathematician JOSEPH-LOUIS LAGRANGE

suggested the following INTERPOLATION formula:

If (a1,b1), (a2,b2), …, (an,bn) are a collection
of points in the plane, with the values ai dis-
tinct, then

is a POLYNOMIAL, of degree n – 1, that passes
through each of the points.

This formula is today known as Lagrange’s formula.
One can check that it works by substituting x = a1 to
see that f(a1) = b1, and so on.

As an example, consider the points (1,2), (2,5), and
(3,1) in the plane. Lagrange’s formula shows that the
quadratic

passes through each of them.
Many intelligence tests ask participants to identify

“the next number in the sequence.” Lagrange’s for-
mula provides a means for justifying absolutely any
answer to such a question. For example, the next
number in the sequence 2,4,6,… could well be 103.
We can argue that the sequence follows the formula: 

. (Apply Lagrange’s 

formula to the points (1,2), (2,4), (3,6), and (4,103).)

Lambert, Johann Heinrich (1728–1777) Swiss-
German Geometry, Analysis, Number theory, Physics
Born on August 26, 1728, scholar Johann Lambert is
best remembered as the first to prove, in 1761, that π is
an IRRATIONAL NUMBER. He also worked on Euclid’s
PARALLEL POSTULATE and came close to the discovery of
NON-EUCLIDEAN GEOMETRY. Lambert also developed
the notation and the theory of HYPERBOLIC FUNCTIONS.

In 1766 Lambert wrote Theorie der Parellellinien
(On the theory of parallel lines), in which he postulated
the existence of surfaces on which triangles have angu-
lar sums less than 180°, thereby yielding an example of
a geometry in which the parallel postulate would be
false. (Such a surface was later discovered. It is called a
pseudosphere.) Lambert proved that in this geometry,
the sum of the angles of a triangle would not be con-
stant, and in fact would increase (but never to equal
180°) as its area decreases.

In 1737 LEONHARD EULER had proved that e and
e2 are both irrational. In the paper “Mémoire sur
quelques propriétés remarquables des quantités tran-
scendantes circulaires et logarithmiques” (Memoir on
some remarkable properties of transcendental quanti-
ties circular and logarithmic) presented to the Berlin
Academy of Sciences in 1761, Lambert provided a
proof that if x is a rational number different from zero,
then neither ex nor tan x can be rational. Thus Lambert
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had succeeded in extending Euler’s result in establishing 
that e raised to a fractional power, e

p
–q, is never rational, 

and, moreover, noting that tan = 1, that also cannot

be rational. Lambert also conjectured that both e and π
are TRANSCENDENTAL NUMBERs. (It was not for another
100 years that, in 1873, French mathematician Charles
Hermite proved the transcendence of e, and German
mathematician CARL LOUIS FERDINAND VON LINDE-
MANN, in 1883, the transcendence of π.)

Lambert also worked on the theory of PROBABILITY

and, in physics, made important contributions to the
study of heat and light. He died in Berlin, Germany, on
September 25, 1777. Much of Lambert’s work, although
significant at his time, can be seen today as having paved
the way for others to achieve greater advances.

Laplace, Pierre-Simon, marquis de (1749–1827)
French Mechanics, Analysis, Differential equations,
Probability theory Born on March 23, 1749, in Nor-
mandy, France, scholar Pierre-Simon Laplace is best
remembered for his influential five-volume treatise
Traité de mécanique céleste (Celestial mechanics), pub-
lished between the years 1799 and 1825. In this work
Laplace tried to develop a rigorous mathematical
understanding of the motion of the heavenly bodies,
including the various anomalies and inequalities that
were observed in their orbits. In doing so, Laplace
made significant strides in the development of DIFFER-
ENTIAL EQUATIONs, DIFFERENCE equations, PROBABIL-
ITY, and STATISTICS. He was the first to extend SIR

ISAAC NEWTON’s theory of gravitation to the study of
the whole solar system. In 1812 Laplace also published
his Théorie analytique des probabilités (Analytic theory
of probability), which advanced the topics of probabil-
ity and statistics considerably.

At the age of 16 Laplace entered Caen University
and soon discovered a love for mathematics. Three
years later, without completing his degree, Laplace
moved to Paris to work with the mathematician JEAN

LE ROND D’ALEMBERT (1717–83), supporting himself
as a professor of mathematics at the École Militaire. By
the time he was 24, Laplace had produced 13 high-
quality papers on the topics of INTEGRAL CALCULUS,
mechanics, and physical astronomy, earning him
national attention. He continued to produce fundamen-
tally important results, and was soon regarded as one
of the most influential scientists of his time.

In 1773 Laplace was elected to the Paris Académie
des Sciences and was awarded a senior position there
12 years later. He was assigned to a special committtee
of the Paris Académie in 1790 with the charge of stan-
dardizing all European weights and measures.

Laplace’s work on celestial mechanics was revolu-
tionary. In 1786 he had proved that the small pertur-
bations observed in the orbital motion of the planets
will forever remain small, constant, and self-correct-
ing, and in 1796 he was the first to propose the idea
that the solar system originated from the contraction
and cooling of a large rotating, and consequently flat-
tened, nebula of incandescent gas. In 1799 he pub-
lished the first two volumes of his famous Mécanique
céleste, in which he described the general laws of
motion of solids and fluids, applied the universal law
of gravity to studies of the solar system, and developed
methods for analyzing the difference and differential

π–
4

π–
4
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Pierre-Simon Laplace, an eminent mathematical physicist of the
19th century, made fundamental contributions to the study of
planetary motion by applying Sir Issac Newton’s theory of gravi-
tation to the entire solar system. He also pioneered work in the
theory of probability and statistics. (Photo courtesy of
Topham/The Image Works)



equations that arise in these studies. Later volumes
studied the local forces acting between molecules and
the large-scale effect of these local interactions. He
applied this work to the study of pressure and density,
the nature of gravity, capillary action, sound, refrac-
tion, and the theory of heat.

In 1812 Laplace published his famous piece on the
topic of probability. Motivated by the analysis of errors
in observation, Laplace developed the theory of proba-
bility from beginning principles and made clear the
mathematical underpinnings of many aspects of the
topic. He provided his own definition of probability
and used it to justify the basic mathematical manipula-
tions. The work discusses his famous LEAST SQUARES

METHOD, the BUFFON NEEDLE PROBLEM, and BAYES’S
THEOREM. In analyzing the distribution of errors in sci-
entific observations, Laplace also applied this work to
the accurate determination of the masses of Jupiter, Sat-
urn, and Uranus, as well as to improving triangulation
methods in surveying, and correct determination of
longitude and latitude in geodesy.

Under Napoleon, Laplace became a count of the
empire in 1806 and was awarded the title of marquis in
1817. Laplace wrote that he believed that the nature of
the universe is completely deterministic, meaning that
the motions all objects in the solar system are predeter-
mined by the initial conditions at the start of the uni-
verse. When Napoleon asked him where God fit into
this view, Laplace is said to have replied: “I have no
need of that hypothesis.”

Laplace died in Paris, France, on March 5, 1827. It
is not possible to exaggerate the influence Laplace had
on the development of the mathematical theory of
mechanics. A number of fundamental concepts, such as
the Laplace operator in potential theory and the
Laplace transform in the study of differential equa-
tions, are named in his honor.

Latin square An n × n Latin square is an arrange-
ment of the first n Latin letters A, B, C, D, … in a
square array in such a manner that no row or column
of that array contains two identical letters. For exam-
ple, the arrangement below is a 3 × 3 Latin square:

A B C
C A B
B C A

A Latin square is called diagonal if, in addition, no let-
ter is repeated in either diagonal of the square. The fol-
lowing, for example, is a diagonal 4 × 4 Latin square:

A B C D
C D A B
D C B A
B A D C

No 3 × 3 Latin square is diagonal.
There is just one 1 × 1 Latin square, two 2 × 2

Latin squares (neither of which are diagonal), 12 3 × 3
Latin squares, and 576 4 × 4 Latin squares. The num-
ber of Latin squares of a given order grows extremely
rapidly, as the following table shows:

There are more 15 × 15 Latin squares than there are
atoms in the universe (which physicists calculate to be
about 1081).

Two Latin squares of the same order are called
mutually orthogonal if all the pairs of letters that
appear when the two squares are superimposed are dif-
ferent. For example, the two squares shown below are
mutually orthogonal. Here we have used letters of the
Greek alphabet for the second square. The resultant
array of pairs of elements that appears is called a
Graeco-Latin square.

+ = 

This square solves the famous “officer problem” first
posed by LEONHARD EULER (1707–83):

Aα Bβ Cγ Dδ
Bγ Aδ Dα Cβ
Cδ Dγ Aβ Bα
Dβ Cα Bδ Aγ

α β γ δ
γ δ α β
δ γ β α
β α δ γ

A B C D
B A D C
C D A B
D C B A

n Number of n × n Latin Squares

1 1
2 2
3 12
4 576
5 161,280
6 812,851,200
7 61,479,419,904,000
8 108,776,032,459,082,956,800
9 5,524,751,496,156,892,842,531,225,600

10 9,982,437,658,213,039,871,725,064,756,920,320,000
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Arrange 16 officers, each from one of four pos-
sible regiments and of one of four possible
ranks, in a 4 × 4 array so that no two officers
in any given row or column come from the
same regiment, nor have the same rank.

Graeco-Latin squares are also sometimes called
Euler squares. Mathematicians have proved that
there is no solution to the officer problem for the
case of 36 officers of six different ranks from six dif-
ferent regiments (nor for the case of four officers
from two regiments of two ranks), but that all other
versions of the officer problem do have solutions. In
other words, n × n Graeco-Latin squares exist for all
values of n except n = 2 and n = 6.

Graeco-Latin squares are important in the design
of experiments in scientific studies. For example, if four
species of tomato A, B, C, and D are to be tested with
four different fertilizers α, β, γ, and δ, the plots can be
laid out according to a Graeco-Latin square to be sure
that each species of tomato and each fertilizer appears
in each row and column.

law of averages This “law” refers to the incorrect
belief that previous outcomes of independent runs of a
random trial influence the outcomes of runs yet to
occur. For example, after tossing seven “heads” in a
row, the supposed law of averages would dictate that
“tails” is now a more likely outcome. This of course is
not the case. The chance of tossing tails on the eighth
toss is still 50 percent. The law of averages is a com-
mon misinterpretation of the mathematically correct
LAW OF LARGE NUMBERS. Gamblers often feel that after
a long string of losses, the chances of winning a next
hand must be considerably greater.

law of cosines/law of sines (cosine rule, sine rule)
Let a,b, and c be the three side-lengths of a triangle
with interior angles as shown.

The law of cosines asserts:

c2 = a2 + b2 – 2abcos(C)

(with analogous statements for angles A and B). When
C is a right angle, this result reduces to a statement of
PYTHAGORAS’S THEOREM. Hence the law of cosines can
be regarded as a generalization of this famous result.

The law can be proved by drawing an altitude from the
apex of the triangle and applying Pythagoras’s theorem
to the right-angled triangle containing the altitude and
side c in the picture above.

The law of sines asserts:

This can be proved by drawing the altitudes of the tri-
angle. For example, the altitude above is simultaneously
of length asin(C) and csin(A), thereby establishing part
of the law of sines.

Drawing the CIRCUMCIRCLE to the triangle, and
calculating the sine of angle A in the shaded triangle
shown (with the same peripheral angle A) establishes:

a
A

D
sin( )

=

a
A

b
B

c
Csin( ) sin( ) sin( )

= =
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where D is the diameter of the circumcircle. (Here we
make use of the fact that any angle subtended from a
diameter is 90°.) Thus the three quantities expressed in
the law of sines each equal the diameter of the circum-
circle of the triangle, thereby offering an alternative
proof of the law.

See also CIRCLE THEOREMS.

law of large numbers If one tosses a fair coin 10
times, one would expect, on average, five of those
tosses to be “heads.” Of course, in any single run of 10
tosses, any number of heads is possible, even a string of
10 heads in a row, but this is extremely unlikely. The
number of heads actually observed in an experiment is
likely to be four, five, or six, close to 50 percent. (The
probability of any particular count of heads appearing
is described by the BINOMIAL DISTRIBUTION.)

In a run of 100 tosses we would expect the effects
of excessive runs of heads, or tails, to “average out”
and the proportion of heads obtained to be even closer,
on average, to the “true value” of 50 percent—and
closer still if we run an experiment of 1,000 or 10,000
tosses, or more. This is the law of large numbers in
action. Precisely, this law states the following:

The more times a random phenomenon is per-
formed, the closer the proportion of trials in
which a particular outcome occurs approxi-
mates the true probability of that outcome
occurring.

If, for example, a 1 never occurred when rolling a die
10 times, we can be assured, however, that the propor-
tion of 1s appearing in another 100, 1,000, 10,000, …
tosses will approach the value one-sixth.

Many gamblers incorrectly interpret the law of
large numbers as a method for predicting outcomes of
random events. (See LAW OF AVERAGES.)

The law of large numbers is a mathematical conse-
quence of CHEBYSHEV’S THEOREM. It can be interpreted
as saying that if a random phenomenon produces
numerical outcomes with mean value µ, then the mean
of N observed values of the phenomenon approaches
the value µ as N increases. Chebyshev’s theorem is
related, for it gives measures of how values are dis-
tributed about the mean.

See also MONTE CARLO METHOD; STATISTICS:
DESCRIPTIVE.

law of sines (sine rule) See LAW OF COSINES/LAW

OF SINES.

law of the lever ARCHIMEDES OF SYRACUSE (ca.
287–212 B.C.E.) recognized that two weights w1 and w2

placed at distances x1 and x2, respectively, from the ful-
crum (pivot point) of a simple lever will balance when
x1w1 = x2w2. This principle is called the law of the
lever. For example, an adult weighting twice as much
as a child will balance on a seesaw if she sits half the
distance from the pivot point as the child.

See also CENTER OF GRAVITY.

laws of thought The Greek philosopher ARISTOTLE

(384–322 B.C.E.) identified three laws of logic, all tau-
tologies (meaning that each has a TRUTH TABLE with
constant value T) that have since been deemed funda-
mental descriptions of the way we think. His three laws
of thought are:

1. Law of Noncontradiction: It is not the case that
something can be both true and not true.
Symbolically: ¬[p (¬p)]

2. Law of Excluded Middle: Each must either be true
or not true.
Symbolically: p ∨ (¬p)

3. Law of Identity: If something is true, then it is
true.
Symbolically: p → p

Mathematicians often rely on the law of excluded
middle to establish the validity of mathematical results:
an INDIRECT PROOF or a PROOF BY CONTRADICTION

proves that a statement p is true by showing that it
cannot be false. However, not all philosophers (and
mathematicians) agree with this approach and question
the validity of this second law. For example, as the
20th-century Austrian mathematician KURT GÖDEL

showed, there are some statements in mathematics that
can neither be proved nor disproved, and are conse-
quently neither true nor false. The constructivist move-
ment accepts results established by DIRECT PROOF only.

To move beyond the law of the excluded middle,
logicians have attempted to generalize FORMAL LOGIC

to include three possible values of truthhood: true,

∨
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false, and undecided. A further generalization, called
FUZZY LOGIC, treats truth as a continuous quantity
with values ranging from 0 (utterly false) to 1 (utterly
true). As an example, in this theory the sentence:

This sentence is false.

is assigned a truth value of of 1/2, and is deemed half
true and half false. (One arrives at this value as fol-
lows: first note that if a statement p is assigned a truth-
value v, which is either 0 or 1, then the statement ¬p
has opposite value 1 – v, 1 or 0. We assume that this
remains true even if v is of fractional value. If p repre-
sents the sentence: “This sentence is false,” then its
truth establishes its falsehood, p → ¬p, and its false-
hood its truth, ¬p → p. The truth-value v of the state-
ment oscillates between the values v and 1 – v. The
only stable value for v occurs when v = 1 – v, yielding
the appropriate truth-value v = 1/2.)

See also ARGUMENT; SELF-REFERENCE.

leading coefficient For a POLYNOMIAL p(x) = anxn +
an–1xn–1 +…+ a1x + a0, the coefficient an of the highest
power of the variable is called the leading coefficient of
the polynomial. For example, the leading coefficient of
the polynomial 2x3 – 3x + 6 is 2, and that of x + 3 is 1. A
polynomial is called monic if its leading coefficient is 1.

In solving a polynomial equation anxn + an–1xn–1

+…+ a1x + a0 = 0, it is often convenient to assume that
the polynomial in question is monic. One achieves this
by dividing the equation through by an. Solving the
equation 2x4 – 8x3 + 2x – 6 = 0, for instance, is equiva-
lent to solving x4 – 4x3 + x – 3 = 0.

If all the coefficients of a monic polynomial are
integers, then any rational ROOT to the polynomial
must itself be an integer. For example, if the fraction 

x = (written in reduced form) were a solution to the 

polynomial equation x4 – 4x3 + x – 3 = 0, then, substi-
tuting in this value for x and multiplying through by
q4 yields:

p4 – 4p3q + pq3 – 3q4 = 0

This shows that p4 is a multiple of q. Since p and q
share no common factors, this is only possible if q

equals 1. Thus the root x = = p is an integer.

A similar argument shows that if the CONSTANT

term a0 of a polynomial is 1, then any rational root of
the polynomial (if it has one) must be a fraction of the 

form x = . Consequently, any monic polynomial with 

a constant term of 1 can possess at most one rational
(or integer) root, namely, x = 1. This proves, for exam-
ple, that x = 1 is the only rational root of the equation:

x7 – x5 + 2x2 – 3x + 1 = 0

(One checks that x = 1 is indeed a solution to this
equation.)

least common multiple A number that is a multiple
of two or more other numbers is called a COMMON

MULTIPLE of those numbers. The smallest common mul-
tiple is called their least common multiple, written as
“lcm.” For example, the least common multiple of 10,
12, and 15 is 60. There is no smaller number that is
evenly divisible by each of these numbers. We have
lcm(10, 12, 15) = 60.

The least common multiple of a set of integers can
be found by splitting each number into prime factors.
For example, to find the lcm of 180 and 378, write:

180 = 2 × 2 × 3 × 3 × 5
378 = 2 × 3 × 3 × 3 × 7

The lcm is then found by multiplying the prime factors
together, taking each the maximum number of times it
appears in any of the numbers. In our case: lcm(180,
378) = 2 × 2 × 3 × 3 × 3 × 5 × 7 = 3,780. This method
shows that any common multiple of a collection of
integers is a multiple of the least common multiple. It
also shows that, for two positive integers a and b:

where “gcd” denotes the GREATEST COMMON FACTOR

(divisor) of the two numbers. The analogous relation-
ship for three or more integers, however, does not hold
in general.

See also FUNDAMENTAL THEOREM OF ARITHMETIC.

least squares method If a SCATTER DIAGRAM indi-
cates a linear correlation between the two variables of

lcm( , )
gcd( , )

a b
ab

a b
=

1–q

p
–q

p
–q
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interest in a scientific study (for example, the average
shoe size of adults might be linearly correlated to
height), then one can seek the equation of a line that
best fits the data. Such a line is called a regression line.
Specifically, if a study produces N pairs of data values,
(x1,y1),…,(xN,yN), then one seeks a linear equation
y = ax + b that minimizes the total deviation of data
points from that line. This total deviation could be
measured as a sum of absolute values:

|y1 – (ax1 + b)| + |y2 – (ax2 + b)| +…+ |yN – (axN + b)|

(yielding what is called the Chebyshev approximation
criterion), but this quantity is difficult to analyze using
the techniques of CALCULUS. (The ABSOLUTE VALUE

function is not differentiable.)
Another measure of total deviation is the sum of all

the individual deviations squared, which, again, is a
sum of positive quantities:

D = (y1 – (ax1 + b))2 + (y2 – (ax2 + b))2

+…+ (yN – (axN + b))2

The task is to choose values for a and b that minimize
this sum. This is called the least squares criterion.

A necessary condition for D to adopt a minimal 

value is that the two partial derivatives and 

equal zero, yielding the two normal equations:

Dividing through by N and solving for a (the slope)
and b (the intercept), we obtain:

and

b = –y – a · –x

where –x is the mean x-value, and –y is the mean y-value.
Setting:

(this is the VARIANCE of the x-values) and

(the COVARIANCE of the two variables), these formulae 

can be more compactly written: and b = 

. Thus the least squares method gives the 

equation for the line of best fit as:

Measuring the Degree of Fit
The quantity D that was minimized (above) is called
the “error sum of squares”:

It reflects the amount of variation of the data points
about the regression line. The total corrected sum of
squares (SST) of y:

gives a measure of the scattering of the y-values in gen-
eral. Necessarily, D ≤ SST. The difference, SST – D,
called the regression sum of squares, reflects the
amount of variation in the y-values explained by the
linear regression line y = ax + b when compared with
their general distribution. That the quantity SST – D is
positive prompts the definition of the CORRELATION

COEFFICIENT, R2, given by . An exercise 

in algebra shows:

R
SST D

SST
2 = −

SST y yi
i

N

= −( )
=
∑ 2

1

D y ax bi i
i

N

= − +( )
=
∑ ( )

2

1

y y
S
S

x xxy

xx
− =







−( )

y
S
S

xxy

xx
−

a
S
S

xy

xx
=

S
N

x x y y
N

x y x yxy i i
i

N

i i
i

N

= − − =






− ⋅

= =
∑ ∑1 1

1 1

( )( )

S
N

x x
N

x xxx i
i

N

i
i

N

= −( ) =






−

= =
∑ ∑1 12

1

2

1

2

a

x y x y

x x

i i
i

N

i
i

N
=







− ⋅







−

=

=

∑

∑

1

2

1

2

∂
∂

= − − − = ⇒ + =

∂
∂

= − − − = ⇒ + =

= = ==

= = =

∑ ∑ ∑∑

∑ ∑ ∑

D
a

y ax b x a x b x x y

D
b

y ax b a x Nb y

i i i
i

N

i i
i

N

i i
i

N

i

N

i i
i

N

i
i

N

i
i

N

2 0

2 0

1

2

1 11

1 1 1

( )

( )

∂D––
∂b

∂D––
∂a

306 least squares method



This numerical value represents the proportion in
total variation in the y variable that can be accounted
for by the line of best fit. This proportion has values
between 0 and 1, with a value of 1 indicating that all
variation is due to a linear fit, that is, the data values
lie perfectly on the regression line, and an R2 value of
zero indicates that none of the variation in the y-val-
ues is due to a linear correlation. If R2 = 0.84, for
example, then we can say that 84 percent of the vari-
ation in the y-values is accounted for by a linear rela-
tionship with the values of x.

See also REGRESSION.

Lebesgue, Henri-Léon (1875–1941) French Analy-
sis Born on June 28, 1875, French mathematician
Henri Lebesgue is remembered for his revolutionary
ideas in CALCULUS and in the theory of integration. By
generalizing the notion of AREA to one of an abstract
“measure theory,” Lebesgue transformed the object of
an integral into a tool applicable to an extraordinarily
large class of settings. He published work on this topic
at the young age of 27.

Lebesgue studied at the École Normale Supérieure,
France, and taught at the University of Nancy for 3
years. He presented his famous work to his university
colleagues during his final year there in 1902. The
idea behind his approach is relatively simple. One typ-
ically computes an integral by subdividing the range
of inputs, the x-axis, into small intervals and then
adding the areas of rectangles above these intervals of
heights given by the function. This is akin to counting
the value of a pocket full of coins by taking one coin
out at a time and adding the outcomes as one goes
along. Lebesgue’s approach, however, is to subdivide
the range of outputs, the y-axis, into small intervals
and to measure the size of the sets on the x-axis for
which the function gives the desired output on the y-
axis. This is akin to counting coins by first collecting
all the pennies and determining their number, then all
the nickels and ascertaining the size of that collection,
and so forth. Of course the shape of the sets one
encounters along the x-axis can be complicated and
difficult to measure in size. The work of French math-

ematicians Émile Borel (1871–1956) and MARIE

ENNEMOND CAMILLE JORDAN (1838–1922) in devel-
oping so-called measure theory provided Lebesgue the
means to do this.

Lebesgue wrote over 50 papers and two books,
including his 1902 paper “Intégrale, longeur, aire”
(Integrals, lengths, area), his 1910 article “Sur l’intégra-
tion des functions discontinues” (On the integration of
discontinuous functions), and his 1906 monograph
Leçons sur les séries trigonométriques (Lectures on
trigonometric series). He also made important contribu-
tions to the fields of TOPOLOGY and FOURIER SERIES,
and was appointed professor at the Sorbonne, Univer-
sity of Paris, in 1910.

At one point in his life, Lebesgue expressed serious
unease about continuing the work in integration theory
he himself had founded. He feared that by making
mathematics abstract, topics in the subject would begin
to lose meaningful context. He died in Paris, France, on
July 26, 1941.

Lebesgue’s revolutionary approach to integration
theory is taught to all upper-level college students and
graduate students in mathematics today. It is consid-
ered a core component of any serious study of analysis.

left derivative/right derivative The DERIVATIVE of a
function f(x) at position x is defined as the LIMIT f ′(x) = 

. The value of the limit, if it exists, 

represents the slope of the tangent line to the graph of
the function at position x. If the quantity h is restricted
to run only through negative values as it approaches
the value zero, that is, if the limit above is replaced by
a limit from the left, we obtain the left derivative of the
function at x:

Restricting h to run only through positive values pro-
duces the right derivative of the function at x:

(See LIMIT.) The general derivative f′(x) exists if, and
only if, the left and right derivatives both exist and agree
in value. This need not always be the case. Consider the
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function f(x) = x + |x|, for example, at the position 
The left derivative (with h negative) 

is where

as the right derivative (with h positive) is 

. The tan-

gent line to the curve has slope zero just to the left of
x = 0 and slope 2 just to its right. This inconsistency
shows that there is no well-defined tangent line to the
graph f(x) = x + |x| at x = 0.

Legendre, Adrien-Marie (1752–1833) French Geom-
etry, Number theory Born on September 18, 1752, in
Paris, France, Adrien-Marie Legendre is remembered as
a capable French mathematician who devoted his life to
the subject but had the unfortunate luck to see the bulk
of his work rendered obsolete by the discoveries and
abilities of younger, brighter mathematicians.

Legendre published in the fields of NUMBER THEORY,
elliptic functions, EUCLIDEAN GEOMETRY, and celestial
mechanics. His name is associated with a number of
mathematical concepts, including Legendre polynomials,
an important class of functions useful for solving certain
types of DIFFERENTIAL EQUATIONs; the LEAST SQUARES

METHOD; and the Legendre symbol in number theory.
He published an elementary geometry text, Eléments de
géométrie (Elements of geometry), which dominated the
teaching of geometry in America and Europe throughout
the 19th century. In 1791 the Académie des Sciences
undertook the task to standardize weights and measures
and directed Legendre to make the necessary astronomi-
cal observations to compute the length of a meter.

Little is known of Legendre’s early life. Born into a
family of wealth, Legendre had access to an excellent
formal education and the means to pursue scholarly
interests. In 1770 Legendre defended a thesis in mathe-
matics and physics at the Collège Mazarin. His 1782
mathematical research on the path of projectiles earned
him an award from the Berlin Academy and garnered
him some attention as a scholar of mathematics. A year
later Legendre was appointed an adjoint position at the
Académie des Sciences in Paris, later renamed the Insti-
tut National des Sciences et des Arts. He remained
there until 1824, rising appropriately in rank and posi-
tion throughout the decades. However, due to a politi-
cal disagreement with the running of the Institut,

Legendre was denied a pension in his retirement and
died in poverty 9 years later on January 9, 1833.

Despite his work being seen as obsolete, Legendre
did raise a number of fundamental questions in the
fields of number theory and elliptical function theory
that spurred a great deal of mathematical investigation
during the century that followed him.

Leibniz, Gottfried Wilhelm (1646–1716) German
Calculus, Logic Born on July 1, 1646, in Leipzig, Sax-
ony (now Germany), scholar Gottfried Wilhelm Leibniz
is remembered for discovering, and being the first to pub-
lish in 1684, the theory of DIFFERENTIAL CALCULUS. In
subsequent years he also developed the theory of INTE-
GRAL CALCULUS and formulated the FUNDAMENTAL THE-
OREM OF CALCULUS that unites the two fields. This work
was accomplished independently of the progress made by
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Gottfried Wilhelm Leibniz, an eminent mathematician of the 18th
century, was the first to found and publish an account of differen-
tial calculus. He later developed the theory of integral calculus
and the fundamental theorem of calculus that connects the two
subjects. (Photo courtesy of Feltz/Topham/The Image Works)



SIR ISAAC NEWTON (1642–1727) on the same topics.
Leibniz also devoted a considerable amount of effort into
developing a characteristica generalis, a universal lan-
guage, as an attempt to generalize the logical formalism
created by ARISTOTLE (384–322 B.C.E.). (Logician
GEORGE BOOLE later followed this goal in the 1800s.)

Leibniz entered the University of Leipzig at age 14,
as was customary at the time, to commence a 2-year
general degree course. Having read the works of Aris-
totle, Leibniz was already beginning initial work on
formalizing and systematizing the process of reason-
ing. He received degrees in law and in philosophy over
the following 6 years, and then began the ambitious
project of collating all human knowledge. He began
with the study of motion and kinematics, and pub-
lished, in 1671, his book Hypothesis physica nova
(New physical hypothesis).

Leibniz traveled to Paris in 1672 and began a study
of physics and mathematics with leading scientists in
the city at that time. Two years later, he had developed
his theory of differential calculus, but was struggling to
find a good system of mathematical notation for the
theory. In an unpublished 1675 manuscript Leibniz had
described the PRODUCT RULE for differentiation and
established the rules for differentiating POLYNOMIALs.

Word had reached Newton of the results Leibniz
had developed, and Newton immediately wrote to him
explaining that he had already discovered the theory
a decade earlier. Newton, however, did not provide
details of his work. Leibniz courteously replied to
Newton but, not realizing that correspondences were
delayed by months, Newton suspected Leibniz of
dwelling over his letter, reconstructing the missing
details, and stealing his ideas. Although it is under-
stood today that Leibniz had accomplished his work
completely independently of Newton, a bitter dispute
between the two gentlemen ensued, one that lasted for
decades.

In 1684 Leibniz published his details of differen-
tial calculus in Nova methodus pro maximis et min-
imis (A new method for determining maxima and
minima) after finally establishing an effective system of
notation for his work—the d notation we use today.
By this time Leibniz had also developed his theory of
integral calculus (along with the familiar ∫ dx nota-
tion), and began publishing details of the work in
1686. (Newton wrote of his method of “fluxions” in
1671 but failed to get it published.)

Throughout his life, Leibniz also made significant
contributions to the study of DIFFERENTIAL EQUA-
TIONs, the theory of equations and the use of a DETER-
MINANT to solve systems of equations, and
generalizing the BINOMIAL THEOREM to more than
two variables. Also, in his quest to collate all human
knowledge, Leibniz wrote significant treatises on
metaphysics and philosophy. He also developed a gen-
eral “law of continuity” for the universe, suggesting
that all that occurs in nature does so in matters of
degree, and argued that “mass times velocity squared”
is a fundamental quantity that is conserved in physical
systems. (This is today called the “law of conservation
of energy.”)

Leibniz died in Hanover, Germany, on November
14, 1716. It is not possible to exaggerate the effect Leib-
niz had on the development of analytical theory in the
centuries that followed him. His choice of notational
system for calculus, for instance, facilitated clear under-
standing of the subject and easy use of its techniques.
Mathematicians today typically use the notation devel-
oped by Leibniz rather than that developed by Newton.

Leibniz’s theorem See PRODUCT RULE.

lemma See THEOREM.

length The distance along a line, or the distance in
which a figure or solid extends in a certain direction, is
called its length. One can measure two lengths for a
rectangle to give an indication of its size. (The greater
of the two dimensions is usually called its length, and
the smaller its breadth.)

Early units for length were given by parts of the
body. For example, a “cubit” was defined to be the
length of the forearm, measured from the elbow to the
tip of the middle finger (about 19 in.); an “ell,” still
sometimes used for measuring cloth, is the length from
the tip of one’s nose to the end of an outstretched arm
(about 35 in.); a “hand,” used for measuring the heights
of horses, is the width of a man’s hand (about 4 in.); and
a “foot” was defined as the distance paced by one step.
The ancient Romans considered a foot to be the equiva-
lent of 12 thumb-widths, yielding the word inch from
the Latin word unicia meaning one-twelfth. The Romans
also identified 1,000 paces as a milia passuum, leading
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to our concept of one “mile.” One-thousandth of a foot
is called a “gry.” Lengths defined by body measure-
ments are subject to great variation, and it was found
that different communities throughout the world were
using different standards of length even though the
units used were given the same name. During the 19th
and 20th centuries an international standard of units
was developed, and unambiguous units of length were
defined.

In mathematics, the notion of length appears in sev-
eral settings and can be given precise definitions. For
example, on the number line, the length of a line seg-
ment connecting a number a to number b is given by
the ABSOLUTE VALUE |b – a |; the length of a line segment
connecting points A = (a1,a2) and B = (b1,b2) is given 
by the DISTANCE FORMULA ; and 
the length of a VECTOR a = <a1,a2> is given by �a� =

. (These latter formulae generalize to three
and higher dimensions.)

CALCULUS can be used to find the ARC LENGTH of
curved lines in two- and three-dimensional space.

See also SI UNITS.

L’Hôpital, Guillaume François Antoine, marquis de
(1661–1704) French Calculus Born in Paris, France,
in 1661 (his exact birth date is not known), Guillaume
l’Hôpital is remembered as the famed author of the
first textbook on the topic of DIFFERENTIAL CALCULUS,
Analyse des infiniment petits (Analysis with infinitely
small quantities), written in 1696. Apart from explain-
ing the methods and details of the newly discovered
theory, this work also contains the first formulation of
the rule that now bears his name.

L’Hôpital’s talent for mathematics was recognized
as a boy. At the age of 15 he solved a problem on the
CYCLOID put forward by BLAISE PASCAL (1623–62) and
later contributed to the solution of the famous
BRACHISTOCHRONE problem. Before pursuing mathe-
matics in earnest, l’Hôpital served as a cavalry officer
but soon had to resign due to nearsightedness.

In 1691 l’Hôpital hired Swiss mathematician
Johann Bernoulli of the BERNOULLI FAMILY to teach
him the newly discovered theory of calculus. This was
conducted chiefly by correspondence, and the agree-
ment was made that all content of the letters sent
between them would belong to the marquis. This mate-
rial formed the basis of his 1696 text.

Chapter one of Analyse des infiniment petits
defines the notion of a DIFFERENTIAL (or difference, as
l’Hôpital called it) and provides rules as to how they
are to be manipulated. It also outlines the basic princi-
ples of differential calculus. The second chapter gives
the method for determining the tangent line to a curve,
and chapter three deals with MAXIMUM/MINIMUM

problems using problems from mechanics and geogra-
phy as examples. Later chapters deal with cusps, points
of inflection, higher-order derivatives, evolutes, and
caustics. L’HÔPITAL’S RULE appears in chapter nine.

After l’Hôpital’s death Johann Bernoulli com-
plained publicly that not enough credit was given to
him for the work contained in the text. (L’Hôpital did
write a note of gratitude in the book to Bernoulli, and
to GOTTFRIED WILHELM LEIBNIZ, for contributing their
ideas.) It is known today, for example, that Bernoulli,
not l’Hôpital, discovered l’Hôpital’s rule.

L’Hôpital wrote a complete manuscript for a sec-
ond book Traité analytique des sections coniques
(Analytical treatise on conic sections), which was pub-
lished posthumously in 1720. He had also planned to
write a third text, one on the topic of integral calcu-
lus, but discontinued work on the project when he
heard that Leibniz was working on his own book on
the topic.

L’Hôpital died in Paris, France, on February 2,
1704.

L’Hôpital’s rule (L’Hospital’s rule) Named after GUIL-
LAUME FRANÇOIS ANTOINE L’HÔPITAL (1661–1704), a
student of the mathematician Johann Bernoulli of the
BERNOULLI FAMILY, l’Hôpital’s rule is a method for
finding the LIMIT of a ratio of two functions, each of
which separately tends to zero. Precisely:

Suppose f(x) and g(x) are two differentiable
functions with f(a) = 0 and g(a) = 0 at some
point a. Then the limit of the ratio f(x)/g(x) as
x → a is equal to the limit of the ratio of the
derivatives f′(x)/g′(x) as x → a (provided the
derivative of g(x) is never zero, except possibly
at x = a).

As an example, to compute the limit 

(which looks to be of the form 0/0), one simply takes the
derivative of numerator and denominator separately:

lim
x

x
x→

−
−1

2 1
2 2

√a1
2 + a2

2

√(b1 – a1)2 + (b2 – a2)2
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As another example we have: 

cos (0) = 1.
If we make the assumption that the derivative g(x)

is not zero at x = a, then the proof of l’Hôpital’s rule is
relatively straightforward:

Write the limit as . 

Since f(a) = g(a) = 0, we have

The result is still valid if g′(a) = 0, but one must make
clever use of the MEAN-VALUE THEOREM to establish it.
Johann Bernoulli is the one who discovered and proved
l’Hôpital’s rule.

It is permissible to apply l’Hôpital’s rule to the
same limit more than once, that is, to differentiate the
numerator and denominators each a number of times.
To illustrate, we have:

The theorem also holds for limits as x → ∞.
The rule also works for a ratio of functions

f(x)/g(x) if each function separately tends to infinity as
x → a, (that is, we have an indeterminate ratio ∞/∞).
One notes that the functions 1/f(x) and 1/g(x) each
tend to zero as x → a, and so:

by l’Hôpital’s rule. Consequently:

from which it follows that . As
examples, we have:

and

liar’s paradox The sixth century B.C.E. Cretan
prophet Epimenides is purported to have said, “All Cre-
tans are liars,” a statement now referred to as the liar’s
paradox. It is difficult to determine whether Epi-
menides, himself a Cretan, is telling the truth here. The
statement, however, is not a true PARADOX. It may be
the case that Epimenides is aware of at least one honest
countryman and is making here a false statement via the
use of the word all. A sharper version of the intended
paradox lies in the statement, “This sentence is false.”

One may also consider the logical consequences
of variations of this statement. For example, what if
Epimenides had stated instead: “All Cretans are truth-
tellers”?

See also SELF-REFERENCE.

life tables (mortality tables) Based on census results
and results from medical and social studies, life tables
are tables of values indicating the proportion of people
of a certain age expected to live to successively higher
ages. Different tables are provided for different specific
populations and ages (for example, Australian males
age 40, Canadian females age 25) and are used exten-
sively by insurance companies to analyze risk in issuing
insurance policies, as well as in scientific studies. For
example, such tables can be used to compare mortality
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rates for illnesses in different age groups, or popula-
tions with different habits. Life tables are regularly
updated to take account of new factors that may alter
life expectancy.

In his 1662 pamphlet, Natural and Political Obser-
vations Made upon the Bills of Mortality, English shop-
keeper John Graunt was the first to collate and publish
tables of mortality for a specific population. In summa-
rizing government burial records for the years 1604–61,
Graunt was able to estimate the number of deaths,
decade by decade, to expect among a group of typical
100 Londoners born at the same time. He gave the
name “life table” to his display of results. Graunt was
also able to make general observations about the popu-
lation—that women live longer than men, that the
death rate is typically constant, and the like—and he
was the first to comment on the regularity of social phe-
nomena in this way.

In 1693, relying on records collated by Casper
Heumann of Breslau, English astronomer Edmund
Halley refined the mathematical techniques used by
Graunt to compile a revised and more detailed set of
mortality tables, ones suitable for properly analyzing
annuities.

ACTUARIAL SCIENCE is the mathematical study life
expectancies and other demographic trends. Halley’s
work is said to be the founding work in this field.

See also HISTORY OF PROBABILITY AND STATISTICS

(essay); STATISTICS.

limit Intuitively, a limit is a quantity that can be
approached more and more closely but not necessarily
ever reached. For example, the numbers in the SE-
QUENCE 0.9, 0.99, 0.999,… approach, but never reach,
the value 1. We say that the limit of this se-

quence is one. The function f (x) = takes values 

closer and closer to zero as x becomes large. We say the
limit of this function as x becomes large is zero.

The notion of a limit was first properly identified
by the French mathematician AUGUSTIN-LOUIS CAUCHY

(1789–1857), arising as a necessary tool for placing the
theory of calculus on sound theoretical footing. Ger-
man mathematician KARL THEODOR WILHELM WEIER-
STRASS (1815–97) later developed the idea further and
gave the concept of a limit the precise, rigorous defini-
tions we follow today.

The Limit of a Sequence

A sequence of numbers a1,a2,a3,… has limit L
if one can demonstrate that for any positive
number ε (no matter how small), eventually
all the numbers in the sequence will be this
close to the value L. That is, one can find a
value N so that an lies between L – ε and L + ε
if n > N.

This says that no matter which level of precision
you care to choose (ε), eventually all the numbers in the
list (from aN onward) will be within a distance ε from
L. For example, in the sequence 0.9, 0.99, 0.999,…, all
the numbers in the list from the third place onward are
within a distance 1/1000 from the value 1, and all
numbers from the sixth place onward are within one-
millionth of the value 1. In fact, for any small value ε,
we can locate a position in the sequence so that from
that position onward, all values in the list are within a
distance ε from one.

If a sequence {an} has a limit value L, we write: 

limn→∞an = L. For example, one can show that limn→∞

= 0 and limn→∞ . A careful study of CONVER-

GENT SEQUENCEs shows that not all sequences, however,
have a limit.

Any infinite sum (SERIES) can be thought of as a
limit of a sequence of PARTIAL SUMs, and any INFINITE

PRODUCT the limit of a sequence of partial products.

The Limit of a Function

A function f(x) has limit L as x becomes large
if one can demonstrate that for any positive
number ε (no matter how small), all the out-
puts of the function will eventually be this
close to the value L. That is, one can find a
number N so that the value f(x) lies between
L – ε and L + ε if x > N.

This says that no matter which level of precision
you care to choose (ε), eventually all outputs of the
function f(x) (from x = N onward) will be within a dis-
tance ε from L. For example, all outputs of the function 

f (x) = are smaller than 0.001 from the point x = 1,000 

onward. Similarly, all outputs are smaller than 0.000001
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from x = 1,000,000 onwards. In fact, for any small value
ε it is possible to locate a value x = N so that all outputs
of the function from that position onward are within a 

distance ε from zero. (For example, N = will do.)

If a function f(x) has a limit value L as x becomes
large, we write: limx→ ∞ f(x) = L. One can similarly
define the notion of a limit as x becomes large and neg-
ative: limx→–∞ f(x) = L.

One can also consider the possibility of the outputs
of a function f(x) approaching a value L as x approaches
a finite value a. Loosely speaking, we say the “limit of
f(x) as x tends to a is L” if, as x gets closer and closer to
a, the outputs f(x) get closer and closer to L. If this is
indeed the case, we write: limx→a f(x) = L.

To make this notion precise, we need to assume
one is given a desired degree of precision ε, and show
that it is indeed possible to specify a “degree of close-
ness to a” that ensures all the outputs f(x) are within a
distance ε of L. This leads to Weierstrass’s famous
epsilon-delta definition of a limit:

A function f(x) has “limit L as x tends to a” if
one can demonstrate that for any positive
number ε (no matter how small), the outputs
of the function can be made this close to L by
restricting x to values very close, but not equal,
to a. That is, one can produce a number δ so
that if x, different from a, lies between a – δ
and a + δ, then we can be sure that f(x) lies
between L – ε and L + ε.

This says that no matter which level of precision
you care to choose (ε), all outputs of the function f(x)
for values x close to a (namely, within a distance δ of a)
will be within a distance ε from L. Consider, for exam-
ple, the function f(x) = 5x for values close to x = 2.
Notice that all outputs of the function are within a dis-
tance 0.1 from 10 if x is within a distance 0.02 from 2.
All outputs of the function are within a distance 0.001
from 10 if x is within a distance 0.0002 from 2. In fact,
for any small value ε, it is possible to describe a num-
ber δ so that if x is within a distance δ from 2, then 

f(x) = 5x is within a distance ε from 10. (In fact, δ = 
will do.) This shows lim x→2 5x = 10.

If a function f(x) is continuous at x = a, then the
limit limx→a f(x) exists and equals f(a). This, however,
need not always be the case (in which case we say that
f is discontinuous at a).

It is sometimes convenient to describe limit “just
from the left” or “just from the right.” Written as
limx→a– f(x), a limit from the left is defined as a value L
so that outputs of the function f(x) can be made as
close to L as we please by restricting x to values close
to and to the left of a (that is, for values of x between
a – δ and a, for some number δ). A limit from the right,
written limx→a+ f(x), is a value L so that outputs of the
function f(x) can be made as close to L as we please by
restricting x to values close to and to the right of a
(that is, for values of x between a and a + δ, for some
number δ). For example, in the graph above we have
limx→2– f(x) = 1 and limx→2+ f(x) = 0. That the left and
right limits do not agree shows that the function is dis-
continuous at x = 2.

The word limit is also used in INTEGRAL CALCULUS

in terms of a limit of integration. Given a definite inte-
gral ∫b

a f(x) dx, the number a is called the lower limit of
integration, and b the upper limit of integration.

See also ASYMPTOTE; CONTINUOUS FUNCTION;
DERIVATIVE; DIVERGENT; HISTORY OF CALCULUS (essay);
LEFT DERIVATIVE/RIGHT DERIVATIVE; REMOVABLE DIS-
CONTINUITY; ZENO’S PARADOXES.

limit from the left/right See LIMIT.

Lindemann, Carl Louis Ferdinand von (1852–1939)
German Number theory Born on April 12, 1852,
scholar Ferdinand von Lindemann is best remembered
for his 1882 proof that π is a TRANSCENDENTAL NUM-
BER. This accomplishment finally settled the age-old
problem of SQUARING THE CIRCLE: by proving that π is
not a solution to a polynomial equation with integer

ε–
5

1–ε
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coefficients, Lindemann had demonstrated the impossi-
bility of constructing a square of the same area of a
given circle using the classical tools of a straight-edge
and compass alone.

Lindemann wrote a thesis on the topic of NON-
EUCLIDEAN GEOMETRY under the direction of CHRIS-
TIAN FELIX KLEIN (1849–1925), and was awarded a
doctoral degree from Erlangen in 1873. He completed
an advanced habilitation degree in 1877 at the Univer-
sity of Würzburg and was appointed a faculty position
at the University of Freiburg that same year. He later
transferred to the University of Königsberg, and then
eventually accepted a chair at the University of Munich
in 1893, where he remained for the rest of his career.

In 1873, the year Lindemann was awarded his doc-
torate, French mathematician Charles Hermite pub-
lished his proof that the number e is transcendental.
Lindemann traveled to Paris to meet Hermite and to
discuss the methods of his proof. Using the famous for-
mula eiπ = –1 of LEONHARD EULER (1707–83), Linde-
mann realized that Hermite’s methods could be
extended to also establish the transcendence of π. Lin-
demann published his proof in his 1882 paper Über die
Zahl (On numbers).

Lindemann was also interested in physics and con-
tributed to the studies of electrons. He also worked to
translate and revise the work of the mathematician
JULES HENRI POINCARÉ (1854–1912).

In 1894 Lindemann was elected to the Bavarian
Academy of Sciences. He was also praised with an hon-
orary degree from the University of St. Andrews in
1912. He died in Munich, Germany, on March 6, 1939,
and will always be remembered in history for bringing a
close to the classic problem of squaring the circle.

line A CURVE is sometimes called a line. In GEOME-
TRY, a line is usually understood to be straight, but it
is difficult to properly define what is meant by this.
The geometer EUCLID (ca. 300–260 B.C.E.) provided
the intuitive definition of a line as a “length with no
breadth,” but he never attempted to define what is
meant by a length or what it means to say that a con-
struct has no breadth. Euclid, however, did state that
between any two points A and B in the plane, there is
such a thing as a straight line that connects them.
Today mathematicians take this as the starting point of
geometry, leaving the terms line and point (and plane)

as undefined terms, but taking the properties we
expect them to possess (such as “between every two
points there is a line that connects them”) as AXIOMs
for the theory of geometry.

If one is working with a theory of geometry (or
of shape and space) in which there is a clear notion of
a distance between two points, then one could define
a straight line between two points to be the shortest
path between those points. For instance, PYTHAGO-
RAS’S THEOREM, in some sense, establishes that
straight paths, as we intuitively think of them, are
indeed the shortest routes between two points. On
the surface of a SPHERE, the shortest paths between
points are arcs of great circles, and it is therefore
appropriate to deem these as the “straight” paths in
SPHERICAL GEOMETRY.

See also COLLINEAR; CONCURRENT; EQUATION OF A

LINE; LINEAR EQUATION; SLOPE.

linear algebra The study of matrices and their
applications is called linear algebra. As matrices are
used to analyze and solve systems of SIMULTANEOUS

LINEAR EQUATIONS and to describe LINEAR TRANSFOR-
MATIONs between VECTOR SPACEs, this topic of study
unites geometric thinking with numerical analysis. As
the set of all invertible matrices of a given size form a
group, called the GENERAL LINEAR GROUP, techniques
of ABSTRACT ALGEBRA can also be incorporated into
this work.

See also MATRIX.

linear equation An equation is called linear if no
variable appearing in the equation is raised to a
power different from 1, and no two (or more) vari-
ables appearing in the equation are multiplied
together. For example, the equation 2x – 3y + z = 6 is
linear, but the equations 2x3 – 5y + z–1 = 0 and 4xy +
5xz = 7 are not.

A function of one variable is said to be linear if it
is of the form f(x) = ax + b, for some constants a and
b. More generally, a function of several variables of
the form

f(x1,x2,…,xn) = a0 + a1x1 + a2x2 +…+ anxn

for some constants a0, a1, a2, …, an is called linear.
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Any equation of the form ax + by = c represents a
LINE in two-dimensional space. (Solving for y, assum-
ing that b is not zero, yields the linear function 

y = – x + .) An equation of the form ax + by + cz

= d represents a PLANE in three-dimensional space.
A linear combination of variables x1, x2, x3, … is a

sum of the form

a1x1 + a2 x2 + a3x3 +…

for some constants a1, a2, a3, … In VECTOR SPACE the-
ory, a set of vectors is said to be linearly dependent if
some linear combination of those vectors is zero.

In LINEAR ALGEBRA, a MATRIX equation of the form
Ax = b is called a linear equation. It represents a system
of SIMULTANEOUS LINEAR EQUATIONS.

A linear differential equation is a DIFFERENTIAL

EQUATION of the form:

for some constants a0, a1, a2, …, an and some fixed
function f(x).

In some settings it is appropriate to apply the term
linear to specific variables appearing in a complicated
expression. For instance, the term 5x2yz is linear with
respect to y and with respect to z.

See also EQUATION OF A LINE; EQUATION OF A

PLANE; LINEAR TRANSFORMATION; LINEARLY DEPEN-
DENT AND INDEPENDENT.

linearly dependent and independent A collection
of functions is said to be linearly dependent if one of
them can be expressed as a sum of constant multiples
of the other; if this is not possible, then the collection is
said to be linearly independent. For example, the func-
tions f1(x) = x, f2(x) = x2 – 2x, f3(x) = x2 are linearly
dependent, since f3(x) = 2f1(x) + f2(x). The functions
{x, 7x} are also linearly dependent, since the second
function is a constant multiple of the first. On the other
hand, the functions {x, x2, x3} are linearly independent,
as are the functions {sin x, cos x}.

A set of VECTORS is said to be linearly dependent if
it is possible to write one vector as a combination of
the remaining vectors. Equivalently, vectors v1, v2,…,vn

are linearly dependent if it is possible to choose scalars
c1,c2,…,cn, not all zero, so that

c1v1 + c2v2 +…+ cnvn = 0

(If ci, say, is not zero, then dividing through by this
scalar shows that vi is a sum of multiples of the
remaining vectors.) If this is not possible, then the vec-
tors are said to be linearly independent. For example,
in three-dimensional space, the vectors i = <1,0,0>, j =
<0,1,0> and k = <0,0,1> are linearly independent—it is
not possible to write any one as a sum of multiples of
the other two.

A basis for a VECTOR SPACE is a collection of lin-
early independent vectors with the property that any
other vector in the vector space can be written as a
sum of multiples of these vectors. For example, the
vectors i, j, and k form a basis for the vector space of
three-dimensional vectors for any other vector a =
<a1,a2,a3> that can be expressed as the combination
a = a1i + a2j + a3k. It is impossible to express a vector
as a combination of basis vectors in two different
ways. (To explain: Suppose v1, v2, v3 is a basis for a
vector space, and that some vector a can be expressed
as a combination of these vectors in two different
ways: a = a1v1 + a2v2 + a3v3 = b1v1 + b2v2 + b3v3. Sub-
tracting gives the equation (a1 – b1)v1 + (a2 – b2)v2 +
(a3 – b3)v3 = 0. Since the vectors v1,v2,v3 are linearly
independent, it must be the case that a1 = b1, a2 = b2,
and a3 = b3.)

Mathematicians have proved that every vector
space must have a basis, and that the number of vec-
tors in any basis for a particular vector space is always
the same. This number is called the dimension of the
vector space. In particular, the set of all functions is a
vector space and so must have a basis. One candidate
for such a basis is the infinite collection of functions
{1,x,x2,x3,x4,…}. This set is certainly linearly indepen-
dent, and the work of constructing TAYLOR SERIES

shows that all “appropriately nice” functions can be
expressed as infinite sums of these basic functions.
Functions like sin(x), cos(x), and sin(7x) repeat values
every 2π and are called periodic. Mathematicians have
shown that the collection {1,sin(x), cos(x), sin(2x),
cos(2x), sin(3x), cos(3x),…} forms a basis for the vec-
tor space of all periodic functions. This leads to the
study of FOURIER SERIES.

See also ORTHOGONAL.
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linear programming The branch of mathematics
concerned with finding the maximum or minimum val-
ues of linear functions, that is, functions involving vari-
ables raised only to the first power, subject to a number
of inequalities that must remain true, is called linear
programming. This field has profound applications to
economics and industry and is an area of active
research. While, in principle, OPTIMIZATION problems
of this type are straightforward to solve, practical
problems may involve well over 100 variables and be
difficult to analyze. The challenge is to find efficient
techniques for finding solutions.

The principle of linear programming is best illus-
trated with an example. Suppose, for instance, we wish
to find the maximum value of the function U = 4x – 3y
subject to the constraints x ≥ 0, y ≥ 0, x ≤ 1, and y ≤ 1.
In this example, the constraints define a unit square in
the plane, and we wish to find the point (x, y) in this
“feasible region” that provides the largest value for the
“objective function”U = 4x – 3y.

Reasoning backward, note that each possible value
c of the objective function defines a line 4x – 3y = c of
slope 4/3. As the value of c varies, this line sweeps
across the plane. Starting with a large value of c and
decreasing its value, we thus seek the first value, of c
that produces a line that touches the feasibility region.
Clearly, this will occur at one of the vertices of the
square. Checking all four vertices, (0,0), (1,0), (0,1),
and (1,1), we see that x = 1, y = 0 gives the largest pos-
sible value 4 for U.

In general, the constraint conditions define a polyg-
onal region in space, and the maximal and minimal
values of U can only occur at vertices of the region.
Linear programming then seeks to find efficient meth-
ods for checking which vertices yield the largest and
smallest values for U.

See also OPERATIONS RESEARCH.

linear transformation A map T : V → W between
two VECTOR SPACEs V and W is called a linear transfor-
mation if the following two conditions hold:

i. T(a + b) = T(a) + T(b) for any two vectors a and b
ii. T(ka) = kT(a) for any number k and any vector a

If the vector spaces V and W represent the set of all
points in the plane or in three-dimensional space, then

a linear transformation is an example of a GEOMETRIC

TRANSFORMATION that takes straight lines to straight
lines. For instance, rotations and reflections are linear
transformations. However, not every geometric trans-
formation is a linear transformation. Although a trans-
lation, for example, preserves straight lines in the
plane, it does not satisfy the first condition described
above and so is not a linear transformation.

If e1e2,…,en is a basis for the vector space V, then
any vector a in V can be written as a linear combina-
tion of these basis vectors:

a = c1e1 + c2e2 +…+ cnen

for some numbers c1, c2,…, cn. Thus the value of the
linear transformation T is completely determined by its
values on the basis vectors:

T(a) = T(c1e1 + c2e2 +…+ cnen)
= c1T(e1) + c2T(e2) +…+ cnT(en)

If f1,f2,…,fm is a basis for the second vector space W,
then each vector T(ej) is a linear combination of these
basis vectors:

T(ej) = a1jf1 + a2jf2 +…+ amjfm

Thus the numbers aij completely specify how the lin-
ear transformation works. Let A be the MATRIX with
(i,j)th entry equal to aij. This shows that every linear
transformation is represented by a matrix. Moreover,
if we represent the basis vectors e1,e2,…,en as the col-
umn vectors:

then the matrix A, whose jth column is the sequence of
values that result when T is applied to the jth basis vec-
tor ej, satisfies Aej = T(ej), and, in general, for any vec-
tor a we have:

T(a) = Aa

That is, we have:
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Any linear transformation T from a vector
space V to a vector space W is given by multi-
plication with a matrix A whose jth column is
the effect of T on the jth basis vector of V.

For example, consider a rotation R in the plane
about the origin through an angle θ. Such a rotation
takes a unit vector in the direction of the x-axis,

, to the vector , and the unit vector in 

the direction of the y-axis, , to the vector 

. Thus the matrix representing a rotation 

through an angle θ is given by:

In the same way, a reflection about the x-axis, for
instance, is given by the matrix:

and a dilation by a factor k as:

Of course, if one were to work with a different set of
basis vectors, the matrix representing the linear trans-
formation would be different.

One can show that if matrix A represents a linear
transformation T:V → W and matrix B represents a
linear transformation S:W → R, then the matrix prod-
uct BA represents the composite linear transformation:
SoT:V → R. If the matrix A is invertible, then the
INVERSE MATRIX A–1 represents the inverse linear trans-
formation T–1:W → V. (This inverse map exists if A is
indeed invertible.)

See also AFFINE TRANSFORMATION; MATRIX OPER-
ATIONS.

Liouville, Joseph (1809–1882) French Number the-
ory, Analysis Born on March 24, 1809, in Saint-
Omer, France, scholar Joseph Liouville is best
remembered for his 1844 proof of the existence of
TRANSCENDENTAL NUMBERs. Liouville also managed to
provide, for the first time, specific examples of numbers
that cannot be algebraic. (These numbers are today
called Liouville numbers.) He is also noted for his con-
tributions to DIFFERENTIAL EQUATIONs, differential
geometry (the study of CALCULUS on three-dimensional
shapes and surfaces), complex analysis (calculus
applied to complex numbers), and NUMBER THEORY. In
1864 he also edited and published manuscripts left by
ÉVARISTE GALOIS (1811–32) on POLYNOMIAL equa-
tions. Liouville wrote over 400 mathematical papers
during his career, around 200 of which were on the
topic of number theory.

Liouville graduated from the École Polytechnique
in 1827 with a basic degree in mathematics and
mechanics. After taking on a number of different teach-
ing positions, Liouville was eventually appointed pro-
fessor of analysis and mechanics at that same
institution in 1838. Meanwhile, Liouville had already
garnered an international reputation for his work on
electrodynamics, partial differential equations, and the
study of heat, as well as for his establishment of a new
mathematics journal, Journal de Mathématiques Pures
et Appliqués (Journal of pure and applied mathemat-
ics), today commonly referred to as Liouville’s Journal.

Correspondence with mathematicians CHRISTIAN

GOLDBACH and Daniel Bernoulli of the BERNOULLI

FAMILY sparked Liouville’s interest in transcendental
numbers. He attempted to prove that the number e was
transcendental, but did not succeed. (This feat was
later accomplished by French mathematician Charles
Hermite in 1873.) However, using the theory of contin-
ued fractions, Liouville managed to construct a class of
real numbers x with the property that for each natural 

number n there is a fraction satisfying the inequality:

This, Liouville showed, was enough to establish that x
is transcendental. In particular, Liouville showed that
the specific number (sometimes now called Liouville’s
number):
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is transcendental.
Liouville died in Paris, France, on September 8,

1882. He established his place in the history of mathe-
matics for pioneering work on the study of REAL

NUMBERS.

Liu Hui See CHINESE MATHEMATICS.

Li Ye (Li Chi, Li Zhi) (1192–1279) Chinese Algebra
Li Ye is remembered for his 1248 text Ceyuan Haijing
(Sea mirror of circle measurements), in which he intro-
duced the “method of the celestial element”—a system
of notation for polynomials in one variable (the celes-
tial element)—and a set of techniques for solving such
polynomial equations. Using the single diagram of a
circular city wall inscribed inside a large right-angled
triangle, Ceyuan Haijing leads the reader through 170
geometric problems, cleverly designed to illustrate the
techniques of translating geometry into algebra, and
then solving the consequent algebraic equations. Over
650 different formulae for triangular areas and seg-
ment lengths are presented in this text.

Extremely little is known of Li Ye’s life, except that
his work apparently earned him some regard. In 1266 Li
Ye was appointed a position at the elite Hanlin Academy
by the emperor Kublai Khan, grandson of the great
Genghis Khan. He remained there only a few years to
then retire and live the rest of his life as a hermit.

Lobachevsky, Nikolai Ivanovich (1792–1856) Rus-
sian Geometry Born on December 1, 1792, in Nov-
gorod, Russia, Nikolai Lobachevsky is remembered for
his 1826 discovery of HYPERBOLIC GEOMETRY and for
detailing many of its properties. (This work was con-
ducted independently of the discoveries made by JÁNOS

BOLYAI (1802–60) 3 years earlier.) He was the first to
publish a description of a NON-EUCLIDEAN GEOMETRY

in his 1826 article “A Concise Outline of the Founda-
tions of Geometry.”

Lobachevsky entered Kazan State University in 1807
with the intent to study medicine, but soon changed
interest to pursue courses in mathematics and physics.

He graduated with a master’s degree in 1811 and, three
years later, was appointed a lectureship position at the
university. In 1822 he was appointed full professor, and
in 1827 was named rector of the university. He remained
at Kazan State University until his retirement in 1846.

Lobachevsky was introduced to the topic of geome-
try as a student. Ever since the time of EUCLID (ca.
300–260 B.C.E.), scholars questioned Euclid’s choice of
axioms as the basis for all of geometry. His fifth postu-
late, the famous PARALLEL POSTULATE, was deemed of a
different nature than the remaining four, and scholars
suspected that it could be deduced from them as a logi-
cal consequence. This became an outstanding challenge
in mathematics. For two millennia scholars attempted
to establish the fifth postulate as a THEOREM, but failed.

Upon learning of this problem, Lobachevsky began
analyzing the situation for himself. Rather than attempt
to prove the fifth postulate, he considered the possibil-
ity that it need not follow from the remaining four
axioms, and, moreover, allowed for the possibility of a
geometry in which the first four axioms do hold but
one in which the fifth postulate is blatantly false. With
this expanded thinking, Lobachevsky discovered a con-
sistent theory of geometry—hyperbolic geometry—dif-
ferent from Euclidean geometry, but nonetheless valid
in its own right. That such a geometry exists showed,
once and for all, that the fifth postulate is in fact inde-
pendent of the remaining four axioms. This was a
remarkable achievement.

Lobachevsky presented the results of his discovery
to his colleagues at Kazan State University in 1826
and published his article “A Concise Outline of the
Foundations of Geometry” in the Kazan Messenger.
Unfortunately, the St. Petersburg Academy of Sciences
decided not to publish his piece as a peer-reviewed
article, and Lobachevsky’s work did not receive
widespread recognition.

Although Lobachevsky managed to publish
papers on the topic at later dates, including his 1840
German paper “Geometrische Untersuchnungen zur
Theorie der Parallellinien” (Geometric investigation
on the theory of parallel lines), it was not until after
his death on February 24, 1856, that the importance
of his work was understood and published in a main-
stream forum. Today, Lobachevskian geometry plays a
central role in the modern description of space and
motion in relativistic quantum mechanics and the gen-
eral theory of relativity.
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local maximum/local minimum See MAXIMUM/
MINIMUM.

locus (plural, loci) A set of points satisfying some
specified condition is called a locus of points. For
example, the locus of all points in the plane at equal
distance from a given point is a circle, and the locus of
all points EQUIDISTANT from two given points A and B
in the plane is a straight line perpendicular to the line
segment connecting A and B through its MIDPOINT.
Further, if the point A is replaced by a circle, then the
locus of all points equidistant from A and B is a HYPER-
BOLA if B lies outside the circle A, and an ELLIPSE if B
lies inside A. The locus of all points equidistant from a
line A and a point B is a PARABOLA.

If, in a system of CARTESIAN COORDINATES, a locus
of points can be expressed in the form

{(x,y) : f(x,y) = 0}

then the equation f(x,y) = 0 is called the equation of the
locus. For example, x2 + y2 – 25 = 0 is the equation of
a circle of radius 5 centered about the origin.

logarithm The power (EXPONENT) to which a num-
ber b must be raised to obtain a given number N is
called the base-b logarithm of N. That is, if bx = N,
then we write logbN = x, which we read as “the power
of b that gives N is x.” It is assumed that the number b
is positive. For example, one must raise the number 10
to a power of 2 to obtain the number 100, and so the
base-10 logarithm of 100 is 2:

log10 100 = 2

We also have:

log10 1,000 = 3 (the power of 10 that gives 1,000 is 3)

(the power of that gives is 3)

(the power of 3 that gives is –2)

log431 = 0 (the power of 43 that gives 1 is zero)

and

(the power of 6 that gives √
–
6 is 1/2)

Because a quantity bx is never negative, or zero, there is
no logarithm of a negative number or of zero.

Because logarithms are exponents, they obey the
same rules as exponents. For example, the multiplica-
tion rule for exponents reads bxby = bx+y indicating
that, upon multiplication, exponents add. This leads to
the rule of logarithms:

1. logb (N × M) = logb N + logb M

(Precisely, if x = logb N and y = logb M, then we have:
bx = N and by = M. Consequently, N × M = bx × by =
bx+y, which states that x + y is the power of b that gives
N × M. That is, logb N × M = x + y = logb N + logb M.)

Similarly, the exponent rule (bx)y = bxy leads to
the rule:

2. logb(Ny) = ylogb N

We also have the rules:

3. logb(bx) = x (The power of b that gives bx is
indeed x.)

4. blogbx = x (Indeed, logbx is the power of b that
gives x.)

5. logb 1 = 0 (The power of b that gives 1 is zero.)

Logarithms were invented by Scottish mathematician
JOHN NAPIER (1550–1617) as a means to simplify arith-
metic calculations. For example, rule 1 shows that any
multiplication problem can be converted to the much
simpler operation of addition using logarithms. This dis-
covery was of great interest to scholars of the Renais-
sance, in particular astronomers, who were struggling
with problems requiring the manipulation of very large
numbers. Such computations were extremely tedious and
prone to many errors. Inspired by problems dealing with
the size of the Earth, Napier felt that working with
the number 107 = 10,000,000 would be most helpful 

to scientists, and he chose the number b = 1 – 

as the base of his logarithms. Napier multiplied all
the quantities he worked with by 107 to help avoid
the appearance of decimals. Today his logarithm of a 

number N would be written .10
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Although logarithms are now understood as expo-
nents, Napier himself did not think of them in this way.
He developed his theory of logarithms geometrically,
thinking of them as a ratio of distances traveled by two
moving objects, one moving along a straight line at a
speed of 1 unit per second, and the other moving along
a line segment 1 unit long and with speed changing
according to its distance from the endpoint it is
approaching. Napier chose the name logarithm from
the Greek words logos for “ratio” and arithmos for
“number.” It was not until the end of the 17th century
that mathematicians recognized that logarithms were,
in fact, exponents.

After Napier published his work in 1614, English
mathematician HENRY BRIGGS (1561–1630) suggested
to Napier that, like our number system, logarithms
should be based on the number 10. Napier agreed that
this would indeed simplify matters, and b = 10 was
then deemed the preferred base for logarithms. Base-10
logarithms are today called common logarithms or
Briggs’s logarithms. The common logarithm of N is
simply denoted log N or lg N.

In 1624 Briggs published tables listing values of
common logarithms for the numbers 1 to 20,000 and
90,000 to 100,000, inclusive. The values for the num-
bers 20,000–90,000 were completed after Briggs’s
death by Dutch mathematician Adriaan Vlacq.

Swiss watchmaker Jobst Bürgi, maker of astronom-
ical instruments, also conceived of logarithms to facili-
tate the multiplication of large numbers. However,
since Napier published his work first, the credit for
their discovery was not given to Bürgi.

A number with a given value for its logarithm is
called the antilogarithm, or antilog, of that value. The
base-10 antilog of a value x is 10x.

The common logarithms of the numbers 3.7, 370,
370,000, for example, differ by whole numbers: log 3.7
≈ 0.5682, log 370 = log(3.7 × 100) ≈ 0.5682 + 2 =
2.5682, and log 370,000 = log(3.7 × 105) ≈ 5.5682.
The decimal part of a logarithmic value is called the
mantissa, and the integer part is called the characteris-
tic of the logarithm. (For example, the three logarithms
above each have mantissa 0.5682 and characteristics 0,
2, and 5, respectively.) Logarithmic tables from the past
listed only the mantissas of numbers from 1 to 10. The
logarithm of any other number can then be computed
by adding the appropriate integer to represent the
power of 10 needed.

In CALCULUS it is convenient to work with loga-
rithms of base e. The number e is an irrational number
with value approximately 2.718281828… Logarithms
of base e are called natural logarithms, and a logarithm
of base e is denoted ln. Thus, ln(e3) = 3, for example.

If one is willing to work with complex numbers,
then it is possible to give meaning to the logarithm of a
negative number. For example, EULER’S FORMULA tells
us that eiπ = –1. Consequently ln(–1) = iπ. Going fur-
ther, extending to logarithms of complex numbers, we 

have, for instance, . In this

setting, all nonzero numbers—real and complex—have
logarithms.

See also E; EXPONENTIAL FUNCTION; LOGARITHMIC

FUNCTION; LOGARITHMIC SCALE; SLIDE RULE.

logarithmic function Any CONTINUOUS FUNCTION

f(x), not identically zero, defined for positive values of
x with the property that f(a · x) = f(a) + f(x) for all pos-
itive values a and x, is called a logarithmic function.
Such functions are said to “convert multiplication into
addition.” The series of observations below shows that
every logarithmic function is given by a LOGARITHM:
f(x) = logbx for some positive base b.

1. All logarithmic functions f(x) satisfy f(1) = 0.

(This follows from the observation: f(1) = f(1.1) =
f(1) + f(1).)

2. All logarithmic functions satisfy . 

Consequently, the logarithmic functions give both
positive and negative outputs.

(This follows from the observation: 

.)

3. For any logarithmic function there is a number b for
which f(b) = 1.

(We have f(1) = 0 and that it is possible to choose a value
a such that f(a) is positive. One of the values f(a), f(a2) =
f(a) + f(a), f(a3) = f(a) + f(a) + f(a), … will be greater than
one. Thus it is possible to find a number c with f(c) > 1.
By the INTERMEDIATE-VALUE THEOREM, there must be a
value b between 1 and c, so that f(b) = 1.)
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4. If f(x) is a logarithmic function with f(b) = 1, then
f(x) = logb x.

(For any positive integer n, we have f(xn) = f(x) + f(x) 

+…+ f(x) = nf(x). Also, .

For a fraction , we have qf(x ) =   f ((x )
q) = f(xp)

= pf (x), which shows f(xr) = rf(x) for any rational 
number r. Since every irrational number is a LIMIT of
rationals, this property also holds for irrational num-
bers. In particular, for any value x, f(bx) = xf(b) = x.
That is, f is indeed the function that extracts the expo-
nent of a given power of b.)

If a logarithmic function satisfies f(e) = 1, then it is
called the logarithmic function. It is the function given
by the natural logarithm: f(x) = ln x. Its derivative is 

given by (ln x) = , and consequently ln x = ∫ x
dt. 

Thus the logarithmic function can alternatively be 

defined as the area under the y = curve. (See E.)

The derivative of a logarithmic function to an arbi-
trary base b can be computed via implicit differentiation
after first unraveling and then reapplying a logarithm.
Specifically, if y = logb x, then by = x. Applying the natu-
ral logarithm yields ylnb = lnx. Differentiating, we see 

that ln b = , and so, = . Thus we have:

See also HOMOMORPHISM; LOGARITHMIC SCALE;
SLIDE RULE.

logarithmic scale A line marked with distances whose
LOGARITHMs are the actual distances along the line is
said to be in logarithmic scale. For example, in a base-10
logarithmic scale, if 10 is the label 1 in. along the line,
each successive inch will be marked 100, 1,000, etc.
(The position labeled 1,000, for example, is physically
log10 1,000 = 3 in. along the line.) If a set of coordinate
axes are both in logarithmic scale, then the plot of a
curve y = xn, for example, will appear as the plot of
log y = log(xn) = n log x, that is, as though the variables
in question are logy and logx. In this setting, the graph
appears as a straight line of SLOPE n. Scientists often plot

graphs on log-log graph paper and measure slope to find
the value of n that best fits the data.

The term logarithmic scale is also used to describe
any quantity that is typically measured in terms of loga-
rithms. In 1935 American seismologist Charles Richter
set up the Richter scale to describe the intensity of
earthquakes. The scale he devised is logarithmic, base
10, meaning that an earthquake measuring 6 on his
scale, for example, is 106, or 1 million, times stronger
than the small quakes that he set at value zero. The pH
measurement of acidity or alkalinity used in chemistry is
also logarithmic, as is the unit DECIBEL used to measure
sound intensity.

See also SLIDE RULE.

logistic growth See POPULATION MODELS.

long division See BASE OF A NUMBER SYSTEM.

long radius The distance from the center of a regular
POLYGON to one of its vertices is called the long radius
of the polygon. This quantity is also the radius of CIR-
CUMCIRCLE of the polygon. If the polygon has n sides,
each 1 unit in length, then an exercise in TRIGONOME-
TRY shows that the long radius has value

An analog of PI for a regular polygon is the ratio of
its PERIMETER to twice the length of it long radius
(which equals the diameter of the polygon if n is even).
This quantity approaches the value as π as n becomes
large. This follows from the fact that, according to the 

SQUEEZE RULE, approaches the value 1 as x,

measured in radians, becomes small.
See also APOTHEM; RADIAN MEASURE.

Lovelace, Augusta Ada Byron (1815–1852) British
Computation Born on December 10, 1815, in Pic-
cadilly, England, Augusta Ada Byron Lovelace is remem-
bered as one of the first people to write a set of
instructions for a computing machine. As an assistant to
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the notable CHARLES BABBAGE (1791–1871) in his
design and planned construction of an “analytic
engine,” Lovelace outlined the principles needed in per-
forming mathematics on a machine and, in effect, was
the first person to ever write a computer program.

Daughter of the famous poet George Gordon, Lord
Byron, Lovelace was encouraged to study mathematics
by her mother, herself an adept mathematician. On
June 5, 1833, while attending a party, Lovelace met
Babbage and learned of his work on mechanical com-
putation. Fascinated by the topic, Lovelace visited Bab-
bage’s London studio 2 weeks later to see his first
machine, the “difference engine.” From that date on,
Lovelace worked as Babbage’s assistant on the develop-

ment of a superior device capable of receiving instruc-
tion and data from punch-cards, and able to perform
all possible types of mathematical operations.

European scholars at the time were writing com-
mentaries of Babbage’s work, and Lovelace took it
upon herself to translate French material into English.
In 1843 she published an annotated translation of a
work by Luigi Menabrea (1809–96), Notions sur la
machine analytique de Charles Babbage (Notes on
Charles Babbage’s analytic engine), in which, through
her extensive annotations, she effectively determined
the entire theoretical workings of such a machine. (This
material was not properly developed by Menabrea.)
Lovelace had, in fact, explained how to program a
machine to perform abstract mathematics.

On a philosophical note, Lovelace addressed the
pressing question of whether calculating machines
(computers) would ever be able to think. She argued
that machines will only ever be able to do what we
know how to order them to perform, and as such will
never be able to anticipate results or truths. The latter
point, she felt, is what constitutes “thinking,” whereas
the former does not. This argument has since become
known as “Lady Lovelace’s objection.”

Due to lack of funding, Babbage and Lovelace
were never able to complete construction of the new
engine. Lovelace’s work, nonetheless, is recognized
today as having correctly anticipated the theoretical
issues of computer science. She died in London, Eng-
land, on November 27, 1852.

lune A crescent-shaped figure in the plane formed by
two circular arcs is called a lune. Lunes were studied
extensively by HIPPOCRATES OF CHIOS in the fifth cen-
tury B.C.E. As a first attempt to solving the infamous
problem of SQUARING THE CIRCLE, he showed that it is
possible to square lunes of the type as shown in the
illustration below. (That is, Hippocrates outlined a
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Augusta Ada Byron Lovelace, assistant to 19th-century scholar
Charles Babbage, was the first to develop a theory of mechanical
computation and the first to write the equivalent of a computer
program. (Photo courtesy of the Science Museum,
London/Topham-HIP/The Image Works)
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specific series of steps that allowed one to construct a
square of the same area as this lune using a straight-
edge and compass alone.) Mathematicians have since
proved that there are only four other types of lunes
that can also be so squared.

In the figure on the preceding page, the areas of the
two shaded lunes sum to the area of the triangle. Here,
each circular arc is a semicircle drawn on the side of a
right triangle. This claim follows from the generalized
version of PYTHAGORAS’S THEOREM, which states that
the areas of two semicircles constructed on the two

shorter sides of a right triangle sum to the area of the
semicircle constructed on the hypotenuse. (Conse-
quently, in our diagram, areas A1 + A2 and A3 + A4

sum to A2 + A4 + A5, yielding A1 + A3 = A5.)
In the study of spherical geometry, the part of the

surface of a sphere bounded by two great circles is also
called a lune. If the angle between the two great circles
is θ degrees, then the surface area of this 

slice of the sphere is 4πr2 · units squared, where r

is the radius of the sphere.

θ
––
360
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Maclaurin, Colin (1698–1746) British Calculus Born
in February 1698 (his exact birth date is not known),
in Kilmodan, Scotland, scholar Colin Maclaurin is con-
sidered the foremost British mathematician of the gen-
eration that followed SIR ISAAC NEWTON. In his two
famous texts Geometrica organica (Organic geometry)
of 1720, and Treatise of Fluxions of 1742, Maclaurin
developed and extended the subject of CALCULUS and
offered many original results. The famous series that
bears his name, however, is a special case of the work
of BROOK TAYLOR (1685–1731), as Maclaurin appro-
priately acknowledged. He also wrote an influential
elementary textbook, A Treatise on Algebra, on the
application of algebra to geometry.

Orphaned at age 10, Maclaurin entered the Univer-
sity of Glasgow in 1709, which, at the time, was
deemed an acceptable alternative to a secondary school
education. There he studied the works of EUCLID,
which sparked in him a passion for mathematics. At
age 14 he completed the basic degree of master and
gave a public lecture on Newton’s theory of gravita-
tion, exhibiting a level of scientific knowledge compa-
rable with that of scholars of the day.

In 1717 Maclaurin was appointed professor of
mathematics at Marischal College in the University of
Aberdeen. This position provided him the opportunity
to travel to London in 1719, where he met SIR ISAAC

NEWTON (1642–1727) and continued his studies in
mathematics and physics. Maclaurin’s work was well
received, and he was elected a fellow of the ROYAL

SOCIETY that same year. Two years later he was also
awarded the grand prize from the French Académie des

Sciences for his work on the impact of bodies. At the
same time, he had written and published his famous
treatise Geometrica organica, which garnered him con-
siderable regard as a fine scholar in geometry.

In an attempt to settle the criticisms of Newton’s
newly developed calculus, Maclaurin published his own
account of the theory. His lengthy Treatise of Fluxions
appealed to geometry to bring rigor to Newton’s use of
FLUXIONs and fluents. He also developed the theory of
infinite SERIES, produced new tests of convergence, and
discussed POWER SERIES expansions of functions (TAYLOR

SERIES). This work was very influential, and in honor of
his achievement, his name remains attached to the series
he considered—the Maclaurin SERIES. Maclaurin also
provided many new applications of calculus in this work.

Maclaurin received a second prize from the
Académie des Sciences in 1740, this time for his study
of tides. That the prize was also awarded to LEONHARD

EULER (1707–83) and Daniel Bernoulli (1707–82) of
the BERNOULLI FAMILY that same year shows that
Maclaurin was regarded as an equal with the top two
mathematicians of his day. He died in Edinburgh, Scot-
land, on January 14, 1746.

Maclaurin series See TAYLOR SERIES.

Madhava of Sangamagramma (ca. 1350–1425) Indian
Trigonometry, Astronomy Born near Cochin in south-
western India, Madhava is remembered for his brilliant
discoveries in ANALYSIS. He computed, for example, the
equivalent of the TAYLOR SERIES of the sine, cosine, and
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arctangent functions of TRIGONOMETRY, discovered the
GREGORY SERIES for π (which he used to compute an
approximation of this value correct to 11 decimal
places), and, moreover, provided accurate estimates for
the error term in truncating the series after a finite num-
ber of steps. Madhava also produced the most accurate
table of sine values of his time. The methods Madhava
used to accomplish these feats are believed to be essen-
tially the same as those developed in CALCULUS by GOT-
TFRIED WILHELM LEIBNIZ, SIR ISAAC NEWTON, and
BROOK TAYLOR. Of course, Madhava had discovered
these techniques 300 years prior to their invention of
this subject.

Very little is known of Madhava’s life, and all of
his mathematical writings are lost. Historians have
learned of Madhava’s mathematical work through the
few astronomical texts of his that have survived, and
from the commentaries scholars following Madhava
made of his work.

It is worth mentioning that from his series expan-
sion for arctangent:

Madhava set x = 1 to obtain the familiar Gregory
series for π. It is not well known that Madhava also set

to obtain the following alternative formula 

for π:

magic square A square array of numbers for which
the sum of the numbers in any row, column, or main
diagonal is the same is called a magic square. The con-
stant sum obtained is called the magic constant of the
square. Usually the numbers in a magic square are
required to be distinct, and often it is assumed that for
an n × n square, the specific numbers 1, 2, 3, …, n2 are
used. (It is convenient to designate such a magic square
as a standard type.)

The earliest known example is the “Lho shu
square” that appears in an ancient Chinese manuscript
from the time of Emperor Yu of around 2200 B.C.E.
Here the numbers 1 through 9 are arranged in a 3 × 3
array to produce a magic square of magic constant 15.
Up to rotations and reflections, this is the only arrange-

ment of these nine integers that produces a magic
square. (Thus we say that there is only one 3 × 3 magic
square of standard type.)

Ancient Chinese scholars, and later Arab scholars,
computed examples of standard 4 × 4, 5 × 5, and higher-
order magic squares. (The 5 × 5 magic square shown
below is attributed to Yang Hui of the 13th century, and
the 6 × 6 magic square to Chêng Ta-wei of the 16th cen-
tury.) German artist ALBRECHT DÜRER (1471–1528)
depicted the 4 × 4 magic square below in the background
of his engraving Melancholia, and it is the believed that
this is the first introduction of a magic square to the
Western world. Famous scientist and statesman Benjamin
Franklin (1707–90) was masterful at inventing high-
order magic squares and is said to have toyed with new
squares whenever political debates became tedious.

 16 3 2 13
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 9 6 7 12
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 1 23 16 4 21
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It is straightforward to compute the magic constant
M of a standard n × n magic square. Adding the entries
in each row produces the magic constant M and, as
there are n rows, the quantity nM must equal the sum
of all the entries in the table. Thus, as the SUMS OF

POWERS formulae show:

yielding:

For n = 1, 2, 3, 4, 5, … this gives the sequence of val-
ues 1,5,15,34,65,…

M n n= +1
2

12( )

nM n
n n= + + + + = +

1 2 3
1

2
2

2 2
L

( )

 27 29 2 4 13 36

 9 11 20 22 31 18

32 25 7 3 21 23

14 16 34 30 12 5

28 6 15 17 26 19

 1 24 33 35 8 10
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Taken from an 18th-century blockbook version of the Book of Changes, or the I Ching, the left diagram depicts the Lho shu magic square.
(Photo courtesy of C. Walker/Topham/The Image Works)



There are no 2 × 2 magic squares of standard type,
just one standard 3 × 3 magic square, 880 standard
4 × 4 magic squares, and 275,305,224 standard 5 × 5
magic squares. To this day, no one knows the count of
6 × 6 standard magic squares.

General methods are known for constructing stan-
dard n × n magic squares of any size n larger than 2.
For example, for any odd value of n, begin by placing
the number 1 at any location inside the array and
incrementally placing subsequent numbers in the
square diagonally above and to the right. Follow a
“wrap-around effect” so that paths leading off the top
of the array return to the bottom, and those leading
off to the right return to the left. When one encounters
a square that is already filled, place the subsequent
integer in the cell directly below the current cell to
then continue on moving diagonally upward to the
right. For example, starting with 1 in the center, this
method produces the following 5 × 5 magic square.
(Notice, as one reads through the sequence of entries,
the numbers 6, 11, 16, and 21 were each “bumped”
down to a lower diagonal.)

This method of construction is known as the Siamese
method and is attributed to the French ambassador
to Siam (now Thailand) Simon de la Loubere (ca.
1670). Methods for constructing standard magic
squares of even order do exist, but are considerably
more complicated.

There are a plethora of alternative requirements
one could place on a square arrangement of numbers

to produce magic squares with alternative remarkable
properties. We list here just a few examples:

1. Semi-Magic Squares: A square array of numbers
that fails to be a magic square only because its
main diagonals do not add to the magic constant
is called a SEMI-MAGIC SQUARE. These squares
have the remarkable property that, when regarded
as matrices, the MATRIX sum, product, and inverse
of any collection of semi-magic squares is again
semi-magic.

2. Magic Multiplication Squares: A square array of
numbers in which every row, column, and diagonal
has the same product is said to be a magic multipli-
cation square. The following array, for instance, is
such a magic square.

3. Magic Division Squares: A square array of numbers
for which for each triple of numbers a, b, and c in a
row, column, or diagonal, the quotient a ÷ (b ÷ c) is
the same as a magic division square. For example,
the following array is such a square:

4. Addition-Multiplication Magic Squares: A square
that is simultaneously a magic square under addi-
tion and under multiplication is called an addition-
multiplication magic square. The following 8 × 8
array is an example of such a square:

 18 9 3

 36 6 1

 12 4 2

 12 9 2

 1 6 36

 18 4 3

 10 12 19 21 3

 11 18 25 2 9

 17 24 1 8 15

 23 5 7 14 16

 4 6 13 20 22
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5. Border Squares: A magic square (under addition)
that remains magic when its border is removed is
called a border magic square. If one can continue to
remove borders from subsequent squares and still
preserve the magic property, then we say we have a
nested magic square. The following is an example of
a nested magic square:

6. Alphamagic Squares: If replacing each entry in an
(additive) magic square with the number of letters in
the (English) name of that number produces a new
magic square, then we say that we have an alpham-
agic square. For example, the square below, written
in words, is alphamagic (The number of letters in
each name is written in parentheses, forming its own
magic square.)

7. Magic Rectangles: A rectangular array of numbers
in which the sum of entries in any row or column is
the same is called a magic rectangle. If there are n
rows and m columns, and the magic constant is M,
then summing all the rows shows that nM equals
the sum of all entries in the array. Summing all
columns gives nM as the sum of all entries in the
array, and so we must have nM = mM. If n and m
are required to be different, this forces the magic
constant to be zero. Thus any magic rectangle, such
as the one below, must include negative entries.

One can also consider alternative arrangements of
numbers and look for magic pentagrams and hexa-
grams, or magic cubical arrays of number, for instance.
This is a popular topic of exploration for general enthu-
siasts of mathematics.

magnitude A positive measure of the size of a quan-
tity is called its magnitude. For example, the magnitude
of a real number is its ABSOLUTE VALUE. (Thus, for
instance, 27 and –27, although of opposite polarity,

 3 –4 1

 –3 4 –1

 five(4) twenty-two (9) eighteen (8)

Twenty-eight (11) fifteen (7) two (3)

twelve (6) eight (5) twenty-five (10)

 31 30 33 16 15

13 26 27 22 37

14 21 25 29 36

32 28 23 24 18

 35 20 17 34 19

 26 27 22

21 25 29

28 23 24

328 magnitude

 39 34 138 243 100 29 105 152

 116 25 133 120 51 26 162 207

 119 104 108 23 174 225 57 30

 150 261 45 38 91 136 92 27

 135 114 50 87 184 189 13 68

 216 161 17 52 171 90 58 75

 19 60 232 175 54 69 153 78

 46 81 117 102 15 76 200 203



have the same magnitude.) The magnitude of a VECTOR

is its length.
Physicists and astronomers use the phrase ORDER OF

MAGNITUDE to refer to the smallest power of 10 needed
to represent a quantity. For example, the numbers 4×1023

and 9.78×1023 are of the same order of magnitude.
See also SCIENTIFIC NOTATION.

Mandelbrot set See FRACTAL.

matrix (plural, matrices) A rectangular array of
numbers displayed in rows and columns and enclosed
in parentheses is called a matrix. (In science, the word
matrix is used to describe the background material, soil
or rock, that holds an object such as a fossil or a crys-
tal in place. In mathematics, the word is used to
describe an array that “holds” numbers in place.) An m
× n matrix has m rows and n columns. For example,
the object below is a 2 × 3 matrix:

A matrix is called square if the number of rows equals
the number of columns. A matrix with just one row (a
row matrix) or just one column (a column matrix) can
be regarded as a VECTOR.

Typically a matrix is denoted with a capital letter.
For instance, the matrix above might be called A,

and the entry in the ith row and jth column as Aij. For
instance, in this example, A11 = 5 and A23 = 2.

Matrices arise in the study of SIMULTANEOUS LIN-
EAR EQUATIONS and the study of LINEAR ALGEBRA. Any
LINEAR TRANSFORMATION can be represented via a
matrix. One can combine matrices according to a set of
standard MATRIX OPERATIONS.

See also EIGENVECTOR; GENERAL LINEAR GROUP;
IDENTITY MATRIX; INVERSE MATRIX.

matrix operations There are three basic arithmetic
operations one can perform on a MATRIX or on a pair

of matrices of the same dimension (that is, two matri-
ces with the same number of rows and the same num-
ber of columns).

1. Scalar Multiplication: To multiply a matrix by a real
number k, multiply each entry of the matrix by that
number. For example, if

then

In general, the formula for the (i,j)th element of the
scalar product kA is:

(kA)ij = kAij

2. Matrix Addition: To sum two matrices of the same
dimension, add corresponding entries and enter each
sum in the corresponding place in the matrix sum.
For example, if

and

then

In general, the formula for the (i,j)th element of the
sum A + B is:

(A + B)ij = Aij + Bij
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The scalar product and the matrix sum satisfy the
relation:

k(A + B) = kA + kB

3. Matrix Multiplication: The DOT PRODUCT of two vec-
tors provides a natural way to obtain a single numeri-
cal value from two separate lists of numbers: the
product of (x1,x2,…,xn) and (y1,y2,…,yn) is given by
the sum x1y1 + x2y2 +…+xnyn. Each row and column
of a matrix provides a list of numbers, and so one can
create from two matrices A and B a new array of
numerical values whose entries are the dot products of
the rows or columns of A with the rows or the
columns of B. It has proved to be convenient to just
use the rows of A and the columns of B, provided that
the number of entries in each row of A matches the
number of entries in each column of B. In summary:

If A is an n × m matrix and B an m × r matrix,
then the matrix product AB is the n × r matrix
whose (i,j)th entry is the dot product of the ith
row of A with the jth column of B. We have:

(AB)ij = Ai1B1j + Ai2B2j +…+AimBmj

For example, if and , 

then AB is the 2 × 2 matrix:

In this example, the product BA is not defined.
In many applications it is assumed that all matrices

are square matrices, that is, they have equal numbers of
rows and columns. In this setting, even though the
products AB and BA of two square matrices A and B
of the same size may each be defined, they are likely to
be unequal. Thus the matrix product does not satisfy
the COMMUTATIVE PROPERTY. The IDENTITY MATRIX is
a matrix I with the property that AI=IA=A for any
square matrix A of a fixed size.

The transpose of a matrix A, denoted AT, is the
matrix obtained from A by interchanging its rows with
its columns. The product ATB is the matrix whose
(i,j)th entry is the dot product of the ith column of A
with the jth column of B. Similarly, the product ABT

has (i,j)th entry the dot product of the ith row of A
with the jth row of B, and ATBT has (i,j)th entry the dot
product of the ith column of A with the jth row of B.
This latter example equals the transpose of the original
product BA. We thus have: (BA)T = ATBT.

If one LINEAR TRANSFORMATION is represented by
a matrix A and a second by the matrix B, then the
COMPOSITION of these two transformations is repre-
sented by a matrix equal to the product BA. (This is
read backwards: the transformation represented by A is
applied first and is followed by the second transforma-
tion B.) It is precisely the desire to make this observa-
tion hold true that first led mathematicians to define
the matrix product in the manner described above.

See also DETERMINANT; GENERAL LINEAR GROUP;
INVERSE MATRIX.

maximum/minimum The highest point on the
graph of a function is called the maximum point of the
graph, and the value of the function at that point is
called the maximum value of the function (or its global
maximum or absolute maximum). Similarly, the mini-
mum point of the graph is the point at which the graph
has its lowest value, and the minimum value of the
graph is the value of the function at that point (also
called the global minimum or absolute minimum). It is
possible for a function to have no maximum value or
no minimum value. For example, the function y = x,
defined over all real numbers, has no maximum or 

minimum value, and the function , defined 

over all real numbers, has no minimum value. The
EXTREME-VALUE THEOREM shows, on the other hand,
that every continuous function defined on a closed
interval necessarily adopts both a maximum and a min-
imum value on that interval.

A local maximum (also called a relative maxi-
mum) for a function is a point on the graph of a func-
tion that is higher than all its nearby points on the
graph. Clearly, a local maximum need not be the high-
est point on the graph, although the highest point cer-
tainly qualifies as a local maximum. Similarly, a local
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minimum (or relative minimum) for a graph is the
location of a function value smaller than all nearby
function values. Again, a local minimum need not be
an absolute minimum, although it could be.

If the function in question is differentiable, then
the tools and techniques of CALCULUS allow one to
readily locate local maxima and minima. It is clear
geometrically, for example, that the slope of the tan-
gent line to a graph is zero at a local maximum or
local minimum. We have:

If the function f(x) has a local maximum or
local minimum at x = c, then f ′(c) = 0

The limit definition of the derivative provides a precise
proof of this. If the value f(c) is a local maximum, for
example, then, for small h, the value f(c + h)is less than
the value f(c). Consequently, if h approaches the value
zero by running through positive values just above 

zero, then the quotient is negative. This 

shows that the derivative 

must be ≤ 0. On the other hand, if h approaches zero
through negative values, then the quotient is positive,
and f ′(c) ≥ 0. It must be the case then that f ′(c) = 0.

Any value x = c for which f ′(c) = 0 is called a criti-
cal point (or a stationary point) for the function. A
study of INCREASING/DECREASING functions establishes:

A critical point x = c is a local maximum for
the function f if, and only if, f(x) is increasing
just to the left of c and decreasing just to the
right of c. Consequently, x = c is a local maxi-
mum if, and only if, f ′(c) = 0 and f ′(x) > 0 just
to the left of c, and f ′(x) < 0 just to its right.

A critical point x = c is a local minimum
for the function f if, and only if, f(x) is decreas-
ing just to the left of c and increasing just to the
right of c. Consequently, x = c is a local mini-
mum if, and only if, f ′(c) = 0 and f ′(x) < 0 just
to the left of c, and f ′(x) > 0 just to its right.

This observation, called the first-derivative test, allows
one to determine whether or not a critical point is
a local maximum or a local minimum. (Any critical
point at which the derivative does indeed change sign
is called a turning point.) As an example, consider 

the function . To find its critical points 

we need to solve the equation f ′(x) = 0. This gives: 

, yielding x = –1′ =
+( ) ⋅ − ⋅
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and x = 1 as critical points. For a value just to the left of
x = –1 (say, x = –1.1), we see that f ′(x) is negative. For a
value just to the right of x = –1 (say, x = –0.9), it is posi-
tive. Thus the function has a local minimum at x = –1.
Similar analysis shows that x = 1 is a local maximum.  

A study of CONCAVE UP/CONCAVE DOWN functions
establishes:

At a local maximum, a function is concave
down. Consequently, a local maximum for a
function f(x) can be identified as a point x = c
with f ′(c) = 0 and f ′′(c) < 0.

At a local minimum, a function is concave
up. Consequently, a local minimum for a func-
tion f(x) can be identified as a point x = c with
f ′(c) = 0 and f ′′(c) > 0.

This observation is called the second-derivative test.
For example, consider the challenge of finding two

positive numbers whose sum is 100 and whose product
is as large as possible. If we let x and y represent two
variable positive numbers, then we are being asked to
“maximize” the product function p = xy, given that
x + y = 100. Solving for y and substituting yields: P =
x(100 – x) = 100x – x2. This expresses P as a function
of x alone. A maximum for this function can only 

occur at a critical point. Solving = 0 yields 100 – 2x

= 0 or x = 50. To classify this critical point, note that 

= –2 < 0. This shows that the curve is concave 

down. Consequently, the point x = 50, the only critical
point, is a (global) maximum. The corresponding value
for y is y = 100 – 50 = 50. The maximum value of the
product is thus 50 × 50 = 2,500.

See also OPTIMIZATION.

Mayan mathematics The Mayan culture, based in
the Yucatán Peninsula, Central America, spanned the
period of 250 C.E. to 900 C.E., but was based on a civi-
lization established in the region as early as 2000 B.C.E.
The people of this time had built large cities, replete
with construction of all types, including large reservoirs
for storing rainwater, sophisticated irrigation systems,
and raised fields for farming. The rulers were priests,
and religious practices were synchronized with astro-
nomical observations

In 1511, with a force of 11 ships and 508 soldiers,
Spanish explorer Hernán Cortés conquered the peoples

of the Yucatán. He met next to no resistance. Thirty
years later, Bishop Diego de Landa of the Franciscan
Order was sent to the New World as a missionary, and
he tried his best to help the Maya peoples and protect
them from their new Spanish masters. At first he was
horrified by the religious practices of the people and
the unusual icons that appeared in their written texts,
believing the writing to be the lies of the devil. He
ordered that all Mayan idols be destroyed and all the
Mayan books be burned, which grieved the local peo-
ple considerably. Perhaps out of remorse, Landa felt the
need to write in 1566 a text, Relación de las cosas de
Yucatán (About things of the Yucatán), recording the
writing, customs, religious practices, and history of the
Maya people, along with some attempt at justifying his
actions. It is from this work, and four remnants of
actual Mayan text saved from the fire, that we learn of
Mayan mathematics. Much of the mathematics of the
people was motivated by computations of the planet
cycles and a need to keep an accurate calendar system.

Coming from a tropical climate, the Maya were
fully aware that the human body comes with 20 digits,
and it is not surprising that these people developed a
base-20 system of counting (today called a vigesimal
system). Thus, instead of counting in groups of units
(1), tens (10), one hundreds (100), and one thousands
(1,000), people of this culture counted in terms of units
(1) and twenties (20). Motivated by the number of days
in the year, the Maya next worked in groups of 360,
and then groups 20 × 360. Thus, for example, a num-
ber depicted as 2-12-5-17 in the Mayan system repre-
sents the value:

17 × 1 + 5 × 20 + 12 × 360 + 2 × 20 × 360 = 18,837

(The system is thus not strictly vigesimal.)
Numbers were represented as dots and bars, with a

bar denoting five units. Thus a diagram depicting a
group of two bars and three dots represents the number
13. (Some historians suggest that each dot represents a
finger tip, and the horizontal bar an outstretched hand.)
The Maya used positional notation to represent large
numbers, including a symbol for zero, the picture of a
closed fist, or perhaps a conch shell, to represent no dig-
its of a certain power of 20 or 360.

The Maya had two calendar systems. The Tzolkin,
the ritual calendar, contained 13 months, one for each
god of the upper world, with 20 days per month. Thus

d2P
––
dx2

dP
––
dx
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the Tzolkin followed a 260-day year (which happens to
be the number of days between the two days of the
year in which the Sun is directly overhead in the
Yucatán Peninsula). The second calendar, the Haab, the
agricultural calendar, was the usual 365-day year,
divided into 18 months of 20 days, and a short 5-day
month called the Wayeb. The two calendars coincided
every 18,980 days (the lowest common multiple of 260
and 365) that is, every 52 years, yielding a period that
constituted a Mayan “century.” The Maya were also
fully aware that the most visible planet in the heavens,
Venus, returned to its exact same position every 584
days, a number that happens to divide 2 × 18,980.
That Venus returns to its same position precisely at the
passing of exactly two “centuries,” that is every 104
years, was of profound religious significance to the
Maya people.

It seems that the Maya had no standard methods for
multiplying or dividing large numbers, and they seemed
never to have developed the concept of a fraction. Yet
despite the cumbersome nature of their notational sys-
tem, the Maya performed some exceptionally accurate
astronomical computations. For instance, they correctly
calculated the exact length of a year to be 365.242 days,
and the length of the lunar month to be 29.5302 days.
(These results were not presented in terms of decimals,
of course. Records show, for example, that the Maya
computed that 149 lunar months span exactly 4,400
days.) The Maya made their astronomical observations
using tools no more sophisticated than a pair of sticks
tied together at a right angle through which to observe
the planets.

mean A mean of two numbers a and b is a number m
between a and b that, in some sense, represents the
“middle” of the two numbers. The most common mea-
sure of “mean” is the average or arithmetic mean given 

by m = . It represents the location on the number 

line half way between positions a and b. Alternatively,
one could consider the geometric mean given by m =
√
–
ab. This represents the side-length of a square whose

area is the same as that of an a × b rectangle.
In the fourth century B.C.E., members of the later

Pythagorean school identified 10 means, now called the
neo-Pythagorean means. For instance, the first two are
the arithmetic and geometric means. The third mean, 

given by , is called the harmonic mean, and 

the fourth, m = , is the counterharmonic mean. 

All “means” have the property that if the numbers a
and b are each multiplied by k, then m is also multi-
plied by k.

The notion of mean can be extended to that of
more than two numbers. Given n numbers a1,a2,…,an

we set:

For example, the arithmetic mean of 3, 8, and 9 is
20/3 = 6 2/3, and their geometric mean is 

3√
––
3·8·9 = 6. It

is a theorem of algebra that, for any set of positive
numbers a1,a2,…,an, the arithmetic mean is always
greater than or equal to the geometric mean:

This is called the arithmetic–geometric-mean inequal-
ity. (For the case with just two numbers a and b, the 

statement (a + b) ≥ √
–
ab is equivalent to the patently 

true statement (a – b)2 ≥ 0.) By applying this inequality 

to the numbers , ,…, , the harmonic-geometric 

inequality follows:

In statistics, the arithmetic mean µ of a set of
observations a1,a2,…,an is called a sample mean. The
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EXPECTED VALUE of a random variable is also called
its mean.

See also MEAN VALUE; STATISTICS: DESCRIPTIVE.

mean value Let f be a CONTINUOUS FUNCTION on a
closed interval [a,b]. The height of a rectangle whose
width is (b – a) and whose area is equal to the area
under the curve above the interval [a,b] is called the
mean value of the function. The mean value of f is
denoted

–
f and is given by:

Loosely speaking, if one “smoothes out” the rises and
falls of the graph of the function, without changing the
area under the graph, then the height of the resulting
level curve is

–
f .

If the function f represents, for example, the air tem-
perature at the general post office in Adelaide, Australia,
recorded over a 24-hour period, then

–
f represents the

average temperature at downtown Adelaide that day.

mean-value theorem (Lagrange’s mean-value theo-
rem) French mathematician JOSEPH-LOUIS LAGRANGE

(1736–1813) was the first to state the following
important theorem in CALCULUS, today called the
mean-value theorem:

If a curve is continuous over a closed interval
[a,b], and has a tangent at every point between
a and b, then there is at least one point in this
interval at which the tangent is parallel to the
line segment that connects the endpoints (a,f (a))
and (b,f (b)).

In more stringent mathematical language, this theo-
rem reads:

If a function f (x) is continuous in the closed
interval [a,b], and differentiable in the open
interval (a,b), then there exists at least one
value c between a and b such that

Note that the quantity is the SLOPE (rise 

over run) of the line segment connecting the two end-
points. It also equals the average slope of the curve
over the entire interval [a,b]. (To see this, note that at
any point x, the quantity f ′(x) is the slope of the tan-
gent line at that point. Summing, that is integrating,
over all values and dividing by the length of the inter-
val under consideration gives the average or mean 

slope of the curve: .) Thus the 

mean-value theorem states that for any differentiable
function defined on an interval [a,b], there exists a
location where the actual slope of the curve equals the
average slope of the graph.

The mean-value theorem has four important conse-
quences:

1. If the derivative of a function is always positive,
then the function is increasing.

This means that if a and b are two numbers with a < b,
then we have f(a) < f(b). Since, for some number c, we 

have and the quantities b – a and 

f ′(c) are both positive, we must have that f(b) – f(a) is
also positive.

2. If the derivative of a function is always negative,
then the function is decreasing.

This is established in a manner similar to the above.

3. If the derivative of a function is always zero, then
the function is constant in value.

We need to show that for any two values a and b we
have that f(a) equals f(b). This follows from the mean-
value theorem, since for some value c we have:

f(b) – f(a) = f′(c)·(b – a) = 0·(b – a) = 0

4. If two functions f(x) and g(x) have the same deriva-
tive, then the two functions differ by a constant,
that is, f(x) = g(x)+C for some number C.

Let h(x) = f(x) – g(x). Then the derivative of h(x) is
always zero, and so by the third result h(x) = C for
some constant value C.
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The mean-value theorem itself can be established
as a consequence of ROLLE’S THEOREM. One does this
by writing down the equation of the line that connects
the two endpoints (a,f(a)) and (b,f (b)) of the function f.
It is given by:

(Put in x = a and x = b to see that this is correct.) Now
consider the function:

h(k) = f(x) – g(x)

It is a differentiable function with h(a) = h(b) = 0, and
so by Rolle’s theorem, there is at least one value c
between a and b for which h′(c) = f ′(c) – g′(c) = 0. This
yields the equation asserted in the statement of the
mean-value theorem.

The mean-value theorem can be thought of as a
statement about the nature of a differentiable curve
intersecting a straight line. French mathematician
AUGUSTIN-LOUIS CAUCHY (1789–1857) later general-
ized the theorem to one about any two differentiable
curves intersecting at two points. The result is known
as the extended mean-value theorem or Cauchy’s mean-
value theorem.

If two functions f and g have the same values
at x = a and x = b, are continuous in the closed
interval [a,b], differentiable in the open inter-
val (a,b), and further if g(a) ≠ g(b) and g′(x) is
never zero in (a,b), then there is at least one
value c between a and b for which:

The theorem is proved in a similar way by making use
of the support function:

See also DERIVATIVE; INCREASING/DECREASING.

median See STATISTICS: DESCRIPTIVE.

median of a triangle A line segment connecting the
MIDPOINT of one side of a triangle to the vertex opposite
to that side is called a median of the triangle. Any trian-
gle has three medians. It is considered a fundamental
result that the three medians of a triangle always meet at
a common point (called the centroid of the triangle and
usually denoted G.) To see this, consider a triangle with
vertices A, B, and C and midpoints as shown.

First note:

Any line connecting the midpoints of two
sides of a triangle is parallel to the third side
of the triangle.

In the diagram above, by the SAS principle, triangles
BAC and MCAMB are similar, with a scale factor of
two, since they share a common angle at A and the two
sides of each triangle match in a 2-to-1 ratio. Conse-
quently the angles labeled x are equal, yielding two
equal alternate angles, from which it follows from the
converse of the PARALLEL POSTULATE that the lines
MCMB and BC are parallel.

We now have that angles MBMCC and MCCB are
equal, as are angles MCMBB and MBBC. Consequently,
by the AAA principle, the two shaded triangles are sim-
ilar, again in a 2-to-1 ratio. In particular the line seg-
ments BG and GMB are in this ratio, as are the line
segments CG and GMC. This establishes:

The point of intersection of any two medians
of a triangle lies two-thirds of the way along
each median.

Consequently, the median AMA will also intercept
median BMB two-thirds the distance along the length
of BMB, namely, at the same point G. Thus all three
medians are indeed CONCURRENT at G.
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As a variation of HERON’S FORMULA, the area of a
triangle can be expressed solely in terms of the lengths
of the medians of the triangle. We have:

where mA, mB, and mC are the lengths of the three 

medians and s = .

See also AAA/AAS/ASA/SAS/SSS; APOLLONIUS’S THEO-
REM; EULER LINE.

Menelaus of Alexandria (ca. 70–130) Greek Geome-
try, Trigonometry Born in Alexandria, Egypt, mathe-
matician Menelaus is noted for his only surviving work
Sphaerica (Spheres), which contains the earliest known
results on SPHERICAL GEOMETRY and spherical trigonom-
etry. By converting spherical results into planar ones,
Menelaus also established a number of significant theo-
rems about planar geometry, including the famous result
that now bears his name.

Extremely little is known of Menelaus’s life.
Despite being cited throughout history as a native of
Alexandria, it is known that Menelaus spent some por-
tion of his life in Rome. For instance, records from the
year 98 list a number of astronomical observations
made by Menelaus from that city at that time.

Menelaus’s work in spherical geometry was likely
inspired by his work in astronomy. The first of the
three volumes of Sphaerica defines the basic principles
of the subject and includes the very precise definition of
a spherical triangle as one made by three arcs of great
circles, each less than a semicircle. Following the same
level of rigor as established by the geometer EUCLID,
Menelaus developed the theory of this geometry in con-
siderable depth with precise logical reasoning. (Curi-
ously, Menelaus eschewed any use of PROOF BY

CONTRADICTION, an approach that Euclid freely used.)
In volume II of Sphaerica, Menelaus developed applica-
tions to astronomy, and in volume III explored spheri-
cal trigonometry and applications to plane geometry.

Arab scholars of the period 850–1500 C.E. trans-
lated Menelaus’s work and wrote many commentaries
on the piece. The same scholars also made reference to
other texts by Menelaus, including pieces called Chords
in a Circle and Elements of Geometry, as well as a
comprehensive text on the topic of mechanics. Sadly,
no copies of these works survive today.

See also ARABIC MATHEMATICS; MENELAUS’S
THEOREM.

Menelaus’s theorem Suppose a TRANSVERSAL cuts
the three sides of triangle A1A2A3 at points P1,P2, and
P3 as shown:

Then, if AiPj represents the length of the line seg-
ment connecting point Ai to point Pj, we have:

This result was first observed by the Greek mathe-
matician MENELAUS OF ALEXANDRIA (ca. 70–130 C.E.).
He proved it by drawing lines from each vertex Ai to
the transversal to yield five right-angled triangles.
Examining the angles within these triangles shows that
a number of these triangles are similar. Chasing
through all the pairs of sides that consequently are in
the same ratio eventually establishes the result.

The converse of Menelaus’s theorem is also true:

If P1, P2, and P3 are three points on the sides
of a triangle A1A2A3, with P1 on side A1A2
(possibly extended), P2 on side A2A3 (possibly
extended), and P3 on side A3A1 (possibly
extended), satisfying

then the three points are COLLINEAR.

See also AAA/AAS/ASA/SAS/SSS; CEVA’S THEOREM.
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Mercator’s expansion (Mercator’s series) The TAY-
LOR SERIES expansion of the natural LOGARITHMIC

FUNCTION is given as follows:

It is valid for –1 < x ≤ 1. This series is sometimes called
Mercator’s expansion in honor of Danish mathemati-
cian Nicolaus Mercator (ca. 1619–87) who, in 1668,
was the first to publish this expansion.

The Mercator expansion has the curious of prop-
erty of apparently proving the absurd statement that 1
equals 2. Setting x = 1 yields:

and so

This paradox alerted mathematicians to the fact
that it is not always permissible to rearrange the terms
of a series. In 1837 PETER GUSTAV LEJEUNE DIRICHLET

(1815–59) proved that such an operation is valid if the
series is absolutely convergent. Unfortunately, the alter-
nating HARMONIC SERIES expressed above is not.

See also ABSOLUTE CONVERGENCE.

Mercator’s projection It is not possible to make a flat
map of the world without incorporating some kind of
distortion. In the mid-1600s, Flemish cartographer Ger-
hard Kremer (1512–94), known as Mercator, devised a
method for mapping points from the surface of the Earth
onto a planar surface in such a way that all compass
directions, at least, are preserved. Although the distances
and areas are distorted under this PROJECTION, the gen-
eral shapes of small regions, such as small countries and
small bodies of water, are reasonably well preserved.

The mathematical construct of Mercator’s projec-
tion is obtained by imagining a cylinder placed around
the sphere of the Earth tangent to the equator and par-
allel to the axis of the Earth. A point on the surface of
the Earth is mapped to a point on this cylinder by
drawing a line from the center of the Earth and
through this point until it cuts the cylinder. (The North
and South Poles are not mapped.) The cylinder is then
cut and unrolled to form a flat surface.

In Mercator’s projection, lines of longitude are the
same distance apart, but lines of latitude get farther
apart from the equator. Mercator adjusted the vertical
spacing of the lines of latitude on his flat map to com-
pensate for this distortion and to make the shapes of
countries resemble more closely their true shape as they
appear on the globe.

Mercator’s projection can be given by mathematical
formulae. Under his mapping, a point on the Earth’s sur-
face at an angle α latitude and angle β longitude has
CARTESIAN COORDINATES x and y on the plane given by:

for some constant k. The angles between lines on the
surface of the sphere (away from the poles) are pre-
served under Mercator’s projection and so this map-
ping is an example of a CONFORMAL MAPPING.

See also STEREOGRAPHIC PROJECTION.

Mersenne, Marin (1588–1648) French Number the-
ory, Theology Born on September 8, 1588, in Oize,
France, Marin Mersenne is remembered for the list of
PRIME numbers that bear his name. These primes are
intimately connected with the formulation of even PER-
FECT NUMBERs.

Mersenne studied theology as a teenager and at age
23 joined the Minims, a religious order devoted to
prayer and scholarship. Throughout his life Mersenne
pursued interests in NUMBER THEORY, mechanics, and
acoustics. He defended the work of GALILEO GALILEI

(1564–1642) and RENÉ DESCARTES (1596–1650) against
theological criticism, and took on the task of translating
many of Galileo’s texts into French. Historians believe
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that it is because of Mersenne’s efforts that Galileo’s
work became known outside of Italy.

Mersenne played an important role in 17th-century
science, not only for his contribution to number theory
and mechanics, but also for his service as a channel of
communication between mathematicians: scholars
would write to Mersenne for the sole purpose of hav-
ing their ideas disseminated. Letters from over 78 dif-
ferent correspondents, including PIERRE DE FERMAT

(1601–65), Galileo, and Christiaan Huygens were dis-
covered in his monastery cell after his death.

In 1644 Mersenne published Cogitata physico-mathe-
matica (Physico-mathematical thoughts), his famous text
on number theory. Mersenne was particularly interested
in finding a formula that would generate all the prime
numbers. Although he failed in this effort, his work did
lead him to consider those prime numbers p for which 2p

– 1 is also prime, now called the MERSENNE PRIMEs.
These numbers have proved to be of significant impor-
tance in several different branches of number theory.

Mersenne died in Paris, France, on September 1,
1648.

Mersenne prime A PRIME number of the form 2n – 1
is called a Mersenne prime. For example, 23 – 1 = 7
and 27 – 1 = 127 and are Mersenne primes. These num-
bers were studied by French philosopher and mathe-
matician MARIN MERSENNE (1588–1648) in his
attempts to find a formula that would generate all
prime numbers. Although he failed in this pursuit,
primes of this form are today named in his honor.

Note that if n factors as n = ab, then the quantity 2n

– 1 also factors: 2ab –1 = (2a –1)(2a(b–1) + 2a(b–2) +…+ 2a

+ 1). Thus in order for 2n –1 to be prime, it must be the
case that n is prime. However, not every prime number
n leads to a Mersenne prime. For example, although n =
11 is prime, 211 – 1 = 2047 = 23 × 89 is not. The first
few Mersenne primes are 3, 7, 31, 127, 8191, 131071,
524287, 2147483647, … corresponding to the prime
values n equal to 2, 3, 5, 7, 13, 17, 19, 31,…

Only 40 Mersenne primes are currently known, yet
despite their scarcity, they still remain a fruitful source
of large prime numbers. Almost certainly, when a news-
paper proclaims that a new “largest” prime has been
found, it turns out to be of the form 2n – 1. For exam-
ple, the largest known prime as of the year 2004 is the
Mersenne prime with n = 20,996,011. It is a prime

number over 6 million digits long. Mersenne primes are
intimately connected with PERFECT NUMBERs.

See also DIFFERENCE OF TWO CUBES.

midpoint A point on a line segment dividing the
length of that segment into two equal parts is called the
midpoint of the segment. If two points in a plane have
CARTESIAN COORDINATES P = (x1, y1) and Q = (x2, y2),
then the midpoint M of the segment connecting P to Q

has coordinates . Similarly, for 

two points P = (x1,y1,z1) and Q = (x2,y2,z2) in three-
dimensional space, the coordinates of the midpoint M
of the line segment connecting them are given by: 

.

A line through the midpoint of a line segment and
PERPENDICULAR to that segment is called a perpendicu-
lar bisector. A study of EQUIDISTANT points shows that
the three perpendicular bisectors of the three sides of
any triangle meet at a single point (called the circum-
center of the triangle). The three MEDIANs OF A TRIAN-
GLE are also CONCURRENT.

The circle-midpoint theorem asserts that if one
draws a circle C in the plane and selects a point P
anywhere in the plane, then all the midpoints of line
segments connecting P to points on the circle form a
circle of half the original radius. This can be seen
valid as follows:

Assume the circle has radius r and is positioned
about the origin of a Cartesian coordinate sys-
tem. Then any point Q on the circle has coor-
dinates Q = (r cosθ, r sinθ), for some value θ. If
the coordinates of P are given by P = (a,b),
then the coordinate of the midpoint M is

. As θ varies, this 

describes a circle of radius with center 

( , ).

See also BISECTOR; CIRCLE THEOREMS.

midrange See STATISTICS: DESCRIPTIVE.

Möbius, August Ferdinand (1790–1868) German
Topology, Astronomy Born on November 17, 1790,
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in Schulpforta, Saxony (now Germany), scholar Aug-
ust Ferdinand Möbius is remembered in mathematics
for his work in GEOMETRY and TOPOLOGY, and his
conception of the one-sided surface today called a
MÖBIUS BAND.

Möbius entered the University of Leipzig in 1809
to study law but soon changed interests and took up a
study of mathematics, astronomy, and physics. In 1813
he traveled to Göttingen to work with CARL FRIED-
RICH GAUSS (1777–1855), the finest mathematician of
the day, and also director of the astronomical observa-
tory in Göttingen. Möbius completed a doctoral thesis
in 1815 in the topic of astronomy and soon afterward
completed a habilitation thesis on the topic of trigono-
metric equations. In 1816 he was appointed chair of
astronomy and mechanics at the University of Leipzig.
He stayed at Leipzig the remainder of his life.

Möbius published an influential work, Der barycen-
trische Calcül (The calculus of barycenters), on analytic
geometry in 1827. In it he outlined a number of signifi-
cant, and original, advances in the fields of PROJECTIVE

GEOMETRY and AFFINE GEOMETRY. He also studied the
geometry of the plane of COMPLEX NUMBERS, and
showed that any complex function of the form:

with z a complex number, and a, b, c, and d real num-
bers satisfying ad – bc ≠ 0, transforms straight lines and
circles in the complex plane into new straight lines and
circles. Complex functions of the form above are today
called Möbius functions.

In 1831 Möbius published important results in NUM-
BER THEORY. He is best known in this field for his discov-
ery of the Möbius inversion formula, which can be
described as follows. Consider a function µ defined on
the set of positive integers as follows: µ(1) = 1; µ(p) = –1
if p is PRIME; µ(n) = (–1)k if n has k primes factors, all dis-
tinct; and µ(n) = 0 if n has a prime factorization that
includes repeated primes. (Thus, for instance, µ(70) = µ(2
· 5 · 7) = –1 and µ(20) = µ(2 · 2 · 5) = 0.) If f is any func-
tion on the positive integers, and, from it, a new function
F is defined as F(n) = Σd |nf(d), a sum over all the factors d
of n, then Möbius’s inversion formula states that one can
recover from F the original function f via the rule:

Möbius wrote about the one-sided surface that
bears his name in an 1858 piece discovered only after
his death. His interest in the object was motivated by a
general question on the geometry of polyhedra that had
caught his interest. Although Möbius was not the first
to describe the one-sided surface (German mathemati-
cian Johann Listing had considered the object just a
few years earlier), his mathematical analysis of the sur-
face was deep and significant.

Möbius also published important works in the fields
of astronomy, celestial mechanics, and statics. He died in
Leipzig, Germany, on September 26, 1868. His work on
number theory has had a profound effect on the nature
of research in the subject today. For instance, the concept
of the Möbius function has found natural applications to
generalized abstract settings in algebraic geometry, com-
binatorics, and partially ordered sets, thereby providing
new insights into the study of numbers.

Möbius band (Möbius strip) The one-sided surface
obtained by gluing together the two ends of a long rect-
angular strip twisted 180° so as to produce a half-twist
in the resulting object is called a Möbius band. This
surface has the property that if one paints the surface
all the way round, one finds that both sides of the orig-
inal strip are colored. This shows that the surface is
indeed one-sided. Also, tracing one’s finger along the
edge of a Möbius band covers every possible point on
the edge of the object, thus showing, in addition, that
the surface has only one edge.

In some sense it is impossible to cut a Möbius band
in half. For instance, cutting the object along a central
line parallel to the edge produces a single connected
two-sided object. The reason for this can be seen in the
diagram on the following page. (Note that the top half
of the original strip is connected to the bottom portion
via the segments labeled a that are glued together, and
again for the segments labeled b.) In general, if a band
of paper with n half-twists is cut in half along the cen-
tral line, one piece will result if n is odd, and two pieces
are produced if n is even. Also, if one attempts to cut a
Möbius band into thirds (along two parallel lines that
divide the strip in thirds), then two interlocking rings
result, one twice the length of the other. The shorter of
the two is another Möbius band.

Gluing together two Möbius bands along their
edges produces a surface called a KLEIN BOTTLE. Onef n F d

n
dd n
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can also obtain a Klein bottle by “folding” a Möbius
band in half along the central line parallel to its edge and
gluing together the points of the edge that meet. (If one
does this for an ordinary band of paper containing no
half twists, the resulting surface is a TORUS.) Unfortu-
nately these constructions cannot be fully completed in
three-dimensional space, and one must make use of the
fourth dimension to obtain sufficient maneuverability.

In a CARTESIAN COORDINATE system, if one rotates
a line segment in the yz-plane about the z-axis, the
resulting surface of revolution is a band with no half-
twists. If that line segment were to rotate about its MID-
POINT 180° during the course of being rotated about the
z-axis, then the resulting surface is a Möbius band. For
convenience, suppose the line segment is of length 2 and
is initially positioned in the yz-plane parallel to the z-
axis with midpoint at distance position 2 along the y-
axis. Each point on the line segment is determined by a
parameter v, between –1 and 1, with v = 0 correspond-
ing to the midpoint of the segment. Suppose that when
the segment has turned an angle θ about the z-axis, the 

segment has turned an angle about its midpoint. 

Then a careful analysis of the positions of points along
this segment as they are rotated about the z-axis shows
that the PARAMETRIC EQUATIONS of the resulting Möbius
band are given by:

Mathematicians have shown that, for any map of
regions drawn on a Möbius band, at most six colors

would ever be needed to paint the design so that no two
regions sharing a boundary are painted the same color.

The Möbius band was independently discovered
by German mathematician Johann Listing (1808–88)
and German scholar AUGUST FERDINAND MÖBIUS

(1790–1868). The one-sided nature of the band was
later exploited by the B.F. Goodrich Company in their
design of Möbius-like conveyor belts. By spreading the
“wear and tear” on both sides of a strip, these belts
lasted twice as long as conventional belts.

See also DIMENSION; FOUR-COLOR THEOREM; SOLID

OF REVOLUTION.

mode See STATISTICS: DESCRIPTIVE.

modular arithmetic The numerals on the face of a
clock provide a model for an unusual mathematical
system called “clock math” or “arithmetic mod 12.”
One thinks as follows: if it is currently 3:00, then 8
hours later it will be 11:00. We write 3 + 8 = 11, noting
nothing unusual here. However, waiting 6 hours from
10:00, say, gives the equation 10 + 6 = 4, for the time
at the end of that wait will be 4:00. Following this new
interpretation for addition, clock math gives, for exam-
ple, 4 + 11 = 3, 8 + 2 = 10, and 7 + 7 = 2.

It is convenient to call the number 12 “zero.”
(After all, in clock math, adding 12 hours to any time
does not change the time registered on the clock and so
has no effect in this system.) The number 13 is
regarded the same as 1, (the 13th hour on a clock lies
at the same position as the first hour), the number 14 is
2, and so forth. In general, clock math replaces any
number with its excess over a multiple of 12. For
example, 26 is two more than a multiple of 12, and so
26 is equivalent to 2. We write 26 ≡ 2 (mod 12). Simi-
larly, 29 ≡ 5 (mod 12), 43 ≡ 7 (mod 12), and 72 ≡ 0
(mod 12). The number –2 is 10 more than a multiple of
12 and so –2 ≡ 10 (mod 12). The symbol ≡ is called
CONGRUENCE.

One can perform multiplication in clock math. We
have, for instance, that 3 × 7, normally 21, equals 9 in
clock math: 3 × 7 = 9. (This can also be realized in
terms of repeated addition: 3 × 7 = 7 + 7 + 7 = 2 + 7
= 9.) In the same way, 2 × 4 = 8, 4 × 5 = 8, and 6 × 6 =
0 in clock math. The following table shows all prod-
ucts in this system.
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Notice that 2 × 2 = 4, and so it is appropriate to write
√
–
4 = 2. We also have that √

–
4 equals 4, 8, and 10, since

4 × 4 = 4, 8 × 8 = 4, and 10 × 10 = 4 in clock math. In
the same way, √

–
1 equals 1, 5, 7, or 11, and √

–
9 equals 3

or 9. There is no number equivalent to √
–
2, for instance,

in this system.
It is possible to give an interpretation of some frac-

tions in clock math. Consider 4/5 for instance. In ordi-
nary arithmetic, this fraction is a number x such that
5 × x = 4. Looking at the fifth row of the table above,
we see that 5 × 8 = 4, and so it is appropriate to inter-
pret the fraction 4/5 as the number 8 in clock math. In
the same way, 1/5 = 5, 3/7 = 9, and 2/7 = 2. Notice,
however, that it is not possible to give an interpretation
to the fraction 1/6, for instance, since the number 1
does not appear anywhere in the sixth row of the table.
(There is no number x such that 6 × x = 1.) That not
every fraction is represented in clock math is deemed a
deficiency of the system.

Generalized Clock Math: Modular Arithmetic
One can envision a clock with a different number of
hours represented on its face. For example, in 5 o’clock
math, just five hours are depicted, 0, 1, 2, 3, and 4
(again it is appropriate to deem the fifth hour as the
same as the zeroth hour), and all other numbers are
replaced by their excess over a multiple of 5. Thus, for
example, we have 6 ≡ 1 (mod 5) and 32 ≡ 2 (mod 5).
The product table for mod-5 arithmetic appears as fol-
lows. Notice that every digit appears in every (nonzero)
row of the table.

In general, in base N modular arithmetic, each number
is replaced by its excess over a multiple of N.

If N is a COMPOSITE NUMBER, N equals a × b say,
then the entry in the ath row and bth column of the
product table is zero (for example, 3 × 4 is zero in
12-clock math). Consequently the number zero
appears in the ath row more than once, giving insuffi-
cient space for all the other digits to appear in that
row. On the other hand, if N is PRIME, then each and
every nonzero row of the product table does indeed
contain every digit, as demonstrated by the product
table for 5-clock math. (To see why this is the case,
note that for any number a less than the prime N is
RELATIVELY PRIME to N, and so, by the EUCLIDEAN

ALGORITHM, there exist integers x and y such that ax
+ yN = 1. This shows that ax is 1 more than a multi-
ple of N, and so ax ≡ 1(mod N). Consequently the
number 1 appears in the ath row, xth column, of the
product table. So too does the number 2, since a(2x)
= 2ax ≡ 2 (mod N), the number 3, a(3x) = 3ax ≡ 3
(mod N), and so forth.) We have:

If N is a prime number, then all digits appear
in each nonzero row of the product table for
arithmetic modulo N.

In particular, for any nonzero number a in mod-N
arithmetic, the number 1 appears in the ath row of
the product table. Thus there is a number x such that 

a × x = 1. The fraction thus has a valid interpretation 

in this system. This argument applies to all fractions one
may wish to consider. We have:

If N is a prime number, then all fractions exist
in mod-N arithmetic.

This completely classifies all modular arithmetic sys-
tems that possess fractions.

1–a
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x 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11
2 0 2 4 6 8 10 0 2 4 6 8 10
3 0 3 6 9 0 3 6 9 0 3 6 9
4 0 4 8 0 4 8 0 4 8 0 4 8
5 0 5 10 3 8 1 6 11 4 9 2 7
6 0 6 0 6 0 6 0 6 0 6 0 6
7 0 7 2 9 4 11 6 1 8 3 10 5
8 0 8 4 0 8 4 0 8 4 0 8 4
9 0 9 6 3 0 9 6 3 0 9 6 3

10 0 10 8 6 4 2 0 10 8 6 4 2
11 0 11 10 9 8 7 6 5 4 3 2 1

x 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1



Fermat’s Little Theorem
Let p be a prime number. Then for every nonzero num-
ber a less than p, all the digits zero through p – 1
appear in the ath row of the product table for mod-p
arithmetic. Ignoring the zeroth multiple of a, this
asserts that all the multiples of a, namely, a × 1, a × 2,
…, a × (p – 1), correspond, in some order, to the list of
digits 1, 2, …, p – 1. Consequently, the product of the
numbers in each list must be the same:

a × 1 × a × 2 ×…× a × (p – 1) = 1 × 2 ×…× (p – 1)

Rewriting yields:

ap–1 × 1 × 2 ×…× (p – 1) = 1 × 2 ×…× (p – 1)

Multiplying through by the fractions , , up to 

(which exist in prime-clock math) gives the famous
result first discovered by French lawyer and amateur
mathematician PIERRE DE FERMAT (1601–65):

For any prime number p, ap–1 ≡ 1 (mod p) for
all nonzero values a < p.

Applying this observation to the specific value a = 2
provides a useful method for testing the primality of
numbers: if p is prime, then 2p–1 –1 is divisible by p. If
not, then the number p is not prime. Unfortunately,
some numbers pass the test without being prime. For
instance, 2340 –1 is divisible by 341, even though 341 is
composite. (We have 341 = 11 × 31.) Composite num-
bers of this type are called pseudo-primes.

See also CONGRUENCE.

modulus (plural, moduli) The ABSOLUTE VALUE of a
quantity, without consideration of its sign or direction,
is sometimes called the modulus of the quantity. For
example, the numbers –3 and 3, although of opposite
parity, have the same modulus of 3. The modulus of a
VECTOR is its length, and the modulus of a COMPLEX

NUMBER is the length of the vector that represents that
complex number. Specifically, if z = a + ib is a complex
number, then its modulus, written |z|, is the nonnegative 
real number . If the complex number is written 
in polar form, z = rcosθ + irsinθ = reiθ, then its modu-
lus is r.

In the study of LOGARITHMs, the number by which
logarithms of one base are multiplied to give loga-

rithms of a different base is called the modulus. For
example, the equation:

loga x × logb a = logb x

shows that multiplication by the modulus logb a con-
verts logarithms of base a to ones of base b. (To see
why this works, note that if y = loga x, then ay = x.
Consequently, logb(ay) = logb x, yielding y × logba =
logbx.) In particular, multiplication by the number
log10e ≈ 0.434294 converts natural logarithms into
common logarithms.

In MODULAR ARITHMETIC, the number by which
quantities are divided is called the modulus of the sys-
tem. For example, in “clock math,” the modulus of the
system is 12.

monomial Any algebraic expression consisting of a
single term, such as 5x3y2, is called a monomial.

See also BINOMIAL; POLYNOMIAL; TRINOMIAL.

Monte Carlo method Pioneered by JOHN VON NEU-
MANN (1903–57) and the Polish mathematician Stanislav
Ulam, the Monto Carlo method is a simple probabilistic
method that is sometimes employed by applied mathe-
maticians to analyze processes that are too complicated
to analyze otherwise. Named after the famous gambling
casino, the Monte Carlo method simply uses the LAW OF

LARGE NUMBERS to estimate the probability of a desired
event occurring. For example, to estimate the probability
that five letters chosen at random from the alphabet spell
a word in the English language, one could simply per-
form the experiment a large number of times (that is,
have a computer select five letters at random 1,000 times,
say) and count the proportion of times an English word
is obtained. This proportion gives an estimate of the
probability one seeks. Many casinos employ this tech-
nique to determine the payout ODDS for many of their
complicated games.

The Monte Carlo method is also used to estimate
the area of a plane figure with an irregular outline. For
example, to estimate the area of an oil spill over the
ocean, scientists take an aerial photograph of the entire
spill, taking note of the dimensions covered by the pho-
tograph, say a 4-by-5-km rectangle. The photograph is
then digitized and fed into a computer, which is pro-
grammed to select, at random, a large number of points

√a2 + b2

1––p –1
1–
3
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2

342 modulus



in the photograph, say, 10,000. The computer then
counts the number r of these points that hit the oil spill

shown in the photograph, yielding a proportion 

that well approximates the fraction of the total area
covered by oil. For instance, if r = 7,568 points land in
locations corresponding to the spill, then the area of 

the entire spill is very close to × 20 = 15.1 km2. 

The greater the number of points selected, the more
accurate is the estimate.

In the same way, one can estimate the values of
complicated definite INTEGRALs, such as ∫7

3 cos2(x2 +
sin(x))dx. For example, select a large number of
points at random from a box that contains the curve
in question and count the proportion of them that fall
below the given curve.

See also BUFFON NEEDLE PROBLEM; PROBABILITY.

Monty Hall problem Named after the host of a
popular American TV game show Let’s Make a Deal!,
the Monty Hall problem is a classic puzzler often used
to test initiates in the field of PROBABILITY theory. It
goes as follows:

On a game show, three closed doors stand
before you. The host informs you that a cash
prize lies behind one of the doors, with nothing
behind the other two. You select a door, but
before you open it, the host quickly opens one
of the remaining two doors to show you that
the prize is not there. He now gives you the
chance to change your mind and open instead
the third remaining door. The question is: what
should you do? Should you stay with your
original choice of door, or switch to the other
option? Is there any advantage to switching?

One’s typical first reaction to this puzzle is that
there is no advantage at all to switching. Since two
doors remain with only one containing a prize, the
chance of selecting the correct door, either by staying
with the chosen door or switching, is always 50 percent.
Surprisingly, this reasoning is not correct, for it makes
no use of the subtle information the host presents to
you, which you can actually use to your advantage.

Suppose, before you play the game, you decide that
you will stay with your choice. Then a win for you
relies on choosing the correct door initially, and there is

a 1-in-3 chance of this happening. If, on the other
hand, you play the game with the decision to switch,
then winning relies on choosing an incorrect door ini-
tially (this is where the host’s action comes to the fore),
and there is a 2-in-3 chance of this being the case. All
in all, we see in fact that switching doubles your
chances of winning! (This line of reasoning is made all
the more convincing if you imagine a game played with
100 closed doors, only one of which conceals a prize.
Choosing the correct door initially is very unlikely.
However, if the host reveals that 98 of the remaining
doors are empty, you will certainly decide that odds are
in your favor to switch.)

See also KRUSKAL’S COUNT; TWO-CARD PUZZLE.

Morley’s theorem In 1899 mathematician Frank
Morley (1860–1937) discovered that the intersections
of adjacent pairs of angle trisectors in any triangle
always form an equilateral triangle. Precisely stated,
given a triangle ABC, draw for each vertex a pair of line
segments dividing the angle at that vertex into thirds. If
the two line segments closest to side AB meet at point
D, the two segments closest to side BC at point E, and
the two segments closest to side AC at point F, then
DEF is guaranteed to be an equilateral triangle.

It is remarkable that this elegant fact of EUCLIDEAN

GEOMETRY was not discovered until so long after
Euclid’s time. The proof of this result, although a little
long and detailed, requires only very elementary geo-
metric techniques.

multiplication The process of finding the product
of two numbers is called multiplication. In elementary
arithmetic, multiplication can be defined as the pro-
cess of finding the total number of elements in a col-
lection of sets where each set in that collection has the
same number of elements. Thus, for example, the
accumulation of four sets each possessing three objects
gives a total of 12 objects. We write: 4 × 3 = 12. In this
context, multiplication can thus be regarded as a pro-
cess of repeated addition: 4 × 3 = 3 + 3 + 3 + 3 = 12. If
one arranges the 12 objects in a rectangular array of
four rows of three, then reading the arrangement as
three columns of four shows that 3 × 4 provides the
same answer as 4 × 3. In general, this reasoning
shows that products of counting numbers satisfy the

7,568
–––
10,000

r
–––
10,000
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COMMUTATIVE PROPERTY: a × b = b × a for all count-
ing numbers a and b.

If a number a is multiplied by a number b to form
a product a × b, then the first number a is called a
multiplicand and the second number b a multiplier.
(Of course, the commutative property of multiplica-
tion obviates the need to distinguish the multiplicand
from the multiplier.)

The symbol × for multiplication was used in
WILLIAM OUGHTRED’S (1574–1660) 1631 work Clavis
mathematicae (The key to mathematics), but historians
suspect that the symbol was in use up to 100 years ear-
lier. Mathematicians today also use a raised dot to indi-
cate multiplication (4 · 3 = 12, for instance), or they
simply write symbols side by side if variables are being
used (x × y = xy or 2 × w = 2w, for example).

There are a number of methods for computing the
product of two large numbers, such as ELIZABETHAN

MULTIPLICATION, EGYPTIAN MULTIPLICATION, and RUS-
SIAN MULTIPLICATION.

The process of multiplication can be extended to
NEGATIVE NUMBERS (yielding the necessary consequence
that the product of two negative quantities is positive),
FRACTIONs, REAL NUMBERS, COMPLEX NUMBERS, and
MATRIXes. Two VECTORs can be multiplied by a DOT

PRODUCT or a CROSS PRODUCT. The product of two sets
is called a CARTESIAN PRODUCT.

The number 1 is a multiplicative IDENTITY ELE-
MENT in the theory of arithmetic. We have that a × 1 =
a = 1 × a for any number a.

The product of two real-valued functions f and g
is the function f · g, whose value at any input x is the
product of the outputs of f and g at that input value:
(f · g)(x) = f(x) · g(x). For example, if f(x) = x2 + 2x
and g(x) = 5x + 7, then (f · g)(x) = (x2 + 2x)(5x + 7) =
5x3 + 17x2 + 14x.

The product formulae in TRIGONOMETRY assert:

See also ASSOCIATIVE; DISTRIBUTIVE PROPERTY; INFI-
NITE PRODUCT.

multiplication principle (fundamental principle of
counting) Suppose that a task can be broken up into
two steps. If the first step can be done in one of a ways,
and the second in b different ways (regardless of the
result of the first step), then the multiplication principle
says that the original task can be done in a × b ways.

As an example, imagine that five roads connect
town A to town B, and seven roads connect town B to
town C. Then one has 5 × 7 = 35 alternatives for driv-
ing from A to C. When rolling a die and tossing a coin,
6 × 2 = 12 different outcomes are possible.

The multiplication principle extends to tasks that
are composed of more than two steps. For example,
with three different sets of shoes, four different trousers,
and three different shirts, one has 3 × 4 × 3 = 36 outfits
to wear. There are 10 × 10 × 10 × 26 × 26 × 26 =
17,256,000 different license plate numbers composed of
three single-digit numbers followed by three letters.

See also FACTORIAL; PERMUTATION.

mutually exclusive events (disjoint events) Two EVENTs
are mutually exclusive if they cannot both occur in a sin-
gle run of an experiment. For example, in tossing a die,
the events “rolling a 3” and “rolling an even number”
are mutually exclusive, whereas, the events “rolling a
multiple of 3” and “rolling an even number” are not.

If A and B are two mutually exclusive events for an
experiment, then the probability that either one event
or the other occurs is given by the addition law:

P(A ∪ B) = P(A) + P(B)

See also PROBABILITY.
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Napier, John (Jhone Neper) (1550–1617) British Log-
arithms Born in Edinburgh, Scotland, in 1550 (his exact
birth date is not known), John Napier is remembered in
mathematics for his work on TRIGONOMETRY and meth-
ods of computation, most notably for his invention of
LOGARITHMs.

As was usual at the time, Napier entered the St.
Andrew’s University in 1563 at the age of 13. It is
unlikely that Napier studied mathematics at this insti-
tution, and historians today are unsure by what
means he acquired a working knowledge of the sub-
ject. Napier took an active interest in theology and
published a number of important works on the role of
religion in society. His study of mathematics was only
ever a hobby.

Napier was aware that astronomers at his time
were hampered by the difficulty of doing large compu-
tations by hand, in particular, computing the products
of very large numbers. He sought for a method that
would simplify the process. Using the curious geometri-
cal model of an object moving along a straight segment
of unit length with speed varying according to its dis-
tance from the endpoint, Napier found a formula that
converted problems of multiplication into simpler com-
putations of addition. Today we would say that Napier
worked with the formula:

N
L

= −





10 1
1

10
7

7
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John Napier, an eminent mathematician of the 17th century, dis-
covered logarithms. (Photo courtesy of the Science Museum,
London/Topham-HIP/The Image Works)



where N is a number and L is, what he called the “loga-
rithm” of that number. (Napier inserted factors of 107 so
as to help avoid the appearance of decimals in computa-
tions.) Napier published his results in 1614 in his piece
Mirifici logarithmorum canonis descriptio (Description
of the marvelous rule of logarithms).

If we divide Napier’s formula through by 107 we
obtain:

using the fact that , where e is 

Euler’s number. Thus, up to a factor of 107, we see that
Napier’s logarithms are close to the logarithms of
today, but to the base 1/e. Under the advice of English
scholar HENRY BRIGGS (1561–1630), Napier later
modified his method of logarithms to base 10.

Napier invented mechanical devices to assist in the
computation, multiplication, division, and the extrac-
tion of square and cube roots. He also made significant
contributions to the study of spherical trigonometry,
finding formulae for the ratio of sides of triangles
drawn on spheres. These formulae are today named in
his honor.

Napier died in Edinburgh, Scotland, on April 4,
1617.

See also E; NAPIER’S BONES.

Napier’s bones (Napier’s rods) In 1614, Scottish
mathematician JOHN NAPIER designed a set of gradu-
ated rods, now called Napier’s bones, that can be
used to convert all long multiplication problems to
easier, and more swiftly solved, problems of addition.
Each rod, made of bone or ivory, was engraved with
a column of numbers consisting of the multiples of
the digit inscribed at the head of the rod. Diagonal
lines were drawn to separate the tens and the units of
each multiple. A blank rod represented the multiples
of zero.

To compute a long multiplication, such as the
product 3717 × 25, one would line up four rods, one
for each digit 3, 7, 1, and 7, as shown:

Looking at the second and fifth rows (corresponding
to the digits 2 and 5), and adding along the diagonals in
the rows (this corresponds to keeping track of carried
digits), we see that 2 × 3,717 = 7,434 and 5 × 3,717 =
18,585. Adding a zero to the tail of the first product
gives 20 × 3,717 = 74,340, and so the product we seek is
the sum of the two numbers 74,340 and 18,585. This
can be swiftly computed with pen and paper.

There is one complication: in looking at any partic-
ular row, two numbers in a diagonal may sum to a
total with two digits. One must carry the first digit of
the sum to the next diagonal to the left. For example,
looking at the eighth row we see that 8 × 3,717 equals
29,736. (The 1 from the sum of 8 and 5 carries to the 6
in the next diagonal to the left.)

See also EGYPTIAN MULTIPLICATION; ELIZABETHAN

MULTIPLICATION; FINGER MULTIPLICATION; MULTIPLICA-
TION; RUSSIAN MULTIPLICATION.

Nash, John (1928– ) American Game theory, Topol-
ogy Born on June 13, 1928, in Bluefield, West Vir-
ginia, John Nash is remembered for his seminal work in
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nonzero-sum GAME THEORY. Nash’s 1949 doctoral dis-
sertation “Non-Cooperative Games” (only 45 pages
long) proved to have such a profound impact on the
development and study of economic theory that it sim-
ply redefined the nature of economic thinking during
the four decades that followed. For this, he was hon-
ored as a corecipient of the 1994 Nobel Prize in eco-
nomics. Nash also made extraordinary contributions to
the field of TOPOLOGY and solved a number of break-
through problems in the study of Riemannian geometry.

Nash entered the Carnegie Institute of Technology
(now Carnegie-Mellon University) in 1945 with the
intent to study chemical engineering, but soon discov-
ered a passion for mathematics. He graduated 3 years
later with both bachelor and master degrees in mathe-
matics and entered Princeton University in 1948 to
commence work on a doctorate. He graduated just 2
years later.

By 1954 Nash had published five extraordinary
papers on the topic of game theory, including “Equi-
librium Points in N-person Games” in 1950, “The
Bargaining Problem” in 1950, and “Non-Cooperative
Games” in 1951, and two truly significant works on
the topic of analytic geometry, “Real Algebraic Mani-
folds” in 1952, and “C1 Isometric Imbeddings” in
1954. He had clearly established himself as a mathe-
matical genius and was recognized as such by the
mathematical community. He was a tenured professor
at the Massachusetts Institute of Technology at the
age of 29.

In the early 1960s, Nash began developing para-
noid schizophrenia and became virtually incapacitated
by the disease for the two decades that followed. He
lost his position at M.I.T, spent a number of years
roaming Europe and America, and returned to Prince-
ton, New Jersey, before receiving institutional help.
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Slowly, over many years, Nash began to recover and
eventually returned to teaching at Princeton and contem-
plating mathematical work. He delivered a paper at the
10th World Congress of Psychiatry in 1996 describing
his illness. Along with the 1994 Noble Prize, Nash was
awarded the 1999 Leroy P. Steele Prize by the American
Mathematical Association. Nash describes his 45-page
dissertation as his “most trivial work” of his career.

natural number (counting number, whole number)
Any of the positive whole numbers 1, 2, 3, … is called a
natural number or a counting number. The natural num-
bers are used to count separate objects. The collection of
all counting numbers {1,2,3,…}, called the set of natural
numbers, is denoted N, or sometimes IN or Z+. Some
mathematicians choose to include the number ZERO in
this set. (There is no standard convention on the matter.)

The set of natural numbers is closed under ADDI-
TION and MULTIPLICATION, that is, the sum or product
of any two natural numbers is again a natural number.
The set, however, is not closed under SUBTRACTION or
DIVISION. For example, the result of subtracting 5 from
3 is no longer a natural number, nor is the result of
dividing 7 by 2.

An infinite set of objects whose elements can be
arranged in a list akin to the list of natural numbers is
said to be COUNTABLE. Not all infinite sets are countable.

See also CLOSURE PROPERTY; DISCRETE; FIGURATE

NUMBERS; NUMBER; NUMBER THEORY; ORDINAL NUM-
BERS; WHOLE NUMBER.

necessary condition See CONDITION—NECESSARY AND

SUFFICIENT.

negation (not statement) In FORMAL LOGIC a state-
ment of the form “not p” is called the negation of the
statement p. For example, “Shakespeare did not write
Hamlet” is the negation of the statement that Shake-
speare did. In practice it is not always necessary for the
term not to occur. For example, the negation of x > y is
x ≤ y.

The negation of a statement p is denoted in sym-
bols as ¬p (or sometimes as ~p, –p, or even –p). The
negation of statement has truth-value opposite to that
of the original statement, and so has a TRUTH TABLE:

negative numbers Any REAL NUMBER less than ZERO

is called a negative number. In practical applications,
negative numbers are used to denote quantities that are
below some reference point. For example, in the centi-
grade temperature scale, a temperature of –10° is 10°
below the freezing point of water.

The product of two negative numbers is a positive
quantity. For instance, (–1) × (–1) = 1. This can be jus-
tified by making use of the DISTRIBUTIVE PROPERTY and
the fact that the product of any quantity with zero is
zero. Specifically, we have:

(–1) × 0 = 0
(–1) × (1+ (–1)) = 0
(–1) × 1 + (–1) × (–1) = 0
–1 + (–1) × (–1) = 0
(–1) × (–1) = 1

Negative numbers were generally viewed with sus-
picion throughout history. Ancient Egyptian and Baby-
lonian scholars ignored negative solutions to their
mathematical equations, as did ancient Greek scholars
(to whom “number” was directly associated with the
notion of physical length). Chinese scholars were com-
fortable working with negative quantities in intermedi-
ate steps toward solving a problem, but they never
permitted them as final solutions.

Seventh-century Indian scholar BRAHMAGUPTA is
noted as the first scholar to properly determine the
arithmetic of negative quantities. He deemed their exis-
tence as valid by equating positive quantities with pos-
sessions and negative quantities with debt. This work
was later expanded upon by scholar BH

–
ASKARA (ca.

1114–85). Although Arab scholars of this time read and
translated the Indian texts, they chose not to work with
negative quantities. As 12th-century European scholars
garnered much of their mathematical knowledge from
the Islamic world, familiarity with negative quantities
did not readily come to the West.

In the 16th century, prominent mathematicians such
as GIROLAMO CARDANO, Michael Stifel, and FRANÇOIS

VIÈTE adamantly rejected the notion of negative num-

348 natural number

p ¬p

T F

F T



bers, deeming these quantities as “meaningless” and
“absurd.” This attitude generally persisted for the cen-
tury that followed, even though scholars found it neces-
sary to work with them algebraically as they solved
more sophisticated mathematical equations. By the turn
of the 18th century, however, it was generally admitted
that negative numbers are a necessary construct in math-
ematics. LEONHARD EULER (1707–83) was comfortable
working with negative quantities.

With the development of ABSTRACT ALGEBRA in
the 19th century, the need to assign “meaning” to
numbers became less important. Even though some
19th-century scholars such as AUGUSTUS DE MORGAN

continued to publish commentary against the validity
of negative quantities, their usefulness, and necessity,
was generally accepted.

See also BABYLONIAN MATHEMATICS; CHINESE

MATHEMATICS; EGYPTIAN MATHEMATICS; GREEK MATH-
EMATICS; NUMBER; POSITIVE.

nested multiplication To evaluate a POLYNOMIAL

such as p(x) = 2x3 + 7x2 – 4x + 3 for a particular value
x = 5, say, one simply substitutes 5 for x and performs
the required number of multiplications. In this exam-
ple, 3 + 2 + 1 = 6 multiplications are needed:

p(5) = 2 × 5 × 5 × 5 + 7 × 5 × 5 – 4 × 5 + 3 = 408

(It is generally the case that a polynomial contains a
TRIANGULAR NUMBER of products.) The number of
multiplications required can be significantly reduced if
one first rewrites the polynomial in a form known as
nested multiplication. In this example we write:

p(x) = 2x3 + 7x2 –4x + 3
= (2x2 + 7x – 4)x + 3
= ((2x + 7)x – 4)x + 3

Thus p(5) can be computed with just three operations
of multiplication:

p(5) = ((2 × 5 + 7) × 5 – 4) × 5 + 3
= ((10 + 7) × 5 – 4) × 5 + 3
= (85 – 4) × 5 + 3
= 408

Notice that this process simply multiplied the first
coefficient by 5, added the second coefficient, multi-

plied the result by 5, added the third coefficient, multi-
plied by 5, and then added the final coefficient. The
process is compactly recorded in a table as follows:

The first row lists the coefficients of the polyno-
mial and a zero is placed under the first coefficient.
One works from left to right adding the entries in the
two rows, multiplying the result by 5, and recording
that result in the next column. The entry in the bottom
right corner is the value p(5).

The remaining numbers on the bottom row have a
surprising interpretation. According to the FACTOR

THEOREM, if the polynomial p(x) is divided by the term
x – 5, then the remainder will be p(5) = 408. In this
example one can check that

The numbers on the bottom row of the table above
are precisely the coefficients of the quotient. This
same phenomenon occurs for any polynomial of any
degree. Examining an abstract example illustrates why
this works. (For simplicity we will again work with a
cubic equation.)

Consider the polynomial p(x) = ax3 + bx2 + cx + d
divided by the linear term x – h. The process of LONG

DIVISION yields the following:

On the other hand, the method of evaluating p(h) via
the process of nested multiplication yields the table:

ax3 + bx2 + cx                    + dx – h

ax2 + (ah + b)x + ((ah + b)h + c)

ax3 – ax2h

(ah + b)x2 + cx
(ah + b)x2 – (ah + b)xh

((ah + b)h + c)x + d
((ah + b)h + c)x – ((ah + b)h + c)h

((ah + b)h + c)h + d

p x
x

x x
x

( )
−

= + + +
−5

2 17 81
408

5
2
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Comparison of the two tables side by side show that
the two processes are identical.

The process of drawing a table for evaluating a
polynomial p(x) at a value x = h, or, equivalently, for
dividing p(x) by x – h, is called synthetic division. It is a
very simple and efficient process. As an example, the fol-
lowing table shows that the polynomial p(x) = 2x4 + 3x3

– 4x2 + 5x + 4 has value 6 when evaluated at x = ,

and quotient 2x3 + 4x2 – 2x + 4 when divided by x – .

Returning to the theme of triangular numbers: Any
nested product of the form:

(9(…(9(9(9 + 1)+1)+1)…+1)+1)

is triangular. For instance, 9 + 1 = 10 = T4, 9(9 + 1) + 1
= 91 = T13, and 9(9(9 + 1) +1) + 1 = 820 = T40. This
follows from the relation 9Tn + 1 = T3n+1 beginning
with T1 = 1. This relation also shows that if the num-
ber of nines present in the nested product is n, then the 

-th triangular number is produced.

net In geometry, a net is a diagram drawn on a page
which, when cut out and folded along the lines indi-
cated, can be used to construct a POLYHEDRON. For
example, the following diagram shows nets of a cube
and a TETRAHEDRON.

Not every arrangement of six squares on a page
produces a net for a cube. (For example, a row of six
squares does not fold to form a cube.) One can show
that there are 11 essentially different nets for a cube,
each representing a fundamentally different way of

unfolding the figure. There are just two different ways
to unfold a tetrahedron. Mathematicians have shown
that there are 261 different ways to unfold a four-
dimensional HYPERCUBE into a three-dimensional net of
eight connected cubes.

In terms of accounting, the word net refers to the
profit calculated after deducting all operating expenses.
For example, if a small private school receives
$100,000 in tuition payments per year as income but
incurs an annual operating expense of $97,000 (for
salaries, insurance fees, school supplies, and the like),
then the school is operating with an annual net profit
of $3,000.

In commerce, the term net denotes the weight of
goods excluding the weight of any wrapper or con-
tainer holding the goods. For example, many grocery
stores subtract the weight of the plastic containers used
to hold fresh food items from the total weight of the
item being purchased. Customers are charged only for
the net weight of the item.

Neumann, John von (1903–1957) Hungarian-American
Game theory, Logic, Analysis, Abstract algebra Born
on December 28, 1903, in Budapest, Hungary, pure
and applied mathematician John von Neumann is
remembered for his important contributions to a tre-
mendously wide range of topics. In pure mathematics,
he worked on problems in SET THEORY and devised a
set of axioms for the subject alternative to those pro-
posed by ERNST FRIEDRICH FERDINAND ZERMELO

(1871–1953). He also made advances in functional
analysis, OPTIMIZATION theory, and GROUP THEORY,
and succeeded in providing an axiomatic system for the
theory of quantum mechanics. In applied mathematics,
von Neumann is best remembered for his 1944 text
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The Theory of Games and Economic Behavior, written
with Oskar Morgenstern (1902–76), which essentially
founded the field of GAME THEORY. He also made
major contributions to the development of the modern
computer, both as a practical design problem and as a
theoretical investigation into the nature and capabilities
of AUTOMATA. He was the first to devise a way of stor-
ing programs inside a computer.

Von Neumann demonstrated an incredible aptitude
for mathematics at a very early age. He received private
tutoring in mathematics from faculty members at the
University of Budapest while he was a high-school stu-
dent, and by age 18 he had written and published a
coauthored mathematics paper. Although von Neumann
was admitted into the mathematics program at the Uni-
versity in 1921, he followed his father’s wishes and pur-
sued chemistry at the University of Berlin and at the
Technische Hochschule in Zürich. Remarkably, without
ever attending a class at the University of Budapest, von
Neumann continued his work in mathematics privately,
passed the University mathematics examination, wrote
an influential thesis on the topic of set theory, and was
awarded a degree there in 1926, all the while pursuing a
degree in chemical engineering in Zürich. In 1930 von
Neumann accepted a professorship in mathematics at
Princeton University in the United States.

In 1932 he published his groundbreaking work
Mathematische Grundlagen der Quantenmechanik
(Mathematical foundations of quantum mechanics) on
theoretical quantum mechanics, which led him to the
study of operator algebras and functional analysis for
the years that followed. In 1938 he was awarded the
Bôcher Prize from the American Mathematical Society
for his work in this field. In the early 1940s von Neu-
mann’s interests turned to applied mathematics, and
in 1944 he published his famous piece on the topic of
game theory. His subsequent work in the logical
design of computers and the theory of automata
seemed, to von Neumann, a natural extension of all
his previous studies.

During and after World War II von Neumann
served as a consultant to the Defense Department and
to the Los Alamos Scientific Laboratory. In 1955 Presi-
dent Eisenhower appointed him to the Atomic Energy
Commission, and in 1956 he was awarded the Enrico
Fermi Award for all his contributions in this regard.
The same year he was honored in academia with the
Albert Einstein Commemorative Award.

Von Neumann was elected to a large number of
academic societies throughout his life, including the
National Academy of Sciences (the United States), The
American Academy of Arts and Sciences, Instituto
Lomdardo do Scienze e Lettere (Italy), and the Royal
Netherlands Academy of Sciences and Letters. He died
in Washington, D.C., on February 8, 1957.

Newton, Sir Isaac (1642–1727) British Calculus,
Mechanics, Dynamics, Optics, Astronomy, Natural
philosophy Born on January 4, 1642, in Woolsthorpe,
England, Sir Isaac Newton is remembered as one of the
greatest scientific scholars of all time. He dominated
and revolutionized the mathematics and the physics of
the 17th century. Newton is responsible for the devel-
opment of differential and integral CALCULUS and the
discovery of the FUNDAMENTAL THEOREM OF CALCULUS

that unites the two fields. He also generalized the BINO-
MIAL THEOREM to incorporate noninteger exponents;
developed numerical methods for solving DIFFERENTIAL

EQUATIONs, approximating LIMITs, and computing inte-
grals; and discovered many important results in the
theory of equations. In physics, he is remembered for
his formulation of a system of mechanics capable of
precise and accurate descriptions of the motions of all
objects and for his universal law of gravitation through
an INVERSE SQUARE LAW. He outlined this work in his
1687 work Philosophiae naturalis principia mathemat-
ica (The mathematical principles of natural philoso-
phy), often referred to simply as Principia. This is
today regarded as one of the most important scientific
works of all time.

Newton entered the Trinity College, Cambridge, in
1661 to study law and philosophy, but he soon discov-
ered an interest in mathematics, optics, and mechanics.
A personal notebook from the time reveals that he
read, and worked through in detail, the works of
EUCLID (ca. 300–260 B.C.E.) and RENÉ DESCARTES

(1596–1650) on the topic of geometry, of GALILEO

GALILEI (1564–1642) on the mechanics of the universe,
and of FRANÇOIS VIÈTE (1540–1603) and JOHN WAL-
LIS (1616–1703) on algebra. Newton extended some of
Wallis’s techniques for finding the area of curved fig-
ures and worked on new approaches to infinite SERIES.
He graduated from Cambridge with a bachelor’s degree
in 1665, but he did not attract the attention of his pro-
fessors as a particularly gifted scholar at the time.
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The college closed for 2 years due to the plague,
and Newton returned to his hometown of Woolsthorpe.
There he began work on developing new approaches to
mathematics, physics, and optics. He made the funda-
mental discovery that integration is the reverse process
of differentiation, and he used this unifying concept to
lay down the foundations for a general theory of calcu-
lus. (As such, he completed this work two decades
before German scholar GOTTFRIED WILHELM LEIBNIZ

(1646–1716) independently made the same discovery.)
Newton used the notion of a FLUXION (derivative) as
the basis of his approach. He summarized his work in
his 1671 piece De methodis serierum et fluxionum (The
method of infinite series and fluxions) but failed to have
the work published. (An English translation of the piece
was printed posthumously in 1736.) This seems to have

been a frequent problem for Newton. Historians gather
from examination of his letters and personal writings
that he had a morbid dislike and fear of criticism and
would invariably hold back from publishing his ideas.
This led to a bitter dispute, for instance, 20 years later
when Leibniz published his discoveries and claimed to
have invented calculus.

The University of Cambridge reopened in 1667,
and Newton returned to obtain a master’s degree 1
year later. By this time, through what he had shared
with friends and reported in letters, he had garnered a
reputation as a gifted scholar, and 2 years later, at the
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Sir Isaac Newton, an eminent scientist of the 18th century, domi-
nated and revolutionized the mathematics and physics of the late
1600s and early 1700s. (Photo courtesy of the Science Museum,
London/Topham-HIP/The Image Works)

Considered the most important scientific work of modern times,
Sir Isaac Newton’s Principia outlines the inverse-square law of
gravitation and its application to the mathematical derivation
of Johannes Kepler’s three laws of planetary motion. (Photo
courtesy of the Science Museum, London/Topham-HIP/The
Image Works)



young age of 27, Newton was appointed Lucasian pro-
fessor at Cambridge.

At this time Newton began serious work on the
study of optics. With the aid of a prism he discovered
that white light was composed of a spectrum of colors,
each refracting through a lens at a different angle. He
concluded then that all refracting telescopes were sub-
ject to chromatic aberrations and set to work on build-
ing a reflecting model. In 1672 he was elected as a
fellow of the prestigious ROYAL SOCIETY of London in
honor of this work. He published his text Optiks
(Optics) in 1704.

Newton also began formulating his famous laws of
motion and his laws of gravitation during the mid-
1660s. In 1684 eminent astronomer Edmond Halley
(1656–1742) suggested to Newton that he should
investigate the mathematics of gravitational attraction
and attempt to derive JOHANNES KEPLER’S famous
three laws. Newton apparently replied simply that he
already had many years earlier. Only after Halley’s per-
sistent urgings did Newton agree to publish the results
in what was to become his most famous piece of work,
the 1687 piece Principia.

Newton also published in his lifetime, somewhat
delayed after completing the work, Enumeratio lin-
earum tertii ordnis (Enumeration of lines of the third
order) in 1704, Arithmetica universalis (Universal
arithmetic), his collected works in algebra in 1707, and
Analysis per quantitatum series (Analysis by means of
various series) in 1711.

Newton resigned from his position at the Univer-
sity of Cambridge in 1701 to take a prestigious govern-
ment position in London and participated in very little
mathematical research thereafter. In 1703 he was
elected president of the Royal Society and was reelected
to that position each year until his death on March 20,
1727. In 1705 he was knighted by Queen Anne,
becoming the first scientist to be so honored for schol-
arly achievement.

It is impossible to understate the influence that
Newton’s work has had on the development of all sci-
entific research. Scholars today agree that the publica-
tion of Principia marked the beginning of the modern
scientific era.

Newton’s method In many practical situations, one is
required to find a numerical solution to an equation of

the form f(x) = 0, even if there are no clear algebraic
means for solving such an equation. (There are no gen-
eral methods suitable for solving √

–
x + + 

– 5 = 0, for instance.) If the function in question is differ-
entiable (see DIFFERENTIAL CALCULUS), then one can
employ Newton’s method to find the approximate loca-
tion of a ROOT.

One begins by making an initial guess x0, hope-
fully missing the correct value of the root by just a
small amount. Suppose it turns out that the root is h
units away from x0 (thus f(x0 + h) = 0). Using this
value of h, we can approximate the derivative of the
function at x0 as:

Turning this around, we see that h is approximately
–f(x0)/f ′(x0). Substituting this value for h shows that if
x0 is our initial guess for the root, then the point:

is likely to be a much better approximation to the root.
(Geometrically, x1 is the location at which the tangent
line to the graph y = f(x) at position x0 crosses the x-
axis.) Repeating this procedure, each time using the out-
come just obtained as the next initial guess, produces a 

sequence of values x0,x1,x2,…, with 

yielding successively better approximations of the root.
One can perform this procedure until a desired degree
of accuracy is obtained.

To illustrate Newton’s method, we compute √
–
2 to

four decimal places. Computing this root is equivalent
to solving the equation x2 – 2 = 0. Setting f(x) = x2 – 2,
we have f ′(x) = 2x. Thus the sequence of approxima-
tions is given by the formula:

(Compare with HERON’S METHOD.) With x0 = 1 as our
initial guess, we obtain the approximations:
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and so on. Hence, to four decimal places, we see √
–
2 =

1.4142.
If one initially makes two guesses x0 and x1 to the

root of an equation f(x) = 0, then one can use the 

formula to approximate the slope 

of the curve at position x = x1. An improved approxi-

mation for the root is thus given by 

. Repeated application leads to 

the secant method for approximating roots: given two
initial guesses x0 and x1 set:

Neyman, Jerzy (1894–1981) Moldavian Statistics
Born on April 16, 1894, in Bendery, Moldavia, statis-
tician Jerzy Neyman is remembered for his funda-
mental work in the theory of inferential statistics. He
made significant contributions to the practice of
hypothesis testing and estimation, and was the first to
introduce the notion of a confidence interval.

Neyman studied mathematics at Kharkov Univ-
ersity and received a doctorate in mathematics and
statistics in 1924 from the University of Warsaw.
Collaborating with KARL PEARSON’S son, E. S. Pear-
son, Neyman wrote a number of influential papers.
The two most prominent pieces “On the Problem of
the Most Efficient Tests of Statistical Hypotheses” and
“The Testing of Statistical Hypotheses in Relation to
Probabilities A Priori” were both published in 1933.

In 1938 Neyman emigrated to the United States,
where he worked at the University of California, Berke-
ley, for the remainder of his life. He died in Oakland,
California, on August 5, 1981.

His work in statistics, with the introduction of the
confidence interval, revolutionized sampling techniques

and practices in agriculture, biology, medicine, and the
physical sciences, and his study of stratified popula-
tions led to a new field of statistical theory. The struc-
ture of the Gallup poll used today, for instance, is
based on this work.

See also STATISTICS: INFERENTIAL.

nine-point circle Consider a triangle with vertices A,
B, and C. Let MA, MB, and MC be the MIDPOINTs of
each of its three sides. Consider too the three altitudes
of the triangle, lines that each pass through one vertex of
the triangle to meet the opposite side at a right angle. Let
HA, HB, and HC be the feet of the three altitudes, one on
each side of the triangle. A study of EQUIDISTANT points
shows that the three altitudes pass through a common
point H called the orthocenter of the triangle. (See ALTI-
TUDE.) Let PA, PB, and PC be the midpoints of the line
segments connecting H to each vertex A, B, and C,
respectively. We now have nine points associated with
the triangle: MA, MB, MC, HA, HB, HC, PA, PB, and PC.
Surprisingly, these nine points will always lie on a circle.
This circle is called the nine-point circle of the triangle.

This result was discovered by German mathemati-
cian Karl Wilhelm Feuerbach (1800–34). The center of
the circle turns out to lie on the EULER LINE of the trian-
gle. In fact, if O is the circumcenter of the triangle, that
is, the center of the CIRCUMCIRCLE of the triangle, then
the center of the nine-point circle Q is the midpoint of
the line segment connecting O to H. (With this known,
one can then prove that Q is indeed the same distance
from each of the nine points listed, thereby establishing
the claim that all nine points lie on a circle.)

Feuerbach also proved that the nine-point circle
and the INCIRCLE of the triangle touch at just one point
and, moreover, that the nine-point circle is TANGENT to
each of the three excircles of the triangle.

Given four arbitrary points in the plane, one can
construct a nine-point circle for any triangle formed by
a set of three of those points. As there are four sets of
three points, this yields four nine-point circles in all.
Surprisingly, these four nine-point circles all pass
through a single common point.

Noether, Amalie (Emmy) (1882–1935) German Abs-
tract algebra Born on March 23, 1882, in Erlangen,
Bavaria, mathematician Emmy Noether is remembered
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for her highly creative work in the theory of RINGs and
in ABSTRACT ALGEBRA. She was responsible for direct-
ing algebra away from detailed arithmetical calcula-
tions to a general axiomatic study of structure. She is
also noted for her determination to succeed as a
woman scholar in the male-dominated realm of early
20th-century academia.

Noether studied languages and music during her
school years, and trained to be a teacher of French and
English. In 1900 she passed her state certification
exams but never worked as an educator. Instead she
decided to pursue a career in mathematics, attending
lectures at the University, of Erlangen. At the time
women were not permitted to enroll as students at the
university, and her studies at the university were never
deemed official. In 1904 she passed the state matricula-
tion exam and then went to the University of Göttin-
gen. Three years later she was awarded a doctorate
from that institution. However, she was not permitted
to pursue the habilitation degree that would earn her
the appropriate qualification to become a university
faculty member. Noether returned to Erlangen.

During the following years Noether published a
number of influential papers on the topic of algebra.
Her work caught the attention of prominent mathe-
maticians DAVID HILBERT (1862–1943) and CHRISTIAN

FELIX KLEIN (1849–1925), who invited her back to the
University of Göttingen and fought the university
administration to give her the right to pursue an
advanced degree. She was finally awarded an official
position as a faculty member of the university in 1922.

Mathematicians today consider her 1921 paper
“Idealtheorie in Ringbereichen” (The theory of ideals
in ring structures) to be of fundamental influence in the
development of modern abstract algebra.

Noether was granted many honors and awards for
her work. In 1928 she was invited to address the Inter-
national Mathematical Conference at Bologna, and
spoke again at Zürich in 1932, the same year she was
a joint recipient of the Alfred Ackermann-Teubner
Memorial Prize for the advancement of mathematical
knowledge.

With the uprising of the Nazis in 1933 Noether
was dismissed from her position at Göttingen because
of her Jewish faith. She then accepted a professorship
at Bryn Mawr College, Pennsylvania. At this time she
also lectured at the Institute of Advanced Study at
Princeton, New Jersey.

Noether died at Bryn Mawr on April 14, 1935. She
wrote a total of 45 research papers throughout her
career and shaped the entire course of study in abstract
algebra. Mathematician Bartel Leendert van der Waer-
den (1903–96) was particularly influenced by her work
and continued to promote her ideas after her death.

non-Euclidean geometry After numerous unsuc-
cessful attempts throughout history to establish the
PARALLEL POSTULATE as a consequence of the remaining
four of EUCLID’S POSTULATES, mathematicians began to
contemplate theories of geometry in which the fifth
postulate does not hold. Any such theory of GEOMETRY

is called a non-Euclidean geometry.
In 1795 Scottish mathematician and physicist John

Playfair (1748–1819) presented an alternative, but
equivalent, formulation of the parallel postulate:
through any point in the plane, there is precisely one
line through that point parallel to any prescribed
direction. Recasting the postulate this way makes it
apparent that negation of the famous fifth postulate
has two parts. Either:

1. There are no lines through a given point parallel to
a given direction.

2. There is more than one line through a given point
parallel to a given direction.

From 1826 to 1829 Russian mathematician NICO-
LAI IVANOVICH LOBACHEVSKY (1792–1856) developed
a consistent theory of geometry in which Euclid’s fifth
postulate fails in the manner described in point 2.
Hungarian mathematician JÁNOS BOLYAI (1802–60)
independently came to the same surprising conclusion
by assuming that through any point there are
infinitely many distinct lines parallel to a given direc-
tion. (CARL FRIEDRICH GAUSS (1777–18) had also
come to similar conclusions, but he did not publish
his results.) Such a theory of geometry is today called
HYPERBOLIC GEOMETRY.

In the 1850s German mathematician GEORG

FRIEDRICH BERNHARD RIEMANN (1826–66) presented
an alternative form of geometry in which Euclid’s fifth
postulate fails in the manner describe in point 1 above.
In this theory, today called Riemannian geometry or
SPHERICAL GEOMETRY, “lines” are great circles drawn
on the surface of a sphere. Consequently, it is impossi-
ble to draw a pair of lines that never intersect.
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Despite the simplicity of the Riemannian model, it
was not immediately obvious to scholars of the 19th
century that it was permissible. Euclid’s second postu-
late seems to state that straight lines should be of infi-
nite length. Riemann had the insight to note that
“extended indefinitely” does not imply “infinitely
long,” thus allowing him to consider a geometry in
which straight lines loop back on themselves.

In hyperbolic geometry, all angles in a triangle sum
to less than 180°, and the ratio of the circumference of
a circle to its diameter is greater than π. In spherical
geometry, all angles in a triangle sum to more than
180°, and the ratio of the circumference of a circle to
its diameter is less than π. EUCLIDEAN GEOMETRY, in
which angles in a triangle always sum exactly to 180°
and the ratio of the circumference to diameter of any
circle is precisely π, can thus be regarded as an interme-
diate between the two.

See also EUCLID; PLAYFAIR’S AXIOM.

normal distribution In the early 1700s scientists
noticed that errors from measurements in scientific
experiments repeated many times tended to follow the
same form of DISTRIBUTION, even though the studies
were conducted in unrelated fields (physics versus
biology or sociology, for example). The particular pat-
tern of errors observed is today known as the normal
distribution (or Gaussian distribution). The French
mathematician ABRAHAM DE MOIVRE, in 1733, was
the first to write a mathematical formula for the dis-
tribution. Later, mathematicians PIERRE-SIMON LAPLACE

(1749–1827), SIMÉON-DENIS POISSON (1781–1840),
and CARL FRIEDRICH GAUSS (1777–1855) specified and
proved many of its mathematical properties. At the turn
of the 20th century Aleksandr Mikhailovich Lyapunov,
and later others, refined and developed Laplace’s work
to establish the CENTRAL-LIMIT THEOREM to explain the
frequent occurrence of the normal distribution in all sci-
entific studies.

The normal distribution turns out to be a symmet-
rical bell-shaped curve. It is scaled so that the total area
under the curve is exactly equal to 1. The location of
the peak of the curve is called its mean, denoted µ, and
the width of the curve is measured by a value σ, called
its standard deviation. (See STATISTICS: DESCRIPTIVE and
DISTRIBUTION.) On both sides of the peak, the curve
uniformly falls steeply downward. The curve then falls

less steeply, with curvature facing upward. The location
at which the curvature changes direction from inward
to upward curvature is a distance of 1 standard devia-
tion from the mean, the peak of the curve.

The “68-95-99.7 rule” asserts that 68 percent of
the area under the curve lies within a distance of 1
standard deviation on either side of the mean; 95 per-
cent of the area lies within 2 standard deviations of the
mean; and 99.7 percent within 3 standard deviations.
For example, it might be observed in a medical study
that the mean height of women between ages 18 and
24 is normally distributed, with mean µ = 64.5 in. and
standard deviation σ = 2.5 inches. We can then deduce
that 68 percent of young women are between 64.5 –
2.5 = 62 and 64.5 + 2.5 = 67 in. tall.

If a measurement in an experiment is known to
follow a normal distribution, then the probability that
a measurement taken at random lies within the range
[a,b] is found by computing the area under the curve
above the interval [a,b]. Reference texts in statistics
provide tables of area computations for a normal dis-

356 normal distribution

The normal distribution



tribution of mean zero and standard deviation 1 (the
standard normal distribution). One can convert an
arbitrary normal distribution into a standard normal
form by use of Z-SCOREs, which then allows one to
calculate probabilities for that distribution.

The formula for the curve describing a normal dis-
tribution of mean µ and standard deviation σ is:

The cumulative-distribution function of the standard
normal distribution (µ = 0, σ = 1) is denoted φ(z) and 

is given by . Statistics references 

usually list values of this function from z = 0.0 to z = 4.0.
(We have φ(0.0) = 0 and φ(4.0) = 0.99997.) Values of the
function for negative values of z can be deduced using the
fact that the normal distribution is symmetric in shape.

See also CHEBYSHEV’S THEOREM; STATISTICS: INFER-
ENTIAL.

normal to a curve In two-dimensional space, a nor-
mal to a curve at a point P on the curve is the line
through P that lies at right angles to the TANGENT to
the curve. For example, a radius of a circle is normal to
the circumference of the circle.

See also NORMAL TO A PLANE; NORMAL TO A SUR-
FACE; ORTHOGONAL; PERPENDICULAR.

normal to a plane (normal vector to a plane) In
three-dimensional space, a VECTOR whose direction is
PERPENDICULAR to a plane is said to be a normal to the
plane. A normal vector is consequently perpendicular
to any vector that lies in the given plane.

If ax + by + cz = d is the equation of the plane,
then n = < a,b,c > is a normal to the plane. This follows
from the derivation of the VECTOR EQUATION OF A

PLANE. Any (nonzero) scalar multiple of this vector is
also a normal to the plane.

See also NORMAL TO A CURVE; NORMAL TO A SUR-
FACE; ORTHOGONAL.

normal to a surface In three-dimensional space, a
normal to a surface at a point P on the surface is a line

through P that is PERPENDICULAR to the TANGENT plane
of the surface at P. For example, a line passing through
the center of a sphere is normal to the surface at each
of the two points it intersects the sphere.

It is assumed that the surfaces under discussion
are “smooth,” so that at each point there is a well-
defined tangent plane. For example, a SPHERE is
smooth, as is a TORUS, but the surface of a cube is
not. (There is no well-defined tangent plane at one of
its corners, for example.)

See also NORMAL TO A CURVE; NORMAL TO A

PLANE; ORTHOGONAL.

NP complete In 1971 computer scientist Steven
Cook specified a certain class of computational prob-
lems as “equivalently difficult” in the sense that if any
one of the problems in this class can be solved “in a
reasonable amount of time” on a computer, then all the
problems in this class can be so solved. This category
of problems is called NP complete.

The famous TRAVELING-SALESMAN PROBLEM is one
such problem. It seeks to find the shortest route that vis-
its a number of cities. It is known that if n represents the
number of cities in the problem, then, as n increases, the
number of possible routes to check grows as a FACTO-
RIAL function in n. These numbers grow extraordinarily
fast, faster than any POLYNOMIAL function in n. (A poly-
nomial is a formula of the form arnr + ar–1nr–1 +…+ a1n
+ a0.) Problems that grow in complexity as a polynomial
are considered “solvable in a reasonable amount of
time.” It is not known whether there is a way to solve
the traveling-salesman problem in polynomial time. If it
can be so solved, then, as Steven Cook showed, each and
every NP problem can also be solved in polynomial
time. There are many different problems in the NP class.
The fact that no one to this day has found a “fast” algo-
rithm for solving any one of them suggests that the trav-
eling salesman problem, in particular, has no
computationally feasible means of solution. The letters
NP stand for “nondeterministic polynomial time.”

A different issue asks whether a proposed solution
to a problem can be checked to be valid within a poly-
nomial amount of time. This leads to the class of “P”
problems. It is not known whether the class of P prob-
lems (those that take a polynomial amount of time to
check solutions) is the same as the class of NP problems
(those that are hoped to take a polynomial amount of
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time to find solutions). This question is usually written:
P = NP?

See also POLYNOMIAL TIME.

n th root of unity Any COMPLEX NUMBER z such that
zn = 1 is called an nth root of unity. When n is 2 or 3,
the relevant roots are usually called square roots and
cube roots, respectively. There are two square roots of
unity, namely, z = 1 and z = –1, and there are three cube 

roots of unity: z = 1, , and . In 

general, as the FUNDAMENTAL THEOREM OF ALGEBRA

shows, there are n nth roots of unity. The number z = 1
is an nth root of unity for all values of n.

EULER’S THEOREM shows that the nth roots of
unity are given by the formula:

for k = 0,1,…,n (since zn = = ei2πk = cos(2πk) 

+ isin (2πk) = 1 + 0 = 1). This shows that the n nth
roots of unity all lie on a circle of radius one and are
equidistant along that circle at angles that are multiples 

of . That is, when plotted on the complex plane, the 

n nth roots of unity lie at the vertices of a regular ngon
with the point z = 1 on the real axis as one vertex of
the polygon.

An nth root of unity z is called a primitive if zn = 1,
but zk ≠ 1 for any positive integer smaller than n. For
example, although z = –1 is a fourth root of unity, it is
not a primitive root, since we also have (–1)2 = 1. The
numbers z = i and z = –i are both primitive fourth roots
of unity.

An nth root of unity z satisfies the equation zn – 1
= 0. Factoring yields:

(z – 1)(1 + z + z2 + z3 +…+ zn–1) = 0

If z is different from 1, then it must be the case that the
second term of the left side of this expression is zero.
This proves:

Each nth root of unity different from 1 satisfies
1 + z + z2 + z3 +…+ zn–1 = 0.

Taking n = 5, for example, and EQUATING REAL AND

IMAGINARY PARTS, this shows, for instance, that:

and

n-tuple (list) A set of n objects taken in a particular
order is called an n-tuple. An n-tuple of numbers a1, a2,
…, an, in that order, is usually denoted (a1,a2,…,an) or
〈a1,a2,…,an〉. Two n-tuples (a1,a2,…,an) and (b1,b2,…,bn)
are equal if, and only if, corresponding entries match:
a1 = b1, a2 = b2,…, an = bn. Thus, for instance, (2,1.3)
and (1,2,3) are distinct 3-tuples.

A 3-tuple is called a “triple,” and a 4-tuple a
“quadruple.” When n = 2, an n-tuple is called an
ordered pair.

An n-tuple of numbers can represent a point in n-
dimensional space, a finite SEQUENCE, or, if angled
brackets are used, an n-dimensional VECTOR. An
ordered PARTITION of a number N is an n-tuple of
numbers whose entries sum to N.

See also ORDERED SET.

number The development of different types of num-
bers can be seen as motivated by the need for solving
different types of equations. For example, the counting
numbers (that is, the NATURAL NUMBERS N) suffice for
solving any equation of the type x + 2 = 5, for instance,
but not an equation of the type x + 5 = 2. (There is no
solution to this equation within the set of counting
numbers.) This motivates the introduction of NEGATIVE

NUMBERS and the construction of the INTEGERS Z. But
this set is not always sufficient for solving equations of
the type 5x = 3, for instance. Desiring solutions to
equations of this type leads to the construction of
FRACTIONs and the set of all RATIONAL NUMBERS Q.
Unfortunately, again, not all equations can be solved
within this system. For example, the equation x2 –2 = 0
has no rational solution. Extending the set of rational
numbers to include solutions to equations of this type
introduces IRRATIONAL NUMBERS and the construction
of the REAL NUMBER system R. Yet this new system also
does not suffice for solving all equations. With the
introduction of a single additional number, denoted i,
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to represent an (“imaginary”) solution to the equation
x2 + 1 = 0, the COMPLEX NUMBERS C are born. Surpris-
ingly, as shown by the FUNDAMENTAL THEOREM OF

ALGEBRA, the introduction of this single number is all
that is needed to solve any POLYNOMIAL equation anxn

+…+ a1x + a0 = 0. Thus the complex numbers represent
a system of numbers that is algebraically closed in the
sense that the construction of no new type of number is
needed to solve arithmetic equations.

On a conceptual level, the notion of “number” is
intimately connected with the act of counting. Simple
counting systems of ancient times used tally marks to
record numbers, and over the millennia this basic
numeration scheme evolved to the sophisticated PLACE-
VALUE SYSTEM we use today. (The ancient Egyptians of
around 3000 B.C.E. were perhaps the first to move
from the use of tally marks alone.) It was a great intel-
lectual achievement for mankind when the notion of
“number” was removed from the specific objects being
counted, recognizing, for instance, that two cows, two
houses, and two days all share a common property of
“two-ness.” (Even today we sometimes use different
words to count different types of “two.” For instance,
the words twins, couple, and pair cannot be used inter-
changeably to represent two people.) This simple recog-
nition of an abstract commonality between sets of
objects was exploited by German mathematician
GEORG CANTOR (1845–1918) who, in the late 1800s,
developed a general notion of CARDINALITY. With it,
Cantor extended the notion of “number” to include
counts of sets of infinite size. He established, for
instance, that there are an infinite number of different
types of infinity and managed to develop a meaningful
system of arithmetic for his transfinite numbers.

Irish mathematician SIR WILLIAM ROWAN HAMIL-
TON (1805–65) followed a different route and worked
to extend the notion of “number” to represent opera-
tions on n-dimensional space. AN ARGAND DIAGRAM

shows that the complex numbers have a natural repre-
sentation as points on a plane. Hamilton sought to give
meaning to an arithmetic for points in three- and
higher-dimensional space. Although he did not succeed
in accomplishing this goal for three-dimensional space,
his invention of the QUATERNIONS shows this feat can
be done in four-dimensional space. (The octonions pro-
vide an arithmetic for eight-dimensional space.)

The following diagram illustrates the relationship
between the number systems described:

N ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ quaternions

See also ARABIC MATHEMATICS; BABYLONIAN

MATHEMATICS; BASE OF A NUMBER SYSTEM; CHINESE

MATHEMATICS; DECIMAL REPRESENTATION; EGYPTIAN

MATHEMATICS; GREEK MATHEMATICS; HINDU-ARABIC

NUMERALS; INDIAN MATHEMATICS; MAYAN MATHEMAT-
ICS; ROMAN NUMERALS; ZERO.

number line (real line) A straight line, usually hori-
zontal, for which each point on the line represents a
REAL NUMBER is called a number line. One assumes
that the line extends indefinitely both to the left and to
the right. A single point O on the line, called the origin,
corresponds to the number ZERO in the real number
system, and it is conventional to assume that a point a
distance a units to the right of O represents the positive
real number a and a point b units to the left of O the
negative real number –b. The integers are thus repre-
sented as evenly spaced points, one unit apart, along
the line. A number line is a one-dimensional CARTE-
SIAN COORDINATE system.

The theory of CARDINALITY shows that there are
just as many points on the number line as there are
points in a two-dimensional plane. The DIAGONAL

ARGUMENT shows that the set of RATIONAL NUMBERS

(fractions) take up absolutely no space on the num-
ber line.

See also DIMENSION.

number systems See BASE OF A NUMBER SYSTEM.

number theory (higher arithmetic) The study of the
arithmetic properties of numbers is called number the-
ory. The fact that many simple statements about num-
bers can be extraordinarily difficult to prove, if at all
possible, makes this topic an alluring and stimulating
subject for mathematicians. (GOLDBACH’S CONJEC-
TURE, for instance, remains unsolved.) CARL FRIEDRICH

GAUSS (1777–1855), charmed by the subject and its
“inexhaustible wealth,” called number theory the
“queen of mathematics.”

Elementary number theory is the study of those
topics in number theory that utilize only the basic tech-
niques of ARITHMETIC and high-school mathematics in
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their solutions. For example, the classification of the
PYTHAGOREAN TRIPLES would be considered a problem
in elementary number theory, as would the solution of
many DIOPHANTINE EQUATIONs. (The use of the word
elementary here by no means implies that the level of
mathematical sophistication used is elementary.) ANA-
LYTIC NUMBER THEORY incorporates the notion of
LIMIT in the study of numbers, and algebraic number
theory extends the study of number theory to a general
study of ALGEBRAIC NUMBERs and new number systems
that include solutions to otherwise unsolvable algebraic
equations.

See also ABSTRACT ALGEBRA; CATALAN CONJEC-
TURE; COLLATZ’S CONJECTURE; EUCLID’S PROOF OF THE

INFINITUDE OF PRIMES; EUCLIDEAN ALGORITHM; FUN-
DAMENTAL THEOREM OF ARITHMETIC; PEANO’S POSTU-
LATES; PRIME; PRIME-NUMBER THEOREM.

numerical differentiation The DERIVATIVE of a
function f(x) can be well approximated as a “Newton
quotient”:

at least for small values of h. Any use of this formula to
approximate the value of a derivative is called numeri-
cal differentiation. For example, we can approximate
the derivative of f(x) = x2 at x = 7 simply as f ′(7) ≈ 

= 14.1.

Rewriting the formula for the Newton quotient
gives:

f (x + h) ≈ f(x) + hf ′(x)

If the derivative of the function is known, then this for-
mula can be used to approximate values of f. For exam-
ple, to estimate square roots, set f(x) = √

–
x to obtain:

Thus √
–
38, for example, is approximately √

–
36 + 

= 6 + ≈ 6.167.
The second derivative of a function is well

approximated by the quotient:

This follows using the approximation f ″(x) ≈

, with and 

f ′(x) ≈ .

See also NEWTON’S METHOD.

numerical integration According to the theory of
INTEGRAL CALCULUS, the numerical value of a definite
integral ∫b

a f(x)dx is determined by finding an antideriva-
tive F(x) to the integrand f(x) and then computing the
quantity F(b) – F(a). Although theoretically sound, it
is rare in real-world applications that such a proce-
dure can ever be completed. There are two possible
complications:

1. An antiderivative to the integrand cannot be found.

(Consider the integral ∫2
1 dx, for instance.)

2. The function f(x) might not be completely specified.
(In performing an experiment, one can only ever
record a finite number of data values, in which case
the values of a function f(x) are known only at a
finite number of points.)

Nonetheless, despite these limitations, scientists
and engineers often still require a numerical value for
the area under the curve y = f(x), at least to some speci-
fied degree of accuracy. Numerical integration is any
technique that allows one to find an approximate value
for a definite integral ∫b

a f(x)dx. There are two elemen-
tary methods currently in use:

1. Trapezoidal Rule (also known as the trapezium
rule): Divide the interval [a,b] into n + 1 equally
spaced points a = x0, x1,…xn–1, xn = b. For conve-
nience denote f(xi) by fi and let Pi denote the point
(xi, fi) on the curve above x = xi. The straight-line
segment connecting Pi to Pi+1 can be used as an
approximation for the curve y = f(x) between and xi
and xi+1. The area under this part of the curve is
thus approximately the area of a trapezoid of width 

h = , left edge of height fi and right edge of 

height fi+1. This area is given by: h(fi + fi+1). 
1–
2
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n
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Adding up the areas of all such trapezoids between a
and b gives the trapezoid rule:

Mathematicians have shown that the error in this 

approximation is close to , for some constant C.

Thus doubling the number of points used to make the
approximation increases the accuracy of the result by a
factor of 4.

To illustrate the trapezoid rule, we estimate
∫1
0 dx using n = 4. Here f(x) = and x0 = 0,

x1 = 0.25, x2 = 0.5, x3 = 0.75, x4 = 1 with h = 0.25.
We have:

f0 = 1

f1 = = 0.866

f2 = = 0.707

f3 = = 0.500

f4 = 0

Consequently:

(The true value of the integral is 2/3.)

2. Simpson’s Rule: While the trapezoidal rule uses
straight-line segments to approximate the curve,
Simpson’s rule uses the arcs of parabolas through
three points at a time: one through the points P0, P1,
and P2, the next through P2, P3, and P4, and so on.
(It is assumed that n is even for this method.) Writ-

ing the equations for each of these parabolic arcs
and summing the areas under each gives, after some
work, the rule:

Mathematicians have shown that the error in this 

approximation is close to for some constant C.

Thus, doubling the number of points used to make the
approximation increases the accuracy of the result by a
factor of 16.

To illustrate Simpson’s rule, we again estimate
∫ 1

0 dx using n = 4. We have:

If n is a multiple of 3, one can use arcs of cubic curves
to establish the rule:

This is sometimes called Simpson’s 3/8-rule.
These methods of approximation are incorrectly

attributed to English mathematics teacher THOMAS

SIMPSON (1710–61).
See also MONTE CARLO METHOD; NUMERICAL

DIFFERENTIATION.
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oblate/prolate A curved surface similar to a sphere
but lengthened or shortened in one direction is called a
spheroid. If the length of the diameter from pole to
pole is greater than the length of the diameter connect-
ing two opposite points on the equator, then the
spheroid is said to be oblate. If, on the other hand, the
polar diameter is less than the equatorial diameter, then
the spheroid is called prolate. The Earth, for example,
is not a perfect sphere but is an oblate spheroid.

See also EARTH; ELLIPSOID; SPHERE.

oblique This term is used in a number of geometric
settings to mean either “not at right angles” or “does
not contain a right angle.” For example, two intersect-
ing lines drawn in the plane are oblique if they meet at
an ANGLE different from 90°, or three lines meeting at a
point in three-dimensional space are oblique if they are
not mutually perpendicular. A single line drawn in the
plane is called an oblique line if it is neither horizontal
nor vertical, and an oblique coordinate system has axes
that are not at right angles.

Any angle that is not a multiple of 90° is called an
oblique angle. An oblique triangle is one that does not
contain a right angle.

An oblique cone is a cone with its vertex not
directly above the center of its base (and so the line
connecting the vertex to the center of the base is not at
right angles to the base). An oblique prism has lateral
edges that are not perpendicular to the base.

See also CARTESIAN COORDINATES; RIGHT ANGLE;
SKEW LINES.

obtuse angle An ANGLE between 90° and 180° is
called an obtuse angle. A TRIANGLE in which one of its
angles is obtuse is called an obtuse triangle. According
to the LAW OF COSINES, a triangle with side-lengths a, b,
and c, and corresponding angles A, B, C opposite those
sides, satisfies:

For the angle C to be obtuse, it must be the case that
cosC < 0, that is, a2 + b2 < c2. Thus a triangle a, b, c is
obtuse if one of the following inequalities holds: a2 + b2

< c2, c2 + a2 < b2 or b2 + c2 < a2.
An angle between 180° and 360° is called a reflex

angle. An angle of 180° degrees is a straight angle, and
one of 360° is called a full turn or a PERIGON.

See also ACUTE ANGLE; PYTHAGORAS’S THEOREM;
TRIANGLE.

obverse Changing the predicate B of a statement of
the form “all A are B” from positive to negative, or
vice verse, and negating the statement as a whole pro-
duces the obverse of the statement: “no A is not B.”
For example, the obverse of the statement “all men are
mortal” is “no man is immortal.” Euler diagrams show
that any statement of the this type is logically equiva-
lent to its obverse.

See also ARGUMENT.

cosC
a b c

ab
= + −2 2 2

2
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octant The xy-, yz-, and xz-planes in a three-dimen-
sional CARTESIAN COORDINATE system divide space
into eight regions called “octants.” The set of points
(x,y,z) satisfying x > 0, y > 0, and z > 0 constitute the
first or “positive” octant. The remaining octants are
labeled the second, third, and fourth octants counter-
clockwise around the positive z-axis, with the fifth,
sixth, seventh, and eighth octants underneath these
four, again in a counterclockwise sense, with the fifth
octant directly under the first.

The two-dimensional analog of an octant is a QUAD-
RANT. For n greater than three, the n-dimensional ana-
log is called an orthant. Points in the positive orthant
have all coordinates positive. Popular science fiction
novels often describe space as divided into quadrants.
This is the incorrect term for three-dimensional space.

An ANGLE of 45° is also sometimes called an octant.

odds If in a game of chance there are a outcomes
that are deemed favorable (thereby constituting a
desired EVENT E), and b outcomes that are unfavorable 

(not in E), then the odds in favor of E is the ratio , 

usually written a:b or “a to b”, and the odds against E 

is the ratio , written b:a or “b to a.”

For example, in casting a die, the odds in favor of
rolling a 2 are 1:5. There is just one favorable outcome,
namely a 2, and five unfavorable outcomes: {1,3,4,5,6}.
Odds are usually written in reduced form. For exam-
ple, if the odds in favor of an event are 12 to 4, one
typically writes 3:1 rather than 12:4.

Odds are closely connected to PROBABILITY compu-
tations. If the odds in favor of an event E are a to b,
then one is informed that a of a total of a + b possible
outcomes belong to the set E. Thus the probability of 

event E occurring is given by P(E) = , and that of 

it not occurring by P(not E) = . Conversely, if the 

probability of an event E is known, then the odds in
favor of E can be computed as a ratio of probabilities: 

, and the odds against as the 

inverse ratio of probabilities.
Odds are typically used at horse races—usually

“odds against”—to tell gamblers the payoffs on vari-

ous bets. For example, advertised odds of 5 to 3 on a
particular horse indicates that a $3 bet on that horse
will win $5 (plus the return of the original three dol-
lars) if that horse wins the race. It also tells the gam-
bler that this horse is believed to have only a 3/8
chance of winning.

Omar Khayyám (Umar al-Kh–ayamm–ı) (1048–1122)
Arab Algebra, Astronomy Born on May 18, 1048,
Persian scholar Omar Khayyám is remembered in
mathematics for his significant contributions to the
advancement of ALGEBRA. In his famous text, Treatise on
Demonstration of Problems of Algebra, Khayyám devel-
oped both geometric and algebraic rules for solving
QUADRATIC and CUBIC EQUATIONs, making clever use of
CONIC SECTIONS. He was the first mathematician to ever
conceive of a general theory for solving cubics and was
the first to recognize that ruler-and-compass construc-
tions alone would never suffice as a geometric approach
for this goal. Outside of mathematics, Omar Khayyám is
best known for his poems, which were freely translated
by Edward Fitzgerald in 1859 in the text The Rubáiyát
of Omar Khayyám.

Khayyám studied philosophy and mathematics at
his birthplace of Nishapur, Persia (now Iran), and
quickly became an expert scholar. By age 25 he had
written three significant texts: one on music, one on
arithmetic, and one a first text on the topic of algebra.
In 1073 Khayyám moved to the city of Esfah–an to help
with the construction of an observatory and to head a
team of scientists studying astronomy. Over the course
of his 18 years at the observatory Khayyám completed
extraordinarily accurate tables of astronomical data and
tables of trigonometric values. He also computed the
length of the year to be 365.24219858156 days, which,
at the time, was correct to the sixth decimal place. (The
length of a year is changing over time. Today its value is
365.242190 days. The value of the sixth decimal place
changes over the course of a century.)

Later in life Khayyám moved to the cultural center of
Merv (now Mary in Turkmenistan) and returned to his
interests in algebra. He wrote his famous treatise on the
topic while there. Khayyám noted that the great Greek
scholars of antiquity made no serious study of the theory
of cubic equations and decided to take it upon himself to
develop this work appropriately. Khayyám created inge-
nious geometric methods for finding cubic equations, but
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never, as he hoped he would, found workable algebraic
techniques. Nonetheless, Khayyám did manage to classify
all cubic equations and was the first to recognize that
such equations might possess two different solutions. (It
is not clear whether or not Khayyám understood that
cubics might, in fact, possess three distinct solutions.)

Much of Khayyám’s work on NUMBER THEORY and
methods of numerical computation has been lost. His
development of PASCAL’S TRIANGLE, as it is called today,
and its use in the BINOMIAL THEOREM, for instance, are
only mentioned in passing in his famous algebraic work.
Khayyám also wrote about the founding principles of
geometry. He tried to establish that the famous PARALLEL

POSTULATE is a consequence of other postulates (failing,
of course), but did discover along the way a number of
significant results about non-Euclidean figures. He is
best remembered for his contributions to algebra.

Khayyám died in the city of Nishapur, Persia (now
Iran), ca. December 4, 1122.

operation Any mechanistic procedure on the ele-
ments of a set that produces a unique result for those
elements is called an operation on that set. For exam-
ple, addition is an operation on the set of integers: for
any collection of integers there is a unique value called
their sum. The act of finding the union of two sets is an
operation on the collection of all sets.

A UNARY OPERATION is a rule that associates a
result with each element of a set S. The act of squaring
a number, for instance, is a unary operation on the set
of real numbers. A BINARY OPERATION provides a result
for every two elements of a set S. The addition of two
integers is a binary operation on the set of all integers.

In ARITHMETIC, addition, subtraction, multiplica-
tion, division, and the extraction of square roots are
called elementary operations. On the other hand, the
rule that associates with each natural number the sum
of its digits, for instance, is not elementary.

A symbol used to denote an operation is sometimes
called an operator. For instance, +, –, ×, ÷,√

–
, and log10

are operators.

operations research (operational research, OR) The
study of the role of mathematics and STATISTICS in solv-
ing problems that arise in business, commerce, and the
production of goods and services is called operations
research. Often an OPTIMIZATION problem will arise in

any attempt to minimize costs or to maximize profits,
and techniques of LINEAR PROGRAMMING may be
required. The problem of scheduling interrelated tasks
can be analyzed via GRAPH THEORY, and the search for
a CRITICAL PATH in a schematic diagram can lead to
improved business practices. The TRAVELING-SALESMAN

PROBLEM also illustrates the role of graph theory in
determining the efficient delivery of goods. Problems
about production quality and reliability rely heavily on
techniques of statistical inference, and the mathematics
of GAME THEORY has helped businesses devise market
strategies and mutually beneficial trade practices.

opposite A side of a TRIANGLE is said to be opposite
a given angle in the triangle if that side is not one of the
arms forming the angle. For example, the side opposite
the largest angle in a triangle is the longest side of the
triangle. (This follows from the LAW OF COSINES.)

Two lines intersecting at a point (often called the
vertex) form four angles. Any pair of angles sharing this
vertex, but having no arm in common, is called a pair of
opposite or vertical angles. They have the same measure.

If a geometric figure has a center of symmetry, then
two sides or two angles are said to be opposite if they
are joined by a line through this center.

optimization The process of finding the best possi-
ble solution to a problem is called optimization. In
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mathematics this usually requires finding the maxi-
mum or minimum value of a function, perhaps sub-
ject to some constraints. The techniques of CALCULUS

are immensely successful in achieving such goals. (See
MAXIMUM/MINIMUM.)

Some optimization problems can be solved geomet-
rically. Consider, for instance, the challenge of finding
the shortest path from a point A to a point B that “vis-
its” a straight wall. Noticing that it suffices to consider
only paths composed of two straight-line segments, we
ask which such pair of segments yields the shortest
journey.

Notice that each path from A to B via the wall is
matched by a path of the same length from A to the same
point of contact on the wall, and then to the mirror
image B′ of B on the other side of the wall. As the
straight path connecting A to B′ (making equal angles on
either side of the wall) is the shortest route from A to B′,
it follows that the shortest route from A to B via the wall
is the one that bounces off the wall at equal angles. Alter-
natively, one can solve this problem by drawing ELLIPSEs
about the points A and B with A and B as foci. The first
ellipse that touches the wall gives the location on the wall
that yields the shortest path from A to B via the wall.

That these two solutions solve the same problem
establishes the well-known reflection property of an
ellipse: as any path from one focus A of an ellipse to a
point on the curve of the ellipse and back to the second
focus B is a solution to the path-walking problem (with
the straight wall being the tangent line to the ellipse), it
follows that this path bounces off the side of the ellipse
at equal angles. Consequently, a beam of light emitted
from one focus A of an ellipse follows a path that
reflects off the side of the ellipse so as to arrive at the
second focus B.

SNELL’S LAW of refraction can also be viewed as the
solution to an optimization problem.

See also ISOSCELES TRIANGLE; LINEAR PROGRAM-
MING; OPERATIONS RESEARCH; PEDAL TRIANGLE; STEINER

POINT.

orbit See DYNAMICAL SYSTEM.

ordered set A set S is said to be partially ordered if it
comes equipped with a relation, usually denoted ≤, that
allows one to compare the size or the relative positions

of elements in the set. The relation ≤ must satisfy the
following three conditions:

1. Reflexivity: a ≤ a for all a ∈ S.
2. Antisymmetry: If a ≤ b and b ≤ a, then a = b.
3. Weak Transitivity: If a ≤ b and b ≤ c, then a ≤ c.

For example, interpreting ≤ as “less than or equal to”
provides a partial order on the set of all real numbers.
For instance, 4.6 ≤ √

–
30 and –1 ≤ 0. The set of all sub-

sets of the set {A,B,C,D,E}, for example, is partially
ordered if one interprets ≤ to mean “is a subset of.” In
this case, for instance, {B,D} ≤ {A,B,D,} and Ø ≤ {C},
but {A,B,C} ≤/ {B,C,D,E}. The set of natural numbers
may also be partially ordered by interpreting ≤ as “is a
factor of.” For example, in this setting we have 3 ≤ 6
and 4 ≤ 12, but 5 ≤/ 12. Notice in these last two exam-
ples that not all elements in the set can be compared.

A set is called totally ordered if a fourth condition
holds:

4. Trichotomy: For all a,b ∈ S either a ≤ b or b ≤ a holds.
(If both hold, then a = b.)

The set of all real numbers, or the set of all natural
numbers, for example, are both totally ordered under
the “less than or equal to” relation. The natural num-
bers, however, are not totally ordered under the “is a
factor of” relation. Neither is the set of all subsets of a
given set.

Sometimes a totally ordered set is called a chain or
a sequence, since all elements can be arranged on a
line, with each element on the line in relation ≤ to each
element to its right.

Often it is convenient to write b ≥ a to mean a ≤ b
and a < b to mean a ≤ b and a ≠ b. The statement b > a
is interpreted similarly. For instance, in the example of
subsets, we have {A} < {A,B} and {C,D} ≥ {D,C}. (In
fact, {C,D} = {D,C}.)

Given two elements a and b of a set S with partial
order relation ≤, we say that an element u of S is an
upper bound for a and b if a ≤ u and b ≤ u. We call u a
least upper bound if u is smaller than any other upper
bound for a and b; that is, if a ≤ v and b ≤ v for some
other element v, then u ≤ v. For example, in the exam-
ple of subsets, the least upper bound of {A,B} and {B,C}
exists and equals their union {A,B,C}. Similarly, an ele-
ment l is a lower bound for a and b if l ≤ a and l ≤ b,
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and it is a greatest lower bound if l is larger than any
other lower bound for a and b. In our example, the
greatest lower bound of {A,B} and {B,C} is their inter-
section {B}. A partially ordered set is called a lattice if
every pair of elements has a least upper bound and a
greatest lower bound. The existence of unions and
intersections shows that the set of all subsets of any
given set is a lattice. The set of natural numbers under
the relation “is a factor of” is also a lattice: the least
upper bound of any two natural numbers is their low-
est COMMON MULTIPLE, and the greatest lower bound is
their GREATEST COMMON FACTOR. Many results from
NUMBER THEORY can be interpreted as statements
about this order relation of the natural numbers.

Any totally ordered set is a lattice. For example,
the least upper bound of any two real numbers a and b
is simply the one that is the larger of the two, and their
greatest lower bound is the smaller number.

See also BOUND; ORDER PROPERTIES.

order of a matrix (dimension of a matrix) An m × n
MATRIX, that is, a matrix with m rows and n columns, is
said to be of order m × n (read as “m by n”). An n × n
matrix is sometimes called a square matrix of order n.

In GROUP THEORY an element g of a GROUP is said
to be of order n if n is the first positive integer such that
gn = e, assuming there is such an integer. (Here e is the
IDENTITY ELEMENT of the group.) If, in some mathemat-
ical work, one is thinking of matrices as elements of a
group, one usually reserves the word order for a group
theoretic meaning, and uses the word dimension to
describe the size of the matrix. For example, the matrix

is a square matrix of dimension 3 and order 2, since
A2 = I.

See also IDENTITY MATRIX.

order of magnitude See SCIENTIFIC NOTATION.

order of operation (operational precedence) In eval-
uating arithmetic computations involving more than

one type of operation, mathematicians have assigned an
order of precedence as to which operations are exer-
cised first.

It is agreed that any computation involving ADDI-
TION alone is computed in the order as read from left
to right. For instance, 8 + 5 + 2 is computed as 13 + 2,
which is 15. (Although the ASSOCIATIVE property of
addition shows that the order of computation in this
case does not matter.) As SUBTRACTION can be viewed
as the addition of negative quantities, any computation
involving both addition and subtraction is thus com-
puted in the same manner, as read from left to right.
For instance, 2 – 5 + 7 is computed as (–3) + 7, which
is 4. (Again, the associative property shows that fol-
lowing this convention is not vital.)

MULTIPLICATION can be viewed as “repeated addi-
tion” and so, in some sense, is a more potent operation
than addition and subtraction. It is given precedence
over these operations. DIVISION, which can be viewed
as multiplication by RECIPROCAL quantities, is given the
same status. Thus given any computation involving all
four operations, one is expected to compute all multi-
plications and divisions that appear first (read in a left-
to-right manner) and all additions and subtractions
second. For instance, one computes:

2 + 4 × 3 ÷ 6 – 3 × 3 + 5

as 2 + 12 ÷ 6 – 9 + 5, which equals 2 + 2 – 9 + 5, which
is zero. (Reading strictly from left to right produces the
incorrect answer of 5.)

As EXPONENTs can be viewed as an act of perform-
ing repeated multiplications, all powers that appear in
a computation are given greater precedence over multi-
plications and divisions, and so must be computed
first. For instance, 2 + 62 ÷ 9 is computed as 2 + 36 ÷ 9
= 2 + 4 = 6.

Often parentheses or BRACKETS are introduced to
change the order of operations in a computation. Math-
ematicians follow the convention that if parentheses are
present, one must compute the quantities inside the
parentheses first (using the above rules). If multiple sets
of parentheses are present, this requires evaluating the
innermost parentheses first. For instance, we compute:

2 × (3 + (32 + 6) × 2) + 1

as

A =














0 1 0

1 0 0

0 0 1
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2 × (3 + (32 + 6) × 2) + 1 = 2 × (3 + (9 + 6) × 2) + 1
= 2 × (3 + 15 × 2) + 1
= 2 × (3 + 30) + 1
= 2 × 33 + 1
= 66 + 1
= 67

Often schoolchildren are taught a mnemonic device
such as “Please Excuse My Dear Aunt Sally” to recall
the order of operations: parentheses, exponents, multi-
plication, division, addition, subtraction.

See also EXPANDING BRACKETS.

order properties The REAL NUMBERS satisfy a num-
ber of basic properties with respect to the order rela-
tion <, meaning strictly less than. We have:

1. Trichotomy Law: For any two real numbers a and
b, exactly one of the following holds: a < b, b < a,
or a = b

2. Transitive Law: If a < b and b < c, then a < c.
3. Addition Law: If a < b, then a + c < b + c for real

number c.
4. Multiplication Law: If a < b and c > 0, then ac < bc.
5. Completeness Law: Any set of real numbers that is

bounded above has a least upper BOUND.

The first two properties are standard features of an
ORDERED SET, and the next two properties explain the
extent to which addition and multiplication respect the
order relation. The final statement is a key property of
the real number system. In their attempts to make the
theory of CALCULUS mathematically rigorous and pre-
cise, mathematicians came to realize that one had to be
sure that no numbers are missing from the real number
line. (The INTERMEDIATE-VALUE THEOREM, for instance,
relies on this.) The fifth law above is designed to ensure
this. With his construction of a DEDEKIND CUT, Ger-
man mathematician JULIUS WILHELM RICHARD

DEDEKIND (1831–1916) was able to prove that the
real-number system does indeed satisfy this fifth prop-
erty. (The set of rational numbers, on the other hand,
satisfies the first four properties but not the fifth, and
so is not complete. Although, for example, every ratio-
nal number x that satisfies x2 ≤ 2 is smaller than 3,
there is no smallest rational number that provides a
bound for all rationals of this type.)

From the five basic properties listed above, other
familiar properties of the real numbers follow. For

instance, one can show that if a < b, then –a > –b. (Use
property 3 adding –a and then –b to both sides.) More
generally, we have that if a < b and c < 0, then ac > bc.
From this and property 4, it follows that the square of
any nonzero number is positive: a2 > 0 for all a. This
final observation also shows that there is no analogous
order relation for the COMPLEX NUMBERS:

If the complex numbers were ordered, then we
would have i2 > 0, yielding the absurd state-
ment –1 > 0.

It is often convenient to write a ≤ b to mean “less
than or possibly equal to.” For instance, 3 ≤ 5 and
12 ≤ 12. Often the order properties of the real numbers
are phrased in terms of this version of the relation.

See also AXIOM OF CHOICE; WELL-ORDERED SET.

ordinal numbers In common usage, the adjectives
that denote the position of individual objects in a
sequence, such as a “first,” “second,” or “107th,” are
called ordinal numbers. In the late 1800s German
mathematician GEORG CANTOR (1845–1918) noted
that the natural numbers 0, 1, 2,… satisfy the follow-
ing simple order property:

If one writes down any finite number of natural
numbers, then there is always a unique earliest
natural number that was omitted from the list.

For example, in the list {0,1,4,7} the number 2 is the
first natural number missing from this list. Let us use
the notation a,b,c,…| for the first natural number miss-
ing from the collection a,b,c, … For example, we have:

0,1,4,7 | = 2
0,1,2,3,4 | = 5

0 | = 1

Cantor considered the possibility of allowing the
lists of natural numbers used to be infinite. He defined
a quantity ω (omega) as:

ω = 0,1,2,3,…|

that is, ω is the earliest number greater than any finite
natural number. It follows then that 0,1,2,3,…,ω | =
ω + 1, the first number after ω, and 0,1,2,3,…,ω,
ω + 1| = ω + 2, and so forth. One can continue and
establish that
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0,1,2,3,…,ω,ω + 1, ω + 2,…| = ω + ω = ω × 2

and

0,1,2,3,…,ω,ω + 1,…,ω + ω,ω + ω + 1,…| = ω + ω + ω
= ω × 3

and, in continuing this process:

In this way, Cantor managed to develop an extraordi-
nary new type of arithmetic that extends the set of nat-
ural numbers to a system that includes transfinite
numbers. Since these quantities were derived from the
order property of natural numbers, he called these new
numbers ordinal numbers. Cantor developed clear and
precise rules for doing arithmetic with these numbers,
including adding, multiplying, and raising ordinal num-
bers to powers of each other. Cantor noted that the

ordinal number is the first ordinal number that
cannot be obtained from earlier ordinal numbers by a
finite number of additions, multiplications, and expo-
nentiations. He called this number ε0.

Following the approach taken in the study of CAR-
DINALITY, Cantor also showed that the ordinal num-
bers can alternatively be constructed as follows. First
deem two sets, each of whose elements are ordered, to
be of the same ordinal number if there is a one-to-one
correspondence between the elements of the sets that
preserves the order of those elements. (For example, the
set of negative whole numbers and the set of positive
whole numbers have the same ordinal number via the
correspondence n ↔ – n.) Then ω is defined to be the
ordinal number of the set of natural numbers.

Oresme, Nicole (ca. 1323–1382) French Coordinate
geometry Born ca. 1323 in Allemagne, France, (the
exact birth date is not known) medieval scholar Nicole
Oresme is best remembered in mathematics for studies

of motion, and as the first scholar to depict a relation-
ship between two variables as a GRAPH OF A FUNCTION.

Oresme studied ARISTOTLE’s theory of motion, kine-
matics, at the University of Paris under the guidance of
philosopher and logician Jean Buridan. He received an
arts degree in the early 1340s and later went on to
obtain a master’s degree in theology at the same institu-
tion in 1355. Although Oresme followed a career path
dedicated to work in a Catholic order (he was later
appointed bishop of Lisieux), Oresme continued to pur-
sue an active interest in the work of Aristotle throughout
his life and published important works that influenced
scholarly thinking on this subject. Oresme found philo-
sophical difficulties with Aristotle’s proposed definitions
of time and space, which themselves were dependent on
the notion of movement, and proposed alternative defi-
nitions independent of this concept.

Perhaps Oresme’s most important work is De con-
figurationibus qualitatum et motuum (The geometry of
qualities and motion), in which he describes, for the first
time, a general procedure for representing relationships
between variables pictorially. Moreover, he realized that
the area under the graph of a uniformly varying quantity
represents the total change of the quantity. Oresme had
consequently invented a type of coordinate geometry
and made first steps toward work in integral CALCULUS.
(In this same work, Oresme also proved that the dis-
tance traveled over a fixed time by an object moving
with constant acceleration is the same as for an object
moving at uniform velocity equal to the speed of the first
object at the midpoint of the time period. This is a
remarkable achievement given that the tools and tech-
niques of calculus were not available to him at the time.)

Oresme also studied infinite SERIES, often using
ingenious graphical tricks to establish results. The stan-
dard proof of the divergence of the HARMONIC SERIES

(by grouping the terms of the series and comparing
with sums of one-half) is due to him.

His studies on the motions of the planets also led
him to study proportions and RATIONAL NUMBERS.
Oresme was the first scholar in the history of mathe-
matics to consider, and work with, fractional expo-
nents. Like the scholars of antiquity Oresme sought for
harmony in the universe. He proposed, for instance,
that the ratio of the periods of any two heavenly bodies
will always have a rational value. (This is not the case.)

Oresme died in Lisieux, France, in 1382. The exact
death date is not known.
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orientation In mathematics, the term orientation is
used to refer to a sense of direction or rotation. For
example, a line that is labeled with a direction is said to
be oriented, and a closed loop drawn in the plane can
be assigned either a clockwise or counterclockwise ori-
entation. In two- and three-dimensional space, coordi-
nate axes are said to be either positively or negatively
oriented (and are called RIGHT-HANDED/LEFT-HANDED

SYSTEMs), and a surface, such as a SPHERE for example,
is said to be orientable, since at every location on the
surface there is, loosely speaking, a well-defined notion
of “up.” (For example, as inhabitants of the surface of
the Earth we define “up” to the direction pointing
away from the center of the Earth.) Not all surfaces are
orientable. The MÖBIUS BAND, for example, is a surface
that cannot be oriented.

orthogonal (perpendicular) This term is used in any
setting to describe two geometric constructs that meet
at right angles. For example, two curves, or straight
lines, are orthogonal if they intersect at right angles,
that is, the angle between the two TANGENTs to the
curves at the point of intersection is 90°. Two VECTORs
are orthogonal if the angle between them is 90° (and
consequently their DOT PRODUCT is zero). Two surfaces
can also be said to be orthogonal. For example, a plane
passing through the center of a sphere intersects the
surface of the sphere orthogonally—the tangent plane
to the sphere at any point of intersection is perpendicu-
lar to the given plane.

The term orthogonal is also used in some general-
ized settings. For example, two functions f and g are
said to be orthogonal over the interval [a,b] if the inte-
gral ∫b

a f(x)g(x)dx is zero. (The dot product a · b of two
vectors a = < a1, a2,…, an > and b = < b1, b2,…, bn > is
the sum of the vector components multiplied together:
a · b = a1b1 + a2b2 +…+ anbn. The above integral is a
generalized sum of the components of the functions
multiplied together.) The functions sin(x) and cos(x),
for example, are orthogonal over the interval [0, 2π].
This is an important observation for the development
of FOURIER SERIES.

A MATRIX is said to be orthogonal if its rows repre-
sent vectors that, taken any two at a time, have dot
product equal to zero.

See also NORMAL TO A CURVE; NORMAL TO A

PLANE; NORMAL TO A SURFACE.

Osborne’s rule Mathematicians have observed that
each trigonometric identity yields an identity for
HYPERBOLIC FUNCTIONS if we simply:

1. Replace each trigonometric function with its hyper-
bolic analog.

2. Change the sign of any term involving the product
of two hyperbolic sines (sinh).

This principle is called Osborne’s rule. For example,
from the trigonometric identity cos(x + y) = cosx cosy
– sinx siny, we obtain the hyperbolic identity
cosh(x + y) = cosh x coshy + sinh x sinhy. From 1 + 

tan2x = sec2x, which is , follows 

, or 1 – tanh2x = sech2x. This 

principle works because, by EULER’S FORMULA and
the definition of the hyperbolic functions, cosx = 

= cosh(ix) and sinx = = –isinh(ix).

Thus any identity that holds for sines and cosines will
also hold for cosh and sinh, except a factor of i2 = –1
will alter the sign of a product of two hyperbolic
sines.

Oughtred, William (1574–1660) British Logarithms
Born March 5, 1574, English mathematician William
Oughtred is best remembered for his work in develop-
ing and designing the calculating device known as a
SLIDE RULE.

At the turn of the 17th century, scientists were
excited by the recent discovery of LOGARITHMs as an
aid for converting tedious computations of multiplica-
tion and division into simpler operations of addition
and subtraction. In 1620 English mathematician
Edmund Gunter plotted a LOGARITHMIC SCALE along a
2-ft-long ruler and showed how a pair of calipers could
be used to physically add and subtract lengths, and
therefore provide, for the first time, a purely mechanical
means of computing products and quotients. Inspired
by the work of Gunter, Oughtred devised a simpler
device consisting of two sliding rulers that accomplished
the same feat. In 1632 he published Circles of Propor-
tion and the Horizontal Instrument, a short book
describing slide rules (and sundials). Oughtred’s slide
rule became the modern-day equivalent of today’s
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pocket calculator for scientists and scholars for cen-
turies to come.

Oughtred was also an accomplished scholar in sev-
eral branches of mathematics. In 1631 he published an
influential text, Clavis mathematicae (The key to math-
ematics), in which he described the HINDU-ARABIC

NUMERALS and DECIMAL REPRESENTATION, and also
outlined concepts in algebra. (At that time, Roman
numerals were still in use.) He introduced the symbols

× for multiplication and :: for proportion. In 1657
Oughtred also wrote one of the first comprehensive
texts on TRIGONOMETRY, introducing concise notation
for the topic for the first time. He also studied SPHERI-
CAL GEOMETRY and astronomy.

Surprisingly, Oughtred received very little formal
education in the topic of mathematics. He received a
master’s degree from King’s College, Cambridge, in
1600, and was ordained an Episcopal minister in 1603.
In 1604 he became the vicar of Shalford and, later, the
rector of Albury, Surrey.

Oughtred offered mathematics instruction to a
number of private students who came to his house and
would live there free of charge. The famous mathemati-
cian JOHN WALLIS (1616–1703), for instance, was one
of his pupils. Oughtred died in Albury, England, on
June 30, 1660.

outlier An observation that is deemed unusual, and
possibly erroneous because it is widely separated from
the main cluster of points in the sample, is called an
outlier. For example, in the set {4, 8, 3, 6, 5, 6, 903},
the observation 903 is an outlier. Outliers may be cor-
rect observations reflecting some abnormality in the
system being studied, or they might be the result of an
error in measurement or recording. For example, 903
could be a mistyping of 9, 3.

See also DATA; STATISTICS: DESCRIPTIVE.

oval Derived from the Latin word ovus for “egg,”
the term oval is a generic name for any curved figure
that resembles an elongated circle. There is no precise
mathematical definition for this term.

An ELLIPSE is considered an oval. It is defined to be
the set of points P whose sum of distances from two
fixed points A and B in the plane is constant: |AP| +
|BP| = k. The set of all points P that have constant
product from two fixed points A and B, |AP| × |BP| = k,
also describe curves that can look like ovals. These
curves were first studied by 17th-century Italian
astronomer Giovanni Domenico Cassini (1625–1712)
and are today called the ovals of Cassini.
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pairwise disjoint (independent, mutually exclusive)
A collection of sets A, B, C, … is said to be pairwise
disjoint if the intersection of any two sets from the col-
lection is empty. For example, the sets {1,2}, {3,4},
{5,6}, … are pairwise disjoint, as are the three sets:

A = the set of all even natural numbers
B = the set of all natural numbers 1 greater than a

power of 100
C = the set of all prime numbers 1 less than a multiple

of 4

A collection of pairwise disjoint subsets A, B, C,
… of a larger set S is said to be exhaustive if every ele-
ment of S is listed as an element of (just one) specified
subset. In this case we also say that the sets A, B, C, …
partition the set S. The first example presented above,
for instance, is an exhaustive subset of the natural
numbers and so partitions the positive whole numbers.
The second example, however, does not. (The number
13, for instance, is not a member of any of the speci-
fied subsets.)

Given a partition A, B, C, … of a set S, two ele-
ments a and b of S are said to be equivalent, with
respect to that partition, denoted a ~ b, if they belong
to the same subset specified by the partition. For exam-
ple, the days of the year are partitioned by seven dis-
joint sets given by the weekday names of the days. For
instance, August 1, 1966, and June 30, 2003, are
equivalent in this context since they both belong to the
subset called “Monday.”

The notion of equivalence satisfies three key
properties:

i. Reflexivity: any element a is equivalent to itself: a ~ a
ii. Symmetry: if a is equivalent to b, then b is equiva-

lent to a: a ~ b ⇒ b ~ a
iii. Transitivity: if a is equivalent to b and b is equivalent

to c, then a is equivalent to c: a ~ b, b ~ c ⇒ a ~ c

In general, any relationship “~” defined on ele-
ments of a set S satisfying the three properties listed
above is called an equivalence relation on S. For exam-
ple, deeming two words of the English language to be
equivalent if they each possess the same number of
vowels is an equivalence relation on the set of all
words. It turns out that any equivalent relation, no
matter how it is defined, arises from a partition of the
set on which it is based. For example, the set of all
words is partitioned by the sets W0,W1,W2, … where
Wk is the set of all words with precisely k vowels.

See also DAYS-OF-THE-WEEK FORMULA; SET THEORY.

Pappus of Alexandria (ca. 300–350 C.E.) Greek Geo-
metry Born in Alexandria, Egypt, Pappus is considered
today to be the last great geometer of antiquity to work
in the Greek way of thought and scholarly tradition. He
wrote commentaries on the works of EUCLID and
CLAUDIUS PTOLEMY, but is most notably remembered
for his treatise Synagoge (Collections), of which volumes
III–VII of the original eight have survived intact today.
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These texts contain detailed accounts of much of Greek
mathematics, some of which would have otherwise been
lost to us.

Extraordinarily little is known of Pappus’s life.
Many historians suspect that he lived in Alexandria
all his life and that he may have headed his own
school there.

Pappus’s famous piece, Synagoge, was written as a
general guide to all of Greek geometry, more specifi-
cally, a companion guide to read alongside the Greek
original works. As such, books I and II cover basic
arithmetic and methods of expressing large numbers.
Book III examines the ARITHMETIC MEAN, GEOMETRIC

MEAN, and HARMONIC MEAN of proportions, properties
of basic geometry, and the representation of these
means in geometry, as well as some consideration of
the PLATONIC SOLIDS. Book IV examines special curves,
including the SPIRAL OF ARCHIMEDES, and the problem
of TRISECTING AN ANGLE.

In book V Pappus presents a mathematical analysis
of the structure of honeycombs, showing that the
hexagonal structure uses the least amount of perimeter
to partition the plane. He also examines POLYHEDRA.
Book VI explores the topic of astronomy, chiefly as a
review of the works of Theodosius, Autolycus, Aris-
tarchus, and Euclid on the topic as a means to correct
common misinterpretations.

In book VII the following problem, today known
as Pappus’s problem, appears:

Given four lines in the plane, find the locus of
points P such that the proportion of the prod-
uct of the distances of P from any two lines to
the product of distances to the remaining two
lines is constant.

Pappus shows that the resulting curve is always a
CONIC SECTION. He also generalizes the problem to
consider the case of greater than four lines in the plane.
Much of the geometric work of the French mathemati-
cian RENÉ DESCARTES (1596–1650) was inspired by
this problem.

Book VIII of Synagoge deals with mechanics. It
begins with a written definition of the CENTER OF

GRAVITY of a figure (Pappus is the only Greek scholar
to have ever provided a definition of this concept) and
discusses a number of geometric results that employ the
notion. He also describes the principles of levers, pul-
leys, wedges, axels, and of the screw.

Pappus wrote Synagoge partly as an attempt to
revive fervent interest in classical Greek mathematics
and the style of mathematical research they conducted.
Unfortunately, this did not occur. Pappus’s work,
nonetheless, greatly influenced the course of thinking in
the development of projective geometry one millennium
later. Many of his geometric results can be best stated
and understood within this setting.

Pappus’s theorems Greek mathematician PAPPUS OF

ALEXANDRIA (ca. 320 C.E.) established two fundamen-
tal results about the surface area and the volume of a
SOLID OF REVOLUTION.

Consider the solid of revolution formed by
revolving a curve in the plane about a line that
does not intersect the curve. Then the surface
area of that solid is equal to the product of the
length of the curve and the distance the cen-
troid (CENTER OF GRAVITY) of the curve trav-
eled about the line of revolution. The volume
of the solid is equal to the product of the area
bounded by the curve (or the area between the
curve and the line of revolution) and the dis-
tance traveled by the centroid of the curve.

These results can be proved by approximating the
curve as a series of straight line segments, establishing
the claim for this polygonal path, and then verifying
that the result remains valid as one works with finer
and finer approximations of the curve. This is a process
that involves a LIMIT. It is remarkable that Pappus was
able to establish these results before the advent of CAL-
CULUS some 1,350 years later.

In the study of PROJECTIVE GEOMETRY, the follow-
ing result is also attributed to Pappus:

Consider a hexagon ABCDEF in the plane.
This hexagon may be of any shape and may
even self-intersect. Suppose the points A, C,
and E lie on one straight line, and the points B,
D, and F lie on another. For each of the three
pairs of opposite sides of the hexagon, find the
location at which these sides (if extended)
intersect. Then these three points of intersec-
tion themselves lie on a straight line.

BLAISE PASCAL (1623–62) later extended this
result to prove that if a hexagon has vertices lying on
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any CONIC SECTION, then the three points of intersec-
tion of opposite pairs of sides lie on a straight line. (A
pair of two straight lines can be thought of as a degen-
erate HYPERBOLA.)

parabola As one of the three CONIC SECTIONS, a
parabola is the plane curve consisting of all points P
that are equally distant from a given fixed point F, and
a given fixed line L. The fixed point is called the focus
of the parabola, and the fixed line its directrix. A
parabola also arises as the curve produced by the inter-
section of a plane through a right circular CONE held
parallel to the slant side of the cone.

The equation of a parabola can be found by intro-
ducing a coordinate system in which the focus is the
point F = (0,a), for some positive number a, and the
directrix is the horizontal line y = –a. If P = (x,y) is an
arbitrary point on the parabola, then the DISTANCE FOR-
MULA describes the defining condition as =
y + a. Squaring and simplifying yields the equation:

Conversely, reversing these steps shows that any
equation of the form y = A(x – p)2 + q is the equation 

of a parabola with focus F = (p,q + ) and directrix 

y = q – . Thus the graph of any quadratic equation 

is a parabola.
The reflection property of a parabola states that

any incoming ray of light perpendicular to the directrix
will be reflected directly to the focus F. On the diagram
above right, this means that the angles to the tangent
line to the curve A and B are equal. (This can be proved
with CALCULUS by noting that, at the point P = (x,y), the 

slope of the tangent line to the parabola y = x2 is 

m1 = , whereas the slope of the line connecting the 

point Q to F, is m2 = – . Since m1m2 = –1, these lines 

are perpendicular. This shows that the tangent line
bisects the isosceles triangle FPQ, yielding that angles
A and B are equal.) Satellite dishes and reflecting tele-
scopes use dishes with parabolic cross-sections so as to

focus parallel rays of light to a fixed point, and con-
versely, search-light reflectors and automobile headlight
reflectors, for example, are parabolic: all rays from a
bulb positioned at the focus are reflected parallel to the
axis of the parabola. (See PARABOLOID.)

Parabolas appear in the folding of a thin sheet of
paper. Draw a dark straight line on the sheet—this will
be the directrix of the parabola—and a dot not on the
line, the focus. Fold the dot onto the line and crease the
paper. Open up the fold and do this again, this time
folding the dot to a different point on the line. As you
do this many times, the shape of a parabola emerges
along the side of all the creases.

A parabola is said to have ECCENTRICITY e equal to
1. The ratio of the distance of a point P on the curve
from a fixed point (the focus) to its distance from a
fixed line (the directrix) is always 1.

See also APOLLONIUS’S CIRCLE; ELLIPSE; HYPERBOLA.

paraboloid The SOLID OF REVOLUTION obtained by
rotating a PARABOLA about its axis is called a
paraboloid. The points on its surface satisfy an equa-
tion of the form z = b(x2 + y2), where b is a constant,
and each horizontal cross-section, or each CONTOUR

LINE, of the solid is a circle. The shape of the figure
resembles a bowl.

Techniques of INTEGRAL CALCULUS show that the
volume of a section of the solid, up to a height h, is 

given by V = π a2h, where a is the radius of the 

circular cross-section at height h. It’s surface area is 

.

Each vertical cross-section of the paraboloid is,
of course, a parabola. The common focus of these
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parabolas is called the focus of the paraboloid. The
reflection property of a parabola shows that light
rays and beams of sound emitted from the focus of a
parabola are reflected out of the paraboloid as a par-
allel beam. Reflectors in automobile headlights, for
example, are parabolic. Conversely, a parallel beam
received by a paraboloid reflector is converged into
its focus. Satellite dishes and reflecting telescopes use
parabolic reflectors.

An elliptic paraboloid has horizontal cross-sec-
tions that are ELLIPSEs and is given by the equation z =
ax2 + by2, where a and b are constants. A hyperbolic
paraboloid (also called a saddle surface) satisfies z =
ax2 – by2. It has horizontal cross-sections that are
HYPERBOLAs, and indeed resembles the shape of a
horse saddle.

See also ELLIPSOID; HYPERBOLOID.

paradox A statement that seems contradictory or
counter to common sense is called a paradox. Some
paradoxes in mathematics arise as logical conse-
quences of seemingly plausible premises, such as the
Banach-Tarski paradox arising from the study of
AREA, BERTRAND’S PARADOX, and RUSSELL’S PARADOX.
(The appearance of these particular paradoxes caused
mathematicians to reassess the basic foundations of
mathematics.) Other paradoxes can be simple self-con-
tradictory statements. For example, it is said that
Socrates once reported, “One thing I know is that I
know nothing,” and George Orwell once wrote, “Free-
dom is slavery.” Both assertions have a flavor similar
to the LIAR’S PARADOX.

Other famous paradoxes include:

Grelling’s Paradox
Some words in the English language aptly describe
themselves. For example, pentasyllabic, meaning “hav-
ing five syllables”, is indeed pentasyllabic. Other words
are not self-descriptive: for example, monosyllabic, edi-
ble, and tangible. Define a new word heterological to
mean “a word that does not describe itself.” Now ask,
“Is heterological heterological?”

Berry’s Paradox
The number one million, one hundred thousand, one
hundred and twenty one can be named as “the first
number not nameable in under 10 words.” (All num-

bers less than 1,100,121 can be named in nine words
or less.) But this latter description uses only nine words
to indicate this number and so it can be named with
less than 10 words, despite its definition.

The Barber Paradox
A barber places a sign on the store window. It reads:
“This barber shaves all men who do not shave them-
selves, and only these men.” Who shaves the barber?

The Lawyer Paradox
This paradox is traditionally ascribed to the Greek
philosopher Protagoras (490–421 B.C.E.)

A law instructor accepts a penniless student under
his wing for tuition under the agreement that the stu-
dent pay the tutor his fees if and only if he wins his
first case in court. However, after qualifying as a
lawyer, the student takes up a different career and
never undertakes a first case. The tutor later sues him
for his fees.

The student cleverly decides to represent his own
case. This way, he reasons, he need never pay the tutor
his fees. If he wins the case, the ruling shall be that he
need not pay, whereas if he loses the case, he would be
exempted from paying as per his previous agreement
with the tutor. Surprisingly, the tutor reasons too that
he cannot lose. If the student wins this case, then he
must pay the fees according to their previous agree-
ment, whereas, if the student loses, the ruling shall be
that he must pay!

The Unexpected Quiz
A school-teacher informs his class that there shall be a
surprise quiz some day the following week, and that no
one shall be able to deduce the night before that the quiz
shall come the next day. Students then reason as follows:

There can be no quiz on Friday, for on Thurs-
day night, having had no quiz the four previ-
ous days, we would know the quiz will come
next day. The quiz must therefore be some day
other than Friday.

The quiz cannot occur on Thursday either,
for on Wednesday night, having had no quiz
the three previous days (and with Friday ruled
out as a possibility) we would know that the
quiz will come next day.

By the same reasoning, the quiz cannot
occur on Wednesday, Tuesday, or even Monday.
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The students thus logically deduce that there can
be no quiz any day the following week. They were
legitimately surprised then by a pop quiz that came
Wednesday. (Sometimes this paradox is phrased in
terms of a prisoner awaiting his execution. In this set-
ting it is called the “unexpected hanging paradox.”)

The Wallet Paradox
Two men decide to play the following game:

Both men open their wallets. Whoever has the
least amount of money wins the contents of the
other’s wallet.

Each man can legitimately argue that he stands to
gain more than he can lose, and therefore that the game
is biased in his own favor. However, such a simple
win/lose game cannot simultaneously be advantageous
to both players.

Aristotle’s Wheel Paradox
Two wheels of different sizes are glued together so that
their centers are aligned. The entire system then rolls
along a double track as shown:

In one revolution, both wheels roll the same dis-
tance and so, in the diagram, x = y. But x is the circum-
ference of the small wheel and y the circumference of the
large wheel. Thus we are forced to conclude that two
wheels of different sizes have the same circumference!

These paradoxes rely on clever SELF-REFERENTIAL

statements (Grelling’s paradox, Berry’s paradox, the
barber paradox, and even the lawyer paradox), hidden
false assumptions (students assumed the teacher was
telling the truth—they do not know this; winning and
losing the wallet game are not equally likely; and could
the barber be a woman?), and disguised compound

motions (the small wheel is carried forward by the large
wheel as it rotates and so slides along the upper track).

See also CONDITIONAL; HILBERT’S INFINITE HOTEL;
JOURDAIN’S PARADOX; TRISTRAM SHANDY PARADOX;
ZENO’S PARADOXES.

parallel Two lines in a plane are said to be parallel if
they never meet no matter how far they are extended. If
two lines labeled L and M are parallel, then we write
L � M.

The notion of parallel lines is an abstract concept:
one cannot physically draw a line infinite in length, nor
can one check the entire extent of two infinite lines to
determine whether or not they eventually intersect.
(We, as human beings, can only conceive of finite quan-
tities and local phenomena.) In order to make working
with parallel lines feasible, the geometer EUCLID (ca.
300 B.C.E.) introduced an AXIOM, called the PARALLEL

POSTULATE, to describe the local behavior of parallel
lines. He asserted that, for any TRANSVERSAL crossing a
pair of parallel lines, alternate interior angles are equal.
(Thus, for instance, the pair of angles labeled x in the
diagram on page 376 are indeed equal in measure, as
are each pair of right angles about the lines labeled a
and b.) From this Euclid was able to establish several
properties of parallel lines that we intuitively expect to
be true. For instance, Euclid proved:

Two parallel lines always remain a fixed distance
apart. That is, in the diagram on page 376, it
must be the case that length a equals length b.

(Observe that the two triangles in the diagram share
the same angles and a common diagonal length. The
ASA principle now assures that they are CONGRUENT

FIGURES. Consequently, the distances a and b must
be equal.)

Euclid also observed that the converse of his paral-
lel postulate is true and requires no special assumptions
about geometry for its proof. (It follows immediately
from the EXTERIOR ANGLE THEOREM.)

If two lines cut by a transversal produce equal
alternate interior angles, then the two lines
must be parallel.

This result allows one to readily construct parallel
lines. To produce a line through a given point P parallel
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to a given line L, draw an arbitrary line L′ through P
that intersects L. Measure the angle between L and L′,
and draw another line L′′ through P, making this angle
with L′ so as to create a diagram with equal alternate
interior angles. By the result above, L′′ is a line through
P parallel to L.

Scottish mathematician John Playfair (1748–1819)
proved that for any given point P and line L in the
plane, there is one, and only one, line through P paral-
lel to L. This result is today known as PLAYFAIR’S
AXIOM. Playfair proved that one could take this axiom
as a starting point for geometry and establish the paral-
lel postulate from it.

See also AAA/AAS/ASA/SAS/SSS; HISTORY OF GEOME-
TRY (essay); PARALLELOGRAM; SIMILAR FIGURES.

parallelepiped (parallelopiped) A solid figure with
six faces, each of which is a PARALLELOGRAM, is called
a parallelepiped. A cube with all six faces square is a
special example of a parallelepiped, as is a “rectangular
box” with six rectangular faces (also called a cuboid).
In these two examples, edges meet at the corners of the
solids at 90° angles, but this need not be the case for a
general parallelepiped.

The volume of a parallelepiped is the area of the
BASE of the figure multiplied by the figure’s height. If
the three edges meeting at a corner are regarded as vec-
tors a, b, and c, then the volume of the parallelepiped is
also given by the absolute value of the TRIPLE VECTOR

PRODUCT a · b × c.
A parallelotope is a parallelepiped whose three

side-lengths are in the ratio 4:2:1.
See also PRISM.

parallelogram A QUADRILATERAL with opposite sides
parallel, and hence equal in length, is called a parallelo-
gram. The area of a parallelogram is “base times height.”
That is to say, if one pair of parallel sides, of length b, are
h units apart, then the area of the figure is bh. (See AREA.)

An examination of alternate angles across parallel
lines quickly shows that opposite angles in a parallelo-
gram are equal and that adjacent angles are supplemen-
tary, that is, sum to 180°. The parallelogram is the only
quadrilateral with this property.

The DIAGONALs of a parallelogram bisect one
another, and again the parallelogram is the only
quadrilateral that has this property. If the two different
side-lengths of a parallelogram are a and b, and the
length of its two diagonals are p and q, then

p2 + q2 = 2a2 + 2b2

This follows from applying the LAW OF COSINES to the
four triangles defined by the diagonals (two triangles
on either side of each diagonal) and adding all four
equations. Interpreted as an equation of VECTOR

lengths, this establishes the PARALLELOGRAM LAW in
vector-space theory.

A parallelogram with all four sides equal in length
is called a rhombus (or sometimes a rhomb, diamond,
or a lozenge). A rhomboid is a parallelogram with
adjacent sides unequal in length.

If all four angles of a parallelogram are equal, then
each angle equals 90°, and the figure is a RECTANGLE.
A parallelogram that is both equilateral and equiangu-
lar is a SQUARE.

See also TRAPEZOID/TRAPEZIUM.

parallelogram law (parallelogram rule) The fact
that VECTOR addition is commutative is sometimes
called the parallelogram law. This is appropriate, since
the sum of the two vectors a and b in the plane, a + b,
is given as the DIAGONAL of the parallelogram defined
by the two vectors. Note that the second diagonal is
given by the vector difference a – b. The geometric
properties of a parallelogram establish that the lengths
of these vectors satisfy the relation:

�a + b�2 + �a – b�2 = 2�a�2 + 2�b�2

This equation is also called the parallelogram law.
See also COMMUTATIVE PROPERTY.
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parallel postulate (Euclid’s fifth postulate) In his
famous work THE ELEMENTS, the geometer EUCLID

(ca. 300 B.C.E.) proposed five basic postulates that
describe the principles of geometry on a flat PLANE. His
fifth postulate states:

If two lines L and M subtended from a com-
mon line segment have interior angles sum-
ming to less than 180°, then those lines, if
extended, will meet to form a TRIANGLE.

One can consequently conclude that if those angles sum
to more than 180° then the lines, if extended on the
other side of the given line segment, will form a triangle
on that side. (The sum of the supplementary interior
angles will be less than 180°.) Furthermore, if the lines
never meet, that is, if they are PARALLEL, then the sum
of the two angles x and y shown cannot be less than nor
greater than 180°, and so must equal 180°. We have:

For a pair of parallel lines with a TRANSVERSAL,
as shown in the diagram below right, the angles
labeled x and y must sum exactly to 180°. Con-
sequently, the alternate interior angles of the
transversal are equal.

This is often taken as the statement of Euclid’s fifth
postulate. For this reason, it is often called the parallel
postulate.

As the parallel postulate is intimately connected
with the formation of triangles, it is not surprising that
one can use it to prove:

The sum of the interior angles of any triangle
equals 180°.

As we show below, it is possible to alternatively take
this statement as a basic postulate and use it to estab-
lish the parallel postulate. (Thus the parallel postulate
and this claim about triangles are logically equivalent
starting assumptions.)

In his 1795 text Elements of Geometry, Scottish
mathematician John Playfair offered a third, logically
equivalent version of the parallel postulate:

Given a line L in the plane and a point P not
on that line, then there exists one, and only
one, line through P parallel to L.

This alternative version of the postulate is today
called PLAYFAIR’S AXIOM. In 1829 it provided Russian

mathematician NIKOLAI IVANOVICH LOBACHEVSKY

(1792–1856) the inspiration to consider, and discover,
a consistent theory of a NON-EUCLIDEAN GEOMETRY.

We now have three assertions:

1. Euclid’s parallel postulate
2. Angles in a triangle sum to 180°
3. Playfair’s axiom

These three statements are logically equivalent, that is,
any one implies the other two. To see this, it suffices to
show that (3) implies (2), (2) implies (1), and that (1)
implies (3). We will need to make use of the converse of
Euclid’s parallel postulate:

If a transversal across a pair of lines yields
equal alternate interior angles, then the lines
are parallel.

As the EXTERIOR-ANGLE THEOREM shows, this state-
ment can be proved without making use of any of the
three statements above.

Consider now the three implications:

(3) implies (2):

Given a triangle with angles a, b, and c as shown in
the diagram on page 378, draw two lines at the apex
that copy angles a and b. Given that both yield equal
alternate interior angles across a transversal, both lines
are parallel to the base of the triangle. By Playfair’s
axiom there is only one such line. Thus angles a, b, and
c all lie on the same straight line and so sum to 180°.

(2) implies (1):

In the middle diagram on page 378, suppose that
lines L and M are parallel, and so never meet. Could it
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be that angles x and y sum to less that 180°? Draw a
point P on line M, and slide it along M sufficiently far
so that the angle of the triangle APB at P is less than
180 – x – y. Clearly the angle in this triangle at A is less
than x. We now have a triangle with three angles that
sum to something less than x + (180 – x – y) + y = 180°.
This is impossible by our assumption that (2) is true. It
cannot be the case that L and M are parallel after all.

(1) implies (3):

Discussion on the exterior-angle theorem shows that
there certainly exists at least one line through a point P
parallel to a given line L. Suppose there are two such
lines. Call them M and M′ as shown in the diagram
above. Draw any line from P to L. Since, by (1), we are
assuming that alternate interior angles are equal for par-
allel lines, both angles a and b shown are equal to x.
Consequently M and M′ must be the same line.

See also HISTORY OF GEOMETRY (essay).

parameter See PARAMETRIC EQUATIONS.

parametric equations (freedom equations) When
we think of a curve as the path traced by a moving
point, it is convenient to represent the curve as two
equations, one for each coordinate x and y, in terms of
a third variable usually denoted t: x = f(t) and y = g(t).
The variable t is called a parameter (from the Greek
para, meaning “together,” and meter, meaning “mea-
sure”). Equations with parameters are called paramet-
ric equations. In physical problems, t is usually thought
of as time.

Any curve y = f(x) can be expressed in terms of para-
metric equations: simply set x = t and consequently y = f(t).

Parametric representations, however, are not unique.
The curve y = 4x2, for example, can be represented as

x = t, y = 4t2 and also x = , y = t6. Infinitely many other

representations are possible.
A CIRCLE of radius r and center (m,n) has a para-

metric representation: x = m + r cos t and y = n + r sin t.
(Notice that (x – m)2 + (y – n)2 = (r cost)2 + (r sint)2 =
r2(cos2t + sin2t) = r2, the equation of a circle.) Similarly, 

an ELLIPSE + = 1 has parameterization: x = a cos t

and y = b sin t.
There is no general method for transforming an

equation of the form F(x,y) = 0 into parametric equa-
tions. Each individual example needs to be examined
carefully, and much ingenuity is often required. (For
example, it is not immediately clear what the paramet-
ric equations for the curve given by x5 + xy + y5 = 0
could be.) For the reverse direction, one can attempt to
convert a pair of parametric equations into a single
equation of the form F(x,y) = 0 by solving for t. To
illustrate, consider the equations: x = 3t + 1 and y = t –
1. The first equation yields t = (x – 1)/3, and the sec-
ond, t = y + 1. Consequently: y + 1 = (x – 1)/3, or y =
x/3 – 4/3. This shows that the parametric equations
under study represent a straight-line path.

The SLOPE of a curve given via parametric equations 

is = provided the DERIVATIVE x′(t) is not zero. 

This follows from the CHAIN RULE for differentiation: if
y is a function of x, which itself is a function of t, then 

= · .

Parametric equations are also used to describe the
motion of particles in three-dimensional space. One is
given three equations in a parameter t, one for each of
the three coordinates x, y, and z.

See also ARC LENGTH; CONSTANT WIDTH.

parity Two integers that are either both even or both
odd are said to have the same parity. For instance, 17
and 53 have the same parity (both are odd), and 9 and
14 have opposite parity. The study of EVEN AND ODD

NUMBERS often makes use of parity to establish a num-
ber of sophisticated results.

Sometimes the term parity is used in a more general
setting as to mean “being in one of two possible states.”
For example, three hockey pucks labeled A, B, and C
lying on a playing field, not in a straight line, can be in

dy
––
dt

dy
––
dx

dy
––
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y′(t)
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x′(t)
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––
dx
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–
b2

x2
–
a2

t3
–
2
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one of two possible states: moving from A to B to C
could either have a clockwise or counterclockwise
sense. Every time a hockey player hits one puck
between the other two, the parity of the system changes.
This shows, for instance, that a hockey player will never
be able to return the three pucks to their original posi-
tions if she performs hits of this type 33 times.

As another example, it is impossible for 25 people
standing in a 5 × 5 grid of squares, one person per cell,
to shift places if each person is asked to move one place
over to a neighboring vertical or horizontal cell. A par-
ity argument explains why. If we imagine the cells col-
ored black and white according to a checkerboard
pattern, then the 13 people standing in black cells are
required to occupy just 12 white cells, rendering the
challenge unsolvable. (If, however, players are permitted
to take diagonal steps, then the puzzle can be solved.)

partial derivative Given a function f(x,y) of two
variables, the DERIVATIVE of f with respect to just one
of the variables, treating the other variable as a con-
stant, is called a partial derivative of that function.
Specifically, the partial derivative of the function with 

respect to x, denoted or sometimes fx, is the LIMIT:

and the partial derivative with respect to y, denoted 

or fy, is:

Geometrically, the graph of the function z = f(x,y)
is a surface sitting in three-dimensional space, and the 

quantity measures the slope of the graph surface 

above the point (x,y) in the direction parallel to the

x-axis, and is the slope of the surface in the direction 

parallel to the y-axis. Since one of the variables is being
treated as a constant, the partial derivative of a function
can be found by using the normal rules of differentia-
tion. For example, for the function f(x,y) = x2y3 + 2x + y,

we have = 2xy3 + 2 and = 3x2y2 + 1.

The symbol ∂ for “partial” was introduced in 1788
by the French mathematician JOSEPH-LOUIS LAGRANGE.
It resembles the d used for ordinary differentiation.

The nth partial derivative of a function with respect 

to the same variable is denoted and differentiating 

with respect to two different variables leads to mixed 

partial derivatives: and the like.

The quantity , for example, is to be interpreted as 

“differentiate first with respect to y, and then with
respect to x.” (That is, one performs the operations in
reverse order as indicated by the denominator.) For
instance, if f(x,y) = x2y3 + 2x + y then:

and

The equality

is no coincidence. Mathematicians have proved that the
order of partial differentiation does not matter as long
as all the partial derivatives involved are continuous
functions. The notion of a partial derivative extends to
functions of more than two variables.

A partial-differential equation is an equation that
contains partial derivatives of a function. For exam-
ple, the function f(x,y) = exy is a solution to the partial-
differential equation:

See also CHAIN RULE; DIFFERENTIAL EQUATION;
DIRECTIONAL DERIVATIVE.

partial fractions Algebraic expressions containing 

the ratio of two POLYNOMIALs , with the degree of 
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p(x) less than the degree of q(x), can be split into partial
fractions for easier handling. This first requires splitting
the denominator q(x) into linear and irreducible
quadratic factors, each to some index, and then writing 

as a sum of terms of each of the following type:

1. Corresponding to each (repeated) linear term (x – k)n

in q(x), there is a sum of terms 

.

2. Corresponding to each (repeated) irreducible
quadratic terms (ax2 + bx + c)m in q(x), there is a 

sum of terms 

.

Here the numbers Ai, Bi, and Ci are constants. Some
examples illustrate the process:

The values of the constants A, B, C, … are found by
multiplying through by the denominator and then
EQUATING COEFFICIENTS. Alternatively, one can substi-
tute appropriate values for the variable x to determine
the values of some of these unknowns more quickly.
For example, in the first example, after multiplying
through, we have: 4 = A(x – 3) + B(x + 2). Setting x = 3
yields 4 = 0 + 5B, establishing that B is 4/5, and setting
x = –2 gives A = –4/5. We thus have:

Mathematicians have proved that every rational 

function , with the degree of p(x) less than the 

degree of q(x), can indeed be written as a sum of partial
fractions, and that the constant terms appearing, Ai, Bi,
and Ci, are unique for that rational function. (That is,
no rational function can be expressed as a sum of par-
tial fractions in two different ways.) Partial fractions are
generally used for solving INTEGRALs and in solving
DIFFERENTIAL EQUATIONs. As an example, we have:

partial order See ORDERED SET.

partial sum The nth partial sum Sn of an infinite
series a1 + a2 + a3 +… is the sum of just the first n
terms of the series: Sn = a1 + a2 +…+ an. For example, 

the first four partial sums of the series 

are , , 

, and .

A series is said to converge to a value L if the
partial sums Sn tend to L in the LIMIT as n → ∞. In
the above example, the sequence of partial sums 

approaches the value 1. Thus we 

write: .

See also CONVERGENT SERIES.

partition In NUMBER THEORY a partition of a natural
number n is a representation of n as a sum of positive
integers. For example, 20 + 15 + 5 and 10 + 10 + 10 +
10 are partitions of the number 40, as is the representa-
tion 40 itself. A partition is considered ordered if the
order of the terms in the sum is considered important.
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For instance, 20 + 15 + 5 and 5 + 20 + 15 are consid-
ered to be two different ordered partitions of the num-
ber 40.

There is just one ordered partition of the number
1, two ordered partitions of 2, four of 3, and eight
ordered partitions of the number 4:

1:1
2:1 + 1 = 2
3:1 + 1 + 1 = 2 + 1 = 1 + 2 = 3
4:1 + 1 + 1 + 1 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 

= 2 + 2 = 1 + 3 = 3 + 1 = 4

This pattern persists:

A number n has 2n–1 ordered partitions.

(One can create an ordered partition of a number n by
first writing n as a sum of n 1s, and then deleting some,
all, or none of the + signs between the 1s. As there are
n – 1 plus signs to consider, each providing a choice of
whether to leave or to erase, this provides 2n–1 possibil-
ities in all.)

If the order of the terms in a partition is not con-
sidered important, then the partition is called
unordered. (For example, 20 + 15 + 5 and 5 + 20 + 15
are now considered the same partition of the number
40.) The symbol P(n) is usually used to denote the
number of unordered partitions a number n possesses.
For instance, P(4) = 5, since there are just five
unordered partitions of the number 4 (namely, 1 + 1 +
1 + 1, 2 + 1 + 1, 2 + 2, 3 + 1 and 4). The following
table shows the first 10 partition function values:

To this day, no one knows an exact formula for this
function, and generally very little is known about its
behavior.

In the mid-1700s LEONHARD EULER studied this
function and found one truly remarkable relationship.
Consider those triangular FIGURATE NUMBERS that are
divisible by three: 3, 6, 15, 21, 36, 45, … Taking one-
third of those numbers yields the sequence: 1, 2, 5, 7,
12, 15, … Declaring P(0) = 1 and P(n) to be zero if n is
negative, Euler proved that the following formula holds:

P(n) – P(n – 1) – P(n – 2) + P(n – 5) + P(n – 7) 
– P(n – 12) – P(n – 15) +…= 0

Here the signs between terms alternate in pairs. Notice
too that although the left side of this equation appears
to be an infinite sum, eventually all the terms in the
sum equal zero. Consequently one is required to add
and subtract only a finite list of numbers.

This formula allows us to compute higher values of
P(n). For instance, to find the value of P(11) use:

P(11) – P(10) – P(9) + P(6) + P(4) – P(–1) – P(–4) +…= 0

That is,

P(11) – 42 – 30 + 11 + 5 – 0 – 0 +…= 0

yielding

P(11) = 56

In the 1930s, mathematicians GODFREY HAROLD

HARDY and SRINIVASA AIYANGAR RAMANUJAN proved
that if n is large, then the function P(n) is well approxi-
mated by the formula:

Thus, for instance, the value of P(1,000) is approxi-

mately .

Understanding the properties of the unordered par-
tition function is still an active area of research.

Pascal, Blaise (1623–1662) French Probability theory,
Calculus, Geometry, Philosophy Born on June 19,
1623, in Clermont-Ferrand, France, philosopher and
scientist Blaise Pascal is remembered for his work in
GEOMETRY, hydrostatics, and PROBABILITY theory. Al-
though he did not invent the famous arithmetical trian-
gle that bears his name, he did make extensive use of its
properties in his development of probability and the
study of statistical distributions. He also worked on
problems of finding arc lengths and areas of curved fig-
ures. He is noted, in particular, for his work on the
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CYCLOID and the development of ideas from this work
that led to the invention of CALCULUS.

Pascal was fascinated with mathematics as a young
teenager and by age 16 had already discovered a num-
ber of noteworthy results in the study of PROJECTIVE

GEOMETRY. He published his first work in geometry,
Essay on Conic Sections, in 1640.

In order to assist his father with his work in
recording and collecting taxes, between the years 1642
and 1645 Pascal invented and built a mechanical calcu-
lator that could perform sophisticated arithmetic com-
putations. Over the next 7 years Pascal oversaw the
construction of as many as 50 of these machines but,
sadly, few were sold. Production of the “Pascaline”
ceased, but Pascal is nonetheless noted as the second
person in history to have built such a device. (German
scholar Wilhelm Schickard built the first in 1624.)

In the late 1640s Pascal developed an interest in
hydrostatics and the properties of atmospheric pres-
sure. He published New Experiments concerning Vacu-
ums in 1647—a controversial work as scientists at the
time doubted that vacuums exist—and 4 years later his
famous piece Treatise on the Equilibrium of Liquids.

His interest in pure mathematics never wavered during
this time, and he continued to develop work on the the-
ory of CONIC SECTIONS. (Sadly, his manuscripts from
this period are lost to us today.)

In correspondence with PIERRE DE FERMAT

(1601–65), Pascal worked on solving two challenging
problems about games of chance: what is the
expected number of tosses required to roll a double 6
with a pair of dice? And how should one divvy up the
bets laid down for a game of dice, if the game must
be halted part way through its play? Pascal and Fer-
mat solved the first problem and the second only for
the case of a two-player game. This work marked the
beginning development of modern probability theory.

Pascal was a deeply religious man and is also
remembered for his famous line of rational thought
arguing in favor of believing in the existence of God.
Now called “Pascal’s wager,” Pascal’s argument simply
stated that if God does not exist, then nothing is lost by
believing in Him, whereas if God does exist, all will be
lost by not acknowledging His existence.

Pascal computed the arc length and area of one
branch of the cycloid curve, and also the volume and
surface area of a SOLID OF REVOLUTION obtained by
rotating it about the x-axis. This was his final mathe-
matical accomplishment before devoting his life to
religious service. He died of cancer on August 19,
1662, at age 39.

Although not remembered for having produced a
large body of profoundly creative work, Pascal did
nonetheless play seminal roles in the development of
several new fields of study (infinitesimal calculus, prob-
ability theory, projective geometry, and fluid statics, for
instance). He made significant contributions to each
field and, perhaps more important, played a significant
role in clarifying the foundations of these studies and
systematizing the methods they utilize.

Pascal’s distribution See BINOMIAL DISTRIBUTION.

Pascal’s triangle The triangular array of numbers
with 1 at the apex, with a 1 at the beginning and end
of each row, and with the property that each interior
number is the sum of the two numbers above it in the
preceding row is called Pascal’s triangle. The first few
rows of the triangle are shown below:
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Blaise Pascal, an eminent scholar of the 17th century, is noted for
his pioneering work in the field of probability theory. (Photo
courtesy of Monique Salaber/The Image Works)



1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

The triangle is named after French mathematician
BLAISE PASCAL (1623–62), who used it extensively in
his development of PROBABILITY theory. However, Pas-
cal never claimed to have invented the triangle. It
appears, for example, in CHU SHI-CHIEH’s 1303 text
Siyuan Yujian (The precious mirror of the four ele-
ments), and tables of the first few rows of the triangle
appear in ancient Arab texts.

To motivate the construction of the triangle, one
can ask the following question:

If, in a rectangular grid, one is permitted to
move from cell to cell only by taking eastward
or southward steps, how many distinct routes
are there from the top left cell to any other
given cell?

For example, to move to the circled cell shown, one
could take three steps east followed by two steps south
(which we shall record as EEESS), or, alternatively, one
step south, two steps east, one step south, followed by
a final step east (SEESE). In fact, any arrangement of
three Es and two Ss corresponds to a possible path, and
one can check that there are 10 such combinations of
five letters in all. This shows that there are 10 routes to
the circled cell shown. It is convenient to assign the
number one to the top left cell. (Starting at the top left
cell there is only one course of action needed to reach
that cell, namely, no action.)
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In 1642 Blaise Pascal invented and built the world’s first calculating machine. (Photo courtesy of the Science Museum, London/Topham-
HIP/The Image Works)



Also notice, in order to reach any particular cell,
one has two options: either head to the cell directly
above it and take a final step southward, or head to the
cell just to its left and take a final step eastward. Thus
the number of paths to a particular cell is the sum of
the two counts for the cells above it and to its left. This
is the defining feature of Pascal’s triangle.

We can say more: the numbers in each cell count
the number of ways to arrange a fixed number of Es
and Ss. For instance, the number below the circled cell
in the picture will be 20. This shows that there must be
20 distinct ways to arrange three Es and three Ss. Alter-
natively, we could determine this count by asking: How
many ways are there to select three places (the positions
that the letter E will lie) among a string of six positions?
The answer to this question is in the COMBINATORIAL

COEFFICIENT . Counting the top row of 

Pascal’s triangle as row zero and the first entry of each
row the zeroth entry of that row, we now see that the
kth entry in the nth row of Pascal’s triangle corresponds 

to combinatorial coefficient , which equals the 

number of ways to arrange k Es and (n – k) Ss as
a string of n letters. We have:

Pascal’s triangle is the triangular array of all
combinatorial coefficients.

The BINOMIAL THEOREM shows that the combinatorial
coefficients also appear in expansions of expressions of
the form (x + y)n. We have:

The entries in the nth row of Pascal’s triangle
are precisely the coefficients that appear in the
expansion of (x + y)n.

For instance, we have (x + y)2 = x2 + 2xy + y2, (x + y)3

= x3 + 3x2y + 3xy2 + y3, and (x + y)4 = x4 + 4x3y
+ 6x2y2 + 4xy3 + y4.

Pascal’s triangle possesses a number of remarkable
properties. We list just a sample.

1. The entries in the nth row of Pascal’s triangle sum
to 2n.

For instance, 1 = 1, 1 + 1 = 2, 1 + 2 + 1 = 4,
1 + 3 + 3 + 1 = 8, and 1 + 4 + 6 + 4 + 1 = 16. This
follows from expanding the quantity (1 + 1)n.

2. The alternating sum of the entries of each row of
Pascal’s triangle is zero.

For instance, 1 – 1 = 0, 1 – 2 + 1 = 0, 1 – 3 +
3 – 1 = 0, and 1 – 4 + 6 – 4 + 1 = 0. This follows
from expanding the quantity (1 + (–1))n.

It is worth observing that both of these results
can also be obtained by noting that each entry in
Pascal’s triangle is the sum of two entries in the pre-
ceding row. Thus the direct or the alternating sum
of the entries in one row corresponds to a sum that
considers each entry in the previous row twice.

3. The FIBONACCI NUMBERS appear as sums of entries
in certain diagonals of Pascal’s triangle.

To explain: the apex 1 constitutes the first diag-
onal. The first 1 in row one constitutes the second
diagonal. The first 1 in row two and the final 1 in
row three constitute the third diagonal. (Note that
1 + 1 = 2.) Continuing in this way, we see that 1 + 3 +
1 = 5, 1 + 4 + 3 = 8, and 1 + 5 + 6 + 1 = 13. By
writing each term in the diagonal as the sum of the
two entries above it, we see that the sum of entries
in one diagonal matches the sums of entries of the
previous two diagonals.

4. Each row of Pascal’s triangle corresponds to the dig-
its of a power of 11.

For instance, 110 = 1, 111 = 11, 112 = 121,
113 = 1,331, and 114 = 14,461. This follows from
expanding the quantity (10 + 1)n. If we were not
required to carry digits when performing multiplica-
tions, this correspondence would remain exact.

5. Select any entry N in Pascal’s triangle and circle all
the entries that lie in the parallelogram that has N
and the apex as opposite vertices. Then the sum of
all entries in that parallelogram is 1 less than the
number M directly below N two rows down.
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For example, in the triangle shown on previous
page, the number 20 is one greater than the sum of
numbers bounded in the parallelogram with 6 as the
lowest corner. (We have 6 + 3 + 3 + 1 + 2 + 1 + 1 + 1
+ 1 = 19.) This property can be proved by noting
that the number M is the sum of the two numbers
above it, which, in turn, are each the sum of two
numbers in the previous row, and so forth. One can
match this backward tabulation with the entries of
the described parallelogram (except for a single 1).

See also CATALAN NUMBERS.

Peano, Giuseppe (1858–1932) Italian Foundations of
mathematics Born on August 27, 1858, in Cuneo, Italy,
logician Giuseppe Peano is remembered for his influential
work in mathematical logic and in the FOUNDATIONS OF

MATHEMATICS. In 1889 he published a famous set of
axioms (revised in 1899), today called PEANO’S POSTU-
LATES, which defined the NATURAL NUMBERS in terms of
sets. A year later he invented space-filling curves, such as
PEANO’S CURVE, which were thought impossible at the
time. These curves show, in some sense, that there are
just as many points on a line as there are in a plane.

Peano graduated from the University of Turin in
1880 with a doctorate in mathematics and his habilita-
tion degree in 1884. He remained at the university as a
professor of mathematics throughout his career.

Peano’s early work was in the field of DIFFERENTIAL

EQUATIONs, where he studied and established significant
results on the problem of classifying those equations for
which solutions are guaranteed to exist. But his interests
changed toward mathematical logic in 1888 with the
publication of his text Geometric Calculus, the opening
chapter of which was devoted to the topic. Peano pub-
lished his famous axioms defining the natural numbers
1 year later in the small pamphlet Arithmetices prin-
cipia, nova methodo exposita, (Arithmetic principles,
exposition of a new method), which he wrote entirely in
Latin to the surprise of his colleagues. Soon after this,
he presented his work on his famous curve.

Mathematical historians feel that Peano’s contribu-
tions to mathematics dwindled after this. In 1892 Peano
began work on an enormous undertaking to collate all
known results in mathematics, essentially as a giant list.
This project, which he called Formulario mathematico
(Mathematical forms), consumed his working hours for
a full 16 years. He completed the project in 1908, but

received little attention for it. Although the text con-
tained a great deal of valuable information, it was diffi-
cult to read, not only because of its dry nature, but also
because Peano chose to write it in a new “universal lan-
guage” he invented based on a simplified version of
Latin. He hoped to develop a universal culture of math-
ematical exploration united by a common language. His
dream was never realized.

Peano died in Turin, Italy, on April 20, 1932.
Much of his mathematical work, although significant
at the time, is chiefly of historic interest today.

Peano’s curve In 1890 Italian mathematician GIUSEPPE

PEANO (1858–1932) described a curve that could pass
through every point of a square. The curve is constructed
by an iterative process. One begins by drawing the diago-
nal of a square and then breaking the square into nine
subsquares and drawing certain diagonals of those sub-
squares. At the next stage, each subsquare is divided into
nine sub-subsquares and the pattern is repeated. The
Peano curve is the curve that results when this procedure
is repeated indefinitely. One can intuitively see that
Peano’s construct is an object that passes through every
point of the square. (It passes through some points more
than once.) For this reason, Peano’s curve is described as
a space-filling curve. His construct shows, in some sense,
that the set of points inside a square is no more infinite
than the set of points on a curve.

To make the definition of Peano’s curve mathemat-
ically precise, for each number t in the interval [0,1] let
Pn(t) denote the point in the square that is t units
along the length of the curve that is produced in the
nth step of the above procedure. (Notice, for example, 

that for all n.) Then define P(t) to be 

the LIMIT of these points:

Pn
1
2

0 5 0 5






= ( . , . )
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P(t) = limn→∞Pn(t)

One can show that this formula does indeed represent
a CONTINUOUS FUNCTION from the unit interval [0,1]
to all points in the unit square. Since any continuous
function defined on an interval can be thought of as the
PARAMETRIC EQUATION of a curve, it is indeed appro-
priate to think of Peano’s function then as a curve in
two-dimensional space.

Notice that if we take the side-length of the
square to be 1 unit, then the length of the diagonal is
√
–
2 units long. Each iteration of the procedure pro-

duces a curve three times as long as the curve in the
previous step.

See also CARDINALITY; INFINITY.

Peano’s postulates In 1889 Italian mathematician
GIUSEPPE PEANO (1858–1932) presented a first set of
basic postulates that he hoped would characterize pre-
cisely the properties of the natural numbers. He revised
his system 10 years later to state:

There is a set N whose elements are called “num-
bers” with the following properties:

1. To every number a one can assign another number a′
called its successor. (We normally think of a′ as a + 1.)

2. No two different numbers have the same successor.
3. There is at least one number which is not the succes-

sor of any other number.
4. Induction axiom: If a subset M of numbers contains

at least one number that is not a successor, but has
the property that for any number a in M, its succes-
sor a′ is in M, then M = N. (That is, every number
is in M.)

It is worth noting that it follows from these axioms
that there is just one number that is not the successor
of any other number. (Let e be any number that is not a
successor and let M be the set of all numbers that are
successors along with the number e. By the induction
axiom, M = N. It follows then that e is the only num-
ber that fails to be a successor.) This special number is
usually called ZERO.

From these very basic postulates Peano was able
to define an operation of addition on numbers and
from there derive all the properties of arithmetic we
use today.

See also INDUCTION; NATURAL NUMBERS.

Pearson, Karl (1857–1936) British Statistics Born
on March 27, 1857, in London, England, mathemati-
cian Karl Pearson is remembered for his influence in
the development of statistics as applied to biology and
the social sciences. Pearson introduced, for the first
time, such basic concepts as STANDARD DEVIATION and
the notion of a CORRELATION COEFFICIENT. He also
developed the invaluable CHI-SQUARED TEST.

Educated at Cambridge University, Pearson held a
faculty position at University College, London, for the
most part of his career, studying the analysis of heredity
and evolution in biology. Beginning in 1893 Pearson
published a series of 18 papers all titled “Mathematical
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Karl Pearson, an eminent statistician of the 20th century, was 
the first to develop fundamental concepts such as “standard 
deviation” and “correlation coefficient.” (Photo courtesy of
Topham/Fotomas/The Image Works)



Contribution to the Theory of Evolution,” that, over
their 21-year span, outlined the principles of statistical
analysis. His work, however, was not without contro-
versy. While other statisticians at the time, including SIR

RONALD AYLMER FISHER (1890–1962) and WILLIAM

SEALY GOSSET (1876–1937), emphasized the role of
causes rather than correlation, and worked with small
sample sizes in deducing reliable information, Pearson
analyzed large sample sizes and explored overall trends.
This difference in philosophy led to a bitter dispute
between Pearson and Fisher, sufficiently vehement to
cause Fisher to turn down a prestigious position at the
college so as to simply avoid working with Pearson.
Nonetheless, Pearson’s work was duly recognized as sig-
nificant, and Pearson was awarded the position as the
first Galton Professor of Eugenics at the Galton
National Laboratory of Eugenics. He was chair there
from 1911 to 1933.

Apart from making significant contributions to
the field of statistics, Pearson also practiced law, was
active in politics, and wrote literary works. In 1892
he published The Grammar of Science, a philosophi-
cal text that attempted to extend the approach and
methods of science to a wide range of general pur-
suits. This piece even anticipated some of the ideas of
relativity theory.

Pearson founded the journal Biometrics and was
the editor of Annals of Eugenics. Because of his funda-
mental work in the development of modern statistics,
many scholars today regard Pearson as the founder of
20th-century statistics. He died in Coldharbour, Eng-
land, on April 27, 1936.

See also SIR FRANCIS GALTON, HISTORY OF PROBA-
BILITY AND STATISTICS (essay); STATISTICS: INFERENTIAL.

pedal triangle Given a point P in a triangle ABC, the
pedal triangle with respect to P is formed by dropping
perpendicular lines from P to each of the three sides of
the triangle. If X, Y, and Z are the locations at which
these lines meet the sides of the triangle, then triangle
XYZ is the pedal triangle for P. The pedal triangle may
extend outside the triangle if ABC is an obtuse triangle.

The three altitudes of any triangle meet at a com-
mon point O called the orthocenter of the triangle. (See
TRIANGLE.) The pedal triangle with respect to O, with
vertices the feet of the altitudes of the triangle, is often
referred to as the pedal triangle of a given triangle. It is

also called the orthic triangle. Geometers have shown
that if one constructs a nested sequence of three orthic
triangles, then the third orthic triangle is similar to the
original triangle.

The pedal circle of a triangle with respect to a
point P is the circle that passes through all three ver-
tices of the pedal triangle with respect to P. The pedal
circle with respect to the orthocenter O is the inscribed
circle of the triangle.

In 1775 Italian mathematician Giovanni Fagnano
proposed the following problem:

Of all triangles inscribed in an acute triangle,
which has the least perimeter?

Using the techniques of CALCULUS, Fagnano was able to
prove that the orthic triangle is the desired inscribed
triangle. (This can also be proved by pure geometric
means.) This observation leads to an interesting result:
if XYZ is the inscribed triangle of least perimeter, then
the two sides X to Y and Y to Z are a solution to the
famous path-walking problem in OPTIMIZATION theory.
Consequently these two sides intercept the “wall” of
the given triangle at equal angles, and so represent the
path a ball would follow when thrown at that side of
the triangle. As the same argument applies to any pair
of sides in the orthic triangle, we have:

The orthic triangle represents the closed path
of a ball bouncing inside an acute triangle.

Mathematicians have proved that this is the only
closed-circuit path a ball could follow inside an acute
triangle. For obtuse triangles there is no inscribed trian-
gle of least perimeter.

pentagram (pentacle, pentalpha, pentangle) The star-
shaped figure formed by the five diagonals of a regular
pentagon (or equivalently, formed by extending all sides
of a regular pentagon to meet in pairs) is called a penta-
gram. The Pythagorean Order, a group of followers of
PYTHAGORAS, bestowed deep significance to various
numbers and geometric shapes, including the penta-
gram. The figure is often referred to as the “Pentagram
of Pythagoras.” Its geometric properties were consid-
ered divine.

The GOLDEN RATIO appears a number of times in a
pentagram. For instance, point C divides the length AD
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into two parts of ratio equal to the golden mean, and
point B divides length AC in the same manner. This, of
course, happens on all sides of the star. Also, the
lengths AF, DF, AE, and DE are all equal, making
AFDE a rhombus.

If the distance from A to D is 1, then:

The distance of the center of the pentagram to 

point C is and to the point E is 

. The height of the pentagram is 

.

percentage A number that represents a fraction of
100 is called a percentage. For example, 5 percent, 

written 5%, is the fraction , and 125 percent is the 

fraction . The term percent comes from the Latin 

phrase per centum, meaning “by the hundred.” It is said
that the Roman Emperor Augustus (63 B.C.E.–14 C.E.)

levied a tax of one part per 100 on the proceeds of
all goods sold at auctions and markets. Since then it
has been popular to represent all taxes in terms of
percentages.

Any fraction can be converted to a percentage by 

multiplying by 100. For example, the fraction is 

interpreted as “four-fifths of 100” and so is written: 

× 100 = = 80 percent. Decimals can also be  

represented as percentages by multiplying by 100:
0.327, for example, as a percentage equals 0.327 × 100
= 32.7 percent.

To convert a percentage back to a fraction or a deci-
mal, divide by 100 and omit the percentage sign. For
example, 85 percent represents “85 parts of 100” and so
is the fraction 85/100 or, equivalently, the decimal 0.85.

One hundred percent of a quantity is 100/100 of it,
that is, all of it. For example, if 23 students are
enrolled in a dance and all 23 appear on a particular
day, then 100 percent of the class is present. If only 20
appear, then only the fraction 20/23 ≈ 0.87 of the class
is present, that is, 87 percent.

A percentage value larger than 100 percent repre-
sents a quantity larger than the original whole. For
example, if the Boys Soccer Group sold 1,850 choco-
late bars in 2002, and 1,998 chocolate bars in 2003,
then the number of bars sold in 2003 compared 

with the number sold the previous year is = 1.08 

or 108 percent. One would call this an 8 percent
increase in chocolate bar sales. In general, if a quan-
tity changes from value a to value b, then the percent-
age increase of the value is given by the formula: 

× 100 percent.

It is said that the symbol % for percentage likely
evolved from shorthand notations used by 15th-century
Italian clerks for the term per cento. Such abbreviations
included: per 100, P 00 and Pc°, with the c in the final
expression eventually being replaced with a diagonal
line. A 1425 manuscript shows the symbol % in use.

The term permillage is used for parts per thousand
with accompanying symbol: o/oo. For example, a
quantity expressed as 543 o/oo represents 543 parts
per thousand, or the fraction 543/1,000.

percentage error If the ERROR or uncertainty in a
measurement of a quantity is expressed as a PERCENT-
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AGE of the total measurement, then the error is called a
percentage error. For example, when 1.2 is used as an
approximation for the quantity 1.16, then the percentage

error is × 100 ≈ 3.4%. If, in measuring the height 

of a building as 62 feet, engineers use a device that mea-
sures to the nearest half a foot, then the height of the
building should be written: 62±0.5 feet. The percentage 

error of this measurement is: × 100 ≈ 0.81 percent.

See also RELATIVE ERROR.

percentile (centile, quartile) One of the 99 values
that divide a set of data arranged in numerical order
into 100 equal parts is called a percentile. For example,
the 90th percentile is the value such that 90 percent of
the data points are below that value. Often scores in
standardized tests are presented in terms of percentiles.
For example, if 525 students take an exam and 95 per-
cent of the students receive a score of 73 or lower, then
the 95th percentile for that exam is 74.

It is often deemed convenient to divide data sets
into four equal parts. The lower (or first) quartile,
denoted Q1, is the 25th percentile. The middle (or sec-
ond) quartile, Q2, the median, is the 50th percentile,
and upper (or third) quartile, Q3, is the 75th percentile.

perfect number A whole number that is equal to the
sum of its FACTORs—excluding the number itself—is
called a perfect number. For example, the numbers 6,
28, 496, and 8128 are each perfect.

6 = 1 + 2 + 3 = 21(22 –1)
28 = 1 + 2 + 4 + 7 + 14 = 22(23 –1)

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 
= 24(25 –1)

8,128 = 1 + 2 + 4 + 8 + 32 + 64 + 127 + 254 + 508 
+ 1016 + 2032 + 4064 = 26(27 –1)

Perfect numbers were deemed to have important
numerological properties by ancient scholars, and were
extensively studied by the Greeks. In book IX of THE

ELEMENTS, written around 300 B.C.E., EUCLID proved
that if 2n –1 is PRIME, then 2n–1(2n – 1) is a perfect
number. At the turn of the 17th century, French
philosopher and mathematician MARIN MERSENNE

undertook a study to determine which numbers of the

form 2n – 1 are prime. Any such number is today called
a MERSENNE PRIME.

Around 100 B.C.E. Syrian scholar Nicomachos of
Gerasa suggested that the converse of Euclid’s result is
true, that is, that every perfect number must be of the
form 2n–1(2n – 1) with 2n – 1 prime. (In particular, then,
there can be no odd perfect numbers.) In 1750 LEON-
HARD EULER proved that indeed every even perfect
number must be of this form, partially proving Nico-
machos’s claim. Surprisingly, still to this day no one
knows whether or not examples of odd perfect num-
bers exist. This remains a famous unsolved problem. It
has been proved that if any odd perfect number exists,
it must be larger than a GOOGOL.

Euler’s result shows that every even perfect number
is a triangular FIGURATE NUMBER. Explicitly, 2n–1(2n–1) 

= is the formula for the (2n – 1)-th triangular 

number.
It is also known that every even perfect number

must end with either a 6 or an 8 (this was conjectured by
Nicomachos) and that every even perfect number greater
than 6 is a sum of consecutive odd cube numbers:

28 = 13 + 33

496 = 13 + 33 + 53 + 73

8128 = 13 + 33 +…+ 153

for example, and that every even perfect is one more
than a multiple of 9.

The sum of the inverses of all the factors of a perfect

number is always 2. For example, + + + = 2

and + + + + = 2. (This follows from the 

fact that the sum of all the factors of a perfect number
N equals 2N. Dividing the sum through by N produces
the result.)

It is not known if there are infinitely many perfect
numbers. Fewer than 50 perfect numbers are known.

A number that is not perfect is classified as either
abundant or deficient according to whether the sum of
all its factors—excluding the whole number itself—is
greater than or less than the number. For example, 18
is abundant, since the sum of its factors is more than
18 (we have 1 + 2 + 3 + 6 + 9 = 21 > 18), whereas 25 is
deficient because its factors sum to less than 25. (We
have 1 + 5 = 6 < 25). All prime numbers are deficient.

See also AMICABLE NUMBERS; GREEK MATHEMATICS.
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perigon (round angle) An angle of 360° is called a
perigon. It represents one full turn.

perimeter The length of the boundary of a plane fig-
ure is called its perimeter. For example, the perimeter of
a rectangle is twice its length plus twice its width. The
perimeter of a circle is its circumference. Surprisingly, it
is possible for a plane figure of finite AREA to have an
infinite perimeter.

See also FRACTAL.

period See PERIODIC FUNCTION.

period doubling See DYNAMICAL SYSTEM.

periodic function A function is periodic if it repeats
itself at regular intervals of the variable. For example,
the function sin(x) is periodic because it cycles every
360°, precisely: sin(x) = sin(x + 360°) for all values of
x. We also have that sin(x) = sin(x + 720°) and sin(x) =
sin(x + 1080°), for example. The smallest positive
value p for which a periodic function f satisfies f(x) =
f(x + p) for all values x is called the period of the func-
tion. The function sin(x) has period 360°, as does the
function cos(x). (The tangent function tan(x), however,
has period 180°.)

In physics, any phenomenon that repeats itself at
regular intervals, such as the swinging of a pendulum,
the vibration of a source of a sound, or the rotation
of the Earth, is called periodic, and the time it takes
for one complete cycle of the phenomenon is called
its period. This idea extends to other branches of
mathematics as well. For example, the repeating deci-
mal 45.76185185185185185… = 45.76185

—
has pe-

riod 3, since three digits are being repeated, and a
rotation of 60° about a point in the plane has period 6,
since six rotations of this type return points to their
original locations.

See also DYNAMICAL SYSTEM; FOURIER SERIES.

permutation (arrangement, order) A specific ordered
arrangement of a given collection of objects is called a
permutation. For example, a selection of a winner, a

first runner-up, and a second runner-up from a group of
three finalists in a competition would be a permutation
of those three participants. The lists ADBC and BDCA
are two permutations of the letters A, B, C, and D.

The MULTIPLICATION PRINCIPLE shows that n dis-
tinct objects can be ordered n! different ways. There
are thus 4! = 24 different permutations in all of the let-
ters A, B, C, and D. (See FACTORIAL.)

The number of ways to arrange just r objects from
a collection of n distinguishable objects (r ≤ n) is
denoted Pn

r . These are called “permutations taken r at a
time.” For example, there are 12 permutations of
A,B,C,D taken two at a time: AB, AC, AD, BA, BC,
BD, CA, CB, CD, DA, DB, DC. Thus P4

2 = 12. Again,
the multiplication principle shows that

In particular Pn
n = n!.

Permutations of the full set of numbers {1,2,…,n}
can be classified as either even or odd by counting the
number of times a large number appears to the left of a
smaller number. For example, in the permutation
25143 of the first five counting numbers, the number 2
appears to the left of 1 ; 5 appears to the left of 1, 4,
and 3; and 4 appears to the left of 3. In total, a large
number appears to the left of a small number an odd
number of times. This permutation is odd.

A transposition is a permutation that interchanges
just two objects. For example, 14325 represents a
transposition (the 4 and the 2 have switched places).
One can check that it is possible to return the entries of
any even permutation back to their original order by
applying an even number of transpositions, and the
entries of an odd permutation by an odd number of
transpositions. This is often taken as the definition of
what it means to say that a permutation is even or odd.

A permutation in which no element appears in its
original location is called a derangement. For exam-
ple, BCAED is a derangement of A, B, C, D, E. There
are precisely

derangements of n objects.
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To prove this, let Si1i2…ik denote the number of per-
mutations that keep the elements i1,i2,…ik fixed in
place. (Thus the remaining n – k objects may be per-
muted in any fashion.) We have Si1i2…ik = (n – k)!. 

There are ways to choose k objects, and by the 

INCLUSION-EXCLUSION PRINCIPLE there are thus

permutations that keep at least one object in its correct
location. The formula above follows readily.

The PROBABILITY that a permutation chosen at ran-
dom is a derangement is this number divided by n!, the
total number of permutations. If n is large, this is very
close in value to the infinite series:

which happens to be the TAYLOR SERIES of ex evaluated
at x = – 1. This solves the famous “hatcheck problem”:

A group of gentlemen check their hats at a
country-club cloakroom. The clerk loses
records of which hat belongs to whom and
starts handing out hats randomly as the men
leave. What is the probability that no man
receives his own hat?

The answer is approximately .

Permutations are also used to analyze the SLIDE FIF-
TEEN PUZZLE. The number of permutations of n objects
in which each object moves at most one place, either
left or right, from its original location is Fn+1, the
(n+1)-th FIBONACCI NUMBER.

See also BINOMIAL COEFFICIENT; COMBINATION;
FUNCTION; SUBFACTORIAL.

perpendicular This term is used in any setting to
describe two geometric constructs that meet at right

angles. For example, two lines are perpendicular if the
angle between them is 90°. To “drop a perpendicular”
from a point to line is to draw a line segment that
starts at the given point and meets the line at right
angles. The length of this line segment is the shortest
distance between the given point and points on the line.
This length is called the perpendicular distance of the
point from the line.

The perpendicular bisector of a line segment is the
line at right angles to the segment passing through its
midpoint. It represents all points in the plane that are
equidistant from the two endpoints of the given line
segment. Two planes are perpendicular if they meet at
right angles.

The term perpendicular tends to be used primarily
in discussions about lines and planes. Other geometric
quantities (such as VECTORs and curved surfaces) might
meet at right angles, but mathematicians tend to use
the word ORTHOGONAL in these settings. For example,
two vectors are orthogonal if the angle between them is
90°. This convention is not steadfast. Often the words
perpendicular and orthogonal are used interchangeably.

See also DOT PRODUCT; NORMAL TO A CURVE; NOR-
MAL TO A PLANE; NORMAL TO A SURFACE; SLOPE.

perspective Two planar figures are said to be in per-
spective from a point P if, for each point A on one fig-
ure, there is a corresponding point B on the other so
that the line connecting P to A also meets B. The point
P is called the center of perspective.

The notion of perspective played a significant role
in the development of artistic techniques in the 15th
century. In an attempt to capture a sense of depth in a
two-dimensional painted scene, Renaissance artists
began drawing objects in the foreground larger than
those of the same size in the background. They imag-
ined a distant point at infinity at the back of the scene
and drew guidelines emanating from this point across
the canvas to aide in creating three-dimensional realism.
(Today we call such a construct a central PROJECTION.)
Artists and scholars ALBRECHT DÜRER (1471–1528)
and GIRARD DESARGUES (1591–1661) were the first to
study the mathematics of perspective.

Mathematicians also say that two planar figures
are in perspective from a line if corresponding sides of
each shape, if extended, meet at points that all lie on a
common line. DESARGUES’S THEOREM shows that if two
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planar figures are in perspective from a point, then they
are also in perspective from a line, and vice versa.
(Although the theorem is stated only for triangles, any
polygonal figure can be subdivided into triangles for
which the theorem applies.)

pi The real number, denoted, π, defined as the ratio
of the circumference C of a CIRCLE of any size drawn in
a plane to its diameter D, is called pi:

Its value is π = 3.141592653589793… That the value of
this ratio is the same for all planar circles is not immedi-
ately obvious. To see why this is the case, note that if
any diagram or picture is scaled up or down by a factor
k, then all lengths in that picture change by a factor k. In
particular, for a picture of a circle, the length of its cir-
cumference changes to kC and the length of its diameter
to kD. Consequently, the ratio of circumference to 

diameter remains unchanged: = . That any two 

circles in the plane can be thought of as scaled versions
of each other thus explains why the value of π is the
same for all circles. (It is worth mentioning that the
property of scaling used here is a phenomenon of
EUCLIDEAN GEOMETRY and that the value of π is not the
same for all circles in SPHERICAL GEOMETRY or HYPER-
BOLIC GEOMETRY. For example, the value of π changes
for circles drawn on spheres, ranging in value anywhere
between 2 and 3.141592…)

A study of AREA shows that the area of a circle of
radius r is given by:

A = πr2

Thus π can also be defined as the ratio of the area of a
circle to its radius squared.

Although it is not standard, one can associate a
value π to other shapes as well. For instance, the ratio of
the perimeter of a square to its width (short diameter) is
the same for all squares. Thus we may say: πsquare = 4.
(Using the diagonal of the square as the long diameter 

produces instead the value πsquare = ≈ 2.828.) The 

ratio of the perimeter of an equilateral triangle to its
diameter (measured as the height of the triangle) is the

same for all equilateral triangles. We have: πtriangle = 

≈ 3.464. In fact, in precisely this way, by inscribing 

polygons with increasingly many sides within a circle
and calculating the associated values of π for these poly-
gons, ARCHIMEDES OF SYRACUSE (ca. 287–212 B.C.E.)
showed that the true value of π for circles lies between 

= 3 + and = 3 + . The approximation 

, correct to two decimal places, is still often used 

today.
Since the time of antiquity, scholars have attempted

to find the exact value of π. The RHIND PAPYRUS from
ancient Egypt (dated ca.1650 B.C.E.) describes a pro-
cedure for computing the area of a circle that is 

equivalent to using the approximate value for π. 

The Babylonians of the same era used the approximate 

value . Around 150 C.E. Greek astronomer CLAUDIUS

PTOLEMY established that π ≈ , and 300 years later 

Chinese scholar ZU CHONGZHI used the improved 

approximation π ≈ , correct to six decimal places. 

About 530 C.E., Hindu scholar 
–
ARYABHATA established 

the close approximation = for π, and 

around 1150 C.E. BH
–
ASKARA, after using this estimate

multiple times in his work, noted that the √
–
10 serves

as a sufficiently accurate approximation for most prac-
tical purposes.

In 1429 Arab mathematician JAMSHID AL-KASH
–ı

computed the value of π correct to 16 decimal places,
and in 1610, using a polygon with 262 sides to approxi-
mate a circle, German mathematician Ludolph van
Ceulen accurately computed the first 35 decimal places
of π. He devoted most of his life to the task.

In 1767 Swiss mathematician JOHANN HEINRICH

LAMBERT proved that π is an IRRATIONAL NUMBER,
thereby establishing that the decimal expansion for π
will never terminate nor fall into a repeating cycle.
Later, in 1873, English scholar WILLIAM SHANKS, after
15 years of work, computed, by hand, the decimal
expansion of π to 607 places. Unfortunately he made
an error in the 527th place, making the decimal expan-
sion thereafter incorrect, but no one noticed the mis-
take for almost a century.
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In 1882 German mathematician FERDINAND VON

LINDEMANN proved that π is a TRANSCENDENTAL NUM-
BER, establishing once and for all that the problem of
SQUARING THE CIRCLE cannot be solved.

With the advent of computing machines in the 20th
century, mathematicians could compute more and more
digits of π. In 1949 JOHN VON NEUMANN used the U.S.
government’s ENIAC computer to compute π to the
2,037th decimal place. (It took 70 hr of machine time.)
In 1981 Japanese scientists Kazunori Miyoshi and
Kazuhiko Nakayama evaluated 2 million decimal places
of π, and in 1991, using a homebuilt supercomputer in a
New York City apartment, brothers Gregory and David
Chudnovsky calculated π to 2,260,321,366 decimal
places. Today over 1.24 × 1012 digits of π are known.

The sequence of digits 0123456789 appears in
the decimal expansion of π beginning at the
17,387,594,880th decimal place. This is the first, but
not the only, appearance of this sequence. The
9876543210 first appears at the 21,981,157,633rd
decimal place.

There are many beautiful formulae for π. For
instance, VIÈTE’S FORMULA, the GREGORY SERIES, the
ZETA FUNCTION, and WALLIS’S PRODUCT show, respec-
tively, that:

The BUFFON NEEDLE PROBLEM also provides another
surprising appearance of the π. The Swiss mathemati-
cian LEONHARD EULER (1707–83) also showed:

(Similar formulae follow from the general identity:

for suitable choices of x and y.) Hungarian mathemati-
cian PAUL ERDÖS (1913–96) established the following
remarkable result:

Beginning with a positive integer n, round it up
to the nearest multiple of n – 1, and then
round the result up to the nearest multiple of
n – 2, and so on, up until the nearest multiple
of 2. Call the result f(n). (We have, for
instance, f(3) = 4, f(5) = 10, and f(7) = 18.)
Then the LIMIT of the ratio of n2 to f(n), as n
becomes large, is π:

A number of basic questions about the interplay
between π and Euler’s number e remain unanswered.
For instance, no one yet knows whether the numbers 
π + e, , or loge(π) are rational or irrational (nor 

whether ππ is algebraic or transcendental). It is curious
that the quantity eπ – π has a value extraordinarily
close to 20.

Our choice to use the symbol π to denote the ratio
of the circumference of a circle to its diameter is due to
British mathematician William Jones (1675–1749),
who first used it in his 1706 publication Synopsis pal-
mariorum matheseos. It is believed that he chose it
because π is the initial letter of the Greek word
περιϕ ′ερεια for “periphery.” Euler followed Jones’s
choice and popularized the use of this symbol in his
influential 1736 text Mechanica.

The number π has captured the interest of many
mathematical enthusiasts. There are clubs across the
globe for those who can recite, from memory, the first
100 and even the first 1,000 digits of π. Some people
declare March 14 “pi-day,” and deem the time 1:59 of
that day significant. (This matches the decimal expan-
sion 3.14159…) There is a popular mnemonic for
memorizing the first 12 digits of π:

See. I have a rhyme assisting my feeble brain,
its tasks ofttimes resisting.
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The letter count of each word in this sentence matches
the first 13 digits of the decimal expansion π.

In 1897 amateur mathematician Dr. E. J. Goodwin,
of Solitude, Indiana, thought he had discovered a
remarkable relationship between the circumference of a
circle and its area. Rather than share his discovery with
the mathematical community, Goodwin took his “dis-
covery” to his representative in the Indiana General
Assembly and persuaded him to introduce the follow-
ing house bill:

Be it enacted by the General Assembly of the
state of Indiana, that it has been found that a
circular area is equal to the square on a line
equal to the quadrant of the circumference.

Clearly no politician understood the mathematics of
this assertion, for the bill passed and Goodwin was
well on his way to persuading the state of Indiana that
the area of a circle of circumference C is given by 

, or, equivalently, that the value of π is exactly 4. 

Fortunately, due to press attention and the outrage of
mathematicians living in the state, the bill was derailed
before it reached full senate approval and was made into
law. Senator Hubbell, an opponent of the bill who also
saw the absurdity of the claim, aptly remarked: “The
senate might as well try to legislate water to run uphill.”

See also E; EULER’S FORMULA; RADIAN MEASURE;
SCALE.

pie chart (pie graph) See STATISTICS: DESCRIPTIVE.

pigeonhole principle (Dirichlet’s principle, drawer
principle, letterbox principle, schubfachprinzip) Attri-
buted to PETER GUSTAV LEJEUNE DIRICHLET (1805–59),
the pigeonhole principle observes that if n objects are
put in p boxes, and n > p, then at least one box receives
two or more objects. The example of housing n pigeons
in p pigeonholes is often cited. This principle can also be
stated in the following alternative form:

If each of n objects is assigned one of p labels,
and n > p, then at least two objects have the
same label.

Thus, for example, if we pull out three socks from a
drawer that contains only black socks and white socks

(three objects, two labels), at least two of those socks
will be the same color.

This straightforward principle has a number of sur-
prising consequences. For instance:

There exist two (nonbald) people in Sydney,
Australia, with exactly the same number of
hairs on their heads.

(Label each person by the number of hairs on his or
her head. It is known that no human has more than 1
million hairs, and there are more than this many peo-
ple in Sydney.)

Any collection of 18 integers contains two inte-
gers that differ by a multiple of 17.

(Assign to each integer its remainder when divided by
17. Noting that there are 17 possible remainders—0
through 16—any collection of 18 integers must contain
two members with the same remainder. Their difference
is a multiple of 17.)

In any group of six people, there are two who
have an identical number of friends in the group.

(Assign to each person the number of friends he or she
possesses in the group. The six numbers 0 through 5
are possible, but not both 0 and 5 simultaneously.
Thus, among the six in the group, only five labels are
possible. Two people must possess the same value.)

The pigeonhole principle can be generalized as
follows:

If each of nk + 1 objects is assigned one of n
labels, then at least k + 1 objects are assigned
the same label.

(If each label is used at most k times, then at most nk
objects are labeled. As there are more objects than this,
some labels must be used more than k times.) As conse-
quences we have, for instance:

Among 2,000 people, at least five were born
on the same day of the year.

(Label each person with the day on which he or she
was born. As there are 366 possible labels and 2,000 =
366 × 5 + 170 > 366 × 5 + 1, at least five people have
the same label.)
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If 865 points are scattered on a square sheet of
paper 1 ft wide, then some seven of those
points will be clustered sufficiently close so as
to lie in a square 1 in. wide.

(Divide the sheet of paper into 144 squares each of
side-length 1 in. and label each point by the square in
which it lies. For points that fall on a line between two
squares, arbitrarily decide to which square it belongs.
As 865 = 144 × 6 + 1, one of these small squares con-
tains seven points.)

The following principle is sometimes considered a
variation of the pigeonhole principle:

If n numbers sum to S, then not all the numbers 

are larger than . Also, not all the numbers are 

smaller than .

As a simple consequence we have:

If wages of five workers summed to $100,000,
then at least one worker earned no more than
$20,000.

See also COMBINATORICS.

place-value system See BASE OF A NUMBER SYSTEM.

plane Informally, a plane is a flat surface having no
edges and extending infinitely in all directions. More
precisely, a plane is a geometric surface, without edges,
with the property that any straight line connecting two
points in the surface remains in the surface.

Planes are regarded as two-dimensional—within
the surface there are only two independent directions
of motion: “left and right” and “back and forth.” Any
other motion (diagonal motion, for example) can be
thought of as a combined effect of these two motions.

Sitting in three-dimensional space, a plane is
thought of as a geometric object with no thickness. It is
possible to write down an equation for such a plane.
(See VECTOR EQUATION OF A PLANE.)

Plane geometry is the study of relationships between
points, lines, and curves lying in the same plane. A plane
figure is a figure, such as a square, circle, or a triangle,

that lies in a plane. Points that all lie on the same plane
are called coplanar.

Two planes sitting in three-dimensional space inter-
sect if they share points in common. If they do, the set
of points they share forms a straight line. Two planes
that do not intersect are called parallel. Three planes
sitting in three-dimensional space can intersect in a
point, along a line, or not at all.

In both two- and three-dimensional space, two
points P and Q determine a line. In three-dimensional
space, three points P, Q, and R determine a plane
(under the proviso that P, Q, and R do not themselves
lie on a straight line). To see this, consider the line that
passes through P and Q. There are infinitely many
planes that contain this line. The point R determines
which of these planes to choose. (Alternatively, using
VECTOR analysis, the POSITION VECTORs

→
PR and

→
QR are

two vectors in the desired plane, and so their CROSS

PRODUCT n =
→
PR × →

QR is a normal to the plane. This is
all we need to write down the VECTOR EQUATION OF A

PLANE.) Any three points in three-dimensional space
are coplanar.

Four points might or might not all lie on the same
plane. This is the reason why four-legged chairs are
unlikely to be stable on rough, uneven floors. The tips
of the chair legs represent four coplanar points, but the
locations at which you wish to place these points on an
uneven floor might not be. A three-legged stool, how-
ever, will always be stable, as any three points on the
uneven ground will be coplanar. For this reason, barn
stools used for milking, say, are traditionally made
three-legged.

Plato (ca. 428–348 B.C.E.) Greek Philosophy Born
in Athens, Greece, philosopher Plato is remembered in
mathematics for promoting the notion that mathemati-
cal concepts have a real existence independent of
human thought. This is consequently linked to the
argument that mathematicians discover mathematics,
rather than create it. Plato deemed mathematics as an
essential part of a valued education, and he greatly
influenced the esteem with which mathematics is
regarded in the Western world. He was also the first to
describe the five PLATONIC SOLIDs.

Plato was a worldly man very much interested in
politics and human affairs. He was a member of the
military service during the Peloponnesian War

S–n

S–n
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(431–404 B.C.E.) between Athens and Sparta, and he
traveled through Egypt and Italy once democracy was
restored to Athens. In Egypt, Plato learned of the
water clock and later brought the idea back to Greece.
In Italy he encountered the followers of PYTHAGORAS

and was greatly influenced by the mathematics they
studied. Although Plato made no direct contributions
to mathematics, his respect for the subject was pro-
found, and he wrote about the philosophy of the sub-
ject at great lengths in his works.

Around 387 B.C.E. Plato returned to Athens to
found a school devoted to instruction and research in
philosophy and the sciences. He secured a piece of land
from the Greek hero Academos, and the school became
known as the Academy. Plato presided over the insti-
tute for the remainder of his life.

Plato wrote a total of 35 dialogues, fictitious con-
versations between characters, cleverly structured so as
to reveal a philosophical line of thought and investiga-
tion. In his dialogue Phaedo, Plato described mathe-
matical objects as perfect forms (a line, for instance,
really is an object possessing no breadth), and pro-
fessed that the objects we see and can construct in the
physical universe are imperfect imitations of these ideal
forms. He also discussed these ideas in his work the
Republic. It is clear from his dialogues that Plato
regarded mathematics as a source of universal truth
and that the study of mathematics offered the best tool
for fostering intellectual development.

In his work Timaeus, Plato described the five Pla-
tonic solids as fundamental units of the universe. He
suggested, for instance, that each of the four “ele-
ments”—earth, fire, air, and water—is appropriately
modeled by the shape of a Platonic solid, namely, the
CUBE, the TETRAHEDRON, the octahedron, and the
icosahedron, respectively. The fifth Platonic solid, the
dodecahedron, with its 12 faces matching the 12 signs
of the zodiac, represented the universe itself. German
astronomer JOHANNES KEPLER (1571–1630) was so
smitten with the proposed harmony of the Platonic
solids that he later developed a surprisingly accurate
model of the solar system based upon them.

Plato’s attitude toward, and regard for, the very
nature of mathematical thinking had a lasting influence
on the entire course of scientific progress in the West.
Apart from promoting the value of pure mathematics,
Plato also emphasized the need for rigorous proof,
thereby laying down a philosophical foundation for oth-

ers, most notably EUCLID, on which to pursue research.
Plato is also credited for limiting the use of geometrical
tools to the compass and straightedge alone.

Platonic solid (regular polyhedron) Any convex POLY-
HEDRON, all of whose faces are congruent regular poly-
gons, is called a Platonic solid. For example, a CUBE,
composed of six identical square faces, is a Platonic solid,
as is a TETRAHEDRON composed of four identical equilat-
eral triangular faces. Platonic solids have the property
that not only are all of its faces identical, but all of its
vertices are also alike in the sense that the same number
of edges meet at each vertex of the polyhedron.

Regular polygons and regular polyhedra were stud-
ied extensively by the classical Greek scholars. In two-
dimensional space, regular polygons with any desired
number of sides exist. In three-dimensional space, how-
ever, there are only a small number of regular polyhe-
dra. As his final proposition in his revered work THE

ELEMENTS, the geometer EUCLID (ca. 300–260 B.C.E.)
showed that there are only five Platonic solids, namely:
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1. Regular tetrahedron, with four triangular faces and
three edges meeting at each vertex

2. Cube, with six square faces and three edges meeting
at each vertex

3. Octahedron, with eight triangular faces and four
edges meeting at each vertex

4. Dodecahedron, with 12 pentagonal faces and three
edges meeting at each vertex

5. Icosahedron, with 20 triangular faces and five edges
meeting at each vertex

It is not difficult to see why there can be no other
Platonic solids. Notice that for any polyhedron, at least
three polygonal faces must meet at each vertex of the
solid, and that, in order to form a peak at that vertex,
the angles of the faces meeting at that vertex must sum
to less than 360°. (If the sum of the angles around a
vertex is precisely 360°, then the surface would be flat
at the vertex. If, on the other hand, the angles sum to
more than 360°, then the surface would cave in at that
vertex.) Now consider the various regular polygons
that might be used to construct a Platonic solid:

Equilateral Triangles: Each angle in an equilateral tri-
angle is 60°. Thus three, four, or five such triangles
could surround a vertex of a polyhedron, but not six
or more. (The angle sum would no longer be less
than 360°.) Each of these possibilities does in fact
occur. These are the tetrahedron, the octahedron,
and the icosahedron, respectively.

Squares: Each angle in a square equals 90°. Thus only
three squares could possibly surround a vertex in a
polyhedron. This does in fact occur. It is the cube.

Regular Pentagons: Each angle in a regular pentagon
equals 108°, and so only three pentagons could pos-
sibly surround a vertex in a polyhedron. This does in
fact occur. It is the dodecahedron.

Regular Hexagons and Higher: Each angle in a regular
polygon with six or more sides is 120° or greater.
No three of these figures could possibly surround a
vertex in a polyhedron.

That each Platonic solid can be placed inside a
SPHERE—the most perfect three-dimensional figure,
according to the ancient Pythagorean sect of 500
B.C.E., in such a way that each vertex of the solid just
touches the sphere—was deemed deeply significant in
times of antiquity. The Greeks associated each Platonic
solid with an “element” of the physical world. The

tetrahedron, with its minimal volume per unit surface
area, was fire, and the stable cube was solid earth. The
less stolid octahedron was air, and the icosahedron,
with the maximum volume per surface-area ratio, was
water. The Pythagoreans, at first, were not aware of
the existence of the dodecahedron, but they attributed
the meaning of the entire universe to this figure upon
its discovery. (Its 12 faces match the 12 signs of the
zodiac.) The word quintessence, which today means
the best or purest aspect of some nonmaterial thing,
derives from the phrase quinta essential meaning the
fifth element, namely, the dodecahedron representing
all. The philosopher PLATO (ca. 428–348 B.C.E.) wrote
extensively about the five regular polyhedra and their
significance in his work Timaeus. This is the reason
why we call them Platonic solids today.

German astronomer and mathematician JOHANNES

KEPLER (1571–1630) also tried to attribute special
meaning to the five Platonic solids. At his time, only
five planets were known, and Kepler worked to relate
the orbits of these planets in some way to the five spe-
cial solids. He proposed that the orbit of each planet
lay on a sphere and that the distance between succes-
sive spheres was precisely such that each of the Platonic
solids, in turn, fits snugly between the two spheres,
with the inner sphere just touching the faces of the
polyhedron, and the vertices of the polyhedron just
touching the outer sphere. Kepler later abandoned this
theory. (He, in fact, is noted for discovering that the
orbit of each planet is not a circle but an ELLIPSE.) It is
interesting to note, however, that, allowing for eccen-
tricity, his Platonic solid theory for the first five planets
is accurate to within approximately 5 percent.

If we assume that each edge of a Platonic solid is 1
unit in length, then the VOLUME V of each solid is given
as follows:
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It is worth mentioning that, like the Platonic solids,
there are only a finite number of semiregular polyhe-
dra, that is, polyhedra with two types of faces, each a
regular polygon with each vertex alike. For example,
the classical pattern of 12 pentagons and 20 hexagons
on a soccer ball represents a semiregular polyhedron.
ARCHIMEDES OF SYRACUSE (287–212 B.C.E.) proved
that there are only 13 semiregular polyhedra. For this
reason, they are today called the Archimedean solids.

See also CONGRUENT FIGURES; POLYGON.

Playfair’s axiom See PARALLEL; PARALLEL POSTULATE.

plot The act of specifying the location of a point on a
set of coordinate axes is called “plotting” the point. If
a collection of points are specified by an equation of
the form y = f(x), then a graph of the equation is some-
times called a plot.

See also CARTESIAN COORDINATES; COORDINATES;
GRAPH OF A FUNCTION; SCATTER DIAGRAM.

plus The symbol used to denote ADDITION is the plus
sign, +. For example, the number 4 increased by the
addition of two more units is written 4+2. In general,
any operation that is to be interpreted as analogous to
addition is denoted with a plus sign. For example, the
GROUP operation in an abstract Abelian group is usu-
ally denoted +. As an adjective, the + symbol is used to
describe a quantity of positive value. For example, +4
is a quantity 4 units greater than zero.

The symbol is believed to be derived as an abbrevi-
ation of the Latin word et for “and,” which was often
used to describe addition: 4 and 2 make 6, for instance.
A 1489 Latin manuscript on arithmetic written by
Johannes Widman contains the first known printed use
of the symbol. It also contains the symbol “–” for SUB-
TRACTION, which is believed to have already been in
common use in Germany for several decades.

The plus/minus symbol, ±, is used to denote a quan-
tity that which should be both added and subtracted.
For example, the two solutions to the QUADRATIC

equation x2 – x – 1 = 0 can be written . If the 

choice of operation is important, mathematicians will
introduce the symbol . For example, the expression

a ± b c indicates that the second operation is to be
different from the first. (Thus the expression can be
interpreted as either a + b – c or a – b + c, but not a + b
+ c or a – b – c.) Matters are confusing, however. If the
symbol is not used, then all choices of operations are
deemed permissible. The expression a ± b ± c, for
instance, could be any one of the four possibilities.
There is no special symbol to indicate that both opera-
tions must be the same.

The plus/minus symbol was first used by French
mathematician Albert Girard in his 1621 text Tables.

Poincaré, Jules-Henri (1854–1912) French Analysis,
Topology, Mechanics Born on April 29, 1854, in
Nancy, France, mathematician Jules-Henri Poincaré is
remembered as one of the great geniuses of all time who
was active in almost every area of mathematics and
physics. Poincaré founded the field of algebraic TOPOL-
OGY (the application of algebraic techniques to solve
problems about space, shape, and form) and discovered
an important class of functions called automorphic
functions. (These functions, defined in the field of COM-
PLEX NUMBERS, are ratios of linear functions and have
the property of being invariant under various symme-
tries of the complex plane.) In applied mathematics, he
is remembered for his substantial work in the theory of
celestial mechanics and for his work in optics, electro-
magnetism, thermodynamics, quantum theory, and the
development of the theory of special relativity. (He is
considered a codiscoverer of the special theory with
ALBERT EINSTEIN and Hendrik Lorentz.) Poincaré pub-
lished over 500 memoirs during his lifetime, as well as a
number of popular books on the philosophy of mathe-
matics and science.

After working as a mining engineer at Vesoul for
several years, Poincaré received a doctoral degree in
mathematics from the University of Paris in 1879. His
thesis examined applications of DIFFERENTIAL EQUA-
TIONs and served as a springboard for his later work in
topology, automorphic functions, and in physics.
Poincaré had a talent for recognizing connections
between disparate topics of study, allowing him to
solve problems from many different perspectives.

Poincaré published his first piece on the topic of
topology in 1895 with his text Analysis situs (Analysis
of position). At the same time he also outlined his
method of homotopy theory based, essentially, on the

±
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simple idea that, although any loop drawn on the sur-
face of a SPHERE can be continuously shrunk to a point
(while remaining on the surface of the sphere), the
same is not true for loops drawn on the surfaces of
other three-dimensional objects. For example, not all
loops drawn on the surface of a TORUS are homotopi-
cally equivalent to a point. Thus the study of loops on
surfaces leads to a method for distinguishing surfaces.
(This is important, for instance, if one is trying to
determine the shape of mathematical objects that can-
not be visualized.) Poincaré conjectured that any sur-
face that has the same homotopy properties of a sphere
is topologically the same as a sphere. This result,
known as Poincaré’s conjecture, has long been known
to hold for one- and two-dimensional surfaces, and,
since 1982, for four- and higher-dimensional surfaces.
Work on proving the conjecture true for three-dimen-
sional surfaces continues today.

From 1892 to 1899 Poincaré published his three-
volume work Les méthodes nouvelles de la méchanique
céleste (New methods in celestial mechanics), a land-
mark piece that aimed to characterize all possible
motions of mechanical systems.

He was appointed chair of the faculty of science at
the University of Paris in 1881, chair of mathematical
physics and probability at the University of Sorbonne
in 1886, and, in the same year, chair at the prestigious
École Polytechnique. He held these chairs until his
death in 1912. In 1887 Poincaré was elected, sepa-
rately, to all five sections of the Académie des Sciences
(mechanics, physics, geography, navigation, and geom-
etry), and in 1908 he was also elected to the Académie
Française. He also received an extraordinarily large
number of awards and honors from other learned insti-
tutions around the globe, including the ROYAL SOCIETY

SYLVESTER MEDAL in 1901 and the Bruce Medal of the
Astronomical Society of the Pacific in 1911.

Poincaré died in Paris, France, on July 17, 1912.

point A location in space (or on a curve or a surface)
is called a point. A point is usually specified by its
COORDINATES in a coordinate system. For instance, a
point in a three-dimensional system of CARTESIAN

COORDINATES is given by a triple of numbers (x,y,z). In
elementary GEOMETRY, a point is an undefined term
but is loosely thought of as a geometric entity having
no dimensions. The geometer EUCLID (ca. 300 B.C.E.)

gave the vague description of a point as “that which
has no breadth.”

A collection of lines is said to be CONCURRENT if
the lines meet at a common point. A TRIANGLE pos-
sesses many interesting points of concurrency.

In arithmetic, the decimal point is the symbol used
to separate the integer part of a number from its frac-
tional part. For example, the number 2.53 is read as
“two point five three.”

See also DECIMAL REPRESENTATION; NINE-POINT

CIRCLE; PLOT.

point of contact (tangency point) The single point
at which two curves, or two curved surfaces, touch, but
do not cross, is called a point of contact. For example,
the point at which a ball sitting on a table touches the
surface of the table is the point of contact of a SPHERE

and a PLANE.
See also TANGENT.

Poisson, Siméon-Denis (1781–1840) French Proba-
bility theory Born on June 21, 1781, in Pithiviers,
France, scholar Siméon-Denis Poisson is remembered
for his fundamental work on the theory of PROBABILITY,
for the discovery of the distribution named after him,
and also for his formulation of the LAW OF LARGE NUM-
BERS, all completed in the latter part of his mathemati-
cal career. Before then Poisson had made significant
contributions to the topic of celestial mechanics and to
the theory of electricity and magnetism.

Poisson entered the École Polytechnique in Paris in
1798 to study mathematics under the guidance of
JOSEPH-LOUIS LAGRANGE (1736–1813) and PIERRE-
SIMON LAPLACE (1749–1827), both members of the
faculty at the time. After graduating just two years
later, Poisson was granted a deputy professorship at the
institution and later a full professorship in 1806.

During this early period of his career Poisson stud-
ied DIFFERENTIAL EQUATIONs as well as POWER SERIES

and their applications to mechanics and physics. Start-
ing in 1808 he produced fundamental results extending
the work of Laplace and Lagrange on the motion of the
planets, developing new series techniques to approxi-
mate solutions to perturbations in their orbits. He pub-
lished an influential two-volume treatise on the topic of
mechanics in 1811 and solved important problems on
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the theory of gravitation in the years that followed. He
found applications of this work to the theory of elec-
tromagnetism in 1813 and to the theory of heat trans-
fer in 1815.

Late in his career, Poisson’s interests turned toward
probability. Fascinated by studies of societal behavior,
he began to analyze the probability of a random event
occurring within a given interval of time given that its
likelihood of happening is very small, but the number
of opportunities for it to occur is large. This work led
to his discovery of the POISSON DISTRIBUTION, as it is
called today, details of which he published in 1837.

Poisson was a prolific writer and published over
300 mathematical works during his career. Unfortu-
nately, scholars at the time generally did not regard his
latter work important, and Poisson never enjoyed the
full respect of the mathematics community. It was only
after his death, on April 25, 1840, that the significance
of his many innovative ideas became apparent.

Poisson distribution See BINOMIAL DISTRIBUTION.

polar coordinates Invented by SIR ISAAC NEWTON

(1642–1727) polar coordinates identify the location of
a point P in the plane by its distance r from a fixed
point O in the plane, called the origin or the pole, and
the angle θ the line segment OP makes with a fixed ray
placed at O, called the polar axis. The pole is usually
taken as the origin of a standard system of CARTESIAN

COORDINATES, with the polar axis being the positive x-
axis, and the angle θ measured in the counterclockwise
sense. The pair of numbers (r,θ) is called the polar
coordinates of P.

As an example, the point 1 unit along the x-axis,
and 1 unit along the y-axis, written (1,1) in Cartesian

coordinates, is a distance √
–
2 from the origin and makes

an angle of 45° with the x-axis, and so has polar coor-
dinates (√

–
2,45°). By adding multiples of 360° to the

angle, one can identify the same point as (√
–
2,405°),

(√
–
2,765°) or even (√

–
2, –315°), for example. This

shows that the polar coordinate representation of a
point is not unique. The polar coordinates of the origin
are not well defined, and this point is usually referred
to simply as the point with r = 0.

It is possible to convert between polar and Carte-
sian coordinates. If a point P has Cartesian coordi-
nates (x,y) and polar coordinates (r,θ) then P lies at the
apex of a right triangle with a horizontal leg of length
x and vertical leg of length y. The length r is the
hypotenuse of the triangle and, from TRIGONOMETRY,
θ is an angle whose sine is y/r, cosine is x/r and tangent
is y/x. Thus, with the aid of PYTHAGORAS’S THEOREM,
we have the equations:

As a check we see that the point P = (1,1) given in Carte-
sian coordinates does indeed have polar coordinates

given by r = = √
–
2 and . The 

point Q with polar coordinates (2,30°) has Cartesian
coordinates given by: x = 2 cos(30) = √

–
3 and y =

2sin(30) = 1. Thus Q = (√
–
3,1).

Polar coordinates are useful in describing equations
in mathematics that have central symmetry about the
origin. For example, in Cartesian coordinates, the
equation of a circle of radius five reads: x2 + y2 = 25. In
polar coordinates, this equation reduces to (rcosθ)2 +
(rsinθ)2 = 25, that is, r2(cos2θ + sin2θ) = r2 = 25, or sim-
ply r = 5. The equation of an ARCHIMEDEAN SPIRAL is
also elementary in polar coordinates: r = aθ for some
constant a.

A DOUBLE INTEGRAL ∫
R
∫ f(x,y)dA is defined to be the

volume under the graph z = f(x,y) above a region R in
the xy-plane. It can be computed as an iterated integral
∫∫f(x,y)dxdy with the appropriate limits of integration
inserted. To convert this integral to one expressed in
polar coordinates, one performs double integration
given by ∫∫f(r cosθ,r sinθ)r dr dθ. The appearance of the
r in the integrand is explained as follows:

θ = 



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= °−tan 1 1
1

45√12 + 12

x r r x y

y r
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= = +
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Subdivide the region R into small pieces appropri-
ate for examination with polar coordinates. The kth
section is thus a region given by values r and θ
bounded between fixed values: rk1 < r < rk2 and θk1 < θ
< θk2. It appears as the region between a sector of angle
θk2 – θk1 of radius rk2 and the sector of the same angle
but at a smaller radius rk1, and so has area:

where dθk = θk2
– θk1

and drk = rk2
– rk1

. The double
integral is thus given as a limit

taken over finer and finer subdivisions of the region R.
But in this limit, the values rk1 and rk2 both approach 

a common value r, and so the term = r appears in  
the integrand. (Similar calculations explain why one
must insert an r when converting an integral to CYLIN-
DRICAL COORDINATES, and a term ρ2 sinϕ when con-
verting to SPHERICAL COORDINATES.)

See also CARL GUSTAV JACOB JACOBI; ROSE.

Pólya, George (1887–1985) Hungarian Education,
Geometry, Number theory Born on December 13,
1887, in Budapest, Hungary, mathematician George
Pólya is remembered not only for his influential work
in the fields of PROBABILITY theory, mathematical
physics, GEOMETRY, COMBINATORICS, and NUMBER

THEORY, but also for his landmark work in mathemati-
cal education and problem solving. His famous work
How to Solve It provided heuristic tools for breaking

complicated problems into simpler components and
developing strategies of attack, and furnished practical
insights to finding solutions and understanding the cre-
ative process of doing mathematics. The work was
immensely influential and was translated into 17 lan-
guages, selling over 1 million copies. Pólya is also
noted for coining the name CENTRAL-LIMIT THEOREM

for the famous fundamental result used in STATISTICS.
Pólya received a doctorate in mathematics from the

University of Budapest in 1912 after completing a the-
sis on the topic of geometric probability. He was inter-
ested in not only understanding mathematics, but also
the process by which it is discovered. In 1913 he began
work on a textbook in ANALYSIS that organized topics
and problems not by their subject, but rather by their
method of solution. This thinking soon led him to the
work on the art of problem solving and the writing of
his famous text How to Solve It. In brief summary,
Pólya developed the following basic four-stage plan to
solving a problem:

1. Understand the problem. (Identify the knowns and
the unknowns. Draw a diagram or a table. Use the
diagram to identify relationships between the vari-
ables or do the same with algebraic formulae.)

2. Devise a plan. (Consider if the problem is similar to a
previously solved example. Look for a pattern. Con-
sider known formulae that may be applicable. Make
guesses and use trial and error. Break the problem
into smaller parts or cases. Work backwards from the
stated solution. Restate the problem.)

3. Carry out the plan. (Check each step. Prove or ver-
ify each step.)

4. Look back, check work, and reflect on the problem.
(Does the solution obtained make sense? Can the
solution be found via a different, and perhaps shorter,
method? Ask “what if” questions. What if the ques-
tion is changed in a certain way? What if some condi-
tions or statements in the problem are omitted?)

By identifying the thinking process behind solving
problems for the first time, Pólya revolutionized the art
of mathematics education. He submitted that the great-
est good in teaching mathematics comes from providing
students the opportunity to discover results for them-
selves and that the development of problem-solving
skills provides the appropriate means for this to occur.

Pólya received many honors throughout his life,
including election to the London Mathematical Society,
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the National Academy of Sciences of the United States,
the American Academy of Arts and Sciences, and the
Swiss Mathematical Academy. In 1933 he was awarded
a Rockefeller Fellowship to support a visit to Princeton
University, and in the mid-1940s, Pólya accepted a
position at Stanford University, where he stayed for the
remainder of his career. He died in Palo Alto, Califor-
nia, on September 7, 1985. His classic text is still used
today as the standard model for high school- and col-
lege-level courses on problem solving.

polygon A planar geometric figure bounded by a
number of straight lines is called a polygon. The name
is derived from the Greek language with poly meaning
“many” and gonia meaning “angle.” It is usually
assumed that no two lines forming the figure intersect
(other than at the corners or vertices of the polygon).
The polygon is called convex if the interior of the fig-
ure lies entirely on one side of each line used to form
it. It is called concave otherwise. (For example, a
square is a convex polygon, and the shape of a star is a
concave polygon.)

The following table gives the names for polygons
with different numbers of sides.

A polygon with n sides (an n-gon) also has n interior
angles, each of which is less than 180° if the polygon is
convex. (A concave polygon has at least one interior
angle greater than 180°.)

A DIAGONAL of a polygon is a straight line con-
necting any two nonadjacent vertices. Drawing all the
diagonals from a given vertex shows that any convex
n-sided polygon can be subdivided into n–2 triangles.
(The same is true for concave polygons, but one may
need to use a different collection of diagonals.) As the
sum of the interior angles of a TRIANGLE is 180°, this
shows that the interior angles of any n-sided polygon
sum to (n – 2) × 180°. Thus, for example, the interior
angles of any quadrilateral sum to 2 × 180° = 360°, of
any pentagon to 3 × 180° = 540°, and so on.

Traversing the boundary of a polygon completes
one full turn. This shows that the sum of the exterior
angles of any polygon sum to 360°. (For a concave
polygon, one must count left turns as positive and right
turns as negative.)

A polygon is called equilateral if all side lengths are
equal, and equiangular if all interior angles are equal. A
polygon need not be equilateral if it is equiangular (con-
sider a RECTANGLE for example) nor equiangular if it is
equilateral (consider the special case of a PARALLELO-
GRAM called a rhombus). Polygons that are simultane-
ously equilateral and equiangular are called regular
polygons. A SQUARE, for example, is a regular polygon.

The interior angles of a regular n-gon each have 

value × 180°—the sum of the interior angles 

divided by the number of angles. Thus, for example, an 

equilateral triangle has interior angles of × 180 = 60°,

square angles of × 180 = 90°, regular pentagon 

angles of × 180 = 108°, and so on.
3–
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2–
4

1–
3

(n – 2)
———n
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Sides Name

3 Triangle
4 Quadrilateral
5 Pentagon
6 Hexagon
7 Heptagon
8 Octagon
9 Nonagon or Enneagon

10 Decagon
11 Undecagon or Hendecagon
12 Dodecagon
13 Tridecagon or Triskaidecagon
14 Tetradecagon or tetrakaidecagon
15 Pentadecagon or Pentakaidecagon
16 Hexadecagon or Hexakaidecagon
17 Heptadecagon or Heptakaidecagon
18 Octadecagon or Octakaidecagon
19 Enneadecagon or Enneakaidecagon
20 Icosagon
30 Triacontagon

Sides Name

40 Tetracontagon
50 Pentacontagon
60 Hexacontagon
70 Heptacontagon
80 Octacontagon
90 Enneacontagon

100 Hectogon



The PERIMETER of a regular n-gon, with sides of 

length s, is ns, and its AREA is × perimeter × r = nsr. 

Here r is the APOTHEM of the polygon.
It is possible to construct an equilateral triangle

using a straightedge (a ruler without markings) and
compass alone. Draw a straight line. Set the compass at
a fixed angle and draw a circle with center anywhere
along this line. Choose one point of intersection of this
circle with the line and draw a second circle of the
same radius with this chosen point as its center. The
centers of each circle and their point of intersection
now form the three corners of an equilateral triangle.

One can also draw a square, regular 5-gon, and a
regular 6-gon, but not a regular 7-gon, using compass
and straightedge alone. The question of precisely
which regular n-gons are CONSTRUCTIBLE this way is
an old one.

Given a rectangular piece of paper, it is also possi-
ble to create the shape of an equilateral triangle by
creasing the sheet. Fold the paper in half along the
direction of its longest length, marking this midline as a
crease. Bring the bottom left corner of the paper to this
midline to form a diagonal crease that passes through
the bottom right corner. The location of this left corner
on the midline is the apex of an equilateral triangle
with the bottom edge of the paper as base.

Only three regular polygons tile the plane: the equi-
lateral triangle, the square, and the regular hexagon. A
study of TESSELATION shows that no other regular poly-
gon can do this.

All regular polygons have the following remarkable
property:

For any point inside a regular polygon, the
sum of the distances of that point from each of
the sides is always the same.

Suppose, for example, we choose an arbitrary point P
inside a regular hexagon of side-length s lying at dis-
tances h1, h2,…, h6 from the sides of the hexagon.
Lines connecting P to the vertices of the hexagon divide
the figure into six triangles. The area of the polygon is 

consequently the sum of areas of these triangles, sh1

+ sh2 + sh3 + sh4 + sh5 + sh6, and so h1 + h2

+ h3 + h4 + h5 + h6 has value , no matter

which point is chosen. (In general, the quantity 

equals the number of sides of the regular 
polygon times its apothem.)

The three-dimensional generalization of a polygon
is a POLYHEDRON. The generalization into four dimen-
sions is called a polychoron, and into an arbitrary
number of dimensions, a polytope.

See also CONCAVE/CONVEX; CYCLIC POLYGON;
LONG RADIUS.

polyhedron (plural, polyhedra) A three-dimen-
sional solid figure with a surface composed of plane
polygonal surfaces is called a polyhedron. For example,
a CUBE, with six square faces, is a polyhedron, as is a
TETRAHEDRON with four triangular faces, and any
PYRAMID or PRISM, for instance. Each polygonal surface
is called a FACE of the polyhedron, and any line along
which two faces intersect is called an edge. Any point
at which three or more faces meet is called a vertex or a
corner of the polyhedron.

POLYGONs and polyhedra were first studied in
detail by the ancient Greeks, who also gave them their
name: poly means “many” and hédra means “seat.”
Thus a polyhedron was considered capable of being
seated on any of its faces. In this context, it is usually
assumed then that a polyhedron is convex, that is, no
plane containing a face of the figure also passes through
the interior of the figure. (Consequently a convex poly-
gon can be “seated” on any of its faces on a tabletop.)
A polyhedron that is not convex is called concave.

Specific polyhedra are named according to the
number of faces they possess. For example, a tetrahe-
dron is any solid figure with four polygonal faces, a
pentahedron is one with five faces, and a hexahedron is

2 × area———–s

2 × area———–s
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any polyhedron with six faces. There is no polyhedron
with fewer than four faces.

A convex polyhedron is called regular if all of its
faces are congruent regular polygons. The geometer
EUCLID (ca. 300–260 B.C.E.) proved, in his final volume
of THE ELEMENTS, that there are only five regular poly-
hedra: the regular tetrahedron (with four triangular
faces), the cube (with six square faces), the octahedron
(with eight triangular faces), the dodecahedron (with 12
pentagonal faces), and the icosahedron (with 20 trian-
gular faces). These five regular solids played an impor-
tant role in the Greek study of geometry, and much
mystic significance was ascribed to the figures. Philoso-
pher PLATO (ca. 428–348 B.C.E.) studied and wrote
extensively about the five regular polyhedra, and for
this reason they are today called the PLATONIC SOLIDS.

A polyhedron is called semiregular if it is composed
of two different types of polygonal faces combined
together in the same way at each vertex of the polyhe-
dron. For example, the classical pattern drawn on a soc-
cer ball describes a semiregular polyhedron composed
of 12 pentagons and 20 hexagons arranged so that each
vertex of the figure is surrounded by one pentagon and
two hexagons. ARCHIMEDES OF SYRACUSE (ca. 287–212
B.C.E.) proved that there exist only 13 semiregular poly-
hedra, today called the Archimedean solids.

A polyhedron is said to be stellated if it is built
from a regular polyhedron by attaching pyramids to its
faces, or faceted if it is formed with these pyramids
turned inward.

Swiss mathematician LEONHARD EULER (1707–83)
discovered a remarkable formula, EULER’S THEOREM,
relating the number of vertices v, edges e, and faces f,
of any polyhedron free from holes akin to the hole of a
TORUS. We have:

v – e + f = 2

This formula proves, for instance, that any polyhedron
composed of pentagonal and hexagonal faces, not nec-
essarily regular, with three edges meeting at each ver-
tex, must contain precisely 12 five-sided faces. (To see
this, let v be the number of vertices of the polyhedron,
e the number of edges, p the number of pentagonal
faces, and h the number of hexagonal faces. Then v – e
+ p + h = 2. Also, since three edges meet at each vertex,
each pentagonal face has five edges, and each hexago-
nal face six edges, we have 3v = 2e = 5p + 6h. These

equations force p to have value 12, no matter what
value h may adopt.)

See also ALTITUDE; BASE OF A POLYGON/POLYHE-
DRON; CONCAVE/CONVEX; CONE; CYLINDER; FACE;
FRUSTUM; HYPERCUBE; NET; PARALLELEPIPED; PRISM;
PYRAMID.

polynomial A sum of multiples of positive integer
powers of a variable is called a polynomial. The gen-
eral form of a polynomial is an expression of the form:

anxn + an–1xn–1 +…+ a1x + a0

where an, an–1,…,a1,a0 are numbers, called the COEFFI-
CIENTs of the polynomial, with leading coefficient an

assumed to be different from zero. The number a0,
which may be zero, is called the constant term of the
polynomial. The highest power n that appears in the
expression with nonzero coefficient is called the DEGREE

OF THE POLYNOMIAL. For example, √
–
2x3 – 5x + 8 and 5

are polynomials of degrees three and zero, respectively.
A polynomial of degree two is called a QUADRATIC, of
degree three a cubic, of degree four a quartic, and of
degree five a quintic.

One can add two polynomials to produce a new
polynomial by collecting like terms, and one can multi-
ply two polynomials using the process of EXPANDING

BRACKETS. For example:

(x3 + 2x2 – 3x + 4) + (x2 + 4x – 2) = x3 + 3x2 + x + 2

and

(x2 + 2x + 1)(3x + 5) = 3x3 + 6x2 + 3x + 5x2 + 10x + 5
= 3x3 + 11x2 + 13x + 5

If one thinks of the variable x as an unspecified
BASE OF A NUMBER SYSTEM, then one can perform the
same arithmetical operations on polynomials (such as
ELIZABETHAN MULTIPLICATION and LONG DIVISION) as
for ordinary numbers. The ratio of two polynomials
produces a RATIONAL FUNCTION.

A polynomial function is a function whose outputs
are given by a polynomial expression. For example,
f(x) = 5x3 – 7x – 3 is a cubic function. It is not possible
for a nonzero polynomial function to produce zero as
an output for all inputs x. We have:

404 polynomial



If anxn + an–1xn–1 +…+ a1x + a0 = 0 for all values x,
then it must be the case that an = an–1 =…= a1 = a0 = 0.

(To see this, write anxn + an–1xn–1 +…+ a1x + a0 = 

. For a large 

value of x, the term anxn will adopt a very large value,
and the expression inside the parentheses will adopt a
value close to 1 + 0 +…+ 0 + 0 = 1. Thus the value of
the entire polynomial expression will not be zero,
unless an = 0. Repeating this argument shows that all
coefficients would then have to be zero.) As a conse-
quence we have:

If two polynomials produce the same output
values for each input value x, then the two
polynomials must be identical, that is, their
coefficients match.

(The difference of these two polynomials would be a
new polynomial that always produces the zero output.)
This second statement explains why the process of
EQUATING COEFFICIENTS is valid.

The FUNDAMENTAL THEOREM OF ALGEBRA assures
us that any degree-n polynomial equation of the form
anxn + an–1xn–1 +…+ a1x + a0 = 0 has precisely n roots
(when counted with multiplicity). Some roots may be
COMPLEX NUMBERS. There exist arithmetic formulae
for finding the roots of any quadratic equation, any
CUBIC EQUATION, and any QUARTIC EQUATION. In 1824
algebraist NIELS HENRIK ABEL proved that there are no
analogous formulae for solving fifth- and higher-degree
polynomial equations.

Evaluating a degree-n polynomial typically requires 

the computation of n + (n –1) +…+ 2 + 1 + 0 = 

multiplications. For instance, in the expression

2x3 + 3x2 + 4x + 5 = 2 × x × x × x + 3 × x × x + 4 × x + 5

the multiplication sign “× “ appears 3 + 2 + 1 + 0 = 6
times. This is the formula for the nth TRIANGULAR

NUMBER. The process of performing a NESTED MULTI-
PLICATION reduces the number of products needed to
just n. For example, rewriting 2x3 + 3x2 + 4x + 5 as
x(x(2x + 3) + 4) + 5 reduces the number of multipli-
cations present from six to three. The process of SYN-
THETIC DIVISION is intimately connected with nested
multiplications.

LAGRANGE’S FORMULA shows that given any n + 1
points, drawn in the plane, each with a distinct x coor-
dinates, there exists a polynomial function of degree n
whose graph passes through each of those points. Thus
it is always possible to “fit” a polynomial function to
any finite set of data points. This is useful for the pur-
poses of INTERPOLATION and EXTRAPOLATION.

A polynomial may have more than one variable.
For example, 5x2y + 7xy2 – y3 is a degree-three bivari-
ate polynomial.

See also BINOMIAL; COMPLETING THE SQUARE;
DESCARTES’S RULE OF SIGNS; DIFFERENCE OF TWO

CUBES; DIFFERENCE OF TWO SQUARES; DISCRIMINANT;
FACTOR THEOREM; FACTORIZATION; HISTORY OF EQUA-
TIONS AND ALGEBRA (essay); MONOMIAL; REMAINDER

THEOREM; ROOT; SOLUTION BY RADICALS; TAYLOR

SERIES; TRINOMIAL.

polynomial time A computation is said to run in
polynomial time if the number of elementary steps
required to complete the computation can be expressed
as a POLYNOMIAL function of the size of the input. For
example, if a basic step is to add or multiply two sin-
gle-digit numbers, then the computation of multiplying
two n-digit numbers via ordinary long multiplication
requires at most 4n2 steps. (Multiplying each of the
pair of digits requires n2 steps, and summing all results,
with carrying, is at most 3n2 steps.) Thus long multipli-
cation runs in polynomial time.

Computations that do not run in polynomial time
are said to run in exponential time. For example, the
task of listing all possible arrangements of n objects
grows as n FACTORIAL. As the factorial function will
exceed any polynomial function of n for sufficiently
large values of n, the operation of listing all possible
orders is exponential. Even with the most powerful
computers, exponential time computations generally
require an infeasible amount of time to complete. Poly-
nomial time algorithms, however, are more practical.

See also NP COMPLETE; TRAVELING-SALESMAN

PROBLEM.

polyomino Generalizing the concept of a domino, a
polyomino is a shape made by adjoining 1×1 squares
along entire edge lengths in such a way that no corner
of one square lies at an interior point of another
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square’s edge. A polyomino composed of n squares is
called an n-polyomino or simply an n-omino.

Two polyominoes are considered equivalent if one
can be picked up, rotated, and possibly flipped, to
match the other. Using this notion of equivalence, there
is then just one 1-omino (called a “monomino”), one
2-omino (the domino), two 3-ominoes (each called a
tromino), and five 4-ominoes (each called a tetromino).

Let P(n) denote the number of distinct n-ominoes.
The following table gives the value of P(n) for n from 1
to 12.

The exact values for P(n) up to n = 24 are known, but
finding a general formula for P(n) remains an open
problem. In 1966 mathematician David Klarner
proved that there is a number K (today called Klarner’s

constant) such that limn→∞ = K. (This shows that

P(n) has approximate value Kn if n is large, and so the
function grows exponentially.) The exact value of K is
not known, but mathematicians have established that
it lies between 3.9 and 4.649551. (They suspect its
value lies close to 4.2.)

The order of a polyomino is the smallest number
of identical copies of that polyomino that can be
assembled to form a rectangle. If the creation of a rect-
angle is impossible, then that polyomino is said to
have infinite order. The straight tromino has order one
(it is itself a rectangle) and the bent tromino has order
two. (Two copies of this tromino can interlock to pro-
duce a 2×3 rectangle.) The four tetrominoes illustrated

above have orders 1, 2, 4, 1, and ∞, respectively. (To
see that the final tetromino cannot tile any rectangle,
consider the placement of the tetromino in the top left
corner of the rectangle. Its orientation forces the place-
ment of the tetrominoes below it or to the right of it.)
There are no polyominoes of order three. Counting the
number of different ways to tile a 2 × n rectangle with
dominoes yields the FIBONACCI NUMBERS.

Generalizations of polyominoes to shapes com-
posed of fundamental units other than squares (such
as equilateral triangles and regular hexagons) are
called polyforms.

See also TESSELLATION.

population See POPULATION AND SAMPLE.

population and sample STATISTICS is the science of
collecting, tabulating, and summarizing DATA obtained
from particular systems of study, and making infer-
ences or predictions based on that data. The word pop-
ulation is used for the group of all the individuals (or
objects or events) that are the subject of the study. A
sample is a representative subgroup or subset of the
population. For example, in a medical study on the
growth rates of 8-year-old children in the United States,
the population would be all 8-year-old American chil-
dren. As it is not feasible to examine every child of a
particular age, a sample of just 1,000 children might be
used for the study.

A sample in which every individual in the popula-
tion has equal chance of being chosen for the sample is
called a random sample. If, in a sample, some portion
of the population is represented more heavily than it
actually occurs, then the sample is called biased. Biased
sampling is to be avoided.

A famous historical example of an erroneous pre-
diction based on biased sampling occurred during the
1936 U.S. presidential elections. The popular publica-
tion Literary Digest, as part of the sensationalism lead-
ing up to the election, conducted a poll to predict the
outcome of the race. After interviewing a sample of eli-
gible voters, chosen by drawing names at random from
telephone books from across the nation, the editors of
the publication concluded that the election was a fore-
gone conclusion—Alfred Landon was to win with a
comfortable lead—and they subsequently published

P nn ( )

n 1 2 3 4 5 6 7 8 9 10 11 12
P(n) 1 1 2 5 12 35 108 369 1,285 4,655 17,073 63,600

406 population

Polyominoes



much editorial commentary to this effect. It turned out,
however, that Landon’s opponent, Franklin Roosevelt,
won the election by a landslide. Members of the Digest
did not realize that they had worked with a biased
sample—only affluent Americans could afford tele-
phones at the time of the Great Depression and thus be
listed in telephone books. This was a class of voter that
was more likely to vote Republican. Consequently, the
Digest’s prediction was erroneous. The publication
folded in 1937 due to both the sampling fiasco and the
difficult times of the depression.

Today, a number of sampling methods are com-
monly used to help ensure that no bias occurs. These
methods include:

Random Sampling
Each subject of the population is assigned a number,
and numbers are generated randomly with the aid of a
computer to select members.

Systematic Sampling
Each subject of the population is assigned a number,
and, starting at a random number, every kth member
from then on is selected. For example, one might select
every 23rd person, starting with the 533rd member.

Stratified Sampling
When a population is naturally divided into groups
(such as male/female, or age by decade), selecting a ran-
dom sample from within each group produces what is
called a “stratified sample.” Samples produced this way
are used to ensure that representatives of each subgroup
are present in the study. For example, in a study involv-
ing college freshmen and sophomores, one might select
25 students at random from each group—freshman
males, freshman females, sophomore males, and sopho-
more females—to make a sample of 100 students.

Cluster Sampling
If an intact subgroup of a population is used as a rep-
resentative sample of the entire population, then the
sample is called a cluster sample. For example, the set
of all freshman females might be used to represent the
population of all college students for the purposes of
one study, or the 12 eggs in one carton of eggs as rep-
resentative of all the eggs handled by a particular
supermarket.

See also BIAS; STATISTICS: DESCRIPTIVE.

population models In biology the term population
means the number of individuals or organisms living in
a certain area. For example, the population of Aus-
tralia is the number of individuals currently living on
that continent, and the population of a laboratory
yeast culture is the number of organisms present in a
particular petri dish. A population model is a mathe-
matical theory used to describe, or predict, how a pop-
ulation size changes over time.

Interest in how populations grow was stimulated
in the late 18th century when Thomas Malthus
(1766–1834) published An Essay on the Principle of
Population as it Affects the Future Improvement of Soci-
ety. Malthus developed a simple model that yielded the
troubling conclusion that eventually the human popula-
tion would reach a size that cannot be sustained with the
food resources available on this planet. Although his
model oversimplifies matters and has proved to be incor-
rect for making long-term predictions, the Malthusian
model is still useful for understanding short-term
growth. His model is developed as follows:

Let P(t) be the population size at time t and
assume that over one unit of time (a minute, or
a day, or a year) that a certain percentage, say b
percent, of the population gives birth to off-
spring, and another percentage, say d percent
of the population, dies. (The number b is called
the birth rate and d is called the death rate.)
Thus after one unit of time, the population
increases by the amount bP(t) – dP(t). We have:

P(t + 1) – P(t) = (b – d)P(t)

This says that the rate of change of population
size is given by a constant (b – d) times the
population size. Assuming that the population
function P(t) can, for the sake of convenience,
be regarded as continuously changing with
time, this final statement can be interpreted, in
CALCULUS, as a formula:

= kP

where k = b – d. (The constant k is called the
growth rate.) Thus P(t) is a function whose
derivative is a constant times itself. Only expo-
nential functions have this property and so:

P(t) = P(0)ekt

dP
––
dt
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where P(0) is the population size at time zero.
This model predicts that a population size will
grow exponentially if the birth rate exceeds the
death rate.

Biologists realize that many ecosystems cannot
support arbitrarily large population sizes (the Earth
can only supply a finite quantity of food resources
per year, for example), and so this simple model is
not considered realistic. Generally, as a population
increases and gets closer to a maximum capacity M,
say, the growth rate k decreases. One can model this
by no longer assuming that k is constant, but varies
as follows:

k = M – P(t)

for example. (Here, when the population size P(t) is
close to M, the growth rate k is indeed small.) This
leads to the model:

= kP = (M – P)P

This is called the logistic growth model and was intro-
duced by Dutch biologist Pierre-François Verhulst
(1804–49). It is possible to solve this differential equa-
tion and obtain an explicit formula for the population
function P(t). However, one can quickly describe some
features of the population growth without any work.
For example,

1. If a population size starts at value M, then = 

(M – M) · M = 0. This means there is no change in
the population size and the function P(t) forever
remains at the value M.

2. If a population size starts at a value greater than M,

then = (M – P) · P < 0. This means that the 

population size will decrease. (There are not enough
food resources to support a large population.)

3. If a population size starts at a value less than M,

then = (M – P) · P > 0. This means that the 

population size will increase. The rate of increase
decreases as the population size approaches M. The
graph of the function thus looks like an increasing
S-shaped curve trapped above the x-axis and below
the constant line P = M.

The logistic model works well to describe popula-
tion changes for simple biological systems (such as a
yeast culture), and, surprisingly, also worked well to
describe the U.S. population growth between the years
1920 and 1950. However, this is likely coincidental.
Human population growth is very difficult to model,
given unpredictable factors such as advances in medical
technology, wars, and, in modeling a specific country’s
population, immigration.

position vector Given a point P in the plane, or in
three-dimensional space, the VECTOR represented by
the directed line segment 

→
OP connecting the origin O

to P is called the position vector of P. This vector has
the coordinates of P as its components. For example, if
P is the point (2,5), then its position vector is the vector
<2,5> = 2i + 5j.

In physics, the position vector of a particle is
often denoted by r. It is a function of time t and is
usually expressed in the form r(t) = x(t)i + y(t)j +
z(t)k, where x, y and z are functions of time. It repre-
sents the physical location of the particle at any time
t. The DERIVATIVE of the position vector is the VELOC-
ITY vector v(t) = x′(t)i + y′(t)j + z′(t)k, and its double
derivative is the acceleration vector a(t) = x′′(t)i +
y′′(t)j + z′′(t)k.

See also PARAMETRIC EQUATIONS.

positive A REAL NUMBER x is said to be positive if it
is greater than zero, that is, if x > 0. A real number less
than zero is called negative.

The product of two positive numbers is again posi-
tive. It is surprising that the rules of arithmetic dictate
that the product of two NEGATIVE NUMBERS must also
be positive. It follows then that for any nonzero (real)
number x we must have x2 > 0.

No COMPLEX NUMBER can be deemed positive or
negative. For example, if the number i is positive then,
by the previous statement, we must have i2 > 0, yield-
ing the absurdity –1 > 0. The same conclusion would
follow if we were to deem i negative.

An unspecified real number that is positive or pos-
sibly zero is called nonnegative. One that is negative or
possibly zero is called nonpositive.

See also ORDER PROPERTIES.

dP
––
dt

dP
––
dt

dP
––
dt

dP
––
dt
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postulate Another name for AXIOM. It is customary
to call the axioms of EUCLIDEAN GEOMETRY and of
ARITHMETIC postulates rather than axioms.

See also PEANO’S POSTULATES.

power series Any SERIES of the form = a0 + 

a1x + a2x2 + a3x3 +… where the coefficients an are con-
stant and x is a variable is called a power series. For
example, the TAYLOR SERIES of any function is a power
series, as is the GEOMETRIC SERIES 1 + x + x2 + x3 +….
Whether or not a power series converges depends on
which value is chosen for the variable x. For example,
the geometric series converges if –1 < x < 1 and
diverges otherwise. At the very least, every power series
converges for x = 0.

Mathematicians have proved the following result:

Given a power series , precisely one of 

the following is true:
1. The series converges only for x = 0.
2. The series converges (absolutely) for all val-

ues of x.
3. There is a positive real number R such that

the series converges (absolutely) for all val-
ues –R < x < R and diverges for |x| > R.
(The series might, or might not, converge
for each of the values x = R and x = –R.)

The value R is called the radius of convergence of the
power series. (If the series converges only for x = 0, one
usually says that the radius of convergence is zero. If
the series converges for all values of x, then the radius
of convergence is infinite.)

One often makes use of the ratio test from the study
of CONVERGENT SERIES to find the radius of conver-
gence of a power series. For example, the ratio test

shows that the series converges if 

is less than 1, and diverges 

if greater than 1. Thus the radius of convergence
for this power series is R = 1. (Going further, not-
ice that, for x = 1 the series is the HARMONIC

SERIES , which diverges, and for

it x = –1 it is the alternating harmonic series

, which converges. The power 

series in question thus converges for –1 ≤ x < 1.)
See also ABSOLUTE CONVERGENCE.

precision The total number of digits recorded while
taking a measurement is called the precision of the
measurement. For example, a recorded length of 3.650
meters is precise to four SIGNIFICANT FIGURES. (The
final digit zero indicates that the measurement was
indeed made to the nearest millimeter.) The number of
digits to the right of the decimal point is called the
accuracy of the measurement. Thus, for example, the
figure 3.650 is accurate to three decimal places.

See also ERROR.

premise A statement that is known or is assumed to
be true and on which a logical ARGUMENT is based is
called the premise of the argument. A premise could be
an AXIOM of a particular mathematical theory, or
merely an assumption taken to be true for the purposes
of discovering its consequences. For example, the
premise that “parallel lines do meet at a point” led
mathematicians to discover the realm of PROJECTIVE

GEOMETRY, a valid and fruitful new approach to under-
standing ordinary geometry.

prime A whole number possessing just two positive
factors is called a prime number, or simply a prime. For
example, 7 has only two positive factors, namely 1 and 7,
and so is prime. The number 24 has eight positive factors
and so is not prime, and the number 1 has only one fac-
tor and is not prime. The term composite is used to
describe numbers greater than 1 that are not prime.
(Medieval mathematician FIBONACCI (1170–1250) called
prime numbers “incomposite.”) It is vital that the num-
ber 1 be considered neither prime nor composite for the
FUNDAMENTAL THEOREM OF ARITHMETIC to hold true.

The first 25 prime numbers are: 2, 3, 5, 7, 11, 13,
17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97. These are all the primes smaller than
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100. The Greek mathematician EUCLID (ca. 300 B.C.E.)
was the first to prove that the list of primes goes on
forever. Today we call his particular argument establish-
ing this EUCLID’S PROOF OF THE INFINITUDE OF PRIMES.

Every whole number can be written as a product of
prime numbers. (If the number is already prime, it is con-
sidered a product with just one term.) For example, the
number 100 can be factored as 2 × 2 × 5 × 5. For this
reason, primes are considered the multiplicative building
blocks of the natural numbers, and have therefore been
the object of much intensive study throughout the cen-
turies. Surprisingly, many basic questions about them
remain unsolved. For example, no one knows a simple
formula that will generate the prime numbers, or a sim-
ple, and computationally feasible, procedure for factoring
large numbers into primes. It is not known whether
infinitely many TWIN PRIMES exist, or whether, as CHRIS-
TIAN GOLDBACH (1690–1764) conjectured, every even
number greater than 2 is indeed a sum of two primes.
(This is known as GOLDBACH’S CONJECTURE.) Also, no
one knows if there are infinitely many prime numbers of
the form n2 + 1, that is, 1 more than a square number, or
whether between any two square numbers there must be
a prime. (It is known, however, that for any number n
greater than 1, there is a prime between n and 2n.)

In 1791 CARL FRIEDRICH GAUSS (1777–1855) con-
jectured that the nth prime number has value approxi-
mately n · ln(n) where ln(n) is the natural LOGARITHM

of n. This claim was later proved to be correct and is
today called the PRIME-NUMBER THEOREM.

Despite the infinitude of primes, these numbers, in
some sense, are very scarce. It is easy to produce an arbi-
trarily long string of consecutive integers, none of which
are prime. For example, making use of the FACTORIAL

function, the numbers 1001! + 2, 1001! + 3, up to 1001!
+ 1001 form a string of 1,000 consecutive composite
numbers. (These numbers are, respectively, divisible by
2,3,…,1001.) The SIEVE OF ERATOSTHENES can be used
to “sift out” the prime numbers up to any given integer.

Prime numbers, especially large prime numbers,
play a key role in CRYPTOGRAPHY. The discovery of
new, large prime numbers is of interest to financial
institutions and security services needing to develop
effective encryption codes. Large prime numbers are
discovered with the aid of a computer, and are typically
MERSENNE PRIMES. The largest prime number known
as of the year 2003 is 220,996,011 – 1. It is over 6 million
digits long.

French mathematician and lawyer PIERRE DE FER-
MAT (1601–65) proved that if p is a prime number, then
2p–1 – 1 will be divisible by p. If not, it means the num-
ber p was not prime to begin with. This is often used as
a test to determine whether a number p is a good candi-
date for being prime. Unfortunately, some numbers can
still pass the test without being prime. For example, 2340

– 1 turns out to be divisible by 341, even though the
number 341 is not prime (341 = 11 × 31). Composite
numbers that pass Fermat’s test are called pseudoprimes.
The first three pseudoprimes are 341, 561, and 645.

See also COMPOSITE NUMBER; FACTOR.

prime-number theorem Mathematicians define π(n)
to be the number of PRIMEs less than or equal to n. For
example, there are four prime numbers less than 10, 

and so π(10) = 4. The quantity thus measures the 

proportion of numbers up to n that are prime. Study of
this function is important to understanding the distri-
bution of prime numbers among the natural numbers.

At the age of 14, mathematician CARL FRIEDRICH

GAUSS (1777–1855) developed a passion for tabulating
data about prime numbers. He observed, among other 

things, that the inverted function r (n) = seems to 

increase in value by constant amount 2.31 with each 10-
fold increase of n, at least for large values of n. That is,

r(10n) ≈ r(n) + 2.31

For example, r(100,000,000) equals ≈
1

––––––
0.05761455

n––π(n)

π(n)
––n
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n π(n)

10 4 0.4
100 25 0.25
1,000 168 0.168
10,000 1,229 0.1229
100,000 9,592 0.09592
1,000,000 78,498 0.078498
10,000,000 664,579 0.0664579
100,000,000 5,761,455 0.05761455
1,000,000,000 45,505,251 0.045505251

π(n)––n



17.357 and r(1,000,000,000) equals ≈

19.667. As 2.31 is approximately the natural LOGA-
RITHM of 10 this suggested to Gauss that r(n) is behav-
ing as the natural logarithm function. He conjectured:

for large values of n, but was never able to prove this
claim.

One hundred years later JACQUES HADAMARD

(1865–1963) and CHARLES-JEAN DE LA VALLÉE-POUSSIN

(1866–1962) simultaneously, but independently, proved
Gauss’s conjecture using sophisticated techniques from
analytic NUMBER THEORY. The result is known today as
the prime number theorem. It tells us that the nth prime
number has value approximately n · ln(n).

principal See INTEREST.

principal axes The most general equation in three
variables of second degree is:

Ax2 + By2 + Cz2 + Dxy + Exz + Fyz
+ Gx + Hy + Iz + J = 0

with constants A through F not all zero. In three-dimen-
sional space, the graph of such an equation is a surface
called a quadric surface. Mathematicians have shown
that, by rotating and translating the coordinate axes, it
is possible to rewrite the equation with respect to a new
set of axes to simplify the form of the equation, reduc-
ing it to one of 13 different types. The new coordinate
axes are called the principal axes for the quadric.

Six of the possible forms of the equation lead to
nondegenerate quadrics:

1. Ellipsoid: + + = 1

2. Hyperboloid of one sheet: + – = 1

3. Hyperboloid of two sheets: + – = –1

4. Elliptic cone: + = 

5. Elliptic paraboloid: + = 

6. Hyperbolic paraboloid: – = 

The remaining seven possible equations are degen-
erate quadrics:

1. Elliptic cylinder: + = 1

2. Hyperbolic cylinder: – = 1

3. Parabolic cylinder: = 

4. Pair of planes: = or = 1

5. Single plane: = 0

6. Line: + = 0

7. Point: + + = 0

In two-dimensional space, with suitable rotation
and translation of the coordinate axes, any nondegen-
erate quadratic equation Ax2 + By2 + Cxy + D = 0 can
be rewritten as the equation of either an ellipse, a
hyperbola, or a parabola, or, in the degenerate cases, a
pair of lines, a single line, or a point. The axes in the
new coordinate system are again called principal axes.

See also CONIC SECTIONS.

prism Any POLYHEDRON with two faces (the bases)
that are congruent polygons lying in parallel planes and
such that the remaining faces (the lateral faces) are par-
allelograms is called a prism. Specifically, a prism is a
CYLINDER with a polygonal base.

The lines joining the corresponding vertices of the
base polygons of a prism are called lateral edges. If the
lateral edges of a prism meet its bases at right angles,
then the prism is called a right prism. A prism that is
not right is called oblique.

Prisms are named according to their bases. A trian-
gular prism has two triangular bases (and three lateral
faces); a quadrangular prism has two quadrilateral
bases and four lateral faces. A CUBE is an example of a
right quadrangular prism.
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The height of a prism is defined to be the distance
between the two parallel planes that contain the bases
of the figures. The VOLUME V of a prism is given by the
area of its base multiplied by the figure’s height:

V = area of base × height

This follows from CAVALIERI’S PRINCIPLE.
A prismatoid is a polyhedron whose vertices lie in

one or the other of two parallel planes. The two bases
of the figure are not required to be congruent, nor even
have the same number of vertices. All lateral faces in a
prismatoid are either triangular or quadrilateral. If the
number of vertices of each base polygon is the same
and each lateral face is a quadrilateral, then the prisma-
toid is called a prismoid.

prisoner’s dilemma In GAME THEORY, any two-per-
son variable-sum game of partial conflict that mimics the
following classic scenario is called a prisoner’s dilemma:

Two prisoners, held in separate rooms incom-
municado, must choose to either confess or
deny involvement in a team crime. If both con-
fess, then each will be sentenced to two years
of hard labor. If both deny involvement, then
each will be sentenced to four years of hard
labor. However, if one prisoner denies and the
other confesses, then the denial carries just one
year of hard labor, and the confession six.

The following tables show the expected payoffs for
each prisoner X and Y for each of the four possible
outcomes of the game:

Each prisoner can argue as follows:

I have no indication as to what my partner will
do. If he is to choose option C, to confess, then
it is to my advantage to choose option D, to
deny. If he is to choose option D, then, again,
it is to my advantage to choose D. Either way,
I should choose option D.

The choice of D is thus a dominant strategy for
each prisoner, and it is likely that both prisoners will
deny involvement in the crime. Moreover, it is worth
noting that neither player is tempted to deviate from
this choice in an attempt to trick his opponent in the
game: the risk of being the only confessor inhibits this.
Thus the outcome (D,D) is a stable outcome for the
game, and both prisoners will likely each be sentenced
to four years of hard labor. (Any outcome to a game,
such as (D,D) for the prisoner’s dilemma, is called a
“Nash equilibrium” for the game if no player can bene-
fit by departing unilaterally from it.)

The prisoner’s dilemma provides a PARADOX:

In the game of prisoner’s dilemma, each player
has a dominant strategy that, when used,
yields an outcome to the game that is less ben-
eficial than if both were to deviate from the
dominant strategy.

This phenomenon is also seen in the predicament of an
arms race between two nations: mutual disarmament is
of benefit to both nations, but the fear of an opposing
nation choosing to defect from such an agreement
inhibits cooperation.

Elements of the prisoner’s dilemma can be extended
to games involving more than two players. For exam-
ple, a teacher asks each of his students to write on a
piece of paper his or her name and either the word
cooperate or the word defect. The students know that
candy pieces will be distributed among the class
according to the following rules:

If each student chooses to cooperate, then each
will receive 10 pieces.

If two or more students defect, then all
will be punished. Those that cooperate will
receive only five pieces of candy, and the defec-
tors shall receive none.

If, on the other hand, there is a single bold
student willing to be the lone defector, then
that defector will receive 80 candy pieces, and
all other students none.

Outcomes for Prisoner Y
Prisoner Y

Prisoner X 2 years        1 year

6 years        4 years

C D

D

C

Outcomes for Prisoner X
Prisoner Y

Prisoner X 2 years        6 years

1 year         4 years

C D

D

C
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The Game of Chicken
An interesting variation of the prisoner’s dilemma game
is the game of chicken. It is modeled on the dangerous
driving game in which two drivers head directly toward
one another on a single-lane road. Each driver must
decide at the last minute whether to swerve to the right,
or to not swerve. To bring mathematics into the game,
it is convenient to introduce numerical values for the
outcomes of the game.

Suppose 10 points are assigned to the winner of the
game: she who chooses not to swerve given that the
other driver did. As this is embarrassing to the second
driver, 0 points are awarded to her. If both drivers
decide to swerve, then, as this is only mildly embarrass-
ing to each, assign to each player 5 points. On the other
hand, if both players decide not to swerve, then the out-
come is disastrous and assign –10 points to each driver
in this instance. The outcomes of the game of chicken
can be summarized in the following two payoff tables:

Notice that neither player has a dominant strategy
in the game of chicken: his or her best action does
depend on what choice the other driver is going to
make. Moreover, the game of chicken has two distinct
Nash equilibria: (Swerve, Not Swerve) and (Not
Swerve, Swerve). (It is to neither player’s advantage to
deviate from one of these options.) This suggests that a
compromise (Swerve, Swerve) is not easy to achieve.

Many conflicts in real life, such as labor-manage-
ment disputes and international trade conflicts, have
the flavor of a game of chicken. As we know, the out-
comes of such disputes do indeed vary: one party may
decide to “cave in” so as to avoid a disastrous out-

come, while many times neither party surrenders, and
strikes and wars result.

See also JOHN NASH.

probability The principles of probability theory were
first identified by 16th-century Italian mathematician
and physician GIROLAMO CARDANO (1501–76), and
later by French mathematicians BLAISE PASCAL

(1623–62) and PIERRE DE FERMAT (1601–65). The key
idea is that if a situation can be described in terms of
possible outcomes, each equally likely, then the proba-
bility of any particular outcome is defined to be the
number 1 divided by the total number of outcomes.
For example, if a die is cast, six outcomes are possible:
{1,2,3,4,5,6}. We usually believe that each outcome is
equally likely, and so we say that the probability of
rolling any one particular outcome, such as a 5 for
example, is 1/6.

More generally, if more than one possible outcome
is deemed acceptable, then we define the probability of
obtaining one of these outcomes to be ratio of the
number of desired outcomes to the total number of
outcomes. For example, there are three ways to roll an
even number when casting a die. Thus we say that the
probability of casting a multiple of 2 is 3/6 = 1/2. The
chances of casting any of the numbers 1, 4, 5, or 6 are
4/6 = 2/3.

Mathematicians call the set of all possible out-
comes of an experiment the SAMPLE SPACE, and any
particular set of outcomes (or just a single outcome) an
EVENT. For example, in casting a die, the sample space
is the set {1,2,3,4,5,6}, and an event could be the sub-
set {2} (rolling a two), for example, or {2,4,6} (rolling
an even number). An event is always a subset of the
sample space.

If A represents an event, that is, a set of desirable
outcomes, then the notation P(A) is used to denote the
probability of that event occurring, that is, the proba-
bility that the outcome from one run of the experiment
will belong to the set A. A value P(A) is always
between zero and 1, with value P(A) = 0 indicating
that event A will never occur and value P(A) = 1 indi-
cating that event A will always occur. In casting a die, 

for example, we have P(even) = , P({1,4,5,6}) = , 

P(a multiple of 7) = 0, and P(a whole number) = 1.
Assigning probabilities to events requires careful

counting. Often the greatest difficulty is identifying

2–
3

1–
2

Outcomes for Driver 1
Driver 2

Driver 1 5 0

10 –10

Swerve

Swerve

Not Swerve

Not Swerve

Outcomes for Driver 2
Driver 2

Driver 1 5 0

10 –10

Swerve

Swerve

Not Swerve

Not Swerve
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the fundamental outcomes that are regarded as
equally likely. For example, there are 11 possible out-
comes for throwing a pair of dice, namely, getting a
sum of 2, 3, …, 11, or 12, but these events are not
equally probable. The fundamental outcome here is
not the sum of the two numbers on the dice, but
rather the pair of numbers that the two dice yield—
one number (1 through 6) on the first die and a sec-

ond number (again 1 through 6) on the second. There
are 36 equally likely outcomes in all. As six of these
pairs have a sum of 7, we can say that the probability 

of throwing 7 with a pair of dice is = . The 

probability of throwing 10 is = , and the proba-

bility of throwing 2 is only .
1–
36

1–
12

3–
36

1–
6

6–
36
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History of Probability and Statistics

Questions in betting and gaming provided much of the early
impetus for the development of PROBABILITY theory. In 1654
Chevalier de Méré, a French nobleman with a taste for gam-
bling, wrote a letter to mathematician BLAISE PASCAL (1623–62)
seeking advice about divvying up stakes from interrupted
games.

For example, suppose, in a friendly game of tennis, two
players each lay down a stake of $100 in a gamble to win
“best out of nine” games, but rain interrupts play after just
four games, with one player having won three games, the
second only one. What then would be the fair way to divide
the $200 pot? Of course the division of money should some-
how reflect each player’s likelihood of winning the gamble if
the series of games were to be finished.

Pascal communicated the concern of analyzing situ-
ations like these to his colleague PIERRE DE FERMAT

(1601–65), and their subsequent correspondences on the
issue represented the birth of the new field of probability
theory. Both mathematicians solved de Méré’s “problem
of points” (using two entirely different approaches, inci-
dentally) and then later worked together to generalize the
problem and extend their analyses to other types of
games of chance. Their discoveries aroused the interest
of other European scholars. In 1656 Dutch physicist-
astronomer-mathematician Christiaan Huygens (1629–95)
published De ratiociniis in ludo aleae (On reasoning in
games of chance) summarizing and extending the ideas
developed by Pascal and Fermat. He phrased their work
in terms of a new notion, that of EXPECTED VALUE. It proved
to be very fruitful.

The key principle behind probability theory is the idea
that if a situation can be described in terms of possible
outcomes that are equally likely, then the probability of
any particular outcome occurring is 1 divided by the total
number of outcomes. This principle was actually first rec-
ognized and discussed more than a century earlier by Ital-
ian mathematician and physician GIROLAMO CARDANO

(1501–76) in his work Liber de ludo aleae (Book on games
of chance). This text, however, was not published until
1663, 9 years after Pascal and Fermat had solved de
Méré’s problem. It is likely that Cardano would be known
as “the father of probability theory” had the work been
published during his lifetime. Cardano also recognized the
LAW OF LARGE NUMBERS.

The Swiss mathematician Jacob Bernoulli (1654–1705)
of the famous BERNOULLI FAMILY recognized the wide-ranging
applicability of probability in fields outside of gambling. His
book Ars conjectandi (The art of conjecture), published
posthumously in 1713, demonstrated the use of the theory in
medicine and meteorology. It was also the first comprehen-
sive text dealing with issues of STATISTICS.

In some sense, probability and statistics represent two
sides of the same fundamental situation. Probability
explores what can be said about an unknown sample of a
known collection. (For example, we know all possible
numerical combinations from a pair of dice. What then is
the most likely outcome from tossing a pair of dice?) Statis-
tics explores what can be said about an unknown collection
given a small sample. (If 37 of these 100 people brush their
teeth twice a day, what can be said about teeth-brushing
habits of the entire population?) The two fields remained
closely intertwined during much of the 18th century and the
early part of the next century.

In 1733 ABRAHAM DE MOIVRE (1667–1754) recognized
the repeated appearance of the NORMAL DISTRIBUTION in
scientific studies and wrote down a mathematical equa-
tion for it. It first became apparent from the “random-
ness” of errors in astronomical observations and in
scientific experiments.

The latter half of the 19th century saw significant
progress in developing and understanding the theoretical
foundations of probability theory. This was chiefly due to
the work of French mathematicians-astronomers-physicists
JOSEPH-LOUIS LAGRANGE (1736–1813) and PIERRE-SIMON

LAPLACE (1749–1827), German genius CARL FRIEDRICH GAUSS

(1777–1855), and French mathematician SIMÉON-DENIS POIS-



Probability gives a measure of likelihood or fre-
quency of occurrence. If we throw a pair of dice 1,000
times, then we would expect, on average, close to one-
sixth of the rolls (around 167 of them) to have a sum
of 7; close to 1/12th of them (around 83 rolls) to have
sum 10; and close to 1/36th (around 28 of them) to
have a sum of 2. This principle is clarified in the LAW

OF LARGE NUMBERS.

Computing Probabilities
Two models are often used to help compute probabili-
ties in moderately complicated situations. They can
also be used to illustrate two rules of computation.

1. Probability Trees and the Addition Rule
A probability tree is a diagram displaying all the out-
comes of a sequence of actions. It is assumed that the
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SON (1781–1840) who, among other things, mathematically
proved the law of large numbers. The most important publi-
cation in this era on the theory of probability was Laplace’s
1812 text Théorie analytique des probabilities (Analytical
theory of probability.). In it, Laplace collected and extended
everything known on the subject at that time. Russian math-
ematicians PAFNUTY CHEBYSHEV (1821–94), Andrei Markov
(1856–1922), and Alexandr Lyapunov (1857–1918) further
developed the mathematical underpinnings of the subject in
the late 19th century.

Basic statistical thought can be deemed as having
developed considerably earlier. The ancient Egyptians
compiled DATA concerning population and wealth as early
as 3050 B.C.E., developing simple techniques to collate and
record the numerical information gathered. The ancient
Chinese undertook similar studies around 2300 B.C.E. A
census was taken in 594 B.C.E. by the Greeks for the pur-
pose of levying taxes, and Athens undertook a population
census in 309 B.C.E. The Romans also kept census records,
as well as records of births and deaths, and gathered sig-
nificant quantities of numerical information from geo-
graphic surveys taken across the entire empire. Very few
statistical records were kept during the period of the Mid-
dle Ages, however.

In 1662 John Graunt analyzed birth and death records
and produced the first LIFE TABLE. The purpose of the table
was to make general observations and predictions about
life expectancy for classes of members of a particular pop-
ulation. This work represented a significant step toward
analyzing data for the purposes of INFERENCE.

In 1790 the United States took its first decennial cen-
sus, heralding the return of census taking. Several Euro-
pean nations followed suit soon afterward. Belgian
scholar LAMBERT ADOLPHE QUÉTELET (1796–1874) analyzed
the nation’s records and made important observations
about the influence of age, gender, occupation, and eco-
nomic condition on mortality. In 1835 he attempted to apply
probabilistic methods to the study of human characteris-
tics, both physical and behavioral. He used them to give

what he hoped was a complete description of the “aver-
age man.” Although Quételet’s work was generally highly
respected, his attempt to apply it to the field of behavioral
science was met with criticism. In the 1860s, English
scholar FRANCIS GALTON (1822–1911) attempted to apply
statistics methods to the study of human heredity. His
work was influential and helped define statistics as a
mathematics discipline in its own right.

At the turn of the 20th century, the corporate world
began to recognize the relevance and usefulness of statis-
tics, especially in issues of quality control, economics,
insurance, and telecommunications. Many large companies
began hiring statisticians.

While working for an English brewing company, indus-
trial scientist WILLIAM SEALY GOSSET (1876–1937) developed
the STUDENT’S T-TEST, allowing for the ability to derive reli-
able information from small samples. (Company policy for-
bade its employees to publish. Gosset did so in any case,
writing under the pseudonym “Student.”) English mathe-
matician KARL PEARSON (1857–1936) developed the CHI-
SQUARED TEST and is considered the founder of modern
hypothesis testing.

RONALD AYLMER FISHER (1890–1962) is considered the
most important statistician of the 20th century. His 1925
text Statistical Methods for Research Workers trans-
formed statistics into a powerful scientific tool. He clari-
fied many of the mathematical principles on which the
discipline is based. Fisher also developed methods of mul-
tivariate analysis to properly analyze problems involving
more than one variable.

In 1926, pure and applied mathematician JOHN VON

NEUMANN (1903–57) founded GAME THEORY—a mathematical
framework for analyzing games of chance, such as poker,
that involve strategy and choice on the parts of the players.
Von Neumann recognized the applications of the theory to
economics and social sciences. The work of Nobel Laure-
ate JOHN FORBES NASH, JR., (born 1928) took its applications
to economics to a profound level.

See also STATISTICS: DESCRIPTIVE; STATISTICS: INFERENTIAL.



outcomes of one action do not affect the outcomes of
the actions that follow.

To illustrate, imagine tossing a coin and then casting
a die. Each outcome of the coin toss—heads or tails—
could be accompanied by any one of the six possible
outcomes from casting the die: the numbers 1 through 6.
The probability-tree diagram (shown above) is used to
make this explicit. In particular, it shows that 12 differ-
ent results are possible from performing these two
actions. Computing the probability of any desired set of
outcomes is now straightforward. For example, the
chances of tossing a head together with an even number 

are = . Similarly, the probability of tossing a tail 

together with a 5 or a 6 is = .

This model illustrates the additive property in
probability theory. In our example:

P(heads and an even number or tails and a 5 or a 6)

= 

= + 

= P(heads and an even number) + P(tails and a 5 or a 6)

In general, if A represents one set of desired outcomes
and B another set of outcomes having none in common
with A, then

P(A or B) = P(A) + P(B)

In particular, the two events “A” and “not A” are dis-
joint, that is, have no outcomes in common. As we are

certain that A either will or will not occur, P(A or not
A) = 1, we have, by this rule:

P(not A) = 1 – P(A)

For example, the probability of not rolling a two when 

casting a die is P(not 2) = 1 – p(rolling 2) = 1 – = .

If two events A and B do have outcomes in com-
mon, then the above rule is modified to read:

P(A or B) = P(A) + P(B) – P(A and B).

The term P(A and B) is subtracted to counter the dou-
ble count of outcomes common to A and B.

2. The Square Model and the Multiplication Rule
The square model for probability theory uses a square
to represent the set of results in performing an experi-
ment a large number of times. For example, in tossing a
coin, we would expect, on average, half the outcomes
to be heads and half to be tails. We represent this by
dividing the square into two portions of equal area.
The left portion now represents a set of experiments in
its own right. In next casting a die, we would expect,
on average, half of these outcomes to yield an even
number and half to yield an odd number. This divides
the heads region into two equal subportions. The right
portion of the square also represents a set of experi-
ments in its own right. In casting a die we would
expect one-sixth of the outcomes to be a 1, one-sixth to
be 2, and so on, all the way through to one-sixth of the
outcomes being 6. This divides the tails region into six
portions of equal area.

Now it is easy to read off probabilities regarding
combinations of outcomes. For example, the outcome
of “heads followed by an even number” is represented
by one half of half the square, that is:

P(heads and an even number) = × = 

The outcome “tails and a 5 or a 6” is represented by
one sixth of half the square plus another sixth of half
the square. Thus:

P(tails and 5 or 6) = × + × = 

This model illustrates the multiplicative property in
probability theory. In our example:
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P (heads and an even number)
= half of half the square

= ×

= P(even) × P(heads)

P(tails and {5, 6})
= one-third of half the square
= P({5,6}) × P(tails)

In general, if A and B represent two sets of desired
outcomes from two different sets of experiments, then
the probability of obtaining both A and B when per-
forming the experiments in succession is:

P(A and B) = P(A) × P(B)

We are assuming here that the outcomes of one experi-
ment have no effect on the outcomes of the second, that
is, that the two experiments are INDEPENDENT EVENTS.

Philosophical Difficulties
Probability, as defined thus far, relies on our ability to
count outcomes. If the set of outcomes is infinitely large,
then the issue of counting is meaningless. Nonetheless we
may still have an intuitive understanding of “likelihood”
in these situations. For example, in spinning a compass
point, we still feel certain that the probability of the
pointer landing between north and east is 1/4, even
though there are infinitely many places for the pointer to
stop in the one desired quarter of the rim of the compass.
If an integer is chosen at random, we suspect that the
likelihood of it being even is 1/2—after all, there are
only two possibilities, even or odd, each representing
half the possible outcomes. Thus determining “proba-
bility” relies on an ability to assign a relative measure
of size to sets of points, or outcomes, even if those sets
might be infinite. This is a difficult issue, and one that
caused much confusion during the 19th and early 20th
century. (See AREA and BERTRAND’S PARADOX.)

A second difficulty lies in the fact that Cardano’s
definition of probability is circular: the probability of
any outcome is determined by knowing beforehand
which outcomes are equally probable.

How Probability Is Understood Today
In tossing a coin, for example, we are generally willing
to say that just two outcomes are possible—heads or

tails—and we believe that it is appropriate to assign a
probability of 1/2 for each occurring. Folks of a con-
trary disposition may argue, however, that more than
two outcomes could occur (the coin might land on its
side, for example) and that the values of probability
should be assigned differently. Certainly the issues aris-
ing in Bertrand’s paradox, for instance, show that the
notion of randomness is subject to personal understand-
ing. For a meaningful mathematical discussion to take
place, it must therefore be agreed upon beforehand
which outcomes are deemed within the range of possi-
bility, and what the probability of all sets of outcomes
will be. (This takes Cardano’s approach further—not
only must the equally likely outcomes be specified, but
also all probabilities must be declared at the outset.)

Thus, in any discussion of probability theory, a
mathematician today will state at the outset:

1. The sample space S: the set of all outcomes consid-
ered possible

2. A probability measure P: a rule that assigns to any
event A S a number P(A) called the probability
of A.

The probability measure is to satisfy these three rules:

i. For any event A, P(A) is a number between 0 and 1.
ii. P(S) = 1. (That is, in any run of the experiment, an

outcome will occur.)
iii. If two events A and B have no outcomes in com-

mon, then P(A or B) = P(A) + P(B).

For simple finite models, such as the act of casting
a die, this model encodes the approach developed by
Cardano, Pascal, and Fermat, but it also extends this
thinking to more complex systems. For example, in
throwing a dart at a dartboard, probabilities can be
defined as ratios of areas. The probability of throwing
a bull’s-eye, for instance, is the ratio of the area of the
bull’s-eye to the area of the entire board. This defini-
tion satisfies axioms i, ii, and iii above.

The key then to analyzing any random phe-
nomenon is to appropriately define a probability mea-
sure. Different probability measures can lead to
different results. Physicists and scientists are challenged
then to find the measure that best reflects one’s intuitive
understanding of the phenomenon being discussed.

See also CONDITIONAL PROBABILITY; EVENT; HIS-
TORY OF PROBABILITY AND STATISTICS (essay); KRUSKAL’S

⊇

1–
2

1–
2

probability 417



COUNT; MONTE CARLO METHOD; MONTY HALL PROB-
LEM; ODDS; RANDOM WALK; STATISTICS; TWO-CARD

PUZZLE.

probability density function See DISTRIBUTION.

Proclus See EUCLID’S POSTULATES.

product rule The DERIVATIVE of the product of two
functions f and g is given by the product rule:

For example, we have (xsinx) = 1 . sinx + x . cosx = 

sinx + xcosx. The rule can be proved using the limit
definition of the derivative as follows:

Alternatively, one can recognize that the quantity
f(x + h) · g(x + h) is the formula for the area of a rectan-
gle, one that contains the smaller rectangle of area f(x) ·
g(x). Writing a formula for the area of the L-shaped
region between the two rectangles, dividing by h, and
taking the limit as h becomes small leads to the same
formula for the product rule.

The product rule can be generalized to apply to
any finite product of functions. For example, for the
product of three functions we have:

(f(x) · g(x) · h(x))′ = f′(x) · g(x) · h(x) + f(x) · g′(x) · h(x)
+ f(x) · g(x) · h′(x)

If one of the functions in a product is a constant k,
then the product rule shows:

(kf(x))′ = 0 · f(x) + k · f′(x) = kf′(x)

Two applications of the product rule give the second
derivative of a product of two functions:

(f(x) · g(x))′′ = f(x) · g′′(x) + 2f′(x) · g′(x) + f′′(x) · g(x)

In general, the nth derivative of a product of two
functions is a sum of products containing BINOMIAL

COEFFICIENTs:

This result is called Leibniz’s theorem.
See also CHAIN RULE; HIGHER DERIVATIVE; QUO-

TIENT RULE.

projection Any mapping of a geometric figure onto a
PLANE to produce a two-dimensional image of that fig-
ure is called a projection. For instance, the daytime
shadow cast by an outdoor object is an example of a
projection onto the ground. Since the Sun is a great dis-
tance from the Earth, rays of sunlight are essentially
PARALLEL, and shadows cast by it are parallel projec-
tions. Shadows cast by a single point of light, however,
such as the flame of a candle, have different shapes
than those cast by the sun. Such projections are called
central projections.

French mathematician and engineer GIRARD

DESARGUES (1591–1661) observed that the central pro-
jection of any CONIC SECTION is another conic section.
(For instance, the shape cast on the ground by the cir-
cular rim of a flashlight is an ELLIPSE.) This led him to
study those properties of geometric figures that remain
unchanged under central projections, thereby founding
the field of PROJECTIVE GEOMETRY.

In VECTOR analysis, the projection of a vector a
onto a vector b is a vector parallel to b whose length is
the length of the “shadow” cast by a if the two vectors
are placed at the same location in space and the “rays
of light” casting the shadow are parallel and PERPEN-
DICULAR to b. Thus the projection of a onto b is a vec-
tor of the form xb, for some value x, with the property
that the vector connecting the tip of xb to the tip of a is
perpendicular to b. Using the DOT PRODUCT of vectors,
this yields the equation:
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b · (a – xb) = 0

Solving for x gives the formula for the projected vector:

Projection of a onto b = b

See also MERCATOR’S PROJECTION; STEREOGRAPHIC

PROJECTION.

projective geometry The branch of GEOMETRY

that examines those properties of geometric figures
that remain unchanged by a central PROJECTION is
called projective geometry. Informally, the shadows
cast by a point source of light, such as the flame of a
candle or the small bulb of a flashlight, are central
projections, and so projective geometry examines
those properties that are the same for the shadow of
a geometric object and the object itself. For instance,
the “shadow” of a straight line is another straight
line, and so the notion of “straight” is a valid concept
in projective geometry.

French mathematician and engineer GIRARD

DESARGUES (1591–1661), through his studies of PER-
SPECTIVE in art, was struck by the fact that the image of
a CONIC SECTION under projection is another conic sec-
tion. (For instance, the outline of the circular rim of a
flashlight, a conic section, aimed at the ground at an
appropriate angle produces the image of either an
ELLIPSE, a PARABOLA, or a branch of a HYPERBOLA.) His
study of this phenomenon founded the field of projec-
tive geometry. Unfortunately, his work was misunder-
stood at the time and was neglected. The subject was
later revived in 1822 by French mathematician Jean
Victor Poncelet (1788–1867) with his publication of
Traité des proprietés des figures (Treatise on the projec-
tive property of figures).

DESARGUES’S THEOREM is a fundamental result
about perspective. In order to unify special cases of the
theorem and to allow for the possibility of two lines
being parallel in its statement, Desargues developed the
notion of “points at infinity” so that one could appro-
priately speak of the point of any intersection of any
two lines in the plane. (Parallel lines are said to inter-
sect at these points at infinity.) In this framework, any
two points in the plane determine a line, and any two
lines determine a point. Thus Desargues had created a

notion of geometry in which the words point and line
play dual roles, and can be interchanged in any true
statement about this geometry to obtain new (true)
statements in this geometry. This notion of duality was
first properly outlined by Poncelet.

Today, any system of objects, usually called points
and lines, satisfying the following five axioms is called
a projective geometry:

1. For any two distinct points, there is exactly one line
containing them both.

2. For any two distinct lines, there is exactly one point
common to both.

3. There is at least one line.
4. Each line contains at least three points.
5. Not all points lie on the same line.

(The last three axioms ensure that the geometry is not
trivial.)

A finite projective geometry is any arrangement of
a finite number of points and lines that obey these five
axioms. For instance, the diagram below, called the
Fano plane, is a projective geometry with seven points
and seven lines with exactly three points on each line
and three lines through each point. (The central trian-
gle is considered a single line.) This is called the sym-
metric configuration of type 73.

There is only one symmetric configuration of type
83, three of type 93, 10 of type 103, and 31 of type 113.
All the symmetric configurations up to type 183 have
been determined.

See also HISTORY OF GEOMETRY (essay).

a · b––
|b|2
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proof A demonstration that one statement follows
from another via a process of pure logical reasoning is
called a proof. All proofs are based on a set of
premises, that is, statements that have been previously
established as valid, or are taken as AXIOMs, and follow
a sequence of deductions that establish that the final
statement presented—the conclusion—is true. Alterna-
tively, one can think of a proof as a written piece
demonstrating logical reasoning that convinces all
readers of the absolute validity of the result—given the
assumptions made as premises.

As an example, the following argument is a proof.
It assumes that the basic principles of algebra are
understood, and that two basic facts about natural
numbers are known, namely, that every natural number
is either even or odd, and that every even number is a
multiple of 2.

Claim: If n is a natural number such that n2 is
odd, then n itself is odd.

Proof: It cannot be the case that n is even,
for then n would be of the form 2k, making n2

= (2k)2 = 4k2 = 2(2k2) even, not odd. Thus n
must also be odd.

The use of the term proof in mathematics differs
from the use of the word in the scientific method. Gen-
erally, a scientist will put forward a hypothesis to
explain a physical phenomenon, and then perform
experiments to test that hypothesis. If the results of the
investigation consistently conform to the hypothesis
(and moreover, if the hypothesis leads to predictions
about other physical phenomena that are later con-
firmed), a scientist may say that a physical principle has
been proved. For example, that matter is composed of
fundamental elements as listed in a periodic table is a
proven scientific theory. It is, however, a result estab-
lished solely on experience and observation.

Observation, alone, however, does not constitute
proof in mathematics, and can lead to erroneous con-
clusions. For example, one may be tempted to argue
that the equation = a + b is a valid algebraic
identity since, after all, it works for a = 1 and b = 0, for
instance. After testing all the numbers from 1 to 1,000,
for instance, one might conclude that all numbers are
smaller than 1 million. (One thousand instances that
support a statement surely make it convincing.) Both
claims are, of course, absurd. For example, =

a + b does not hold for a = b = 1, and 1,000,001 is not
smaller than 1 million. These examples illustrate why a
mathematician will only accept justifications based on
logical reasoning and not on observation alone.

There are several different methods of proof. A
DIRECT PROOF proceeds linearly from premises to con-
clusion, whereas an INDIRECT PROOF (also called a
PROOF BY CONTRADICTION, or reductio ad absurdum)
assumes the falsehood of the desired conclusion and
shows that to be impossible. Many claims in NUMBER

THEORY and GRAPH THEORY are also established by the
method of mathematical INDUCTION.

In 1976 two mathematicians Kenneth Appel and
Wolfgang Haken presented a computer-generated
“proof” of the famous FOUR-COLOR THEOREM. Relying
on 1,200 hours of computer computation to verify
nearly 2,000 special clauses. No individual, unfortu-
nately, has the means to check the details of the work
and be personally convinced of the validity of the argu-
ment. The question of whether or not the work of Appel
and Harken constituted a “proof” caused great contro-
versy in the mathematics community. For ease of mind,
mathematicians today still seek a purely mathematical
proof of the result, avoiding computer help altogether.

See also BRUTE FORCE; DEDUCTIVE/INDUCTIVE REA-
SONING; THEOREM.

proof by contradiction (reductio ad absurdum)
See INDIRECT PROOF.

proof by contraposition See CONTRAPOSITIVE.

proportional Two quantities x and y are said to be
directly proportional if their RATIO is always constant. 

This means = k, or y = kx, for some nonzero constant 

k called the constant of proportionality. For example,
Hooke’s law in physics asserts that the force F exerted
by a spring extended a small length x is directly pro-
portional to that length: F = kx. Here k is called the
spring constant.

If y is directly proportional to x, we write y ∝ x and
say that y varies directly as x. Of course it also follows
that x ∝ y. When the values of y are plotted against the
corresponding values of x, the graph obtained is a
straight line through the origin.

y
–x

√a2 + b2

√a2 + b2
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If a quantity y is proportional to the inverse of a 

variable x, that is, y ∝ , then we say that y and x are 

inversely proportional or that y varies inversely as x.
For example, the gas laws in physics assert that gas
pressure is inversely proportional to volume.

In algebra, terms in a statement about the ratios of
quantities are sometimes called proportionals. For
example, in the expression:

a : b = c : d

the quantity c is the third proportional.

proposition In mathematics, any statement for
which a proof is required or has been provided is called
a proposition. In FORMAL LOGIC, any statement that
has a truth-value of either true or false (but not both) is
called a proposition.

See also THEOREM.

Ptolemy, Claudius (ca. 85–165 C.E.) Greek Geome-
try, Trigonometry, Astronomy Born in Egypt, around
85 C.E., scholar Claudius Ptolemy is remembered for
his epic piece Syntaxis mathematica (Mathematical col-
lection), also known as the Almagest (The greatest),
often deemed as the most significant work in
TRIGONOMETRY of ancient times. The work contains
accurate tables of “chords” (equivalent to a modern
table of sine values), as well as a clear description as to
how that table was constructed. (He used a result
today known as PTOLEMY’S THEOREM, the geometric
equivalent of the trigonometric ADDITION formulae we
use today.) It is known that Ptolemy also attempted to
prove EUCLID’s famous PARALLEL POSTULATE.

The exact location of Ptolemy’s birth is unknown.
Although born in Egypt, he is referred to as a classical
Greek scholar because he followed the scholarly tradi-
tions of the Greeks and wrote in that language. His last
name, Ptolemy, is Greek, but his first name, Claudius,
is Roman. This suggests that he was also considered a
Roman citizen.

Accurate translations of all of Ptolemy’s works sur-
vive today. His most noted work, Syntaxis mathemat-
ica, comes in 13 volumes, and much of the
mathematics developed in it is motivated by concerns

of astronomy. In particular, Ptolemy worked to give
detailed descriptions of the motions of the Sun, Moon,
and the known planets at the time. He believed that the
Earth lay at the center of the solar system.

In Books 1 and 2 of Syntaxis mathematica, Ptolemy
develops a mathematical theory of compound circular
motions (motion in EPICYCLEs) as a means to explain
the observed motion of the planets. This motivated his
need for his accurate table of chords. It is also worth
mentioning that in this work Ptolemy used a 360-sided
polygon inscribed in a circle to find the following
approximation for π correct to three decimal places:

Book 3 of Syntaxis mathematica is concerned with
the motion of the Sun. By carefully analyzing the

π ≈ ≈377
120

3 14166.

1
–x
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Claudius Ptolemy, an eminent scholar of the second century,
wrote the Almagest, the most influential work on the topic of
trigonometry of ancient times. (Photo courtesy of the Science
Museum, London/Topham-HIP/The Image Works)



lengths of the seasons and the timing of the solstices
and equinoxes, Ptolemy concluded that, although, in
his belief, the Sun orbits the Earth, the Earth does not
lie at the center of that orbit. He develops a mathemati-
cal theory to calculate the distance from that center
that the Earth supposedly lies.

Books 4 and 5 examine the motion of the Moon,
and Book 6 provides a theory of eclipses. Much of
Books 7 and 8 represent a catalogue of over 1,000 stars,
and the remaining five books explore his epicyclic the-
ory of planetary motion.

Ptolemy also wrote important scientific works in
other fields. His book Analemma discusses novel math-
ematical methods for constructing sundials; his work
Optics examines properties of color, reflection, and
refraction; and his major work Geography attempts to
map the entire world known at his time, giving mea-
surements as accurate as possible for the latitude and
longitude of major cities.

Ptolemy’s theorem Second-century Greek astronomer
and mathematician CLAUDIUS PTOLEMY proved the fol-
lowing result, now known as Ptolemy’s theorem:

If a, b, c, and d are the side-lengths of a
QUADRILATERAL inscribed in a circle, and if p
and q are the lengths of its diagonals, then ac
+ bd = pq.

It can be proved as follows: according to the standard
CIRCLE THEOREMS, angles CAB and CDB shown are
equal. Construct line BE so that triangles ABE and 

CBD are similar. Then = . One then checks that 

triangles ABD and EBC are also similar (angles ADB

and ACB are equal), and so = . Consequently 

ac + bd = px + p(q – x) = pq.
See also BRAHMAGUPTA’S FORMULA; SIMILAR

FIGURES.

pure mathematics The study of abstract mathematical
systems and structures, without necessarily having practi-
cal applications in mind, is called pure mathematics. It
has various branches, including ABSTRACT ALGEBRA,
GEOMETRY, NUMBER THEORY, CALCULUS, TOPOLOGY,
and the topics derived from them, but the distinction
from APPLIED MATHEMATICS might not be sharp. For
example, EUCLIDEAN GEOMETRY could be analyzed as
an abstract study of the relationships between lines,
points, and geometric shapes based on the foundations
of EUCLID’S POSTULATES, or could, at the same time, be
viewed as a study of results that could potentially (and,
in fact, has proved to be) useful to architects, survey-
ors, engineers, and scientists.

Although much of the mathematics developed in
the time of antiquity was clearly motivated by practical
concerns, the development of mathematics for its own
sake was nonetheless of interest to early scholars. For
instance, Babylonian tablets from ca. 1600 B.C.E. list
large PYTHAGOREAN TRIPLES that could have no practi-
cal use. Greek mathematicians of around 400 B.C.E.
began to seek rigor, proof, and justification in their
mathematical thinking, and ca. 300 B.C.E. EUCLID pro-
duced his logically rigorous treatise THE ELEMENTS,
summarizing all mathematical knowledge known at his
time. The unique organization of ideas presented in his
work became the key feature of the piece. That, in
itself, was seen as an analysis of logical thinking, one
that became the paradigm of all mathematical and sci-
entific thinking for the two millennia that followed.

During the 19th century, mathematicians began to
search for unifying ideas between distinct branches of
algebra and geometry. The general study of structures
and operations on them led to the development of
abstract algebra, for instance. The development of PARA-
DOXes in SET THEORY and in the foundations of

p
–
d

b––q – x

p
–c

a–x
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CALCULUS forced scholars to seek greater levels of rigor
and abstraction. Even the nature of logical reasoning
itself was examined as an attempt to understand and
resolve fundamental paradoxes. The need for abstract
ANALYSIS and synthesis was recognized as important,
and dichotomy between applied and pure mathematics
became more apparent.

Today many research universities possess two
departments of mathematics, one considered pure and
the other applied. Students can obtain advanced degrees
in either field.

See also BABYLONIAN MATHEMATICS; GREEK

MATHEMATICS.

pyramid A CONE with a polygon for the base is
called a pyramid. Specifically, a pyramid is the solid fig-
ure formed by a polygon and a number of triangles,
one attached to each side of the polygon, all meeting at
a common point called the APEX of the pyramid. The
pyramid is classified as a right pyramid if the line con-
necting the apex of the pyramid to the CENTER OF

GRAVITY of the base meets the base at a right angle.
(Otherwise it is called an oblique pyramid.) A square
pyramid is a right pyramid with a square base.

The study of volumes of cones shows that the vol-
ume of a pyramid is just one-third the area of the base
of the figure times its height. A TETRAHEDRON is a
right pyramid with four equilateral triangles as faces.

See also FRUSTUM.

Pythagoras (ca. 569–475 B.C.E.) Greek Geometry,
Number theory Born in Samos, Ionia, Greek mathe-
matician and mystic Pythagoras is remembered as
founder of the Pythagorean School, which claimed to
have found universal truth through the study of num-
ber. As such, the Pythagoreans are credited as the first
to have taken mathematics seriously as a study in its
own right without regard to possible application and
practical need. What precisely Pythagoras con-
tributed himself is no longer clear, but the school is
acknowledged to have discovered the role of ratios of
whole numbers in the musical scale, the properties of
FIGURATE NUMBERS, AMICABLE NUMBERS, PERFECT

NUMBERs, and the existence of IRRATIONAL NUMBERS.
Although PYTHAGORAS’S THEOREM was known to the
Babylonians over 1,000 years earlier, the Pythagore-

ans are the first to have provided a general proof of
the result.

Very little is known of Pythagoras’s life. The sect he
founded was half scientific and half religious and fol-
lowed a code of secrecy that certainly promoted great
mystery about the man himself. Many historical writ-
ings attribute godlike qualities to Pythagoras and are
generally not regarded as accurate portrayals. It is
understood that Pythagoras visited with THALES OF

MILETUS (ca. 625–547 B.C.E.) as a young man who,
most likely, contributed to Pythagoras’s interest in
mathematics. Around 535 B.C.E., Pythagoras traveled
to Egypt and was certainly influenced by the secret
sects of the Egyptian priests. (Many of the practices the
Pythagoreans followed were the same as those prac-
ticed in Egypt—refusal to eat beans or to wear cloth
made from animal skins, for instance.)

In 525 B.C.E., Egypt was invaded by Persian forces,
and Pythagoras was captured and taken to Babylon.
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Pythagoras, leader of a sixth-century B.C.E. sect, claimed to have
found universal truth through the study of whole numbers and
their ratios. (Photo courtesy of Topham/The Image Works)



Eventually, after being released, Pythagoras settled in
southern Italy, where he founded his famous school
around 518 B.C.E. Both men and women were wel-
comed as members.

Pythagoras believed that all physical (and meta-
physical) phenomena could be understood through
numbers. This belief is said to have stemmed from his
observation that two vibrating strings produce a har-
monious combination of tones only when the ratios of
their lengths can be expressed in terms of whole num-
bers. (Pythagoras was an accomplished musician and
made significant contributions to the theory of music.)

Pythagoras, and his followers, studied whole num-
bers and their ratios, and even went as far as to assign
mystical properties to numbers. For instance, they
believed that the first natural number, 1, acted as the
divine source of all numbers and so was of different
stature than an ordinary number. (The number 2 was
deemed the first number.) All even numbers were
assumed feminine and all odd numbers masculine, and
all odd numbers (except 13) represented good luck.
The number 4 stood for “justice,” being the first per-
fect square, and 5 marriage, as the union (sum) of the
first even number (2) and the first odd number (3). The
number 6 was “perfect” since it equals the sum of its
factors different from itself.

In GEOMETRY, the Pythagoreans knew that the inte-
rior angles of a TRIANGLE always sum to 180° (and,
more generally, that the interior angle of an n-sided fig-
ure sum to (n – 2) × 180°), and knew how to construct
three of the five PLATONIC SOLIDS. They could solve
equations of the form x2 = a(a – x) using geometrical
methods, and they developed a number of techniques
for constructing figures of a given area. They attributed
great mystical significance to the PENTAGRAM because
of the geometric ratios it contains. In astronomy, the
Pythagoreans were aware that the Earth is round, but
believed it lay at the center of the universe. They were
aware that the orbit of the Moon is inclined to the
equator of the Earth and were the first to realize that
the evening star and the morning star were the same
heavenly object (namely, the planet Venus).

The exact date, location, and circumstance of
Pythagoras’s death are not known. Despite his passing,
the factions of the original Pythagorean order endured
for more than 200 years. Members of the Pythagorean
brotherhood so revered their founder that it was con-
sidered impious for any individual to claim a discovery

for his own glory without referring back to Pythagoras
himself. It is said, for instance, that member Hippasus
of Metapontum (ca. 470 B.C.E.) was put to death by
drowning for announcing his own discovery of the reg-
ular dodecahedroan, the fifth Platonic solid. (Other
versions of this popular story submit that he was exe-
cuted for claiming to have discovered that the square
root of 2 is an irrational number.)

Pythagoras’s theorem (Pythagorean theorem, right-
triangle principle) Hailed as the most important result
in all of geometry, Pythagoras’s theorem states that, for
a right-angled triangle, the square of the length of the
HYPOTENUSE is equal to the sum of the squares of the
other two sides. Geometrically, if one constructs
squares on the three sides of a right triangle, then the
theorem asserts that the area of the large square equals
the sum of the areas of the other two. Algebraically, if
the three side-lengths of the triangle are a, b, and c,
with length c the hypotenuse, then the theorem asserts
that the following relationship holds:

a2 + b2 = c2

The theorem can easily be proved by arranging
four copies of the given right triangle in a big square.
As long as the triangles do not overlap, the amount of
space around them is always the same, no matter how
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the triangles are arranged. In particular, the left and
right arrangements show the theorem to be true.

The theorem is named after the Greek philosopher,
mathematician, and mystic PYTHAGORAS (ca. 500
B.C.E.). Babylonian tablets dating before 1600 B.C.E.
listed tables of numbers a, b and c satisfying the rela-
tionship a2 + b2 = c2, suggesting that scholars of the
time were aware of the result. (It is believed that the
Babylonians used 3-4-5 triangles to measure right
angles when planning constructions.) The theorem is
stated explicitly in the ancient Hindu text Sulbasutram
(ca. 1100 B.C.E.) on temple buildings, and the diagram
of four triangles arranged in a square appears in the
ancient Chinese text Chou Pei Suan Ching of about
500 B.C.E Although scholars from other cultures may
have been aware of the result, Pythagoras is credited as
the first to give full and proper explanation as to why
the result is true.

Today many different proofs of Pythagoras’s theo-
rem are known. The ancient Greeks (thinking solely in
terms of geometric constructs) showed how to explic-
itly divide the largest square into four pieces that could
be rearranged to form the two smaller squares. The
method of proof presented above is often called the
Chinese proof. United States President James Garfield
published his own proof of Pythagoras’s theorem in
1876 as part of his test to become a high-ranking
Mason. Early in the 20th century Professor Elisha Scott
Loomis collated and published 367 different demon-
strations of the result in his book The Pythagorean
Proposition. Tiling a floor with squares of two differ-
ent sizes provides a surprising visual proof of the theo-
rem. (See SQUARE.) New proofs of this famous result
are still being discovered today.

Consequences of the Theorem
If a right triangle has side-lengths a, b, and c, with the
side of length c opposite the right angle, then Pythago-
ras’s theorem asserts c2 = a2 + b2, from which it follows
that c is larger than both a and b. Thus:

In a right triangle, the side opposite the right
angle is indeed the hypotenuse of the triangle.
It is longer than either of the remaining two
sides.

Although this observation seems trivial, it has some
important consequences:

1. The shortest distance d of a point P from a line L is
given by the length of the perpendicular from P to L.

In the diagram above, any other line segment
connecting P to L is longer than d.

This observation allows one to prove all of the
standard CIRCLE THEOREMS.

2. In any triangle, the sum of the lengths of any two
sides is larger than the length of the third.

This result, called the TRIANGULAR INEQUALITY,
follows by drawing a perpendicular line from the
apex of the triangle. In the diagram above right, we
have that a + b is greater than c1 + c2 = c.

3. The shortest distance between two points in a plane
is given by a straight line.

The triangular inequality shows that the line
directly connecting two vertices of a triangle is
shorter than the sum of the two remaining side-
lengths. Thus, if a path connecting points A and B is
composed of straight-line segments, each pair of seg-
ments can be replaced with a shorter single straight-
line segment. Repeated application of this procedure
eventually replaces the path with the straight-line
path connecting A to B. If, on the other hand, a
path connecting A to B is curved, then one can
approximate the curved path by one composed
solely of small straight-line segments. As we have
just seen, the direct straight-line path connecting A
to B is shorter than any such approximation. One
can argue that if the approximation is made with
some degree of precision, the straight-line path con-
necting A to B is shorter than the curved path too.

Generalized Pythagorean Theorem
The shapes constructed on the sides of a right triangle
need not be squares for Pythagoras’s theorem to hold
true. For example, if one were to construct equilateral
triangles on each of the three sides of a right triangle,
then the area of the large triangle would equal the sum
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of the areas of the two small triangles. The same is true
if one were to construct pentagons, semicircles, or any
figure on each side of the triangle, as long as the three
figures are similar. The reason is straightforward:

Let F be a figure of area A with one side of
length 1, and consider a right triangle with
sides of lengths a, b, and c with the side of
length c the hypotenuse. Draw scaled versions
of the figure F on each of the three sides of the
triangle. Then, as area scales as length squared,
the area of the large figure is a2A, and the
areas of the two smaller copies are b2A and
c2A. By the ordinary version of Pythagoras’s
theorem we have c2A = a2A + b2A.

The Converse of the Theorem
The LAW OF COSINES states that, for any triangle, not
necessarily a right triangle, with side-lengths a, b, and
c, with the angle opposite side c labeled C, the follow-
ing relation holds:

c2 = a2 + b2 – 2ab cosC

Thus if an arbitrary triangle were to satisfy Pythago-
ras’s relation c2 = a2 + b2, then it must be the case that
cosC equals zero, meaning that C is a 90° angle. This
gives the converse to Pythagoras’s theorem:

If an arbitrary triangle with side lengths a, b,
and c satisfies a2 + b2 = c2, then that triangle is
a right triangle (with the right angle opposite
the side of length c).

Thus, for example, a triangle with side lengths 3, 4,
and 5, is indeed a right triangle precisely because 32 +
42 = 52. (Many elementary texts in mathematics state
without explanation that a 3-4-5 triangle is right.) A
study of the properties of acute, obtuse, and right
angles in a TRIANGLE provides a very elementary alter-
native proof of the Pythagorean converse.

Any set of integers a, b, and c, satisfying the rela-
tion a2 + b2 = c2 is called a PYTHAGOREAN TRIPLE. The
triples 5, 12, 13 and 20, 21, 29 are Pythagorean
triples and do indeed form the side-lengths of two
right triangles.

See also DISTANCE FORMULA; SCALE; SIMILAR

FIGURES.

Pythagorean triples A set of positive integers (a,b,c)
satisfying the equation a2 + b2 = c2 is called a
Pythagorean triple. For example, (3,4,5) and (48,55,73)
are two sets of Pythagorean triples. The converse of
PYTHAGORAS’S THEOREM shows that any Pythagorean
triple (a,b,c) corresponds to the side-lengths of a right tri-
angle, with the side of length c as hypotenuse. Egyptian
architects, for example, used knotted ropes to create 3-4-
5 triangles and thereby accurately measure 90° angles.

The problem of finding Pythagorean triples is an
ancient one. The oldest record known to exist on the
topic of number theory, a clay tablet from the Babylo-
nian era (ca. 1600 B.C.E.), contains a table of right trian-
gles with integer sides. That the triple (4961,6480,8161)
is listed suggests that the Babylonians had a general
method for generating Pythagorean triples and did
not rely on trial and error alone to find them. (It also
suggests that scholars of the time were also interested
in pursuing mathematics simply for the enjoyment of
the subject.)

Multiples of any given Pythagorean triple give new
triples. For example, from the triple (3,4,5) we obtain
new triples (6,8,10), (9,12,15), (12,16,20) and the like.
In some sense, these new Pythagorean triples are uninter-
esting and scholars tend to focus on those triples (a,b,c)
for which the numbers a, b, and c share no common fac-
tors (other than the number 1). Such Pythagorean triples
are called primitive. For example, (5,12,13) is a primi-
tive Pythagorean triple, but (60,63,87) is not.

The Greek mathematician EUCLID (ca. 300 B.C.E.)
in book 10 of his text THE ELEMENTS completely classi-
fied the primitive Pythagorean triples. He showed that
any primitive Pythagorean triple must be of the form:

(p2 – q2, 2pq, p2 + q2)

for some positive integers p and q, one even, one odd,
with p > q and sharing no common factors. For exam-
ple, the primitive triple (3,4,5) is obtained by setting p
= 2 and q = 1. His proof of this used only basic princi-
ples of arithmetic but was somewhat complicated.
Using the theory of COMPLEX NUMBERS, however, the
Swiss mathematician LEONHARD EULER discovered in
the 1700s an elementary derivation of this result:

Suppose a, b, and c are three integers satisfy-
ing the equation c2 = a2 + b2. Write a2 + b2 =
(a + ib)(a – ib). Since every complex number
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has a square root, it must be the case that a +
ib equals (p + iq)2 for some complex number
p + iq. We have a + ib = (p + iq)2 = p2 – q2 +
2pqi, from which it follows that a = p2 – q2

and b = 2pq. Also, c2 = a2 + b2 = (p2 – q2)2 +
(2pq)2 = (p2 + q2)2 yielding c = p2 + q2. One
now checks that the numbers p and q must be
integers with the stated properties.

(To complete the final step, write the integers (p2 + q2)
+ (p2 – q2) = 2p2 and (p2 + q2) – (p2 – q2) = 2q2 each as
a product of prime numbers. Use this to show that if p
and q are not each themselves integers, then the triple
obtained is not primitive.)

Every Pythagorean triple (a,b,c) is a solution to the 

equation . Thus, for example, 

is a point on the UNIT CIRCLE x2 + y2 = 1 with rational 

coordinates, as are and . That 

there are infinitely many Pythagorean triples shows
that the unit circle passes though infinitely many points
in the plane with rational x- and y-coordinates.

A study of CONTINUED FRACTIONS gives an alterna-
tive method for generating Pythagorean triples. If
(a,b,c) is a (primitive) triple with “legs” a and b differ-
ing by k, then (2a + b + 2c, a + 2b + 2c, 2a + 2b + 3c) is
a new (primitive) triple with legs that also differ by k.
For example, from the triple (3,4,5), whose first two
terms differ by one, we obtain the new triples

(3,4,5) → (21,20,29) → (119,120,169) →…

From (5,12,13), whose first two terms differ by seven,
we obtain the new triples

(5,12,13) → (55,48,73) → (297,304,425) →…

This procedure will produce all the (primitive) triples
with legs that differ by a given amount k.

Although there are infinitely many integer solu-
tions to the equation a2 + b2 = c2, Fermat’s last theorem
shows that there are no nonzero solutions to the com-
panion equations an + bn = cn for n > 2. The planar
curves given by xn + yn = 1 thus never pass through
points with rational coordinates.
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QED The abbreviation QED is short for quod erat
demonstrandum, Latin for “which was to be demon-
strated.” EUCLID of the third century B.C.E. wrote the
Greek equivalent of this phrase at the end of each of his
proofs to indicate that its conclusion had been reached.
Many mathematicians still follow this tradition.

The initials QEF, for quod erat faciendum (which
was to be done), are sometimes added after the comple-
tion of a geometrical construction, and QEI, for quod
erat inveniendum (which was to be found), after the
completion of a calculation.

quadrant In a system of CARTESIAN COORDINATES,
the two coordinate axes divide the plane into four
regions called quadrants. By convention, the quadrants
are numbered, with the first quadrant being the one
above the x-axis and to the right of the y-axis (this is
the region in which both x and y are positive), and the
second, third, and fourth quadrants arranged counter-
clockwise about the origin.

Many popular science fiction texts describe three-
dimensional space as being divided into four quad-
rants. This is incorrect usage of the term.

One-quarter of the circumference of a circle is some-
times called a quadrant, as is one quarter of the interior
of a circle (bounded by two perpendicular radii).

See also OCTANT.

quadratic (quadric) Any expression, function, or
equation containing variables raised to the second

power, but no higher power, is described as quadratic.
Thus a quadratic polynomial, for instance, is a POLY-
NOMIAL of second degree, and a quadratic equation is
an equation formed by setting a quadratic polynomial
equal to zero. Such an equation has the form ax2 + bx
+ c = 0 with a, b, and c either REAL or COMPLEX NUM-
BERS and a nonzero.

Quadratic equations often arise when computing
the dimensions of rectangles. (This explains the use of
the prefix “quad” in their name, derived from the Latin
name quattuor for “four.”) For instance, told that a
quadrangle of area 55 ft2 has length 6 units longer than
its width leads to the equation (given in terms of the
unknown width x) x(x + 6) = 55 which is the quadratic
equation x2 + 6x – 55 = 0. Ancient Egyptian and Baby-
lonian scholars of ca. 2000 B.C.E. were the first to con-
tend with problems of this type.

The technique of COMPLETING THE SQUARE pro-
vides a simple method for solving all quadratic equa-
tions. It also leads to the famous quadratic formula:

A quadratic equation of the form ax2 + bx + c
= 0 with a ≠ 0 has solutions given by:

For example, the quadratic formula shows that x2 + 6x
– 55 = 0 has solutions x = 5 and x = –11. (The positive
solution provides an acceptable answer to our quad-
rangle problem.)

x
b b ac

a
= − ± −2 4

2
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The quantity b2 –4ac is called the DISCRIMINANT of
the quadratic equation ax2 + bx + c = 0. The quadratic
formula shows that if the discriminant is a positive real
number, then the equation has two distinct real solutions.
If it is zero, then the equation has just one (double) root,
and if the discriminant is a negative real number, then
there are no real solutions to the equation. (There are,
however, two distinct complex solutions.) Given two
numbers r1 and r2, then x2 – (r1 + r2)x + r1r2 = 0 is a
quadratic equation with those two numbers as solutions.
In general, the quadratic formula shows that the two
roots of a quadratic equation ax2 + bx + c = 0 have sum 

– and product .

A quadratic function is a function of the form f(x) =
ax2 + bx + c with a ≠ 0. If the constants a, b, and c are
real numbers, then the graph of a quadratic function is
a PARABOLA, CONCAVE UP if a is positive and concave
down if a is negative. Rewriting the equation as:

shows that, if a is positive, the quadratic function has 

minimal value when x = – (If a is negative, then this 

produces a maximal value for the function.) The point 

(– ,c – ) represents the vertex of the parabola. The 

graph crosses the x-axis twice if the quadratic equation
f(x) = ax2 + bx + c = 0 has two real solutions, touches
the x-axis at a turning point if the two solutions are
equal, and does not cross the x-axis at all if there are
no real solutions.

Students in high school are often taught to solve
quadratic equations by a process of factoring. One
notes that the product of two linear terms Ax + B and
Cx + D yields a quadratic

(Ax + B)(Cx + D) = ACx2 + (AD + BC)x + BD

with coefficients a = AC, b = AD + BC, and c = BD.
Here b is a sum of two factors of the product ac. This
suggests the following procedure:

To solve a quadratic equation ax2 + bx + c = 0,
select two factors p and q of the product ac that
sum to b. (This gives pq = ac and p + q = b.)
Rewrite the quadratic equation as

ax2 + px + qx + c = 0

and perform algebra to factor the equation.
Begin by selecting a common factor of the first
two terms, ax2 and px, and a common factor
of the final two terms, qx and c.

For example, to solve 8x2 + 2x – 3 = 0, we seek two
factors of –24 that sum to two. This suggests the fac-
tors –4 and 6. Rewriting, we obtain:

8x2 + 2x – 3 = 8x2 – 4x + 6x – 3
= 4x(2x – 1) + 3(2x – 1)
= (4x + 3)(2x – 1)

It is now clear that the quadratic equation 8x2 + 2x – 3 

= (4x + 3)(2x – 1) = 0 has solutions x = – and x = .

It is surprising that if a, b, and c are whole num-
bers, this method will never produce fractional coeffi-
cients. One can explain why this is the case using
techniques from NUMBER THEORY:

Given a quadratic expression ax2 + bx + c with
integral coefficients, and integers p and q with
pq = ac and p + q = b, let d be the GREATEST

COMMON DIVISOR of a and p, and e the greatest
common divisor of q and c. Then the numbers 

and are integers sharing no common 

factors. The same is true for and . Since

ac = pq we have = . The fraction is 

presented in reduced form, as is the fraction 

. Since they are the same reduced fraction, 

their numerators and denominators match. 

Consequently, = and = . Factoring 

the quadratic expression now yields:
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This is a factorization with integral coefficients.

For the quadratic expression 8x2 + 2x – 3, we
selected p = –4 and q = 6. Then d = gcd(8,–4) = 4 and
e = gcd(–3,6) = 3, again yielding the factorization 

.

A quadratic form is a homogeneous polynomial of
degree two. For example, ax2 + bxy + cy2 is a quadratic
form in two variables. A quadratic curve is a curve
given by an algebraic equation of second degree. For
example, a CIRCLE, given by an equation of the form
(x – a)2 + (y – b)2 = r2, is a quadratic curve.

See also HISTORY OF EQUATIONS AND ALGEBRA

(essay).

quadrilateral (quadrangle, tetragon) Any POLYGON

with four sides is called a quadrilateral. For example,
any SQUARE, TRAPEZIUM, or PARALLELOGRAM is a
quadrilateral. Kites and deltoids are quadrilaterals
whose adjacent sides are equal in pairs.

If p and q are the lengths of the diagonals of a con-
vex quadrilateral, and θ is the angle between them,
then the AREA of the quadrilateral is given as the sum
of the areas of the four triangles they create:

Applying the LAW OF COSINES to each the four triangles
and summing yields the second equation:

b2 + d2 – a2 – c2 = 2pqcos(θ).

(Here a, b, c and d are the side-lengths of the quadri-
lateral as shown in the diagram.) Solving for sin(θ) in

the first equation and for cos(θ) in the second and
substituting into the equation cos2(θ)+sin2(θ) = 1, a
standard identity in TRIGONOMETRY, yields one ver-
sion of BRETSCHNEIDER’S FORMULA for the area of a
quadrilateral:

Analogous arguments show that these two formulae
for area hold for concave quadrilaterals also.

A quadrilateral is called a cyclic quadrilateral if it
is a CYCLIC POLYGON, that is, if its four vertices lie on a
circle. A consequence of the CIRCLE THEOREMS shows
that opposite interior angles of a cyclic quadrilateral
sum to 180°. The area of a cyclic quadrilateral is given
by BRAHMAGUPTA’S FORMULA.

Every quadrilateral, no matter its shape, provides a
TESSELLATION of the plane, that is, copies of any single
quadrilateral tile can be used to cover the entire plane
without overlap.

See also CONCAVE/CONVEX; PTOLEMY’S THEOREM.

quantifier In English, we frequently encounter state-
ments containing the words all, some, and no (or
none). These words are called quantifiers. For example,
“All math books are boring,” “Some lakes contain
fresh water,” and “No poet plays the viola” are quanti-
fied statements.

Mathematicians reduce all quantified statements to
two standard forms by use of either the universal quan-
tifier: “for all,” denoted , or the existential quantifier:
“there exists,” denoted ∃. For example, the statement
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that all natural numbers of the form 2n + 1 are odd is
written:

n, 2n + 1 is odd

that there exists a natural number n satisfying n × n = n
+ n can be written:

∃n : n × n = n + n

(a colon is usually read as “such that”), and that there is
no natural number n satisfying n × n × n = n + n + n as:

¬(∃n : n × n × n = n + n + n)

See also ARGUMENT; NEGATION.

quartic equation (biquadratic equation) Any degree-
four POLYNOMIAL equation of the form ax4 + bx3 + cx2

+ dx + e = 0 with a ≠ 0 is called a quartic equation.
Italian scholar LUDOVICO FERRARI (1522–65),

assistant to GIROLAMO CARDANO (1501–76), was the
first to find a general arithmetic formula that would
solve for x in any quartic equation. His method was
published by Cardano in the 1545 epic work Ars
magna (The great art). French mathematician RENÉ

DESCARTES (1596–1650) also found a method of solu-
tion, which we briefly outline here.

By dividing through by the leading coefficient
a, we can assume that we are working with a
quartic of the form:

x4 + Bx3 + Cx2 + Dx + E = 0

for numbers B = , C = , D = , and E = .

Substituting x = y – simplifies the equation 
further to one without a cubic term:

y4 + py2 + qy + r = 0

This form of the quartic is called the reduced
quartic, and any solution y to this equation 

corresponds to a solution x = y – of the 

original equation.

Assume that the reduced quartic can be fac-
tored as follows, for some appropriate choice
of number λ, m, and n:

y4 + py2 + qy + r = (y2 + λy + m)(y2 – λy + n)

EXPANDING BRACKETS and EQUATING COEFFI-
CIENTS consequently yields the equations:

Summing the first two equations gives n =

; subtracting them yields m =

; and substituting into the third 

equation yields, after some algebraic work, a
cubic equation solely in terms of λ2:

(λ2)3 + 2p(λ2)2 + (p2 – 4r)(λ2) – q2 = 0

CARDANO’S FORMULA can now be used to
solve for λ2, and hence for λ, m, and n. Thus
solutions to the quartic equation:

y4 + py2 + qy + r = (y2 + λy + m)(y2 – λy + n) = 0

can now be found by solving y2 + λy + m = 0
and y2 – λy + n = 0 using the QUADRATIC

formula.

This method, in principle, is straightforward, but
very difficult to carry out in practice. It does show,
however, that, if one has the patience, one can indeed
write down a formula for the solution of a quartic
equation ax4 + bx3 + cx2 + dx + e = 0 using only the
numbers a, b, c, d, and e, and their roots.

During the 1700s there was great eagerness to find
a similar formula for the solution to the quintic
(degree-five equation). LEONHARD EULER (1707–83)
attempted to find such a formula, but failed. He sus-
pected that the task might be impossible.

In a series of papers published between the years
1803 and 1813, Italian mathematician Paolo Ruffini
(1765–1822) developed a number of algebraic results
that strongly suggested that there can be no procedure
for solving a general fifth- or higher-degree equation in
a finite number of algebraic steps. This claim was
indeed proved correct a few years later by Norwegian
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mathematician NIELS HENRIK ABEL (1802–29). Thus—
although there is a quadratic formula for solving
degree-two equations, Cardano’s formula for solving
degree-three equations, and Ferrari’s and Descarte’s
methods for solving degree-four equations—there will
never be a general formula for solving all equations of
degree five or higher.

Of course some degree-five equations can be solved
algebraically. (Equations of the form x5 – a = 0, for
instance, have solutions x = 

5√
–
a.) In 1831 French math-

ematician ÉVARISTE GALOIS (1811–32) completely clas-
sified those equations that can be so solved. The work
he conducted gave rise to a whole new branch of math-
ematics, today called GROUP THEORY.

quartile See PERCENTILE.

quaternions The product of two nonzero REAL NUM-
BERS is never zero, nor is the product of two nonzero
COMPLEX NUMBERS. Both these sets of numbers are said
to be division algebras. Since each complex number
a+ib corresponds to a point (a,b) in the plane R2, com-
plex-number multiplication provides a way for defining
a multiplication in R2 that makes R2 a division algebra:

(a,b) × (c,d) = (ac – bd, ad + bc)

(Notice that the “obvious” multiplication given by
(a,b) × (c,d) = (ac,bd) is not satisfactory: (1,0) × (0,4),
for example, gives the zero answer.)

In the early 19th century, WILLIAM ROWAN HAMIL-
TON (1805–65) wondered whether there was a suitable
multiplication for R3 making it, too, a division algebra.
Despite his best efforts, he was never able to propose a
suitable definition.

Along the way, however, Hamilton was able to
provide a suitable multiplication rule for R4 via the
invention of a new number system called the quater-
nions. These consist of the real numbers together with
three new symbols i, j, k, which, like the square root of
–1, satisfying the relations:

i2 = j2 = k2 = –1

along with:

i × j = k j × i = –k
j × k = i k × j = –i

k × i = j i × k = –j

A typical element of the quaternions appears as:

a + bi + cj + dk

where a,b,c, and d are real numbers. Multiplication of
two quaternions is defined by the DISTRIBUTIVE PROP-
ERTY and the relations outlined above. For example,

(2 + i) × (3 + 3j + k) = 6 + 6j + 2k + 3i + 3k – j
= 6 + 3i + 5j + 5k

Hamilton was able to show that the quaternions
are a division algebra. Notice that they do not satisfy
the COMMUTATIVE PROPERTY: the order of multiplica-
tion does affect the answer. For example, i × j is differ-
ent from j × i.

In the 1950s mathematicians proved that Rn is a
division algebra only for n equal to 1, 2, 4, or 8. These
are the real numbers, the complex numbers, the quater-
nions, and another system called the Cayley numbers
(also known as the octonions). These extended number
systems are sometimes called hypercomplex numbers.

Quételet, Lambert Adolphe Jacques (1796–1874)
Flemish Statistics, Astronomy Born on February 22,
1796, in Ghent, Belgium, Adolphe Quételet is often
referred to by mathematical historians as the father of
modern statistics. Although trained as a mathemati-
cian and astronomer, Quételet is remembered for his
pioneering work in collecting statistical data and
using it to test traditional views on issues of medicine
and criminology. His new field of “social mechanics”
profoundly influenced European thinking in the social
sciences.

Raised in Ghent, Belgium, Quételet received a doc-
torate in mathematics from the University of Ghent in
1819, having written a dissertation on the theory of
CONIC SECTIONS. After teaching mathematics for four
years, he moved to Paris in 1823 to begin a study of
astronomy. During the course of this work he was
introduced to the discipline of PROBABILITY theory and
the particular statistical methods astronomers were using
to gain accurate measurements of physical phenomena.
He began to wonder whether the same techniques
apply to human affairs. To test this idea, he undertook
a study of data from government records to analyze the
numerical consistency of crimes. This work garnered
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much attention and stimulated general discussions on
the nature of free will versus social determinism. He
continued his work in analyzing crime and then
extended it to analyze mortality, human physique, and
social issues. This work produced much controversy
among social scientists of the time.

Quételet came to perceive the average value of a
human physical or mental quality, or of a general
societal characteristic, as a tangible and real “ideal”
that nature is trying to create, and he argued that the
fact that specific individuals rarely follow these
norms is to be expected as usual statistical deviation.
His analyses of social phenomena were certainly
mathematically sophisticated and gained him much
respect as a researcher. Nonetheless, many of his
ideas were controversial. In 1835 he published a
detailed account of his new social science in Sur
l’homme et le developpement de ses facultés, essai
d’une physique sociale (A treatise on man, and the
development of his faculties), which, among other
things, detailed the “average man.”

The Quételet index (QI) used today, also known
as the body mass index (BMI), is derived from
Quételet’s work. This index of obesity is defined by
the formula:

An individual with QI-value greater than 30 is consid-
ered obese.

Quételet died in Brussels, Belgium, on February 17,
1874. He had a profound effect on the development of
working statistics and the shaping of the study of social
science. Florence Nightingale considered his work of
the stature of a “new bible.”

See also HISTORY OF PROBABILITY AND STATISTICS

(essay).

quotient In NUMBER THEORY and ARITHMETIC, the
result of dividing one integer by another is called the
quotient. There might or might not be a remainder.
For example, 13 divided by 4 gives a quotient of 3
and a remainder of 1. In general, the quotient of an
integer a divided by b is an integer q such that a = bq
+ r, where r is a whole number with 0 ≤ r < q. The

quotient can be computed with the aid of the floor 

function: 

Outside of the arithmetic of integers, a quotient is
taken to mean simply the result of dividing a by b (and
so the issue of remainders is moot). For example, the 

quotient of √
–
48 and 3 is .

The quotient polynomial of two polynomials p(x)
and q(x) is a polynomial Q(x) such that p(x) =
Q(x)q(x) + R(x) for some polynomial R(x) of degree
smaller than that of q(x). For example, dividing p(x) =
x4 + 2x3 + 3x2 + 5x + 5 by q(x) = x2 + 2x + 1 gives a
quotient of Q(x) = x2 + 1 and a remainder of R(x) =
x + 3:

x4 + 2x3 + 3x2 + 5x + 5 = (x2 + 1) (x2 + 2x + 1) + (x + 3)

Such a computation can be accomplished by the pro-
cess of LONG DIVISION.

In calculus, the QUOTIENT RULE provides a means
for differentiating the ratio of two functions.

See also EUCLIDEAN ALGORITHM; FLOOR/CEILING/
FRACTIONAL PART FUNCTIONS; MODULAR ARITHMETIC;
REMAINDER THEOREM; SYNTHETIC DIVISION.

quotient rule The DERIVATIVE of the quotient of two
functions is given by the quotient rule:

For example, we have =

. The rule can be proved by making use of 

both the PRODUCT RULE and the CHAIN RULE: simply 

think of the quantity as the product: f(x)·(g(x))–1. 

Consequently:
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which is the quotient-rule formula. It is much easier
just to use the product and chain rules for any prob-
lem at hand rather than memorize the quotient-rule
formula.
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radian measure See ANGLE.

radius of convergence See POWER SERIES.

Ramanujan, Srinivasa Aiyangar (1887–1920) Indian
Number theory Born on December 22, 1887, in Erode,
Tamil Nadu state, India, Srinivasa Ramanujan is consid-
ered one of India’s greatest mathematical geniuses. With
an inexplicable talent for handling SERIES and CONTIN-
UED FRACTIONS, Ramanujan made significant contribu-
tions to the field of NUMBER THEORY and offered a
whole host of new and fundamentally important formu-
lae that have since found applications in many different
branches of science. He is also remembered for his
famous collaboration with leading British mathemati-
cian GODFREY HAROLD HARDY (1877–1947).

Ramanujan excelled in the topic of mathematics
during his early school years. As a teenager he came
across a small mathematics text by G. C. Carr called
Synopsis of Elementary Results in Pure Mathematics.
Written in a terse style, and being not much more than
a list of 5,000 mathematical formulae, equations, and
results, with no proofs or explanations, Ramanujan
took it upon himself to work through each and every
result and provide his own explanation of it. From that
moment on Ramanujan cared only for mathematics. By
the age of 17 he had conducted his own investigations
on the properties of the HARMONIC SERIES and had cal-
culated EULER’S CONSTANT to 15 decimal places.

In 1904 Ramanujan won a scholarship to attend
the Government College in Kumbakonam, but it was
revoked the following year because he devoted all his
time to mathematics and neglected his other courses.
He attended another college in Madras, but never grad-
uated, again for failing to attend to his nonmathemati-
cal courses.

As a self-taught scholar, Ramanujan began pub-
lishing results in the Journal of the Indian Mathemati-
cal Society. His brilliant 1911 paper, “Some Properties
of Bernoulli’s Numbers,” on the BERNOULLI NUMBERS

garnered him national attention. During this time
Ramanujan was supporting himself as a clerk in an
accounting office.

Ramanujan soon came to realize that he was work-
ing at a mathematical level that was beyond the exper-
tise of anyone he knew in India. Encouraged by friends,
he began writing to mathematicians in England for
guidance. The renowned number theorist Godfrey
Hardy of Trinity College, Cambridge, was the recipient
of one of Ramanujan’s letters and was suitably
impressed by the mathematical content it contained. In
1914 Hardy brought Ramanujan to England, and thus
began their extraordinary collaboration.

Hardy was impressed by the intuitive nature of
Ramanujan’s work. With no formal mathematical
education, Ramanujan had only a vague idea of what
constituted a mathematical proof, but nonetheless
had a profound internal sense of mathematical truth
and amazing insight into the workings of numbers.
One amusing story, for instance, claims that Hardy
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once mentioned to Ramanujan that the number of the
taxicab he had ridden that day was 1,729, a number
that he thought was “rather dull.” Ramanujan imme-
diately responded, to the contrary, that 1,729 is not
at all dull, being the first of all the positive integers
that can be written as the sum of two cubes in two
different ways. In an instant, Ramanujan somehow
realized that 1,729 equals both 123 + 13 and 103 + 93,
and that no other number smaller than 1,729 has this
dual property.

Over the 5 years of their time together in England,
Hardy and Ramanujan produced a number of funda-
mentally important results in number theory. Their
most notable work was on the theory of PARTITIONs.
During this time Ramanujan was awarded a bachelor
of science by research degree (the equivalent of a Ph.D.)
from Cambridge, was elected a fellow of the ROYAL

SOCIETY of London—England’s most prestigious scien-
tific body—and also a fellow of Trinity College.

Unfortunately, Ramanujan suffered from extremely
poor health. After developing tuberculosis, Ramanujan
returned to India in 1919 but died 1 year later on April
26, 1920.

Ramanujan left behind him a number of unpublished
notebooks filled with theorems and claims that mathe-
maticians have continued to study. Mathematics profes-
sor George Neville Watson (1886–1965) studied the
notebooks and published 14 papers, all under the title of
Theorems Stated by Ramanujan. He also published an
additional 30 papers, all inspired by Ramanujan’s work.

random numbers A sequence of numbers with the
property that no next number in the sequence can be
predicted from the preceding elements is said to be ran-
dom. Such a sequence does not follow any regular or
repetitive pattern. If the numbers listed come from a
finite pool of possible candidates (say, single-digit num-
bers 0 through 9), then the LAW OF LARGE NUMBERS

asserts that, in the long run, each number from that
pool should occur equally often.

The traditional method for generating random
numbers is to draw numbered balls from a container.
It is not possible to generate truly random quantities
with a computer—any program is a predetermined set
of instructions—but it is possible to create a list of
numbers that appear to be random. Numbers gener-
ated in this way are called pseudorandom. The follow-

ing are two popular methods for generating pseudo-
random numbers.

Middle-Square Method
Developed in 1946 by JOHN VON NEUMANN (1903–57)
and his colleagues while working on the Manhattan
Project at Los Alamos Laboratories, the middle-square
method works as follows:

1. Select a four-digit number to be the first number in
the sequence. (This number is called the seed of the
algorithm.)

2. Square this number to produce an eight-digit num-
ber. (Add a leading zero if necessary.)

3. Use the middle four digits of this eight-digit number
as the next number in the sequence. Repeat.

The result that appears is a seemingly random list of
numbers between 0 and 9999. For example, beginning
with the seed 7,254 we obtain the sequence 6205, 5020,
2004, 1601, 6320, 9424, 8117, … Unfortunately, the
middle-square method can produce sequences of inte-
gers that tend toward zero. For example, beginning
with the seed 1049 we obtain the sequence 1049, 1004,
80, 64, 40, 16, 2, 0, 0, 0,…

Linear-Congruence Method
Developed by D. H. Lehmer in 1951, the linear-congru-
ence method uses MODULAR ARITHMETIC to generate a
list of pseudorandom numbers. It works as follows:

1. Select three fixed numbers a, b, and m, and an ini-
tial value x0 (the seed).

2. Given a number xn in the sequence, the next number
xn+1 in the list is obtained by multiplying xn by a,
adding b, and taking the remainder upon division
by m:

xn+1 = axn + b (mod m)

For example, taking a = 2, b = 3, and m = 10, with seed
x0, = 1, produces the sequence 1, 5, 3, 9, 1, 5, 3, 9, 1,
…., which, unfortunately cycles and is far from pseu-
dorandom. Although it is not possible to avoid cycling
with this method, one can choose an extraordinarily
large value for m so that the length of the cycle pro-
duced is extremely long, and the repetition of numbers
will not be encountered in a lifetime. (This creates a
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second problem, however, in that in a truly random
sequence, numbers do indeed appear more than once,
which is avoided here.) Many computers today use this
method with the choice m = 231.

Computer-generated pseudo-random numbers are
used in STATISTICS to help facilitate unbiased sampling
of a POPULATION.

See also SAMPLE.

random variable See DISTRIBUTION.

random walk In the theory of statistical mechanics,
a random walk is the path traced out by a particle per-
forming a sequence of unit steps in which the direction
of each step is chosen randomly. For example, gas
molecules randomly jolting back and forth in space are
effectively performing three-dimensional random
walks. (Their resultant motion is called Brownian
motion, which can be used to explain diffusion.)

A child standing on a sidewalk can perform a one-
dimensional random walk by taking steps backward
and forward according to the results of tossing a coin
(say, “heads” means step forward one pace, “tails” step
backward one pace). Another child standing in an infi-
nite grid of squares performs a two-dimensional ran-
dom walk by stepping one place north, south, east, or
west according to the rolls of a four-sided die (or of an
ordinary die if rolls of 5 and 6 are ignored).

Gamblers betting $1 at a time at a casino are effec-
tively performing random walks—the contents of their
wallets increase and decrease in a random fashion, one
unit at a time.

We can ask, what are the chances that a gambler
will eventually lose all of his or her money? (Or equiva-
lently, what is the probability that a particle performing
a one-dimensional random walk will eventually move
one place behind “start”?)

This probability can be computed as follows. Sup-
pose the gambler has N dollars in hand and, at each
round of play, has a 50 percent chance of going up $1
and a 50 percent chance of losing $1. Let p be the
probability that the gambler will eventually only have
N – 1 dollars in hand.

There are two ways for a gambler to lose this dol-
lar, either right away, or to win $1 and then eventually
lose $2 later on. This shows:

To lose $2, a gambler must first lose $1 and then
another. Thus:

We thus have the equation: , that is, 

(p – 1)2 = 0, showing that p = 1. That is, with absolute
certainty, a gambler will eventually go down $1, and
then another, and then another, all the way down to
ruin. This phenomenon is called GAMBLER’S RUIN.

The above calculation shows that all one-dimen-
sional random walks (with equal chances of stepping
backward or forward) eventually return to their start-
ing positions. Mathematicians have shown that two-
dimensional random walks (again with equal chances
of stepping in any one of four directions) also eventu-
ally return to their starting positions with absolute cer-
tainty. Surprisingly, there is only a 34 percent chance
that a three-dimensional random walk will have the
particle return to its starting position.

See also HARMONIC FUNCTION.

rank In STATISTICS, an arrangement of a set of objects
or DATA values in an order dictated by the magnitude
or importance of some characteristic is called a ranking
of the objects. For example, the arrangement of 20 men
in order of height is a ranking, as is the arrangement of
10 numbers from lowest to highest. The position of an
object in a list given by a ranking is called the rank of
the object. A ranking could be purely subjective, such
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as the ranking of pies in a taste-testing competition.
SPEARMAN’S METHOD and KENDALL’S METHOD can be
used to test the degree of association between two dif-
ferent rankings of the same set of objects.

In MATRIX theory, the row rank of a matrix is the
maximum number of linearly independent rows the
matrix possesses, and its column rank is the maximum
number of linearly independent columns it has. The pro-
cess of GAUSSIAN ELIMINATION shows that these two val-
ues always agree, and the common value of these two
ranks is called the rank of the matrix. An m × n matrix
is said to be of full rank if its rank equals the smaller of
m and n. A square matrix of full rank is invertible.

See also INVERSE MATRIX; RANK CORRELATION.

rank correlation Two methods are commonly used
to determine whether or not two ranking schemes are
well-matched. For example, in a pie-baking contest,
two judges might rank five pies as follows:

If the judges followed purely objective criteria, and
were free of personal preference in their choices, then
one would expect two identical ranking choices. If,
on the other hand, the judges followed entirely inde-
pendent criteria, or no criteria at all (randomly
assigning ranks), then one would expect very little
correlation between the two lists. The results of this
competition seem to lie somewhere between these
two extremes.

Kendall’s Coefficient of Rank Correlation
In 1938 M. G. Kendall developed one measure of rank
association given by a single numerical value τ, adopt-
ing values between –1 and 1. A value of 1 indicates a
perfect matching in rank values; a value of 0 indicates
no consistency in the rank assignments; and a value of
–1 perfect disagreement (that is, one judge’s top choice
is the other judge’s least favored choice, and so on.)
The numerical value τ is computed by completing the
following steps:

1. Rearrange the order of the entrants so that the ranks
given by the first judge are in order.

2. Looking now only at the second row, compute the
score of each entrant. This is the number of entrants
to its right higher in rank minus the number of
entrants to its right of lower rank. (The rightmost
entrant is assigned a score of zero.)

3. Sum all the scores. Call this sum S.
4. If the number of entrants is n, then the maximum

possible sum is (n – 1) + (n – 2) +…+ 2 + 1 + 0 = 

n(n – 1). Kendall’s coefficient of rank correlation 

is the ratio of S to this maximal sum:

In our example, step 1 of the procedure yields the
reordered table:

There are two entrants to the right of dewberry with
rank higher than 3 (elderberry and apple), and two
lower than 3 (blueberry and cherry), thus dewberry has
score 0. Similarly, the scores of the remaining pies are:
blueberry = 3 – 0 = 3, cherry = 2 – 0 = 2, elderberry =
0 – 1 = –1, and apple = 0. The total sum of scores is S =
0 + 3 + 2 + (–1) + 0 = 4. The maximum possible sum is
4 + 3 + 2 + 1 + 0 = 10. Thus Kendall’s rank correlation
coefficient here is:

This value indicates that the rank assignments are pos-
sibly inconsistent.

Spearman’s Coefficient of Rank Correlation
An alternative rank coefficient was developed by
Charles Spearman in 1904. It is denoted ρ, and is com-
puted by summing the differences squared in the rank

τ = =4
10

0 4.

Dewberry Blueberry Cherry Elderberry Apple

Judge 1 1 2 3 4 5
Judge 2 3 1 2 5 4
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Judge 1 5 2 3 1 4
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of each entrant and then comparing the result with the
maximum sum possible.

To illustrate: in the above example, apple received
ranks of 5 and 4. The rank difference squared is (5 – 4)2

= 12 = 1. Similarly, the rank difference squared for blue-
berry is (2 – 1)2 = 1, and for the remaining pies, in
alphabetical order, (3 – 2)2 = 1, (1 – 3)2 = 4, and (4 – 5)2

= 1. Summing all five rank differences squared yields the
total score: D2 = 1 + 1 + 1 + 4 + 1 = 8.

With n entrants, it can be shown that the maximal 

sum possible is . It occurs when the ranks 

assigned by one judge are in reverse order to the ranks
assigned by the second. (To see this, observe how the
quantity D2 changes when the ranks of two entrants
are switched. This will show that the quantity D2 is
largest when, for any pair of entrants, their assigned
ranks are in reverse order.) For n = 5, the maximum
sum possible is 40.

Spearman’s rank correlation coefficient is given by:

Notice that a value ρ = 1 occurs when D2 = 0, that is,
there is perfect agreement. A value ρ = –1 occurs when
D2 has the maximum value, i.e., perfect disagreement. 

In our example, we have ρ = 1 – 2 · = 0.6. This value 

again indicates some disagreement and an inconsis-
tency in the two ranking schemes.

rate of change See DIFFERENTIAL CALCULUS.

ratio The relationship of one numerical quantity to
another expressed as a QUOTIENT so as to indicate their
relative sizes is called a ratio. We write a:b for the ratio
of a quantity a to a quantity b, or, alternatively, express
the ratio as a FRACTION a/b. The first term of a ratio
a:b is called the antecedent and the second term the
consequent. For example, the ratio of 10 to 4 is written
10:4 or 10/4, which can be simplified to 5/2. (Thus the
number 10 is 2 1/2 times as large as 4.) Here, 10 is the
antecedent, and 4 is the consequent.

The value of a ratio is unchanged if both terms in
the ratio are multiplied or divided by the same quan-
tity. For example, 10:4, 30:12, and 2.5:1, are equiva-

lent ratios. A ratio for which one of its terms is equal
to 1 is called a unitary ratio. Thus, 2.5:1, for instance,
is a unitary ratio.

If the ratio of two variables y and x is constant,
then the two variables are said to be PROPORTIONAL.
For example, if y/x has constant value k, then it must
be the case that y = kx.

In PROBABILITY theory, the ODDS of a game are
expressed as a ratio. For example, if in a game of
chance a of the possible outcomes are deemed favor-
able and the remaining b possible outcomes unfavor-
able, then the odds in favor for the game is the ratio
a:b. Thus for a game with favorable odds of 3:2, for
instance, three of the five outcomes are deemed favor-
able, and there is 3/5, or 60 percent, chance of win-
ning the game.

A number that can be expressed as a ratio of two
integers is called a RATIONAL NUMBER. Not all numbers
are rational. The FUNDAMENTAL THEOREM OF ARITH-
METIC establishes, for example, that √

–
2 is not rational.

The RATIO TEST is often used to determine the conver-
gence of an infinite SERIES.

In the theory of VECTORs, the ratio theorem (also
known as the section formula) states the following:

If a point P divides a line segment AB in the
ratio a:b, then the position vector p of P is
given in terms of the position vectors a and b
of A and B, respectively, by the formula:

The ratio notation for numbers can be extended to
indicate the relative sizes of more than two quantities.
For instance, the ratio a:b:c states that the ratio of the
first quantity to the second is a:b, that the ratio of the
second quantity to the third is b:c, and that the ratio of
the first quantity to the third is a:c. For example, the
numbers 40, 80, and 200 are in the ratio 1:2:5.

See also GOLDEN RATIO.

rational function (rational expression) Any function 

f(x) = given as a RATIO of two polynomials p(x) and

q(x) is called a rational function. Such a function is
defined at all values x for which q(x) ≠ 0. For example, 
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of all real values except x = 2 and x = –2. Any single
polynomial p(x) can be regarded as the rational function

.

If, for a rational function f(x) = , the denom- 

inator q(x) is zero at x = a, then the function either has
a vertical ASYMPTOTE at x = a or a REMOVABLE DISCON-
TINUITY at x = a. In the latter case, it must be that the
numerator p(x) is also zero at x = a. For example, the 

rational function , although 

not defined at x = 3, equals the continuous function x –
2 at all values different from 3, and so has a removable
discontinuity at that point.

If a rational function f(x) = tends to a limit c

as x → ∞ or as x → –∞, then the line y = c is a hori-
zontal asymptote for f. For example, the line y = 2 is a 

horizontal asymptote of . (Write =

. This approaches the value 

as x → ±∞.)
Every rational function can be rewritten in terms of

PARTIAL FRACTIONS.
See also CONTINUOUS FUNCTION.

rationalizing the denominator The process of elim-
inating any square-root terms in the denominator of a
rational expression, without changing the value of that
expression, is called rationalizing the denominator. For 

example, the quantity can be rationalized by 

multiplying both the numerator and denominator by 

√
–
2 to obtain: .

In general, an expression of the form

is rationalized by multiplying through by the conjugate,
√
–
a + √

–
b, to produce:

During the 1950s and 1960s, before the advent of
pocket calculators, it was deemed necessary to always
rationalize the denominator of a numerical expression.
It has the advantage of making computations relatively
straightforward. For instance, although one can read
from a book of tables that √

–
2 is approximately 

1.414, computing the approximate value of via the 

process of LONG DIVISION is tedious. However, rewriting 

as allows us to see immediately that this 

quantity is simply half of √
–
2, and so has approximate

value 0.707.

Today, the quantity is regarded as a valid 

expression of a numerical quantity, and there is abso-
lutely no need to rationalize the denominator. Unfortu-
nately, many high school mathematics programs still
insist on rewriting such expressions, even though the
reasons for doing so are now obsolete.

rational numbers (rationals) Any number that can
be expressed as a RATIO, a/b, of two integers a and b,
with b ≠ 0, is called a rational number. For example,
2/5 and –6/2 (which is equivalent to –3) are rational
numbers. Every rational number is a fraction, and as
such, the rules for adding, subtracting, multiplying, and
dividing fractions apply to the rationals. The set of all
rational numbers is denoted Q (for quotient), and the
set of all rationals constitutes a mathematical FIELD.

Any real number whose decimal representation
eventually repeats in a cycle or terminates (and so can
be regarded as containing a repeated cycle of zeros) is a
rational. For example, multiplying x = 0.34 by 100 

yields 100x = 34, and so x = = . Multiplying 

y = 2.3181818… by 10 and by 1,000 and then sub-
tracting yields:

1000y = 2318.181818…
10y = 23.181818…

990y = 2295

establishing that y = 2295/990 = 51/22. Conversely, the
process of LONG DIVISION shows that every rational
number has a decimal expansion that repeats. (For
instance, in dividing 3 by 7, each remainder that appears
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in the process of long division can only be one of seven
numbers—0, 1, 2, 3, 4, 5, 6—and so, eventually, some
remainder must appear twice. As soon as this occurs, the
process of long division cycles.) This establishes:

The rational numbers are precisely those num-
bers whose decimal expansions repeat.

Thus any number with a nonrepeating decimal expan-
sion must be an IRRATIONAL NUMBER. In a similar
manner, one can show that the rationals are precisely
those numbers with terminating CONTINUED FRACTION

expansions.

Between any two rational numbers and lies

another rational—their midpoint , for 

instance. Repeating this reasoning establishes:

Infinitely many rational numbers lie between
any two given rationals.

We say that the set of rationals represents a “dense sub-
set” of the real NUMBER LINE. Moreover, between any
two real numbers x and y on the number line, with x <
y, there exists a rational q that lies between them.
(Write x and y as decimal expansions and choose a ter-
minating decimal value that lies between them.)

These density arguments show that there is no
smallest positive rational number, that is, there is no
“first” rational number on the positive number line.
Nonetheless, German mathematician GEORG CANTOR

(1845–1918) showed with his famous DIAGONAL ARGU-
MENT that it is possible to arrange all the positive (and
negative) rationals in a list: q1,q2,q3,… This shows:

The set of rational numbers is COUNTABLE.

With the aid of the GEOMETRIC SERIES 1 + x + x2

+ x3 +… = we can now show that the amount of 

space occupied by the rationals on the number line is
zero. (This is surprising given that the rationals form a
dense subset of the line.)

Choose x = 1/10 and cover the point q1 on
the number line with an interval of length x,
the point q2 with an interval of length x2 =
0.01, the point q3 with an interval of length

x3 = 0.001, and so forth. These intervals likely
overlap, but they occupy no more than:

amount of space in total. Thus the set of ratio-
nal points occupies at most one-ninth of the real
number line.

In the same way, by working with x =
1/100, we deduce that the rationals occupy at
most 1/99 of the space on the number line, or
at most 1/999 of the space if we work with x =
1/1000. Continuing in this manner, we are
forced to conclude that the total amount of
space occupied by the rational numbers is zero.

We say:

The rationals form a set with a measure of zero
on the real-number line.

Given that the number line is of infinite length, we must
conclude then that “most” numbers are not rational.

See also ALGEBRAIC NUMBER; NUMBER; REAL NUM-
BERS; TRANSCENDENTAL NUMBER.

ratio test See CONVERGENT SERIES.

ray (half-line) The portion of a straight line starting
at one point and going on forever in one direction is
called a ray. Two rays in a plane starting at the same
point create a figure called an ANGLE.

real numbers It is extraordinarily difficult to define
precisely what is meant by a real number. Many standard
texts in mathematics define a real number to be any
RATIONAL NUMBER or any IRRATIONAL NUMBER. Unfor-
tunately, since an irrational number is declared to be any
number that is not rational, it is not clear from which
pool of numbers the irrational numbers come. Alterna-
tively, one can define a real number to be any number
that can be expressed as a decimal expansion. (The ratio-
nal numbers are then those that have repeating expan-
sions and the irrationals are those that do not.) The
difficulty with this approach is that it is not clear how to
perform arithmetic operations on these entities. For
example, when adding two large integers, 769 + 845, say,
one begins with the rightmost digits, adds them, carries a
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digit if necessary, and proceeds to the next column digits
one place to the left to repeat this process again. It is not
clear, then, how one should proceed when asked to add
two infinite decimal expansions. (What is the rightmost
digit with which to begin?)

In the mid-1800s, as mathematicians attempted to
establish a sound theoretical footing for CALCULUS,
scholars came to realize the necessity of a rigorous
understanding of what is meant by a “real number.” In
particular, in order to validate the three key theorems
on which calculus rests (namely, the EXTREME-VALUE

THEOREM, the INTERMEDIATE-VALUE THEOREM, and the
MEAN-VALUE THEOREM), it was essential that the real-
number system be proved “complete,” in the sense that
no numbers are “missing” from the system. (For exam-
ple, the square root of 2 is missing from the set of
rational numbers).

French mathematician AUGUSTIN-LOUIS CAUCHY

(1789–1857) proposed a definition of a real number
using Cauchy sequences. (This approach is based on
the idea that every irrational number is the LIMIT of a
sequence of rational numbers.) Although it is easy to
perform arithmetic operations on Cauchy sequences,
the completeness of the real-number system created is
not immediately clear. In 1872, German scholar JULIUS

WILHELM RICHARD DEDEKIND (1831–1916) proposed
the notion of a DEDEKIND CUT as a means of defining
the real numbers. This approach has the advantage of
making the completeness of the real-number system
readily apparent, but the disadvantage of making the
arithmetic manipulations of the real numbers less natu-
ral. Nonetheless, both approaches are valid and are
used today as the means for defining the real numbers.
The work of GEORG CANTOR (1845–1918), with his
famous DIAGONAL ARGUMENT, shows that the CARDI-
NALITY of the reals is greater than that of the rationals.
It is not surprising then that a more sophisticated
approach to understand the real-number system is
needed than that for understanding the rationals.

Today the set of real numbers is denoted R and is
depicted geometrically as the set of points on a NUMBER

LINE. The real numbers constitute a mathematical FIELD.
See also NUMBER; ORDER PROPERTIES.

reciprocal (multiplicative inverse) The number 1
divided by a quantity is called the reciprocal of that
quantity. For example, the reciprocal of 2 is 1/2, and 

the reciprocal of x2 + 1 is . The product of a 

quantity and its reciprocal is always 1.

The reciprocal of any FRACTION is the corre-

sponding fraction with numerator and denominator 

interchanged: . The reciprocal of a COMPLEX

NUMBER x + iy is simplified by multiplying the numera-
tor and denominator each by the conjugate of the com-
plex number:

This is the same process as RATIONALIZING THE

DENOMINATOR of a fractional quantity.
An equation that is unchanged (that is, has the

same set of solutions) if the variables in that equation
are replaced by their reciprocals is called a reciprocal
equation. For example, x2 – 3x + 1 = 0 is a reciprocal 

equation, since replacing x by yields 

+ 1 = 0 which simplifies to 1 – 3x + x2 = 0.
The reciprocal series of a given SERIES is the series

whose terms are the reciprocals of the terms of the
given series. For example, any HARMONIC SERIES is the
reciprocal series of an ARITHMETIC SERIES.

See also INVERSE ELEMENT.

Recorde, Robert (ca. 1510–1558) Welsh Algebra
Born in Tenby, Wales, ca. 1510 (his exact birth date is
not known), mathematician Robert Recorde is remem-
bered for his instrumental work in establishing general
mathematics education in England as well as for intro-
ducing ALGEBRA to that country. Recorde wrote a num-
ber of influential elementary textbooks, all written in
English and all using clear and simple terminology. He
is also remembered for inventing the symbol “=” to
denote equals.

Recorde received a medical degree from Cambridge
University in 1545 and practiced medicine in London
for several years before being appointed as the general
surveyor of mines and monies in Ireland by King
Edward VI. It is worth noting that Recorde produced
the first coin in England to have the date written with
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HINDU-ARABIC NUMERALS (the numbers we use today)
rather than ROMAN NUMERALS.

Maintaining an interest in mathematics throughout
his life, Recorde wrote a series of instructional texts in
mathematics. His first piece, The Grounde of Artes,
published in 1543, discussed the advantages of the
Hindu-Arabic numerals and general arithmetic tech-
niques useful for commerce. He later published an
extended version of this work with the same name in
1552, which also explored the theory of WHOLE NUM-
BERS and RATIONAL NUMBERS. Around this time Recorde
also published Pathwaie to Knowledge, an abridged ver-
sion of Euclid’s famous work, THE ELEMENTS.

Recorde is perhaps best remembered for his 1557
piece The Whetstone of Witte, considered the first sig-
nificant text on the topic of algebra written in English.
Its title is a pun not understood today. Early algebraists
used the Latin word cosa for “thing,” meaning the
unknown variable in an equation. This word closely
resembles the Latin word cos for “whetstone,” a stone
for sharpening tools. Thus Recorde’s title is referring to
the art of algebra as a device for sharpening one’s wit.

In this famous text, Recorde explains the theory of
equations and the arithmetic of square roots. He solves
QUADRATIC equations (but dismisses negative solu-
tions). He notes, in particular, that for an equation of
the form x2 = ax – b, the term a equals the sum of the
two roots of the equation, and the term b their prod-
uct. (We see this today by noting that (x – r1)(x – r2) =
x2 – (r1 + r2)x + r1r2.) It is in this piece that Recorde
introduces the symbol “=” for equality, noting that the
use of two parallel line segments is apt “bicause noe 2
thynges can be moare equalle.”

Recorde died in London, England, in 1558. The
exact date of death is not known.

rectangle A QUADRILATERAL with all four angles
being right angles is called a rectangle. A SQUARE is
considered a rectangle.

The AREA of a rectangle is the product of its length
and its breadth, and its PERIMETER is double the sum of
these two quantities:

area = length × breadth
perimeter = 2 × length + 2 × breadth

There are only two rectangles with integer side-
lengths whose areas and perimeters have the same

numerical value: the 3 × 6 rectangle of area/perimeter
18, and 4 × 4 square of area/perimeter 16.

The two DIAGONALs of a rectangle are equal in
length and bisect each other, and the rectangle is the
only quadrilateral with this property. Carpenters mea-
sure diagonal lengths to check that their work is rect-
angular. One can also use this observation to draw
surprisingly accurate rectangles on the ground using
only two pieces of rope equal in length and a piece of
sidewalk chalk: tie the two ropes together at their mid-
points and pull them taut to form the two bisecting
diagonals of a rectangle. Mark the endpoints of the
ropes, these are the corners of the rectangle, and draw
its sides using a taut rope as a guide.

See also GOLDEN RECTANGLE.

recurrence relation (recursive relation, reduction for-
mula) An equation that allows one to calculate the
successive values of a FUNCTION or a SEQUENCE once an
initial set of values is given is called a recurrence rela-
tion. For example, the FIBONACCI NUMBERS Fn are com-
pletely specified by the recurrence relation Fn = Fn–1 +
Fn–2 for n > 2 once we are told that F1 = 1 and F2 = 1.
The number of moves required to solve the TOWER OF

HANOI PUZZLE with N discs, T(N), is given by the
recurrence relation T(N + 1) = 2T(N) + 1 with T(1) = 1.
The recurrence relation an+1 = an + 3 with a1 = 7 defines
the arithmetic sequence 7, 10, 13, 16,…

In INTEGRAL CALCULUS, the method of INTEGRATION

BY PARTS is often used to establish important reduction
formulae. For example, setting u = xn and v′ = ex in the
integral below establishes the relation ∫xnexdx = xnex –
n ∫xn–1exdx. Repeated application of this formula allows
one to eventually evaluate the given integral.

Other reduction formulae include:

See also DYNAMICAL SYSTEM; LOGISTIC GROWTH;
RECURSIVE DEFINITION.
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recursive definition (inductive definition, recursion)
A SEQUENCE an is said to be defined recursively if:

1. The first term a0 is given.
2. An algorithm for computing any term from its pre-

decessor is presented.

For instance, the sequence of powers 1, x, x2, x3, …
can be defined recursively by:

a0 = 1
an+1 = xan

and the FACTORIAL function n! can be defined as:

0! = 1
(n + 1)! = (n + 1) × n!

See also DYNAMICAL SYSTEM; RECURRENCE RELATION.

reduced form (lowest terms) A FRACTION is said to
be in reduced form if its numerator and denominator
share no common factor (other than one). For exam-
ple, the fraction 12/25 is in reduced form, whereas
14/21 is not. (The numerator and denominator share 7
as a factor.) Canceling all factors common to the
numerator and denominator of a fraction reduces the
fraction to one of reduced form. For instance, 14/21 is
equivalent to the reduced fraction 2/3.

Mathematicians have proved that if the numerator
and denominator of a fraction are chosen at random,
then the PROBABILITY that the resultant fraction is in 

reduced form is precisely (about 61 percent).

See also CANCELLATION.

reflection See GEOMETRIC TRANSFORMATION; LINEAR

TRANSFORMATION.

Regiomontanus (1436–1476) German Trigonome-
try, Astronomy Born on June 6, 1436, in Königs-
berg, Prussia (now Germany), scholar Regiomontanus
is remembered as author of De triangulis omnimodis
(On all classes of triangles), published posthumously
in 1533, which was the first modern account of
TRIGONOMETRY as a discipline independent of astron-
omy. This work was extremely influential in the
revival of the subject in the West.

Although born Johann Müller, Regiomontanus
took the name of his birthplace. (Königsberg means
“the king’s mountain,” which translates into Latin as
“Regiomontanus.”) Trained as an astronomer, he was
appointed a professorship in the field at the University
of Vienna in 1641, and, seven years later, was made
astronomer to King Matthias Corvinus of Hungary.

Up until this time, trigonometry was considered
only a part of astronomy. Although aware of the Ara-
bic use of the tangent function, Regiomontanus dis-
cussed only the sine function in his famous piece.
Unlike the ancient Indian mathematicians, he did not
think of the sine as a ratio, but instead as a length of
a particular line segment drawn for a circle of fixed
radius. Using a circle of radius 60,000 units, Regio-
montanus presented a large table of sine values, and

6––
π2
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Regiomontanus, a mathematician and astronomer of the 15th cen-
tury, published Tabulae, a text of trigonometric tables important to
scholars at that time. (Photo courtesy of the Science Museum,
London/Topham-HIP/The Image Works)



discussed the means to convert these values to ones
appropriate for a circle of a different radius. His
work also outlined all the basic theory of trigonome-
try, along with applications to both plane and spheri-
cal geometry. Regiomontanus’s work was extremely
influential.

Regiomontanus was an able astronomer. In 1472
he made detailed observations of a comet sufficiently
accurate enough for scholars to later identify it as Hal-
ley’s comet. (Halley was the first to compute the length
of the orbit of the comet 210 years later.) Regiomon-
tanus also devised a mathematical method for deter-
mining longitudinal position on the EARTH by making
use of the location of the Moon in the sky. He died in
Rome, Italy, on July 8, 1476.

regression If a SCATTER DIAGRAM indicates a rela-
tionship between two variables in a scientific study,
then any attempt to quantify that relationship is
called regression. For example, if an experiment
yields data points (x1, y1), (x2, y2), …, (xn, yn), one
can attempt to find a formula y = f(x) that “best fits”
the data. The LEAST SQUARES METHOD seeks to mini-
mize the sum of squares:

using techniques of CALCULUS. This approach works
particularly well if one suspects a linear relationship
f(x) = ax + b, but it can be used too for possible
quadratic relationships f(x) = ax2 + bx + c, and sus-
pected relationships following other simple formulae.

See also CORRELATION COEFFICIENT.

relation (relationship) Any pairing between elements
of one set with some elements of another, or elements
of one set with other elements of the same set, is called
a relation. For example, consider the set of all the peo-
ple of the world. Then the “mothered by” correspon-
dence M that associates to each person his or her
biological mother is a relation. For the set of real num-
bers, the “greater than” relation G declares a to be
related to b if a is greater than b, and the “circle” rela-
tion C sets x as related to y if the two numbers satisfy
the equation x2 + y2 = 1.

If two members a and b of a set are related by a
relation R, then we write aRb. For instance, if Brian’s
mother is Joan, then “Brian M Joan” (that is, Brian is
“mothered by” Joan). We also have that 3G2, since 3 is
greater than 2, and 1C 0, since the point (1,0) lies on
the unit circle. (Note: the “greater than” relation G is
usually denoted “>”.)

If the relation being discussed is understood, it is
also convenient to write two elements that are related
simply as an ordered pair. For instance, in the mother-
ing relation M we have (Brian, Joan), but not (Joan,
Brian). Mathematicians generally prefer the ordered-
pair presentation of a relation and in fact will define a
relation to simply be any collection of ordered pairs.
This has the advantage that if the elements under dis-
cussion are numbers, then one can graph the points that
satisfy a given relation. For example, under the “greater
than” relation G, a pair (a,b) satisfying this relation cor-
responds to a point in the plane above the diagonal line
y = x. The set of all pairs (x,y) that belongs to the circle
relation C forms a circle in the xy-plane.

A relation is called a FUNCTION if no element in the
first set (first coordinate) of the relation is matched
with more than one element of the second set (second
coordinate). For example, as Brian, as with every
human being, can be matched with only one biological
mother, the “mothered by” relationship is a function.
Since 3 > 2 and 3 > 1, for example, the “greater than”
relation is not a function. The “circle” relation C also
fails to be a function since, for instance, both (0,1) and
(0, –1) belong to the relation.(We have 0C1 and 0C–1.)
If we consider, instead, the “parabola” relation P
defined as the set of all points (x, y) that satisfy y = x2,
then this relation is a function: if xPy1 and xPy2, then it
must be the case that y1 = y2. (We have y1 = y2 = x2.)

relative error If the ERROR or uncertainty in a mea-
surement of a quantity is expressed as a ratio to the
total measurement, then the error is called a relative
error. For example, when 1.2 is used as an approxima-
tion for the quantity 1.16, then the relative error is
0.04/1.16 ≈ 0.034. If, in measuring the height of a
building as 62 ft, engineers used a device that measures
to the nearest half a foot, then the height of the build-
ing should be written 62 ± 0.5 ft, and the relative error
of this measurement is 0.5/62 ≈ 0.008.

See also PERCENTAGE ERROR.
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relatively prime (coprime) Two integers a and b
are relatively prime if their GREATEST COMMON FAC-
TOR is 1. Consequently, the only factor the two num-
bers have in common is 1. For example, 15 and 28 are
relatively prime. Any two consecutive numbers are
relatively prime.

Relatively prime numbers play a key role in the
famous postage-stamp problem:

Which postage values can be obtained using 5-
cent and 7-cent stamps only?

For example, one can compose a postage value of 22
cents with three 5-cent stamps, and one 7-cent stamp,
but the quantity 23 cents cannot be so obtained. One
can check that each quantity 24, 25, 26, 27, and 28 is
possible. Adding multiples of 5 to each of these num-
bers then shows that any quantity greater than 24 is
obtainable. (Below this, one can check that only the
values 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, and 22 can
be composed.)

In general, given two stamp values a and b, with
values a and b relatively prime, one can prove that
there is always a number N so that every quantity N
and above can be composed as a combination of
stamps of each type. This result is not true if a and b
are not relatively prime.

Mathematicians have shown that the PROBABILITY

that two integers chosen at random are relatively prime 

is ≈ 0.61.

See also COMMON FACTOR; FACTOR; JUG-FILLING

PROBLEM.

remainder theorem The process of LONG DIVISION

shows that if a POLYNOMIAL p(x) of degree n is divided
by a second polynomial q(x) of degree m, one obtains,
apart from a QUOTIENT term Q(x), a remainder poly-
nomial R(x) of degree strictly smaller than m:

p(x) = Q(x)q(x) + R(x)

For instance, dividing p(x) = x4 – x3 + 2x2 + x + 4 by
the degree-2 polynomial q(x) = x2 + 1 yields a remain-
der R(x) = 2x + 1 of degree 1:

In particular, if a polynomial p(x) is divided by a lin-
ear term x – a for some constant a, the result remainder
must be a polynomial of degree zero, that is, a constant:

p(x) = Q(x) (x – a) + b

Setting x = a into this equation shows that p(a) = 0 + b.
Thus the remainder term b is simply the value of the
polynomial at x = a. This observation is called the
remainder theorem:

If a polynomial p(x) is divided by the term
x – a, for some constant a, then the remain-
der term is p(a):

p(x) = (x – a)Q(x) + p(a)

For example, if p(x) = x3 – 7x2 + 2x + 4 is divided by
x + 1 = x – (–1), the remainder will be p(–1) = – 1 – 7
– 2 + 4 = –6.

The remainder theorem is useful for finding the
factors of a polynomial. For instance, for the polyno-
mial p(x) = x3 – 7x2 + 2x + 4, we have p(1) = 1 – 7 + 2
+ 4 = 0, indicating that (x – 1) is a factor: x3 – 7x2 + 2x
+ 4 = (x – 1)Q(x) + p(1) = (x – 1)Q(x).

See also FACTOR THEOREM; FUNDAMENTAL THEO-
REM OF ALGEBRA.

removable discontinuity See CONTINUOUS FUNCTION.

Reuleaux’s triangle See CONSTANT WIDTH.

Rhind papyrus (Ahmes papyrus) This famous docu-
ment is the oldest written mathematical text known to
exist. Currently housed in the British Museum, this 18-
ft long roll of papyrus, 13 in. wide, dates back to ca.
1650 B.C.E. The document was discovered buried in the
Egyptian desert sands, near the Valley of the Kings, in
the mid-1800s by an unknown Egyptian citizen. Visit-
ing Scotsman Alexander Henry Rhind (1833–63), who
had an interest in antiquities, bought the papyrus and
transported it to Britain.

The papyrus is a copy of a work that dates back at
least 200 years earlier. Although the text consists
mainly of numerical problems and solutions, with an
emphasis on practical application, it is clear that thex x x x x x x x
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Egyptians of the time held mathematics in high regard.
The copyist, whose name is rendered as Ahmes or
Ahmose, copied also the grandiose title of the papyrus:
Accurate Rendering: The Entrance into the Knowledge
of All Existing Things and All Obscure Secrets. The
purpose of the text seems to be that of a textbook—a
series of examples and exercises organized to illustrate
certain mathematical skills and techniques. Some of the
latter problems discussed, however, have no practical
application and clearly indicate a delight in studying
mathematics for its own sake.

See also EGYPTIAN FRACTIONS; EGYPTIAN MATHE-
MATICS; EGYPTIAN MULTIPLICATION.

Richter scale See LOGARITHMIC SCALE.

Riemann, Georg Friedrich Bernhard (1826–1866)
German Geometry, Analysis, Calculus, Number Theory
Born on September 17, 1826, in Breselenz, Hanover
(now Germany), Bernhard Riemann is remembered as
one of the greatest mathematicians of the 19th century.
His work in NON-EUCLIDEAN GEOMETRY revolutionized
modern thinking on the study of shape and space and
provided the tools ALBERT EINSTEIN needed for his
description of the universe in the general theory of rela-
tivity. Among his many significant contributions to
ANALYSIS, Riemann is remembered for his construction
of the Riemann integral, which, for the first time,
extended the theory of CALCULUS beyond the realm of
continuous functions only. Riemann also developed a
theory of complex functions (that is, functions whose
inputs and outputs are COMPLEX NUMBERS) and studied
applications of calculus in this setting. In 1859, while
searching for a better approximation for the number of
primes as given by the famous PRIME-NUMBER THEOREM,
Riemann discovered a generalized version of LEON-
HARD EULER’s important ZETA FUNCTION. He made a
deep and insightful conjecture about the properties of
this function, the Riemann hypothesis, which, if true,
would provide invaluable information about the distri-
bution of prime numbers. Proving (or disproving) the
Riemann hypothesis is considered the most important
unsolved mathematical problem of today.

Riemann exhibited a keen interest in mathematics
at an early age and was encouraged by the director of
his high school to pursue this line of study. In 1846

Riemann enrolled at the University of Göttingen to
study under the mathematician CARL FRIEDRICH GAUSS

(1777–1855). Surprisingly, even with Gauss as a faculty
member, Göttingen did not offer a strong program in
mathematics, and so, a year later, Riemann transferred
to Berlin University, an institution recognized for its
strength in mathematics at the time. While there, Rie-
mann developed his general theory of complex vari-
ables and functions that later formed the basis of much
of his important work.

After completing his undergraduate degree at
Berlin, Riemann returned to Göttingen in 1849 to com-
plete a doctoral thesis under the supervision of Gauss.
He was awarded a Ph.D. 2 years later in mathematics.

Gauss described Riemann’s thesis work as having
“a gloriously fertile originality.” By viewing the range
of outputs of a complex function as a surface in three-
or even four-dimensional space, Riemann managed to
tie the theory of calculus and analysis to the study of
shape, space, and geometry. This innovative approach
was immediately recognized as a significant turning
point in the advancement of mathematics. On Gauss’s
recommendation, Riemann was appointed a position at
Göttingen, and he commenced work on his habilitation
degree. During this time Riemann turned his attention
to the study of FOURIER SERIES and questions of inte-
grability. It was during this period that Riemann for-
mulated his famous definition of an integral.

As the final step to completing his degree Riemann
was required to give a public lecture. Gauss asked him
to speak on the theory of geometry, and on June 10,
1854, Riemann presented to the outside world his
groundbreaking work on shape and space.

Riemann devised a general notion of distance in n-
dimensional space and developed a theory of TENSORs
that allowed him to properly define geometric shape. In
particular, Riemann developed the notion of curvature
tensor to measure, or define, the warping of space. The
mathematics Riemann presented on that day proved to
be the precise framework Einstein needed for structur-
ing his theory of general relativity. Riemann continued
to present and publish groundbreaking work in the
years that followed.

On July 30, 1859, Riemann was appointed chair
of mathematics at Göttingen, and a few days later he
was honored with election to the Berlin Academy of
Sciences. By this time Riemann had developed an inter-
est in NUMBER THEORY and the distribution of prime
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numbers. In a written report to the academy, Riemann
presented his work on the famous zeta function and
his method of extending the scope of the function to
include complex numbers as inputs—another master-
piece. This work completely changed the direction of
mathematical research in number theory for the cen-
tury that followed. Riemann had managed to connect
the notions of geometry and space to complex func-
tions and, now, to the study of numbers. This signifi-
cant achievement provided mathematicians the means
to translate insights and advances in one disparate
field into results and discoveries in another.

Riemann suffered from ill health most of his life
and died of tuberculosis at the age of 39 in Selasca,
Italy, on July 20, 1866.

right angle An ANGLE equal to one-quarter of a com-
plete revolution is called a right angle. Such an angle 

has measure 90° or radians. The corner of a square 
is a right angle.

One could say that a right angle is the “correct”
angle to use in architecture and the construction of
buildings. Egyptian architects of 1500 B.C.E. were aware
that a 3–4–5 triangle contains a right angle (the converse
of PYTHAGORAS’S THEOREM shows this) and used knot-
ted ropes 3 + 4 + 5 = 12 units long to quickly construct
these triangles at a building site. A right angle is also the
angle made if one were to make a perfect right turn.

See also DEGREE MEASURE; EGYPTIAN MATHEMAT-
ICS; RADIAN MEASURE.

right-handed/left-handed system In three-dimen-
sional space one identifies the location of points by
making reference to a set of three mutually perpendicu-
lar number lines, usually called the x-, y-, and z-axes,
intersecting at a point called the origin. There are two
possible ways to orient the axes.

An xyz-coordinate system is called right-handed if,
taking the right hand, the positive x-axis points in the
direction of the thumb, the positive y-axis in the direc-
tion of the index finger, and the positive z-axis in the
direction of the (bent) middle finger. An xyz-coordinate
system is called left-handed if it follows the directions
of these fingers of the left hand instead.

Reversing the direction of any one of the axes, or
switching the labels of any two axes, changes the orien-

tation of the coordinate system. Mathematicians have
settled on the convention of preferring right-handed
systems over left-handed ones.

More generally, three vectors a, b, and c, in that
order, in three-dimensional space form a right-handed
system if pointing the thumb of the right hand in the
direction of a, and the index finger in the direction of b
has vector c lying on the side of the palm of the hand
(this is the direction the middle finger would need to
curl to point in direction c). Alternatively, the three vec-
tors form a right-handed system if the TRIPLE VECTOR

PRODUCT a· (b × c) is a positive number.
In two-dimensional space, coordinate axes can

again be oriented one of two ways. A set of xy-coordi-
nate axes is said to be positively oriented if a counter-
clockwise rotation is required to turn the positive
x-axis onto the positive y-axis (through the smallest
angle possible) and negatively oriented if instead clock-
wise motion is needed.

See also CARTESIAN COORDINATES; CROSS PRODUCT.

ring Motivated by the question of what makes arith-
metic work the way it does, mathematicians have iden-
tified seven key principles satisfied by the operations of
addition and multiplication. Today, mathematicians
call any mathematical system satisfying these basic
axioms a ring.

Precisely, a ring is a set R together with two methods
for combining elements of R to produce new elements of
R, usually called addition “+” and multiplication “*,”
satisfying the following rules:

1. Commutative Law for Addition: For all elements a
and b of R, we have: a + b = b + a.

2. Associative Law of Addition: For all elements a, b,
and c of R, we have: a + (b + c) = (a + b) + c.

3. Existence of a Zero: The set R has an element 0
with the property that a + 0 = 0 + a = a for all ele-
ments a in R.

4. Existence of Additive Inverses: For each element a
in R there is an element, denoted –a, such that a +
(–a) = (–a) + a = 0.

5. Associative Law of Multiplication: For all elements
a, b, and c of R we have: a*(b*c) = (a*b)*c.

6. Existence of a 1: There is an element 1 of R with
the property that a*1 = 1*a = a for all a in R.

7. Distributive Laws: For all elements a, b, and c of R
we have: a*(b + c) = a*b + a*a and (b + c)*a = b*a
+ c*a.

π–
2
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Furthermore, we say the ring is commutative if an
eighth axiom holds:

8. Commutative Law for Multiplication: For all ele-
ments a and b of R, we have: a*b = b*a.

For example, the set of integers under ordinary addition
and multiplication is a commutative ring. Thus any
result that is known to follow abstractly from the eight
principles outlined above translates to a result about
numbers. The set of all functions f from the set of real
numbers to itself also satisfies the definition of a com-
mutative ring, and so these results also translate to
interesting facts in function theory. As a simple exam-
ple, it is straightforward to prove that the zero element
in a ring is unique. (If 0 and 0′ are both zeros, then, by
axiom three, 0 = 0 + 0′ = 0′.) Consequently, there is also
only one function that can behave as the zero function.

One can impose further conditions on a system.
For example, a commutative ring is called an integral
domain if a ninth axiom holds:

9. No Divisors of Zero: It is never the case that two
nonzero elements a and b of R give a*b = 0.

The set of integers is an integral domain, but the
set of functions is not. For example, if f is the function
that gives the value zero for negative inputs, and the
value 1 otherwise, and g is the function that gives the
value zero for positive inputs, and the value 1 other-
wise, then neither f nor g is the zero function, but their
product f*g is. Any system in MODULAR ARITHMETIC

forms a ring but not necessarily an integral domain.
For example, 2 × 3 = 0 modulo 6.

A commutative ring is called a field if, further, a
10th axiom is satisfied:

10. Existence of Multiplicative Inverses: For each
nonzero element a of R, there is an element b such
that a*b = b*a = 1.

The set of integers is not a field. (The number 2,
for example, has no multiplicative inverse, since 1/2 is
not an integer.) The set of all real numbers under
addition and multiplication, however, is a field, as is
the set of all the rational numbers and the set of all
complex numbers.

It is usually assumed that the elements 0 and 1 in a
commutative ring or a field are different. If these two

elements are the same, that is, if 0 = 1, then one can
prove that the ring R contains only this element: R =
{0}. This ring is called the trivial ring.

See also ABSTRACT ALGEBRA; ASSOCIATIVE; COMMU-
TATIVE PROPERTY; DISTRIBUTIVE PROPERTY; GROUP;
GROUP THEORY; QUATERNIONS; ZERO.

Rolle, Michel (1652–1719) French Calculus Born on
April 21, 1652, in Ambert, France, Michel Rolle is best
remembered for the theorem in CALCULUS that bears his
name. Although attracting little attention at the time of
its publication, Rolle’s theorem is today considered one
of the fundamental principles of the subject.

Rolle began his career as a scribe and as an assis-
tant to an attorney. He had little formal education but
pursued a personal interest in mathematics all his life.
He moved to Paris in 1675 and soon developed a repu-
tation as an expert in arithmetic work. In 1682 he
achieved national fame for solving a recreational math-
ematics problem publicly posed by French mathemati-
cian Jacques Ozanam. In honor of this achievement,
Rolle was awarded a pension by France’s controller of
general finance and admission to the Académie Royal
des Sciences in 1685.

In 1690 he published the work Traité d’algèbre
(Treatise on algebra), a text on the theory of equations,
in which, among other things, he invented and used the
notation 

n√
–
x for the nth root of x. Rolle also studied

GEOMETRY, ALGEBRA, and DIOPHANTINE EQUATIONs.
His famous theorem was published one year later in an
obscure and little noticed text Démonstration d’une
méthode pour resoudre les égalitez de tous les degrez
(Proof of a method for solving equations of all degrees).

It is ironic that Rolle is today considered a princi-
pal figure in the development of calculus. Having stud-
ied the emerging subject, Rolle is said to have found
the theory unconvincing. He even went so far as to say
that calculus is nothing more than a “collection of
ingenious fallacies.” He died in Paris, France, on
November 8, 1719.

See also ROLLE’S THEOREM.

Rolle’s theorem In 1691 French mathematician
MICHEL ROLLE (1652–1719) established that if a curve
intersects the x-axis at two locations a and b, is contin-
uous, and has a TANGENT at every point between a and
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b, then there is at least one point in this interval at
which the tangent to the curve is horizontal to the x-
axis. In more stringent mathematical language, his the-
orem reads:

For any function f(x) continuous in a closed
interval [a,b], differentiable in the open inter-
val (a,b), and satisfying f(a) = f(b) = 0, there
exists at least one value c between a and b such
that f ′(c) = 0. That is, the zeros of a differen-
tiable function are always separated by zeros
of the derivative.

This result follows readily from the EXTREME-VALUE

THEOREM, which asserts that any such function attains
a maximum value at some location c in the interval (a,
b). The tangent to the curve must be horizontal at any
such apex. (A careful study of MAXIMUM/MINIMUM val-
ues establishes this.)

Although Rolle’s theorem is a special case of the
MEAN-VALUE THEOREM, it is usual to prove Rolle’s the-
orem independently and use it as a first step toward
proving the more general result.

Roman numerals Based on a simple tally system sim-
ilar to the one used by the ancient Egyptians, merchants
of the Roman empire of about 500 B.C.E. used letter
symbols for powers of 10 and for the intermediate val-
ues of 5, and simply grouped symbols together to repre-
sent all other quantities. The symbols used were:

The expression CLXXIII, for instance, represented the
number 100 + 50 + 10 + 10 + 1 + 1 + 1 = 173.
Although the order of the symbols was not important,
it became the convention to list symbols from largest to
smallest, left to right.

Initially the symbols D and M were not part of the
Roman system. The number 1,000 was written ( I ), and
further applications of round brackets allowed for the

expression of even greater quantities. For instance,
(( I )) represented 10,000, and ((( I ))) represented
100,000. Stonemasons introduced the symbols D and
M to simplify their work.

The Romans also introduced other ornamentations
to increase the value of a numerical symbol. For
instance, vertical bars were used to represent a 100-
fold increase, and a bar placed above the symbol repre-
sented a 1,000-fold increase. For instance,

|X| = 100 × 10 = 1,000–
X = 1,000 × 10 = 10,000

|
–
X| = 100 × 1,000 × 10 = 1,000,000

There was no symbol for ZERO in the Roman system.
To avoid the four-fold repetition of symbols (as in

the expression CCCCXXXXIIIII for 444), a subtractive
principle was introduced in the 13th century:

The placement of a small value immediately
to the left of a higher value indicates that that
small value is to be subtracted from the
higher value.

Thus 4 could be written as IV, 90 as XC, and 444 as
CDXLIV. The subtractive principle was subject to
two rules:

1. The symbols V, L, and D cannot be used as the
numbers to be subtracted.

2. Only one symbol I, X, or C can be placed before a
higher number symbol.

Thus, for example, it was not permissible to write IIX
for eight. Although not a proper PLACE-VALUE SYSTEM,
with the subtractive principle in use, the order of the
symbols used was now important.

Performing operations of basic arithmetic with
Roman numerals is very awkward. For example, it is
not immediate what the solution to the following addi-
tion problem should be:

XLIV
+ XVII
+ XXIX

That European merchants were comfortable working
with the Roman numeral system for well over a millen-
nium suggests that scholars did not use the numeral
system to perform calculations, only to record the

I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000
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results. (Arithmetic was performed on a counting
board such as an ABACUS.)

The system of Roman numerals remained popular
in Western Europe until the 17th century. Although the
system was eventually replaced by the HINDU-ARABIC

NUMERAL system we use today, it still remains a tradi-
tion to use Roman numerals for clock faces, for the
inscription of dates on buildings, and for copyright
data on films and books, for instance.

See also BASE OF A NUMBER SYSTEM; DECIMAL REP-
RESENTATION; EGYPTIAN MATHEMATICS; NUMBER.

root (zero) Any value of a variable in an equation that
satisfies the equation is called a root of the equation. For
example, the equation 2x + 1 = 7 has root x = 3, and
the equation a3 = 8 has root a = 2. As any equation
with a variable x can be written in the form f(x) = 0 for
some FUNCTION f, the roots of an equation are some-
times called the “zeros” of the associated function f.

If f(x) is a polynomial, then the equation f(x) = 0 is
called a polynomial equation. The QUADRATIC formula
shows that a quadratic equation ax2 + bx = c = 0 has
two roots given by:

The FACTOR THEOREM shows that if x = r is a root
of a polynomial equation f(x) = 0, then (x – r) is a factor
of f(x). The root r is called a simple root if (x – r) is a
factor of f(x), but (x – r)2 is not; a double root if (x – r)2

is a factor of f(x), but (x – r)3 is not; and, in general, an
nth-order root if (x – r)n divides f(x), but (x – r)n+1 does
not. For instance, x = 2 is a double root of the equation
2x3 – 9x2 + 12x – 4 = 0, and x = 1/2 is a simple root.
(We have 2x3 – 9x2 + 12x – 4 = (x – 2)2(2x – 1).) The
FUNDAMENTAL THEOREM OF ALGEBRA asserts that a
polynomial equation of degree n has precisely n (possi-
bly complex) roots if the roots are counted according to
their “multiplicity.” For instance, the equation 2x3 –
9x2 + 12x – 4 = 0 has three roots, if the solution x = 2 is
counted twice, as is appropriate.

Numerical methods such as the BISECTION METHOD

and NEWTON’S METHOD can be used to find roots of
equations to any desired degree of accuracy.

The n th root of a number a, denoted 
n√
–
a, is any

value x that satisfies the polynomial equation xn = a.

For example, the number 2 is a 10th root of 1,024
(since 210 = 1,024), and –1 is a sixth root of 1, since
(–1)6 = 1. If n = 2, then an nth root is called a SQUARE

ROOT. If n = 3, then it is called a CUBE ROOT.

root test See CONVERGENT SERIES.

rose A planar curve shaped like a collection of petals
with a common origin is called a rose. In polar coordi-
nates, such a curve has an equation of the form r =
asin(nθ) or r = a cos(nθ) for some constant a and posi-
tive integer n. The angle θ takes values between zero
and 360°, and may consequently yield a negative value
for r. In this case the corresponding point on the curve
is drawn a distance |r | from the origin in a direction
opposite to that indicated by angle θ.

If n is odd, the number of petals that appear
around the origin is n. If n is even, then 2n loops
appear. In 1728 Italian mathematician Guido Grandi
called these curves “rhodonea.”

rotation See GEOMETRIC TRANSFORMATION; LINEAR

TRANSFORMATION.

rounding If a number has more digits than can be
conveniently handled or stored, then it is often conve-
nient to replace the figure by the number closest to it
with the desired number of digits. This process is called
rounding. For example, the closest two-digit number to
68.7 is 69. Thus 68.7 “rounded to two-digits” is 69.
Rounding 5.237 to one decimal place yields 5.2.
Rounding 453 to the nearest 10 yields 450, whereas
rounding it the nearest 100 yields 500.

It is conventional to “round up” if the number
under consideration is equally distant from two approx-
imations. For instance, 9 is deemed to be the closest
integer to 8.5.

Errors may be produced if a number is rounded
more than once. For example, rounding 78.347 to two
decimal places yields 78.35. If we later decide to round
to one decimal place, working with the 78.35 yields
78.4, whereas the original number rounded to one dec-
imal place is 78.3. It is essential, then, that all rounding
processes be executed in just one step.

x
b b ac

a
= − ± −2 4

2
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The process of simply dropping extra digits is
called truncation. For example, when truncated to one
decimal place, both 1.834 and 1.8999978 become 1.8.
This process is also called “rounding down.”

See also ERROR; FLOOR/CEILING/FRACTIONAL PART

FUNCTIONS; ROUND-OFF ERROR.

round-off error (rounding error) The ERROR pro-
duced in ROUNDING a value to a prescribed number of
digits is called round-off error. For example, rounding
the quantity 6.42 to the nearest decimal place yields
6.4, introducing an error of 0.02.

Round-off errors typically amplify as one performs
calculations. For example, rounded to four decimal
places, cos 1° has value 0.9998. This suggests that 

equals 5,000. This is false. The correct value 

of this quantity is close to 6,565.8. As calculators
round all quantities to eight or 10 decimal places,
they too are susceptible to round-off errors and can
give erroneous results.

Royal Society (Royal Society of London) Founded
by royal charter granted by Charles II in 1660, the
Royal Society of London is the world’s oldest scientific
institution still in existence. Its mission today, as it was
at the time of its formation, is to disseminate current
knowledge about the natural world and to support and
promote continued scientific investigation.

Prior to the year 1600, scientists and scholars com-
municated results through the mail, as well as through
the publication of written texts following the invention
of the printing press in the 15th century. Such set and
rigid formats did not readily allow for the testing of
ideas and loose discussion of thought. In an attempt to
rectify this, in 1620 Francis Bacon (1561–1626) estab-
lished an organization called Novum Organum (The new
instrument) that provided a public forum for scientists,
and others, to meet, to discuss scientific ideas and find-
ings, and to learn of the general state of current scientific
thinking. Forty years later, the value of such an organiza-
tion was formally acknowledged, and the Royal Society
was formed. The eminent scientists of the day were
awarded membership to the society. SIR ISAAC NEWTON

was president of the society from 1703 to 1727.
To be elected as a fellow of the Royal Society today

is deemed a truly prestigious honor. There are currently

65 Nobel laureates among the Society’s 1,300 fellows
and foreign members. Each member is given the right
to use the letters FRS (fellow Royal Society) after sign-
ing his or her name. The society maintains a Web site
(www.royalsoc.ac.uk).

The equally prestigious French Royal Academy of
Sciences was founded 6 years after the formation of the
Royal Society.

Russell, Bertrand Arthur William (1872–1970) Brit-
ish Foundations of mathematics, Philosophy Born on
May 18, 1872, in Ravenscroft, Wales, mathematical
logician and philosopher Bertrand Russell is remem-
bered for his text, cowritten with ALFRED NORTH

WHITEHEAD (1861–1947), Principia Mathematica (1910,
1

––––––
1 – cos(1)
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Bertrand Russell, an eminent mathematician of the 20th century,
was the first to discover a fundamental flaw in the elementary
theory of sets. (Photo courtesy of Topham/The Image Works)



1912, 1913), a monumental work of three volumes that
attempted to derive the whole of mathematics from
purely logical assumptions. Although not fully success-
ful, the work was highly influential. Russell also discov-
ered a fundamental paradox at the heart of basic SET

THEORY, today called RUSSELL’S PARADOX.
Russell studied mathematics and ethics at Trinity

College, Cambridge, and developed an interest in the
logical foundations of mathematics early in his career.
In 1903 he published Principles of Mathematics, a text
exploring the premise that all of mathematics could be
reduced to statements of logic, and that all mathemati-
cal proofs can be recast as proofs in the theory of logic.
It was during the writing of this work that Russell dis-
covered his famous paradox in set theory, a discovery
that made it clear that more work was needed to find a
logical foundation to all of mathematics.

His next work, the famous Principia Mathematica,
was written as an attempt to extend the methods of his
Principles to a more general ramified theory that could
cope with all the disturbing self-referential paradoxes
that arose in set theory. Although recognized as a bril-
liant advancement in understanding the logical under-
pinnings of all of mathematics, the work still received
some criticism from the general mathematics community
as being either too ad hoc, too stringent, or too weak,
and that, at the very least, even more work was needed
to achieve the lofty goal Russell had set. In 1930 Aus-
trian mathematician KURT GÖDEL (1906–78) shocked
the mathematical world by proving, in his incomplete-
ness theorems, that there can be no logical base to all of
mathematics of the type Russell sought and that any
attempt to find a basic set of axioms on which to base
all of mathematics is a priori doomed to failure.

Russell’s influence in the development of mathe-
matical logic was profound. He was elected to the
ROYAL SOCIETY in 1908 and wrote a number of stun-
ning articles in the field throughout his career. Russell
was a political activist and was arrested several times
throughout his career for his antiwar activities. (His
1919 article “Introduction to Mathematical Philoso-
phy” was written during a 6-month stint in prison.)
Russell taught at City College, New York, during the
1930s and was also a prominent figure in antiwar and
antinuclear protests in the United States.

Russell also wrote on a broad range of humanitar-
ian topics, including political science, moral science,
and religious studies. He was awarded the Order of

Merit in 1949 and won the Nobel Prize for literature in
1950 for his collective writings championing “humani-
tarian ideals and freedom of thought.”

Russell died in Plas Penrhyn, Wales, on February 2,
1970.

Russell’s paradox (Russell’s antinomy) In 1902 math-
ematician and philosopher BERTRAND ARTHUR WILLIAM

RUSSELL (1872–1970) found a fundamental flaw at the
heart of basic SET THEORY. Usually sets are not members
of themselves. For instance, if D represents the set of
all dogs, then D, being a set, is not itself a dog. Let us call
such sets “normal.” Russell noted, however, that not
all sets are normal. For example, if S represents the set
of all sets, then S is itself a set and so belongs to S. The
set of all things that are not dogs is also nonnormal.

Let N represent the set of all normal sets. That is,
N is the set of all sets that are not members of them-
selves. Now ask: Is N normal? If the answer is yes, then
N is normal, making it an element of N, which is pre-
cisely what it means to be nonnormal. If the answer is
no, then N is nonnormal, meaning that N is an element
of N, the set of all normal sets. We have:

N normal ⇒ N nonnormal
N nonnormal ⇒ N normal

The set N can neither be normal nor nonnormal.
This contradiction is called Russell’s paradox, and

its discovery foiled mathematicians’ attempts to use set
theory as the foundational basis of all of mathematics.
It also suggested that all of mathematics might be
flawed if even the simplest of mathematical theories—
set theory—is fundamentally self-contradictory.

Russell also presented several alternative versions
of his paradox, including the famous “barber paradox”
that he presented in 1919:

A barber in a certain town has a sign that
reads, “I shave all those men, and only those
men, who do not shave themselves.” Who
shaves the barber?

In trying to answer this question, one is mired in the
same type of logical impasse as the original paradox.

In 1910, Russell, with the help of ALFRED NORTH

WHITEHEAD (1861–1947), published the first volume
of a mammoth three-volume treatise that attempted to
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circumvent the issues raised by the paradox and to find
a logical base for all of mathematics. He introduced a
notion of “type,” demanding that sets and sentences in
mathematics belong to a hierarchical structure. At the
lowest level there are statements about individual ele-
ments. At the next level there are sentences about sets
of individual elements, and next, sentences about sets
of sets of individual elements, and so forth. Moreover,
no sentence is permitted to be at the same level as its
subject. Hence any statement that refers to itself (such
as the definition of the set N) is simply not allowed in
this hierarchical structure. This approach certainly cir-
cumvents self-referential paradoxes, but many members
of the mathematics community felt, however, that this
construct was not particularly satisfying.

Observe that the barber’s paradox is easily
resolved by noting that the barber could be outside the
set of men, namely, the barber could be a woman. Rus-
sell’s theory of type attempted to mimic this solution
by bringing sets “outside of themselves” through the
notion of a hierarchy. Mathematicians today are
attempting instead to develop a mathematical theory
of “context” where the setting in which statements are
made is considered important.

Russian multiplication Also known as peasant mul-
tiplication, the following multiplication method is
believed to have originated in Russia.

1. Head two columns with the numbers you wish to
multiply.

2. Progressively halve the numbers in the left column
(ignoring remainders) while doubling the figures in
the right column. Reduce the left column to one.

3. Delete all rows with an even number in the left
column.

4. Add all the surviving numbers in the right column.
This sum is the desired product.

The key to understanding why this method works
is to note that every number can be written as a sum of

the powers of 2: 1,2,4,8,16,32,… For example, 37 = 32
+ 4 + 1. That 37 is odd shows that the number 1 is pre-
sent in this expression. Halving the number twice
(ignoring remainders) produces:

37 = 32 + 4 + 1 → 16 + 2 → 8 + 1 = 9

That the answer is odd indicates that 4 is present in the
expression for 37 as a sum of powers of two. That
halving three more times produces the next odd answer
(corresponding to 37 halved five times in all) indicates
that 32 is also present. Thus, the appearance of odd
numbers in the left column indicates which powers of
two are used to build the number 37. For the multipli-
cation, note that:

37 × 23 = (32 + 4 + 1) × 23
= 32 × 23 + 4 × 23 + 1 × 23
= 25 × 23 + 22 × 23 + 20 × 23

Thus the desired product is obtained by summing
the effect of doubling the number 23 zero, two,
and five times. This is accomplished in step 4 of the
procedure.

This method of course works for any pair of whole
numbers you wish to multiply. It is an efficient method
of multiplication, and many computers are programmed
to compute products this way.

See also EGYPTIAN MULTIPLICATION; ELIZABETHAN

MULTIPLICATION; FINGER MULTIPLICATION; MULTIPLICA-
TION; NAPIER’S BONES.

454 Russian multiplication

Russian multiplication



Saccheri, Girolamo (1667–1733) Italian Geometry
Born on September 5, 1667, in San Remo, Genoa,
Girolamo Saccheri is remembered for his 1733 publica-
tion Euclides ab omni naevo vindicatus (Euclid cleared
from every stain), in which he attempted to prove
Euclid’s PARALLEL POSTULATE as a consequence of the
remainder of EUCLID’S POSTULATES. Although Saccheri
failed in this attempt, he came narrowly close to being
the first to discover a NON-EUCLIDEAN GEOMETRY.

Saccheri was ordained as a Jesuit priest in 1694
and taught philosophy and theology at various Jesuit
colleges throughout Italy. He pursued mathematics as
an outside interest for a number of years before being
appointed chair of mathematics at Pavia in 1699.

As many scholars throughout the millennia had
also believed, Saccheri was convinced that Euclid’s fifth
postulate, the parallel postulate, could be deduced as a
logical consequence of the remaining four axioms.
Although he was aware that no one had succeeded in
showing that this was indeed the case, Saccheri realized
that another approach, an indirect one, could be
adopted. He reasoned as follows:

Imagine a geometry in which the first four of
Euclid’s axioms are true, but the fifth axiom is
false. If the fifth postulate can indeed be
proved from the first four, then we would have
a geometry with an inherent CONTRADICTION:
the fifth axiom is both true and false. Thus
one should study a theory of geometry in
which the parallel postulate is false and look
for a contradiction.

Saccheri followed this plan and wrote about it in his
famous 1733 text, but never found the contradiction he
sought. Just over a century later Hungarian mathemati-
cian JÁNOS BOLYAI (1802–60) and Russian scholar
NIKOLAI IVANOVICH LOBACHEVSKY (1792–1856), with
their discoveries of HYPERBOLIC GEOMETRY, indepen-
dently proved that no contradiction will ever be discov-
ered. Although Saccheri had developed the mathematical
theory of hyperbolic geometry to a significant extent, he
cannot be credited for its discovery: he never realized
that it is a consistent mathematical theory in its own
right. Nonetheless the work of Saccheri is appropriately
honored in the field, with many results and theorems
properly attributed to him. He died in Milan, Italy, on
October 25, 1733.

sample See POPULATION AND SAMPLE.

sample space The set of all possible outcomes from
an experiment or an action is called a sample space.
For example, in casting a die, six scores are possible,
yielding the sample space the set {1, 2, 3, 4, 5, 6}. The
sample space for tossing a coin twice is the set
{head|heads, heads|tails, tails|heads, tails|tails}.

A sample space can be infinitely large. For exam-
ple, the action of recording heights of individuals has a
continuous array of values for its sample space—values
between 12 in. and 100 in., say—with all fractional
values in between possible.

See also EVENT; PROBABILITY.
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scalar In VECTOR analysis, any quantity that is a real
number and not a vector is called a scalar. For exam-
ple, the number 2 is the scalar coefficient of the vector
v in the vectorial expression 2v. The DOT PRODUCT of
two vectors (also called their scalar product) is a rule
for multiplying two vectors to yield a scalar result.

In physics, any number or measurement that does
not involve the concept of direction is called a scalar.
For example, length, mass, energy, and temperature are
scalar quantities. The notion of speed is also a scalar
quantity, but that of VELOCITY is not.

In MATRIX theory, the entries of a matrix are some-
times called scalars. A square matrix with all entries off
the main diagonal equal to zero and all entries on the
main diagonal equal in value is called a scalar matrix.
Such a matrix is a scalar multiple of the IDENTITY

MATRIX I.

scale Two geometric figures are said to be scaled ver-
sions of each other if it is possible to match the points
of one figure with points in the second in such a way
that, if P and Q are any two points of the first figure
and P′ and Q′ are the corresponding points of the sec-
ond, then the ratio of lengths |PQ | : |P′Q′ | is always
the same fixed positive value k. (The number k is called
the scale factor.) SIMILAR FIGURES are scaled figures.
Any enlarged or reduced figure produced by a modern
photocopier is a scaled version of the original figure.

If a geometric figure is enlarged by a scale factor
k, then all lengths in that picture increase (or decrease
if 0 < k < 1) by a factor of k. All ANGLEs in that figure
remain unchanged. Consequently, if an a × b rectangle
is enlarged by a scale factor k, then the resultant fig-
ure remains a rectangle and has side-lengths ka and
kb. Consequently, the AREA of the figure has increased
by a factor k2. As the notion of area of a rectangle
defines our notion of area for all geometric figures
(such as a triangle, a polygon, or a circle) we have that
the areas of all figures increase, upon scaling, by the
factor k2. Similarly, since a rectangular prism of
dimensions a × b × c scales to become rectangular
prism of dimensions ka × kb × kc, volumes of all geo-
metric solids, upon scaling, increase by a factor of k3.

These observations have some interesting conse-
quences in the natural world. For instance, the amount
of heat loss a mammal experiences is proportional to
the amount of surface it has in contact with the air,

whereas the amount of food an animal must eat in
order to generate body warmth depends on the volume
of muscle it possesses. As surface area grows by a fac-
tor of k2 and volume by a factor of k3, larger mammals
possess a smaller surface area per volume ratio than
smaller mammals. Thus large mammals (such as polar
bears) are better suited to arctic conditions than smaller
mammals (such as squirrels)—they lose less heat per
unit of body mass and require less food (in relation to
their mass) to maintain enough heat production. King
penguins in Antarctica are significantly larger than
their counterparts in other regions of the world. As
another example, the speed a fish can move is governed
by the volume of muscle it possesses. Large fish have
the advantage of having a smaller surface area to vol-
ume ratio than smaller fish. They not only have more
muscle power, but also experience less surface-area fric-
tion with the surrounding water (per unit of muscle)
than their smaller counterparts.

In mathematics, the study of scale plays an impor-
tant role in defining DIMENSION and is used to analyze
FRACTALs. In another context, the markings on the axes
of a GRAPH OF A FUNCTION constitute the “scale” of
the diagram. Changing the scale of the axes has the
equivalent effect of enlarging or reducing the graph
itself. The markings on a ruler are also called a scale,
and measuring the same object with two rulers of dif-
ferent scales is equivalent to the act of measuring two
scaled versions of the figure with a single ruler.

scatter diagram (scatter plot, Galton graph) If a sci-
entific study records numerical information about two
features of the individuals or events under examination
(such as height and shoe size of participating adults, or
temperature and pressure at which certain climatic
events occur), then that DATA can be represented in a
scatter diagram. Specifically, if the pair (xi,yi) represents
the two numerical facts recorded about the ith individ-
ual, then point (xi,yi) is plotted on CARTESIAN COORDI-
NATES. A scatter diagram is the resultant graph when
all points are displayed. The points are not joined by
lines.

A scatter diagram will indicate any relationship
between the x and y variables. If the points seem to lie
near a straight line, they are said to be linearly corre-
lated. One can then perform a mathematical test to
determine the degree of correlation by calculating the
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value of a CORRELATION COEFFICIENT. If the points
seem to lie on another type of curve, then they are non-
linearly correlated. Variables that are not correlated
will likely produce a diagram with points randomly
scattered across the graph. If all but one point seems to
follow a well-defined curve, then that exceptional point
is called an OUTLIER.

See also LEAST SQUARES METHOD.

scientific notation (exponential notation, standard
form) A number x is said to be written in scientific
notation if it is expressed as a number between 1 and
10 multiplied by a power of 10:

x = p × 10n

with 1 ≤ p < 10 and n an integer, positive or negative.
For example, the number 547 is written 5.47 × 102 in
scientific notation. The number 0.00106 is written
1.06 × 10–3.

Scientific notation is useful for writing, comparing
and manipulating very large and very small numbers.
For example, Sir Henry Cavendish computed the mass
of the Earth in 1798 as 6,600,000,000,000,000,000,000
tons. This number is compactly written 6.6 × 1021.
The diameter of an atomic nucleus is about
0.000000000000075 or 7.5 × 10–14 m.

The power of 10 used in scientific notation indi-
cates the number of times that 10 is used as a factor if
the exponent is positive, or the number of times 1/10 is
used as a factor if the exponent is negative. For exam-
ple, 3.2 × 103is 3.2 × 10 × 10 × 10, which equals 3,200,
and 0.0402 is the number 4.02 divided by 10 two 

times, and so 0.0402 = 4.02 × × =4.02 × 10–2.

When the value of a quantity is expressed in scien-
tific notation, then the power of 10 used is called the
order of magnitude of the quantity. For example, the
speed of light is 3.00 × 108 m/sec, and the speed of
sound in air is 3.32 × 102 m/sec. We can readily see
that light is about 106, or 1 million, times faster than
sound. The diameter of the Milky Way galaxy is on the
order of 1020 m.

In writing the measurement of a quantity in scien-
tific notation, it is assumed that all digits recorded are
significant. This makes the ERROR of the measurement
apparent. Calculators use the symbol E to display a
quantity in scientific notation. For example, on a cal-

culator, the expression 1.2345E37 is to be interpreted
as 1.2345 × 1037. The letter E is an abbreviation for
“exponent.”

secant A line that intersects a curve, usually at more
than one point, is called a secant of the curve. If the
secant cuts the curve at two points, the segment of the
line between the two points of intersection is called a
CHORD of the curve.

In planar geometry, the secant theorem refers to the
property that the lengths of two secants to a circle sat-
isfy a(a + b) = c(c + d).

This is proved by identifying similar triangles via the
CIRCLE THEOREMS and establishing the correspondence 

= .

In trigonometry the reciprocal of the cosine func-
tion is called the secant function. It is usually written
sec x. In a right triangle it equals the ratio of the length
of the hypotenuse to that of the side adjacent to the
angle x.

secant method See NEWTON’S METHOD.

selection See COMBINATION.

self-reference A sentence that refers to itself is called
a self-referential statement. For example, the statement
“This sentence has five words” is self-referential.

Self-referential statements can be problematic
because it is often difficult to determine their truth or

a–––
c + d

c–––
a + b

1––
10

1––
10
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falsehood. Although the statement given above is
clearly true, the truth-value of “This sentence is false,”
for example, is unclear: it cannot be true, for then the
statement says it is false, nor can it be false, for then
the statement is true! (This example forms the basis for
the LIAR’S PARADOX.) The statement “This sentence is
true” is equally problematic: it can be both true and
false. Self-referential statements are forbidden in formal
systems of logic.

Austrian mathematician KURT GÖDEL (1906–78)
made clever use of a self-referential statement to prove
his famous incompleteness theorems.

See also FORMAL LOGIC; GÖDEL’S INCOMPLETENESS

THEOREM; HALTING PROBLEM; JOURDAIN’S PARADOX.

semi-magic square A square array of numbers in
which the sum of the numbers in any row or column is
the same is called a semi-magic square. (The array is
dubbed “fully magic” if, in addition, the numbers in
each of the two diagonals also add to this same sum.)
The common sum of the rows and columns of the
array is called the magic sum of the array. For exam-
ple, the array

is a semi-magic square with magic sum 10. (This array,
however, is not a MAGIC SQUARE).

Semi-magic squares have a number of remarkable
properties in the theory of MATRIX algebra. For
instance, suppose A and B are semi-magic squares of
the same size with magic sums a and b, respectively.
Regard each as a matrix. Then:

1. The matrix sum A + B is again a semi-magic square,
with magic sum a + b.

2. The matrix product AB is again a semi-magic
square, with magic sum ab.

3. The inverse A–1, if it exists, is still semi-magic, with
magic sum 1/a.

These claims can be proved by setting J to be the
square matrix with all entries equal to one and noting
that a square matrix A is semi-magic with magic sum a
if, and only if, AJ = aJ = JA.

There is no such thing as a “semi-magic rectangle”
if one insists that all entries be positive numbers. Sup-
pose, for instance that an array has n rows and m
columns and the entries in each row and column sum
to a. Then, by adding together each of the n rows, the
sum of the entries in the entire array must be na. By the
same token, adding together each of the m columns
shows that the sum of the entries in the entire array
must also be ma. Consequently, we must have n = m. If
one permits zero or negative entries, then semi-magic
rectangles are possible, but the magic sum must neces-
sarily be zero.

sequence (progression) A set of numbers arranged in
a list, with each number in the list unambiguously spec-
ified, is called a sequence. For example, the sequence 3,
5, 7, 9, 13 lists five specific numbers, and the sequence
1, 4, 7, 10, 13, 16, … indicates an infinite list of num-
bers, with each number being 3 greater than its prede-
cessor. The numbers in a sequence are called its terms
or elements.

Sometimes the terms of a sequence are specified as a
formula. For example, the sequence 2, 5, 10, …, n2 + 1,
… indicates that the nth term of the sequence is given as
one more than the number squared. A sequence with
finitely many terms is called a finite sequence; one with
infinitely many terms is an infinite sequence. A sequence
with the nth term given by an is denoted {an}, or some

times (an). For example, { } represents the sequence 

1, , , ,…; {{–1}n} the sequence –1,1,–1,1,…; and 

{ } the sequence x, , , ,… .

A sequence might also be specified via a RECUR-
RENCE RELATION. For example, the sequence of
FIBONACCI NUMBERS {FN} is given by Fn+2 = Fn+1 + Fn

with F1 = 1 and F2 = 1.
A sequence a1, a2, a3, … is said to converge to a

number L if the numbers an get closer and closer to L as
n becomes large. Such a sequence is called a CONVER-
GENT SEQUENCE, and the quantity L to which it con-
verges is called the LIMIT of the sequence. For instance, 

the sequence , , , , ,… converges to the value 1.

Convergent sequences play an important role in
mathematics. For example, an IRRATIONAL NUMBER

can be thought of as a limit of a sequence of rational
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numbers. (For instance, √
–
2 is the limit of the sequence 1,

1.4, 1.41, 1.414, 1.4142,…) As such, it is possible to
define a quantity raised to an irrational power as a limit
of rational powers, which are well defined. (For example, 

3√–2 is the limit of the sequence 

.) Any infinite sum that is a SERIES can be 
thought of as a LIMIT of a sequence of PARTIAL SUMs,
and any INFINITE PRODUCT can be considered to be the
limit of a sequence of partial products.

See also ARITHMETIC SEQUENCE; BOUND; GEOMET-
RIC SEQUENCE; HARMONIC SEQUENCE.

series A sum of numbers is called a series. The sum
could be finite, such as 2 + 4 + 6 + 8 + 10, for example,
or it could be an infinite sum, as for 2 + 5 + 8 + 11 +
14 + … for instance. Each number in the sum is called
a term of the series.

In 1755 LEONHARD EULER introduced use of the
Greek letter sigma Σ (S for “sum”) to abbreviate the
writing of a series. For example, the sum of the first 

five even numbers can be written and the sum of 

all numbers 1 less than a multiple of three as . 

(See SUMMATION.)
There are no conceptual difficulties with the notion

of summing just a finite collection of numbers. How-
ever, understanding what we mean by an infinite sum is
a delicate matter—such sums can exhibit very different
characters. Some series clearly do not add to a finite
value (as for 2 + 5 + 8 + 11 + 14, …, for example),
whereas one could argue that other infinite series do.
(The act of walking from one side of the room to the 

other, for instance, suggests that the series + + 

+ + +… “adds” to the value 1: first walk 

halfway across the room, and then half the remaining
distance, and then the half the distance that remains,
and so on.)

In some cases the situation is not at all clear. For
example, the series 1 – 1 + 1 – 1 + 1 – 1 + … of positive
and negative terms seems to oscillate: an even number
of terms add to zero, an odd number to 1, and it does
not seem possible to assign a single sum to this series.
(Some mathematicians in the past argued that the sum
of this series should be 1/2, a value between zero and 1.)

These different behaviors of infinite series caused
scholars much confusion over the centuries. Matters
were not properly resolved until AUGUSTIN-LOUIS

CAUCHY (1789–1857) introduced the notion of a
LIMIT, and was able to apply it to the study of infinite 

sums. Today we say that an infinite series = a1 + 

a2 + a3 +… converges to a finite value L if the SEQUENCE

of PARTIAL SUMS:

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

tends to L in the limit as n → ∞. For example, the infi-
nite series

has partial sums:

that approach the value 1. In this sense we say that the 

sum equals 1. (In a practical 

sense, however, adding the terms of the series only
brings us closer and closer to the value 1: we can never
attain it. We are physically limited by the fact that we
cannot keep adding terms indefinitely.)

An infinite series that converges is called a conver-
gent series. Any series that does not converge to a finite
value (either because the value of the sum seems to be
infinite, or because the partial sums oscillate) is called
divergent. There are a number of tests to determine
whether or not a series converges or diverges. (See
CONVERGENT SERIES.)
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Every infinite decimal expansion can be thought of 

as an infinite series. For example, 

, and the series converges to the 

value 1/3.
See also ALTERNATING SERIES; ARITHMETIC SERIES;

EXPONENTIAL SERIES; GEOMETRIC SERIES; GREGORY

SERIES; HARMONIC SERIES; MACLAURIN SERIES; POWER

SERIES; SUMS OF POWERS; TAYLOR SERIES; ZENO’S PARA-
DOXES; ZETA FUNCTION.

set theory Loosely speaking, a set is any collection of
objects or numbers specified in a well-defined manner.
Each item in the set is called an element, or a member,
of the set. For example, “dog” is an element of the set
of mammals. If an entity a is an element of a set S, we
write a ∈ S. If a does not belong to S, we write a ∉ S.

Sets are typically specified either by listing the ele-
ments of the set between a set of braces “{ }”, or listing a
few elements of the set to indicate a pattern. For exam-
ple {a,e,i,o,u} is the set consisting of the five vowels of
the alphabet, and {3,6,9,12,…} is the set of all multiples
of 3. It may also be possible to define a set as consisting
of elements from some universal collection that satisfy a
certain property. For example, {x ∈ R |x > 5} denotes the
set of all real numbers that are greater than 5. (Some
mathematicians prefer to use a colon “:” instead of a
vertical bar in this notation.)

The order in which the elements of a set are listed
is immaterial. For example, {A,6,*} and {*,6,A} are the
same set. Also, elements of a set are listed without repe-
tition. For instance, the set {a, a, a, a, a} is the set with
a single element a. The EMPTY SET is the set that con-
tains no elements.

Two sets are deemed equal if they possess precisely
the same elements. For example, the sets {2,4,6,8,…}
and {n |n is a counting number divisible by 2} are equal
sets. A set A is said to be a subset of a set B if every ele-
ment of A is also a member of B. We write A ⊂ B if we
are certain that the two sets are not equal, and A B if
equality of the sets is possible. For example, the set of all
multiples of 4 is a subset of the set of all multiples of 2.

Although the intuitive notion of a set as a collection
of objects is as ancient as the human race, the idea of a set
as a formal mathematical concept was not proposed until
the 19th century. In his development of BOOLEAN ALGE-
BRA, British mathematician GEORGE BOOLE (1815–64)

introduced the notion of set as a fundamental tool for
the study of FORMAL LOGIC. German mathematician
GEORG CANTOR (1845–1918), in his attempts to under-
stand the foundation of all of mathematics, came to
regard sets as even more basic and fundamental than the
notion of “number.” Cantor properly formalized a the-
ory of set manipulations and introduced the striking
notion of CARDINALITY. His work led him to profound
insights into the nature of finite and infinite sets, leading
him to extend the concept of number to include more
than one type of INFINITY.

Set Operations
There are a number of basic set manipulations, each of
which can be depicted with a VENN DIAGRAM.

Set Intersection: The intersection of two sets A and B,
denoted A ∩ B, is the set of elements common to
both A and B. For example, if A = {0,2,4,6,8,10,12}
and B = {0,3,6,9,12,15}, then A ∩ B = {0, 6, 12}. Two
sets with no elements in common are called disjoint.
The intersection of two disjoint sets is the empty set.

Set Union: The union of two sets A and B, denoted
A ∪ B, is the set of all elements that appear either in
A or in B, or in both. For instance, in the previous
example we have A ∪ B = {0,2,3,4,6,8,10,12,15}.

If two sets A and B each contain a finite number
of elements, then the number of elements in A ∪ B
equals the number of elements in A plus the number
of elements in B minus the number of elements in A
∩ B. (This subtraction counteracts the double count-
ing of the elements that belong to both sets.) This
formula is one instance of the general INCLUSION-
EXCLUSION PRINCIPLE.

The notions of set intersection and set union
can be extended to considerations including more
than two sets.

Set Complement: If a set A is a subset of a set B, then
the complement of A in B, also called the set differ-
ence and denoted B – A, is the set of all elements of B
that do not belong to A. For example, if A = {1,3,5}
and B = {1,2,3,4,5,6}, then B – A = {2,4,6}. DE MOR-
GAN’S LAWS explain how set complement interacts
with intersections and unions of sets.

Philosophical Difficulty
In 1902 British mathematician and philosopher
BERTRAND ARTHUR WILLIAM RUSSELL (1872–1970)

⊇
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stunned the mathematical community with his con-
struction of a simple paradox, today called RUSSELL’S
PARADOX, that shows that our naïve understanding of
the notion of set is fundamentally flawed. Although
Cantor believed that set theory is the foundation on
which all of mathematics is built, it became clear to
mathematicians that the concept of a set and what it
means to be an “element of” must remain as unde-
fined terms. In the decades that followed, mathemati-
cians such as ERNST FRIEDRICH FERDINAND ZERMELO

(1871–1953) attempted to develop an axiomatic the-
ory of sets (based on undefined terms) that success-
fully avoids Russell’s paradox. To this day, not all
mathematicians agree that this goal has yet been
achieved.

See also ARGUMENT; AXIOM OF CHOICE; CARDINAL-
ITY; CARTESIAN PRODUCT; DIFFERENCE; FINITE.

seven bridges of Königsberg problem See GRAPH

THEORY.

sexagesimal See BASE OF A NUMBER SYSTEM.

Shanks, William (1812–1882) British Computation
Born on January 25, 1812, in Northumberland, Eng-
land, William Shanks is remembered for extraordinar-
ily accurate computations of mathematical constants,
all done by hand. Shanks evaluated the natural LOGA-
RITHMs of the numbers 2, 3, 5, and 10, each to 137
decimal places, published a table of all the prime num-
bers up to 60,000, and evaluated all the powers of two
of the form 212n+1 for n from 1 to 60. He also evalu-
ated e and EULER’S CONSTANT γ to a large number of
decimal places, but he is best remembered for his com-
putation of π to many hundreds of decimal places. He
published this result in 1873.

Little is known of Shanks’s life. His methods of
computation were essentially nothing more than a
matter of patience and BRUTE FORCE. For example,
Shanks used the following identity to compute 707
digits of π:

using GREGORY SERIES tan–1(x) = x – + – 

+…. By substituting in the values and , one can 

begin computing the digits of π.
In 1946 English mathematician D. F. Ferguson

used the alternate identity to also compute π:

He noted that Shanks had made an error in the 528th
place and went on to correctly compute π to 808 deci-
mal places.

Shanks died in Houghton-le-Spring, England, in
1882. The exact date of death is not known.

See also E; PI.

Shannon, Claude Elwood (1916–2001) American
Information theory Born on April 30, 1916, in
Michigan, Claude Elwood Shannon is remembered as
the founder of the field of INFORMATION THEORY. His
seminal article, “The Mathematical Theory of Commu-
nication,” published with Warren Weaver in 1949, laid
down the principles of communication science and
introduced the revolutionary idea that information
(pictures, words, sounds) could successfully be trans-
mitted through a wire as a sequence of 0s and 1s. (Up
to then it was thought that it would be necessary to
transmit electromagnetic waves through wires to
accomplish this feat.) This paper introduced the term
bit for the first time. Shannon also developed a mathe-
matical means for measuring the information content
of a message.

Shannon was awarded an undergraduate degree in
mathematics and electrical engineering from the Uni-
versity of Michigan in 1936. He completed doctoral
work at the Massachusetts Institute of Technology in
1940 and worked on the construction of an early type
of mechanical computer. He demonstrated, for the first
time, that it is possible to combine BOOLEAN ALGEBRA

with electrical relays and switching circuits to create a
machine that can “do” mathematical logic.

In 1941 Shannon joined AT&T Bell Telephones in
New Jersey as a research mathematician and published
his famous work 7 years later. This piece also included
the mathematical basis of error detection: by adding
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extra bits to a message, Shannon showed that it is pos-
sible to detect and correct errors that occur during the
transmission of messages due to noise.

Shannon accepted a faculty position at the Mas-
sachusetts Institute of Technology in 1957, but
remained a consultant with Bell Telephones. He contin-
ued his work on Boolean algebra, applying it to the
new field of artificial intelligence. Shannon produced
the first effective chess-playing programs.

Shannon received many honors for his work,
including the National Medal of Science in 1966 and
the Audio Engineering Society Gold Medal in 1985. He
died in Medford, Massachusetts, on February 24, 2001.

Sicherman dice A pair of dice with faces renumbered
1, 2, 2, 3, 3, 4 and 1, 3, 4, 5, 6, 8 are called Sicherman
dice, named after their discoverer Col. George Sicher-
man of Buffalo, New York. These dice have a remark-
able property: the PROBABILITY of throwing any
particular sum (from 2 to 12) with Sicherman dice
matches the odds of throwing that same sum with a

pair of standard dice. Thus Sicherman dice can be used
in dice games without affecting the odds of the game.

The tables below show all possible outcomes of
rolling a pair of standard dice (top) and a pair of
Sicherman dice (bottom), 36 combinations in all for
each pair. All sums appear equally often in each table,
and so indeed all sum probabilities are identical. (Both
tables possess three 10s, for instance. The odds of 

throwing a 10 are thus the same for each pair: or 

).

The Sicherman dice are unique: there is no other
way to renumber the faces of two cubes with positive
integers yielding two dice with the same sum probabili-
ties as standard dice.

Tetrahedral dice (with each die the shape of a
TETRAHEDRON) having faces labeled 1, 2, 2, 3 and 1, 3,
3, 5 produce the same sum probabilities as ordinary
tetrahedral dice labeled 1, 2, 3, 4 and 1, 2, 3, 4.

sieve of Eratosthenes (Eratosthenes’ sieve) Although
there is no known formula for generating PRIME num-
bers, there is a simple method for “sifting out” the
primes between 1 and any given number N. The proce-
dure is called the sieve of Eratosthenes and is attributed
to 3rd-century scholar ERATOSTHENES OF CYRENE, a
Greek contemporary of EUCLID (ca. 300–260 B.C.E.).
The method is performed as follows:

1. List all the positive integers from 2 up to N.
2. Leave the number 2, but cross out every second

number after it. This deletes all the multiples of 2
greater than 2.

3. Leave the next remaining number, 3, but cross out
every third number after it (if not already deleted).
This will delete all the multiples of 3 greater than 3.

4. Leave the next remaining number, 5, and delete all
of its multiples.

5. Continue this process by always going to the next
remaining number and crossing out the multiples of
it that occur further along in the list.

6. The integers not deleted when this process ends are
the prime numbers between 2 and N.

Any number k in the list that is not prime can be fac-
tored, k = a × b, and so will be deleted when consid-
ering the multiples of a, say. Only those numbers in
the list that do not factor, that is, the prime numbers,
will survive.

1––
12

3––
36
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Any COMPOSITE NUMBER smaller than N has at least
one prime factor smaller than the square root of N. (A
number k smaller than N cannot factor as k = a × b with
both a and b larger than √

–
N.) This shows that when

performing this procedure, one need only delete mul-
tiples of prime numbers smaller than the square root
of N. For example, to find all the prime numbers
from 2 to 100, delete only the multiples of 2, 3, 5 and
7 from the list.This observation simplifies the proce-
dure considerably.

In the 1800s, Polish astronomer Yakov Kulik used
this method to find all the prime numbers between 1
and 100,000,000. It took him over 20 years to com-
plete the task. Unfortunately, the library to which Kulik
gave his manuscript lost the pages that listed the primes
he discovered between 12,642,000 and 22,852,800.

significant figures See ERROR.

similar figures Two geometric figures are similar if
they are the same shape but not necessarily the same
size. (Mirror images are allowed.) More precisely, two
POLYGONS are similar if, under some correspondence
between their sides and vertices, corresponding interior
angles are equal and corresponding sides differ in ratio
by a constant factor. The constant of proportionality is
called the scale factor.

As an example, any two squares are similar. If the
side-length of one square is double the side-length of
the other, say, then the two figures have scale factor 2.
Any figure enlarged or reduced in size, with the aid of
a photocopier say, produces a new figure similar to
the first.

Two TRIANGLES are similar if:

1. The three interior angles of one triangle match the
interiorangles of the other.

This follows, since the LAW OF SINES shows that corre-
sponding sides will also have the same ratio. This is
often called the AAA rule.

2. Three sides of one triangle are proportional, by the
same scale factor, to the three sides of the other.

This time the LAW OF SINES shows that the three corre-
sponding angles are equal.

3. An angle of one triangle is equal to an angle of the
other, and the sides forming the angle in one are
proportional to the same sides in the other.

The LAW OF COSINES shows that the third sides of the
triangles are in the same proportion.

Identifying similar triangles is often the key step in
proving geometric results. The CIRCLE THEOREMS,
PTOLEMY’S THEOREM, and the SECANT theorem, for
example, demonstrate this.

Any two circles are similar. This observation
explains why the value π is the same for all circles.

Two figures that are similar with a scale factor of
1 are called CONGRUENT FIGURES. A figure that is
composed of parts similar to the entire figure is a
FRACTAL.

See also AAA/AAS/ASA/SAS/SSS; EUCLIDEAN GEOMETRY.

simple interest See INTEREST.

Simpson, Thomas (1710–1761) British Calculus
Born on August 20, 1710, in Leicestershire, England,
Thomas Simpson is remembered in mathematics solely
for the rule that wrongly bears his name.

With limited education, Simpson began his career
as a professional astrologer and confidence man. After
an unfortunate incident in 1733 from which he was
obliged to leave his home county of Leicestershire,
Simpson accepted an evening teaching position in
Derby. His interest in mathematics then developed.

Simpson published mathematical articles in the
Ladies’ Diary and soon developed a reputation as a
capable scholar in the field of calculus. In 1737 he
wrote A New Treatise of Fluxions and followed this
work with the release of four more influential texts
over the following 6 years. His writing garnered him
considerable fame in England at the time. In 1743 he
was appointed second mathematical master at the
Royal Military Academy and in 1735 was elected as a
fellow of the ROYAL SOCIETY.

Later in his career, while still working as a mathe-
matics teacher, Simpson also published three best-selling
elementary textbooks: Algebra (1745), with 10 English
editions; Geometry (1747), with six English editions,
five French editions, and one Dutch edition; and Trig-
onometry (1748), with five English editions.
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SIMPSON’S RULE, as it is called today, appeared in
his 1743 text Mathematical Dissertations. That his
name became attached to a technique that he clearly did
not invent, but merely described, serves as a testimony
to the influence and popularity of his writing. Simpson
died in Market Bosworth, England, on May 14, 1761.

Simpson’s rule See NUMERICAL INTEGRATION.

simultaneous linear equations An equation is
called linear if each term of the equation containing a
variable contains just one variable raised to the first
power. For example, 3x + 4 = 6 and 2x + 7y – z = 11
are linear equations (but 2xy + z = 5 and 3x2 + 4 = 6,
for instance, are not). A collection of linear equations
in several variables required to simultaneously hold
true for some value of those unknowns is called a sys-
tem of simultaneous linear equations. For example,
the equations

5x + 2y = 16
2x – y = 1

form a pair of simultaneous linear equations. This pair
has the solution x = 2 and y = 3.

There are a number of methods for solving pairs of
simultaneous linear equations.

Elimination Method: Multiplying each equation by a
suitable quantity so that the coefficients of one of
the variables match. The solution to the system is
then readily apparent if one subtracts the two equa-
tions. For example, to solve

x + 3y = 7
3x – y = 11

multiply the first equation through by 3 to obtain
the equivalent pair:

3x + 9y = 21
3x – y = 11

Subtracting yields the equation: (3x + 9y) – (3x – y)
= 21 – 11, that is, 10y = 10, indicating that y equals
1. Since x + 3y = 7 we now see that x must be 4.

Substitution Method: Solve for one of the variables in
one equation and insert the result into the second
equation. For example, for the pair

x + 3y = 7
3x – y = 11

the first equation gives x = 7 – 3y. Substituting into the
second equation yields 3(7 – 3y) – y = 11, that is, 21 –
10y = 11, or, again, that 10y = 10. The solution to the
system follows as shown in the previous method.

Method of Equating: Solve both equations for one
variable and equate the results. In our example, the
first equation yields x = 7 – 3y and the second, 

x = . Equating yields 7 – 3y = or 

21 – 9y = 11 + y. Solving for y gives y = 1, from
which it follows that x = 4.

One can also seek a GRAPHICAL SOLUTION. Such an
approach shows that any pair of simultaneous linear
equations either has a unique solution (as for the pair
above), no solution, or infinitely many solutions. It is
impossible for a pair of linear equations to have exactly
two distinct solutions, for instance.

The process of GAUSSIAN ELIMINATION provides
the means to solve systems of linear equations with
more than two unknowns. This approach yields key
results about the theory of matrices and the study of
LINEAR ALGEBRA.

See also HISTORY OF EQUATIONS AND ALGEBRA

(essay); MATRIX; SYSTEM OF EQUATIONS.

singular point (singularity) Any point on a curve at
which there is not a single well-defined TANGENT to the
curve is called a singular point. It may be that the curve
crosses itself at that point, in which case there are two
tangents to the curve, or that the point is a CUSP or an
ISOLATED POINT, for example.

See also DOUBLE POINT.

SI units Adopted in 1960 by international agreement,
the Système International d’Unités, (SI units) is a coher-
ent system of units used for scientific purposes. It is
based on seven fundamental base units of which the
meter (m), the kilogram (kg), and the second (s) for
measuring length, mass, and time, respectively, are the

11 + y
———

3
11 + y
———

3
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most common in mathematics. There are two supple-
mentary units: the radian used for ANGLE measure and
the steradian for measuring a SOLID ANGLE. By multi-
plying and/or dividing these base and supplementary
units, other derived units are obtained. For instance,
the unit of area is “square meter” (meter times meter),
and the unit of velocity is “meter per second” (meter
divided by second). There are 18 specific derived units
that have their own names, such as a Newton (N) for a
measure of force (given as kilograms times meter per
second squared). The following table lists the basic and
supplementary units and their symbols.

Multiples and fractions of units are defined in multiples
of 1,000 and are denoted by special prefixes or sym-
bols. These are shown in the table below. For example,
1 mega-amp equals 106 ampere, and 1 millimeter equals
10–3 meters.

The following additional prefixes are also often used:

The metric system, a system of quantifying units of
measure in terms of powers of 10, was first established
in 1790 by a special Committee of Weights and Mea-
sures of the French Academy of Sciences. Surprisingly,
bases other than 10 were seriously considered at the
time. (There were arguments for using the duodecimal
system of base 12, as well as consideration of a base
11 system, hoping to take advantage of PRIME base.)
As scientific progress was made over the centuries, the
metric system was extended to include measurements
of electric current, light intensity, temperature, and
molecular quantities. This expanded system of SI units
described was adopted at the 11th International Gen-
eral Conference on Weights and Measures in 1960.
Minor adjustments to the system were made in subse-
quent meetings.

skew lines Two nonparallel straight lines in three-
dimensional space are skew if they do not intersect. No
pair of skew lines lie in a common plane.

skewness A measure of the degree of asymmetry of a
DISTRIBUTION is called its skewness. If a distribution
has a short tail to the left and a long one to the right,
then it is called positively skewed, and negatively
skewed if the situation is reversed.

See also STATISTICS: DESCRIPTIVE.

slide 15 puzzle (Boss puzzle, fifteen puzzle) In 1878
famous American puzzlist Sam Loyd (1841–1911)
introduced his “Boss puzzle,” today called the slide 15
puzzle. The game consists of 15 tiles, numbered one
through 15, held within a 4 × 4 frame with one space
left free. Tiles may slide horizontally or vertically into
the blank cell, but all moves are confined to the plane
of the frame. The challenge is to convert the given
arrangement of tiles shown top left to the one shown

102 hecto- (h) Greek: hekatón: hundred
10 deka- (da) Greek: déka: ten
10–1 deci- (d) Latin: decim: ten
10–2 centi- (c) Latin: centum: hundred

1024 yotta- (Y) Greek: okákis: eight times (24 = 8 × 3)
1021 zetta- (Z) Greek: heptákis: seven times (21 = 7 × 3)
1018 exa- (E) Greek: hexákis: six times (18 = 6 × 3)
1015 peta- (P) Greek: pentákis: five times (15 = 5 × 3)
1012 tera- (T) Greek: téras: monster
109 giga- (G) Greek: gíg–as: giant
106 mega- (M) Greek: mégas: big
103 kilo- (k) Greek: chílioi: thousand
10–3 milli- (m) Latin: mille: thousand
10–6 micro- (µ) Greek: m–ıkrós: small
10–9 nano- (n) Greek: n–anos: dwarf
10–12 pico- (p) Italian: piccolo: small
10–15 femto- (f) Danish: femten: 15
10–18 atto- (a) Danish: atten: 18
10–21 zepto- (z) Greek: heptákis: seven times
10–24 yocto- (y) Greek: oktákis: eight times

Quantity Name Symbol

length meter m
mass kilogram kg
time second s
temperature Kelvin K
amount of a substance mole mol
electric current ampere A
light intensity candela cd
angle (supplementary) radian rad
solid angle (supplementary) steradian sr
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top right, with tiles “14” and “15” switched. Loyd
offered a $1,000 prize to the first person submitting a
correct solution.

It turns out, as Loyd well knew, that this puzzle is
impossible to solve. The theory of even and odd PER-
MUTATIONs explains why.

Following the snaked path indicated above,
and ignoring the location of the blank cell, one
can record any arrangement of tiles as a list of
the numbers 1 through 15. For instance, the
initial arrangement of tiles appears as the list:

1 2 3 4 8 7 6 5 9 10 11 12 15 14 13

Since a larger number appears to the left of a
smaller number nine times, this list represents an
odd permutation of the numbers 1 through 15.
Notice that if one slides a tile horizontally dur-
ing the play of the game, the corresponding list
representing the arrangement of tiles does not
change. If, on the other hand, one slides a tile
vertically, the number of that tile shifts an even
number of places up or down the list that repre-
sents the arrangement of tiles. Shifting a number
one place to the left or right can be effected by a
single transposition, two places to the left or
right can be effected by two transpositions, and
so forth. Thus the result of shifting a number an
even number of places to the left or right is the
result of applying an even number of transposi-
tions, thereby preserving the evenness or oddness
of the arrangement of tiles. In playing the
game, then—given that the initial arrangement
of tiles corresponds to an odd permutation—the
arrangement of tiles will forever remain an odd
permutation. It is impossible, then, to obtain the
arrangement called for by the goal of the puzzle,
namely, 1 2 3 4 8 7 6 5 9 10 11 12 14 15
13, an even permutation.

Mathematicians have shown that all arrangements
of tiles that correspond to odd permutations of the
numbers 1 through 15 can in fact be achieved through
the play of the game.

slide rule One can perform simple additions with the
aid of two ordinary rulers. To compute 2.7 + 3.5, for
example, place the end (position “0”) of one ruler at
the location 2.7 along the second ruler. Then read 3.5
units along the first ruler. The corresponding label on
the second ruler is then the desired sum 6.2.

Scottish mathematician JOHN NAPIER (1550–1617)
discovered LOGARITHMS near the turn of the 17th cen-
tury. These functions have the remarkable property of
converting computations of multiplication into simpler
computations of addition: log(N × M) = logN + logM.
In 1622, English mathematician WILLIAM OUGHTRED

(1574–1660) realized that two sliding rulers, with
labels placed in LOGARITHMIC SCALE, will physically
perform the addition of logarithms, and thus allow one
to simply “read off” the result of any desired multipli-
cation. (As a very simple example, imagine we wished
to compute 100 × 1,000 with a pair of base-10 loga-
rithmic rulers. Note then that the mark with label 100
is placed 2 in. along the ruler, and the mark labeled
1,000 3 in. along the ruler. The sum 2 + 3 is, of course,
5 in. along the ruler. But this fifth position is labeled
10,000, which is indeed the product 100 × 1,000.)

Oughtred’s mechanical device of two sliding rulers
is called a slide rule. The device was inspired by the
work of English scholar Edmund Gunter (1581–1626),
who had used a single ruler and a pair of pointers to
accomplish the same feat.

Slide rules were popular up until the 1970s before
the advent of the pocket calculator.

See also NAPIER’S BONES.

slope (grade, gradient) The slope of a line is a mea-
sure of its steepness. This can be determined a number
of ways:

1. Numerically: Two quantities are said to be linearly
related if a unit change in one quantity produces a
constant change in the other. The value of that con-
stant change is the slope of the relationship. For
example, the following table shows the profit made
for a company that sells widgets.

466 slide rule

Slide fifteen puzzle



The relationship is certainly linear, as each addi-
tional widget sold produces the same increase of $15 in
profit made. This relationship has slope 15. Notice that
in selling two additional widgets, profit is increased by
$30, and in selling three additional widgets, profit
increases by $45, and so on. In particular, the ratio of
profit increase to production increase is always the 

same: = = 15. In general, if two quantities x and 

y are linearly related, the slope of the relationship is
computed as:

In particular, if the value x1 produces the output value
y1 and x2 the output y2, then:

2. Graphically: Plotting the points of a linear rela-
tionship produces a straight-line graph. The slope
of the line is determined by placing the tip of a
pencil at any location on the line, moving it hori-
zontally one unit to the right, and measuring the
vertical distance the pencil tip must move in order
to return to the line. An upward vertical motion is
considered positive and a downward vertical
motion negative. Graphing the points of the wid-
get/profit example again shows that this linear
relationship has slope 15.

It does not matter which point on the line one ini-
tially chooses: all locations yield the same value for the
slope via this method. (This is only true for straight-
line graphs.) One can also make a horizontal run of a
length different than 1 to produce a different value for
the rise one must take to return to the graph. The ratio
“rise over run,” however, will always adopt the same
value. School students are often asked to memorize this
catch phrase as the definition of slope:

If (x1, y1) and (x2, y2) are any two points on the line,
then we can interpret the quantity x2 – x1 as a run with
corresponding rise y2 – y1 and so, again, we see that
slope is given by:

A line has positive slope if, in moving from left to
right, the line rises in value, negative slope if it
decreases in value (thus a unit step horizontally to the
right requires a negative rise in order to return to the
line), and zero slope if it is horizontal.

Traffic highway signs often use a version of this
interpretation of slope to warn drivers of the steepness
of the road. For example, a sign that reads “15% grade
next 7 miles” warns drivers that for each mile traveled
for the next 7 miles, the altitude of the road drops by
0.15 miles. (The slope of the road is thus –0.15.)

3. Algebraically: The EQUATION OF A LINE is usually
written in the form y = mx + b, where m and b are
numbers. We see that an increase of the x-value by 1
unit causes an increase in the y-value by m units:

If x → x + 1, then y = mx + b → m(x + 1) + b
= (mx + b) + m = y + m.

Thus the slope of the line is m. We have:

The slope of a line is simply the coefficient of
the x-variable in the equation y = mx + b.

slope = −
−

y y
x x

2 1

2 1

slope
change in y values
change in x values

“rise”
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= =
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Two different lines with the same slope are PARAL-
LEL. For example, the lines y = 2x + 3 and y = 2x – 5 are
parallel. If two PERPENDICULAR lines have slopes m1 and
m2 respectively, then the following relationship holds:

m1 · m2 = –1

One can see this by drawing the horizontal and verti-
cal line segments for the run and the rise for the first 

line (and so m1 = ), and then rotating that picture 

counterclockwise 90°. In this new picture, what was
the run is now a rise for a perpendicular line, and
what was a rise is now a run pointing in the opposite 

direction. Thus m2 = – = – .

DIFFERENTIAL CALCULUS deals with the issue of
defining slope for curves that are not straight lines.

See also COLLINEAR; GRADIENT; TANGENT.

Snell’s law This principle, first described in 1621 by
Dutch mathematician Willebrord van Roijen Snell, is
best explained through the study of an OPTIMIZATION

problem. We phrase it here in a modern setting.

A lifesaver sets off to rescue a swimmer in dis-
tress. The drowning swimmer, however, is not
directly in front of the lifesaver but off at an
angle along the shore. To reach the swimmer,
the lifesaver must run across the sand and then
dive into the water and swim to the rescue. A
question arises: as the lifesaver can run much
faster than she can swim, toward which point
along the shore should she run so that the total
amount of time it takes to reach the swimmer
is at a minimum?

Surprisingly, the straight-line path from the lifesaver sta-
tion to the swimmer does not provide the quickest route.

To analyze this problem, let a, b, α, and β be the dis-
tances and angles shown. For ease, assume that the hori-
zontal displacement between the lifesaver and the
swimmer is 1 unit. Suppose also that the speed of the life-
saver on shore is r meters per second, and in the water, s
meters per second. We wish to find the length x along the
shore that produces a path requiring the least amount of
time to follow.

According to PYTHAGORAS’S THEOREM, the total
distance the lifesaver runs on shore is meters.

As speed equals distance over time, this takes a total of 

seconds to complete. In the same way, we see 

that the lifesaver will be in the water 

before reaching the swimmer. Thus, for this position x
along the shore, the total time T(x) taken to reach the
swimmer is given as:

seconds. We now use the techniques of CALCULUS to
find a local minimum for this function. (See MAXIMUM/
MINIMUM.)

A local minimum of this function can only occur
if the first derivative of this function is zero. This
yields:

The second-derivative test shows that this does indeed
correspond to a minimum. Thus the optimal solution 

to this problem occurs when the quantity 

equals . Notice in the diagram that 

sinα = and sinβ = Thus, the 

lifesaver should run to the position on shore such that
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the angles α and β satisfy the fundamental relationship 

In general we have:

If the speed of travel through one medium is s
units per second, and through a second
medium is r units per second, then the optimal
route of travel across a boundary separating
the two media occurs when the angle of inci-
dence α and the angle of refraction β satisfy
the relationship:

This principle is today called Snell’s law of refraction.
Snell observed that a beam of light moving from one
medium to another, say, from air to water, obeys this
law. Light of one color, that is, of one particular
wavelength, will travel through the same medium at a
speed different from that of a beam of a different
color, and so will have its own appropriate angle of
refraction. For this reason, white light—the composi-
tion of all colors—separates into a rainbow of colors
at the interchange of a new medium. Water droplets
suspended in the air after a rainstorm separate the col-
ors of sunlight in this way to produce a large rainbow
visible from the ground.

soap bubbles The film of a soap solution is elastic
and has the property that it always “pulls in on itself”
to create a surface of least possible surface area. Noting
that a soap bubble, containing a fixed volume of air,
always adopts the shape of a SPHERE provides a physi-
cal demonstration of the following three-dimensional
variation of the ISOPERIMETRIC PROBLEM:

Of all figures with a fixed volume, the sphere
has the least surface area.

Polish mathematician Hermann Schwarz (1843–1921)
provided a mathematical proof of this observation
in 1882.

Many basic questions about arrangements of bub-
bles separating more than one chamber of air are unre-
solved. In 2000 mathematicians Frank Morgan, Michael
Hutchings, Manuel Ritoré, and Antonio Ros managed

to prove that the familiar double bubble seen in nature
(two portions of a sphere attached to a curved boundary
separating the two volumes) is indeed the shape of mini-
mal total surface area for a configuration enclosing two
chambers of air. The corresponding triple-bubble prob-
lem remains open.

solid angle Just as an ANGLE in two-dimensional
space is the measure of the amount of length of a UNIT

CIRCLE “cut off” by two rays describing the angle, a
solid angle in three-dimensional space is the amount of
surface area of a unit SPHERE intercepted by a bundle of
rays emanating from the center of the sphere. A solid
angle need not have any particular shape; it is defined
by the nappe of a CONE, which can be of any shape.

The unit of measure of a solid angle is called a stera-
dian. Because the surface area of a sphere is 4π(1)2, there
are a total of 4π steradians about a point in space. The 

measure of a hemisphere is · 4π = 2π steradians.

Solid angles are used in physics to measure the
fraction of the total emission of radiation from a
source in space. For example, the Earth, of radius
approximately 6370 km, exposes a total surface area of 

· 4π(6370)2 km2 toward the Sun at any time. As the 

distance of the Earth from the Sun is approximately
150 million km, we have that the Earth occupies the 

fraction of the surface

area of sphere about the Sun of radius 150 million km.
The solid angle of the Earth with respect to the Sun is
this fraction of the full 4π steradians of space about the
Sun. Notice that this fraction is exceedingly small. Life
on Earth is sustained by less than 1 billionth of the
total energy emitted by the Sun.

The polyhedral angle of a POLYHEDRON is the solid
angle of the region formed by projecting one face of the
polyhedron onto a unit sphere.

solid of revolution If the region under a curve y = f(x)
between x = a and x = b is rotated through one revolu-
tion about the x-axis, it generates a three-dimensional
figure called a solid of revolution. More generally, any
figure in the plane rotated about a line in the plane that
does not cut the figure produces a solid of revolution.
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For example, rotating a semicircle about its diameter
produces a SPHERE. Rotating a circle about an axis that
does not cut the circle produces a TORUS.

INTEGRAL CALCULUS is used to calculate the volume
of a solid of revolution. For the case of a curve y = f(x)
above an interval [a,b] rotated about the x-axis, subdivide
[a,b] into small segments given by points a,x1,x2,…, xn,b.
The region under the curve is approximated as a collec-
tion of rectangles of heights f(xi) and widths (xi+1 – xi).
When revolved, each such rectangle produces a disc of
radius f(xi) and width (xi+1 – xi), and consequently vol-
ume π(f(xi))2. (xi+1 – xi). The volume of the solid in ques-
tion is then well approximated by the sum of these
individual volumes. Using finer and finer approxima-
tions shows that, in the limit, the true volume V of the
solid of revolution is given by the integral:

V = ∫b

aπ(f (x))2 dx

One can use this integration method, called the
disc method, to show, for example, that the volume of 

a sphere of radius r is given by πr3 (Use the function 

y = over the interval [–r,r].) For solids that
arise from rotating curves about the y-axis, an analo-
gous integration technique, called the cylindrical shell
method, is employed to compute volumes.

By approximating a section of the curve y = f(x) as
a series of straight line segments, revolving each seg-
ment about the x-axis, and computing the surface area
of each small frustum of a cone that results, one can
show that surface area S of a solid of revolution is
given by the integral:

S = ∫b

a2π f (x) dx

(This assumes that the derivative f ′(x) is a continuous
function.) For example, one can use this formula to
show that the surface area of a sphere of radius r is 4πr2.

In the mid-fourth century C.E., without the aid of
formal integral calculus, Greek mathematician PAPPUS OF

ALEXANDRIA made two beautiful geometric discoveries.

If a figure in the plane is revolved around an
axis that does not cut through the figure, then
the volume of the solid of revolution produced
equals the product of the area of the region
and the distance traveled around the axis by
the figure’s centroid.

If a segment of a curve in a plane is
revolved around an axis that does not cut
through the segment, then the surface area of
the solid of revolution produced equals the
product of the ARC LENGTH of the segment and
the distance traveled around the axis by the
segment’s centroid.

The centroid of a plane figure or of a segment of a
curve is its CENTER OF GRAVITY or balance point if we
imagine the plane figure as made of uniformly dense
material or the curve segment of uniformly dense wire.
The centroid of a circle, regarded as a plane figure, for
example, is its center. The centroid of just its circumfer-
ence is also its center.

If a circle of radius r with center R units from the
x-axis is rotated about the x-axis, the distance traveled
by the centroid is 2πR. Consequently, by Pappus’s theo-
rem, the volume V and the surface area S of the torus
produced are:

V = (πr2) × (2πR) = 2π2r2R

and

S = (2πr) × (2πR) = 4π2rR

See also HYPERBOLOID; PAPPUS’S THEOREMS;
PARABOLOID.

solution by radicals If it is possible to express a
solution to a POLYNOMIAL equation in terms of the
COEFFICIENTs that appear in the equation under the
application of a finite number of additions, subtrac-
tions, multiplications, divisions, and root extractions,
then we say we have a solution by radicals. For exam-
ple, the two solutions of a QUADRATIC equation ax2 + 

bx + c = 0 are given by . These are 

solutions by radicals. CARDANO’S FORMULA shows that
any solution to a CUBIC EQUATION is a solution by radi-
cals, and the work of LUDOVICO FERRARI (1522–65)
showed that the same is true of any QUARTIC EQUATION.
Certainly some fifth-degree equations have solutions by
radicals (the solution of x5 – a = 0, namely, x = 

5√
–
a, is a

solution by radicals), but the general question of
whether or not the solutions of all fifth (or higher)
degree equations are solutions by radicals remained an
important unsolved question for several centuries. This
question is equivalent to asking whether or not there

x
b b ac
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exists a general formula akin to the quadratic formula
for quadratic equations that solves all fifth (or higher)
degree equations.

The work of ÉVARISTE GALOIS (1811–32) provided
the first important steps toward understanding the gen-
eral properties of solutions to polynomial equations,
and Norwegian mathematician NIELS HENRIK ABEL

(1802–29) provided the first proof that there can be no
general formula for the solution of fifth-degree equations
via radicals. This is surprising given that the FUNDAMEN-
TAL THEOREM OF ALGEBRA assures that every fifth-
degree equation has precisely five solutions. Abel’s result
shows then that, in general, not every solution can be
expressed in terms of a finite application of simple arith-
metic operations on the coefficients of the equation.

As mentioned earlier, some special quintics do have
solutions by radicals. For example, ABRAHAM DE

MOIVRE (1667–1754) showed that the solutions of a
fifth-degree equation of the form:

(this polynomial is today known as De Moivre’s quin-
tic) has five solutions given by:

where is a fifth root of unity and k runs
through 0, 1, 2, 3, and 4.

See also GIROLAMO CARDANO; CUBE ROOT/NTH

ROOT; SQUARE ROOT; NICCOLÒ TARTAGLIA.

Spearman’s method See RANK CORRELATION.

sphere The closed surface in three-dimensional space
consisting of all those points that are a fixed distance r
from a given point O is called a sphere. The length r is
called the radius of the sphere, and the point O the
center of the sphere. The DISTANCE FORMULA shows

that if O has CARTESIAN COORDINATES O = (a,b,c),
then the equation of a sphere is given by:

(x – a)2 + (y – b)2 + (z – c)2 = r2

It is often convenient to regard a sphere as centered
about the origin, in which case its equation reduces sim-
ply to x2 + y2 + z2 = r2. This is the three-dimensional
analog to the equation of a CIRCLE of radius r in two-
dimensions: x2 + y2 = r2. (The one-dimensional analog,
x2 = r2, gives two points x = r and x = –r on the number
line, and the four-dimensional analog given by x2 + y2 +
z2 + w2 = r2 is a hypersphere in the fourth DIMENSION.)

Any plane through the center of a sphere divides the
sphere into two hemispheres. The curve of intersection of
such a plane with the sphere is a circle on the surface of
the sphere called a great circle. (The equator of the
EARTH, for instance, is a great circle.) Any other circle
drawn on the surface of the sphere is called a small circle.

Any line segment connecting two points on the sur-
face of the sphere and passing through the center of the
sphere is called a DIAMETER, and the two endpoints of
any diameter are called ANTIPODAL POINTS. The famous
Borsuk-Ulam theorem asserts the following:

If f and g are any two continuous functions on
the surface of a sphere (such as the air temper-
ature and air pressure at the surface of the
Earth), then there must exist a pair of antipo-
dal points P and Q so that f(P) = f(Q) and g(P)
= g(Q).

The sphere can be regarded as a SOLID OF REVOLU-
TION, obtained by rotating a circle about its diameter
one full revolution. As such, PAPPUS’S THEOREMS show
that the VOLUME V and the surface area A of a sphere
of radius r are given by the formulae:

A = πr2

A = 4πr2

These formulae can also be obtained by the techniques
of INTEGRAL CALCULUS. (Calculus also shows that the
volume of a four-dimensional hypersphere of radius r is 

V = π2r4.) One can also use calculus to establish the 

following surprising result:

If a spherical loaf of bread is sliced into n slices
of equal thickness, then the surface area of
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crust on each slice is the same. (Assume that
the slices are made parallel, each perpendicular
to a fixed diameter of the loaf.)

The region of a sphere bounded between two par-
allel planes is called a spherical segment or a zone. If
the radius of the sphere is r and the distance between
the two planes is h, then the surface area of the zone is
2πrh. (Notice that this formula is indeed independent
of where the two planes slice the sphere.) The solid
obtained by rotating a sector of a circle about the
diameter of the circle is called a spherical sector, and a
spherical wedge is any segment of a sphere bounded
between two great circles.

A SPHERICAL TRIANGLE is any region on the surface
of a sphere bounded by arcs of three great circles, and
spherical trigonometry is the study of spherical trian-
gles and the angles formed by intersecting great circles.
The study of SPHERICAL GEOMETRY shows that the
three angles in any spherical triangle sum to more than
180°. A spherical polygon is the figure formed on the
surface of a sphere by three or more arcs of great cir-
cles. Mathematicians have shown that the angles in an
n-sided spherical polygon sum to value greater than
180(n – 2)°, but no more than 180n°.

The famous hairy ball theorem asserts that it is
impossible to construct a continuous, nowhere zero,
VECTOR FIELD on the surface of a sphere.

A single sphere divides three-dimensional space
into two regions: an inside and an outside. Two inter-
secting spheres divide space into four regions (the
region interior to both spheres, two regions each inte-
rior to one sphere but not the other, and the outer
external region), three intersecting spheres divide space
into eight regions, four spheres divide space into 16
regions, and five spheres into 30 regions. In general, N
mutually intersecting spheres divide space into

(N2 – 3N + 8)

distinct regions. (Thus, for instance, 10 spheres can be
arranged in space to produce 260 separate regions.)

In n-dimensional space, the maximal number of
nonintersecting spheres (or hyperspheres) of a fixed
radius r that can be arranged about a central sphere with
each touching or “kissing” the central sphere is called
the n-dimensional kissing number. (It is also called the
contact number, coordination number, ligancy, or the
Newton number.) As it is possible to arrange two line

segments at either end of a given line segment, the one-
dimensional kissing number is 2. One can arrange six
(but not seven) circles about a given circle, and so the
two-dimensional kissing number is 6. SIR ISAAC NEW-
TON (1642–1727) correctly believed that the kissing
number in three dimensions is 12 (although this fact was
not properly proved until late in the 19th century).

In three-dimensional space there are just three peri-
odic (that is, self-repeating) patterns for stacking an infi-
nite collection of identical spheres. Each arrangement is
called a packing. The “face-centered cubic lattice”
arranges spheres in layers, with each sphere surrounded
by just four spheres within that layer. The “cubic and
hexagonal lattices” arrange spheres in a manner such
that each sphere in a layer is surrounded by six other
spheres within that layer. (The two packings differ in
how a third layer of spheres is placed in relation to a first
layer.) The density of a packing is the fraction of space
occupied by the spheres. The cubic and hexagonal 

packings each have a density of ≈ 74.05%.

In 1611 German mathematician and astronomer
JOHANNES KEPLER (1571–1630) conjectured that the
cubic and hexagonal packings are the densest possible. It
was not until 1998 that this was finally proved to be the
case.

The famous FOUR-COLOR THEOREM asserts that
just four colors are needed to paint any map on the
surface of a sphere. EULER’S THEOREM shows that if v
is the number of vertices in any such map, e the num-
ber of edges between countries, and r is the number of
regions defined by the map, then v – e + r = 2.

As soap film is elastic and wants to “pull in on
itself,” any soap bubble containing a fixed volume of
air adopts a shape that minimizes surface area. That
soap bubbles are spherical provides a physical demon-
stration of the following three-dimensional variation of
the ISOPERIMETRIC PROBLEM:

Of all figures in three-dimensional space of a
fixed volume, the sphere has the least surface
area.

See also MERCATOR’S PROJECTION; OBLATE/PRO-
LATE; SOAP BUBBLES; SOLID ANGLE; SPHERICAL COORDI-
NATES; TORUS.

spherical coordinates (spherical polar coordinates) In
three-dimensional space, the location of a point P can

π
––
3√

–
2
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described by three coordinates ρ,θ, and ϕ, called the
spherical coordinates of P, where ρ is the distance of P
from the origin O of a CARTESIAN COORDINATE system, θ
is the angle between the x-axis and the projection of the
line segment connecting O to P onto the xy-plane (mea-
sured in a counterclockwise sense from the x-axis), and ϕ
is the angle from the z-axis to the line segment connect-
ing O to P. The angle θ, called the longitude, takes a
value between zero and 360°, and the angle ϕ, called the
colatitude, takes a value between zero and 180°. The
angles can also be presented in RADIAN MEASURE.

Spherical coordinates are useful for describing sur-
faces with spherical symmetry about the origin. For
example, the equation of a sphere of radius 5 is simply
ρ = 5. (As the angles θ and ϕ vary in their allowed
ranges, the points of a sphere are described.) The sur-
face defined by the equation θ = c, for some constant c
(allowing ρ and ϕ to vary), is a vertical HALF-PLANE

with one side along the z-axis, and the surface ϕ = c is
one nappe of a right circular CONE.

A point P with spherical coordinates (ρ,θ,ϕ) has
corresponding Cartesian coordinates (x,y,z) given by:

x = ρ sin ϕ cos θ
y = ρ sin ϕ sin θ
z = ρ cos ϕ

To see this, project the line segment of length ρ connect-
ing O to P onto the xy-plane. Call the length of this line
segment r. Then, according to the POLAR COORDINATE

conversion formulae, we have x = r cosθ and y = r sinθ.
(Examine the right triangle in the xy-plane with the seg-
ment of length r as hypotenuse.) According to the right
triangle in a vertical plane, with this line segment of
length r as base, the line segment connecting O to P on
length ρ as hypotenuse, and a vertical leg of length z, 

we have cosϕ = and cosϕ = . Thus z = ρ cosϕ and  

r = ρ sinϕ, and the conversion formulae now follow.
To convert from Cartesian coordinates to spherical

coordinates use:

(The first equation follows from the standard DISTANCE

FORMULA.)
A triple integral of the form ∫∫

V
∫f(x,y,z)dx dy dz over

a volume V described in Cartesian coordinates converts
to the corresponding integral:

∫∫
V

∫ f(ρsinϕ cosθ, ρ sinϕ sinθ, ρ cosϕ) ρ2 sinϕ d ρ dθ dϕ

in spherical coordinates. The appearance of the term ρ2

sinϕ in the integrand follows for reasons analogous to
the appearance of r in the conversion of a DOUBLE

INTEGRAL from planar Cartesian coordinates to polar
coordinates.

As an example, using radian measure, the volume
V of a sphere of radius R can be computed as:

See also CYLINDRICAL COORDINATES.

spherical geometry (elliptic geometry, Riemannian
geometry) Discovered in 1856 by German mathe-
matician GEORG FRIEDRICH BERNHARD RIEMANN

(1826–66), and later slightly modified by FELIX KLEIN

(1849–1925), spherical geometry is a NON-EUCLIDEAN

GEOMETRY in which the famous PARALLEL POSTULATE

fails in the following manner:

Through a given point not on a given line,
there are no lines parallel to that given line.

Riemann used the surface of a SPHERE as a model of this
geometry by interpreting the word line to mean a great
circle on the sphere. Given that in a theory of geometry
two lines are meant to intersect at just one point (yet
any two great circles intersect at two ANTIPODAL

POINTS), it is appropriate then to interpret the word
point in spherical geometry as an antipodal pair of
points on the surface. In this setting, it is now also true
that any two distinct points determine a unique line.
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Riemann and Klein proved that all but the fifth of
EUCLID’S POSTULATES hold in this model and, moreover,
that this model is consistent (that is, free of CONTRA-
DICTIONs). This establishes that the parallel postulate
cannot be logically deduced as a consequence of the
remaining axioms proposed by Euclid.

In spherical geometry all angles in triangles sum to
more than 180°, and the ratio of the circumference of
any circle to its diameter is greater than π (and this
value varies from circle to circle).

See also EUCLIDEAN GEOMETRY; HYPERBOLIC GEOM-
ETRY; PLAYFAIR’S AXIOM.

spherical triangle A three-sided figure on the surface
of a SPHERE bounded by the arcs of three great circles is
called a spherical triangle. Unlike plane triangles, the
angles in a spherical triangle do not sum to the con-
stant value of 180°. In fact, the sum of angles is always
greater than 180° and can be as great as 540°. (This
occurs when all three sides of the spherical triangle lie
on the same great circle.)

A right spherical triangle has at least one right angle.
A birectangular triangle contains two right angles, and a
trirectangular triangle has three right angles. (For
instance, any triangle that connects the North Pole to
two points on the equator of the Earth is birectangular.
Such a triangle can also be trirectangular if the points on
the equator are positioned appropriately.) A spherical
triangle with no right angles is called oblique.

If the angles of a spherical triangle are A, B, and C,
measured in degrees, then the surface area of the trian-
gle is given by the formula:

Here R is the radius of the sphere. The quantity A + B
+ C – 180, usually denoted E, is called the spherical
excess of the triangle. If the three side-lengths of the tri-
angle are given by a, b, and c, then the spherical excess
can also be computed via the following remarkable for-
mula discovered by Swiss mathematician Simon
Lhuilier (1750–1840):

spiral of Archimedes (Archimedean spiral) Studied
by the great ARCHIMEDES OF SYRACUSE (ca. 287–212
B.C.E.) in his work On Spirals, an Archimedean spiral is
the curve traced out by a point rotating about a fixed
point at a constant angular speed while moving away
from that point at a constant speed. (For example, it is
the path traced by a fly walking radially outward from
the center of a uniform rotating disc.) The equation of
such a spiral has a simple form in POLAR COORDINATES:

r = aθ

where a is a positive constant.

A curve given by an equation of the form r = is 

called a hyperbolic spiral. These curves were studied by
Johann Bernoulli of the famous BERNOULLI FAMILY. 

Curves of the form appear as tightly wrapped 
spirals. A curve given by logr = aθ is called a logarith-
mic spiral.

See also GOLDEN RATIO.

square In geometry a square is a planar figure with
four equal straight sides and four interior right angles.
It is simultaneously a RECTANGLE, a PARALLELOGRAM,
and a rhombus.

A square with side-length x has AREA x × x = x2,
which explains the term squaring for the operation of
raising a number or a variable to the second power.

Squares are solutions to ISOPERIMETRIC PROBLEMS

of the following classic type:
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A farmer wishes to build a rectangular pen with
400 ft of fencing. What shape rectangle gives
the largest area for this given length of fence?

The answer is a 100 × 100 square pen. Any other rect-
angle will have one side shorter than 100 ft, say 100 –
x ft, a longer width, 100 + x ft, and consequently area
of (100 – x)(100 + x) = 10,000 – x2 ft2, which is less
than the area of the square pen.

A square is one of the three regular POLYGONs that
provides a TESSELLATION of the plane. Two squares of
different sizes also tile the plane. Such a tessellation
holds within it a purely visual proof of PYTHAGORAS’S
THEOREM.

Using a sheet of graph paper, one can draw squares
of areas 1, 2, 4, 5, 8, 9, and 10 units, all with vertices
on the lattice points of the paper, but not squares of
areas 3, 6, or 7 units.

Pythagoras’s theorem shows that one can draw a
square of area N if, and only if, N is of the form N = a2

+ b2 for some integers a and b. For example, 9 = 32 +

02 and 5 = 22 + 12. (The side-length of a square of area
5 spans 2 units across and 1 unit over.) Surprisingly,
this set of numbers satisfies the CLOSURE PROPERTY

under multiplication.
See also FIGURATE NUMBERS; THEOREM.

square numbers See FIGURATE NUMBERS.

square root A number x, that, when multiplied by
itself, produces a given number a is called the square
root of the number a. If x2 = a, then we write x = √

–
a.

For example, 3 is a square root of 9, since 3 × 3 = 9,
and zero is a square root of zero, since 0 × 0 = 0. Geo-
metrically, the square root of a positive quantity a is
the side-length of a square whose area is a.

The invention the symbol √
–

, called a radical sign,
for the extraction of square roots is attributed to Ger-
man mathematician Christoff Rudolff (1499–1545).
The name of the symbol comes from the Latin word
radix for “root.” Any quantity that appears under a
radical sign is called a radicand. For example, in the
equation √

–
169 = 13, 169 is the radicand and 13 is the

square root.
Any equation of the form x2 = a with a ≠ 0 has two

distinct solutions. Thus every number different from
zero has two distinct square roots. For instance, 3 and
–3 are both square roots of 9. By convention, if a is a
positive quantity, then √

–
a is used to denote the positive

root and –√
–
a the negative square root. For instance, we

write √
–
9 = 3 even though –3 is also a valid square root

of 9.
A study of EXPONENTs shows that it is appropriate

to define a number raised to the half power to mean the
square root of that number. Whether that root is positive 

or negative is left undefined. Thus, for instance, 9 = ±3.
Attempts to define the square roots of negative

numbers leads to the invention of the COMPLEX NUM-
BERS. In the realm of complex numbers, every number
(except zero) has exactly two square roots.

The square root of any CONSTRUCTIBLE number is
again constructible. Thus, given a line segment of
length a drawn on a page, it is possible to construct
from it a second line segment of length √

–
a using only

the simple tools of a straightedge and a compass.
Greek mathematician THEODORUS OF CYRENE (ca.

425 B.C.E.) used simple geometric arguments to prove

1–
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that the numbers from √
–
2 through to √

–
17 (skipping √

–
4

= 2, √
–
9 = 3, and √

–
16 = 4) are each irrational. More

generally, one can use the FUNDAMENTAL THEOREM OF

ARITHMETIC to show that the square root of a positive
integer a is a RATIONAL NUMBER if, and only if, a is a
perfect square (that is, a = b2 for some whole number b.)
HERON’S METHOD provides a method for computing
the square root of any positive real to any prescribed
degree of accuracy.

The square-root inequality states that for any posi-
tive whole number n we have:

An exercise in algebra establishes the validity of this
statement.

Although the statements:

√
–
ab = √

–
a √

–
b

and

are valid for all numbers a and b (with b ≠ 0 in the sec-
ond equation), the equation √

–
a +b = √

–
a + √

–
b, in gen-

eral, is not correct. (Substitute in the values a = 9 and
b = 16, for instance.)

See also CUBE ROOT/NTH ROOT; IDENTITY MATRIX;
SOLUTION BY RADICALS; SURD.

squaring the circle (circle squaring, the quadrature of
the circle) One of the problems of antiquity (like
DUPLICATING THE CUBE and TRISECTING AN ANGLE) of
considerable interest to the classical Greek scholars is
the task of constructing a square of the same area as a
given circle in the plane. The only tools permitted in
the construction are a compass and a straightedge (that
is, a ruler with no markings).

The problem has its origins back in the beginnings
of mathematics. Ancient Egyptian scholars of 1650
B.C.E. describe in the RHIND PAPYRUS a construction of a
square of area nearly equal to that of a circle. (The con-
struction is “exact” if one works with the approximate

value 256/81 ≈ 3.1605 for π.) Scholar HIPPOCRATES OF

CHIOS (ca. 440 B.C.E.) was interested in the problem
and developed several methods for “squaring” a LUNE,
a shape made from arcs of circles, but did not succeed
in squaring the circle itself. ARCHIMEDES OF SYRACUSE

(ca. 287–212 B.C.E.) used his curve the SPIRAL OF

ARCHIMEDES to square the circle, providing a solution
to the problem using tools more advanced than straight-
edge and compass alone. APOLLONIUS OF PERGA (ca.
262–190 B.C.E.) also solved the problem with the intro-
duction of special curves and advanced techniques. The
problem of constructing a square of the desired area
using just a straightedge and compass alone, however,
remained unsolved.

The problem garnered considerable notoriety over
the centuries that followed. Indian, Chinese, and Arab
scholars also attempted to solve the challenge, and suc-
ceeded in finding solutions to the problem if one used
various approximate values for π. The problem was stud-
ied by European scholars of the Renaissance, and it
became a popular problem of study for amateur mathe-
maticians during the 18th and 19th centuries. Novices
working on the challenge became known as “circle
squarers” and often sought fame by submitting supposed
solutions to the problem to the prestigious ROYAL SOCI-
ETY of London. In the late 1700s, tired of being inun-
dated with large numbers of tedious and incorrect theses
on the subject, the society banned all consideration of
alleged “proofs” of squaring the circle. The French
Academy of Science followed suit soon afterward.

If we assume that the radius of the given circle is r,
then one is asked to produce a square of side-length a
so that a2 = π r2. This essentially reduces the problem
to one of constructing a length √

–
π units long using a

straightedge and a compass.
The theory of CONSTRUCTIBLE numbers shows that

any quantity of rational length can be constructed, and
that if two lengths l1 and l2 can be produced, then so
too can their sum, difference, product, and quotient,
along with the square root of each quantity. If one uses
a rational value as an approximation for π, it is not sur-
prising then that one can produce solutions to the prob-
lem using this approximate value. Moreover, if π itself is
a rational number, then one would expect it possible to
solve the problem. As no solution had ever been found,
scholars began to suspect that π is irrational.

In the mid-1600s Scottish mathematician JAMES

GREGORY (1638–75), in his studies of infinite series,

a
b

a

b
=

2 1
1

2 1n n
n

n n+ −( ) < < − −( )
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attempted to show that π is not only irrational, but,
moreover, that it is a TRANSCENDENTAL NUMBER. This
would establish, once and for all, that √

–
π cannot possi-

bly be constructed. Unfortunately, Gregory did not suc-
ceed in this goal. It was not until a century later that
German mathematician JOHANN HEINRICH LAMBERT

(1728–77) succeeded in proving that π is irrational,
and another century after that that CARL LOUIS FERDI-
NAND VON LINDEMANN (1852–1939) finally proved in
1880 that π is indeed transcendental. As a consequence,
Lindemann had proved that the problem of squaring
the circle is unsolvable.

It is interesting to note that in 1914 SRINIVASA

AIYANGAR RAMANUJAN (1887–1920) used a ruler-and-
compass construction akin to squaring a circle to find
the following remarkable approximation for π correct
to the ninth decimal place:

squeeze rule (sandwich result) This rule asserts that
if a function f(x) is sandwiched between two other
functions g(x) and h(x), at least for values x close to a
number a (that is, we have g(x) ≤ f(x) ≤ h(x)), and if
limx→a g(x) = L and limx→a h(x) = L, then it must be the
case that limx→a f(x) exists and equals L as well. For
example, the inequalities 1 – x ≤ f(x) ≤ 1 + x2 imply
that limx→0 f(x) = 1.

Perhaps the most important application of the 

squeeze rule is the calculation of the limit , which 

arises in computing the DERIVATIVE of the sine function.
In the diagram below we notice that the sector is sand-
wiched between two right triangles. Here the angle x is
given in RADIAN MEASURE. We have:

area of the small right triangle = · cos x · sin x

area of the sector = · π12 = 

(This is the fraction of the area of a full circle of 

radius 1), and

area of the large right triangle · 1 · tan x.

From the picture, we see that · cosx · sinx ≤ ≤

· tan x, which can be rewritten: . 

Since limx→0cosx = 1 and limx→0 = 1, it follows by 

the squeeze rule that limx→0 exists and equals 1. 
This proves:

If x is measured in radians, then limx→0 = 1.

(If x is measured in degrees, then the area of the sector is 

given by · π. Chasing through the argument above 

shows that, for x measured in degrees, limx→0 = )

As an aside, the limit limx→0 follows:
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This key result, needed for computing the derivative of
the cosine function, can also be established geometri-
cally by making use of the squeeze rule and the dia-
gram above. (For x measured in degrees we also have 

limx→0 = 0.)

Finally, we note that limx→0 = limx→0

· = 1 · = 1 (For x measured in degrees we have 

limx→0 = .)

See also APOTHEM; E; LIMIT.

standard deviation See STATISTICS: DESCRIPTIVE.

statistics Statistics is the branch of mathematics con-
cerned with the methods of collecting, tabulating, and
summarizing numerical facts (this is called descriptive
statistics), and for making inferences and predictions
based on these facts (inferential statistics). The numeri-
cal information gathered is called DATA, and an individ-
ual numerical fact about the data is called a statistic.

For example, a medical study might record the
heights of 100 children, all age 8. The average height of
the children would be an example of a statistic.
Another statistic would be the tallest height recorded
or the range of heights observed. Making a judgment
based on the data that another child outside of the
study is of abnormal height would be an example of
using data for inferential purposes.

The word statistik was coined by the German
political scientist Gottfried Achenwall (1719–72) to
mean “a summary of how things stand.” It is based on
the Latin verb stare meaning “to stand.”

Statistics is an indispensable tool used in practically
every aspect of life today. Weather predictions are based
on methods of statistical inference, for example, as are
the assessed effectiveness of new drugs, new medical
procedures, and other health practices. Statistics is used
extensively in government, business, and commerce to
analyze opinion polls, campaign and advertising strate-
gies, business operations, pollution control, and other
environmental concerns, for example, and as well as in
scientific research and economic, political, and sociolog-
ical studies. Insurance companies analyze LIFE TABLES to
make inferences and to set insurance rates. At the turn

of each decade, every household in the United States is
required to complete a short census questionnaire. Gov-
ernment decisions on the apportionment of representa-
tion and of funds are based on the census results. In
addition, a small percentage of households must com-
plete a longer questionnaire, from which further statisti-
cal inferences about the entire population are made. In
leisure, many sports fans follow statistical analyses to
assess team and player performance.

Because statistics pervades so many areas of life,
study of the subject is now a standard part of many
high-school curricula.

See also HISTORY OF PROBABILITY AND STATISTICS

(essay); POPULATION AND SAMPLE; STATISTICS: DESCRIP-
TIVE; STATISTICS: INFERENTIAL.

statistics: descriptive The science of collecting, tabu-
lating, and summarizing numerical information
obtained from observational or experimental studies is
called descriptive statistics. For example, a medical
study might record the blood types of 100 army
inductees and present the information obtained as lists
or tables, or perhaps visually via charts, graphs, or fre-
quency diagrams as described below. General features
of the DATA, such as the most common blood group
observed, or the shape of the frequency distribution
observed, can be used to describe and summarize the
information. Providing general descriptions of data
allows one to draw conclusions about a particular pop-
ulation as a whole. As a simple example, one might
extrapolate and deduce that a certain percentage of the
entire world’s population has a particular blood type.

In the example above, the measurements taken are
descriptive and fall into precise categories: type A, type
B, type AB, and type O. Such a study is said to be cate-
gorical. A numerical study, however, collects numerical
information about participants (such as height, age, or
weight), and placing the data into categories is a matter
of choice. For example, one might wish to arrange the
ages of in-patients at a busy metropolitan hospital into
categories of decade (ages 0–10 years, 11–20 years, and
so on) or some other convenient division. Measure-
ments of height, for example, can adopt a continuous
array of values, including fractional values. A study on
human growth rates might have its data organized into
categories of height ranges, for example, 60.1–65.0 in.,
65.1–70.0 in., and so on.

π–––
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tan x–––––x

1–
1

1–––
cos x

sin x–––x
tan x–––––x

cos x – 1––––––x
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Once categories have been established, there are a
number of standard methods for presenting and sum-
marizing data.

Ways of Presenting Data
A frequency distribution is a table or visual chart that
shows the frequency (number) of individuals in each
possible category considered. For example, of the 100
army inductees tested above, suppose 20 have blood
type A, 27 blood type B, 16 blood type AB, and 37
blood type O. This information can be summarized in
a table.

This frequency distribution can also be presented
visually. A pie chart (also called a pie graph) is a circle
divided into sections, one for each category, and each
with area in proportion to the frequency of that cate-
gory. A bar chart is a graph with vertical bars repre-
senting the frequency of occurrence for each category.
If the data are categorical, then the bars are drawn
spaced apart to emphasize the separate nature of the
descriptive categories. If the data presented are numeri-
cal, the bars are drawn without spaces to indicate that
the data come from a range of numerical values, and
also to indicate how the data were grouped. In this
case, the bar chart is called a histogram.

A frequency polygon is similar to a histogram
except that a broken line is drawn to connect the mid-
point of each class considered at the height of the verti-
cal bar for that class. As a matter of convention, the
line is drawn touching the horizontal axis at both sides
of the distribution.

A time-series graph depicts the nature of a mea-
surement taken over a period of time. The values of
stocks, for example, are often depicted via time-line
graphs. Such a diagram does not represent a frequency
distribution, however.

Tables of whole-number values are sometimes sum-
marized via stem-and-leaf plots. Each number is
divided into two parts: the units digit (the “leaf”) and
the set of digits to its left (the “stem”). In one column
all the stems are listed, and the corresponding leaves
are arranged in a second column to the right.

Ways of Summarizing Data
There are three general features statisticians observe to
summarize numerical data.

1. The General Shape of a Histogram: The following
table shows some common frequency distribution
shapes. Distributions rarely conform to exact
shapes, but statisticians still find it useful to describe
the general nature of the distribution.
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A bell-shaped distribution has a single peak and
is approximately symmetrical about both sides of
the peak. A uniform distribution exhibits an equal
number of measures in each category, and J-shaped
and reverse J-shaped distributions exhibit increasing
and decreasing trends. If a distribution has a single
peak, but is not symmetrical, then it is called either
positively or negatively skewed. If a distribution has
two distinct peaks then it is called bimodal. (For
example, incidence of broken limbs relative to age is
bimodal, since accidents tend to occur more fre-
quently among children and the elderly than they do
the rest of the population.)

2. Measures of Central Tendency: A measure of “cen-
tral tendency” is a single measurement that, in some
sense, is typical of the entire data set. It represents
the approximate “center” of the frequency distribu-
tion. There are four measures commonly in use.

a. The mean or average, usually denoted by the
Greek letter μ, is found by summing together all
the data values and dividing by the total number
of measurements. It is equivalent to the ARITH-
METIC MEAN of the data values.

For example, the mean of the four data values 

4, 5, 8, 8 is: . If in another 

study the value 6 occurs 37 times and the value 9 

occurs 20 times, the mean is: 

≈ 7.05. In general, if a data value x1 appears f1

times, the data value x2 a total of f2 times, and so
on down to the data value xn appearing a total of
fn times, then the mean is given by:

The sum of differences of each data value from
the mean is always zero. For example, for the
first data set presented above, we have (4 – 6.25)
+ (5 – 6.25) + (8 – 6.25) + (8 – 6.25) = 0.

The mean is the most commonly used measure
of central tendency. (See also EXPECTED VALUE.)

b. The mode is the value in the data set that occurs
most often. For example, from the 10 data values
3, 6, 5, 3, 1, 6, 5, 3, 8, 3 the mode is 3, and for
4, 5, 8, 8 the mode is 8. A distribution might
have more than one mode if two or more scores
occur an equal number of times.

The mode is used when the most typical case
of a study is desired. For nonnumerical data, the
mode is the only measure of central tendency
available.

c. The median is the middle value of a sequence of
data values, once they are arranged in order from
smallest to largest. For example, the median of
the data set 3, 3, 5, 6, 7, 16, 16, 19, 37 is 7. If the
data set contains an even number of entries, then
the average of the middle two values is taken as
the median. For example, the median of 4, 5, 8, 8 

is = 6.5.

The median is useful for finding the value at
the center of the distribution. It divides the data
set into two equally sized groups.

d. The midrange of a data set is found by taking the
average values of the smallest and largest data
values that occur. For example, the midrange of 

the data set 4, 5, 8, 8 is = 6.

The midrange provides a quick estimate to a
central value. It is easy to compute, but is highly
affected by extremely low or high values in the
data set.

3. Measures of Dispersion: In order to interpret how
well a measure of central tendency is likely to repre-
sent an entire group of data values, statisticians
must also compute a measure of dispersion. Data
values clustered around a central value can be well
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summarized by their mean or median, but a set of
data values scattered about a large range of values is
not well represented by a single measure of central
tendency. For example, the two data sets 4.1, 4.1,
4.2, 4.3, 4.4 and 0.1, 0.3, 1.3, 7.8, 11.6 both have
mean 4.22. This provides a good representative
value for the first data set, but not the second.

The usual statistical measures of scatter are
given as follows:

a. The range of a data set is the difference between
the lowest and highest values in the set. For
example, the range of the data set 4, 5, 8, 8 is
8 – 4 = 4.

The range is a very simplistic measure of dis-
persion and does not reveal any information
about how the data values are distributed. It is
also highly affected by extremely low or high val-
ues in the data set. However, the range is often a
useful measurement in practical daily issues. For
example, weather forecasts usually give the range
of temperatures to expect for the day.

b. The deviation of a single data value is the differ-
ence between that value and the mean of the data
set, written as a positive quantity. For example, in
the data set 4, 5, 8, 8 with mean 6.25, the devia-
tion of the data value 5 is |5 – 6.25| = 1.25, and
the data value 8 has deviation |8 – 6.25| = 1.75.

The average deviation of all data values gives
a good measure of overall scatter. For example,
the data set 4, 5, 8, 8 has average deviation:

A subtle point should be noted. Given n data
values x1,x2,…,xn, one first computes the mean µ,
and then the n deviations: |x1– µ|,|x2– µ|,…,|xn– µ|.
Once the first n–1 of these quantities are com-
puted (and these could turn out to be of any
value), the value of the nth quantity, however, is
forced—the data set must conform to a mean µ.
Thus there are only n – 1 “independent” compu-
tations to be made. For this reason mathemati-
cians choose to divide the sum of deviations by

n – 1 rather than n. Thus a measure of scatter for
the data set 4, 5, 8, 8, for example, is computed 

≈ 2.33. If the number of data values is large,
dividing by n – 1 rather than n will have little
effect.

c. When measuring scatter, absolute values are
mathematically difficult to work with (especially
concerning the theoretical manipulations required
in CALCULUS). For this reason, mathematicians
prefer to work with deviations squared (again
yielding positive quantities), and later applying
the square root if desired.

The variance of a data set is the sum of all
deviations squared, divided by one less than the
number of data values. For example, the variance
of the four data values 4, 5, 8, 8 with mean 6.25 is:

Variance is usually denoted by the symbol
σ2 (read “sigma squared”). For n data values
x1,x2,…,xn, it is given by the formula:

Because the deviations are squared, the further a
data value is from the mean, the more pro-
nounced its effect on the size of the variance.

d. Denoted by the Greek letter σ, the standard devi-
ation of a data set is the square root of its vari-
ance. For example, the standard deviation of the
four data values 4, 5, 8, 8 is σ = √

–
4.25 ≈ 2.06. In

general, for n data values x1,x2,…,xn, the stan-
dard deviation is given by the formula:

Standard deviation is much more commonly
used than variance as a measure of dispersion. It
is expressed in the same units as the data val-
ues (inches, if the measurements are heights for
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example, or grams if they are weights) rather
than units squared, as is required for variance.

In a NORMAL DISTRIBUTION approximately 68 per-
cent of the data values lie within one standard devia-
tion of the mean (either side), 95 percent within two
standard deviations, and 99.7 percent within three.
This known as the 68–95–99.7 rule. It shows that
standard deviation does indeed give a good indication
of how widely the data values in a distribution are
scattered. A small standard deviation, for example,
indicates that 68 percent of the data values are closely
clustered about the mean.

See also DISTRIBUTION; PERCENTILE; SCATTER DIA-
GRAM; STATISTICS: INFERENTIAL.

statistics: inferential The science of drawing general
conclusions about a population based solely on numer-
ical information gathered from a sample of that popu-
lation is called inferential statistics. (See POPULATION

AND SAMPLE.) For example, a medical study might
observe that 16 of 100 army inductees have blood type
AB. One might then infer that approximately one-sixth
of the world’s entire population is of this blood type.

An assertion or conjecture about a numerical fea-
ture of a population is called a hypothesis. For exam-
ple, the assertion “one-sixth of the world’s population
is of blood type AB” is a hypothesis that seems to be
supported by the medical study described above. It is
unclear, however, whether another study of 600 college
seniors, 79 of whom were of blood type AB, also sup-
ports the claim.

A statistical test is a mathematical procedure that
allows one to determine, to some specified degree of
confidence, whether or not the results of a particular
study support a hypothesis. The claim being tested for
acceptance or rejection is called the null hypothesis. The
alternative hypothesis is the assertion to be accepted if
the null hypothesis is deemed false.

The principles of statistical testing are well summa-
rized within the following example:

Suppose one is given a coin. We wish to deter-
mine whether or not the coin is fair, that is,
whether tossing a head is just as likely as toss-
ing a tail. We take as the null hypothesis the
statement, “The coin is fair,” and alternative
hypothesis, “The coin is biased.” To test the

hypothesis let us say we toss the coin 10 times.
Suppose we obtained 10 heads in a row. What
should we conclude?

As the chances of tossing 10 heads in a row with a
fair coin are very small—the probability of this occurring 

is —we would perhaps conclude 

that the coin is biased. But there is a small chance that a fair
coin could have nonetheless produced this result. To reflect
this degree of uncertainty, we can say that we come to the
conclusion that the coin is biased with a “99.9 percent
level of confidence.” The statistical test performed here
was a probability calculation. We came to accept the null
hypothesis with a 99.9 percent level of confidence.

The rejection of a null hypothesis when in fact it
was true is known as a type I error (maybe the coin
was fair). If the null hypothesis is accepted despite
being false, a type II error is committed. A level of con-
fidence (or significance level) of a statistical test is the
probability of committing a type I error. A 95 percent
level of confidence is generally deemed acceptable. (As
a side note, the chances of tossing nine heads among a 

series of 10 tosses are . If, in 

our experiment, this is what we observed, then we
would conclude again that the coin is biased, with a 99
percent level of confidence. Observing eight heads
among a series of 10 tosses leads to the same conclu-
sion with a 95.6 percent level of confidence.)

The CENTRAL-LIMIT THEOREM provides the means
for performing statistical tests useful for analyzing pub-
lic surveys and polls. We present here two examples
illustrating two common applications.

1. Estimating Population Proportion:

In a recent Gallup poll 1,500 people were sur-
veyed, and 45 percent of them agreed that taxes
on gasoline should be raised. To what extent
does this figure represent the true proportion of
all people in this country who hold this view?

Let p represent the true (but unknown) percentage
of Americans who believe that gasoline taxes should be
raised. Our task is to find the value of p. All we have to
work with is the observation that one sample of 1,500
people produced a proportion p̂ of 45 percent holding
this view.
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The central-limit theorem states that, for many dif-
ferent samples of 1,500 people, the statistic p̂ will vary
in value according to a normal distribution with mean 

p and standard deviation where, in this 

case, N = 1,500. As the value of N is large, the stan-
dard deviation is small, meaning that all values of p̂
will be closely clustered about the mean value p. In
particular, this establishes, as we would expect, that p̂ =
45 percent is a good estimate for p. The key is to now
ask, How good?

From the study of the NORMAL DISTRIBUTION, the
68–95–99.7 rule states that 95 percent of the mea-
surements for p̂ fall within a distance of two standard
deviations from the mean p. That is, there is a 95 per-
cent chance that our measurement of p̂ = 45 percent 

lies within the range of values to 

(This range of values also contains 

p, of course, at its center.)
As an approximation, we substitute into these for-

mulae the value p̂ = 45 percent for p:

This yields a range of values [42.4, 47.6] that, in this
approximation, and with approximately a 95 percent
level of confidence, contains the true proportion value p.
We call this range of values a 95% confidence interval. If
these calculations were performed on a large number of
survey results (all involving 1,500 people) then we
would be sure that close to 95 percent of the intervals
produced contain the true population proportion p.

2. Estimating a Population Mean:

In a media study 680 young adults, ages 21 to
25 years, were given a test on current events.

Scores on the test ranged from 0 to 500, indi-
cating a range of knowledge on the topic. The
mean score was m = 170 (and the standard
deviation was 80). On the basis of this sample,
what can be said about the mean knowledge
level (score) µ of the population of all 19 mil-
lion young adults?

The central-limit theorem states that, for many dif-
ferent samples of 680 young adults taking the test, the
mean score m will vary in value according to a normal 

distribution with mean µ and standard deviation . 

Here σ is the standard deviation for the entire popula-
tion (unknown) and N is the sample size (N = 680).
Since the value of N is large, the standard deviation 

will be small. This means two things: that the mean 

m = 170 is likely to be close to the true mean value µ,
and that using the standard deviation of 80 observed in
the sample as an approximation for the true value σ
will not seriously alter our calculations. With this said,
the 68-95-99.7 rule states that there is a 95 percent
chance that our observed value m = 170 falls within
two standard deviations of the true mean value µ. As
an approximation, then, we evaluate:

yielding a 95 percent confidence interval of [163.9,
176.1] for what would be the mean score if the entire
population were to take the test.

In 1908 WILLIAM SEALY GOSSET (1876–1937), pub-
lishing under the pseudonym “Student,” made a more
precise analysis of the distribution of mean values from
normal distributions. If σ̂ is the standard deviation of a
sample of size N, Gosset calculated the distribution of
values for the sample mean m one would expect using σ̂
as an approximation for the true standard deviation σ
of the population. In particular, he described the distri-
bution of the Z-SCORE of the mean m:
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This is known today as Student’s t-distribution (with
N – 1 degrees of freedom). Student’s t-test is used to
test whether any difference in the means of two differ-
ent samples is statistically meaningful. For example, a
study might indicate that the mean height of 100 ran-
domly selected basketball players is 8 in. higher than
the mean height of 100 baseball players. Student’s t-
test would test the hypothesis, “Both samples were
drawn from the same normal population.” If the value
8 in. is deemed too high, the hypothesis would be
rejected and the difference in the means would be con-
sidered significant.

The F-test tests whether or not two samples come
from the same population by focusing instead on the
VARIANCE of each sample. If two samples of sizes N1 and
N2 come from the same normal population, then the 

ratio of their variances should be approximately 

equal to 1. The F-distribution tabulates values of these
ratios, and the F-test determines whether the observed
ratio for two particular samples has an acceptable value.

See also CHI-SQUARE TEST; CORRELATION COEFFI-
CIENT.

Steiner, Jakob (1796–1863) Swiss Geometry Born on
March 18, 1796, in Utzenstorf, Switzerland, mathemati-
cian Jakob Steiner is remembered for his fundamental
contributions to the study of PROJECTIVE GEOMETRY and
for his work on the solution of the famous ISOPERIMET-
RIC PROBLEM. A collection of geometric points are today
named in his honor, STEINER POINTs, to acknowledge his
work in geometric OPTIMIZATION.

Steiner had no early formal education. It is said
that he did not begin to read and write until he was 14,
and did not attend any kind of school until age 18.
During the latter part of his teen years, however,
Steiner demonstrated a talent for mathematics, which
earned him admission to the Johann Heinrich
Pestalozzi school in Yverdon, Switzerland. Just 2 years
after entering the school as a student, he was hired as a
teacher of mathematics at the school.

Steiner entered the University of Heidelberg in
1818 and transferred to the University of Berlin 3 years
later to pursue a research career in mathematics. His
innovative work in geometry was duly noted by the
mathematicians of the time. Steiner was awarded an
honorary doctoral degree from the University of

Königsberg and the position as chair of mathematics at
the University of Berlin in 1834. He held that post for
the remainder of his life. He died in Berlin on April 1,
1863.

A number of finite configurations in projective
geometry are named in his honor, as well as a geomet-
ric surface, the Steiner surface, which has the property
that each of its tangent planes slices the surface in a
pair of CONIC SECTIONS. His influence on the develop-
ment of geometric optimization was profound.

Steiner point Given three points A, B, and C in the
plane, a Steiner point for that system is a point P whose
sum of distances AP + BP + CP is at a minimum. That
such a point always exists was first established by Swiss
mathematician JAKOB STEINER (1796–1863). He proved
that this point occurs at the location where the angle
between each of the line segments AP, BP, and CP is
120°. To see this, first suppose that the point P is
placed at a fixed distance from C so that it lies on a cir-
cle with C as its center. Then a study of OPTIMIZATION

shows that the location on the circle that minimizes the
sum AP + BP + CP occurs at the point P where the
lines AP and BP make equal angles to the line tangent
to the circle at P. Thus the solution to this restricted
version of the problem occurs when the angles between
line segments AP, BP, and CP are equal. The same
occurs for a solution with P a fixed distance from A or
P a fixed distance from B. As the solution to the gen-
eral problem simultaneously solves each restricted ver-
sion of the problem, all three angles must be equal.
Since the three angles sum to 360°, each must therefore
equal 120°.

The Steiner point solves the following road-build-
ing problem:

What design of a road system connects three
towns using the minimal total length of road?

The solution is a design that connects each town with a
straight segment of road directly to the Steiner point of
the three towns.

Steiner also analyzed road-building problems that
involve more than three towns. He showed that given
N towns, N ≥ 3, it is necessary to introduce N – 1 spe-
cial points between the towns and draw straight-line
segments between these points and the towns in such a
way that:

ˆ

ˆ

σ

σ
1
2

2
2
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1. Each town is connected to one Steiner point
2. Each Steiner point has three roads emanating from

it, equally spaced 120° apart.

See also ISOPERIMETRIC PROBLEM.

stem-and-leaf plot (stem plot) See STATISTICS:
DESCRIPTIVE.

stereographic projection Consider a PLANE tangent
to a SPHERE touching the sphere at its south pole S.
Then one can map points on the surface of the sphere
to points on the plane by drawing straight lines from
the north pole N of the sphere through points on the
surface, and continuing them until they intercept the
plane. Every point, except the north pole itself, is thus
mapped to a point in the plane. This geometrical trans-
formation of a sphere onto a plane is called the stereo-
graphic projection.

Every point on the plane corresponds to a unique
point on the sphere, with points farther and farther
away from S on the plane matching points closer and
closer to N on the sphere. In this sense, the sphere
can be regarded as topologically equivalent to a plane
with a single well-defined additional point of infinity
attached to it. If the plane is taken to be a representa-
tion of the plane of COMPLEX NUMBERS, then the
sphere in this construct is usually called a Riemann
sphere to honor the work of German mathematician
GEORG FRIEDRICH BERNHARD RIEMANN (1826–66) in
this field.

A stereographic projection is a CONFORMAL MAP-
PING. This means that it preserves angles between
intersecting curves on the surface of the sphere. Great
circles on the sphere, not through N, are mapped to
circles in the plane, and great circles through N are
mapped to straight lines. For this reason, geometers
often deem it appropriate to regard straight lines as
special types of circles.

A gnomonic projection maps points on the south-
ern hemisphere of a sphere onto a plane tangent to S by
drawing straight lines from the center of the sphere
through points on the surface, and continuing them
until they intercept the plane. In this model, each point
on the equator of the sphere represents a different
“point of infinity” attached to the plane.

See also MERCATOR’S PROJECTION; PROJECTION.

Stevin, Simon (1548–1620) Flemish Arithmetic, Engi-
neering Born in Flanders, now Belgium, in 1548 (his
exact birth date is not known), Simon Stevin is best
remembered for The Tenth, his influential 1585 text
that advocates and explains the use of decimals in all
of mathematics and accounting. Although he did not
invent the decimal system (it had been used by the
Arabs two centuries before), his expository piece on
the subject convinced scholars of the time of its merit
as an approach to manipulating fractions and real
numbers.

Stevin started his career as a bookkeeper and a tax
office clerk before entering the University of Leiden at
the age of 35. His work on mechanics and engineering
garnered him note as an expert in hydrostatics and its
related mathematics. Stevin wrote 11 texts in all
throughout his academic career, covering topics in
arithmetic, algebra, trigonometry, geography, and navi-
gation. In his text Principles of the Art of Weighing,
Stevin analyzed the geometric addition of forces, devel-
oping an approach that simplified the mathematics of
mechanics. This approach also formed the basis for the
theory of VECTOR analysis developed 200 years later—
Stevin had essentially correctly defined vector addition.
Stevin also recognized that the distance an object falls
in a fixed amount of time is independent of the object’s
weight. This discovery is normally attributed to the
scholar GALILEO GALILEI (1564–1642), but Stevin had
reached the same conclusion 3 years before Galileo
reported his findings.

By the 15th century, mathematicians in Persia,
China, and India were using the decimal system to
represent fractions. Stevin recognized the advantages
of the system and argued, in his piece The Tenth, that
adding decimal fractions is just as easy as adding
whole numbers. (Summing 0.73 and 0.25, for
instance, is no more difficult than adding 73 to 25).
He did not, however, use a decimal point in his work,
choosing to write 34.875, for instance, as 340817253,
circling the digits 0, 1, 2, and 3 to indicate the digits
to the left are multiplied by those powers of one-10th.
(Scottish mathematician JOHN NAPIER (1550–1617)
is responsible for popularizing the use of the decimal
point.)

Writing all numbers as decimal fractions had the
profound psychological effect of placing all numbers on
an equal footing, as it were. The number π, for exam-
ple, written as 3.141 (at least as an approximation)
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appears no more important or special than any other
real number, 6.234 or 84.668, for instance. One scholar
at the time called all numbers consequently “equally
boring.”

Stevin is also remembered for introducing and pop-
ularizing the symbols “+,” “ –,” and “√

–
” for addition,

subtraction, and the square-root operation. He died in
The Hague, Netherlands, ca. March 1620.

Stirling’s formula The surprising formula:

shows that for large values of n, the function 

is a very good approximation for the FACTORIAL n!. This
limit equation is called Stirling’s formula. Although
named after the Scottish mathematician James Stirling
(1692–1770), the formula was discovered by French
mathematician ABRAHAM DE MOIVRE (1667–1754)
while attempting to write a formula for the NORMAL DIS-
TRIBUTION curve. Stirling wrote an influential paper on
infinite series that helped De Moivre discover this result.

The formula can be derived from WALLIS’S PROD-
UCT. We present here a simple argument that gives a
sense of how the result could be true. Noting that ln n!
can be written as a sum of logarithms, we have:

Evaluating the integral, using INTEGRATION BY PARTS,
yields:

∫n
1 ln x dx = x ln x – x|n1 = n ln n – n + 1 ≈ n ln n – n

Thus ln n! ≈ ln(nn) – n, giving . A more 

refined argument yields Stirling’s result.

Student’s t-test See STATISTICS: INFERENTIAL.

subfactorial In his 1878 study of PERMUTATIONs,
mathematician W. Allen Whitworth introduced the

notion of a subfactorial. Now denoted n¡, the nth sub-
factorial of an integer n is given by

with 0¡ set equal to 1. (See FACTORIAL.) The value n¡ is
obtained by multiplying the previous subfactorial num-
ber by n and adding (–1)n. Thus:

1¡ = 1 × 0¡ – 1 = 1 × 1 – 1 = 0
2¡ = 2 × 1¡ + 1 = 2 × 0 + 1 = 1
3¡ = 3 × 2¡ – 1 = 3 × 1 – 1 = 2
4¡ = 4 × 3¡ + 1 = 4 × 2 + 1 = 9

for example. A study of the number e shows that the 

ratio approaches the value as n becomes large.

Subfactorials arise in the study of certain permuta-
tions called derangements.

See also E.

substitution The act of replacing all occurrences of a
variable by another variable, expression, or numerical
value is called substitution. For example, to evaluate the
expression x2 – 2x + 3 for x = 5, simply replace all
occurrences of x with the value 5. This yields the corre-
sponding value of 18 for the expression. (We say that we
have “substituted the value 5 for x.”) One can also sub-
stitute other quantities for x. For instance, replacing
each occurrence of x with the quantity y – 1 yields the
expression (y – 1)2 + 2(y – 1) + 3, which simplifies to
y2 + 2. (This particular substitution proves to be fruitful,
for it makes clear now that the expression x2 – 2x + 3
will never adopt a value smaller than 2, and that the
expression equals this minimal value only when y = 0,
that is, when x = 1.) Substitution techniques are used to
solve SIMULTANEOUS LINEAR EQUATIONS.

The method of substitution can be applied simulta-
neously to more than one variable in an equation. For
instance, the AREA A of a triangle with side-lengths a,
b, and c, with angle θ between sides of lengths a and b,

is given by A = absinθ. The LAW OF COSINES asserts 

c2 = a2 + b2 – 2ab cos θ. Solving for sin θ and cos θ in
each expression and substituting the results into the
equation sin2θ + cos2θ = 1 yields HERON’S FORMULA.

The square root of 2 satisfies the equation:
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Substituting this formula into itself multiple times yields
the following CONTINUED FRACTION expansion for √

–
2:

See also INTEGRATION BY SUBSTITUTION; TRANS-
FORMATION OF COORDINATES.

substitution rule for integration See INTEGRATION

BY SUBSTITUTION.

subtraction The process of finding the DIFFERENCE

of two numbers is called subtraction. In the elementary
ARITHMETIC of WHOLE NUMBERS, subtraction can be
thought of as the process of removing a subset from a
set. For example, if three apples are removed from a set
of eight apples, five apples remain. We write 8 – 3 = 5.

In a more general context, subtraction is best
defined as the inverse operation of ADDITION: the dif-
ference a – b is defined to be a quantity that, when
added to b, gives the answer a. Here a is called the
minuend, b the subtrahend, and the result a – b the dif-
ference. (Thus the subtrahend plus the difference gives
the minuend.) In some contexts it is convenient to
regard subtraction simply as the addition of NEGATIVE

NUMBERS. For instance, the difference 8 – 3 may be
viewed as a sum 8 + (–3).

The process of subtraction does not satisfy the
COMMUTATIVE PROPERTY. For example, 8 – 3 does not
yield the same result as 3 – 8. (This is clear if one
rewrites these differences in terms of sums of negative
quantities: 8 + (–3) and 3 + (–8) are sums of two differ-
ent pairs of numbers.)

The PLACE-VALUE SYSTEM we use today for writing
numbers simplifies the process of subtracting large inte-
gers. For instance, subtracting 216 from 589 yields 5

– 2 = 3 units of 100, 8 – 1 = 7 units of 10, and 9 – 6 = 3
units of 1. Thus, 589 – 216 = 373. This process is still
valid even if one encounters negative quantities of units.
For example, 463 – 198 may be computed as 3 |–3| –5,
where vertical bars are used to separate powers of 10.
“Borrowing” 1 unit of 100 from the first column, which
is equivalent to 10 units of 10 in the second column,
allows us to rewrite this as 2 |7| –5. Borrowing 1 unit of
10 from the second column, which is equivalent to 10
single units in the third column, now permits us to
rewrite this as 2 |6| 5. Thus we have: 463 – 198 = 265.
Students in schools are usually taught an algorithm that
has one borrow digits early in the process of completing
a subtraction problem rather than leave this work as the
final step. Either method is valid.

The process of subtraction can be extended to
FRACTIONs (completed with the aid of computing COM-
MON DENOMINATORs), REAL NUMBERS, COMPLEX NUM-
BERS, VECTORs, and MATRICES.

The difference of two real-valued functions f and g
is the function f – g, whose value at any input x is the
difference of the outputs of f and g at that input: (f – g)
(x) = f(x) – g(x). For example, if f(x) = x2 + 2x and g(x)
= 5x + 7, then (f – g)(x) = x2 + 2x – 5x – 7 = x2 – 3x – 7.

The subtraction formulae in TRIGONOMETRY assert:

The mathematician FIBONACCI (ca. 1175–1250)
introduced the term minus for subtraction in his 1202
text Liber abaci (The book of the abacus), which schol-
ars later abbreviated to –m in their own work. It has
been suggested that perhaps the letter “m” was later
dropped to leave the bar “–” as the symbol of choice
for subtraction. This symbol first appeared in print in
Johannes Widman’s 1489 book Behennde und hüpsche
Rechnung auf fallen Kauffmannschaften (Neat and
handy calculations for all tradesman).

See also ARITHMETIC.

sufficient condition See CONDITION—NECESSARY

AND SUFFICIENT.

summation The process of finding the sum of a col-
lection of numbers is called summation. Mathematicians
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are often interested in problems involving the sum of a
large collection of quantities, and a compact notation for
writing such sums is helpful. The Greek letter Σ (repre-
senting “S” for “sum”), the so-called sigma notation
invented by Swiss mathematician LEONHARD EULER in
1755, can be used to express the 

sum of the numbers a1,a2,…,an as . One reads this 

as “the sum from k = 1 to n of ak,” and computes it
via the following procedure:

Write the terms ak, first with k replaced by 1,
and then with k replaced by 2, stopping with
k replaced by n. Add together all the terms 

written: = a1 + a2 + … + an

Thus, for example, the expression represents the 

sum 12 + 22 + 32 + 42, which equals 30.
The letter k used as a subscript in sigma notation is

called the index of summation and is a DUMMY VARI-
ABLE: any other letter could be used in its stead. For 

example, the expressions and also represent 

the same sum 12 + 22 + 32 + 42.
A summation need not begin with index k = 1. For 

example, the expression represents the sum

(103 – 102) + (113 – 112) + (123 – 122). A summation 

could contain just a single term, as for , for 

instance. Any summation of the form with n < m

is considered empty and to have value zero. Finally,
sums alternating in sign can be represented by intro-
ducing a factor of the form (–1)k–1. For example, 

equals .

Summations satisfy the following two basic prop-
erties:

where c is a constant. (These statements are patently
true when the summations are written out in full.)

The sigma notation is also used to denote SERIES,
that is, infinite sums:

For example, the GEOMETRIC SERIES can be written: 

. If –1 < x < 1, then it has 

value , in which case we can write: .

GOTTFRIED WILHELM LEIBNIZ (1646–1716), coin-
ventor of CALCULUS, used an elongated “S,” ∫, both for
the sum of a sequence of integers and as a sign of inte-
gration (which he thought of as continuous summation).

See also ARITHMETIC SERIES; CONVERGENT SERIES;
INFINITE PRODUCT; SUMS OF POWERS.

sums of powers The following formulae, called the
sums of powers formulae, give simple equations for the
sums of the first few counting, square, and cube num-
bers. They can readily be proved by the method of
INDUCTION:

It is also possible to establish these formulae geomet-
rically.

The validity of the first formula can be seen by
dividing a n × (n + 1) grid of squares into two “stair-
cases,” each representing the same sum 1 + 2 + 3 +…+ n.
This gives:
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2× (1 + 2 + 3 +…+ n) = n × (n + 1)

In a similar vein, one can show that six copies of a
three-dimensional “staircase” stack together to form an
n × (n + 1) × (2n + 1) rectangular box, thereby estab-
lishing the validity of the sum-of-squares formula.
Finally, each L-shaped region in a subdivided (1 + 2
+…+ n) × (1 + 2 +…+ n) square has area given by a
cube number. Summing together these areas establishes
the sum-of-cubes formula.

ARCHIMEDES OF SYRACUSE (ca. 287–212 B.C.E.)
knew the formula for the sum of the first n counting
numbers. Arab scholars, who translated and pre-
served the works of Archimedes, were thus also
aware of the result. CARL FRIEDRICH GAUSS

(1777–1855) is said to have discovered the same for-
mula as a school student, employing a clever trick of
writing the same sum forward and backward. (This is
now considered a standard technique in the study of
ARITHMETIC SEQUENCES.)

In 1713 Swiss mathematician Jacques Bernoulli of
the famous BERNOULLI FAMILY searched for a general
formula for the sum of the first few kth powers: 1k + 2k

+ 3k +…+ nk. He noticed that this sum appears as the
coefficient of xk in the TAYLOR SERIES of

k!(1 + ex + e2x +…+ enx)

(To see this, write out each term emx as a series 1 + mx

+ +… Then add and collect all terms containing 

the expression xk.) Using the formula for the
sum of a GEOMETRIC SEQUENCE, this expression can
be rewritten as:

The first factor here is k!, and the Taylor series of the
second factor is straightforward:

Unfortunately, the Taylor series of the third factor is
difficult to compute. Bernoulli decided to simply write:

for some numbers B0, B1, B2, … yet to be determined.
Given this, it now follows that 1k + 2k + 3k +…+ nk is
the coefficient of xk in the product:

Expanding brackets and identifying the coefficient of
xk in this product eventually leads to the remarkable
formula:

where a quantity Br is to be interpreted as the value Br.
The numbers B0, B1, B2, … are today known as the

Bernoulli numbers, and their values are given by:

with Bk = 0 for all odd values of k greater than 1.
Thus, as an example, we again have:

The Bernoulli numbers have since been studied
extensively, and many of their properties are now well
understood. These numbers make an appearance in
evaluating the ZETA FUNCTION at even values. Specifi-
cally, mathematicians have shown that:
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This gives, for example, and .

surd A numerical expression containing irrational
numbers that arise solely from the operation of taking
square or higher roots is called a surd. For example, √

–
5, 

2 – 
3√
–
7, and are all surds. (However, the irrational 

number e + ln 2, for instance, contains no roots and so
is not a surd.) A pure surd contains only irrational root
terms (such as √

–
11 + 

4√
–
13, for instance) and a mixed

surd contains both rational and irrational terms (such
as 2 – 

3√
–
7, for instance).

The conjugate of a surd that is the sum of two
terms is the difference of those same two terms. For
example, the conjugate of 2√

–
3 + 4√

–
5 is 2√

–
3 – 4√

–
5. If

only square roots are involved, then the product of a
surd and its conjugate is always a rational number.
This observation is utilized in the process of RATIO-
NALIZING THE DENOMINATOR of a complicated ratio-
nal expression.

Surds of the form , where a, b, and c are 

integers, with b not a perfect square, are sometimes
called quadratic surds. The term surd is rarely used
today and is generally considered obsolete.

syllogism See ARGUMENT.

symmetry A figure or an expression is said to be
symmetrical if parts of it can be interchanged without
changing the figure or the expression as a whole. For
example, a geometric figure such as the letter “W” can
be divided into two parts, the left half and the right
half, which can be interchanged via a REFLECTION

about a vertical line to leave the overall shape of the
figure unchanged. We say that this figure has reflection
symmetry about a vertical line. In the same way, the
letter “C” has reflection symmetry about a horizontal
line and the letter “S” has ROTATION symmetry about
its center point. The figure of a CIRCLE has reflection
symmetry about any line that passes through its center
and rotational symmetry through any degree of turning

about its center. A CUBE has reflection symmetry about
any plane through its center parallel to one of its faces.

A geometric figure is said to have n-fold rotational
symmetry about an axis of rotation if it is symmetrical 

about a rotation of about that axis. For example, 

a regular pentagon has five-fold rotational symmetry
about a line through its center PERPENDICULAR to the
page on which the figure is drawn. A TETRAHEDRON

has three-fold rotational symmetry about an axis that
passes through one of its vertices, and two-fold rota-
tional symmetry about an axis that passes through the
midpoints of two opposite edges.

The equation x2 + xy + y2 is symmetrical in the
variables x and y, meaning that interchanging the two
variables yields a new equation equivalent to the origi-
nal. In general, a function f of several variables is said
to be totally symmetric if interchanging any two vari-
ables does not change the function: f(x1,…,xi,…,
xj,…,xn) = f(x1,…, xj,…, xi,…, xn) for all values i and j.

The set of all PERMUTATIONs of n letters x1,x2,…,xn

forms a GROUP called the nth order symmetric group.
Any POLYNOMIAL equation p(x) = 0 is symmetrical with
respect to permutations of the roots of the equation. If
the polynomial is completely factored (as is possible
according to the FUNDAMENTAL THEOREM OF ALGE-
BRA), then any rearrangement of the roots of the equa-
tion (x – α1)(x – α2) … (x – αn) = 0 does not alter the
equation.

A FUNCTION y = f(x) whose graph is symmetrical
about the y-axis via a reflection is said to be even.
One that is symmetrical about a rotation of 180°
about the origin is said to be odd. Even functions sat-
isfy f(–x) = f(x) for all values x, and odd functions
f(–x) = –f(x).

A square MATRIX A is said to be symmetrical if, for
each appropriate value i and j, the entry in the ith row
and jth column matches the entry in the jth row and ith
column: Aij = Aji.

A RELATION is said to be symmetrical if x being
related to y means that y is also related to x. For exam-
ple, “is a sibling of” is a symmetrical relation among
people. (If Lashana is Terell’s sibling, then Terell is also
Lashana’s sibling.) The relation, “is a sister of,” how-
ever, is not symmetrical.

A figure or expression that is not symmetrical is
called asymmetrical.

See also EVEN AND ODD FUNCTIONS; FRIEZE

PATTERN.
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synthetic division See NESTED MULTIPLICATION.

system of equations A set of equations in several
unknowns—required to be true for particular values of
those unknowns—is called a system of equations. For
instance, the three equations

x2 – 3xy + z4 = 11
3x(y + z) = z2 (x + y)

x3 + y3 + z3 = 17

has the solution x = 1, y = 2, and z = 2. Geometrically,
each equation represents a curve or surface in space,
and a solution to the system of equations is a common
point of intersection of those surfaces. It is possible for
a system of equations to have no solutions. (For
instance, there are clearly no values of x and y for
which x2 + y2 = 1 and y2 + x2 = 2.)

Solving an arbitrary system of equations, if at all
possible, is usually a very difficult task. Often a mathe-
matician will resort to graphical methods and search
for a GRAPHICAL SOLUTION. In special cases, a method

of SUBSTITUTION might prove useful. For instance, con-
sider the equations:

x2 + y2 = 25
x – y = 1

Solving for y in the second equation yields y = x –1.
Inserting this value into the first equation gives a
QUADRATIC equation in x, namely, x2 + (x – 1)2 = 25.
This can be rewritten 2x2 – 2x + 1 = 25 or as 2x2 – 2x
– 24 = 0. Solving for x yields two solutions, with cor-
responding values for y. We have x = 4 and y = 3 as
one solution, and x = –3 and y = –4 as another.
(Graphically, we have found the location of the two
points at which the straight line x – y = 1 intersects the
CIRCLE x2 + y2 = 25.)

The study of LINEAR ALGEBRA and the process of
GAUSSIAN ELIMINATION provide effective, straightfor-
ward means to solve systems of SIMULTANEOUS LINEAR

EQUATIONS.
See also CRAMER’S RULE; HISTORY OF EQUATIONS

AND ALGEBRA (essay).
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tangent A straight line that touches a curve without
cutting through it at that location is called a tangent
line to the curve, and the location at which the line
and curve touch is called the point of contact. With
this said, however, this should not be taken as the pre-
cise definition of a tangent line. In general, a tangent
line is permitted to have more than one point of con-
tact, may cut through the curve at points other than
the point of contact, and may even cut through the
curve at the point of contact if this point is also an
INFLECTION POINT. To include these possibilities,
mathematicians define the tangent line to a curve in
terms of a LIMIT:

The tangent line to a curve at a point P is the
limiting position of a line through P and
through a second point Q on the curve as that
point Q slides toward P.

But even this definition has some difficulties, for it may
be the case that the limiting position is not well-
defined. There is no unique tangent line to the corner
of a square, for example.

A curve is called smooth if every point on it has a
well-defined tangent line at that point. The theory of
DIFFERENTIAL CALCULUS is used to find the SLOPE of a
tangent line to a curve.

If a curve crosses itself, then special names are
given to the point of intersection according to the
behavior of the tangent lines at that point. A point of
self-intersection is called a node (or a crunode) if there

are two distinct tangent lines at that point, and a tac-
point if the two tangent lines coincide.

If two different branches of a curve touch at a
point and have a common tangent line at that point,
then that point is called a cusp. A single cusp has two
branches meeting and terminating at a point, and a
double cusp has two branches that each continue
through the point of contact. A cusp is classified as
being of the “first kind” if the branches of the curve
belong to opposite sides of the tangent line, or of the
“second kind” if they lie on the same side (at least near
the point of contact). If one branch of a double cusp
has a point of inflection at the point of contact, then
the double cusp is called an osculinflection.

A tangent plane to a surface is a plane that touches
the surface without cutting through it. This informal
definition can be adjusted and made more precise by
considering the limit position of planes passing through
three points on the surface. If a solid SPHERE rests on a
tabletop, for example, then the surface of the table is a
tangent plane for the solid. At the point of contact, all
points near that point lie on the same side of the tan-
gent plane. A point on a surface is called a saddle point
if points near it lie on either side of the tangent plane at
that point. (The shape of the surface at such a point
resembles a horse’s saddle.)

In geometry, any two figures are said to be tangent
at a point P if they touch, but do not cut through each
other, at P. In TRIGONOMETRY, the tangent of an angle 

A, denoted tan(A), is the ratio .

See also NORMAL TO A SURFACE; PARABOLOID.

sin(A)
––––
cos(A)
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Tartaglia, Niccolò (1499–1557) Italian Algebra Born
in Brescia, Italy, in 1499 (his exact birth date is not
known), scholar Niccolò Tartaglia is remembered as one
of the first mathematicians to discover the long-sought
solution to the general CUBIC EQUATION. His method was
published, without permission, by GIROLAMO CARDANO

(1501–76), to whom he had revealed the details in confi-
dence. Tartaglia also published the influential three-vol-
ume text General trattato di numeri et misure (Treatise
on numbers and measures), and was the first Italian

scholar to translate and publish EUCLID’S famous treatise
THE ELEMENTS.

Tartaglia, born Niccolò Fontana, was only a boy
when the French invaded his hometown in 1512. Dur-
ing the massacre Tartaglia received severe sword
wounds to his jaw and palate and was left for dead in a
cathedral. He survived, but thereafter could only speak
with difficulty, hence his nickname, Tartaglia, meaning
“stammerer.”

During the Renaissance, scholars were mostly sup-
ported by rich patrons and had to prove their talent by
defeating other scholars in public competitions. For
this reason, mathematicians would keep their methods
secret. In 1535 Tartaglia discovered a means for solving
cubic equations of the form x3 + ax2 = b and began
publicizing his achievement. Earlier, SCIPIONE DEL

FERRO (1465–1526) had revealed to his student Anto-
nio Maria Fiore (ca. 1506–60) a method of solving
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Niccolò Tartaglia, an eminent mathematician of the 16th cen-
tury, found a general method of solution to cubic equations.
(Photo courtesy of the Science Museum, London/Topham-
HIP/The Image Works)



cubics of the type x3 + cx = d. Seeking fame, Fiore chal-
lenged Tartaglia to a debate and presented him with 30
questions of a type that he was sure Tartaglia would be
unable to answer. In the early hours of February 13,
1535, the day of the debate, inspiration came to
Tartaglia, and he discovered a general method that
solved both types of equations. Tartaglia won the con-
test with ease.

News of Tartaglia’s victory reached Cardano, who,
with his assistant LUDOVICO FERRARI (1522–65), was
working on the solution to the QUARTIC EQUATION. This
work required knowledge of the cubic solution, and so
Cardano sought from Tartaglia details of his methods.
After much beseeching, Tartaglia eventually revealed his
solution to Cardano, under the promise that the meth-
ods remain secret. After discovering that another
scholar, Scipione del Ferro, had devised identical meth-
ods decades earlier, Cardano broke that promise and
published the solution, along with the solution to the
quartic, in his text 1545 text Ars magna (The great art).
A bitter dispute between Tartaglia, Cardano, and Fer-
rari ensued. Today, to honor the achievement of both
men, the formula for the solution to the cubic is called
the Cardano-Tartaglia formula.

Tartaglia died in Venice, Italy, on December 13,
1557.

tautochrone See CYCLOID.

tautology In FORMAL LOGIC, a compound statement
that cannot possibly be false by virtue of its structure is
called a tautology. For example, “If all the planets are
made of cheese, then Mars is made of cheese” is true
regardless of the validity of the component statements
that “all planets are made of cheese” and “Mars is
made of cheese.” Tautologies are true purely because of
the laws of logic and not because of any known facts
about the world. They are therefore statements that
contain only definitional information.

See also LAWS OF THOUGHT; TRUTH TABLE.

Taylor, Brook (1685–1731) British Calculus Born
on August 18, 1685, in Edmonton, England, mathe-
matician Brook Taylor is remembered today for his
important contributions to the development of CALCU-

LUS. In his 1715 text Methodus incrementorum directa
et inversa (Direct and indirect methods of incrementa-
tion), Taylor formulated methods for expanding func-
tions as infinite series. These are today known as
TAYLOR SERIES. Taylor also invented the technique of
INTEGRATION BY PARTS.

Taylor graduated from St. John’s College, Cam-
bridge, in 1709 with an advanced degree in mathemat-
ics, having already written his first mathematical paper
1 year earlier. Despite his young age Taylor quickly
developed a reputation as an expert in the field of cal-
culus. He was elected to the prestigious ROYAL SOCI-
ETY in 1712 and was immediately appointed to a
special committee to adjudicate on the issue of whether
it was SIR ISAAC NEWTON (1642–1727) or GOTTFRIED

WILHELM LEIBNIZ (1646–1716) who had discovered
the FUNDAMENTAL THEOREM OF CALCULUS that unites
differentiation with integration.

Despite the attachment of his name to the tech-
nique, Taylor was not the first to develop a theory of
infinite function expansions. Several decades earlier
JAMES GREGORY (1638–75), Johann Bernoulli
(1667–1748) of the famous BERNOULLI FAMILY, ABRA-
HAM DE MOIVRE (1667–1754), and others had inde-
pendently discovered variants of Taylor’s expansion
theorem. (Taylor was unaware of this body of work
when he wrote his famous 1715 text.) The significance
of infinite series expansions, however, was not properly
recognized until 40 years after Taylor’s death when, in
1772, influential French mathematician JOSEPH-LOUIS

LAGRANGE (1736–1813) proclaimed it an important
basic principle of differential calculus.

As a broad-based scholar, Taylor also wrote on top-
ics in experimental and theoretical physics. He pub-
lished articles on magnetism, thermometers, vibrating
strings, capillary action, and the mathematical laws dic-
tating the motion of the planets. He invented alternative
methods for computing logarithms and approximating
solutions to algebraic equations. In 1715 he also pub-
lished Linear Perspective, an influential text outlining
the mathematical foundations of PROJECTIVE GEOMETRY

and the role of the vanishing point in art. He died in
London, England, on December 29, 1731.

Taylor series Many functions, such as trigonometric
functions and exponential and logarithmic functions,
are difficult to manipulate, whereas adding, subtracting,
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and multiplying POLYNOMIAL functions is relatively
straightforward. In 1715 English mathematician BROOK

TAYLOR worked to approximate complicated functions
with simple polynomials.

Suppose it is indeed possible to approximate a
complicated function f(x) as a polynomial:

f(x) ≈ a0 + a1x + a2x2 +…+ anxn

One analyzes the situation by first noting that placing
x = 0 into this formula yields:

f(0) = a0 + 0 + 0 + … + 0

This shows that the approximation can be made exact,
at least at x = 0, by setting a0 = f(0). To determine the
coefficient a1, differentiate once and then set x = 0:

f′(x) = 0 + a1 + 2a 2x + 3a3x2 + … + nanxn–1

f ′(0) = a1

This shows that a1 = f ′(0) is a good choice. That is, by
setting a1 to be this value, not only do the values of the
function and polynomial match at x = 0, but the slopes
of the two graphs also match at x = 0.

Differentiating another time and setting x = 0 (that
is, matching second derivatives) yields:

f ′′(x) = 2a2 + 2 · 3a3x + … + n(n – 1)anxn–2

f ′′(0) = 2a2

and so . Continuing this way we obtain: 

.

Thus a good approximation to the function f(x), at
least around the value x = 0, would be the polynomial:

The higher the degree the polynomial one uses, the bet-
ter the approximation would be. Thus the best polyno-
mial of all would be a polynomial of infinite degree,
that is, a POWER SERIES:

Mathematicians have proved that if f can indeed be
differentiated infinitely many times, then this “approxi-
mation” is exact for the range of values the series con-
verges (called its RADIUS OF CONVERGENCE), that is, the
function really does equal the infinite sum expressed on
the right-hand side of the formula. This formula is
called a Taylor series.

As an example, consider the function f(x) = ex.
Differentiating and substituting in x = 0 yields:

f(x) = ex f(0) = 1
f ′(x) = ex f ′(0) = 1
f ′′(x) = ex f ′′(0) = 1

and so . A study of power series 

shows that this series has infinite radius of convergence,
and so this equation is valid for all values of x.

The Taylor series of f(x) = sin x is given by:

Similarly,

and

Since handheld calculators are programmed only to
add, subtract, multiply, and divide, Taylor series make
it possible to compute values of complicated functions.
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(Noting that calculators only display eight or 10 deci-
mal places, one need only use the first few terms of the
Taylor series to obtain adequately accurate answers.)

To approximate a function near a value x = a dif-
ferent from zero, one uses a polynomial of the form:
a0 + a1(x – a) + a2(x – a)2 + a3(x – a)3 +… Using the
same technique of differentiating and substituting in
x = a yields:

This is called a Taylor series “centered at x = a.” Taylor
series, as discussed above, centered at x = 0 are some-
times called Maclaurin series. In 1742 Scottish mathe-
matician COLIN MACLAURIN (1698–1746) wrote an
influential text in which he described Taylor’s methods.
Although Maclaurin made no pretense of having dis-
covered these series centered at zero (he himself
acknowledged that they are nothing more than a spe-
cial case of Taylor’s general results), scholars honor his
work nonetheless by associating his name with these
special series.

Talyor conducted his work in the early 1700s, but
it is known that other scholars, such as JAMES GRE-
GORY (1638–75), used power series in the same way
decades earlier.

See also DIFFERENTIAL EQUATION; MERCATOR’S
EXPANSION.

tensor Just as a VECTOR is a mathematical quantity
that describes translations in two- or three-dimensional
space, a tensor is a mathematical quantity used to
describe general transformations in n-dimensional
space. Precisely, if the locations of points in n-dimen-
sional space are given in one coordinate system by
(x1,x2,…,xn) and in a transformed coordinate system
by (y1, y2,…,yn) (it is convenient to use superscripts
rather than subscripts), then a “rank 1 contravariant
tensor” is a quantity T, with single components, that
transforms according to the rule:

(The coefficients here are PARTIAL DERIVATIVEs.) Thus,
for example, if the change of coordinates is a transla-
tion, yi = xi + ai for some numbers ai, it follows that
Ti

new = Ti. This means that the quantity T is a quantity,
with n components, unchanged by translations. That is,
T is indeed a vector.

More complicated transformation rules are permit-
ted for quantities with components given by two or
more superscripts (or even subscripts). ALBERT EIN-
STEIN (1879–1955) used tensor analysis in his general
theory of relativity.

tessellation (covering, tiling) A covering of the PLANE

with geometric shapes is called a tessellation or a tiling.
Usually the shapes, called tiles, are POLYGONs, and the
pattern produced is, in some sense, repetitive. Every
point in the plane is to be covered by a tile, and two
tiles may intersect only along their edges. A location
where three or more edges meet at a point is called a
vertex of the tessellation. (It is usually assumed that
neighboring tiles meet along the full length of their com-
mon edge.)

A regular tessellation uses congruent regular poly-
gons, all of one type, as tiles. For example, square tile
can be used to cover a plane, as shown below. Four
edges meet at each vertex of the tessellation. (Note that
four angles of 90° add to a total of 360° around that
vertex.) An equilateral triangle also tiles the plane (six
triangles, containing angles of 60°, fit around one ver-
tex), as does the regular hexagon. (Three hexagons, con-
taining angles of 120°, fit about a vertex.) As no other
regular polygon has appropriate angle values to fit about
a vertex, these are the only regular tilings of the plane.

A semiregular tessellation uses congruent regular
polygons of more than one kind, arranged so that the
arrangement of polygons about every vertex of the tes-
sellation is identical. For example, one can tile the
plane with regular hexagons and equilateral triangles
so that each hexagon is surrounded by six triangles and
each triangle by three hexagons to produce a semiregu-
lar tessellation. Mathematicians have proved that there
are only eight semiregular tilings of the plane. (If one
abandons the restriction that the arrangement of poly-
gons about each vertex be identical, then there are
infinitely many such tilings.)

A monohedral tessellation is a tessellation that uses
congruent copies of only one type of tile (not necessarily
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a regular polygon). The diagram above shows that
any PARALLELOGRAM tiles the plane. As two copies of
the same triangle fit together to form a parallelogram,
we have:

Any triangle provides a monohedral tessella-
tion of the plane.

By distorting the monohedral tessellation with parallel-
ograms, one can show:

Any quadrilateral, concave or convex, provides
a monohedral tessellation of the plane.

Not every pentagon or every hexagon will tile the
plane. In his 1918 doctoral thesis, mathematician Karl
Reinhardt (1895–1941) classified those hexagons that
do tile and found that they fall into three basic types. To
this day no one knows how many classes of convex
pentagons tessellate the plane. (Fourteen types have cur-
rently been identified.) Reinhardt proved that no con-
vex polygon with seven or more sides will tile the plane.

A tessellation of the plane using two SQUAREs of
different sizes provides a surprisingly elegant visual
proof of PYTHAGORAS’S THEOREM.

tetrahedron (triangular pyramid) Any solid figure
(POLYHEDRON) with four triangular faces is called a
tetrahedron. If the four faces are congruent equilateral
triangles, then the figure is called regular.

The height h and volume V of a regular tetrahe-
dron with edge length a are given by:

and such a regular tetrahedron fits snugly inside a cube 

of side-length . (Choose a vertex of the cube and 

draw diagonals on the three faces surrounding that
vertex. These coincide with the three edges of an
entrapped tetrahedron.)

Although it is possible to stack a finite number of
small cubes together to form a larger cube, it is impos-
sible to complete a similar feat for regular tetrahedra:
no regular tetrahedron is a union of smaller regular
tetrahedra.

The sum of the first n TRIANGULAR NUMBERS is
called the nth tetrahedral number. For example, the
fifth tetrahedral number is 1 + 3 + 6 + 10 + 15 = 35.
If we place triangular arrays of 1, 3, 6, 10, and 15
dots above one another making use of the third
dimension in space, the array of dots produced is a
tetrahedron, explaining the name of these FIGURATE

NUMBERS. The general formula for the nth tetrahedral 

number is n(n + 1)(n + 2). The tetrahedral numbers 

appear as one of the diagonals of PASCAL’S TRIANGLE.
See also NET; PLATONIC SOLID.

Thales of Miletus (ca. 625–547 B.C.E.) Greek Geom-
etry, Philosophy Born in the region of Miletus, Asia
Minor (now Turkey), Thales is considered the first sci-
entist and philosopher of Western history, at least in the
sense of being the first scholar to whom particular
scientific and mathematical discoveries have been
attributed. Rather than relying on mythology and reli-
gion to explain the natural world, Thales searched for
rational principles in science. This work led him to also
look for unifying principles in geometry and, as such, he
was the first scholar to attempt to derive geometric facts
by processes of deduction and logical reasoning. He
established, for example, fundamental geometrical
propositions such as “the base angles of any isosceles
triangle are equal” and “the angle in a semicircle is a
right angle.”

Little is known of Thales’s life, and all his written
texts have been lost. Nonetheless, scholars that fol-
lowed Thales made numerous references to his achieve-
ments and to his approach to the study of the world.
The Greek philosopher PROCLUS (ca. 450 C.E.) claimed
that Thales acquired his mathematical knowledge from
Egyptian scholars, and centuries later, Hieronymus, a
student of Aristotle, wrote that Thales measured the
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height of the pyramids by observing the length of shad-
ows. (Historians today take this as evidence that Thales
was familiar with the principles of similar triangles.)
Greek historian Herodotus (ca. 485 B.C.E.) wrote that
Thales correctly predicted the eclipse of the sun in 585
B.C.E. (though some scholars today suggest that this
may have only been a lucky guess).

Aristotle wrote about Thales’s worldview in his
text Metaphysics. Apparently Thales believed that the
Earth was a flat disc floating on an infinite ocean of
water. He used this theory to give a rational explana-
tion of why earthquakes occur.

Theodorus of Cyrene (ca. 465–398 B.C.E.) Greek
Geometry, Number theory Born in Cyrene (now
Shahhat, Libya), Theodorus is remembered for his
work on IRRATIONAL NUMBERS, proving that not only
is √

–
2 irrational, but so too are √

–
3 and √

–
5, as well as the

roots of all other nonsquare quantities up to 17.
Theodorus is noted as having tutored the great

philosopher PLATO (ca. 428–348 B.C.E.) in the subject
of mathematics. Plato later described much of the work
of Theodorus in his text Theaetetus, and it is chiefly
through this document that we know anything of
Theodorus’s life and work. We learn there, for instance,
that Theodorus also studied astronomy, music, and
arithmetic.

Unfortunately, Plato did not describe the method
by which Theodorus proved his quantities to be irra-
tional, and historians today are puzzled as to why
Theodorus stopped his work with the number √

–
17. It is

likely that Theodorus developed a series of arguments
that were highly dependent on the particular number
being studied and failed to develop a general approach

that dealt with all numbers in one fell swoop. This is
all the more curious, given that the standard arithmetic
proof of the irrationality of √

–
2 was well known to

scholars of his day, a proof that can very easily be 

generalized to numbers other than 2. (If √
–
2 = , then 

a2 = 2b2, creating a contradiction: the PRIME number 2
appears an even number of times in the prime factor-
ization of a2 and an odd number of times in the factor-
ization of 2b2.) One also can establish the irrationality
of √

–
2 geometrically as follows:

The EUCLIDEAN ALGORITHM shows that two
geometric lengths are COMMENSURABLE (of
rational ratio) if repeated subtraction, in turn,
of the smaller length from the longer eventu-
ally produces two segments of the same
length. Thus, two lengths for which this pro-
cess continues indefinitely must be of an irra-
tional ratio. Noting this, consider line
segments of length 1 and length √

–
2 forming an

isosceles right triangle. With a circular arc,
construct a line segment of length √

–
2 – 1, the

difference of these two lengths. Now consider
the two segments of lengths 1 and √

–
2 – 1.

Draw a second right triangle with side-length
√
–
2 – 1 as shown. The hypotenuse of his trian-

gle has length 2 – √
–
2 = 1 – (√

–
2 – 1), the differ-

ence of the second pair of lengths. As this
process can be repeated indefinitely, always
subtracting the smaller length from the longer,
it must be the case that the two original quan-
tities, 1 and √

–
2, are of irrational ratio.

Many historians believe that Theodorus may have
developed specific geometric arguments of this type,
using triangles, pentagons, and 17-gons, for instance,
to show that the numbers he considered are irrational.

theorem (proposition) A statement in mathematics
that has been proved true is called a theorem. The
name originates from the Greek word theórema mean-
ing “a subject for contemplation.”

Often theorems are classified in terms of their
importance. A lemma is an ancillary theorem, that is,
a result proved true for the purposes of later establish-
ing a more important result. (In Greek, lemma means
“a thing taken.”) A corollary is a theorem of immedi-
ate consequence, that is, a result that follows from a

a–
b

498 Theodorus of Cyrene

Proving that the square root of two is irrational



previously established theorem requiring little or no
further explanation. A conjecture, on the other hand,
is a statement yet to be proved or disproved. The fol-
lowing sequence of results illustrates these ideas:

Lemma: A natural number squared is either
divisible by four, or leaves a remainder of 1
when divided by 4.

Proof: Let a be a natural number. If a is even, then it
can be written in the form a = 2m for some number m.
Consequently, a2 = (2m)2 = 4m2 is divisible by 4. If, on
the other hand, a is odd, then a = 2m + 1 for some
number m, and so a2 = (2m + 1)2 = 4m2 + 4m + 1 is 1
more than a multiple of 4.

Theorem: If a number N equals the sum of two
squares, N = a2 + b2, then N leaves either a
remainder of 0, 1, or 2, but not 3, when
divided by 4.

Proof: By the lemma, a2 leaves a remainder of either 0
or 1 when divided by 4, as does the number b2. It is
impossible for the two remainders to sum to a total
remainder of 3.

Corollary: It is impossible to write 2,867,039
as a sum of two square numbers.

Proof: This number leaves a remainder of 3 when
divided by 4.

Conjecture: It is possible to write 3,457,417,105
as a sum of two square numbers.

This is yet to be proved or disproved.
See also SQUARE.

three-utilities problem A classic puzzle challenges
the reader to connect three houses to each of three util-
ity companies—water, electricity, and gas—one pipe
between each house and each company, in such a way
that no lines or mains cross.

It turns out that this puzzle cannot be solved if the
buildings are situated on a plane. A simple heuristic
argument gives a sense of why this is the case:

Any solution to the problem would be a dia-
gram of six houses and nine pipes, dividing the

plane into regions. It seems that each region is
to be bounded by four pipes. If there are R
regions, then 4R represents the total number of
pipes in the picture, counted twice (each pipe
borders two regions). Thus 4R = 18, suggesting
that there must be a nonintegral number of
regions. This absurdity demonstrates the impos-
sibility of the task.

Surprisingly the puzzle can be solved if one draws
the three houses and the three companies instead on
the surface of a TORUS. (One can verify this by using a
marker to draw the figures on a bagel, for example.)

See also GRAPH.

time series graph See STATISTICS: DESCRIPTIVE.

topology (analysis situs, rubber-sheet geometry)
The study of those properties of geometric shapes and
surfaces that remain unchanged when the shapes of
those objects are distorted by a continuous DEFORMA-
TION (such as stretching, shrinking, or twisting) is
called topology. Unlike a classical geometer, a topolo-
gist is not interested in questions of distances and
angles, but is only concerned with the relative posi-
tions of points. All that is required of a topological
transformation is that points that begin close together
remain relatively close together. In this viewpoint, a
circle and a square (of any size) are topologically
equivalent, since either can be continuously deformed
into the other, and a number of geometrical properties
apply equally well to either object. For example, the
statement, “Removing a point from a circle produces
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a line segment” is valid for the entire class of objects
topologically equivalent to a circle.

Any transformation that requires puncturing or
tearing a surface, or joining together two disjoint por-
tions of a figure, is not considered a valid topological
action. (Tearing a surface, for instance, separates points
that were close together.) As it is impossible to deform
a SPHERE into a TORUS without puncturing the surface,
these two shapes are not topologically equivalent. As
other examples, the capital letters C, M, and Z are
topologically equivalent, as are the letters D, O, P, and
R, but no letter from the first group is topologically
equivalent to a letter in the second. No letter in the
alphabet is topologically equivalent to the letter B
(other than capital B itself).

The study of topology began with LEONHARD

EULER (1707–83) and his analysis of the famous
SEVEN BRIDGES OF KÖNIGSBERG PROBLEM. The mathe-
matician CARL FRIEDRICH GAUSS (1777–1855) exam-
ined the distortion of knots and invariant properties
that arise in the study of PROJECTIVE GEOMETRY. In
1895 French mathematician HENRI POINCARÉ

(1854–1912) examined these works and published
five papers, laying a theoretical framework for a for-
mal study of topology.

The discipline of point-set topology attempts to
capture the notion of “closeness” without making
mention of distance. In this theoretical approach, one
is given a set X and a specified collection of subsets
called open sets, which, in some loose sense, are meant
to represent those points that are deemed “close” to
each other. These subsets are required to satisfy three
basic properties:

1. The empty set Ø and the entire set X are deemed
open.

2. If A and B are two open sets, then their intersection
A ∩ B is also an open set.

3. The union of any collection of open sets is another
open set.

Any set X with a collection of subsets classified as open
satisfying the three stated properties is called a topolog-
ical space. For example, the set of real numbers with
unions of open INTERVALs as the open sets is a topolog-
ical space. So too is the set X = {a,b,c,d} with subsets
Ø, {a}, {b,c,d}, and X as the open sets. Two topological
spaces are said to be equivalent if there is a one-to-one

correspondence between the points in one space and
the points in the other so that open sets in one space
correspond to open sets in the other.

See also KNOT THEORY; MÖBIUS BAND.

torus (anchor ring, donut) A closed curved surface
possessing a single hole akin to the surface of a donut
or an inner tube is called a torus (plural: tori). A torus
can be regarded as a SOLID OF REVOLUTION obtained
by rotating a circle in a plane one full revolution about
a line that does not intersect the circle. (This circle is
called the generating circle.) As such, PAPPUS’S THEO-
REMS show that the VOLUME V and the surface AREA A
of a torus are given by the formulae:

V = 2π2a2b
A = 4π2ab

where a is the radius of the circle rotated about a line,
and b is the distance of the center of the the circle from
that line. These formulae can also be obtained by the
techniques of INTEGRAL CALCULUS

In a CARTESIAN COORDINATE system, if the circle of
radius a is positioned in the yz-plane with center at
position b along the y-axis and is rotated about the z-
axis, then the equation of the resulting torus produced
is given by:

This follows from PYTHAGORAS’S THEOREM applied to a
right triangle within the generating circle when it is
rotated to a position so that the x-, y-, and z-coordinates
of a point on the torus are (x,y,z). (Examine the right tri-
angle of height z with radius a as its hypotenuse.)

If θ denotes the angle of a point on the generating
circle, and ϕ the angle through which that generating
circle is rotated about the z-axis, then one obtains the
following PARAMETRIC EQUATIONS for the torus:

x = (b + acosθ)cos ϕ
y = (b + acosθ)sin ϕ
z = asinθ

Each point on the generating circle of a torus, when
rotated about the z-axis, traces out a circle. Thus a

x y b z a2 2
2

2 2+ −



 + =
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torus can be considered the CARTESIAN PRODUCT of
two circles: each point on a torus corresponds to a pair
of points, one on one circle (the generating circle) and a
second on a second circle (the circle traced out by that
point on the generating circle). The set of all possible
positions of an hour hand and minute hand on a clock,
each corresponding to a full circle of values, describes a
set of outcomes topologically equivalent to a torus.
(Physicists would say that the “phase space” of the two
hands of a clock is a torus.)

One can physically construct a torus by sewing
together the opposite sides of a square rubber sheet as
shown. (One must be sure to align the directions of the
arrows indicated.) Sewing together the opposite sides
of a hexagon also produces a torus.

This latter construct shows that it is possible to
produce a design of seven regions on a torus so that
each regions shares a portion of boundary with each of
the six remaining regions. Thus some maps on a torus
require seven colors to paint if one wishes to ensure
that neighboring regions are always of distinct colors.
Mathematicians have proved that the situation is never
worse than this: seven colors will always suffice to
color a toroidal map, no matter how complicated that
map may be.

Given a punctured torus made of rubber, such as
an inner tube with a small hole, it is physically possible
to stretch open the hole and turn the surface inside out
through that hole. Surprisingly, the resulting surface is
another torus. A double torus is a closed surface with
two holes. Everting a double torus through a puncture
in its surface again yields the same surface back again,
another double torus, and the same result is true of
triple tori and multiple tori with any number of holes.

See also FOUR-COLOR THEOREM; SPHERE.

tournament (round-robin tournament, complete di-
graph) A competition among a collection of teams is
called a tournament if each possible pair of teams
plays exactly one match, and each game played results
in a win for one team and a loss for the other. (That is,
no ties are permitted.) Mathematically, a tournament
among n players is a GRAPH with n vertices, with edges
drawn between every possible pair of points, directed
with arrows pointing from one vertex to another. Here
each vertex represents a team, and an edge pointing
from vertex A to vertex B indicates a win for team A
over team B. The diagram below, for instance, repre-
sents a tournament among four teams, A, B, C, and D.
We see that team A lost to team D but beat teams B
and C.

A graph on n vertices with an edge between every
possible pair of vertices directed by an arrow is called a
complete directed graph or simply a complete digraph
on n vertices.

Structurally, there is essentially only one possible
complete digraph on two vertices (although, in terms
of team-playing, there are two possible interpreta-
tions: either a team A beat a team B, or team B beat
team A). For n equal to 3, 4, 5, 6, and 7 there are,
respectively, 2, 4, 12, 56, and 456 different complete
digraphs on n vertices.

Any team that beat every other team in a tourna-
ment is called a source or a transmitter, and any team
that lost to all other teams is called a sink or a receiver.
(These names reflect the alternative interpretation of a
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digraph as a diagram of information flow.) In the
example above, team D is a source, and team B is a
sink. It is impossible for a tournament to possess two
different sources or two different sinks. A tournament
need not possess either a source or a sink.

Every tournament possesses a HAMILTONIAN PATH.
This means that it is possible to find a path through the
diagram of a complete digraph that starts at one vertex
and follows edges in directions that respect the arrows
to visit each and every other vertex exactly once. For
example, in the diagram above, the journey D → A →
C → B represents a Hamiltonian path. Alternatively, a
Hamiltonian path can be interpreted simply as a list of
all the teams that played arranged in an order so that
the first team on the list beat the second, the second
team on the list beat the third, and so forth. The fol-
lowing example illustrates a general method for con-
structing such a list (or, equivalently, a Hamiltonian
path) for any tournament.

Consider the following table outlining the
results of a tournament with five teams, A, B,
C, D, and E:

and consider the teams one at a time in order
to create an appropriate list. First write A.
Now if team B beat A, then it is permissible to
write B to the left of A. This is not the case,
however, and so B should be written to the
right of A. Our list, so far, appears: A B.

Now consider team C and ask, “Did C
beat A?” As the answer is no, we are not per-
mitted to write C to the immediate left of A.
Did C beat B? Yes. Thus we are permitted to
write C to the immediate left of B. Our list
thus far reads: A C B. (We have that A beat C,
and C beat B.)

Now consider team D, and look for the
first team on the partially constructed list that
D beat. This is team A. This leads to the new
list: D A C B.
Finally consider team E. The first team on this
partially constructed list that E beat is C. This
allows us to place E between A and C to pro-

duce the complete list: D A E C B. Notice that
it does indeed have the property that each team
on the list beat the one succeeding it. This list
represents a Hamiltonian circuit in the appro-
priate digraph.

The total number of games played in a tournament
with N players is given by the formula:

(Each of the N teams plays N – 1 games, but this dou-
ble counts the total number of games played.) This is
the (N – 1)th triangular FIGURATE NUMBER.

If N is odd, it is always possible to construct an
example of a tournament among N teams in which
each team has the same number of wins. This feat can-
not be accomplished if N is even. (If each team has w
wins, then N × w represents the total number of games 

played. Consequently, we must have . This 

is an invalid formula if N is even.)

tower of Hanoi (towers of Hanoi, tower of Brahma)
Consider three poles and a collection of differently
sized discs all placed initially on one pole in order of
size, largest at the bottom to the smallest at the top. An
ancient challenge demands that all the discs be trans-
ferred to a different pole in such a way that:

1. Only one disc is ever moved at a time.
2. No disc ever sits upon another disc of a smaller size.

An eight-disc version of this puzzle was patented
and sold as a toy by Edouard Lucas in 1883. He called
the puzzle the Tower of Hanoi and wrote that the game
was based on a “tower of Brahma” in which priests
were given the challenge of moving 64 discs from one
pole to another under the same restrictions, moving
just one disc a day. The legend claimed that the world
would end on the day the task is completed.

A puzzle containing just one or two discs is easily
solved. If one knows a method for solving the puzzle
with N discs, then the solution to the (N + 1)-disc ver-
sion follows readily: transfer the top N discs to one
pole via the known method, move the large (N + 1)th
disc to the empty pole, and transfer the N discs to the
pole containing the large disc. If T(N) denotes the num-

w
N= − 1

2

N N( )− 1
2

A beat B C beat B C beat D D beat E
A beat C B beat D E beat C
D beat A B beat E
A beat E
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ber of moves required to solve the N-disc version of the
puzzle, then it follows from the above procedure that:

T(N + 1) = T(N) + 1 + T(N)
= 2T(N) + 1

with T(1) = 1 and T(2) = 3. This RECURRENCE RELA-
TION has solution:

T(N) = 2N – 1

This shows that the 64-disc version of the puzzle
requires 264 – 1 = 18,446,744,073,709,551,615 moves.
According to the legend, the end of the world will thus
come in approximately 5.05 × 1016 years.

If one wishes to transfer N discs to a specific pole,
then one begins solving the puzzle by moving the small-
est disc to the desired pole if N is odd but to the third
pole if N is even.

If we number the N discs 1, 2,…, N from smallest
to largest, then the following table shows the order in
which discs are moved to solve the first five small ver-
sions of the puzzle:

Each line of the table is generated by repeating two ver-
sions of the previous solution and inserting the number
N in the center. Surprisingly, the rth number in any
sequence representing a solution to the puzzle equals 1
more than the exponent of the largest power of 2 that
divides the number r. For example, the largest power of
2 that divides 12 is 22, and 2 + 1 = 3 is the 12th number
in any sequence representing a solution to the puzzle.
Since 16 = 24 is the largest power of 2 that divides the
number 10,000, this observation also shows that Brah-
man priests will move disc 4 + 1 = 5 on day 10,000.

tractrix (equitangential curve, tractory) If one drags
the front end of a bicycle along a straight path, then
the path traced out by the back wheel (assuming the

wheels of the bicycle were initially offset) forms a curve
called the tractrix. This curve has the property that the
endpoint of each line segment of fixed length (the
length of the bicycle) TANGENT to the curve meets the
straight-line path.

The curve was first studied by Dutch physicist
Christiaan Huygens (1629–95), who described the path
in terms of an object being dragged by a fixed length of
string. He coined the name “tractrix” for the path,
deriving it from the Latin word trahere meaning “to
drag.” The curve is also sometimes called the “hund-
kurve” (German for “hound curve”), inspired by the
image of a reluctant dog being dragged on a leash by
an insistent owner.

trajectory The path of a moving object or particle is
called its trajectory. The trajectory of a particle is often
described via PARAMETRIC EQUATIONS. For example,
the equations x(t) = cos(t) and y(t) = sin(t) give, at each
time t, the x- and y-coordinates of a particle whose tra-
jectory is a UNIT CIRCLE. The trajectory of a ball
thrown in the air is an inverted PARABOLA, assuming
the effects of air resistance can be ignored.

The term trajectory is also used in the theory of
DYNAMICAL SYSTEMS as an alternative name for the
ORBIT of a point.

transcendental number See ALGEBRAIC NUMBER.

transformation Any FUNCTION or mapping that
changes one quantity into another is called a transfor-
mation. Although the term is essentially synonymous
with the term function, it is usually used only in the
context of geometry, where one speaks of a GEOMET-
RIC TRANSFORMATION and a TRANSFORMATION OF

COORDINATES.
Matrix notation is often used to describe geometric

transformations of the plane. A point in the plane is 

represented by a column VECTOR and a geometric 

transformation as a 2 × 2 matrix A. The effect of the geo-
metric transformation is given by matrix multiplication.
For example, application of the following 2 × 2 matrices

1

1

1 0

0 0−
⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

,
cos sin

sin cos
,  

θ θ
θ θ

x

y

⎛
⎝⎜

⎞
⎠⎟

N Solution

1 1
2 1, 2, 1
3 1, 2, 1, 3, 1, 2, 1
4 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1
5 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 

2, 1, 3, 1, 2, 1
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has the effect of, respectively, reflecting points across
the x-axis, rotating points about the origin through an
angle θ, and projecting points onto the x-axis.

In algebra, a change in the form of a mathematical
expression, without changing its validity, is called a
transformation. For example, the action of EXPANDING

BRACKETS transforms the expression y = (x + 1)2 into
the equivalent expression y = x2 + 2x + 1.

See also AFFINE TRANSFORMATION; LINEAR TRANS-
FORMATION; PROJECTION.

transformation of coordinates (transformation of
axes) In coordinate geometry, it is often convenient to
change the position of a set of coordinate axes, either by
a ROTATION or a TRANSLATION, to simplify the expres-
sion of a given curve under study. For example, consider
the curve given by the equation x2 – 6x + y2 + 4y = 3. By
COMPLETING THE SQUARE, this equation can be rewritten:

(x – 3)2 + (y + 2)2 = 16

Setting X = x – 3 and Y = y + 2 this reads:

X2 + Y2 = 16

identifying the curve as a CIRCLE of radius four. In this
process we have, in effect, introduced two new coordi-
nate axes, X and Y, each a translation of one of the
original x- and y-axes. The origin of the new coordi-
nate system lies at the location where X = 0 and Y = 0,
that is, at the point (3,–2).

Changing from the use of CARTESIAN COORDI-
NATES to POLAR COORDINATES, or, in three-dimensional
geometry, to SPHERICAL COORDINATES or CYLINDRI-
CAL COORDINATES, is also deemed a transformation of
coordinates.

See also PRINCIPAL AXES; TRANSFORMATION.

translation See GEOMETRIC TRANSFORMATION.

transversal (traverse) A line cutting two or more
other lines is called a transversal. When a transversal
cuts just two other lines, eight angles are formed. The
four angles lying between the two lines are called inte-
rior angles, and the four lying outside are called exte-
rior angles. Special names are given to pairs of angles,
as shown in the following diagram:

According to the PARALLEL POSTULATE, two lines
cut by a transversal are parallel if, and only if, two
alternate interior angles are equal (or, equivalently, if
any two corresponding angles are equal).

trapezoid/trapezium A QUADRILATERAL with two
sides parallel is called a trapezoid in the United States
and a trapezium in the United Kingdom. Matters are
confusing, for a four-sided figure with no two sides
parallel is called a trapezium in the United States and a
trapezoid in the United Kingdom. We follow U.S. usage
of the terms here.

The area of a trapezoid is given by the formula

where b1 and b2 are the lengths of the two parallel
edges, and h is the distance between them. (See AREA.)
The midline or median of a trapezoid is the straight-
line segment that joins the MIDPOINTs of the nonparal-
lel sides. An exercise in geometry shows it has length 

m = (b1 + b2). (Use similar triangles.) Thus the area 

of a trapezoid is the same as that of a RECTANGLE of
length m and width h.

If the two nonparallel sides of a trapezoid are equal
in length (and not themselves parallel), we then call the
figure an isosceles trapezoid.

See also SIMILAR FIGURES.

trapezoidal rule See NUMERICAL INTEGRATION.

1–
2

1
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traveling-salesman problem A mathematical prob-
lem based on a real-life situation, called the traveling-
salesman problem, can be stated as follows:

There are a certain number of towns connected
in pairs by highways. The distances of all the
highway routes between towns are specified.
Plan a journey that visits all the towns and
returns to the starting point while minimizing
the total distance traveled.

Alternatively, one can try to minimize the travel costs
in moving from town to town, or the time taken to
complete the entire journey, for example. The desire to
find the efficient routes such as these is an important
practical problem. It can lead to significant financial
savings for transportation companies and other types
of industry.

The traveling-salesman problem is equivalent to
the challenge of finding a least-distance Hamiltonian
circuit in a GRAPH—a challenge in the field of GRAPH

THEORY.
One method for solving the traveling-salesman

problem is to simply list all the possible routes and see
which one is the most efficient. We can count the num-
ber of routes to be checked as follows:

Suppose there are n towns in all. Starting in
one town there are n – 1 choices for which
town to visit next. Having reached that town,
there are n – 2 choices for which town to visit
second, and so on, all the way down to one
final choice of one town to visit before return-
ing to start. Noting that, for the purposes of
this problem, traveling a route in the forward
direction is equivalent to traveling that route in
the reverse direction, we thus have a total of 

possible routes in all to consider.

(This argument makes use of the MULTIPLICATION PRIN-
CIPLE.) For the very smallest values of n, this count is
small and it is quite feasible to program a computer to
check all the possible routes, but for any reasonably
sized practical problem, this formula yields an extraor-
dinarily large count. For instance, the problem for just
20 towns already yields over 60 quadrillion different
routes for consideration. Even the fastest computers of
today are unable to assist us in finding the most effi-
cient route in any reasonable amount of time.

What is sought is a manageable ALGORITHM that
works in a reasonable amount of time. One possible
approach is to use the nearest-neighbor algorithm:

Starting in one town, visit the nearest town
first, then visit the nearest town not already
visited, and so forth. Return to the start town
when no other choice is available.

A computer can easily be programmed to perform this
algorithm quickly. Unfortunately, although easy to per-
form, it is known that this procedure might not neces-
sarily yield the most efficient route overall.

It remains an unsolved problem as to whether there
is a simple procedure that is guaranteed to produce the
optimal route every time it is tried. Most mathematicians
believe that such an algorithm will never be found.

See also NP COMPLETE; OPERATIONS RESEARCH.

tree See GRAPH.

triangle (trigon) A POLYGON with three sides is
called a triangle. Precisely, a triangle is the closed geo-
metric figure formed by three line segments (the sides
of the triangle) joining three noncollinear points in the
plane (the vertices of the triangle). Each triangle con-
tains three interior ANGLEs.

The PARALLEL POSTULATE shows that the three inte-
rior angles of a triangle sum to 180°. This can also be
demonstrated physically with a pencil-turning trick:

Draw a large triangle on a piece of paper and
position a pencil in one corner of the triangle
against one side. Take note of the direction the
tip of the pencil is pointing.

Rotate the pencil through the angle given
by the corner in which it lies. Next slide the
pencil along the side of the triangle to the sec-
ond angle of the triangle. (Notice that this
action of sliding does not alter the direction in
which the pencil is currently pointing.) Rotate
the pencil through this second angle, being
sure to remain in the interior of the triangle.
Now slide the pencil along the second side of
the triangle to position it at the third angle of
the triangle. Rotate the pencil through this third
angle and slide the pencil back to its original
position. Notice that the pencil is now point-
ing in the opposite direction to its start.

( )!n − 1
2
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This demonstration shows that the net effect of
rotating a pencil through each of the three angles of a
triangle is to rotate the pencil through half a turn.
Thus the three angles of the triangle do indeed sum to
180°. Moreover, it is clear that this argument would
work for any triangle one could draw. A similar argu-
ment shows that the sum of angles in any quadrilat-
eral is 360° in any five-sided polygon, 540°, and, in
general, the sum of angles in any N-sided shape is
(N – 2) × 180°.

Triangles are classified according to the relative
lengths of their sides: A triangle is scalene if each side is
of a different length, isosceles if at least two sides are
equal in length, and equilateral if all three sides are the
same length. A study of the SAS principle shows that
the angles OPPOSITE the two sides equal in length in an
isosceles triangle have equal measure. As an equilateral
triangle is also isosceles, it follows that an equilateral
triangle is EQUIANGULAR, that is, all three angles have
the same measure (of 60°).

Triangles can alternatively be classified according to
their angles. An acute triangle has all three angles less
than 90° in measure, a right triangle contains precisely
one angle equal to 90°, and an obtuse triangle contains
one angle of measure greater than 90°. (It is not possi-
ble for a triangle to possess two obtuse angles.)

If a picture of a triangle is oriented so that one side
of the triangle is horizontal, then that side is called the
base of the triangle. The height of the triangle is the ver-
tical distance between the base of the figure and the ver-
tex of the triangle that does not lie on the base. A study
of AREA shows that, if oriented appropriately, the inte-
rior of a triangle occupies half the interior of the rectan-
gle that encloses the triangle, with the base as one side
of the rectangle. Thus the area of a triangle is given by
the formula:

If the three sides of the triangle are of lengths a, b, and
c, then HERON’S FORMULA also shows that the area of
the triangle is given by:

where is the semiperimeter of the triangle.

PYTHAGORAS’S THEOREM shows that if a right tri-
angle has side-lengths a, b, and c, with the sides a and
b surrounding the right angle, then a2 + b2 = c2. The
TRIANGLE INEQUALITY follows as a consequence.

For an arbitrary triangle with side-lengths a, b, and
c, if the angle between sides a and b is acute (that is, less
than 90°), then a2 + b2 > c2. If, on the other hand, the
angle between sides a and b is obtuse (greater than 90°),
then a2 + b2 < c2. This follows from the LAW OF

COSINES. It can also be seen algebraically as follows:

For the diagram below left, the angle between
sides a and b is acute. We clearly have a > x and
b > y, and so a2 + b2 > x2 + y2 = c2. For the dia-
gram below right, the angle between sides a and
b is obtuse. We clearly have x > a. Consequently:

c2 = x2 + y2

= x2 + (b2 – (x – a)2)
= b2 + 2ax – a2

< b2 + 2a · a – a2 = b2 + a2

These observations provide a proof of the CONVERSE of
Pythagoras’s theorem:

If, for a triangle with side-lengths a, b, and c,
we have a2 + b2 = c2, then the triangle is a right
triangle with right angle between the sides of
length a and b.

s
a b c= + +

2

area = − − −s s a s b s c( )( )( )

area base height= × ×1
2
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(It cannot be the case that the angle between sides a
and b is acute, for then a2 + b2 > c2, which is not true.
Nor can the angle between these two sides be obtuse.
The only possibility that remains is that these two sides
surround a right angle.)

For a right triangle or an obtuse triangle, these
observations show that the longest side of such a trian-
gle lies opposite the largest angle of the triangle. The
LAW OF SINES can be used to prove that this is true even
for acute triangles:

In any triangle the longest side of the triangle
lies opposite the largest angle in the triangle.

Special Properties of Triangles
There are a number of surprising properties of triangles
worthy of note.

1. Lines and Concurrency
A PERPENDICULAR line that passes through the MID-
POINT of a given side of a triangle is called a perpendic-
ular bisector of the triangle, and a perpendicular line
that passes through the vertex opposite the given side is
called an altitude of the triangle. A study of equidis-
tance (See EQUIDISTANT) shows that the three perpen-
dicular bisectors of any triangle pass through a
common point (called the circumcenter of the triangle),
as do the three altitudes of any triangle (through a
point called the orthocenter of the triangle). That is,
each set of three lines is CONCURRENT.

A MEDIAN OF A TRIANGLE is a line connecting one
vertex of a triangle to the midpoint of the side opposite
that triangle. It is possible to prove that the three medi-
ans of any triangle are also concurrent. (The common
point of intersection is called the centroid of the trian-
gle.) The Swiss mathematician LEONHARD EULER

(1707–83) showed that the centroid, orthocenter, and
circumcenter of any triangle lie in a straight line, today
called the EULER LINE.

A study of equidistance also shows that the three
lines bisecting the angles of a triangle are concurrent.

2. Equilateral Triangles
Choose any point P inside an equilateral triangle and
compute the sum of the distances of this point from
each of the three sides of the triangle. Then this sum
equals the value of the height of the triangle, no matter

where the point P is placed. (To see this, suppose the
equilateral triangle has side-length b. Label the vertices
of the triangle A, B, and C. Draw line segments con-
necting P to each vertex of the triangle. Then the area 

A of the triangle, A = bh where h is the height of the 

equilateral triangle, is the sum of the areas of the
three triangles ABP, ACP, and BCP. Let h1, h2, and h3

be the heights of these three triangles, respectively. We 

have bh = bh1 + bh2 + bh3 yielding h1 + h2

+ h3 = h.)

3. Tilings
Any triangle can be used for a TESSELLATION of the plane.

4. Napoléon’s Theorem
French emperor Napoléon Bonaparte (1769–1821)
is alleged to have discovered the following surpris-
ing result:

Given an arbitrary triangle, draw an equilat-
eral triangle on the outside of each side of the
triangle. Then the centers of these three equi-
lateral triangles form another equilateral trian-
gle, called the external Napoléon triangle of
the original triangle. Moreover, if we flip each
equilateral triangle so that it now lies inside the
original triangle, then the centers of those tri-
angles again form an equilateral triangle, called
the internal Napoléon triangle. The difference
of the areas of the external and internal
Napoléon triangles equals the area of the origi-
nal triangle.

5. Integer Triangles
A triangle is called an integer triangle if each side-length
of the triangle is a whole number. Thus any triangle that
is formed by laying out matchsticks, say, without break-
ing the matchsticks, is an integer triangle. It is interest-
ing to count the number of integer triangles one can
create with a fixed number of matchsticks. For exam-
ple, there are four different integer triangles with
perimeter 11: a 5-5-1 triangle, a 5-4-2 triangle, a 5-3-3
triangle, and a 4-4-3 triangle. Surprisingly, the count
decreases if you add an extra matchstick to the collec-
tion: one can only make three different triangles with
perimeter 12 (namely, 5-5-2, 5-4-3, and 4-4-4 triangles).

1–
2

1–
2

1–
2

1–
2

1–
2
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Mathematicians have proved that the number of differ-
ent integer triangles one can make with n matchsticks is 

given by the formula if n is even, and 

if n is odd, where the brackets are used to indicate
rounding to the nearest integer.

The integer triangle 5-12-13 (a right triangle) has
the property that the numerical value of its area is the
same as its perimeter: A = 30, P = 30. The 6-8-10 trian-
gle is the only other right integer triangle with this
property. If one relaxes the condition of being right,
then there exist many nonright triangles with this prop-
erty. For instance, a 7-15-20 triangle has area and
perimeter each with the numerical value 42. (Use
Heron’s formula to compute its area.)

One can alternatively search for a pair of integer
triangles sharing the same value for perimeter and
same value for area. Again there are many such pairs.
For example, the 14-18-29 and 8-25-28 triangles each
have perimeter 61 and area 210√

–
22. The 45-94-94

and 49-84-100 also share the same perimeter and the
same area.

See also AAA/AAS/ASA/SAS/SSS; BASE OF A POLYGON/
POLYHEDRON; BERTRAND’S PARADOX; CIRCUMCIRCLE;
EQUILATERAL; FIGURATE NUMBERS; HYPOTENUSE; PEDAL

TRIANGLE; TRIANGULAR NUMBERS.

triangle inequality The proposition that the sum of
the lengths of any two sides of a TRIANGLE is greater
than the length of the third side is called the triangular
inequality. Thus, if a, b, and c are the three side-lengths
of a triangle, then each of the following relations hold:

a < b + c
b < a + c
c < a + b

This result follows as a consequence of PYTHAGORAS’S
THEOREM. The converse proposition is also true: If
three numbers a, b, and c satisfy the three relations
above, then it is possible to draw a triangle with side-
lengths a, b, and c. (To see this, draw a line segment of
length a, draw a circle of radius b with center one end-
point of the line segment, and a circle of radius c with
the second endpoint as center. The three relations
ensure that these circles intersect at a point P. Then P is
the apex of an a-b-c triangle with side-length a as the

base.) Thus the construction of a 7-9-12 triangle, for
example, is possible, but the construction of a 16-23-
40 triangle is not. (The number 40 is greater than 16 +
23.)

If any of the relations above is replaced by an equal-
ity, a = b + c, for instance, then the corresponding trian-
gle is degenerate, meaning that its three vertices lie in a
straight line. This observation can be used as follows:

If the distance: from Adelaide to Darwin is
3,200 km, from Adelaide to Brisbane is 1,200
km, from Brisbane to Canberra is 600 km, and
from Canberra to Darwin is 1,400 km, then
one can only deduce that all four cities lie on
the same straight line.

The triangular inequality can be rephrased as follows:

The length of any one side of a triangle is less
than half the perimeter of the triangle.

(Adding a to both sides of the first inequality, for
instance, gives 2a < a + b + c. The right quantity is the
perimeter of the triangle.) This characterization allows
one to quickly identify all triangles with integer sides
having a given perimeter (as made with matchsticks,
for instance). For example, with 11 matchsticks one
can make four triangles given by the triples 5-5-1, 5-4-
2, 5-3-3, and 4-4-3. (Each number is less than half of
11.) Surprisingly, the count goes down if one adds
another matchstick to the collection—there are only
three integer triangles with perimeter 12: 5-5-2, 5-4-3,
and 4-4-4. Mathematicians have shown that the num-
ber of triangles one can produce with n matchsticks is 

if n is even and if n is odd, where the 

angled brackets indicate rounding to the nearest integer.

triangular numbers See FIGURATE NUMBERS.

trigonometry Contrary to its name, the theory of
trigonometry is best motivated as a theory about CIR-
CLEs, not triangles. (This, in fact, matches the historical
development of the subject.) Beginning with the sim-
plest circle imaginable, namely, a circle of radius 1 cen-
tered about the origin, one defines two functions, sine
and cosine, simply as the x- and y-coordinates of a

( )n + 3
48

2n2

48

( )n + 3
48

2n2

48
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point on that circle located at a particular angle θ. It
has become the convention to measure angles in rela-
tion to the positive x-axis, with a positive angle inter-
preted as a counterclockwise turn and a negative angle
as a clockwise turn. The y-coordinate of a point on the
circle is the sine (abbreviated “sin”) of the angle at
which that point lies, and the x-coordinate is the com-
panion value cosine (abbreviated “cos”). Thus a point
P located at angle θ has coordinates P = (cos(θ), sin(θ)).
A point Q located at angle –θ has coordinates Q =
(cos(–θ), sin(–θ)).

We see from the diagram that the sine and cosine
functions satisfy the relations:

cos(–θ) = cos(θ)
sin(–θ) = –sin(θ)

Also, PYTHAGORAS’S THEOREM gives (sin(θ))2 +
(cos(θ))2 = 1. Following the convention of writing
(sin(θ))n as sinnθ, this reads:

sin2θ + cos2θ = 1

Note that adding or subtracting a multiple of 360°
(or, if using radian measure, any multiple of 2π) to an
angle does not change the location of the point on the
UNIT CIRCLE it represents. We have:

cos(θ + 360k) = cosθ
sin(θ + 360k) = sinθ

for any whole number k.

It is possible to compute the sine and cosine of
some simple angles. For instance, a point located at
angle θ = 0 degrees lies at position (1,0), and so cos(0)
= 1 and sin(0) = 0. Similarly, the point at angle θ = 90°
has coordinates (0,1) yielding cos(90) = 0 and sin(90)
= 1. A point at angle θ = 45° lies at one vertex of an
isosceles right triangle, showing that sine and cosine
values for 45° are equal. Pythagoras’s theorem tells

us that cos(45) = sin(45) = . Similarly, a point at 

angle θ = 60 lies at the apex of half an equilateral

triangle of side-length 1. We obtain cos(60) = and, by 

Pythagoras’s theorem, sin(60) = . These values are 

reversed for an angle of 30°.

Connection to Larger Circles and to Triangles
If one enlarges the diagram of the unit circle by a SCALE

factor r, then all lengths in that diagram increase by
that factor r. Consequently, the coordinates of a point
P′ located at an angle θ on a circle of radius r (still cen-
tered about the origin) is given by the values cos θ and
sinθ multiplied by r. We have P′ = (r cos θ, r sin θ).

Within the diagram lies a right triangle with one
angleθ and hypotenuse equal to r. The side opposite
angle θ has length r sinθ, and the remaining side adja-
cent to the angle has length r cos θ. Notice that the ratio
“opposite over hypotenuse” has value sin θ:

Similarly, the ratio “adjacent over hypotenuse” yields
cosθ:

opp
hyp

= =r
r

sin
sin

θ θ

√
–
3

––
2

1–
2

1––
√
–
2
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The sine and cosine of a positive and a negative angle

Relating trigonometry to triangles



As any right triangle can be viewed as coming from
a circle with radius equal to the length of the
hypotenuse, one can use these ratios as the definitions
of the sine and cosine of a given angle θ. This is the
approach usually taken in introductory texts on the
subject. Scholars have given names to all six ratios that
appear in a right triangle containing an angle θ:

Here tan stands for tangent, sec for secant, csc for cose-
cant, and cot for cotangent. These names come from
the following observation:

Let P be a point on the unit circle located at
an angle θ. Draw a vertical tangent line to the
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History of Trigonometry

From very early times, surveyors, architects, navigators,
and astronomers have made use of TRIANGLEs to determine
distances that could not be measured directly. This gave
birth to the subject we today know as trigonometry. There
are problems in the ancient Egyptian text, the RHIND PAPYRUS

of around 1650 B.C.E., that call for the determination of the
slope angles of pyramid faces using the equivalent of the
cotangent function we use today, and a Babylonian clay
tablet from around 1700 B.C.E. contains a table of secant val-
ues for the 15 angles between 30° and 45°. The Greek
philosopher THALES OF MILETUS (ca. 600 B.C.E.) is said to have
made use of similar triangles to determine the height of the
Cheops pyramid by comparing the length of its shadow with
the length of the shadow of a rod inserted in the ground.
ERATOSTHENES OF CYRENE (ca. 250 B.C.E.) computed the cir-
cumference of the EARTH using lengths of shadows and a
simple geometric argument on angles.

Greek astronomers of ancient times believed that the
stars and planets of the night sky moved along circular arcs
of a giant celestial sphere, and they worked to develop
models that would accurately predict the motion of these
objects on the sphere. Rather than phrase matters in terms
of angles, which proved to be difficult, Greek astronomers
chose to work with measures of straight lengths closely
related to angles, namely, the lengths of CHORDs of CIRCLEs.

Hipparchus of Rhodes (ca. 200 B.C.E.) constructed a
table of such chord lengths for a circle of circumference
21,600 = 360×60 units (which corresponds to 1 unit of cir-
cumference for each minute of arc).

In the second century C.E., the mathematician CLAUDIUS

PTOLEMY wrote the first extensive treatise on the theory of
chords and their use in obtaining information about “spheri-
cal triangles,” that is, triangles made by great circular arcs
on the surface of a sphere. In addition to working out theo-
rems, Ptolemy explained how to construct tables of chord
values, and presented his own list of chord values for all
angles between zero and 180° in half-degree increments.

The next important step in the development of
trigonometry occurred in India. Scholars of the fifth century
C.E. had by this time discovered that working with half-
chords for half-angles greatly simplified the theory of
chords and its applications to astronomy. As shown on the
right figure, this approach is almost the same construct as
the sine function of today. Whereas we think of sine as a
ratio of lengths (the length of the half-chord to the radius),
Indian scholars interpreted sine as the actual length of the
half-chord. They called this length jy –a-ardha or simply jy –a,.
Of course, the jy –a, value of an angle differed for circles of
different sizes. The scholars ARYABHATA, BH–ASKHARA II, and
others developed astonishingly sophisticated techniques
for computing half-chord values.

The Arab scholars of the 10th century took a great
interest in the work from India. Mathematician Abu al-Wafa
(ca. 950) of Baghdad systemized theorems and proofs of
Indian trigonometry and prepared his own comprehensive
table of half-chord values. He is also believed to have
invented the tangent function, which he called the
“shadow,” and possibly the secant and the cosecant func-
tions. (Still, all were thought of as specific lengths, not as
ratios of lengths.) Arabic scholars did not know how to



circle at the point M = (1,0). Extend the radius
OP further until it meets the tangent line at Q.
Then tan θ is the length of the tangent line-
segment MQ and sec θ is the length of the
secant to the circle OQ.

Dividing the Pythagorean identity sin2θ + cos2θ = 1
through by cos2θ and by sin2θ yields the identities:

1 + tan2θ = sec2θ
1 + cot2θ = csc2θ

The Addition and Subtraction Formulae
The diagram on the following page shows that two
congruent copies of a right triangle containing an angle
A and two copies of a second right triangle containing

an angle B can be arranged in the same large rectangle
in two different ways.

The AREA of the region surrounding the four trian-
gles, which must be the same for each diagram, can be
computed as the sum of areas of two rectangles or as
the area of a PARALLELOGRAM of base of length 1, and
height of length cos(A – B). This yields the difference
formula for cosines:

cos(A – B) = cos A cos B + sin A sin B

Substituting in –B for B, yields the addition formula for
cosines:

cos(A + B) = cos A cos(–B) + sin A sin(–B)
= cos A cos B – sin A sin B
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translate the Sanskrit word jy –a, into their texts and simply
wrote jiba as a close approximation.

In the 12th century, European scholars began translat-
ing the Arabic works and soon became acquainted with the
extensive theory of trigonometry. Misinterpreting jiba as the
Arabic word jaib for “cove” or “bay,” translators wrote the
Latin equivalent sinus as the name of the half-chord quan-
tity. From this we have the name “sine.”

The famous scholar FIBONACCI (ca 1170–1250) also trav-
eled extensively in the Arab countries and wrote of their
trigonometry in his famous work Practica geometriae.
Around 1464, the German astronomer and mathematician
REGIOMONTANUS (1436–76) compiled De triangulis omnimodis,
a compendium of trigonometry of that time. This work was
enormously influential, and over the following decades other
texts on the topic appeared. German mathematician Georg
Joachim Rhaeticus (1514–74) published, in 1551, Canon doc-
trinae triangulorum, which defined, for the first time, all six
basic trigonometric functions, and explained how to relate
them to right triangles without making any reference to cir-
cles. Danish physician Thomas Fincke (1561–1656), in his
work Geometriae rotundi, coined the terms tangent and
secant, and developed further fundamental trigonometric
formulae. The word trigonometry itself was invented by Ger-
man mathematician Bartholomaeus Pitiscus (1561–1613) in
his treatise Trigonometria: sive de solutione triangulorum
tractatus brevis et perspicuus. By this time, trigonometry
was certainly regarded as a worthwhile topic of mathemati-
cal pursuit, independent of applications to astronomy.

The subject also proved to be useful in the study of
algebra. French mathematician FRANÇOIS VIÈTE (1540–1603)

showed, for example, that one could solve certain cubic
equations by making trigonometric substitutions. His
famous formula for π can be derived with repeated use of
trigonometric functions.

Up until this point, sine values, as well as the other
trigonometric values, were still regarded as actual line
lengths and not ratios of lengths. After the invention of CALCU-
LUS, LEONHARD EULER (1707–83) came to realize that it is appro-
priate to think of sine not as a physical length, but rather as a
function of angle independent of length. He suggested that
this could be accomplished by scaling all circles under con-
sideration to unit circles, an operation that is equivalent to
dividing all quantities by the radius of the circle. Thus, for the
first time, all trigonometric quantities came to be thought of
as ratios, In 1748 Euler wrote Introductio in analysin infinito-
rum, which became the dominating textbook on the topic of
trigonometry for the century that followed. It essentially out-
lines the principles of trigonometry as we regard them today.

Chords and half-chords



Alternatively, place the angle A at the other corner of
each of the triangles containing this angle, and use the
same diagrams of four triangles arranged in a rectangle.
This yields the sum and difference formulae for sines:

sin(A + B) = sin A cos B + cos A sin B
sin(A – B) = sin A cos B – cos A sin B

These formulae also follow readily from EULER’S FOR-
MULA. We also have the following addition and sub-
traction formulae for the tangent function:

These are obtained by writing tan(A + B) = sin(A + B)/
cos(A + B), for instance.

See also DE MOIVRE’S FORMULA; DERIVATIVE; HIS-
TORY OF TRIGONOMETRY (essay); HYPERBOLIC FUNC-
TIONS; INVERSE TRIGONOMETRIC FUNCTIONS; TAYLOR

SERIES.

trinomial Any algebraic expression consisting of
three terms, such as a + b + c or the quadratic expres-
sion ax2 + bx + c, is called a trinomial.

See also MONOMIAL; BINOMIAL; POLYNOMIAL.

triple vector product There are two basic ways to
combine the DOT PRODUCT and CROSS PRODUCT opera-
tions on VECTORs to form a product of three three-
dimensional vectors a, b, and c.

The combination a · (b × c) is called the scalar
triple product of the three vectors. The result of this

operation is a real number (scalar) that is positive if a,
b, and c form a right-handed system and is negative if,
instead, they form a left-handed system. Changing the
order of the vectors in this triple product can change
the orientation of the system involved. We have:

a · (b × c) = b · (c × a) = c · (a × b) = –b · (a × c)
= –a · (c × b) = –c · (b × a)

The scalar triple product has a nice geometric inter-
pretation:

The absolute value of the scalar triple product
equals the volume of the PARALLELEPIPED

formed by the vectors a, b, and c.

To see this, note that b × c is a vector perpendicular to
the base of the parallelepiped formed by the two vec-
tors b and c. If θ is the angle between this vector and a,
then the height of the parallelepiped is the absolute
value of |a | cos(θ). Since, according to the cross prod-
uct, the area of the base is given by | b × c | we have that
the volume of the parallelepiped is: base × height =
|a || b × c || cos(θ)|, which is precisely the formula for the
absolute value of the dot product: a · (b × c).

An exercise in algebra shows that the scalar triple
product of three vectors can be computed by taking the
DETERMINANT of the 3×3 MATRIX whose rows are the
entries of the vectors a, b, and c, respectively.

The vector triple product of three vectors is defined
to be the combination: a × (b × c). The result is a vector
that lies perpendicular to b × c, as well as to a. As b × c
is perpendicular to the plane formed by b and c, it fol-
lows that a × (b × c) lies in the bc-plane.

See also RIGHT-HANDED/LEFT-HANDED SYSTEM.

trisecting an angle One of the problems of antiquity
(like DUPLICATING THE CUBE and SQUARING THE CIRCLE)
of considerable interest to the classical Greek scholars
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was the task of developing a general procedure that
would divide any given angle into three equal parts. The
origin of this problem is unknown, though it seems a nat-
ural question to ask given that the procedure of bisecting
any angle is relatively straightforward. (Given an angle
defined by two rays, draw the arc of a circle centered at
the vertex of the angle to find two points on the rays at
an equal distance from this vertex. Now draw circles of
fixed radius with centers at each of these two points. The
line connecting the vertex of the angle to the point of
intersection of the two circles is an angle bisector.)

Using a compass and a ruler, that is, a straightedge
with specific lengths marked along it, HIPPOCRATES OF

CHIOS (ca. 440 B.C.E.) developed a straightforward
general solution to the problem, as did ARCHIMEDES

OF SYRACUSE (ca. 287–212 B.C.E.) some 200 years
later. Around this time, for the sake of increased intel-
lectual challenge, scholars decided to add the restric-
tion that only the primitive tools of a straightedge with
no markings and a compass could be used in the solu-
tion. The difficulty of the problem increased signifi-
cantly. APOLLONIUS OF PERGA (ca. 262–190 B.C.E.)
found a solution to the problem using only the basic
tools under the assumption that a HYPERBOLA could be
drawn. Unfortunately, this was not deemed an admis-
sible assumption. The problem remained one of the
greatest unsolved challenges for two millennia.

In the early 1800s mathematicians focused on the
specific problem of trisecting an angle of 60°, or, equiv-
alently, the problem of constructing an angle of 20°
using straightedge and compass alone. In particular, if
such an angle can be produced, then it is possible to
construct a line segment of length x = cos20 (as one of
the legs of a right triangle with angle 20°). The trigono-
metric identity cos(3θ) = 4cos3(θ) – 3cos(θ), noting that
cos(60) = 1/2, shows that the length x must satisfy the
equation: 8x3 – 6x – 1 = 0.

The theory of CONSTRUCTIBLE numbers shows that
any quantity of rational length can be constructed with
straightedge and compass, and that if two lengths l1
and l2 can be produced, then so too can their sum, dif-
ference, product, and quotient, along with the square
root of each quantity. Mathematicians showed that any
solution x to the equation above cannot be rational
and, moreover, in 1837, French mathematician Pierre
Laurent Wantzel (1814–48) proved any such number x
is not constructible. Thus the general problem of tri-
secting an angle is unsolvable.

It is interesting to note that in the field of origami,
using only the tool of paper folding, it is possible to tri-
sect any given acute angle. Assume the angle is placed in
the bottom left corner A of a square piece of paper, with
one ray defining the angle being the bottom edge of the
sheet, and the other ray, call it L, a crease in the paper.
Fold a crease of some arbitrary height parallel to the
bottom edge and fold a second parallel crease half this
height. Call the distance between these two creases a,
and the point on the left edge at height 2a point B. Take
the bottom left corner of the sheet and fold the paper so
that point B lies on the crease L (call the location of this
point C) and so that the point A lies on the crease at
height a, to define a point D. The line connecting A to
D is precisely one-third of the original angle.

(To see why this works, notice that PYTHAGORAS’S
THEOREM establishes that line segments AD and BD
have the same length. By the symmetry of the folding,
length AC is the same as length AD, establishing that
triangle CAD is isosceles. Draw the bisector of this tri-
angle from A. This produces a diagram with three con-
gruent right triangles, showing that the angle at A is
indeed divided into three equal parts.)

Tristram Shandy paradox This paradox about the
infinite is derived from Lawrence Sterne’s 1760 novel
Tristram Shandy, which purports to be part of the pro-
tagonist’s autobiography. In it, the hero Shandy observes
that it has taken him two years to describe his first two
days, and so concludes that it will be impossible for him
to ever complete the autobiography in full. Philosopher
and mathematician BERTRAND ARTHUR WILLIAM RUS-
SELL (1872–1970) pointed out that if the author were
immortal, however, he would be able to complete his
goal, still writing at the same rate of progress. (Of
course, it would take an infinite amount of time to do
so.) Russell argued that a life of infinite length contains
just as many years as it does days.

See also CARDINALITY; HILBERT’S INFINITE HOTEL;
INFINITY; PARADOX.

trivial solution Any solution to a problem that is
obvious, or of no interest in the given context, is called
a trivial solution. For example, the famous equation of
FERMAT’S LAST THEOREM xn + yn = zn has trivial solu-
tions x = 0, y = 0, z = 0 and x = 1, y = 0, z = 1, and the 
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differential equation has 

trivial solution y = 0. Any solution to a problem that
may be of interest is called nontrivial. For example, the
equation x3 – 2x = 0 has nontrivial solution x = √

–
2.

The word trivial comes from the Latin word triv-
ium, the medieval name for the three least-complicated
of the seven subjects of study offered in medieval uni-
versities: grammar, rhetoric, and logic. (The remaining
four subjects—arithmetic, astronomy, geometry and
music—were known as the quadrivium.)

Mathematicians often use the word trivial to
describe a result that requires little or no effort to
prove. For example, that any multiple of 4 is divisible
by 2 would be deemed a trivial result.

truth table In the field of FORMAL LOGIC, proposi-
tional calculus is the name given to the analysis of truth-
values of complicated statements built up from simpler
statements linked together via the connectives and; or; if
… then …; and if, and only if (called, respectively, the
CONJUNCTION, the DISJUNCTION, the CONDITIONAL, and
the BICONDITIONAL). One can also consider the NEGA-
TION of a statement.

For example, the statement “The moon is round
and is made of green cheese” is a compound statement
made of two simpler statements (“The moon is round”
and “The moon is made of green cheese”) linked
together via the connective and. The truth-value of the
statement as a whole depends on the truth-value of the
two individual statements of which it is composed.

In symbols, statements are usually represented as
lowercase letters (p,q,r, for example), and the connec-
tives combining them are denoted:

p and q: p q
p or q: p ∨ q
If p then q: p → q
p if, and only if, q: p ↔ q
not p: ¬p

A compound statement is a statement built up
from simpler statements via connectives. For example,

p (q → r) and p ∨ (¬p)

are compound statements. (Parentheses are used to
indicate the order in which the connectives are to be

applied.) For example, if p is the statement “The moon
is round,” q the statement “The moon is made of green
cheese,” and r the statement “The moon is edible,”
then p (q → r) can be interpreted as, “The moon is
round AND, IF the moon is made of green cheese,
THEN it is edible.” The statement p ∨ (¬p) can be
interpreted as “The moon either is or is not round.”

A truth table is a table showing the truth-value of a
statement (typically a compound one) given the possi-
ble truth-values of the simple statements of which it is
composed. The truth-values of the basic connectives are
given as follows:

(The truth-values presented here are motivated by intu-
ition. See CONJUNCTION, DISJUNCTION, CONDITIONAL,
BICONDITIONAL, and NEGATION for details.) The truth-
value of any compound statement is now completely
determined. The procedure is mechanical. For example,
the compound statement p (q → r) has the follow-
ing truth table, given in bold:

∨

∨

∨

∨

y
d y
dx

dy
dx

xy y
2

2
2 0− + =sin( )

514 truth table

p q p q p ∨ q p → q p ↔ q

T T T T T T
T F F T F F
F T F T T F
F F F F T T

∨

p ¬p

T F
F T

p q r p (q —> r )

T T T T T T T T
T T F T F T F F
T F T T T F T T
T F F T T F T F
F T T F F T T T
F T F F F T F F
F F T F F F T T
F F F F F F T F

(4) (5) (1) (3) (2)
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(The numbers at the bottom of the table indicated the
order in which the columns were computed. Column 5
displays the possible truth-values of the statement p (q
→ r) as a whole.) Thus if we deem p and r to be true and
q false, for example, then we must conclude that p (q
→ r) as a as a whole is true. (Row three of the table.)

The truth table for p ∨ (¬p) is:

A compound statement that is true irrespective of the
truth-values of its component statements (that is, one
that has T for every row of its truth table) is called a
TAUTOLOGY. Thus p ∨ (¬p), for example, is a tautol-
ogy. One can also check that (p q) → (r ∨ p) is
another example of a tautology.

A compound statement that is always false is called
a contradiction. For example, p (¬p) and [(p → q)

p] → (¬q) are contradictions.
Two compound statements are logically equivalent

if they have the same truth-values in the corresponding
rows of their truth tables. For example, one can check
that p → q and (¬p) ∨ q have identical truth tables and
are hence logically equivalent. The notion of such
equivalence is linked to the biconditional.

See also ARGUMENT; LAWS OF THOUGHT.

turning point A point on a differentiable graph y =
f(x) at which f′(x) = 0 and f′(x) changes sign is called a
turning point. Such a point is either a local maximum
or minimum for the graph.

See also LOCAL MAXIMUM/LOCAL MINIMUM.

twin primes Two consecutive odd numbers, both of
which are PRIME, are called twin primes. For example,
the pairs 3 and 5, 17 and 19, and 10,006,427 and
10,006,429 are twin primes. Mathematicians suspect

that there are infinitely many pairs of twin primes, but
are unable to prove this for a fact. This remains a
famous unsolved challenge.

The largest twin primes known, as of the year
2002, are 665551035 × 280025 – 1 and 665551035 ×
280025 + 1.

Two primes that differ by 4, such as 19 and 23 for
instance, are called cousin primes. There are other infor-
mal names for pairs of primes that differ by six, eight,
10, and 12. The name “twin primes” was coined by the
German mathematician Paul Stäckel (1892–1919).

The triple “3, 5, 7” is the only set of three consecu-
tive odd numbers that are each prime. (Any triple of
consecutive odd numbers must contain one number
divisible by 3. If the first odd number in the triple is
one more than a multiple of 3, then the second odd
number of the triple is a multiple of 3. If the first num-
ber in the triple is two more than a multiple of three,
then the third odd number is divisible by 3.)

two-card puzzle The following classic puzzle is
often used to demonstrate the need for care when per-
forming PROBABILITY calculations:

Two cards—one red on both sides, the other
red on one side and black on the reverse—are
placed into a bag. The bag is shaken, and one
card is removed. You see that one face of this
card is red. What is the probability that the
reverse side of that card is black?

One is tempted to answer one-half—after all, the
chances of selecting the red/black card is 1 in 2. How-
ever, this line of reasoning overlooks a subtlety: the puz-
zle is really one of CONDITIONAL PROBABILITY, and we
are being asked to determine the probability of selecting
the double-colored card given that the face we see is
red. As there are three red faces, only one of which con-
tains black on its reverse side, we conclude that there is
actually only a one-third chance of this being the dou-
ble-colored card. This surprising conclusion can be veri-
fied by performing the experiment multiple times.

See also BAYES’S THEOREM; KRUSKAL’S COUNT;
MONTY HALL PROBLEM.

∨
∨

∨

∨

∨
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unary operation An operation or a rule that applies
to single elements of a set to produce other (but not
necessarily different) elements of the set is called a
unary operation. For example, the rule that takes the
absolute value of a real number can be thought of as a
unary operation on the set of real numbers. The opera-
tion that reflects geometric shapes about the x-axis is a
unary operation on the set of all geometric figures in
the plane. However, the rule that associates each geo-
metric figure with its area, for example, is not a unary
operation on this set, since the results are numbers, not
other geometric figures. A unary operation can be
thought of as a FUNCTION from a set to the same set.

See also BINARY OPERATION; OPERATION.

unique solution An equation is said to have a unique
solution if there is only one possible value of the vari-
able(s) described in the equation that make the equation
true. For example, the equation x + 4 = 7 has the
unique solution x = 3, and the equation a2 + b2 = 0 has
the unique solution, in the realm of the real numbers,
(a,b) = (0,0). On the other hand, the equation x2 – 9 = 0
has more than one solution (x could either be 3 or –3),
and the equation x44 + 2y6 = –7 has no real solutions.

Geometric arguments can sometimes be used to
determine whether or not a system of equations has a
unique solution. For example, the pair of equations

2x + 4y = 5
x + 3y = 8

represents two straight lines of different slopes. As two
nonparallel lines must intersect at a unique point,
there is a unique solution to the system. A system of
three equations representing three planes in space has
a unique solution only if those three planes meet at a
single point.

Sometimes a solution is called essentially unique if
the term uniqueness refers only to the underlying
structure of the problem and variations of the solution
do not affect mathematical content. For example, the 

solution to the DIFFERENTIAL EQUATION = x is 

essentially unique. One solution is x2, and any other

solution to this problem differs from this one only by
the addition of a constant. In MODULAR ARITHMETIC,
x = 43 is, essentially, the unique solution to:

x ≡ 3 (mod 5)
x ≡ 7 (mod 12)

Any other solution to the problem differs from 43 by a
multiple of 60.

unit circle The circle of radius 1 centered at the ori-
gin is called the unit circle. In CARTESIAN COORDINATES

it has equation x2 + y2 = 1.
The unit circle plays a fundamental role in the

development of TRIGONOMETRY: the cosine and sine of
an angle θ are defined to be the x- and y-coordinates,
respectively, of a point on a unit circle located at an

1–
2

dy–
dx
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angle θ from the x-axis. Consequently the PARAMETRIC

EQUATIONS of the unit circle are x = cos θ and y = sin θ,
with θ as the parameter.

unknown (indeterminate, variable) A quantity whose
value is to be determined is called an unknown. In
mathematics, finding the value of an unknown usually
requires solving an equation. For the equation 2x + 5
= 13, for instance, the variable x is the unknown. Alge-
bra shows that this unknown has value 4.

In ancient times, scholars described unknowns and
the equations relating them in words. Ancient Egyptian

scholars used the word heap for an unknown quantity,
and many other cultures simply used the word thing.
Arab scholar MUHAMMAD IBN M–

US
–
A AL-KHW

–
ARIZM

–ı
(ca. 780–850), from whose book title Hisab al-jabr
w’al muq–abala comes the word algebra, used the word
shai to mean an unknown quantity. When his famous
book was translated into Latin, the words res and
causa (depending on the translator) were used for shai.
German scholars of the Renaissance translated causa as
coss, which the English adopted, calling the study of
equations and unknown quantities “the cossic art.”
This name for algebra was popular for many decades.
It literally means “the art of things.”
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Vallée-Poussin, Charles-Jean de la (1866–1962) Bel-
gian Analysis, Number theory Born on August 14,
1866, in Louvain, Belgium, Charles-Jean de la Vallée-
Poussin is remembered as one of the two mathemati-
cians who independently proved the famous PRIME

NUMBER THEOREM first conjectured by CARL FRIEDRICH

GAUSS (1777–1855). The second mathematician to
prove the result was French mathematician JACQUES

HADAMARD (1865–1963). Even though both scholars
applied complex function theory to the ZETA FUNCTION

to establish the result, the two proofs utilized very differ-
ent logical arguments.

Vallée-Poussin studied mathematics at the Univer-
sity of Louvain, at the University of Berlin, and at the
University of Paris before accepting a faculty position
at Louvain, where he stayed for the remainder of his
career. He specialized in the field of ANALYSIS and was
awarded a prize of a couronne from the Belgium Royal
Academy for his work in DIFFERENTIAL EQUATIONs in
1892. At this time, Vallée-Poussin was studying newly
developed techniques in complex analysis and came to
the realization, in 1896, that all the pieces were in
place to develop a proof of Gauss’s prime-number con-
jecture. (Hadamard came to the same realization the
same year.) Vallée-Poussin also took matters further to
make significant contributions to the general study of
the Riemann zeta function and the Riemann hypothesis
as well as other concerns in analysis. In 1903 he pub-
lished a very popular text Cours d’analyse (A course on
analysis) on these topics, written for both the beginner
and the expert in the field. (Vallée-Poussin wrote the

introductory material in large font and interspersed dis-
cussions on advanced technical points in small font.) In
subsequent years he wrote four revised editions of the
text, as well as the book Intégrales de Lebesgue
(Lebesgue integration), which is seen as an extension of
the piece.

Vallée-Poussin received many honors throughout
his career, including election to the Belgian Academy,
the American Academy of Arts and Sciences, the Insti-
tute of France, and the American National Academy of
Sciences. In 1928, after holding the position of chair of
mathematics at the University of Louvain for 35 years,
the king of Belgium conferred upon him the title of
baron. Vallée-Poussin was also a commander of the
Legion of Honor and honorary president of the Inter-
national Mathematical Union. He died in Louvain on
March 2, 1962.

See also GEORG FRIEDRICH BERNHARD RIEMANN.

variable A symbol, such as x, y, z, or n, that is used
in algebraic equations to represent a quantity whose
value is not known or specified is called a variable. For
example, in the expression x2 + x = 6, the symbol x
represents an unknown number whose sum with its
square equals 6. (The methods of ALGEBRA can be
applied to show that x must either be 2 or –3.)

Variables are used to codify numeric operations. For
example, the operation of squaring the first 10 whole
numbers can be written “y = n2 for n = 1,2,3,…,10.”
In this expression, the value of the variable n is not
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specified, but we are informed that it must be a whole
number between 1 and 10 inclusive. The value of the
variable y also is not specified, but we are told that its
value depends on the chosen value for n. For this reason,
y is called a dependent variable: once a value for n has
been declared, a value for y then follows. The variable n
is called an independent variable because its value is not
hinged to the values of any other variables.

Two or more variables are also said to be indepen-
dent if the value chosen of one variable has no effect on
the possible value of the second. For example, if x rep-
resents the price of a pound of sugar on any given day,
and y the number of students taking math at college,
then x and y are independent variables. If each math
student were to buy a pound of sugar, then the total
money spent, z = xy, is a new variable. Here, z is not
independent of x or y.

In algebra, symbols are also often used to denote
quantities whose values are assumed known. For exam-
ple, in the expression ax + b = 0, it is assumed that a and
b are specified numbers, and that x is the value to be 

determined. (We have x = – .) Here we are following a 

convention, first established by RENÉ DESCARTES

(1596–1650), stating that lowercase letters at the end of
the alphabet (such as x, y, and z) are to represent
unknown quantities, and lowercase letters from the
beginning of the alphabet (such as a, b, and c) known
quantities. (The letters from the middle of the alphabet
must be interpreted via context.)

See also CONSTANT; FUNCTION; HISTORY OF EQUA-
TIONS AND ALGEBRA (essay).

variance See STATISTICS: DESCRIPTIVE.

vector In physics and engineering it is often appropri-
ate to describe physical quantities, such as velocity or
force, in terms of both magnitude and direction. For
example, wind speed is completely specified by a single
number that specifies its magnitude (wind strength),
but wind velocity refers to both the speed of the wind
and the direction in which the air is moving. Gravita-
tional force acts on objects on the Earth’s surface with
a magnitude (strength) dependent on the mass of the
object and in a direction pulling the object toward the
center of the Earth. Any quantity that is specified by
both a magnitude and a direction is called a vector.

Vectors are usually depicted as line segments with
arrows indicating the direction of the vector. The
length of the line segment indicates the magnitude of
the vector. For example, a planar vector of magnitude 2
in the direction east is drawn in the plane as a horizon-
tal line segment, 2 units long, with an arrow pointing
to the right. The location at which this line segment
starts is not important. All line segments 2 units long
pointing to the right represent the same vector. Thus
one is free to translate a vector to any starting position
in the plane, as long as the length of the vector and its
direction remain unchanged.

A vector is usually denoted in textbooks by bold-
face letters. For example, the symbol a might represent
one vector and b another. However, in some texts, and
often in handwritten notes, it is customary to underline
letters or use overbars or arrows to indicate that the
quantities represented are vectorial: a, –a, or →a. The
magnitude or length of a vector a is denoted |a| (or
sometimes as �a �).

A vector can be specified by an ordered pair of
numbers. For example, the vector of magnitude 2 in
the direction east can be represented as the pair: a =
<2,0>. This vector “carries particles” 2 units to the
right, and no units up or down. The vector b = <1,1>
“carries particles” 1 unit right and 1 unit up. This rep-
resents the vector of magnitude √

–
2 (the length of the

diagonal of the unit square) in the direction northeast.
The vector c = <–1,–1> is the same vector but pointing
in the opposite direction. The vector 0 = <0,0> is called
the zero vector and represents a quantity with no mag-
nitude or direction.

The use of angle brackets to denote vectors is com-
mon in physics and engineering, although some texts
use parentheses to represent vectors. This can be con-
fusing, for parentheses are also used to denote points in
the plane.

If P = (p1, p2) and Q = (q1, q2) represent two points
in the plane, then a vector that “carries a particle” from
position P to Q is given by: <q1 – p1,q2 – p2>. This vec-
tor is sometimes denoted

→
PQ. The point P is called the

initial point of the vector, and Q is the terminal point.
(However, keep in mind that a vector is not fixed at any
specific location. Any vector of the same length and
direction as

→
PQ represents the same vector, even though

the initial and terminal points might be different.)
If a = < a1,a2 > is a vector, then the numbers a1 and

a2 are called the components of the vector. The length

b–a
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of the vector is given by PYTHAGORAS’S THEOREM: |a | =
, which is just the DISTANCE FORMULA in this

new setting.
Vectors drawn in the plane are called two-dimen-

sional. Three-dimensional vectors, given by triples of
numbers, represent quantities with magnitude and
direction in three-dimensional space. SIR WILLIAM

ROWAN HAMILTON (1805–65) coined the term vector
for these quantities in his book Lectures on Quater-
nions. The name is based on the Latin word vectus, the
perfect participle of vehere, which means “to carry.”

Operations on Vectors
Vector addition combines two (or more) vectors to pro-
duce a new vector, called the resultant vector. To add
together two vectors a and b, position vector b (with-
out changing its magnitude or direction) so that its ini-
tial point lies at the terminal point of a. The resultant a
+ b is the vector that “carries particles” from the initial
point of a to the terminal point of b. Geometrically,
this is the vector that corresponds to the hypotenuse of
the triangle formed by a and b.

Algebraically, if a = <a1,a2> and b = <b1, b2>, then
a + b = <a1 + b1, a2 + b2>.(If a “shifts particles” a1 units
to the right and b shifts particles b1 units to the right,
then the combined effect a+b shifts particles a1 + b1

rightward. Similarly for the combined vertical motion.)
From either viewpoint we see that vector addition is
COMMUTATIVE:

a + b = b + a

One can also check that vector addition is ASSOCIATIVE:

a + (b + c) = (a + b) + c

and that the zero vector acts as an identity element: a +
0 = a = 0 + a.

Scalar multiplication multiplies vectors by numbers
to produce new vectors. In vector analysis it is custom-
ary to refer to numbers as scalars. If a is a vector and r
a scalar, then ra is the vector with:

• The same direction as a if r > 0
• The opposite direction as a if r < 0
• Length |ra| equal to |r| |a|

Algebraically, if a = <a1,a2>, then ra = <ra1 ra2>. Thus, 

for example, if a = <6,–8>, then a = <3,– 4> is the 

vector half as long, pointing in the same direction;
–a = <–6,8> is the vector of the same length but
pointing in the reverse direction; and 0a = <0,0> = 0
is the zero vector.

Vector subtraction is performed by adding one vec-
tor to the negative of the other. For example, if a and b
are vectors, then the vector a – b is the result of adding
–b to a. Geometrically, this corresponds to reversing
the direction of the vector b and placing this reversed
vector with initial point at the terminal point of a, as
illustrated below. We have: a + (–a) = 0.

The operations of vector addition and scalar multi-
plication satisfy a number of basic rules, yielding a
mathematical system called a VECTOR SPACE.

There are two standard types of multiplication on
vectors. These are the DOT PRODUCT and the CROSS

PRODUCT.
A vector of length 1 is called a unit vector. In two-

dimensional space there are two standard unit vectors
i = <1,0> and j = <0,1>. Any two-dimensional vector a
= < a1,a2 > can be written as a (linear) combination of
these two unit vectors:

a = < a1,a2 > = a1 <1,0> +a2 < 0,1 > = a1i+a2j

Similarly, in three-dimensional space, there are three
standard unit vectors: i = <1,0,0>, j = <0,1,0>, and k =
<0,0,1>. These too form a BASIS for the space of three-
dimensional vectors. Physicists often prefer to represent
vectors as combinations of the standard unit vectors.

See also ORTHOGONAL; PARALLELOGRAM LAW;
POSITION VECTOR; PROJECTION; TENSOR; TRIPLE VEC-
TOR PRODUCT; VECTOR EQUATION OF A LINE; VECTOR

EQUATION OF A PLANE; VECTOR FIELD; VECTOR SPACE.

vector equation of a line The equation of a LINE in
two-dimensional space can be written in the form:

1–
2

√a1
2 + a2

2
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y = mx + b. Unfortunately, there is no analogous equa-
tion for a line sitting in three-dimensional space.
Observe, however, that if P = (p1,p2,p3) and Q =
(q1,q2,q3) are two points on the line, then u =

→
PQ = <q1

– p1,q2 – p2,q3 – p3> is a VECTOR with direction along
the line, and any other point on the line can be found
by placing a scalar multiple of u at position P. That is,
the equation:

P + tu = (p1 + t(q1 – p1), p2 + t(q2 – p2), p3 + t(q3 – p3))
= (1 – t)P + tQ

with t varying over all real numbers, describes all the
points on the line. This is called the vector equation of
the line. (Technically, one should work with the posi-
tion vector p = <p1,p2,p3> rather than the point P =
(p1,p2,p3), so that the sum on the left of the above
equation is the addition of two like quantities.)

The formula y = mx + b, describing the equation of
a line in the plane, can also be thought of as a vector
equation. Here, points (x,y) on the line are given by:

(0,b) + x(1,m)

where (0,b) is one point of the line (the y-intercept) and
u = < 1,m > is the direction the line takes (1 step over
and m steps up).

vector equation of a plane The mathematical equa-
tion of a plane is a formula of the form:

ax + by + cz = d

where a, b, c, and d are numbers. Every point (x,y,z)
satisfying this equation is a point on a plane with VEC-
TOR n = < a,b,c > as NORMAL TO THE PLANE.

To derive this formula, let P = (p1,p2,p3) be a point
on a given plane and n = < a,b,c > a vector perpendicu-
lar to the plane. To find the equation for any other
point Q = (x,y,z) on this plane, note that the POSITION

VECTOR
→
PQ = < x – p1, y – p2, z – p3 > lies in the plane

and is consequently perpendicular to n. The DOT PROD-
UCT n ·

→
PQ is thus zero. This gives the equation:

< a,b,c > · < x – p1,y – p2,z – p3 > 
= a(x – p1) + b(y – p2) + c(z – p3) = 0

which can be rewritten:

ax + by + cz = d

where d is just a number.
Notice that the components of n appear as the

coefficients of the variables in the equation. This allows
one to quickly “read off” normal vectors to planes. For
example, the plane 2x – 3y + 4z = 10 has normal vector
n = < 2, –3, 4 >, as does the plane 2x – 3y + 4z = 6. The
plane y = 0 has normal vector n = < 0,1,0 >.

To find the equation of the plane with normal
vector n = < 2,2,1 >, say, and passing through the
point P = (5,–1,3), begin by writing the partial equa-
tion: 2x + 2y + z = d. To find d, substitute the coordi-
nates of the point P. In this example we have: d = 2.5
+ 2·(–1) + 3 = 11, and so this plane has equation 2x +
2y + z = 11.

vector field A function that assigns to every point
in space a VECTOR is called a vector field. For exam-
ple, wind currents on the Earth’s surface form a vector
field on the surface of the Earth: at every location
where there is a vector that describes the wind speed
and direction. In three-dimensional space there is a
gravitational vector field, given by the strength and
direction of gravitational force, that a unit mass
would experience when placed at each location in
space. The strength and direction of the force varies
from point to point.

The hairy ball theorem asserts that any smoothly
varying vector field across the surface of a sphere, with
vectors lying tangent to the sphere, must have at least
one vector that is the zero vector. It shows, for example,
that at any instant, there must be some location on the
Earth’s surface at which the horizontal wind speed is
zero. It also shows that it is impossible to comb all the
hairs of a tennis ball flat against the surface of the ball
in a smooth uniform fashion without ever producing a
cowlick. This second interpretation explains the name
of the theorem.

See also CURL; DIV.

vector space The set of two-dimensional or three-
dimensional VECTORs come equipped with two fun-
damental operations: vector addition and scalar
multiplication (that is, a multiplication by real num-
bers). These two operations obey the following rules:
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1. Vector addition is COMMUTATIVE:

a + b = b + a

2. Vector addition is ASSOCIATIVE:

a + (b + c) = (a + b) + c

3. There is a zero vector 0 such that:

a + 0 = a

4. Every vector a has a negative –a such that:

a + (–a) = 0

5. For every vector a we have:

1.a = a

6. If r is a scalar and a and b are vectors, then:

r(a + b) = ra + rb

7. If r and s are scalars and a is a vector, then:

(r + s)a = ra + sa

8. If r and s are scalars and a is a vector, then:

(rs)a = r(sa)

A vector space is any set V for which it is possible to
define a notion of addition (that is, a rule that com-
bines two elements of the set V to produce a new ele-
ment of V) and scalar multiplication (that is, a means
to multiply elements of V by numbers) so that the
above eight rules hold. Certainly the set of all two-
dimensional vectors forms a vector space, as does the
set of all three-dimensional vectors, but examples of
vector spaces need not be of this type. For example, let
V be the set of all functions from the set of all real
numbers to the set of real numbers. One can add any
two functions f and g:

(f + g)(x) = f(x) + g(x)

and multiply functions by numbers:

(rf)(x) = rf(x)

One checks that all eight rules above hold (here 0
is the function that takes the constant value zero), mak-
ing V a vector space. Also, the set of all 3×3 matrices is
a vector space (one can add two matrices and multiply
matrices by scalars), as is the set of all COMPLEX NUM-
BERS. (One can add two complex numbers and one can
multiply complex numbers by real numbers.)

Properties of vectors and their algebraic manipula-
tions have been studied extensively by scholars for cen-
turies. That mathematicians have isolated the eight key
properties that make vectors work the way they do
allows one to immediately apply all that is known
about vectors to any system, no matter how abstract it
may be, that satisfies these eight basic rules. For exam-
ple, mathematicians have proved that every vector space
must have a BASIS. Consequently, there must be a basis
for the set of all functions and for the set of all 3×3
matrices. Identifying one possible basis for the set of all
functions leads to a study of FOURIER SERIES.

See also GROUP; LINEARLY DEPENDENT AND INDE-
PENDENT.

velocity The study of motion examines three funda-
mental notions: distance, velocity, and acceleration.

The distance traveled by a moving object (also
called its displacement) is the total length of the path it
moved along. If the object travels along a straight-line
path, then its motion is said to be rectilinear. (Motion
that is not rectilinear is called curvilinear.) If, in addi-
tion to being rectilinear, an object travels equal dis-
tances D in equal periods of time T, then its motion is
said to be uniform. This is the easiest type of motion to 

analyze. In this setting, the ratio is constant and

is called the (uniform) velocity v of the object, v = , 

and the picture of a velocity-vs.-time graph is a hori-
zontal line at height v. The formula D = v × T, coinci-
dentally, is the equation for the area of the rectangle of
width T and height v. This shows, in this simple sce-
nario at least, that displacement equals the area under
the velocity graph.

If, in rectilinear motion, the speed of an object
changes with time, as when a car accelerates from rest to
highway speed, then the analysis of velocity and displace-
ment is more complicated. If f (t) denotes the position

D
–
T

D
–
T
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of the object at time t, then the quantity f(t + h) – f (t)
represents the change in position of the object from time
t to a later time t + h. The average velocity of the object
over this time period is given by:

Computing the average velocity over smaller and
smaller time intervals, that is, in taking smaller and
smaller values of h in the formula above, gives the
“actual” velocity of the object at time t as read by a
speedometer, say. We have:

This, of course, is the formula for the DERIVATIVE of the
distance function f(t).

For an object moving in a straight-line path,
the instantaneous velocity of the object is the
derivative of the distance formula. That is,
instantaneous velocity is the instantaneous rate
of change of position.

Now approximate the area under a velocity-vs.-time
graph as a collection of narrow rectangles. Since, as we
have seen, the area of each rectangle represents the dis-
tance traveled over a small period of time, the sum of
these areas gives an approximation of total distance
traveled by the object. Using narrower and narrower
rectangles gives better and better approximations. In
the LIMIT we have:

For an object moving in a straight-line path, the
INTEGRAL of the velocity function gives the total
distance traveled. That is, the distance traveled
is the area under the velocity-vs.-time graph.

If an object in motion follows a curved path, then
one usually assigns to velocity not just a magnitude,
but also a direction of motion. That is, velocity is con-
sidered a VECTOR. The term speed is used to denote the
distance traveled per unit time, and velocity is this
number along with an indication as to which direction
this motion occurs.

The rate of change of velocity is called accelera-
tion. Its magnitude is given by the first derivative of

velocity (and, consequently, the second derivative of
displacement). It too is considered a vector and is
assigned a direction.

Acceleration a is the first derivative of veloc-
ity and the second derivative of distance: 

Physicists often follow SIR ISAAC NEWTON’s notation of
denoting differentiation with respect to time with a dot
and of denoting displacement with the letter s. We
have: a = ·v = s̈.

If the position of a moving object is given by a set
of PARAMETRIC EQUATIONS x = x(t) and y = y(t), then
the position vector of the object is the vector
<x(t),y(t)>, its velocity is the vector < ·x(t), ·y(t)>, and its
acceleration is the vector < ẍ(t), ÿ(t)>.

Scientists at NASA sometimes use the term jerk to
denote the rate of change of acceleration. Astronauts
accelerating at a uniform rate will be pressed back into
their seats with a constant force, leading to a smooth
ride. Any change in the value of acceleration leads to
changes in force pressures.

Acceleration due to gravity, denoted g, is the accel-
eration with which an object falls freely to earth unim-
peded by air resistance. For many centuries it was
believed that more massive objects would fall faster
than lighter objects, but in 1638, GALILEO GALILEI

(1564–1642) demonstrated, by theory and by experi-
ment, that this is not the case: all falling objects acceler-
ate at the same rate irrespective of their mass. (If
acceleration were dependent on mass, at what rate
would two falling bodies of different mass tied together
fall?) The accepted value for g is 9.80665 m/sec/sec, but
this magnitude varies at different locations of the Earth
due to the fact that the Earth is not a perfect sphere.
(At the poles its value is 9.8321 m/sec2 and at the equa-
tor, 9.7799 m/sec2.)

Venn, John (1834–1923) British Logic, Probability
theory Born on August 4, 1834, in Hull, England,
logician John Venn is remembered for introducing and
popularizing the use of diagrams of overlapping circles
as a means to represent relations between sets. Although
such diagrams were used decades earlier by both GOT-
TFRIED WILHELM LEIBNIZ (1646–1716) and LEONHARD

a
d
dt

d
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= ( ) = ( )velocity distance
2

2
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h
f t h f t
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+ −
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EULER (1707–83) as a device to analyze ARGUMENTs, it
was not until the publication of Venn’s 1881 book
Symbolic Logic that the practice of using such dia-
grams became common. Today these diagrams are
named in his honor.

Venn graduated from Gonville and Caius College,
Cambridge, in 1857 after studying theology and the
liberal arts. After working as an ordained priest for
several years, Venn returned to the same institution in
1862 to accept a position as a lecturer in moral science.
During this time he pursued interests in logic and PROB-
ABILITY theory, and developed a “frequency theory” of
probability, which he published in 1866 in his Logic of
Chance. This work greatly influenced the development
of the theory of statistics. Fifteen years later Venn pub-
lished Symbolic Logic, which he followed with The
Principles of Empirical Logic in 1889. Venn was
elected a fellow of the ROYAL SOCIETY in 1883.

After the publication of his work on logic, Venn
changed interests and took to researching and writing a
comprehensive account of the history of Gonville and
Caius College. This was an all-consuming task, and
only one volume of the work was published before his
death, April 4, 1923.

Venn diagrams have had a profound effect on
modern mathematics education. They are often used as
a device for encouraging logical thinking at the early
stage of a child’s intellectual development and are a
standard feature in an elementary-school curriculum.

See also VENN DIAGRAM.

Venn diagram A diagram in which mathematical
sets are represented by overlapping circles within a
boundary representing the universal set is called a Venn
diagram. Such diagrams provide convenient pictorial
representations of relations between sets. For example,
in the diagram above right, a universal set U is repre-
sented by the interior of a rectangle, and two subsets A
and B of U as the interiors of two overlapping circles
within the rectangle. The intersection A ∩ B, the union
A ∪ B, the complement of B within A, denoted A – B,
and the universal complement of B, denoted B′, for
instance, are readily apparent.

For example, if U is the set of all insects, A is the
subset of all butterflies, and B is the subset of all blue
insects, then the shaded region A ∩ B represents all
blue butterflies, A ∪ B all insects that are either blue or

are a butterfly, A – B all butterflies that are not blue,
and B′ all insects that are not blue.

It is possible to demonstrate the validity of an
ARGUMENT with the aid of a Venn diagram. Consider,
for example, the following line of reasoning:

All logicians are mathematicians. Some philoso-
phers are logicians. Therefore, some philoso-
phers are mathematicians.

In the universal set of all people, let L be the set of
logicians, M the set of mathematicians, and P the set of
philosophers. The first premise of the argument asserts
that L is a subset of M, and the second that the sets P
and L have a nonempty intersection. This leads to a
Venn diagram of the form below.

It is now apparent that P and L can intersect only
inside of M thereby establishing the validity of the
conclusion. The German mathematician GOTTFRIED
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WILHELM LEIBNIZ (1646–1716) and the great LEON-
HARD EULER (1707–83) each used diagrams similar
to these to analyze arguments. In the context of FOR-
MAL LOGIC Venn diagrams are often called EULER

DIAGRAMS.
A single set A divides the universal set into two

disjoint pieces, A and its complement A′. Two subsets
A and B generally divide the universal set into four
disjoint pieces: A ∩ B, A′ ∩ B, A ∩ B′, and A′ ∩ B′.
(This is not the case, however, if A is a subset of B, B
is a subset of A, or if A and B do not intersect.) Three
subsets A, B, and C, in their most general arrange-
ment, divide the universal set into eight disjoint
pieces. (The diagram produced can be used to illus-
trate DE MORGAN’S LAWS.)

It is not possible to draw a diagram of four over-
lapping circles to represent four general subsets A, B,
C, and D in such a way as to make the 16 disjoint
pieces of the universal set apparent. For this reason,
Venn diagrams are usually only used to illustrate rela-
tions between just two or three sets.

See also SET THEORY; JOHN VENN.

Viète, François (Franciscus Vieta) (1540–1603) French
Algebra Born in Fontenay-le-Comte, France, in 1540
(his exact birth date is not known), scholar François
Viète is often referred to as “the father of algebra.” His
influential 1591 work In artem analyticam isagoge
(Introduction to the analytic arts) is noted as one of the
earliest Western texts on the topic. His practice of using
letters as symbols for unknowns represented a first step
toward the development of modern algebraic notation
and allowed him to make significant advances in the
subject. Viète also made important contributions to the
field of TRIGONOMETRY.

Viète was never employed as a professional mathe-
matician. After graduating from the University of
Poitiers in 1560, he began a career in legal practice, but
soon decided to change occupations by accepting a
position as a private tutor in 1564. Within this role he
pursued an interest in mathematics and soon developed
a reputation as a capable scholar. Viète occasionally
gave mathematical lectures at institutes of higher learn-
ing, and in 1589 was employed by King Henry IV of
France to decode secret messages being sent to the
enemy of the state, Philip II of Spain.

His first published work, Canon mathematicus
seu ad triangula (The mathematical canon applied to
triangles), appeared in 1579 and was intended as an
introduction to mathematical astronomy. In it Viète
used the six main trigonometric functions to solve
problems relating to plane and spherical triangles,
listed tables of values for these functions, and
explained the mathematics behind the construction of
those tables. Later, in 1593, Viète wrote two other
texts on the topic of trigonometry, Zeteticorum libri
quinque (Algebra volume five), mimicking the fifth
book in DIOPHANTUS’s Arithmetica, and Variorum de
rebus mathematicis responsorum (Various mathemati-
cal problems), which contains his famous formula for
π as an infinite product of radicals. He also lectured
on the classical problems of DUPLICATING THE CUBE

and TRISECTING AN ANGLE.
Today Viète is best remembered for his advances in

algebra as presented in his famous 1591 text Isagoge,
which clearly demonstrated the value of manipulating
letters as symbols for both known and unknown quan-
tities as a means to solve algebraic problems. Viète also
introduced improved notation for squares, cubes, and
other powers, as well as coined the term coefficient.
With his new approach to algebra, Viète successfully
tackled a number of problems that classical scholars
had been unable to solve. Viète died in Paris, France,
on February 23, 1603.

See also COEFFICIENT; VIÈTE’S FORMULA.

Viète’s formula (Vieta’s formula) In 1593 French
mathematician FRANÇOIS VIÈTE discovered the follow-
ing remarkable formula relating π to an infinite prod-
uct of radicals:

His formula is established by making repeated use of
the double angle formulae from TRIGONOMETRY:

sin(2θ) = 2sin(θ) cos(θ)
cos(2θ) = 2 cos2(θ) – 1

Begin by writing:
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Then:

Using the double-angle formula for cosine, this can be
rewritten:

still with n radical terms. Put . Since 

and , this gives:

and since, according to the SQUEEZE RULE, 

as x → 0, Viète’s formula follows.
See also PI, WALLIS’S PRODUCT.

vinculum In the 15th century it was popular to place
a horizontal line above, or sometimes below, a group of
terms in an expression to indicate that those terms were
to be treated as a unit in the evaluation of that expres-
sion. The horizontal line was called a vinculum. Today
we use parentheses to indicate the order of operations.
For example,

x – ——y + z = x – (y + z)

Use of the vinculum first appeared in the 1484
manuscript Le triparty en la science des nombres (Tri-
party in the science of numbers) written by French
physician Nicola Chuquet (1445–88). As printing
presses were developed, parentheses were adopted so as
to ease typesetting.

Today a vinculum is primarily used to indicate 

repeating decimals (for example, = with 

the quantity 142857 regarded as a repeating unit) and to
denote the complex conjugate of a COMPLEX NUMBER.

The horizontal bar used in writing fractions is also
sometimes called a vinculum. It too can be thought of
as a device for indicating which terms are to be treated 

as a unit. For example, in the expression the 

entire quantity “x + y” is to be divided by three, not x

alone nor y alone. Thus = + .

volume Loosely speaking, the volume of a three-
dimensional object or region is “the amount of space it
occupies.” Such a definition appeals to intuitive under-
standing. In general, however, it is very difficult to
explain precisely just what it is we mean by “space”
and the “amount” of it occupied. As with the notion of
AREA, this is a serious issue, as demonstrated by the
Banach-Tarski paradox that arises in the careful study
of that topic.

In any case, given some kind of understanding of
what we mean by “area,” it is natural to then define the
“volume” of a simple object with vertical walls of height
h and a base of area A to simply be the product A × h:

volume = area of base × height

For example, a rectangular box a units wide, b units
deep, and c units high has a base of area a × b and thus
a volume given by a × b × c. A cylinder of height h with
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circular base of radius r has base area πr2 and thus a
volume πr2h.

This point of view imagines volumes as well approxi-
mated by stacks of thin layers of “volume,” each a hori-
zontal cross-section of solid that is the same size and
shape as the base. Like a deck of 52 cards stacked to pro-
duce a rectangular box, the volume of a stack of sheets
does not change if the pile is skewed: the shape of the
deck may change, but its volume does not. This observa-
tion was first noted by 17th century Italian mathemati-
cian BONAVENTURA CAVALIERI (1598–1647). It leads to a
general principle, today called CAVALIERI’S PRINCIPLE:

Solids of equal height have equal volumes if sec-
tions made by planes parallel to the base at the
same distance from the base have equal areas.

Techniques of INTEGRAL CALCULUS are used to
compute volumes. The methods here are really no dif-
ferent than approximating solids again as stacks of thin
cards or, perhaps, as collections of small boxes (whose
volumes are known) and taking the LIMIT as better and
better approximations are made.

For example, suppose a solid has height h and that
the area of a cross section made by a plane parallel to the
base at height x is A(x). Imagine we slice the solid into
thin “cards” at positions 0 = x0 < x1 < … xn–1 < xn = h.
Then the volume V of the solid can be well approximated
as the sum of volumes of cards of base area A(xi) and 

width xi+1 – xi, that is, . Taking 

the limit as more and more values between 0 and h are
chosen (that is, as thinner and thinner cards are used)
gives the true volume of the solid as an integral:

V = ∫h
0 A(x)dx

For instance, the cross section of a sphere of radius r at
a distance x from the plane running through the equa-
tor is a circle of radius and area π(r2 – x2).
Thus the volume of a sphere of radius r is:

Any cross section of a CONE with base of an arbi-
trary shape is a scaled version of the same planar shape.
At half the distance from the apex of the cone, the cross
section has area one-quarter the area of the base. At
one-third the distance from the apex, the cross section
has area one-ninth the area of the base. In general, if the
area of the base is A and the height of the cone is h,
then the area of the cross section at a distance x from 

the apex has area A(x) = A × . The volume of any 

cone with base of area A and height h is thus:

The volume of a FRUSTUM can be calculated the same
way.

The word volume comes from the Latin volumen,
meaning “scroll,” where the size or the bulk of a book
eventually led to the use of the word for the size or
bulk of any object.

See also DOUBLE INTEGRAL; SCALE; SOLID OF

REVOLUTION.
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Wallis, John (1616–1703) British Calculus Born on
November 23, 1616, in Kent, England, mathematician
John Wallis is remembered for his substantial contribu-
tions to the early development of CALCULUS, which laid
the groundwork for SIR ISAAC NEWTON (1642–1727)
to later fully develop the subject. His contributions to
mechanics also helped Newton formulate the laws of
motion. He was considered the leading English mathe-
matician of his time.

Wallis had little exposure to mathematics during
the early part of his life. He received a bachelor of arts
degree in 1637 and a master’s degree in 1640 in theol-
ogy and was ordained as a minister in 1640.

By happenstance, while working as chaplain during
the time of civil unrest in England, Wallis discovered
that he could easily decipher the coded messages parish-
ioners shared with him. This demonstrated a talent for
mathematical thinking, and Wallis was soon hired by
the Parliamentarians to decode Royalist messages.

During this time Wallis read the works of
JOHANNES KEPLER and BONAVENTURA CAVALIERI and
others, and developed an interest to expand on the
ideas of infinitesimal calculus as developed by these
authors. In 1656 Wallis wrote his influential text Arith-
metica infinitorum (Infinite series), which contains, 

among many things, his famous product formula for . 

Wallis also studied and wrote on the topics of CONIC

SECTIONS and ALGEBRA. He was the first to explain
the meaning of zero, negative, and fractional powers 

π
–
2
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John Wallis, an eminent mathematician of the 17th century,
used infinitesimals to develop important techniques of compu-
tation. Sir Isaac Newton built much of his development of cal-
culus on Wallis’s ideas. (Photo courtesy of the Science
Museum, London/Topham-HIP/The Image Works)



and was one of the first scholars to permit 

negative and complex solutions to equations. He
argued that the number i, representing the square
root of –1, does have a place in real-world applica-
tions of mathematics. Wallis also introduced the sym-
bol ∞ for infinity.

In addition to working as a research mathemati-
cian, Wallis also made significant contributions as a
mathematical historian. He restored several ancient
Greek texts and presented a comprehensive survey of
the history of algebra in his 1685 work Treatise on
Algebra. He died in Oxford, England, on November
8, 1703.

Wallis helped shape the entire course of mathemati-
cal work in England for the latter part of the 17th cen-
tury and paved the way for Newton to develop his
ideas. As a result, Britain became the center of mathe-
matical research in the late 1600s and remained so
until the influence of LEONHARD EULER (1707–83) and
members of the BERNOULLI FAMILY moved the focus
back to continental Europe in the mid 1700s.

See also WALLIS’S PRODUCT.

Wallis’s product In 1656 English mathematician
JOHN WALLIS discovered the following remarkable 

expression for the number as an INFINITE PRODUCT:

He discovered this result while attempting to compute
INTEGRALs of the form

with n not necessarily an integer. (For example, when 

n = , four times this integral equals the area of a 

circle.) The work of LEONHARD EULER (1707–83) on
the ZETA FUNCTION also leads to a proof of Wallis’s
product, one that is relatively straightforward to follow.

Wallis’s formula led English colleague LORD

WILLIAM BROUNCKER (1620–84) to discover the follow-
ing astonishing CONTINUED FRACTION formula for π:

See also PI.

Weierstrass, Karl Theodor Wilhelm (1815–1897)
German Analysis Born on October 31, 1815, Ger-
man scholar Karl Weierstrass is remembered as a lead-
ing figure in the field of mathematical ANALYSIS.
Throughout his career he emphasized the need for
absolute rigor, and, following the efforts of AUGUSTIN-
LOUIS CAUCHY (1789–1857), worked to introduce very
precise definitions of fundamental notions in the study
of CALCULUS. He developed the famous ε – δ definition
of a LIMIT that we use today, as well as precise clarifica-
tion of the meaning of continuity, convergence, and of
DIFFERENTIALs. To illustrate that intuitive understand-
ing alone never suffices, Weierstrass presented exam-
ples of pathological functions that are continuous but
have no well-defined tangent lines. Weierstrass also
solved the famous ISOPERIMETRIC PROBLEM with his
“calculus of variations.”

Weierstrass entered the University of Bonn in 1834
to pursue a degree in law and finance, but he never
completed the program, choosing to follow instead a
study of mathematics at the Theological and Philosoph-
ical Academy of Münster in 1839. He began his aca-
demic career as a provincial mathematics schoolteacher.

While teaching, Weierstass published a number of
papers on the study of real and complex functions. The
bulk of his early work went unnoticed by the mathe-
matics community, and it was not until the publication
of his 1854 piece Zur Theorie der Abelschen Functio-
nen (On the theory of Abelian functions) that Weier-
strass’s genius as a mathematician was recognized. He
was immediately awarded an honorary doctoral degree
from the University of Königsberg and was granted a
year’s leave from the school to pursue advanced mathe-
matical study. He never returned to school teaching,
however. In 1856, at the age of 40, Weierstrass
accepted a professorship at the University of Berlin,
which he retained for the remainder of his life.
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Weierstrass made significant contributions to the
study of POWER SERIES and their convergence, and to
FOURIER SERIES and their applications to problems in
geometry and mechanics. In providing a precise defini-
tion of a limit, Weierstrass completely revolutionized
mathematical understanding of the founding principles
of CALCULUS and modern analysis. In a very real sense,
Weierstrass set the standards of rigor that all mathe-
maticians still follow today.

In the study of CONVERGENT SERIES, the compari-
son test shows that the function:

converges for every value of x. (Compare with series 

) Weierstrass was able to show, moreover, that 

this function is continuous, but that it has no derivative
at any irrational value of x. This was perhaps his most
famous example of a pathological function that is con-
tinuous but possesses no meaningful tangent line at
almost all points. That such functions exist, as Weier-
strass pointed out, indeed demonstrates the need for
uncompromising care in the development of details in
all theoretical work. Jules Henri Poincaré (1854–1912)
admired his “unity of thought” on this matter.

Weierstrass died in Berlin, Germany, on February
19, 1897.

well-ordered set An ORDERED SET A is said to be
well ordered if every nonempty subset of A has a small-
est member. For example, the set of natural numbers is
well ordered: for any set of natural numbers one cares
to describe, there will be a smallest member of that set.
On the other hand, the set of all integers is not well
ordered. For example, the subset of negative integers
has no smallest member.

In 1904 German mathematician ERNST FRIEDRICH

FERDINAND ZERMELO (1871–1953) proved that any
ordered set can be made well ordered if one is willing
to change the ordering on that set. For example, the set
of all integers can be made well ordered if one arranges
them as follows:

0, 1, –1, 2, –2, 3, –3, 4,…

(The “smallest” element in the set of all negative inte-
gers, for instance, is now –1.) Zermelo needed to invoke
a controversial AXIOM OF CHOICE to prove this claim.

Whitehead, Alfred North (1861–1947) British Logic,
Theoretical physics, Philosophy Born on February 15,
1861, in Kent, England, Alfred Whitehead is best remem-
bered in mathematics for his three-volume work Prin-
cipia Mathematica, written in collaboration with English
logician BERTRAND ARTHUR WILLIAM RUSSELL

(1872–1970). Whitehead and Russell were hoping to
derive the whole of mathematics from purely logical prin-
ciples.

Whitehead entered Trinity College, Cambridge, in
1880 to study applied mathematics. He worked and
taught in this field for 12 years before his interests even-
tually turned toward pure mathematics and the founda-
tional principles of the subject. In 1891 he commenced
work on Treatise on Universal Algebra, a project that
took him seven years to complete. At the same time,
Bertrand Russell entered the college as an undergradu-
ate, and Whitehead immediately recognized him as a
brilliant philosopher and capable mathematical scholar.
Their collaboration on Principia Mathematica began in
1900 and was initially intended to be a one-volume
work. Russell’s 1901 discovery of his famous set-theory
paradoxes, however, forced the two men to reevaluate
the project and extend the work to a three-volume trea-
tise. These volumes were published from 1910 to 1913.

During this time Whitehead also published other
material, including texts on projective and descriptive
geometry and a general popular overview of mathemat-
ics, An Introduction to Mathematics. Whitehead also
wrote pieces on the philosophy of science, and offered
an alternative viewpoint to ALBERT EINSTEIN’s theory
of relativity in his 1922 book The Principle of Relativ-
ity. The work was not well understood and has been
largely ignored.

Whitehead worked as a lecturer at Cambridge for
over 30 years before accepting a position as chair of phi-
losophy at Harvard University in 1924. He remained
there until his retirement in 1937. He died in Cambridge,
Massachusetts, 10 years later on December 30, 1947.

whole number A NATURAL NUMBER is sometimes
referred to as a whole number. Matters are confusing
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because many scholars in mathematics also like to refer
to zero as a whole number, and some also like to
regard any negative integer as a whole number. There is
no standard convention in place in this regard. It is cer-
tain, however, that no mathematician would regard a
number that is not an integer a whole number.

See also NUMBER; NUMBER THEORY.

Wiles, Andrew John (1953– ) British Algebraic
number theory Born on April 11, 1953, in Cam-
bridge, England, mathematician Andrew Wiles gar-
nered international fame in 1994 as the first person to
solve one of the most elusive and difficult mathemati-
cal problems of all time, FERMAT’S LAST THEOREM.
This notorious problem, posed by French number the-
orist PIERRE DE FERMAT (1601–65), states that the
equation xn + yn = zn has no positive integer solutions
if n is an integer greater than 2. Finding a proof of
this apparently simple claim has proved to be an
extraordinarily difficult challenge, one that has frus-
trated professional and amateur mathematicians for
well over 300 years.

Ever since first reading of Fermat’s last theorem at
the age of 10, Wiles dreamed of solving it. As a young-
ster he first tried approaches that he thought Fermat
might have followed in thinking about the theorem
himself. This proved to be useless. At college, Wiles
studied the work of the great 18th- and 19th-century
scholars who had worked on the problem, hoping to
glean any insights as to how one might approach the
challenge. Pursuing mathematics further, Wiles entered
Clare College, Cambridge, and in 1980, was awarded a
Ph.D. in mathematics. In 1982 Wiles traveled to the

United States to take a professorship at Princeton Uni-
versity, New Jersey.

Although Wiles’s thesis and early research work
was not directly connected to solving Fermat’s last the-
orem, Wiles later learned of some important develop-
ments that connected the possible solution of the
problem with some new approaches in elliptic curve
theory, the topic of his thesis. Upon this news, Wiles
abandoned all unrelated research interests to focus
exclusively on solving the theorem. Working for 7 years
straight, essentially in seclusion, Wiles modified and
adapted newly developed advances in many disparate
fields to forge a path that would, hopefully, lead to a
solution to the problem. In 1993, amidst a flurry of
great media excitement, Wiles announced to the mathe-
matical community that he had succeeded. Subsequent
careful review of his work, however, revealed a subtle,
but damaging, error, and all was thought to be lost.

After another 18 months of concerted effort, with
the assistance of colleague Richard Taylor of Cam-
bridge University, Wiles managed to find a way to cir-
cumvent the error and produce, at long last, an
unflawed proof of the famous result. The proof of the
theorem appears in a 1995 volume of the Annals of
Mathematics. It represents one of the greatest intellec-
tual achievements of the 20th century.

Wiles won many awards for his achievement,
including the Wolf Prize in 1995, the Wolfskehl Prize in
1997, the American Mathematical Society Cole Prize in
1997, and the King Faisal Prize in 1998. Because he
was over the age limit of 40, Wiles did not receive a
FIELDS MEDAL for his work, but he was honored with a
silver plaque during the 1998 Fields Medal ceremony.
Wiles currently resides in Princeton, New Jersey.
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Zeno of Elea (ca. 490–425 B.C.E.) Greek Philosophy
Born in Elea, Luciana (now southern Italy), Greek
philosopher Zeno is remembered for his invention of a
number of PARADOXes that significantly influenced, and
challenged, the Greek perception of magnitude,
motion, and continuity. The question of whether or not
matter and time are composed of fundamental indivisi-
ble parts (“atoms”) was of great interest to philoso-
phers at the time. Zeno managed to devise a variety of
convincing arguments that seem to prove that any view
one wishes to adopt cannot be correct. Four of his
paradoxes in particular garnered certain notoriety.
They remained unresolved for over two millennia.

Essentially nothing is known of Zeno’s life, except
for what can be gleaned from the writings of PLATO in
his dialogue Parmenides. There we learn that Zeno
studied at the Eleatic School of Philosophy under the
guidance of the founder Parmenides. This sect analyzed
the concept of monism, the idea that “all is one” and
that change and motion are simply illusions and are
not part of an eternal reality. It is believed that Zeno
wrote just one text, his collection of 40 paradoxes on
the nature of time, space, and motion. The text, unfor-
tunately, has not survived, and we learn of its content
through the writings of others. ARISTOTLE describes the
four famous paradoxes in his work Physics.

See also ZENO’S PARADOXES.

Zeno’s paradoxes In his studies, Greek philosopher
ZENO OF ELEA proposed 40 PARADOXes that challenge

our understanding of time, space, and motion. Four of
his paradoxes have garnered considerable attention for
being particularly troublesome.

With regard to time and space, there are two pos-
sibilities: either such magnitudes can be divided into
smaller and smaller parts an unlimited number of
times (that is, space and time each form a continuum),
or there is some fundamental indecomposable unit of
each that can no longer be divided (akin to the notion
that matter is composed of indivisible particles). The
first two of Zeno’s famous paradoxes argue that
motion is impossible if the first point of view is
adopted, while the last two argue that motion is again
impossible if the latter perspective is taken. His para-
doxes are the following:

1. Dichotomy: Assume that time and space
each are infinitely divisible.

In order to walk across the room, one must first reach
the midway point. But to do that, one must reach the
point one-quarter of the way along. But to get this far,
one must pass through the point one-eighth of the way
across, and before that, the point 1/16th the way along.
As this division can be done indefinitely, it seems then
we can never start our walk across the room—we can
never reach a first point of our journey. Motion is
therefore impossible.

2. Achilles and the Tortoise: Assume that time
and space each are infinitely divisible.
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Achilles and a tortoise take part in a race in which
the tortoise is given a head start. Consider Achilles’
circumstance. To overtake the tortoise, he must first
reach the tortoise’s starting position. By then, the tor-
toise will, of course, have moved on to a new posi-
tion. To overtake the tortoise, Achilles must reach
this second position, and, again, by the time he does
so the tortoise will have moved farther along. Contin-
uing this way, we see that it is impossible for Achilles
to ever overtake the tortoise, no matter how swiftly
he moves.

3. The Arrow Paradox: Assume that time and
space each are composed of discrete funda-
mental units.

Consider an arrow in flight. At any one fundamental
unit of time, the arrow occupies a particular instanta-
neous position in space. At this moment, it is indistin-
guishable from a motionless arrow occupying the same
location in space during that same unit of time. How
then is it that motion is perceived?

4. The Stadium Paradox: Assume that time
and space each are composed of discrete
fundamental units.

Imagine two runners in a stadium moving in opposite
directions from the same starting position. Suppose the
runners each move at a speed equivalent to one funda-
mental distance of space for each fundamental unit of
time. Ask now, “What does a runner see when he looks
behind his shoulder?” The answer: his opponent mov-
ing 2 units of space in 1 unit of time. We can only con-
clude that there must be a unit smaller than the
supposedly indivisible unit of time that corresponds to
just 1 unit of this motion.

Some comments are in order. It is worth noting
that many texts have attempted to resolve Zeno’s
dichotomy paradox by arguing that the fact that we
can walk across a room proves that the infinite sum 

(SERIES) + + + … converges to the finite value 

1. This, however, is not relevant to the argument pro-
posed in this first paradox. Zeno is suggesting instead
that it is impossible to build such an infinite sum by
starting at the “wrong end,” as it were. (The construc-
tion of an infinite sum, however, is appropriate to ana-
lyze the second paradox.)

Some scholars suggest that Zeno’s third paradox is
an important first step in the study of INFINITESIMALs
and issues of DIFFERENTIAL CALCULUS. The standard 

formula for velocity is v = , where d is the distance 

traveled and t the time taken to do so. At a particular 

instant, this leads to the meaningless equation v = . 

Here, it is said, Zeno is pointing out the mathematical
difficulty of infinitesimals, the same problem that was
to haunt the inventors of calculus two millennia later.

Zermelo, Ernst Friedrich Ferdinand (1871–1953)
German Set theory, Physics Born on July 27, 1871, in
Berlin, Germany, mathematician Ernst Zermelo is
remembered for founding axiomatic SET THEORY. In
1908 he published a set of seven axioms designed to
overcome the paradoxes posed by BERTRAND ARTHUR

WILLIAM RUSSELL (1872–1970) in set theory, and to
provide, for the first time, a rigorous and logical foun-
dation for the developing subject. Zermelo’s axioms,
although later modified by other mathematicians, have
remained the starting point on which much continued
work on this topic has been based.

Zermelo received a doctorate in mathematics from
the University of Berlin in 1894 after completing a the-
sis exploring issues in calculus, the calculus of varia-
tions, and their applications to physics. He continued
work in this area at the university for an additional 3
years before moving to Göttingen to study hydrody-
namics. He was awarded a lectureship at Göttingen for
his outstanding research in this field.

At the time elsewhere in Europe, mathematicians
were attempting to make sense of the controversial work
put forward by German mathematician GEORG CANTOR

(1845–1918). The German mathematician DAVID

HILBERT (1862–1943), in his famous Paris lecture of
1900, cited the resolution of Cantor’s CONTINUUM

HYPOTHESIS as the most challenging and important ques-
tion of the 20th century. Zermelo was captivated by the
problem when he learned of it, and began devoting all
his time and efforts to solving it. He soon realized that a
first step toward solving the general conjecture would be
to establish a second of Cantor’s claims, namely, that
any set can be a WELL-ORDERED SET.

Zermelo published his first collection of results on
this topic in 1901 with the paper “Über die Addition
transfiniter Cardinalzahlen” (On the addition of
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transfinite cardinals), and 2 years later succeeded in
proving the well-ordering conjecture in his 1904 article
“Beweis, dass jede Menge wohlgeordnet werden kann”
(Proof that every set can be well ordered). His success
garnered him international fame and recognition as a
brilliant mathematician. The University of Göttingen
immediately awarded him a full professorship.

In 1905, leaving further work on the continuum
hypothesis aside, Zermelo began the task of axiomatiz-
ing set theory. By identifying a small set of basic
assumptions about the topic, he hoped to resolve some
of the paradoxes about infinite sets that were arising in
the subject. Unfortunately, he found it necessary to
include an “axiom of infinity” asserting, essentially, that
infinite sets exist, along with the extraordinarily contro-
versial AXIOM OF CHOICE, which asserts that it is always
possible to select, in one fell swoop, one object from
each set in any infinite collection of sets. Mathemati-
cians were uncomfortable with each of these assump-
tions at the time. Moreover, despite his efforts, Zermelo
was unable to prove that the axioms he put forward
were free from contradictions. Other mathematicians
then began to work on this task, and some 15 years
later, in 1922, mathematicians Adolf Fraenkel and Tho-
ralf Skolem independently developed a refined system of
10 axioms that were deemed of sufficiently good stead.

Zermelo left Göttingen in 1910 to take an
appointment as the chair of mathematics at Zurich
University, where he stayed for 6 years. Zermelo spent
the remainder of his life in Freiburg. He died there on
May 21, 1953.

See also RUSSELL’S PARADOX.

zero (naught) The counting number, denoted 0, used
to signify that no objects are present is called zero. This
number has the arithmetical property that its addition
to any other number does not change that number:
a + 0 = a = 0 + a for all values a. Thus zero serves as the
additive IDENTITY ELEMENT in arithmetic. Zero is the
only real number that is neither POSITIVE nor negative.

It was only recently in the history of mathematics
that zero was recognized as a valid and important math-
ematical entity. In times of antiquity numbers were
thought only to represent counts or magnitudes of quan-
tities. Thus if there were no objects to be counted, there
was no number to consider (and so speaking of zero as a
number consequently had no meaning). The ancient

Egyptian and Greek scholars never used zero in their
computations. The ancient Babylonians were the first to
utilize a notion of zero by using it, in some sense, as a
placeholder when expressing large numbers (much as we
use zeros today to distinguish between 102 and 12.) The
Hindu mathematician BRAHMAGUPTA (ca. 598–665) is
credited today as being the first scholar to acknowledge
zero as a valid number and use it in arithmetical compu-
tations. His idea was later expanded upon by MUHAM-
MAD IBN M–

US
–
A AL-KHW

–
ARIZM

–ı (ca. 780–850) in his
famous development of a theory of algebra. Italian
mathematician FIBONACCI (ca. 1170–1250) popularized
much of al-Khw–arizm–ı’s work in Western Europe, but it
was not until the Renaissance that the notion of zero
was finally deemed a valid concept.

Arithmetic involving zero can be troublesome.
Although any number can be multiplied by zero (to
produce the answer zero), no number can be divided by
zero. For instance, there can be no answer to the divi-
sion problem 1 ÷ 0. (If 1/0 = x, then multiplying
through by the denominator gives the absurd result: 1
= x × 0 = 0.) The quantity 0/0 is also deemed unde-
fined. (One could argue that the answer to this division
problem is 17, since 0 = 17 × 0, or, by the same token,
that the answer is 2 since 0 = 2 × 0. There is no single
well-defined solution to 0 ÷ 0.)

A counting number is considered even if it can be
written as a sum of two equal whole numbers. Since
zero equals 0 + 0, it follows that zero is an even number.

The study of EXPONENTs shows that it is appropri-
ate to define x0 to be 1 for any real number x other
than zero. (For example, 20 = 1 and 1730 = 1.)
Although it is true that limx→0+xx = 1, it is not valid to
assume that 00 also equals 1. (This LIMIT does not exist
if one permits COMPLEX NUMBERS in our considera-
tions, and so the notion of raising zero to the zeroth
power is problematic in this setting.) A study of the
FACTORIAL shows that it is appropriate to define 0! = 1.

A ROOT of a function is sometimes called a zero of
the function. A zero function is a function whose out-
put is always zero. For example, the function f(x) = 

defined on positive values of x is always 

zero. In GAME THEORY, a zero-sum game is a game in
which a win for some player or players is always bal-
anced by losses for the remaining players. A zero matrix
is a MATRIX all of whose entries are zero.
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The number 286 is the largest known power of 2
whose decimal expansion contains no digit equal to
zero. (Notice that 210 = 1024, for instance, has second
digit equal to zero.) All the powers of two up to
246,000,000 have been checked.

See also BABYLONIAN MATHEMATICS; EVEN AND ODD

NUMBERS; GREEK MATHEMATICS; INDIAN MATHEMATICS.

zeta function In 1740 the Swiss mathematician
LEONHARD EULER (1707–83) studied infinite series of
the form:

The INTEGRAL TEST shows that this series converges if s
is a real number greater than 1. Euler called this func-
tion, defined for values s > 1, the zeta function.

This function is intimately connected to the distri-
bution of PRIME numbers. To see this, recall that the
FUNDAMENTAL THEOREM OF ARITHMETIC asserts that
every number is a product of a unique set of primes.
Thus, in EXPANDING BRACKETS for the following infi-
nite product, selecting one term from each set of paren-
theses, every integer appears once, and only once, in
the infinite sum that results:

Although this argument is not mathematically pre-
cise, mathematicians have shown that it is valid to
perform this procedure on the reciprocals of all the
numbers involved, even when raised to the sth power.
Consequently:

The formula for a GEOMETRIC SERIES shows that this
equation can be rewritten:

thereby yielding an alternative formula for the zeta func-
tion as an infinite product over all prime numbers p:

Euler managed to compute the value of the zeta
function for certain values of s. He showed, for example, 

that ζ(2) = , ζ(4) = , ζ(6) = , ζ(8) = , and  

ζ(10) = . (He continued this list up to ζ(26).)  

Below we show how Euler computed ζ(2). To this
day, extremely little is known about the values of the
zeta function on odd whole numbers.

In 1859 German mathematician GEORG FRIEDRICH

BERNHARD RIEMANN (1826–66) showed that the zeta
function is well defined even if the argument s is 

a COMPLEX NUMBER. He showed the series 

converges if the real part of s is greater than 1, and it is
possible to extend the definition of the function to incor-
porate all complex values of s. For this reason, the zeta
function is often also called the Riemann zeta function.

Riemann was particularly interested in locating the
zeros of the zeta function, that is, finding the values of
s that yield ζ(s) = 0. He showed that the function has
no zeros if Re(s) ≥ 1, that its only zeros in Re(s) ≤ 0 are
at s = –2, –4, –6,…, and that it has infinitely many
zeros in 0 < Re(s) < 1. He called these the “nontrivial
zeros.” Riemann remarked that it is reasonable to
believe that all the nontrivial zeros lie on the line Re(z)
= 1/2, but offered no proof. This casual comment has
become one of the most famous unsolved conjectures
of all time. Mathematicians call it the Riemann hypoth-
esis, and proving its truth or falsehood would have
profound implications on the study of NUMBER

THEORY. (For example, a crucial part of proving the
PRIME-NUMBER THEOREM relies on showing that ζ(s) ≠
0 for Re(s) = 1.)
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Euler’s Computation of ζ(2)
Here we show how Euler established the formula 1 + 

+ + +… = . Although the argument is not 

mathematically rigorous, mathematicians later proved
that the issues raised in this approach can be made
mathematically sound.

Consider the function sinx with its infinite number
of zeros at locations 0, ± π, ± 2π, ± 3π,… The TAYLOR

SERIES of the sine function is:

which we will regard as a polynomial of infinite degree
with the same infinite collection of roots.

The FUNDAMENTAL THEOREM OF ALGEBRA asserts
that any polynomial factors into linear terms, one term
for each root of the equation. Assuming that the theo-
rem remains valid for infinite polynomials we must
have then that:

or, dividing through by x:

(Here we have written the factor corresponding to the 

root x = π, for instance, as 1 – rather than x – π. 

This is done to ensure that, in expanding brackets for
the right-hand side of the second expression, the result
yields a constant term equal to 1, as required.) Com-
bining pairs of terms we have:

Now consider expanding the brackets on the right-
hand side of this expression to obtain terms that yield
the quantity x2. This can only occur by selecting one x2

term from one set of parentheses, and the term 1 from
all remaining parentheses. This gives:

According to the left-hand side of this expression, this 

quantity must equal – = – , thereby leading to 

Euler’s formula:

As a bonus, consider again the equation:

and put in x = . This gives:

which establishes WALLIS’S PRODUCT:

See also ANALYTIC NUMBER THEORY; BERNOULLI

NUMBERS; FOURIER SERIES; SUMS OF POWERS.

Zhu Shijie See CHU SHIH-CHIEH.
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z-score (z-value) If a set of DATA has mean µ and
standard deviation σ, then the z-score of a particular
data value x is given by:

This transformation converts the data values of one
set into another set of values with mean 0 and stan-
dard deviation 1. It allows one to effectively compare
two or more independent sets of data. As an example:
a group of freshman college music majors are given
exams in performance, theory, and composition. One
student, John, wishes to judge how well he fared in
each of the categories. The following table summa-
rizes the results:

John’s z-scores are:

Although John obtained his highest score in perfor-
mance, this score is 11/2 standard deviations below the
mean grade in this category. Despite the low number,
John scored best in theory, gaining a score 2 standard
deviations above his classmates.

If a set of data is believed to be normally distributed
with mean µ and standard deviation σ, converting to z-
values allows one to compare data with the standard
normal distribution. For example, to compute the prob-
ability that a measurement taken at random falls within
a range of values [a,b], one computes the area under the 

standard normal curve above the interval . 

This can be found by looking at a table of cumulative
distribution values ϕ(z) and calculating the difference 

.

See also NORMAL DISTRIBUTION; STATISTICS:
DESCRIPTIVE.

Zu Chongzhi (Tsu Chung Chi) (ca. 430–500) Chi-
nese Computation, Astronomy Born in Fan-yang
(now Hopeh), China, scholar Zu Chongzhi is remem-
bered for his invention of the Daming calendar, his
highly accurate calculation of a value for π, and his
derivation of the formula for the volume of a sphere
using a method equivalent to that discovered by Italian
mathematician BONEVENTURA CAVALIERI (1598–1647)
a full millennium later.

Zu Chongzhi developed an interest in astronomy at
an early age. As a young scholar he noticed a discrep-
ancy in the position of a sundial’s shadow and the cal-
endar in use in China at the time, motivating him to
work for many years on an improved calendar system.
This work was completed in 462, but it was not until
510, through the efforts of his son, that the Daming
calendar was officially adopted.

Turning his attention to mathematics, Zu
Chongzhi worked to compute a precise value for the
ratio of a circumference of a circle to its diameter, π.
Noting, as a start, that the circumference of a hexagon
is three times its diameter, and that by cutting off its
corners to create a dodecagon yields a ratio slightly
larger than 3, Zu Chongzhi continued to shave corners
to eventually produce a polygon with 192 sides,
which, as he measured, yielded a circumference-to-
diameter ratio of 355/113. This represents an approxi-
mate value of π accurate to six decimal places. Such
precision was not surpassed for another 1,000 years. It
is worth noting that Zu Chongzhi made his impressive
calculations without the aid of an ABACUS (not used in
China until the 1100s) or any other kind of calculating
device.

Through the writings of later scholars, historians
have determined that Zu Chongzhi wrote at least 51
works. Sadly none survive today. Zu Chongzhi is hon-
ored today as one of the few Chinese mathematicians to
have a lunar feature named after him—a 28-kilometer-
wide crater located 20° north of the lunar equator.
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Theory 380 35 450
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CHRONOLOGY

ca. 50,000 B.C.E.

Animal bones etched with tally marks provide evidence
that the Paleolithic people of central Europe were able
to count.

ca. 15,000 B.C.E.

Notched animal bones discovered in the Middle East
provide further evidence of early counting.

ca. 3000 B.C.E.

The ancient Egyptians improve upon the tally system
and devise a numeration system that permits the
expression of large numbers with only a few symbols.

ca. 2600 B.C.E.

The Great Pyramid at Giza is built by the Egyptians.

ca. 1800 B.C.E.

Babylonian scholars develop a base-60 PLACE-VALUE

SYSTEM of numeration. With it, they perform complex
arithmetic work, solve QUADRATIC equations, and com-
pute PYTHAGOREAN TRIPLES.

ca. 1650 B.C.E.

Egyptian scribe Ahmes makes copy of an early mathe-
matical handbook onto a papyrus scroll. British anti-
quarian Alexander Henry Rhind (1833–63) purchased
the scroll in an Egyptian marketplace in 1858, and the
scroll is today known as the RHIND PAPYRUS. The text
details the method for computing the area of a circle
and other basic geometric shapes, the method of “false
position” for solving basic linear equations, and a tech-

nique for finding the steepness of a pyramid. The value
256/81 ≈ 3.1605 is used for π.

ca. 600 B.C.E.

Indian scholars write the Sulba sultras, a set of reli-
gious instructional texts providing detailed geometric
methods for the construction of altarpieces. The mathe-
matics described in the texts includes formulae for the
areas of basic geometric shapes as well as for the vol-
umes of prisms and cylinders.

ca. 585 B.C.E.

Greek mathematician THALES OF MILETUS founds the
earliest known school of philosophy and mathematics.
Thales develops seven important geometric proposi-
tions, heralding the demand for rigor and proof in
Greek mathematical thought.

ca. 569 B.C.E.

PYTHAGORAS of Samos is born. Around 510 B.C.E.,
Pythagoras founds a secret philosophical and mathe-
matical society that includes both men and women.
The Pythagoreans are noted as the first to provide a
proof of what is today known as PYTHAGORAS’S THEO-
REM and are credited with the discovery of IRRATIONAL

NUMBERs.

ca. 450 B.C.E.

ZENO OF ELEA proposes a series of paradoxes that
challenge the notions of space, time, and motion.

ca. 387 B.C.E.

Greek philosopher PLATO (ca. 428–348 B.C.E.) founds
the Academy in Athens. His insistence that mathematics
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be an integral part of a formal education elevates the
status of mathematics within the Western world.

ca. 386 B.C.E.

The oracle of Delos tells the people of Athens that in
order to end a plague they must double the size of the
cube-shaped altar to the god Apollo. This establishes
the problem of DUPLICATING THE CUBE.

ca. 370 B.C.E.

EUDOXUS OF CNIDUS (ca. 400–350 B.C.E.) develops a
“method of exhaustion” to determine the areas of sim-
ple curved figures. The method is a precursor to the
notion of LIMIT developed in 18th-century CALCULUS.

ca. 350 B.C.E.

ARISTOTLE (ca. 384–322 B.C.E.) analyzes the structure
of ARGUMENTs and logical reasoning to develop ideas
seminal to the field of FORMAL LOGIC.

ca. 310 B.C.E.

Ruler Ptolemy Soter founds the Library of Alexandria.
It remains the center of intellectual learning for more
than 700 years.

ca. 300 B.C.E.

Greek geometer EUCLID summarizes all mathematical
knowledge known at his time in THE ELEMENTS. The
method of logical deduction and rigor he provides
remains the paradigm of mathematical thinking today.

ca. 240 B.C.E.

ARCHIMEDES OF SYRACUSE (ca. 287–212 B.C.E.) uses
the method of exhaustion to compute the area under a
section of a PARABOLA. He also makes fundamental
contributions to the fields of geometry, engineering,
astronomy, and hydrostatics. He discovers a method of
computing the value π to any degree of accuracy and
shows, in particular, that its values lies between 3
10/71 and 3 1/7.

ca. 230 B.C.E.

ERATOSTHENES OF CYRENE (ca. 275–195 B.C.E.) calcu-
lates the circumference of the EARTH to be 28,500
miles. He develops the SIEVE OF ERATOSTHENES for
computing PRIME numbers.

ca. 220 B.C.E.

APOLLONIUS OF PERGA (ca. 262–190 B.C.E.) develops
the study of CONIC SECTIONS. He also develops a the-
ory of EPICYCLEs to model planetary motion.

ca. 214 B.C.E.

Construction begins on the Great Wall of China.

ca. 150 B.C.E.

Hipparchus of Nicaea (ca. 190–126 B.C.E.) develops
beginning ideas in the theory of TRIGONOMETRY. He
uses geometry to calculate the distances of the Sun and
the Moon from the Earth.

ca. 100 B.C.E.

Chinese scholars write JIUZHANG SUANSHU (Nine
chapters on the mathematical arts). The text includes
solutions to linear and QUADRATIC equations, the com-
putation of areas and volumes, a statement of
PYTHAGORAS’S THEOREM, and the use of NEGATIVE

NUMBERS.

ca. 140

Greek astronomer CLAUDIUS PTOLEMY writes the
Almagest, the most influential work in mathematical
astronomy until the 16th century. It includes a table of
chord values equivalent to a modern-day table of sines.
He uses the value 377/120 for π.

ca. 250

Greek mathematician DIOPHANTUS OF ALEXANDRIA

writes Arithmetica. He is the first to use symbols to
represent unknown quantities.

ca. 320

PAPPUS OF ALEXANDRIA attempts to revive interest in
the classical Greek pursuit of mathematics. He writes
Synagoge (Collections) as a guide to the great Greek
works.

ca. 370

HYPATIA (ca. 370–415), the first woman named in the
history of mathematics, is born. She becomes head of
the Platonist school in Alexandria.

ca. 475

Indian astronomer and mathematician ARYABHATA

(ca. 476–550) is born. He develops methods for
extracting square roots, summing arithmetic series,
and computing chord values. He uses the value
3.1416 for π.

ca. 480

Chinese scholar ZU CHONGZHI (430–500) uses the
value 355/113 for π.
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ca. 600

Hindu scholars invent DECIMAL REPRESENTATION, the
method of numeration we use today to represent
numbers.

ca. 640

Hindu mathematician and astronomer BRAHMAGUPTA

(ca. 598–665) introduces NEGATIVE NUMBERS and the
concept of ZERO as a number into ARITHMETIC.

641

The Library of Alexandria is burned.

ca. 775

Arabic scholars begin translating the great Greek and
Indian works into Arabic.

ca. 830

MUHAMMAD IBN M–
USS

–
A AL-KHW

–
ARIZM

–ı (ca. 780–850)
writes two influential texts founding the field of ALGE-
BRA. Al-Khw–arizm–ı also promotes the use of the Hindu
base-10 system of ARITHMETIC.

850

Indian mathematician Mahavira writes the Ganita
Sera Samgraha (The compendium of the arithmetic),
the first Indian text devoted solely to the topic of
mathematics.

1079

Persian scholar OMAR KHAYYAM (ca. 1048–1131) cal-
culates the length of the year to be 365.24219858156
days, correct to the sixth decimal place.

1202

Italian number theorist FIBONACCI (ca. 1170–1250)
writes Liber abaci (The book of the abacus), introduc-
ing HINDU-ARABIC NUMERALS to western Europe.
Fibonacci also discovers the sequence 1, 1, 2, 3, 5, 8,
13, 21, 34,…

1360

French mathematician NICOLE ORESME (ca. 1323–82)
discovers that the area under a velocity curve corre-
sponds to the distance traveled.

1482

The first printed edition of Euclid’s text THE ELE-
MENTS is produced in Venice, Italy. It becomes the most
translated and published textbook of all time.

1498

German scholar Johannes Widmann (1462–98) writes
Mercantile arithmetic in which the symbols “+” and
“–” appear in printed form for the first time.

1533

German scholar REGIOMONTANUS (1436–76) publishes
the first comprehensive modern treatise on the topic of
TRIGONOMETRY.

ca. 1541

Italian mathematician NICCOLÒ TARTAGLIA (ca.
1499–1557) discovers a general method for solving
CUBIC EQUATIONs. He tells his method, in confidence,
to GIROLAMO CARDANO (1501–76) and LUDOVICO

FERRARI (1522–65), who publish the details without
his consent. Ferrari discovers a method for solving
QUARTIC EQUATIONs.

1557

Welsh mathematician ROBERT RECORDE (ca. 1510–58)
introduces the symbol “=” for equality in the world’s
first algebra text printed in English.

1585

Dutch mathematician SIMON STEVIN (1548–1620)
introduces decimal notation for fractions.

1591

French mathematician FRANÇOIS VIÈTE (1540–1603)
writes In artem analyticam isagoge (Introduction to the
analytical arts), establishing the principles of modern
ALGEBRA and modern algebraic notation.

1594

Scottish mathematician JOHN NAPIER (1550–1617)
begins his work on arithmetical techniques that eventu-
ally led to the discovery of LOGARITHMs. He publishes
his work in 1614.

1609

German astronomer and mathematician JOHANNES

KEPLER (1571–1630) observes that the planets move in
elliptical orbits. Italian scientist GALILEO GALILEI

(1564–1642) improves upon the invention of the tele-
scope and begins his own astronomical observations.

1622

British mathematician WILLIAM OUGHTRED (1574–1660)
invents the slide rule. He introduces the symbol “×” for
multiplication and the abbreviations “sin” and “cos” for
sine and cosine, respectively.
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1629

French mathematician PIERRE DE FERMAT (1601–65)
uses algebra to solve geometric problems but does not
publish his results. French mathematician and philoso-
pher RENÉ DESCARTES (1596–1650) later developed
similar techniques and is today credited as the founder
of this approach.

1635

Italian mathematician BONAVENTURA CAVALIERI

(1598–1647) introduces a method of indivisibles for
comparing volumes (a precursor to the methods of
INTEGRAL CALCULUS) and CAVALIERI’S PRINCIPLE.

ca. 1637

FERMAT introduces modern NUMBER THEORY. He
writes a problem in the margin of a text that confounds
mathematicians for centuries. FERMAT’S LAST THEOREM

was finally solved by ANDREW WILES in 1994.

1639

French mathematician GIRARD DESARGUES (1591–1661)
publishes a treatise on his newly discovered PROJEC-
TIVE GEOMETRY. The work is essentially ignored for
200 years.

1654

Mathematician BLAISE PASCAL (1623–62) begins a cor-
respondence with FERMAT about questions of games of
chance. Through five consecutive letters, they together
create the theory of PROBABILITY.

1662

The ROYAL SOCIETY of London is established. British
mathematician LORD WILLIAM BROUNCKER (1620–84)
is elected as its first president.

1666

SIR ISAAC NEWTON (1642–1727) develops DIFFEREN-
TIAL and INTEGRAL CALCULUS but does not publish his
results until 1711.

1673

German mathematician GOTTFRIED WILHELM LEIBNIZ

(1646–1716) develops DIFFERENTIAL and INTEGRAL

CALCULUS independently of NEWTON. Leibniz begins
publishing his results in 1684, and Newton accuses him
of plagiarism. A bitter dispute between the two men
ensues, lasting four decades.

1687

Under the urging of astronomer Edmund Halley, New-
ton publishes Principia, today considered one of the

greatest scientific works of all time. Newton outlines
his laws of motion and the INVERSE SQUARE LAW for
gravitation.

1693

Halley compiles the first set of LIFE TABLES and makes
use of STATISTICS to analyze birth and death rates.

1696

French scholar MARQUIS DE GUILLAUME FRANÇOIS

ANTOINE L’HÔPITAL (1661–1704) publishes the first
textbook on CALCULUS.

1703

NEWTON is elected president of the ROYAL SOCIETY of
London. Eight years later, after an official investiga-
tion, the society concludes that Newton, not LEIBNIZ, is
the true inventor of CALCULUS. It is later revealed that
Newton, as president, wrote the final proclamation.
The verdict is not considered valid today.

1718

French mathematician ABRAHAM DE MOIVRE

(1667–1754) publishes Doctrine of Chances, the most
advanced text on the theory of PROBABILITY of its time.
De Moivre later develops the result today known as
STIRLING’S FORMULA.

1736

Swiss mathematician LEONHARD EULER (1707–83)
solves the SEVEN BRIDGES OF KÖNIGSBERG PROBLEM,
thereby establishing the fields of TOPOLOGY and GRAPH

THEORY. Throughout his life Euler also discovers,
among many accomplishments, the number e, his
famous formula relating the trigonometric functions to
this number, specific values of the ZETA FUNCTION, and,
in geometry, the EULER LINE. Euler also introduces the
notion of a FUNCTION and popularizes the use of the
symbol π for the ratio of the circumference of a circle
to its diameter.

1742

CHRISTIAN GOLDBACH (1690–1764) writes to EULER

posing the problem that has since become known as
GOLDBACH’S CONJECTURE.

1748

MARIA GAËTANA AGNESI (1718–99) publishes her two-
volume survey of elementary and advanced mathematics.

1750

Swiss mathematician GABRIEL CRAMER (1704–52) pub-
lishes CRAMER’S RULE.
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1767

German mathematician JOHANN HEINRICH LAMBERT

(1728–77) proves that π is irrational.

1795

France adopts the metric system.

John Playfair (1748–1819) publishes an equivalent
form of the famous PARALLEL POSTULATE, today known
as PLAYFAIR’S AXIOM.

1797

CARL FRIEDRICH GAUSS (1777–1855) proves the FUN-
DAMENTAL THEOREM OF ALGEBRA. Throughout his life,
Gauss, among many accomplishments, derives the
LEAST SQUARES METHOD, classifies the CONSTRUCTIBLE

regular polygons, and makes fundamental contribu-
tions to NUMBER THEORY, GEOMETRY, STATISTICS,
mathematical physics, and astronomy.

1799

Norwegian surveyor Casper Wessel (1745–1818)
publishes the equivalent of an ARGAND DIAGRAM as a
means for representing COMPLEX NUMBERS. French
bookkeeper and mathematician JEAN ROBERT

ARGAND (1768–1822) develops the same method in
1806.

1812

British mathematician and inventor CHARLES BABBAGE

(1791–1871) constructs the first mechanical calculator.
In 1823 Babbage obtains funds to build the “difference
engine,” the first digital computer, but the project is
never completed.

ca. 1820

Norwegian algebraist NIELS HENRIK ABEL (1802–29)
proves that there can be no general formula akin to the
famous quadratic formula that solves all fifth-degree
polynomial equations. Soon afterward, French mathe-
matician ÉVARISTE GALOIS (1811–32) begins work to
classify which fifth- and higher-degree equations can be
so solved and consequently founds the field of GROUP

THEORY.

1821

French mathematician AUGUSTIN-LOUIS CAUCHY

(1789–1857) develops the notion of a LIMIT as an
attempt to place CALCULUS on sound mathematical
footing. This idea is later refined by German scholar
KARL THEODOR WILHELM WEIERSTRASS (1815–97).

1822

French mathematician JEAN BAPTISTE JOSEPH FOURIER

(1768–1830) publishes a treatise on the theory of heat
and develops the notion of a FOURIER SERIES.

1829

Russian mathematician NIKOLAI IVANOVICH

LOBACHEVSKY (1792–1856) and Hungarian mathe-
matician JÁNOS BOLYAI (1802–60) independently dis-
cover NON-EUCLIDEAN GEOMETRY.

1843

SIR WILLIAM ROWAN HAMILTON (1805–65) discovers
QUATERNIONS. Two years later ARTHUR CAYLEY

(1821–95) discovers octonians.

1844

JOSEPH LIOUVILLE (1809–82) discovers the first exam-
ple of a TRANSCENDENTAL NUMBER.

1854

British scholar GEORGE BOOLE (1815–64) establishes
the field of symbolic logic with his development of
BOOLEAN ALGEBRA.

German mathematician GEORG FRIEDRICH BERNHARD

RIEMANN (1826–66) offers a universal approach to
geometry. He discovers SPHERICAL GEOMETRY. He later
makes significant advances in the theory of numbers
and the study of PRIME numbers.

1858

AUGUST FERDINAND MÖBIUS (1790–1868) and Johann
Benedict Listing independently discover the MÖBIUS

BAND.

German mathematician JULIUS WILHELM RICHARD

DEDEKIND (1831–1916) suggests the notion of a
DEDEKIND CUT as a means to properly define the REAL

NUMBERS.

CAYLEY introduces the notion of a MATRIX to the study
of algebra.

1872

FELIX CHRISTIAN KLEIN (1849–1925) unifies the fields
of geometry with his “Erlanger program.” He also dis-
covers the KLEIN BOTTLE.

1873

WILLIAM SHANKS (1812–82) computes, by hand, the
first 607 decimals of π. He is correct up to the 527th
place.
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1874

GEORG CANTOR (1845–1918) develops SET THEORY

and his theory of CARDINALITY.

1882

FERDINAND VON LINDEMANN (1852–1939) proves that
π is transcendental and hence that the challenge of
SQUARING THE CIRCLE is impossible.

1883

Françoise-Edouard-Anatole Lucas (1842–91) invents
the TOWER OF HANOI puzzle.

1896

JACQUES HADAMARD (1865–1963) and CHARLES DE

LA VALLÉE-POUSSIN (1866–1962) independently prove
the PRIME NUMBER THEOREM first conjectured by
GAUSS in 1792.

1899

German mathematician DAVID HILBERT (1862–1943)
provides a complete axiomatic treatment of EUCLIDEAN

GEOMETRY.

1900

At the International Congress of Mathematicians in
Paris, HILBERT presents his famous list of 23 problems
to challenge scholars of the 20th century.

1901

HENRI LÉON LEBESGUE (1875–1941) introduces a revo-
lutionary new approach to INTEGRAL CALCULUS.

1903

Swedish mathematician Nils Fabian Helge von Koch
(1870–1924) introduces the KOCH CURVE, the first
example of an object later to be classified as a FRACTAL.

1904

JULES-HENRI POINCARÉ (1854–1912) conjectures that
any three-dimensional object sharing the same topologi-
cal characteristics as a SPHERE must indeed be a sphere.

1905

ALBERT EINSTEIN (1879–1955) writes five ground-
breaking papers in the field of mathematical physics.
The final two papers develop his famous special theory
of relativity. Einstein publishes his general theory of rel-
ativity in 1916.

1910

BERTRAND ARTHUR WILLIAM RUSSELL (1872–1970)
and Alfred North Whitehead (1861–1947) begin pub-

lication of their three-volume Principia Mathematica,
an ambitious attempt to derive all mathematics by
logical principles from a small set of beginning
AXIOMs.

1913

Indian mathematician SRINIVASA AIYANGAR RAMANU-
JAN (1887–1920) begins a five-year collaboration with
British mathematician GODFREY HAROLD HARDY

(1877–1947).

1921

German mathematician AMALIE NOETHER (1882–1935)
publishes her theory of RINGs, directing research in alge-
bra away from the study of calculation toward the
study of abstract structures.

1925

SIR RONALD AYLMER FISHER (1890–1962) publishes
Statistical Methods for Research Workers, an influen-
tial work that provides the basis for modern experi-
mental design.

1928

James Alexander (1888–1971) develops the Alexander
polynomial, the first invariant in KNOT THEORY. Subse-
quently, John Conway defined the Conway polynomial
in 1968, and Vaughn Jones the Jones polynomial in
1985.

1931

KURT GÖDEL (1906–78) stuns the mathematical com-
munity by establishing a pair of “incompleteness the-
orems.” Gödel proves that within any logically
rigorous system there will necessarily be statements
that can neither be proved nor disproved. The goal
pursued by RUSSELL and Whitehead is proved
unattainable.

1938

CLAUDE ELWOOD SHANNON (1916–2001) establishes
that BOOLEAN ALGEBRA can be successfully applied to
computer design. He founds the field of INFORMATION

THEORY in 1949.

1944

Hungarian-American mathematician JOHN VON NEU-
MANN (1903–57) and American economist Oskar Mor-
genstern (1902–77) found GAME THEORY.

1963

Edward Lorenz develops CHAOS theory.
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1976

Using 1,200 hours of computer time, Kenneth Appel
and Wolfgang Haken prove the FOUR-COLOR

THEOREM.

1978

Ronald Rivest, Adi Shamir, and Leonard Adleman
develop the RSA public-key encryption system.

1979

Benoit Mandelbrot discovers the MANDELBROT SET. He
later founds the field of FRACTAL geometry.

Under the instigation of Pope John Paul II, the Roman
Catholic Church opens its files on the Galilean trials.
The Church reverses its 17th-century condemnation of
the scholar in 1992.

1994

ANDREW WILES, with the assistance of Richard Taylor,
proves FERMAT’S LAST THEOREM.

1998

Thomas Hales uses computer methods to establish
JOHANNES KEPLER’s 1611 conjecture that the cubic
close packing and the hexagonal close packing of
spheres are the densest packings of spheres. Mathe-
maticians are unable to verify the proof without the
aid of a computer.

1999

Hales proves the “honeycomb conjecture,” which states
that any partition of the plane into regions of equal area
has perimeter equal to the design of a honeycomb.

Yasumasa Kanada of the University of Tokyo computes
π to 206,158,430,000 decimal places.

2000

Michael Hutchings, Frank Morgan, Manuel Ritoré,
and Antonio Ros prove the outstanding “double bub-
ble” conjecture in the theory of SOAP BUBBLES. They
establish that the design of minimal surface area that
encloses two fixed volumes is indeed the “double bub-
ble” configuration one observes in nature.

2003

Tomás Oliveira e Silva verifies that GOLDBACH’S CON-
JECTURE holds true for all even numbers between four
and 6 × 1016. 

Michael Shafer discovers that the 6,320,430-digit num-
ber 220,996,011 – 1 is PRIME. It is the largest prime and
the 40th MERSENNE PRIME known to this date.

2004

Martin Dunwoody announces to the mathematical
community that he may have proved the Poincaré con-
jecture. Mathematicians await the details of his proof.
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A

AAA (angle-angle-angle) rule
1, 463

AAS (angle-angle-side) rule  1
abacus  2, 2–3, 56, 74, 260
Abel, Niels Henrik  3, 10, 84,

215, 241, 405, 431–432
and solutions to polynomial

equations  471
Abelian groups  3, 5, 83, 241
Abel Prize  3
abscissa  62
absolute convergence  3–4,

248, 337
test for  3–4, 104

absolute error  167
absolute frequency  206
absolute maximum/minimum

330, 331
absolute value (modulus)  4–5,

131, 133, 142, 310, 328–329
of complex number  25, 86

abstract algebra  5, 10, 314,
354–355

abstract group  68
abundant number  389
Académie Française  8
acceleration  523
Accurate Rendering (Ahmes)

447
Achilles and the tortoise

(paradox)  532–533
acnode. See isolated point
Acosta, José de  260
actuarial science  5, 312
acute angle  5–6, 14

acute triangle  506
addend  6
addition  5, 6, 205
addition formulae

(trigonometry)  6, 41–42
addition law  344, 367
addition-multiplication magic

square  327, 328
addition rule, in probability

theory  415–416, 416
additive function  6
additive identity element (zero)

6, 257
additive inverse, and rings

448
Adleman, Leonard  111
affine geometry  6–7, 339
affine transformation  7
Agnesi, Maria Gaëtana  7–8,

58
Ahmes (Ahmose)  155, 447
Ahmes papyrus. See Rhind

papyrus
Alembert, Jean Le Rond d’ 8,

8–9, 209
and Fourier series  202

Alembert’s theorem, d’. See
fundamental theorem of
algebra

�0 (aleph null)  60–61
Alexander, James Waddell

295–296
Alexander polynomial

295–296
algebra  9–11

and geometry  124

L’Algebra (Bombelli)  47–48
Algebra (Simpson)  463
algebraic curve  114
algebraic function  11
algebraic notation  51
algebraic number  11, 60, 97

and analytic number theory
360

algebraic structure  11
algebra of logic, Boole’s  48
Algebra with Arithmetic and

Mensuration (Colebrook)
42

algorithm  11, 294
Al-jam’ w’al-tafriq ib hisab al-

hind (al-Khwārizmı̄)  293
Almagest (Ptolemy)  421
alphamagic square  328, 328
alternate interior/exterior

angles  504
alternating harmonic series

248, 409
alternating knot  295
alternating series  11–12
alternating-series test  12,

104–105
altitude  12–13, 105

of triangle
concurrency of  12,

12–13, 165
and Euler line

174–175, 507
amicable numbers  13, 18,

423
Analemma (Ptolemy)  422
analog vs. digital  135–136

Analyse des infiniment petits
(L’Hôpital)  40, 310

analysis  13, 423
Analysis per quantitatum

series (Newton)  353
analysis situs. See topology
Analysis situs (Poincaré)  398
“The Analyst” (Berkeley)  58
analytic engine, Babbage’s  32
analytic geometry  13, 347
analytic number theory  13,

139–140, 360, 411
analytics  27
anchor ring. See torus
ancillary theorem  498–499
angle  13–15, 14, 276, 441

45º (octant)  363
of elevation/depression  14
of inclination  261

angle bisector  46, 260
angle brackets  50, 519
angle trisection. See trisecting

an angle
Annales de Mathématiques

(journal)  25
Annals of Eugenics (journal)

387
Annals of Mathematics 531
annulus  15, 89, 94, 177
anomalous cancellation  56
antiderivative  94–95, 211,

360
antidifferentation  15, 133,

272
antinomy. See Russell’s

paradox

INDEX

Boldface page numbers indicate main entries. Page numbers in italics indicate illustrations or diagrams.



antipodal points (antipodes)
15, 471, 473

antisymmetry  365
apex (apices)  15, 91, 423
Apollonius of Perga  15–16,

76, 78, 93, 105, 115,
136–137, 189, 239, 252,
253, 476

and duplicating the cube
149

and trisecting an angle  513
Apollonius’s circle  16
Apollonius’s theorem  16
apothem (short radius)  16,

403
Appel, Kenneth  200–201, 420
applied mathematics  17
appropriately nice functions

315
approximation  17
Arabic mathematics  17–18
Arbogast, Louis  249
arc  18, 76
Archimedean solids  398
Archimedean spiral  239, 400,

474
Archimedes  18, 18–21, 19,

20, 91, 93, 105, 115, 173,
180, 213, 238–239, 270,
272, 476

and Archimedean solids
398

on Fields medal  194
and his spiral  474
and semiregular polyhedra

404
and sum of first n numbers

489
and trisecting an angle  513

Archimedes’ water screw  20,
21

Archytas  21–22, 172
arc length  22, 470
area  22–25, 23, 24

of annulus  15
of basic shapes  23, 23–24,

156, 248, 293
of circle  76, 222, 392
of curved figures  172
of ellipsoid  161–162
as ill-defined concept

22–23, 24, 526
of polygon  403
of quadrilateral,

Bretschneider’s formula
for  52–53, 430

of quadrilateral inscribed in
circle, Brahmagupta’s
formula for  51–52

of rectangle  443
of square  474
of trapezoid  504
of triangle  486

area hyperbolic functions  281

Argand, Jean Robert  25, 86
Argand diagram  25, 86, 359
argument  25–26, 86, 199,

524–525
Aristotle  26–27, 238, 270,

309, 532
and formal logic  25–26,

199
Aristotle’s wheel paradox  375
arithmetic  27
Arithmetica (Diophantus)

137–138, 189, 190, 239,
253, 525

Arithmetica infinitorum
(Wallis)  528

Arithmetica universalis
(Newton)  353

Arithmetices principia, nova
methodo exposita (Peano)
385

arithmetic–geometric-mean
inequality  219, 333

arithmetic mean  333
The Arithmetic of Logarithms

(Briggs)  53–54
arithmetic sequence  28,

139–140
arithmetic series  28
arrangement. See permutation
array  28
arrow paradox, Zeno’s  533
Ars conjectandi (Jacob

Bernoulli)  39–40, 414
Ars magna (Cardano)  10, 47,

59–60, 112, 190–191, 494
Artin, Emil  52
Āryabhata (Indian

mathematician)  17, 28–29,
264, 392

Āryabhatiya (Āryabhata)
28–29

ASA (angle-side-angle) rule  1
“As I Was Going to St. Ives”

156
associative property  29, 83

of addition  5
in Boolean algebra  49
and groups  241
of matrices  223
and order of operation

366
and rings  448
of vector addition  520,

522
astroid  115
Astronomiae physicae et

geometricae elementa (D.
Gregory)  240

Astronomia nova (Kepler)
292

asymmetrical  490
asymptote  29–30, 234, 440
asymptotic series  39
atto- (10-18)  465

attractor  150
augend  6
automaton  30, 30–31, 37,

350–351
automorphic functions  398
average. See mean (average)
axiom (postulate)  31, 170,

314
axiom of choice  31, 530, 534

B

Babbage, Charles  32, 32–33,
322

Babbage’s difference engine  33
Babylonian mathematics  9,

33–35, 249, 425, 426, 428
Bacon, Francis  452
Bakhshali manuscript  264
balance point. See center of

gravity
La balancitta (Galileo)  213
Banach, Stefan  24, 35
Banach-Tarski paradox

24–25, 35, 374, 526
band ornament. See frieze

pattern
barber paradox  374–375,

453–454
Barbier, Joseph  95
bar chart  479, 479
“The Bargaining Problem”

(Nash)  347
Barrow, Isaac  35–36, 36, 54
Der barycentrische Calcül

(Möbius)  339
base of exponent  180
base of number system  36–38,

37
base of polygon/polyhedron

38, 506
base-10 logarithms  53
Bayes, Rev. Thomas  38–39
Bayes’s theorem  39, 302
bearing  39
Behennde unnd hüpsche

Rechnung auf fallen
Kauffmannschaften
(Widman)  6, 487

bel  118
Bell, Alexander Graham  118
bell-shaped distribution  356,

480, 480
Berkeley, George  58
Bernays, Paul  250
Bernoulli family  39–40, 50,

284, 529
Bernoulli, Daniel  40, 107, 202
Bernoulli, Jacob  39–40, 58,

414
Bernoulli, Jacob (II)  40
Bernoulli, Jacques  65–66, 489
Bernoulli, Johann  40, 58, 107,

114, 272, 310, 474, 494

Bernoulli, Johann (II)  40
Bernoulli, Johann (III)  40
Bernoulli, Nicolaus (I)  40
Bernoulli, Nicolaus (II)  40
Bernoulli numbers  40, 435,

489
Bernoulli’s inequality  267–268
Berry’s paradox  374–375
Bertrand, Louis François  40,

71
Bertrand’s conjecture  167
Bertrand’s paradox  40,

40–41, 75, 374, 417
“Beweis, dass jede Menge

wohlgeordnet werden kann”
(Zermelo)  533–534

Bhāskara II (Bhaskaracharya)
10, 17, 41–42, 264, 392

and negative numbers  348
bias  42
biconditional (“if, and only if”

statement)  42, 91, 514
bifurcation point  151
Bijaganita (Bhāskara)  41–42
bijection  209
bimodal distribution  480, 480
binary line search. See

bisection method
binary numbers  30, 42–43,

88, 150
binary operation  43, 257, 279

cancellation as  56–59
closure as  79
commutative property as

83
Binet’s formula  193
binomial  43
binomial coefficient  45,

64–65, 80, 418
binomial distribution  43–44,

44, 143, 180
binomial expansion  44–45
binomial theorem  18, 44–45,

80–81, 219, 309, 364
Biometrics (journal)  387
biquadratic equation. See

quartic equation
birectangular triangle  474
bisection method

(dichotomous line search,
binary line search)  45–46,
277, 451

bisector  46
bit  461
Blatzer, Richard  47
body mass index (BMI). See

Quételet index
Bohlen numbers  195
Bolyai, János  46–47, 171,

219, 255, 318, 355, 455
Bolzano, Bernard Placidus  47,

276
Bolzano’s theorem. See

intermediate-value theorem
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Bombelli, Rafael  47–48, 50,
113

Boole, George  10, 48, 48–49,
199, 309, 460

Boolean algebra  49, 460,
461–462

border square  328, 328
Borel, Félix Edouard Émile

216, 307
Borromean rings  49, 49
Borsuk, Karol  15
Borsuk-Ulam theorem  15, 471
Bosse, Abraham  124
Boss puzzle. See slide 15 puzzle
bound  49–50
bounded above/below,

definition of  50
Bourbaki, Nicolas  50, 168
braces  50, 460
brachistochrone problem  39,

114, 310
brackets  50–51, 366
Brahe, Tycho  292
Brahmagupta  9, 51, 114, 264,

348, 534
Brahmagupta’s formula

51–52, 53, 249, 264, 430
Brahmasphutasiddhanta

(Brahmagupta)  51, 264
braid  52, 52
braid group  52
breadth  309
Bretschneider’s formula  52–53
Briggs, Henry  53–54, 320,

346
Briggsian logarithms  53
Brinkley, John  245
British Association for the

Advancement of Science  68
Bromhead, Sir Edward

239–240
Brouillon project d’une

atteinte aux evenemens des
recontres du cone avec un
plan (Desargues)  123–124

Brouncker, Lord William  54,
529

Brouwer, Luitzen Egbertus Jan
198

Brouwer fixed-point theorem
198

Brownian motion  158
brute force  54–55, 461
Buffon, Georges  55
Buffon-Laplace problem. See

Buffon needle problem
Buffon needle problem  55, 55,

302, 393
Bürgi, Jobst  320
Buridan, Jean  368
butterfly effect  151

C

cake cutting. See fair division 
Calandrini, Giovanni

Ludovico  107

calculator, mechanical  382,
383

calculus  7, 8–9, 56, 100, 320
history of  57–58, 67, 126,

325, 368
and optimization  365
and Snell’s law of

refraction  468–469
calculus of variations,

Weierstrass’s  284, 529
calendar, Chinese  537
cancellation  56–59
cancellation law, for fractions

204–205
Canon doctrinae triangulorum

(Rhaeticus)  511
Canon mathematicus seu ad

triangula (Viète)  525
Cantor, Georg  11, 59, 203,

208, 270, 297, 533
on cardinality  60–62,

129–130, 271, 460–461
and continuum hypothesis

100
on infinity  47
and number theory  63,

359, 367–368, 441, 442
Cantor set  203
Cardano, Girolamo (Jerome

Cardan)  10, 47, 59–60, 112,
190–191, 431, 494

and imaginary numbers
87

and negative numbers
348–349

and probability theory
413, 414, 417

Cardano’s formula  112–113,
431, 470, 494

cardinality  60–62, 100, 106,
129–130, 209, 270, 359

and number theory  123,
359, 368, 442

cardioid  62, 115
Carr, G. C.  435
“carrying digits”  2, 6
Cartesian coordinates

(orthogonal coordinates)
62–63, 105, 114, 124, 226,
275, 504

of cardioid  62
vs. cylindrical coordinates

115
and direction cosines  138
vs. polar coordinates  400
quadrants in  428
of torus  500

Cartesian product (cross
product, external direct
product, product set, set
direct product)  63

Cartesian space. See Euclidean
space

Cassini, Giovanni Domenico
370

Castillon, Johann  62
casting out nines  63–64

Catalan, Eugène Charles  64
Catalan conjecture  64
Catalan numbers  64–65
catenary  65–66, 255
Cauchy, Augustin-Louis  47,

66, 66–67, 103, 287, 529
and definition of limit  269,

312, 459
and mean-value theorem

335
and number theory  442

Cauchy-Riemann equations
67

Cauchy-Schwarz inequality
268

Cauchy sequence  442
Cavalieri, Bonaventura

Francesco  57, 67, 74, 293,
527, 528

Cavalieri’s principle  57,
67–68, 115, 412, 527, 537

Cayley, Arthur  68, 200
Cayley-Hamilton theorem

68–69
Cayley numbers  359, 432
ceiling/floor brackets  51
ceiling function (least-integer

function)  198
center-limit theorem  69–70
center of gravity  18–19, 69,

372, 470
center of mass vs. center of

gravity  69
centile. See percentile
central angle  77, 77
central-angle/peripheral-angle

theorem  77, 77
central-limit theorem  143,

401, 482–483
and normal distribution

356
central projection  418
central tendency, measures of

480
centroid  335, 372, 470, 507
Ceva, Giovanni  70
Ceva’s theorem  70
Ceyuan Haijing (Li Ye)  318
chain  365–366
chain rule  70–71, 88, 133,

138, 258, 274, 281, 282,
378, 433–434

change of variable. See
integration: by substitution

chaos  71, 151, 203
chaos game  204
characteristica universalis 309
characteristic polynomial

68–69, 156
characteristic vector. See

eigenvector
Chebyshev (Tchebyshev),

Pafnuty Lvovich  71, 72,
167, 415

Chebyshev polynomials  71
Chebyshev’s theorem  71, 72,

304

Chen, Jing-Run  230
Chêng Ta-wei  325
chessboard puzzle  224
chicken (game)  218, 413, 413
Ch’in Chiu-shao  72, 73
Chinese mathematics  72–74
Chinese proof  425
Chinese remainder theorem

73
chi-squared test  74–75, 98,

386, 415
choice set  31
chord  75, 76, 457, 510, 511
Chords in a Circle (Menelaus)

336
chord theorems  78
chord values, Hipparchus’s

239
Chou pei suan ching

(anonymous)  73, 425
Chudnovsky, Gregory and

David  393
Chuquet, Nicola  526
Chu Shih-Chieh (Zhu Shijie)

73–74, 75, 383
circle  75–76, 92, 136,

141–142, 166, 188
area of  24, 24
diameter of  130
eccentricity of  155

Circles of Proportion and the
Horizontal Instrument
(Oughtred)  369

circle squaring. See squaring
the circle

circle theorems  75, 76–78,
114, 425, 430

circular inversion  225
circumcenter  78, 338, 507
circumcircle  76, 78, 165,

303–304, 321, 354
circumference

of circle  75–76
of earth  29

circumscribe/inscribe  78
“C1 Isometric Imbeddings”

(Nash)  347
cissoid  136–137
clarity  66–67, 529–530
Clavis mathematicae

(Oughtred)  344, 370
clock math  92, 340–341
closed curve  114
closed half-plane  243–244
closed half-space  243–244
closed interval  184, 276, 278
closure property  79

of addition  5
and groups  241
of matrices  222

cluster sampling  407
coefficient  79, 404, 525
Cogitata physico-mathematica

(Mersenne)  338
Cohen, Paul  101
Colebrook, H. J.  42
Collatz’s conjecture  79
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Collection (Pappus)  13, 253
collinear  79–80, 233
Colson, John  7–8
combination (selection,

unordered arrangement)
80–82

combinatorial coefficient  45,
384

combinatorics  82, 243
commensurable  82, 172, 238
common denominator  82–83
common difference  28
common divisor  83
common factor  83
common fraction  205
common multiple  83, 305
common notions  170
common ratio  223
commutative group  83
commutative property  83

of addition  5
in Boolean algebra  49
of dot products  148
and groups  241
of multiplication  10, 344
and quaternions  432
and rings  448–449
and subtraction  487
of vector addition  520,

522
commutative ring  449
comparison test  4, 103
compass and straightedge  95
complement (set operation)

460
complementary angles  14
complete digraph. See

tournament
complete directed graph  501
complete graph  233
complete induction. See

induction
completeness law  367
completeness property, of real

numbers  47
completing the square  84, 84,

428
complex conjugate of complex

number  526
complex Euclidean space  170
complex fraction  206
complex numbers (C)  85–87,

219, 358–359, 408, 522
completing the square and

84
and Euler’s formula  176
history of  25, 47–48, 245,

398
and intersecting circles  76
multiplication of  86
order properties and  367
polar coordinates of  86
and Pythagorean triples

426
reciprocal of  442

in trigonometry  121–122
and zeta function  535–536

components of a vector  519
composite  87, 186, 409
composite number  87, 463
composition (of functions)

69–70, 87–88, 274, 280
composition (of matrices)  330
compound interest  153–154,

275–276
compound statement  514–515
Comptes Rendu (journal)  66
computer  88. See also

calculator, mechanical
and Boolean algebra  49
and critical path  109
history of  32–33, 167,

321, 351
concave  88
concave polygon  402
concave up/concave down  89,

89, 429
concentric  89
“A Concise Outline of the

Foundations of Geometry”
(Lobachevsky)  318

conclusion (of syllogism)  27
concurrent  89, 261, 335, 338,

399, 507
conditional (“if . . . then”

statement)  89–90, 514
conditional convergence  4,

104
conditional equation  163
conditionally convergent series

4
conditional probability  39,

90–91, 263
condition—necessary and

sufficient  91
cone  91
conformal mapping  (equi-

angular transformation,
isogonal transformation)  91,
337, 485

congruence  92
congruence transformation.

See isometry
congruent angles  14
congruent figures  92, 463
congruent triangles  1–2
conical frustum  207
conical helix  248
The Conics (Apollonius of

Perga)  15–16, 93, 253
conic sections  18, 76, 92–93,

93, 123–124, 149, 238, 419
conjecture  31, 499
conjugate of complex number

86–87
conjugate of sum/difference

131
conjugate of surd  490
conjunction (“and” statement)

93–94, 514
conjunction circuit  94
connected  94

connected graph  233
consistent  94
constant  94
constant of integration  94–95,

272, 273
constant width  75, 95, 130
constructible  95–97, 97, 149,

218, 238, 403, 475, 476,
513

constructivism  297
contact number  472
contingency table  98, 98
continued fraction  98–100,

487
calculation of π using  54
and definition of real

number  441
golden ratio as  231
and Pythagorean triples

427
continuity, defined by Cauchy

66
“Continuity and Irrational

Numbers” (Dedekind)  119
continuous function  88, 100,

184, 276, 386
continuously compounded

interest  276
continuous random variable

143
continuum hypothesis  59, 62,

100–101, 250, 533
contour integral (curvilinear

integral, line integral)  101,
239

contour line  101
contradiction  94, 101, 170,

171, 228, 229, 473
contrapositive  101–102, 265
contrapositive reasoning  26
convergence  66, 324
convergent sequence  102,

312, 458
convergent series  3, 12,

102–105, 182, 240, 260,
409, 459, 530

d’Alembert’s ratio test  8,
223

converse  105, 506
convex  88
convex polygon  402
Conway, John Horton  296
cooperate vs. defect, in

prisoner’s dilemma  412
coordinate geometry  63, 368
coordinates  105, 399
coordination number  472
Copernican theory  214
coprime. See relatively prime
corner  403
corollary  498–499
correlation, and chi-squared

test  74–75
correlation coefficient  79,

106, 107, 306–307, 386,
456–457

corresponding angles  504

cosecant function  510
cosine function  139, 509, 510
cosine rule. See law of cosines
“the cossic art”  10, 517
cotangent function  510
countable  11, 106, 348, 441
countable number. See natural

number; whole number
counterexample  107, 120,

229
counterharmonic mean  333
counting number. See natural

number
Cours d’analyse (Cauchy)  66
Cours d’analyse (Vallée-

Poussin)  518
A Course of Pure Mathematics

(Hardy)  246
cousin primes  515
covariance  106, 107, 306
covering. See tessellation
Cramer, Gabriel  107–108
Cramer’s rule  107, 108–109,

223, 282
Crelle, August Leopold  3
Crelle’s Journal 3
critical path  109, 109
critical point  331
cross product (vector product)

63, 110, 520
cryptography  111, 410, 525
cube (hexahedron)  111–112,

115, 396, 397
cube numbers  195
cube root  112, 451
cubic equation  34, 84,

112–114
discriminant of  141
history of  59–60,

190–191, 493–494
cubic lattice  472
cubit  309
cumulative distribution

function  143
cuneiform tablets  33, 34
curl  144
curve  114, 314
curves, Cramer’s classification

of  108
curvilinear integral. See

contour integral
cusp  492, 493
cycle (graph theory)  233
cyclic group  295
cyclic polygon  114
cyclic quadrilateral  78, 264,

430
cycloid  114–115, 310
cylinder  115, 411
cylindrical coordinates  115,

504
cylindrical helix  248

D

data  116, 478
Data (Euclid)  169
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days-of-the-week formula
116–118

decibel  118
decimal representation  36–38,

72–73, 260, 264, 370, 485
declination  261, 261
decomposition  118–119
De configurationibus

qualitatum et motuum
(Oresme)  368

decrement  262
Decker, Ezechiel de 54
Dedekind, Julius Wilhelm

Richard  58, 119, 120,
172–173, 270, 367, 442

Dedekind cut  119–120,
172–173, 262, 277, 367

and bounded real numbers
50

and definition of real
number  442

and extreme-value theorem
184

De determinantibus
functionalibus (Jacobi)  287

deductive logic  420
Aristotle and  26

deductive reasoning  120–121
defect vs. cooperate, in

prisoner’s dilemma  412
deferent, of cycloid  115
deficient number  389
definite integral  148–149, 275
deformation  121
Degen, Ferdinand  3, 5
degenerate hyperbola  373
degenerate quadrics  411
degree (measure of angle)  14
degree of a polynomial  121,

404
degree of a vertex (valence)

121, 233
degrees of freedom  121
Dehn, Max  165
Delian altar problem. See

duplicating the cube
deltoid  430, 430
De methodis serierum et

fluxionum (Newton)  352
De Moivre, Abraham  85, 107,

121–122, 471, 486, 494
and normal distribution

356, 414, 486
De Moivre’s formula (De

Moivre’s identity)  85, 122
De Moivre’s quintic  471
Démonstration d’une méthode

pour resoudre les égalitez de
tous les degrez (Rolle)  449

“Démonstration d’un
théorème sur les fractions
continues périodiques”
(Galois)  215

De Morgan, Augustus
122–123, 200, 265, 270, 349

De Morgan’s laws  123, 460,
525

denominator  204
dense subset  441
denumerable (enumerable,

numerable)  123
denumerable sets  59, 60–62,

100, 106
dependent events  262–263
dependent variable  519
derangement  390–391, 486
De ratiociniis in ludo aleae

(Huygens)  414
derivative  132, 132, 198, 262,

271–272, 418
and calculation of velocity

and acceleration  523
first and second, and

graphing  234
Desargues, Girard  123–124,

270, 391, 418, 419
Desargues’s theorem  124,

270, 391, 419
Descartes, René  10, 57,

124–125, 125, 180, 189,
431–432, 519

and amicable numbers  13
and analytic geometry  13
and coordinate geometry

62–63, 226, 235
and Euler-Descartes

formula  177
and imaginary numbers

87
Descartes’s rule of signs  124,

125–126
descriptive statistics. See

statistics: descriptive
determinant  126–128, 223,

281–282, 287, 309
determinant function  108
De triangulis omnimodis

(Regiomontanus)  444, 511
deviation  481
diagonal  128–129, 376, 402,

443
diagonal argument  59, 60,

100, 106, 123, 129,
129–130, 359, 441–442

diagonal Latin square  302
Dialogo (Galileo)  214
diameter  75, 76, 130, 471
diamond  376, 474
dice, tetrahedral  462
dichotomous line search. See

bisection method
dichotomy paradox, Zeno’s

533
Dido’s problem  130, 284
Dieudonné, Jean  288
“Die von der

molekularkinetischen
Theorie der Wärme gefurdete
Bewegung von in ruhenden
Flüssigkeiten suspendierten
Teilchen” (Einstein)  158

difference  130–131, 487
difference engine, Babbage’s

32–33, 33

difference formula  511–512,
512

difference machine. See
difference engine

difference of two cubes  131
difference of two squares  9,

131, 257
differential  131–132, 132,

310
Differential and Integral

Calculus (Babbage)  32
differential calculus  56,

132–134, 226, 308–309
vs. integral calculus

211–212
differential equations

134–135, 234, 252, 299,
309, 385, 399

and partial fractions  380
differential geometry  226
differentiation  133, 309
digit  135–136
digital vs. analog  135–136
digit extraction  183
dihedral  136
dihedral angle  136
dilation  225, 278, 317
dimension  136
dimension of a matrix. See

order of a matrix
Diocles  136–137
Diophantine equations  54, 99,

137, 239, 250, 289–290, 360
Diophantus  9, 137–138, 180,

189–191, 239, 252–253
directed number. See integer
directional derivative

138–139, 233
direction cosines  138
direction numbers  138
direction ratios  138
directly congruent solids  92
direct proof  139, 265, 420
direct reasoning  26
directrix  155

of cone  91
of cylinder  115
of parabola  373

Dirichlet, Peter Gustav Lejeune
139–140, 172, 208, 337, 394

Dirichlet’s principle. See
pigeonhole principle

disc method  470
discontinuous functions  100
Discorsi e dimostrazione

matematiche intorno a due
nuove scienze (Galileo)  213

discrete  140
discrete mathematics  167
discrete transformation  140
discriminant  84, 140–141,

429
discriminant of cubic  113
disjoint events. See mutually

exclusive events
disjunction (“or” statement)

141, 514

disjunction circuit  141
disjunctive reasoning  26
dispersion, measures of

480–482
displacement  141
Disquisitiones arithmeticae

(Gauss)  218–219
distance

of point from line  142
of point from plane  142
and velocity  522–523

distance formula  22, 75,
141–142, 310, 520

distribution  72, 142–143,
143, 197, 218

chi-squared  74–75
distributive property

143–144
in Boolean algebra  49
of dot products  148
and Elizabethan

multiplication  160
Pythagoreans and  9
and quaternions  432
and rings  448

div (divergence operator)  144
divergent  144
divergent sequence  102
divergent series  240, 459
divine proportion. See golden

ratio
divisibility rules  92, 144–146
division  146, 205
divisor of zero  147
Doctrine of Change (De

Moivre)  122
dodecahedron  396, 397
donut. See torus
dot product (inner product,

scalar product)  110, 136,
138, 147–148, 520

double angle formula  525
double cusp  492, 493
double integral  148, 239, 400,

473
double point  148
double root  140, 451
double torus  501
doubling the cube  149
drawer principle. See

pigeonhole principle
duality in projective geometry

124
Dudeney, Henry Ernest  165
dummy variable  148–149,

488
duplicating the cube  18, 21,

97, 136–137, 149, 166, 172,
239, 525

Dürer, Albrecht  149–150,
231, 232, 325, 391

dyadic  150
dyadic fraction  43
dynamical system  71, 88,

150–151, 203, 296
dynamics  299

556 Index



E

e (eccentricity of conic)  155
e (Euler’s number)  11,

152–154, 154, 173, 283,
300, 301, 314

earth  154–155, 166
eccentric  89
eccentricity  155, 161, 254,

373
echelon form  220
edge

on graph  233
of polyhedron  403

Egyptian fractions (unit
fractions)  155, 156, 192,
206

Egyptian mathematics
155–156, 423, 428, 497

Egyptian multiplication  155,
156

eigenvalue  156–157, 282
eigenvector (e-vector, latent

vector, characteristic vector,
proper vector)  156–157,
282

“Eine neue Bestimmung der
Moleküldimensionen”
(Einstein)  158

Einstein, Albert  157,
157–159, 227, 255, 398,
447, 496, 530

elasticity, mathematics of
227–228

“Élémens d’arithmétique
universelle” (Kramp)  187

elementary number theory
359–360

elementary operations  364
elementary row operation

220–222
Elemente der Mathematik

(Blatzer)  47
The Elements (Euclid)  1, 78,

159, 168–169, 171, 172,
183, 226, 238–239, 252,
253, 270

compass and straightedge
in  95

and foundations of
mathematics  200

perfect numbers in  389
Platonic solids in  396–397

Élements de géométrie
(Legendre)  308

Éléments de mathématiques
(Bourbaki)  50

Elements of Arithmetic (De
Morgan)  122

Elements of Geometry
(Menelaus)  336

Elements of Geometry
(Playfair)  377

elimination method. See
Gaussian elimination

Elizabethan multiplication
159–160, 160, 404

ell  309

ellipse  92–93, 93, 137, 155,
160, 160–161, 239

reflection property of  365
ellipsoid  161–162, 411
elliptic cone  411
elliptic cylinder  411
elliptic geometry. See spherical

geometry
elliptic paraboloid  374, 411
empty set (null set, Ø)  162,

257, 267, 460
Encyclopédie ou dictionnaire

raisonné des sciences, des
arts, et des métiers
(d’Alembert)  8

endpoints, of curve  114
enumerable. See denumerable
Enumeratio linearum tertii

ordinis (Newton)  353
envy-free fair division  188
epicycle  115
epicycloid  115
Epimenides  311
equality  162
equal sign (=)  442
equating coefficient  162, 380,

405
equating real and imaginary

parts  162–163
equation  163
equation of line  163–164
equiangular  164–165, 166,

506
equiangular polygon  402
equiangular transformation.

See conformal mapping
equidecomposable  165, 165
equidistant  76, 78, 165–166,

260
equilateral  164, 166, 285, 506
equilateral polygon  402
“Equilibrium Points in N-

person Games” (Nash)  347
equipotent (equipollent,

equinumerable) sets  60
equitangential curve. See

tractrix
equivalence  371
equivalent knots  295–296
equivalent sets  60
Eratosthenes  154, 166–167,

462, 510
Eratosthenes’ sieve  462–463
Erdös, Paul  167, 393
Erdös number  167
error  167–168, 197, 451, 457
error detection  461–462
error sum of squares  306
Essai sur une manière de

représenter les quantités
imaginaires dans les
constructions géometriques
(Argand)  25

Essay on Conic Sections
(Pascal)  382

“Essay on the Application of
Mathematical Analysis to the

Theory of Electricity and
Magnetism” (Green)  239

An Essay on the Principle of
Population (Malthus)  407

“An Essay Towards Solving a
Problem in the Doctrine of
Chances” (Bayes)  38

Euclid  1, 78, 168–169, 172,
183, 224, 226, 238–239,
252, 253, 265, 270, 314,
324, 410

and compass and
straightedge  95

definition of point  399
and formal logic  199, 250
and foundations of

mathematics  200
and fundamental theorem

of arithmetic  210
and perfect numbers  389
and Platonic solids

396–397
and pure mathematics  422
and Pythagorean triples

426
Euclidean algorithm  11, 82,

159, 169–170, 210, 237
Euclidean geometry  170, 409

axioms in  31
Hilbert on  250
vs. non-Euclidean geometry

294
and SAS rule  2

Euclidean space (Cartesian
space, n-space)  170

Euclides ab omni naevo
vindicatus (Saccheri)  455

Euclid of Megara
(philosopher)  168

Euclid’s postulates  6–7, 159,
170–171, 226, 255, 455, 474

See also parallel postulate
Euclid’s proof of the infinitude

of primes  159, 171–172,
238, 265, 410

Eudoxus  26, 57, 172–173
Euler, Leonhard  10, 107, 120,

140, 152, 161–163, 173,
173–174, 175, 180, 182,
185, 208, 284, 300, 431,
523–525, 529

and continued fractions  99
and continuously

compounded interest  276
and Fermat’s last theorem

190
and foundations of

mathematics  200
and geometry  6, 64, 80
and Goldbach’s conjecture

229–230
and graph theory  235–236
and number theory  13, 18,

187, 202, 247, 283, 349,
389, 426

and partition function  381
and pi (π) 393

and topology  500
and unit circle in

trigonometry  511
and zeta function  105,

447, 535–536
Euler circuit  233
Euler-Descartes formula. See

Euler’s theorem
Euler diagrams  26, 362
Eulerian circuit  235–236
Eulerian path  235
Euler line  80, 174, 174–175,

354, 507
Euler’s brick  174
Euler’s constant  174, 175,

175, 247, 283, 461
Euler’s formula  85–86, 122,

152, 163, 174, 175–176,
182, 185, 209, 236, 314

and logarithms  320
Euler’s polygon division

problem, Catalan numbers
and  65

Euler’s polynomial  174
Euler squares  303
Euler’s theorem (Euler-

Descartes formula)  80, 174,
176–177, 177, 233,
278–279, 358, 404, 472

Euler totient function  174
e-vector. See eigenvector
even functions  177, 490
even numbers  177–178
event  178, 413, 417
exa- (1018)  465
excircle  261, 354
excluded middle, law of  304
Exercitatio geometrica (D.

Gregory)  240
Exercitationes geometricae sex

(Cavalieri)  67
exhaustive subsets  371
existential quantifier (“there

exists”)  430–431
expanding brackets  9, 131,

162, 179, 179, 404, 431
and binomial theorem  45
and distributive property

143
and Elizabethan

multiplication  160
expected value (mean, expecta-

tion, µ)  179–180, 334
exponent  180–181, 263, 366,

475
exponential function

152–153, 181, 181–182
exponential inequalities  268
exponential notation. See

scientific notation
exponential series  182
exponential time  405
expression  182
exterior angle  182, 182–183,

504, 504
exterior-angle theorem  182,

183, 183, 377
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external direct product. See
Cartesian product

extraction  183–184
extrapolation  184, 278, 405
extreme and mean ratio. See

golden ratio
extreme-value theorem  49,

119, 184, 330, 442
extremum  184

F

face  185, 403
face angle  185
face-centered cubic lattice  472
face of graph  185
faceted polyhedron  404
factor  185–186
factorial  80, 174, 186–187,

444, 486
factorization  118–119, 187
factor theorem  187
factor tree  210
Fagnano, Giovanni  387
fair division (cake cutting)

187–188
fallacy of the converse  26
fallacy of the inverse  26
false position, method of  9,

156
Faltings, Gerd  190
Fano plane  419, 419
Farey, John  188
Farey sequence (series)

188–189
al-Farisi  18
F-distribution  484
feedback  150
femto- (10-15)  465
Ferguson, D. F.  461
Fermat, Pierre de  138,

139–140, 189, 272, 410, 531
and amicable numbers  13
and coordinate geometry

63, 226, 234–235
and figurate numbers  66,

287
and history of calculus  57
little theorem of  342
and probability theory

413, 414, 417
Fermat’s last theorem  137,

138, 139–140, 189–190,
227, 531

Fermat’s little theorem  342
Ferrari, Ludovico  10, 60,

190–191, 431–432, 470, 494
Ferro, Scipione del (Ferreo, dal

Ferro)  10, 59–60, 112, 191,
493–494

Feuerbach, Karl Wilhelm  354
Fibonacci  10, 155, 156,

191–192, 409, 511
and Hindu-Arabic

numerals  251
and minus sign  487
and zero  534

Fibonacci numbers  192–193,
193, 197, 384, 443, 458

and golden ratio  231
and polyominoes  406

field  5, 85, 442
Fields, John Charles  194
Fields medals  193–194, 531
fifteen puzzle. See slide 15

puzzle
figurate numbers  66, 99, 194,

194–195, 287, 381, 389, 423
Fincke, Thomas  511
finger multiplication  195–196
finite  196, 270
finite differences  33, 75,

196–197
finite induction. See induction
finite projective geometry  419
finite sets  106
Fiore, Antonio Maria  493–494
first-derivative test  331–332
Fisher, Sir Ronald Aylmer

197–198, 387, 415
five-fold rotational symmetry

490
five stone problem  43
fixed point  198
floor/ceiling brackets  51
floor function (greatest-integer

function)  198
fluid mechanics  8, 144, 248,

299
flux  144
fluxion  57–58, 198, 309, 352
focal chord  198
focal radius  198
focus (foci)  155, 199

of an ellipse  161
of hyperbola  253, 253–254
of parabola  373
of paraboloid  374

foot (unit of length)  309
force field  101
Ford, Lester R.  188
formal logic (symbolic logic)

25, 89–90, 94, 101, 199,
238, 304–305

Aristotle and  26
expressions in  182
founded by Boole  48
Gödel and  228–229
set theory and  460

formula  199–200
Formulario mathematico

(Peano)  385
foundations of mathematics

47, 200
four-color theorem  55,

200–201, 420, 472
and Möbius band  340
and torus  501

four elements (earth, air, fire,
water)  397

Fourier, Jean-Baptiste Joseph
139, 201, 202, 208

Fourier series  139–140, 177,
201–203, 202, 307, 522, 530

fourth dimension  136
fractal  136, 203–204, 204,

456, 463
fractal shapes

and Banach-Tarski paradox
24

and chaos  71
fraction  146, 204–206, 341,

358, 439, 444
in binary notation  43
reciprocal of  442

fractional dimensions  136
fractional exponent  181, 368
fractional part brackets  51
fractional part function  98,

198
Fraenkel, Adolf  534
Français, Jacques, and

complex numbers  25
Franklin, Benjamin  325
freedom equations. See

parametric equations
Frege, Gottlob  199
frequency  206
frequency distribution  479
frequency polygon  479, 479
frequency table  479, 479
frequency theory of

probability, Venn’s  524
friendly numbers. See amicable

numbers
frieze pattern  206, 206–207
frustum  207
F-test  484
full linear group  222–223
full turn  14, 362, 390
function  139, 173, 207–209,

208, 445
functional analysis  35
function of a function. See

composition 
function of a function rule. See

chain rule
fundamental principle of

counting. See multiplication
principle

fundamental property of least
time  189

fundamental theorem of
algebra  85, 112, 186–187,
209–210, 359, 405, 451

and polynomial equations
471

proofs of  10, 25, 218
and zeta function  536

fundamental theorem of
arithmetic  83, 118–119,
186–187, 210–211, 283,
409, 439, 476

proved by Gauss  218
and zeta function  535

fundamental theorem of
calculus  133, 153, 211–212,
240, 272, 494

formulated by Leibniz  308
in history of calculus

57–58

fundamental theorem of
isometries  212, 284

fuzzy logic  212, 305
fuzzy-set theory  212

G

Galilei, Galileo  65, 93, 114,
125, 213–215, 214, 270,
485, 523

Gallai, Tibor  80
galley method  159
Galois, Évariste  10, 215, 242,

288, 432, 471
Galton, Sir Francis  215–216,

415
Galton graph. See scatter

diagram
gambler’s ruin  216, 437
game theory  216–218,

346–348, 350–351, 415
gamma function  174, 187
Gardner, Martin  218
Garfield, James  425
Garnier, René  288
Gauss, Carl Friedrich  119,

140, 218–219, 226, 268
and fundamental theorem

of algebra  209
and geometry  47, 97,

355–356
and group theory  242
and knot theory  295
and number theory  10, 25,

28, 87, 195, 287, 359,
489

and prime numbers  243,
410–411, 518

and probability  356, 414
and topology  500

Gaussian elimination
(pivoting)  119, 219–222,
282, 288, 438, 491

Gelfond, Aleksandr  11
general form of an equation

222
general linear group  222–223,

314
general maximum/minimum

331
general theory of relativity

158
General trattato di numeri et

misure (Tartaglia)  493
generating circle  500
generator  91, 115
geodesic  219, 223
geodesic dome  223
Geography (Ptolemy)  422
Geometriae pars universalis (J.

Gregory)  240
Geometriae rotundi (Fincke)

511
Geometrica organica

(Maclaurin)  324
geometric distribution  44
geometric mean  333
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geometric progression. See
geometric sequence

geometric sequence  223–224,
489

geometric series  103, 163,
409, 441, 488

geometric transformation
224–225, 258, 316, 503

La géométrie (Descartes)  63,
124–125, 226

“Geometrische
Untersuchungen”
(Lobachevsky)  318

geometry  124, 125, 225–228,
238–239

Geometry (Simpson)  463
Germain, Marie-Sophie  190,

226–228
giga- (109)  465
Girard, Albert  209, 398
glide reflection  206, 225, 228
global maximum/minimum

330
gnomon  228
gnomonic projection  485
Gödel, Kurt  31, 101, 199,

200, 228–229, 453, 458
Gödel’s incompleteness

theorems  101, 199, 229,
250, 458

Goldbach, Christian  229,
230, 410

Goldbach’s conjecture
229–230, 250, 359, 410

golden ratio  193, 230–231,
388–389

golden rectangle  231–232, 232
golden triangle  232
Goodwin, E. J.  394
googol/googolplex  232, 389
Gosset, William Sealy  232,

387, 415, 483
grad  233
grade. See slope
gradian  14
gradient  139, 233, 466–468,

467
Graeco-Latin square  302–303
Grandi, Guido  451
graph (network)  94, 233, 233,

501
graphical solution  163, 234,

491
graph of function  114, 207,

234–235, 275, 368
graph theory  82, 174,

235–236, 245, 505
Graunt, John  312, 415
gravitation, theory of

399–400
great circle  223, 314
greatest common divisor

(greatest common factor)
82, 169–170, 236–237, 290,
305, 446

greatest-integer function. See
floor function

Greek alphabet  237, 237
Greek mathematics  9,

237–239
Green, George  239–240
Gregory, David  240
Gregory, James  57, 240, 241,

476–477, 494, 496
Gregory series  11–12, 241,

325, 393, 461
Grelling’s paradox  374–375
The Grounde of Artes

(Recorde)  443
group  59, 241–242, 252, 279,

398, 490
group theory  5, 10, 215, 242,

288, 299, 350, 432
Grundbegriffe der

Wahrscheinlichkeitsrechnung
(Kolmogorov)  296

Grundlagen der Geometrie
(Hilbert)  171, 250

Grundlagen der Mathematik
(Hilbert and Bernays)  250

gry  310
Gunter, Edmund  369, 466

H

haberdasher’s puzzle  165
Hadamard, Jacques  243, 411,

518
Haidao suanjing (Liu Hui)  73
hairy ball theorem  472, 521
Haken, Wolfgang  200–201,

420
half-chord  511
half-cone  91–93, 473
half-line. See ray
half-open interval  278
half-plane  94, 235, 243–244,

267, 473
half-space  243–244
Hall, Monty  343
Hall, Philip  244
Halley, Edmund  5, 312, 353,

445
Halley’s comet  445
Hall’s matching (marriage)

theorem  244
halting problem  88, 244
Hamilton, Sir William Rowan

10, 87, 236, 244–245, 359,
432, 520

Hamiltonian circuit  236, 505
Hamiltonian path  236, 502
ham-sandwich theorem  245
hand (unit of length)  309
handshake lemma  121, 236,

245
handshakes across a table

problem  65
Hardy, Godfrey Harold  246,

381, 435–436
harmonic function  246
harmonic mean  21, 333
harmonic sequence

(progression)  246–247

harmonic series  4, 104–105,
174, 247–248, 368, 409

Haros, C.  188
hatcheck problem  391
al-Haytham  18
Heawood, Percy  200–201
height

of cone  91
of cylinder  115
of pentagram  388
of prism  412
of tetrahedron  497
of triangle  506

Heisenberg, Werner  68
helix  114, 248
hemisphere  471
Hermite, Charles  11, 154,

301, 314
Herodotus  498
Heron  248–249
Heron’s formula  52–53, 78,

248, 249, 336, 486, 506, 508
Heron’s method  34–35, 183,

248, 249, 285, 353, 476
hertz (Hz)  206
Hertz, Heinrich  158
Heumann, Casper  312
hexadecimal notation  135
hexagonal lattice  472
hexahedron. See cube
hierarchy  454
Hieronymus  497–498
higher arithmetic. See number

theory
higher derivative  249
highest common factor. See

greatest common divisor
Hilbert, David  137, 170, 171,

199, 229, 249–250, 355, 533
Hilbert’s axioms  171
Hilbert’s infinite hotel paradox

250–251, 269
Hilbert space  250
Hindu-Arabic numerals

191–192, 251, 263, 370, 451
Hipparchus  510
Hippasus  172, 283
Hippocrates  251–252,

322–323, 476, 513
Hippocrates lune  251
Hisab al-jabr w’al muqābala

(al-Khwārizmı̄)  10, 17, 251,
293, 517

histogram  143, 479, 479
Historia natural y moral de las

Indias (Acosta)  260
HOMFLYPT polynomial  296
homogeneous  252
homomorphism  252
homotopy  398–399
honeycomb  292, 372
Horner, William George  72
How to Solve It (Pólya)  401
hundkurve  503
Hutchings, Michael  469
Huygens, Christiaan

114–115, 180, 414, 503

Hydrodynamica (Daniel
Bernoulli)  40

hydrodynamics  140
hydrostatics  18–19, 20
Hypatia  239, 252–253
hyperbola  30, 92–93, 93, 137,

155, 189, 239, 253,
253–254, 513

hyperbolic cosine  65–66,
254–255

hyperbolic cylinder  411
hyperbolic functions  254,

254–255, 369
hyperbolic geometry  219,

227, 255, 318, 355–356, 455
hyperbolic paraboloid  374,

411
hyperbolic sine  254
hyperbolic spiral  474
hyperboloid  255–256, 256
hyperboloid of one/two sheets

411
hypercomplex numbers  432
hypercube  112, 256
hypersphere  136, 471
hypocycloid  115
hypotenuse  77, 256, 509
Hypothesis physica nova

(Leibniz)  309
hypothesis testing  143

I

i (square root of –1)  85, 173,
358–359, 529

i (unit vector)  520
Ibrahim ibn Sinan  18
icosahedron  232, 396, 397
“Idealtheorie in

Ringbereichen” (Noether)
355

identity  163, 257, 304
identity element  257, 258,

279, 295, 366
additive  534
multiplicative  344

identity matrix (unit matrix)
128, 257, 257–258, 281

identity property  222, 241
image (range)  207, 258, 481
imaginary numbers  87. See

also complex numbers (C)
implicit differentiation

258–259
implicit function  259
improper factor  186
improper fraction  205
improper integral (unrestricted

integral, infinite integral)
104, 144, 259–260

In artem analyticam isagoge
(Viète)  525

Incan mathematics  260
incenter  260
inch  309
incircle  260–261, 354
inclination  261, 261
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inclined plane  261
inclusion-exclusion principle

48–49, 261, 391, 460
incomposite numbers  409
increasing/decreasing  89,

261–262
increment  262
indefinite integral  95, 272,

275
independent. See pairwise

disjoint
independent axiom  171, 262
independent events  91, 178,

262–263, 417
independent variable  519
indeterminate. See unknown
indeterminate equation  263
index (indices)  263. See also

exponent
index of summation  488
Indian mathematics  263–265
indirect proof (proof by

contradiction, reductio ad
absurdum)  139, 171, 265,
336, 420

induction  122, 126, 176–177,
261, 265–267, 270, 420

inductive definition. See
recursive definition

inductive reasoning  120–121
Indus inch  263
inequality  267–268
inference  268, 415
inferential statistics. See

statistics: inferential
infinite  196
infinite integral. See improper

integral
infinite order  406
infinite product  144,

268–269, 312, 459
infinite series  102, 324, 351,

368, 439
infinitesimal  47, 57–58, 67,

269, 271, 533
infinity (∞)  269–270, 529
inflection (inflexion) point  89,

89, 270, 492
information theory  271
injective function  209
inner product. See dot product
inradius  260
inscribe/circumscribe  78
inscribed-angle theorems  77,

77–78
inscribed circle  387
instantaneous value  271
instantaneous velocity  523
integer (directed number,

signed number)  271, 358
integer triangle  507–508
integral  66, 180, 380, 447,

523
integral calculus  22, 24, 56,

133, 271–273, 272, 308–309
and Archimedes’ method of

exhaustion  18

vs. differential calculus
211–212

and volume calculation
470, 527

integral domain  449
“Intégrale, longeur, aire”

(Lebesgue)  307
Intégrales de Lebesgue (Vallée-

Poussin)  518
integral test, for convergent

series  104
integrand  148–149, 273, 274,

360
integration  15, 133, 272

by parts  95, 273–274,
443, 486

by substitution (change of
variable, substitution rule
for integration)  274–275,
287

intercept  275
intercept form  164, 275
interest  275–276
interior angle  276, 504, 504
intermediate-value theorem

(Bolzano’s theorem)  100,
184, 276–277, 367, 442

bisection method and  46
Bolzano’s proof of  47
and Dedekind cut  119
and ham-sandwich theorem

245
in history of calculus  58
and logarithmic function

320
interpolation  184, 405. See

also Lagrange’s formula
intersection  144, 460
interval  278
Introduction à l’analyse des

lignes courbes algébriques
(Cramer)  107–108

“Introduction to Mathematical
Philosophy” (Russell)  453

An Introduction to
Mathematics (Whitehead)
530

“Introduction to the Doctrine
of Fluxions” (Bayes)  38–39

invariant  278–279
inverse element  279–280
inverse function (inverse

mapping, reverse function)
280–281

inverse hyperbolic functions
281

inverse mapping. See inverse
function

inverse matrix  222, 280,
281–282

inverse property  5, 49, 223,
241

inverse square law  282
inverse trigonometric functions

280–281, 282–283
inversion in a circle  225

An Investigation of the Laws
of Thought (Boole)  48

irrational numbers  59, 238,
283, 358, 423

and definition of real
number  441–442

Kronecker’s doubts about
297

Theodorus’s work on  498
irreducible polynomial  186
Isagoge ad locos planos et

solidos (Fermat)  189, 226
isogonal transformation. See

conformal mapping
isolated point (acnode)  283
isometry (congruence

transformation)  140,
283–284

isomorphism  284
isoperimetric inequality  268
isoperimetric problems  130,

284–285, 469, 472,
474–475, 484–485, 529

isosceles trapezoid (trapezium)
285, 504

isosceles triangle  238, 285,
285, 506

“Ist die Trägheit eines Körpes
von seinem Energieinhalt
abhängig?” (Einstein)  158

Istituzioni analitiche (Agnesi)
7

iterated integral  148
iteration  150–151, 285–286
Iverson, Kenneth  198

J

j (engineers’ i)  85
j (unit vector)  520
Jacobi, Carl Gustav Jacob

287–288
Jacobian determinants  287
Jacquard, Joseph-Marie  33
jerk  523
Jiuzhang suanshu

(anonymous)  73, 226
Jones, Vaughn  295–296
Jones, William  393
Jones polynomial  296
Jordan, Marie Ennemond

Camille  288, 307
Jordan, Wilhelm  288
Jordan canonical form  288
Jordan curve theorem  76, 288
Josephus problem  288–289
Jourdain’s paradox  289
Journal de Mathématiques

Pures et Appliqués
(Liouville’s journal)  317

Journal for Pure and Applied
Mathematics (Crelle’s
journal)  3

J-shaped distribution  480,
480

jug-filling problem  137, 170,
289–290

Julia, Gaston Maurice
203–204

Julia set  203–204
Jungius, Joachim  65

K

k (unit vector in three-
dimensional space)  520

al-Kashi, Jamshid Mas’ud  18,
291, 392

Kasner, Edward  232
Kempe, Alfred Bray  200
Kendall, M. G.  438
Kendall’s coefficient  438
Kendall’s method  438
Kepler, Johannes  93, 291–293,

292, 396, 397, 472, 528
Kepler’s laws, Newton and

353
The Key to Arithmetic (al-

Kashi)  291
Khandakhadyaka

(Brahmagupta)  51
Khayyám, Omar. See Omar

Khayyám
al-Khwārizmı̄, Muhammad

ibn Mūsā 9, 10–11, 17, 251,
293–294, 517, 534

kilo- (103)  465
kinematics  27, 213
kite  430, 430
Klarner, David  406
Klarner’s constant  406
Klein, Felix Christian  294,

314, 355, 473–474
Klein bottle  200–201,

294–295, 339–340
Klein-four group (viergruppe)

295
knot theory  295, 295–296
Koch, Nils Fabian Helge von

203
Koch curve  203
Kolmogorov, Andrey

Nikolaevich  296
Kramp, Christian  187
Kremer, Gerhard (Mercator)

337
Kronecker, Leopold  296–297
Kruskal’s count  297–298
Kulik, Yakov  463

L

Laczovich, Miklov  165
laddered exponents  65
Lafforgue, Laurent  194
Lagrange, Joseph-Louis  99,

201, 249, 278, 299–300,
379, 399, 414

and group theory  242
and history of calculus  58
and mean-value theorem

334
and square numbers  195
and Taylor series  494
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Lagrange’s formula  120, 278,
300, 405

Lagrange’s theorem  299
Lagrangian (unit)  300
Lagrangian description  300
Lagrangian multipliers  300
Lambert, Johann Heinrich

283, 300–301, 392, 477
Landa, Diego de  332
Langlands, Robert  194
Laplace, Pierre-Simon,

marquis de  69, 245,
301–302, 356, 399, 414

Laplace operator  302
Laplace transform  302
latent vector. See eigenvector
lateral surface  115
Latin square  174, 302–303
latitude  105, 154, 337
lattice  366
lattice method  159
lattice point  164, 166
lattice polygon  164–165, 166
law of averages  303, 304
law of conservation of energy

309
law of continuity  309
law of cosines  5–6, 16, 78,

303, 303–304, 506
law of excluded middle  304
law of falling bodies  213
law of identity  304
law of large numbers  71–72,

303, 304, 399, 414–415, 436
law of noncontradiction  304
law of sines  1–2, 78, 303,

303–304, 463, 507
law of the lever  18, 69, 304
laws of gravity  353
laws of planetary motion

291–293
laws of thought  26, 304–305
lawyer paradox  374–375
leading coefficient  305
least common denominator

83
least common multiple  83,

305
least-integer function. See

ceiling function
least squares method  107,

218, 302, 305–307, 308, 445
Lebesgue, Henri-Léon  58, 307
LeBlanc, Louis  227
Leçons sur les séries

trigonométriques (Lebesgue)
307

Lectiones geometricae
(Barrow)  36

Lectures on Quaternions
(Hamilton)  520

left derivative  307–308
left-handed system  369, 448
left identity  257
left/right, limit from the  313
Legendre, Adrien-Marie  187,

308

Legendre polynomials  308
Legendre symbol  308
Lehmer, D. H.  436
Leibniz, Gottfried Wilhelm

122, 208, 308, 308–309,
523–525

and calculus notation  249,
488

and differential  132
and discovery of calculus

57–58, 211, 227, 240,
272, 352, 494

and double integrals  148
and formal logic  199, 228

Leibniz’s series. See Gregory
series

Leibniz’s theorem  418
lemma  498–499
length  309–310
lens  76
Leonardo of Pisa. See Fibonacci
Les méthodes nouvelles de la

méchanique céleste
(Poincaré)  399

Let’s Make a Deal! (game
show)  343

letterbox principle. See
pigeonhole principle

“A Letter on Asymptotic
Series” (Bayes)  39

Letters to a German Princess
(Euler)  174

levers and pulleys  19–20
L’Hôpital, Guillaume François,

marquis de  40, 58, 310
L’Hôpital’s rule  40, 310–311
Lho shu square  325, 326
Lhuilier, Simon  474
liar’s paradox  289, 311, 374,

458
Liber abaci (Fibonacci)  156,

191–192
Liber de ludo aleae (Cardano)

414
Liber quadratorum (Fibonacci)

192
life tables (mortality tables)

311–312, 415
ligancy  472
likelihood  197
Lilavati (Bhāskara)  41–42
limit  312–313

d’Alembert and  8–9
and analytic number theory

13
Bolzano’s work on  47
and chain rule  70–71
ε - δ definition of  529
and definition of tangent

492
derivative as  132
devised by Cauchy  66
in history of calculus  58

Lindemann, Carl Louis
Ferdinand von  11, 297,
313–314, 393, 477

line  314, 315

linear algebra  314, 491
linear-congruence method

436–437
linear equation  34, 156, 163,

314–315
linear interpolation  277–278
linearly dependent/

independent  315
Linear Perspective (Taylor)

494
linear programming  316
linear transformation  7,

316–317
line integral. See contour

integral
Liouville, Joseph  11, 59, 215,

317–318
Liouville’s constant (Liouville’s

number)  11, 317
Listing, Johann  295, 339, 340
Littlewood, John  246
Liu Hui  73
Li Ye (Li Chi, Li Zhi)  73, 318
Lobachevskian geometry. See

hyperbolic geometry
Lobachevsky, Nikolai

Ivanovich  46–47, 171, 219,
227, 255, 318, 355, 377,
455

local maximum/minimum
330–331, 331, 468

locus (loci)  319
logarithm  247, 252, 284,

319–320, 342, 411, 461, 466
history of  53–54, 55,

291–293, 345–346
of matrix  157

logarithmic differentiation
258–259

logarithmic function
152–153, 153, 320–321, 337

logarithmic graph  235
logarithmic scale  118, 321,

369, 466
logarithmic spiral  39, 474
Logarithmorum chilias prima

(Briggs)  54
logically equivalent  515
logic gates  88
Logic of Chance (Venn)  524
long division  37, 37–38, 38,

146, 349, 404, 433
longitude  105, 154–155, 337,

445
long radius  321
Loomis, Elisha Scott  425
loop (graph theory)  233
Lorentz, Hendrik  398
Lovelace, Augusta Ada  33,

321–322, 322
lowest terms. See reduced form
Loyd, Sam  465–466
lozenge  376, 474
Lucas, Edouard  502
lune  251–252, 322, 322–323
Lyapunov, Aleksandr

Mikhailovich  69, 356, 415

M

Maclaurin, Colin  107–108,
324, 496

Maclaurin series. See Taylor
series

Madhava of Sangamagramma
264, 324–325

magic constant  325
magic division square  327,

327
magic multiplication square

327, 327
magic rectangle  328, 328
magic square  149, 149–150,

325, 325–328, 326, 327
magnitude  328–329
al-Mahani  18
major arc  18
major premise  27
Malthus, Thomas  407
Mandelbrot, Benoit  204
Mandelbrot set  204
Manière universelle de Mr.

Desargues (Bosse)  124
mapping. See function
Markov, Andrei  415
Markov chains  296
The Mathematical Analysis of

Logic (Boole)  48
“Mathematical Contribution

to the Theory of Evolution”
(Pearson)  387

Mathematical Dissertations
(Simpson)  464

mathematical induction. See
induction

“The Mathematical Theory of
Communication” (Shannon
and Weaver)  461

A Mathematician’s Apology
(Hardy)  246

Mathematische Grundlagen
der Quantenmechanik (von
Neumann)  351

matrix (matrices)  109, 119,
126–128, 221–222, 314,
329

matrix addition  329–330
matrix algebra  68, 458
matrix inverse. See inverse

matrix
matrix multiplication  241,

330
matrix operations  329–330
Matyasevic, Yuri  137
maximin strategy  217
maximum/minimum  89, 133,

310, 330–332, 331
Mayan mathematics  332–333
McManus, Chris  118
mean (average)  44, 333–334,

480, 537
mean. See expected value
mean value  334
mean-value theorem  22,

94–95, 119, 184, 211, 262,
311, 334–335, 442, 450
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Measurement of a Circle
(Archimedes)  18

measures of central tendency
480

measures of dispersion
480–482

measure theory  58, 307
Mécanique analytique

(Lagrange)  299
Mécanique céleste (Laplace)

67, 245
Mechanica (Euler)  173, 393
mechanics  8
median  174–175, 480
median of triangle  335,

335–336, 338, 507
Meditationes algebraicae

(Waring)  229
mega- (106)  465
Melancholia (Dürer)  149, 325
“Mémoire sur les équations

algébriques” (Abel)  5
“Mémoire sur quelques

propriétés remarquables des
quantités transcendantes
circulaires et logarithmiques”
(Lambert)  300

“A Memoir on the Geometric
Representation of Imaginary
Numbers” (Français)  25

Memoir on the Theory of
Matrices (Cayley)  68

Menabrea, Luigi  322
Menelaus  17, 336
Menelaus’s theorem  70, 336,

336
Mercator (cartographer). See

Kremer, Gerhard
Mercator, Nicolaus

(mathematician)  337
Mercator’s expansion  4, 337
Mercator’s projection  91, 337
Méré, Chevalier de  414
meridian  154–155
Mersenne, Marin  189,

337–338, 389
Mersenne prime  338, 389,

410
Metaphysics (Aristotle)  498
meter  465
method. See algorithm
method of exhaustion  18, 20,

57, 67, 172
method of indivisibles  67
Methodus incrementorum

directa et inversa (Taylor)
494

Metrica (Heron)  248, 249
micro- (10-6)  465
middle-square method  436
midpoint  76, 338
midrange  480
Mihailescu, Preda  64
mile  309–310
milli- (10-3)  465
minimax strategy  217
minimax theorem  218

minimum. See
maximum/minimum

minor arc  18
minor premise  27
minuend  487
minus sign  131, 398, 486,

487
minute (measure of angle)  14
Mirifici logarithmorum

canonis descriptio (Napier)
346

Miscellanea analytica (De
Moivre)  122

mixed strategy (game theory)
217–218

mixed surd  490
Miyoshi, Kazunori  393
Möbius, August Ferdinand

338–339, 340
Möbius band (strip)  294–295,

339–340, 340, 369
Möbius function  339
Möbius inversion formula

339
mode  480
modular arithmetic  59,

71–72, 92, 147, 174, 218,
340–342, 436

modulus. See absolute value
monic  305
monohedral tessellation

496–497
monomial  342
monomino  406
Monte Carlo method

342–343
Monty Hall problem  343
Mordell conjecture  190
Morgan, Frank  469
Morgenstern, Oskar  216,

350–351
Morley, Frank  343
Morley’s theorem  343
Morrison, Nathan  296
mortality tables. See life tables
multi-choosing  81–82
multiplicand  344
multiplication  5, 86, 86, 146,

205, 343–344, 370
multiplication law  367
multiplication principle

(fundamental principle of
counting)  344

and permutations  391
multiplication rule

for exponents  180–181
in probability theory  416,

416–417
multiplicative identity  257
multiplicative inverse  449
multiplier  344
multivariate analysis  197
mutually exclusive. See

pairwise disjoint
mutually exclusive events

(disjoint events)  344
mutually orthogonal  302

Mysterium cosmographicum
(Kepler)  292

N

Nakayama, Kazuhiko  393
nano- (10-9)  465
Napier, John  74, 293,

319–320, 345, 345–346, 466
Napier’s bones (rods)  74, 346,

346, 347
Napier’s formulae  346
Napier’s inequality  268
Napoléon’s theorem  507
nappe  91–93, 473
Nash, John  346–348, 415
Nash equilibrium  413
Natural and Political

Observations Made upon the
Bills of Mortality (Graunt)
312

natural number  106, 129,
348, 358, 385

See also whole number
naught. See zero
Nave, Hannibal  191
n-dimensional kissing number

472
n-dimensional space  68, 472
nearest-neighbor algorithm

505
negation (‘not’ statement)

348, 514
negative coordinates  63
negative infinity  121
negatively oriented  369, 448
negatively skewed  465, 480,

480
negative numbers  48, 51,

348–349, 358, 408
negative slope  467
neo-Pythagorean mean  333
nested multiplication  349,

349–350, 350, 405
net (accounting)  350
net (geometry)  350, 350
net (of hypercubes)  256
net weight  350
network. See graph
Neumann, John von  350–351,

393
neutral element. See identity

element
New Experiments concerning

Vacuums (Pascal)  382
Newton, Sir Isaac  93, 122,

125, 132, 169, 180, 282,
292, 324, 351–353, 352,
452, 523, 528

and binomial theorem  45
and discovery of calculus

57–58, 211, 227, 240,
272, 308–309, 352, 494

and fluxions  198
and polar coordinates  63,

400
and three-dimensional

kissing number  472

Newton number  472
Newton quotient  132, 360
Newton’s method  46, 249,

286, 353–354, 451
Newton’s third law of motion

9
A New Treatise of Fluxions

(Simpson)  464
Neyman, Jerzy  354
n-fold rotational symmetry

490
n-gon  97, 402
Nicomachos of Gerasa  389
nine-point circle  354
node  148, 233, 493
Noether, Amalie (Emmy)  10,

354–355
n-omino  406
noncontradiction, law of  304
“Non-Cooperative Games”

(Nash)  347
nondegenerate quadrics  411
nondeterministic polynomial

time  357
nonempty set  162
non-Euclidean geometry  159,

171, 227, 255, 314,
355–356, 377, 473–474

discovery of  46, 318, 455
vs. Euclidean geometry

294
nonmeasurable sets  24
nonnegative  408
nonpositive  408
nonrepeating decimals  441
nontrivial solution  514
nonzero-sum game theory  347
normal distribution  69–70,

72, 122, 143, 356, 356–357,
414, 482, 483, 486

normal to a curve  357
normal to a plane  357
normal to a surface  357
“Note on the Application of

Machinery to the
Computation of
Astronomical and
Mathematical Tables”
(Babbage)  32–33

“Note sur une équation aux
differences finie” (Catalan)
64

Notions sur la machine
analytique de Charles
Babbage (Menabrea)  322

Nova methodus pro maximis
et minimis (Leibniz)  309

Nova stereometria doliorum
(Kepler)  292–293

Novum Organum (Bacon)  452
NP complete  88, 357–358
n-polyomino  406
n-space. See Euclidean space
nth dihedral group  242
nth-order general linear group

(GLn)  222–223
nth-order root  451
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nth-order symmetric group
490

nth root  112
nth root of unity  358
nth-term test  103
n-tuple  358
null angle  14
null set. See empty set
number  358–359
number-base machine  30
number line  359, 441, 442
number-naming puzzle  54–55
number systems  358–359
number theory  82, 139–140,

159, 167, 191, 337–338,
359–360, 429–430

numerable. See denumerable
numerator  204
numerical differentation  360
numerical integration  360–361

O

obelus (%)  146
oblate spheroid  154, 362
oblique  362
oblique angle  362
oblique cone  362
oblique cylinder  115
oblique pyramid  423
obtuse angle  14, 362
obtuse triangle  362, 506
obverse  362
octahedron  396, 397
octant  363
octonions  359, 432
odd functions  177, 490
odd numbers  177–178
odds (probability)  363, 439
Oeuvres completes d’Augustin

Cauchy 67
Oeuvres de Camille Jordan

288
officer problem  302–303
Omar Khayyám (Umar al-

Khāyyamı̄)  18, 227,
363–364

“On a Curious Property of
Vulgar Fractions” (Farey)
188

“On a New Method in
Elementary Number Theory”
(Erdös)  167

On Burning Mirrors (Diocles)
136

On Conoids and Spheroids
(Archimedes)  18

On Divisions (Euclid)  169
“one-to-one” function  209
On Floating Bodies

(Archimedes)  18–19
On Reasoning in a Dice Game

(Huygens)  180
On Spirals (Archimedes)  474
On the Economy of

Machinery and Manufactures
(Babbage)  33

“On the Problem of the Most
Efficient Tests of Statistical
Hypotheses” (Neyman)  354

“On the Propagation of Heat
in Solid Bodies” (Fourier)
201

On the Sphere and Cylinder
(Archimedes)  18, 173

“On the Theory of Groups
Depending on the Symbolic
Equation θn = 1” (Cayley)
68

“onto” function  208
open half-plane  243–244
open half-space  243–244
open interval  278
operation  364
operational precedence. See

order of operation
operations research (OR)  33,

364
opposite  364
opposite angles  364
oppositely congruent solids  92
Optica promota (J. Gregory)

240
Optics (Euclid)  169
Optics (Ptolemy)  422
optics, Newton and  353
Optiks (Newton)  353
optimization  133, 161, 285,

316, 364, 364–365
and history of calculus  57
and inscribed triangles  387
and Snell’s law of

refraction  468
Steiner and  484–485
von Neumann and  350

OR. See operations research
orbit (sequence of iterates)

150
order. See permutation
order, of polyomino  406
ordered partition  380–381
ordered set  365–366, 367,

530
order of a matrix (dimension

of a matrix)  258, 366
order of group  366
order of magnitude  329
order of operation (opera-

tional precedence)  366–367
order properties  267, 367
ordinal numbers  367–368
ordinate  62
Oresme, Nicole  63, 208, 234,

368
orientation  369
origami  513
origin  105, 359
orthant  363
orthic triangle  387
orthocenter  12, 354, 387, 507
orthogonal  369, 391
orthogonal. See Cartesian

coordinates
Osborne’s rule  369

osculation (tacnode)  148
osculinflection  492, 493
Oughtred, William  344,

369–370, 370, 466
outlier  370
oval  370
ovals of Cassini  370
Ozanam, Jacques  449

P

packing spheres  472
paddle wheel  174
Paganini, Nicolò  13
pairwise disjoint (independent,

mutually exclusive)  371
Pappus  13, 57, 239, 253,

371–372, 470
Pappus’s problem  372
Pappus’s theorems  372–373,

470, 471
and torus  500

parabola  92–93, 93, 137,
155, 189, 239, 373, 373,
429

as trajectory  213, 503
parabolic cylinder  411
paraboloid  101, 235,

373–374
paradox  374–375, 412, 532

and pure mathematics
422–423

“Paradoxien des Unendlichen”
(Bolzano)  47

parallel  375–376, 376, 377
parallelepiped (parallelopiped)

376
and scalar triple product of

three vectors  512
parallelogram  376, 430, 474

area of  23, 23
cross (vector) product as

110
parallelogram law

(parallelogram rule)  376,
376–377

parallelotope  376
parallel postulate (Euclid’s fifth

postulate)  159, 227, 239,
255, 375, 377, 377–378,
378, 473

and altitudes of triangle
12–13

and angles of triangle  505
converse of exterior-angle

theorem  183
and Euclidean vs. non-

Euclidean geometry
170–171, 318, 355–356

Omar Kayyám and  18,
364

parallel projection  418
parametric equations (freedom

equations)  164, 378, 386
and arc length of curve  22
of cardioid  62
of circle  75, 95

of helixes  95
of Möbius band  340
of torus  500
of unit circle  517

parentheses  50–51, 519
parity  378–379
Parmenides  532
Parmenides (Plato)  532
partial derivative  138, 233,

239, 259, 379
partial differential equations,

d’Alembert and  8–9
partial fractions  162,

379–380
partially ordered set  365–366
partial sum  102, 380, 459

and limit  312
partition  358, 380–381, 436
partition function  381
Pascal, Blaise  74, 189,

381–382, 382, 383
on cycloid  310
and history of calculus  57
and Pappus’s theorem

372–373
and probability theory

413, 414, 417
Pascal’s distribution  44
Pascal’s triangle  45, 65, 195,

196, 382–385, 384, 497
and combination  80–81

pathological functions  529
Pathwaie to Knowledge

(Recorde)  443
payoff matrix  217
Peano, Giuseppe  265, 385
Peano’s curve  385, 385–386
Peano’s postulates  31, 265,

271, 385, 386
Pearson, E. S.  354
Pearson, Karl  106, 107,

215–216, 386, 386–387,
415

peasant multiplication. See
Russian multiplication

pedal circle, of triangle  387
pedal triangle  387
Pell, John  54
Pell’s equation  54
pencil-turning trick  505–506,

506
pendulums  114–115, 213
Penny Cyclopedia 122
pentagon  285
pentagram (pentacle,

pentalpha, pentangle)  230,
387–388, 388, 424

percentage  388
percentage error  388–389
percentile (centile, quartile)

389
perfect number  18, 174, 338,

389, 423–424
perigon (round angle)  14,

362, 390
perimeter  390, 403, 443
period doubling  151
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periodic function  390
peripatetics  27
peripheral angle  77, 77
permillage  388
permutation  82, 127, 186,

209, 390–391, 490
permutation group  68
perpendicular  369, 391, 468
perpendicular bisector  46,

174–175, 338, 391, 507
perspective  149–150,

391–392, 419
peta- (1015)  465
Phaedo (Plato)  396
phyllotaxis  193
Physics (Aristotle)  532
physics, Aristotelian  27
pi (π) 55, 392–394

approximations of  20,
28–29, 291, 537

irrational  283, 300, 477
not constructible  97
transcendental  11, 301,

313–314, 393, 477
Piazzi, Giuseppe  219
pico- (10-12)  465
pie chart (graph)  479, 479
pigeonhole principle  394–395
Pitiscus, Bartholomaeus  511
pivoting. See Gaussian

elimination
place-value system  6, 51, 155,

192, 251, 359, 487
planar curve  114
planar graph  233
Planck, Max  158
plane  80, 315, 395
plane geometry  170
Plane loci (Apollonius)  189
Plato  166, 238, 395–396,

397, 498, 532
Platonic solids  159, 232, 238,

291–292, 395, 396,
396–398, 404, 424

Platonicus (Eratosthenes)  166
Playfair, John  171, 227, 355,

376, 377
Playfair’s axiom  46, 171, 227,

355, 376, 377
plot  398
Plouffe, Simon  183
plus  398
plus/minus symbol  398
plus sign  398, 486
Pneumatica (Heron)  248–249
Poincaré, Jules Henri  255,

314, 398–399, 500, 530
Poincaré disk  255
Poincaré’s conjecture  399
point  399
point of contact (tangency

point)  399
point of inflection. See

inflection point
point-slope form, of equation

of line  164

Poisson, Siméon-Denis  44, 71,
399–400, 414–415

Poisson distribution  44,
399–400

polar-coordinate graph  235
polar coordinates  22, 39, 63,

400, 400–401, 504
of cardioid  62
of complex numbers  86,

86
of logarithmic spiral  474
of rose  451

polar form  176
Polignac, Alphonse de  107
Pólya, George  401–402
polychoron  403
polygon  119, 149, 402–403,

403
area of  23, 24
circumcircle of  78
convexity of  88
exterior angles of  182
and tessellation  496–497

polygon division problem  64
polyhedral angle  469
polyhedron  88, 128–129,

176–177, 185, 236,
403–404

polynomial  404–405
polynomial equations  163,

215
polynomial time  405
polyomino  405–406, 406
polytope  403
Poncelet, Jean Victor  419
population and sample

406–407
population mean  483
population model  182,

407–408
position vector  395, 408
positive  408
positively oriented  369, 448
positively skewed  465, 480,

480
positive slope  467
postage-stamp problem  446
postulate (axiom)  31, 170,

409
potential  239
power series  121, 324, 399,

409, 495, 530
P problems vs. NP problems

357–358
Practica geometriae

(Fibonacci)  511
precision  66–67, 409,

529–530
“Preliminary and Elementary

Essay on Algebra as the
Science of Pure Time”
(Hamilton)  245

premise  409
primary data  116
prime  409–410, 461
prime factorization  187

prime numbers  186, 389
and Bertrand’s conjecture

71, 167
vs. composite numbers  87
and factorization  186–187
and fundamental theorem

of arithmetic  83,
186–187

infinitude of  171–172
Mersenne’s work on  338

prime-number theorem  71,
219, 410, 410–411, 447, 535

proofs of  167, 243, 518
principal axes  411
Principia (Newton)  293,

351–353, 352
Principia Mathematica

(Russell and Whitehead)
453, 530

Principia philosophiae
(Descartes)  125

The Principle of Relativity
(Whitehead)  530

The Principles of Empirical
Logic (Venn)  524

Principles of Mathematics
(Russell)  453

Principles of the Art of
Weighing (Stevin)  485

Prior and Posterior Analytics
(Aristotle)  27

prism  403, 411–412
prismatoid  412
prismoid  412
prisoner’s dilemma  218, 412,

412–413
probability  122, 143, 189,

243, 262–263, 413–418
and harmonic functions

246
Kolmogorov’s work on

296
Monte Carlo method

342–343
Monty Hall problem  343
and mutually exclusive

events  344
odds and  363
Pascal and  382
and permutations  391
Poisson and  399–400
Quételet and  432–433
and random walks  437
and set theory  178
and two-card puzzle  515

probability density function
143

probability models  416
probability tree  415–416, 416
procedure. See algorithm
Proclus  171, 239, 497
product of matrix  330
product rule  133, 273, 309,

418, 433–434
product set. See Cartesian

product

progression. See harmonic
sequence

projected vector  418–419
projection  337, 391–392,

418–419
projective geometry  123–124,

270, 339, 372, 382, 409,
418, 419

prolate spheroid  362
proof  420
proof by contradiction. See

indirect proof
proofs, defective

that 0 = 1  29
that 1 = 2  4, 248, 337
that 1 is the largest integer

284
that all horses are the same

color  266–267
that the moon is made of

cheese  90
proper factor  186
proper fraction  205
properly divergent  144
proper vector. See eigenvector
proportion  149, 230–232, 370
proportional  420–421, 439
proposition  421
Protagoras  374
p-series test  104
pseudoprime numbers  410
pseudosphere  300
Ptolemy  239, 253, 392, 421,

421–422, 510
Ptolemy’s theorem  52, 422,

422
public-key cryptography  111
pure mathematics  159, 168,

422–423
pure surd  490
pyramid  403, 423
pyramidal frustum  207
Pythagoras  9, 57, 172, 230,

238, 387, 396, 423,
423–424, 425

Pythagoras’s theorem  159,
165–166, 208, 226, 238,
256, 314, 424, 424–426,
425, 506

in Babylonian mathematics
34–35

in Chinese mathematics  73
converse of  506, 506–507
and distance formula  141
and law of cosines  303
and polar coordinates  400
and Pythagorean triples

426
tessellation and  474, 475,

497
and vectors  520

The Pythagorean Proposition
(Loomis)  425

Pythagorean triples  99, 137,
162–163, 190, 226, 360,
422, 426–427
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Q

QED  159, 428
QEF/QEI  428
QI. See Quételet index
Qin Jiushao. See Ch’in Chiu-

shao
quadrangle. See quadrilateral
quadrant  363, 428
quadratic  428–430
quadratic curve  430
quadratic equations  163, 373,

443
quadratic form  430
quadratic formula  84, 200,

451
quadrature of the circle. See

squaring the circle
Quadrature of the Parabola

(Archimedes)  18
quadrilateral  88, 376, 430,

430
quadruple (4-tuple)  358
quantifier  199, 430–431
quantum (quanta)  158
quantum mechanics  159
quartic equation  59–60, 84,

190–191, 431–432
quartile. See percentile
quaternions  241, 244–245,

359, 432
Quételet, Lambert Adolphe

Jacques  415, 432–433
Quételet index (QI)  433
quintessence  397
quintic equation  3
quipu 260
quotient  85, 146, 204, 433
quotient rule  133, 433–434

R

radian  14, 115, 465, 477
radian measure  473, 509
radical sign  475
radius  76
radius-chord theorem  78, 78
radius of convergence  495
radix  36–38
Rahn, Johann Heinrich  146
Ramanujan, Srinivasa  246,

381, 435–436, 477
randomness  41
random numbers  436–437
random sampling  407
random walk  246, 437
range. See image
rank  437–438
rank correlation  438–439
ranunculoid  115
ratio  146, 420, 439
rational function (expression)

439–440
rationalizing the denominator

85, 440, 442, 490

rational numbers (Q)  106,
129, 358, 440–441, 443

vs. algebraic numbers  11
definable as ratio  439
and definition of real

number  441–442
denumerability of  123
discreteness of  140

ratio test  103, 182, 439
ratio theorem  439
raw data  116
ray (half-line)  441
“Real Algebraic Manifolds”

(Nash)  347
real line. See number line
real numbers (R)  106,

129–130, 358, 441–442
and Dedekind cut

119–120
and Euclid  172
nondenumerability of  123

receiver  501–502
“Recherches sur diverses

applications de l’analyse
infinitésimale à la théorie des
nombres” (Dirichlet)  140

reciprocal  442
reciprocal equation  442
Recorde, Robert  162,

442–443
rectangle  185, 376, 443, 474

area of  23, 23
vs. trapezoid  504

rectangular (Cartesian)
coordinates  62–63, 105

recurrence relation (recursive
relation, reduction formula)
443, 458

recursive definition (inductive
definition, recursion)  444

reduced form (lowest terms)
444

reductio ad absurdum. See
indirect proof

reduction formula. See
recurrence relation

re-entrant angle  276
reflection  198, 206, 283–284,

490
in a circle  225
and isometry  212
in a line  224–225
in a point  225

reflection property
of ellipse  365
of parabola  373, 373

reflex angle  14, 362
“Réflexions sur la cause

générale des vents”
(d’Alembert)  8

reflexivity  365
Regiomontanus  444–445, 511
regression  107, 445
regression line  306
regular polygon  164, 166,

402

regular polyhedron. See
Platonic solid

regular tessellation  496
“Rein Analytischer Beweis”

(Bolzano)  47
Reinhardt, Karl  497
Relación de las cosas de

Yucatán (Landa)  332
relation (relationship)  445
relative complement  131
relative error  445
relative frequency  206
relatively prime  139, 172,

174, 446
relative maximum/minimum

330–331, 331
remainder  433
remainder theorem  187, 446
removable discontinuity  440
repeating decimals  440–441,

526
retrograde motion  173
Reuleaux triangle  95
reverse function. See inverse

function
reverse J-shaped distribution

480, 480
Rhaeticus, Georg Joachim

511
Rhind, Alexander Henry  446
Rhind papyrus  9, 155–156,

392, 446–447, 476, 510
rhomboid  376
rhombus (rhomb)  376, 474
Richter, Charles  321
Richter scale  321
Riemann, Georg Friedrich  58,

227, 270, 272, 355,
447–448, 473–474, 485, 535

Riemann hypothesis  243, 246,
250, 447

Riemannian geometry. See
spherical geometry

Riemann integral  58, 447
Riemann sphere  485
Riemann’s zeta function. See

zeta function
right angle  14, 226, 448
right circular cone  473
right cylinder  115
right derivative  307–308
right-handed system  369, 448
right-hand rule  110
right identity  257
right/left, limit from the  313
right pyramid  423
right quandrangular prism

411
right spherical triangle  474
right triangle  506
right-triangle principle. See

Pythagoras’s theorem
ring  5, 144, 252, 271,

354–355, 448–449
Ringel, Gerhard  200
rise over run (slope)  467

Ritoré, Manuel  469
Rivest, Ron  111
Roberval, Gilles Personne de

57
Rolle, Michel  449
Rolle’s theorem  184, 335,

449–450
Roman numerals  155, 192,

251, 450–451
root (zero)  451, 534
root test  103–104
Ros, Antonio  469
rose  451
rotation  206, 225, 278,

283–284, 317, 490
round angle. See perigon
rounding  451–452
round-off (rounding) error

452
round-robin tournament. See

tournament
Royal Society of London  452
RSA encryption method  111
rubber-band problem

247–248
rubber-sheet geometry. See

topology
Rudolff, Christoff  475
Ruffini, Paolo  10, 72, 431
rule, 68-95-99.7  356
Russell, Bertrand Arthur

William  199, 229, 452,
452–453, 460–461, 530, 533

Russell’s paradox (antinomy)
200, 374, 453–454, 460–461

Russian multiplication
(peasant multiplication)  43,
156, 454, 454

S

Saccheri, Girolamo  171, 227,
455

saddle point  217, 492
salient  276
same side interior/exterior

angle  504
sample  143
sample mean  333
sample space  178, 413, 417,

455
The Sand Reckoning

(Archimedes)  19
sandwich result. See squeeze

rule
SAS (side-angle-side) rule  1–2,

463, 506
Scalar  456
scalar multiplication  329, 520
scalar product. See dot

product
scalar triple product  512
scale  36–38, 456
scale factor  463
scalene  506
scatter  481

Index 565



scatter diagram (scatter plot,
Galton graph)  106, 456–457

Schickard, Wilhelm  382
Schnirelmann, L.  230
schubfachprinzip. See

pigeonhole principle
Schwarz, Hermann  469
scientific notation  125, 168,

457
screw propeller  174
secant  457, 493, 510
secant theorem  1, 457, 457
second (measure of angle)  14
secondary data  116
second-derivative test  332
segment bisector  46
Segner, J. A.  64
selection. See combination
self-reference  244, 457–458
semi-magic square  327, 458
semimajor axis  161
semiminor axis  161
semiregular polyhedron  404
semiregular tessellation  496
sequence (progression)

458–459
sequence (totally ordered set,

chain)  365–366
series  459–460, 488
set complement  460
set direct product. See

Cartesian product
set intersection  460
set operations  524
set theory  144, 422–423,

460–461
and axiom of choice  31
as Boolean algebra  49
and De Morgan’s laws  123
difference in  131
and probability  178
and Russell’s paradox

453–454
von Neumann and  350
Zermelo’s attempt to

axiomatize  534
set-theory paradoxes  530
set union  460
seven bridges of Königsberg

problem  235, 235, 500
sexagesimal numbers  33–34
shadows  149
Shamir, Adi  111
Shanks, William  392, 461
Shannon, Claude Elwood

271, 461–462
short radius. See apothem
Shushu jiuzhang (Ch’in)  72
Siamese method  327
Sicherman, Col. George  462
Sicherman dice  462, 462
Sidereus nuncius (Galileo)  213
Sierpinski, Vaclav  203
Sierpinski’s triangle  203–204,

204
sieve of Eratosthenes  410,

462–463

sigma notation  459, 488
sigma squared  481
signed number. See integer
significant figures  168, 409
similar figures  456, 463
similar triangles  1–2
simple fraction  205
simple interest  275
simple root  451
simplification, by cancellation

56
Simpson, Thomas  463–464
Simpson’s rule  361, 464
simultaneous linear equations

219–220, 234, 282, 315,
464, 486, 491

and determinant of matrix
126–128

solved by Cramer’s rule
108–109, 128

sine function  291, 509,
510–511, 511

history of  28–29, 51,
444–445

sine rule. See law of sines
single cusp  492, 493
singularity  464
singular point  464
sink  501–502
Sirotta, Milton  232
SI units  464–465
68-95-99.7 rule  356
Siyuan Yujian (Chu Shih-

Chieh)  383
skew curve  114
skew lines  465
skewness  465
Skolem, Thoralf  534
slide 15 puzzle (Boss puzzle,

fifteen puzzle)  391,
465–466, 466

slide rule  369–370, 466
slope (grade, gradient)  132,

466–468, 467
slope-intercept form  164
smooth vs. non-smooth

surface  357
Snell, Willebrord van Roijen

468–469
Snell’s law of refraction  365,

468, 468–469
soap bubbles  469, 472
Socrates  374
solar system, mathematical

stability of  296
solid angle  15, 469
solid geometry  170
solid of revolution  57, 372,

382, 469–470, 500
solution by radicals  3, 215,

470–471
Soma cube  218
“Some Properties of

Bernoulli’s Numbers”
(Ramanujan)  435

source  501–502
space-filling curve  385

Spearman, Charles  438
Spearman’s coefficient

438–439
Spearman’s method  438
special theory of relativity  158
specific gravity  18
speed vs. velocity  519
Sphaerica (Menelaus)  336
sphere  76, 136, 166, 471–472

connectedness of  94
diameter of  130
four-color map on

200–201
great circle as “straight”

314
volume of, vs. cylinder  20,

91, 115
sphere packing  292, 472
spherical coordinates

472–473, 504
spherical excess  474
spherical geometry  225–226,

227, 270, 323, 355–356,
472, 473–474

spherical helix  248
spherical segment  472
spherical triangle  472, 474
spheroid  161
spiral of Archimedes  372,

474, 476
spirals in nature  193
splitting game  279, 279
square  430, 474–475
square brackets  50–51
square matrix  329
square model  416, 416–417
square numbers  194, 194–195
square pyramid  423
square root  157, 249, 451,

475–476, 486
squaring the circle (circle

squaring, quadrature of the
circle)  97, 238–239,
251–252, 313–314, 393,
476–477

squeeze rule (sandwich result)
16, 321, 477, 477–478, 526

SSS (side-side-side) rule  1–2,
463

Stäckel, Paul  515
stadium paradox  533
stair climbing problem  65
standard deviation  44, 386,

481–482
vs. mean and z-score  537

standard form. See scientific
notation

Statistical Methods for
Research Workers (Fisher)
197, 415

statistics  414, 437, 478
descriptive  116, 478–482
inferential  143, 268, 354,

478, 482–484
Bayes and  38–39
and central-limit

theorem  69–70

Steiner, Jakob  284, 484
Steiner point  484–485
Steiner surface  484
stellated polyhedron  404
stem-and-leaf plot  479, 479
steradian  15, 465, 469
stereographic projection  485
Stevin, Simon  485–486
Stifel, Michael  180, 348–349
Stirling’s formula  122, 486
straight angle  14, 362
straightedge and compass  95
stratified sampling  407
strictly increasing/decreasing

261–262
Student’s t-distribution  484
Student’s t-test  415, 484
subfactorial  486
substitution  486–487, 491
substitution rule for integra-

tion. See integration: by
substitution

subtraction  146, 205, 487
subtrahend  487
successive doubling  156
Sulbasutram 425
summation (Σ)  173, 487–488
summation, index of  148
summation problem  65
sums of powers  51, 488,

488–490
supplementary angles  14
surd  490
surjective function  208
“Sur la décomposition des

ensembles de points en
partiens respectivement
congruent” (Banach, Tarski)
35

Sur l’homme et le
developpement de ses
facultés, essai d’une physique
sociale (Quételet)  432–433

“Sur l’intégration des
functions discontinues”
(Lebesgue)  307

Su-yuan yu-chien (Chu Shih-
Chieh)  73–74, 75

syllogism  27
symbolic logic. See formal

logic
Symbolic Logic (Venn)  524
symmetric difference  131
symmetry  206–207, 490
Synagoge (Pappus)  239,

371–372
Synopsis of Elementary

Results in Pure Mathematics
(Carr)  435

Synopsis palmariorum
matheseos (Jones)  393

Syntaxis mathematic (Ptolemy)
421–422

systematic sampling  407
system of equations  121, 491
“Systems of Right Lines in a

Plane” (Hamilton)  245
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T

Tabulae (Regiomontanus)  444
tacnode (osculation)  148
tacpoint  493
Tait, Peter  295
tangency point. See point of

contact
tangent (geometric)  492, 493
tangent (trigonometric)  132,

492, 510
tangent plane  492
tangent theorems  76–77, 77
Tarski, Alfred  24, 35
Tartaglia, Niccolò  10, 60,

112, 190–191, 493, 493–494
task diagram  109
tautochrone property of

pendulums  114–115, 299
tautology  494, 515
Taylor, Brook  240, 274, 324,

325, 494, 495
Taylor, Richard  190, 531
Taylor series  152, 182,

240–241, 268, 271, 315,
324–325, 337, 409, 494–496

and approximation  16
convergence of  45

Chebyshev’s work on
71

and Euler’s formula  175
and general binomial

theorem  45
and history of calculus  57
and permutations  391
of sine function  536

Tchebyshev. See Chebyshev
technique. See algorithm
tensor  447, 496
The Tenth (Stevin)  485
tera- (1012)  465
tessellation (covering, tiling)

403, 430, 475, 496–497,
497, 507

tesseract  256
“The Testing of Statistical

Hypotheses in Relation to
Probabilities A Priori”
(Neyman)  354

tetragon. See quadrilateral
tetrahedral dice  462
tetrahedral numbers  195, 497
tetrahedron  165, 396, 397,

403, 423, 497
tetromino  406
Teutsche algebra (Rahn)  146
Thabit ibn Qurra  18
Thales  238, 423, 497–498,

510
Theaetetus (Plato)  498
The Grammar of Science

(Pearson)  387
Theodorus  82, 283, 475–476,

498
Theon of Alexandria  252–253
Theon of Smyrna  99
theorem (proposition)

498–499

theorem of Thales  77
Theorems Stated by

Ramanujan (Watson)  436
Theoria motus corporum

coelestium (Gauss)  219
Théorie analytique de la

chaleur (Fourier)  201
Théorie analytique des

probabilités (Laplace)  301,
415

Theorie der Parallellinien
(Lambert)  300

“Théorie des opérations
linéaires” (Banach)  35

The Theory of Games and
Economic Behavior (von
Neumann and Morgenstern)
216, 350–351

The Theory of Numbers
(Hardy and Wright)  246

“Theory of Systems of Rays”
(Hamilton)  245

three-body problem  299
three-dimensional coordinates

63, 363
three-dimensional vectors  520
three-fold rotational symmetry

490
three-utilities problem  233,

499, 499
tiling. See tessellation
Timaeus (Plato)  396, 397
time, as fourth dimension

136, 256
time-series graph  479, 479
topological space  500
topology  121, 307, 339,

499–500
Torricelli, Evangelista  114
torus  94, 399, 470, 500–501,

501
Euler’s formula for  236
Euler theorem and  177
and Jordan curve theorem

76, 288
and three-utilities problem

499
totally ordered set  365–366
tournament (round-robin

tournament, complete
digraph)  501, 501–502

towers of Hanoi (Brahma)
443, 502–503

tractrix (equitangential curve,
tractory)  503

Traité analytique des sections
coniques (L’Hôpital)  310

Traité d’algèbre (Rolle)  449
Traité de dynamique

(d’Alembert)  8
Traité de la résolution des

équations numériques de
tous les degrés (Lagrange)
299

Traité de l’équilibre et du
mouvement des fluides
(d’Alembert)  8

Traité de mécanique céleste
(Laplace)  301

Traité des proprietés des
figures (Poncelet)  419

Traité des substitutions et des
equations algebraique
(Jordan)  288

trajectory  503
transcendental curve  114
transcendental numbers  11,

59, 297, 301, 317–318, 477
transfinite numbers  368
transformation  503–504
transitive law  367
transitive reasoning  26
translation  206, 225,

283–284
transmitter  501–502
transpose of matrix  330
transposition  390
transversal  336, 375, 377,

504, 504
trapezoid (trapezium)  23, 24,

430, 504
trapezoidal rule for integration

360–361
traveling-salesman problem

55, 505
traverse  504, 504
Treatise of Fluxions

(Maclaurin)  324
A Treatise on Algebra

(Maclaurin)  324
Treatise on Algebra (Wallis)

529
Treatise on Demonstration of

Problems of Algebra (Omar
Khayyám)  363

Treatise on Human
Proportions (Dürer)  231

The Treatise on the Chord and
Sine (al-Kashi)  291

Treatise on the Equilibrium of
Liquids (Pascal)  382

Treatise on Universal Algebra
(Whitehead)  530

tree (graph theory)  233
triangle (trigon)  114, 505–508

area of  23, 23, 249
diameter of  130
Euler line in  174–175
exterior angles of  182–183

triangle inequality  267, 425,
506, 508

triangular numbers  194,
194–195, 349, 405, 497

trichotomy law  31, 365, 367
trigon. See triangle
Trigonometria (Pitiscus)  511
trigonometric functions  254,

369
trigonometry  16, 28, 239,

444–445, 508–512, 516–517
Trigonometry (Simpson)  463
Trigonometry and Double

Algebra (De Morgan)  122
trinomial  512

Le triparty en la science des
nombres (Chuquet)  526

triple (3-tuple)  358
triple integral  148
triple torus  501
triple vector product  376,

448, 512
trirectangular triangle  474
trisecting an angle  97, 239,

291, 372, 512, 512–513, 525
Tristram Shandy paradox

269, 513
trivial  183, 514
trivial ring  449
trivial solution  513–514
tromino  406
truncation  452
truth table  25, 514, 514–515,

515
for biconditionals  42
for conjunction  94
for contrapositives

101–102
for disjunction  141
for hypothetical  90, 90
for negation  348

Tsu Chung Chi. See Zu
Chongzhi

Turing, Alan  244
turning point  515
twin primes  410, 515
twisted curve  114
two-card puzzle  91, 515
two-chord theorem  78, 78
two-dimensional vectors  520
two-pancake theorem  245,

277
two-point form  164
two-secant theorem  457, 457
type, in set theory  454

U

“Über die Addition transfiniter
Cardinalzahlen” (Zermelo)
533–534

“Über die Hypothesen welche
der Geometrie zu Grunde
liegen” (Riemann)  227

“Über die Stabilität des
Gleichgewichts” (Dirichlet)
140

Über die Zahl (Lindemann)
314

“Über einen die Erzeugung
und Verwandlung des Lichtes
betreffenden heuristischen
Gesichtspunkt” (Einstein)
158

Ulam, Stanislaw  15
unary operation  364, 516
unbounded interval  278
uncertainty, and error

167–168
undefined fraction  205–206
unexpected quiz (hanging)

paradox  374–375, 375
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uniform distribution  480, 480
uniform motion  522
union (set operation)  144,

460
unique factorization theorem.

See fundamental theorem of
arithmetic

unique solution  516
unitary ratio  439
unit circle  427, 516–517
unit denominator rule  204
unit fraction. See Egyptian

fractions
unit matrix. See identity

matrix
unit sphere  469
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