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INTRODUCTION

Mathematics is often presented as a large collection of disparate facts to be
absorbed (memorized!) and used only with very specific applications in
mind. Yet the development of mathematics has been a journey that has
engaged the human mind and spirit for thousands of years, offering joy,
play, and creative invention. The Pythagorean theorem, for instance,
although likely first developed for practical needs, provided great intellec-
tual interest to Babylonian scholars of 2000 B.C.E., who hunted for
extraordinarily large multidigit numbers satisfying the famous relation 4 +
b?* = ¢*. Ancient Chinese scholars took joy in arranging numbers in square
grids to create the first “magic squares,” and Renaissance scholars in
Europe sought to find a formula for the prime numbers, even though no
practical application was in mind. Each of these ideas spurred further
questions and further developments in mathematics—the general study of
Diophantine equations, semi-magic squares and Latin squares, and public-
key cryptography, for instance—again, both with and without practical
application in mind. Most every concept presented to students today has a
historical place and conceptual context that is rich and meaningful. The
aim of Facts On File’s Encyclopedia of Mathematics is to unite disparate
ideas and provide a sense of meaning and context.

Thanks to the encyclopedic format, all readers can quickly find
straightforward answers to questions that seem to trouble students and
teachers alike:

Why is the product of two negative numbers positive?

What is t, and why is the value of this number the same for all circles?
What is the value of 7t for a shape different than a circle?

Is every number a fraction?

Why does the long-division algorithm work?

Why is dividing by a fraction the same as multiplying by its reciprocal?
What is the value of #*?

What is the fourth dimension?

vi



This text also goes further and presents proofs for many of the results
discussed. For instance, the reader can find, under the relevant entries, a
proof to the fundamental theorem of algebra, a proof of Descartes’s law of
signs, a proof that every number has a unique prime factorization, a proof
of Bretschneider’s formula (generalizing Brahmagupta’s famous formula),
and a derivation of Heron’s formula. Such material is rarely presented in
standard mathematical textbooks. In those instances where the method of
proof is beyond the scope of the text, a discussion as to the methods
behind the proof is at least offered. (For instance, an argument is presented
to show how a formula similar to Stirling’s formula can be obtained, and
the discussion of the Cayley-Hamilton theorem shows that every matrix
satisfies at least some polynomial equation.) This encyclopedia aims to be
satisfying to those at all levels of interest. Each entry contains cross-refer-
ences to other items, providing the opportunity to explore further context
and related ideas. The reader is encouraged to browse.

As a researcher, author, and educator in mathematics, I have always
striven to share with my students the sense of joy and enthusiasm I expe-
rience in thinking about and doing mathematics. Collating, organizing,
and describing the concepts a high-school student or beginning college-
level student is likely to encounter in the typical mathematics curriculum,
although a daunting pursuit, has proved to be immensely satisfying. I
have enjoyed the opportunity to convey through the writing of this text,
hopefully successfully, a continued sense of joy and delight in what math-
ematics can offer.

Sadly, mathematics suffers from the ingrained perception that primary
and secondary education of the subject should consist almost exclusively
of an acquisition of a set of skills that will prove to be useful to students in
their later careers. With the push for standardized testing in the public
school system, this mind-set is only reinforced, and T personally fear that
the joy of deep understanding of the subject and the sense of play with the
ideas it contains is diminishing. For example, it may seem exciting that we
can produce students who can compute 584 X 379 in a flash, but I am sad-
dened with the idea that such a student is not encouraged to consider why
we are sure that 379 x 584 will produce the same answer. For those stu-
dents that may be naturally inclined to pause to consider this, I also worry
about the response an educator would give upon receiving such a query. Is
every teacher able to provide for a student an example of a system of arith-
metic for which it is no longer possible to assume that axb and bxa are
always the same and lead a student through a path of creative discovery in
the study of such a system? (As physicists and mathematicians have discov-
ered, such systems do exist.) By exploring fundamental questions that chal-
lenge basic assumptions, one discovers deeper understanding of concepts
and finds a level of creative play that is far more satisfying than the perfor-
mance of rote computation. Students encouraged to think this way have
learned to be adaptable, not only to understand and apply the principles of
a concept to the topic at hand, but also to apply those foundations and
habits of mind to new situations that may arise. After all, with the current
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Introduction

advances of technology in our society today, we cannot be sure that the
rote skill-sets we deem of value today will be relevant to the situations and
environments students will face in their future careers. We need to teach
our students to be reflective, to be flexible, and to have the confidence to
adapt to new contexts and new situations. I hope that this text, in some
small ways, offers a sense of the creative aspect to mathematical thinking
and does indeed gently encourage the reader to think deeply about con-
cepts, even familiar ones.

Encyclopedia of Mathematics contains more than 800 entries arranged
in alphabetical order. The aim of the historical notes, culture-specific arti-
cles, and the biographical portraits included as entries, apart from provid-
ing historical context, is to bring a sense of the joy that mathematics has
brought people in the past. The back matter of this text contains a timeline
listing major accomplishments throughout the historical development of
mathematics, a list of current mathematics organizations of interest to stu-
dents and teachers, and a bibliography.



AAA/AAS/ASA/SAS/SSS Many arguments and proofs
presented in the study of GEOMETRY rely on identify-
ing similar triangles. The SECANT theorem, for
instance, illustrates this. Fortunately, there are a num-
ber of geometric tests useful for determining whether
or not two different triangles are similar or congruent.
The names for these rules are acronyms, with the let-
ter A standing for the word angle, and the letter S for
the word side. We list the rules here with an indica-
tion of their proofs making use of the LAW OF SINES
and the LAW OF COSINES:

a. The AAA rule: If the three interior angles of one tri-
angle match the three interior angles of a second tri-
angle, then the two triangles are similar.

The law of sines ensures that pairs of corresponding
sides of the triangles have lengths in the same ratio.
Also note, as the sum of the interior angles of any trian-
gle is 180°, one need only check that two corresponding
pairs of interior angles from the triangles match.

b. The AAS and ASA rules: If two interior angles and
one side-length of one triangle match corresponding
interior angles and side-length of a second triangle,
then the two triangles are congruent.

By the AAA rule the two triangles are similar. Since a
pair of corresponding side-lengths match, the two trian-
gles are similar with scale factor one, and are hence con-
gruent. (Note that any two right triangles sharing a
common hypotenuse and containing a common acute
angle are congruent: all three interior angles match, and

the AAS and ASA rules apply. This is sometimes called
the “HA congruence criterion” for right triangles.)

c. The SAS rule: If two triangles have two sides of
matching lengths with matching included angle, then
the two triangles are congruent.

The law of cosines ensures that the third side-lengths of
each triangle are the same, and that all remaining angles
in the triangles match. By the AAS and ASA rules, the
triangles are thus congruent. As an application of this
rule, we prove EUCLID’s isosceles triangle theorem:

The base angles of an isosceles triangle are
equal.

Suppose ABC is a triangle with sides AB and
AC equal in length. Think of this triangle as
representing two triangles: one that reads BAC
and the other as CAB. These two triangles
have two matching side-lengths with matching
included angles, and so, by the SAS rule, are
congruent. In particular, all corresponding
angles are equal. Thus the angle at vertex B of
the first triangle has the same measure as the
corresponding angle of the second triangle,
namely, the angle at vertex C.

This result appears as Proposition 5 of Book I of
Euclid’s famous work THE ELEMENTS.

d. The SSS rule: If the three side-lengths of one triangle
match the three side-lengths of a second triangle,
then the two triangles are congruent.



2 abacus

The law of sines ensures that all three interior angles
match, and so the SAS rule applies.

EUCLIDEAN GEOMETRY takes the SAS rule as an
AXIOM, that is, a basic assumption that does not
require proof. It is then possible to justify the validity
of the remaining rules by making use of this rule solely,
and to also justify the law of sines. (The fact that the
sine of an angle is the same for all right triangles con-
taining that angle relies on SAS being true.)

See also CONGRUENT FIGURES; SIMILAR FIGURES.

abacus Any counting board with beads laid in paral-
lel grooves, or strung on parallel rods. Typically each
bead represents a counting unit, and each groove a
place value. Such simple devices can be powerful aids
in performing arithmetic computations.

The fingers on each hand provide the simplest “set
of beads” for manual counting, and the sand at one’s
feet an obvious place for writing results. It is not sur-
prising then that every known culture from the time of
antiquity developed, independently, some form of
counting board to assist complex arithmetical compu-
tations. Early boards were simple sun-baked clay
tablets, coated with a thin layer of fine sand in which
symbols and marks were traced. The Greeks used trays
made of marble, and the Romans trays of bronze, and
both recorded counting units with pebbles or beads.
The Romans were the first to provide grooves to repre-
sent fixed place-values, an innovation that proved to be
extremely useful. Boards of this type remained the stan-
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A simple abacus

0000 O -

A Chinese abacus from before 1600. Notice that two beads, each
representing five units, are placed in each column above the bar.
(Photo courtesy of the Science Museum, London/Topham-HIP/The
Image Works)

dard tool of European merchants and businessmen up
through the Renaissance.

The origin of the word abacus can be traced back
to the Arabic word abqg for “dust” or “fine sand.” The
Greeks used the word abax for “sand tray,” and the
Romans adopted the word abacus.

The form of the abacus we know today was devel-
oped in the 11th century in China and, later, in the 14th
century in Japan. (There the device was called a
soroban.) It has beads strung on wires mounted in a
wooden frame, with five beads per wire that can be
pushed up or down. Four beads are used to count the
units one through four, and the fifth bead, painted a dif-
ferent color or separated by a bar, represents a group of
five. This provides the means to represent all digits from
zero to nine. Each wire itself represents a different power
of ten. The diagram at left depicts the number 35,078.

Addition is performed by sliding beads upward
(“carrying digits” as needed when values greater than
10 occur on a single wire), and subtraction by sliding
beads downward. Multiplication and division can be
computed as repeated addition and subtraction. Histo-
rians have discovered that the Chinese and Japanese
scholars also devised effective techniques for computing
square and cube roots with the aid of the abacus.

The abacus is still the popular tool of choice in
many Asian countries—preferred even over electronic



calculators. It is a useful teaching device to introduce
young children to the notion of place-value and to the
operations of basic arithmetic.

See also BASE OF A NUMBER SYSTEM; NAPIER’S
BONES.

Abel, Niels Henrik (1802-1829) Norwegian Algebra
Born on August 5, 1802, Niels Abel might have been
one of the great mathematicians of the 19th century had
he not died of tuberculosis at age 26. He is remembered,
and honored, in mathematics for putting an end to the
three-century-long search for a SOLUTION BY RADICALS
of the quintic equation. His theoretical work in the top-
ics of GROUP THEORY and ALGEBRA paved the way for
continued significant research in these areas.

Abel’s short life was dominated by poverty, chiefly
due to the severe economic hardships his homeland of
Norway endured after the Napoleonic wars, exacer-
bated by difficult family circumstances. A schoolteacher,
thankfully, recognized Abel’s talent for mathematics as a
young student and introduced him to the works of
LEONHARD EULER, JOSEPH-LOUIS LAGRANGE, and other
great mathematicians. He also helped raise money to
have Abel attend university and continue his studies.
Abel entered the University of Christiania in the city of
Christiania (present-day Oslo), Norway, in 1821.

During his final year of study, Abel began working
on the solution of quintic equations (fifth-degree poly-
nomial equations) by radicals. Although scholars for a
long time knew general formulae for solving for
QUADRATIC, cubic, and QUARTIC EQUATIONS using noth-
ing more than basic arithmetical operations on the
COEFFICIENTs that appear in the equation, no one had
yet found a similar formula for solving quintics. In
1822 Abel believed he had produced one. He shared the
details of his method with the Danish mathematician
Ferdinand Degen in hopes of having the work published
by the Royal Society of Copenhagen. Degen had trouble
following the logic behind Abel’s approach and asked
for a numerical illustration of his method. While trying
to produce a numerical example, Abel found an error in
his paper that eventually led him to understand the rea-
son why general solutions to fifth- and higher-degree
equations are impossible. Abel published this phenome-
nal discovery in 1825 in a self-published pamphlet
“Mémoire sur les équations algébriques ou on démontre
I’impossibilité de la résolution de ’équation générale du

absolute convergence 3

cinquiéme degré” (Memoir on the impossibility of alge-
braic solutions to the general equations of the fifth
degree), which he later presented as a series of seven
papers in the newly established Journal for Pure and
Applied Mathematics (commonly known as Crelle’s
Journal for its German founder August Leopold Crelle).
At first, reaction to this work was slow, but as the repu-
tation of the journal grew, more and more scholars took
note of the paper, and news of Abel’s accomplishment
began to spread across Europe. A few years later Abel
was honored with a professorship at the University of
Berlin. Unfortunately, Abel had contracted tuberculosis
by this time, and he died on April 6, 1829, a few days
before receiving the letter of notification.

In 1830 the Paris Academy awarded Abel, posthu-
mously, the Grand Prix for his outstanding work.
Although Abel did not write in terms of the modern-day
concepts of group theory, mathematicians call groups sat-
isfying the COMMUTATIVE PROPERTY “Abelian groups” in
his honor. In 2002, on the bicentenary of his birth, the
Norwegian Academy of Science and Letters created a
new mathematics prize, the Abel Prize, similar to the
Nobel Prize, to be awarded annually.

Research in the field of commutative algebra con-
tinues today using the approach developed by Abel
during his short life. His influence on the development
of ABSTRACT ALGEBRA is truly significant.

absolute convergence A SERIES Y. 4, containing
n=1

positive and negative terms is said to converge abso-

lutely if the corresponding series with all terms

made positive a,|, converges. For example, the series
bl b bl

n=1
1_% + % - % + % - 3% +..- converges absolutely because

. . 1 1 1 1 1
the corresponding series 14— 4+ -4 — 4 — 4 —+...
p g +2+4+8+16+32+
converges. (See CONVERGENT SERIES.) The “absolute

convergence test” reads:

If Z|dn| converges, then the original series Y, a,
n=1

n=1

also converges.

It can be proved as follows:



4 absolute value

Let p, = |a,| — a,. Then each value p,, is either
zero or equal to 2 |a,|, depending on whether
a, is positive or negative. In particular we have
that 0 < p, < 2|a,).

Consequently, 0<Y.p, < 2Z|dn| and so, by
the n=1 n=1

COMPARISON TEST, ., Pu converges. Conse-
quently n=l

so does ian = i(|dn|—l)n) = i|ﬂn|_ ipn :
n=1 n=1 n=1

n=1

This test does not cover all cases, however. It is still

possible that a series > a, containing positive and
n=1

negative terms might converge even though 2|a,,|
n=1
does not. For example, the alternating HARMONIC

LA S S S
27374

1+l+1+1+1+1+...
2 3 4 5 6

converges “on the condition that the negative signs

SERIES 11— converges, yet

does not. A series that

remain present,” that is, one for which Y a,
n=1

converges but Z|ﬂn| does not, is called “condition-
n=1

ally convergent.” Manipulating conditionally convergent

series can lead to all sorts of paradoxes. For example,

the following argument “proves” that 1 = 2:

Start with the observation that:

11
1-5+3 +--=In2=0.69

1,11
4756

(This follows from the study of the harmonic
series or from MERCATOR’S EXPANSION.) Con-

sequently:
‘. j

+ .-

+

A= N~

2In2 = 2(1—

|
x| =

=2-1+ +

W -
+

= W=

O ST N

W = | =

+

N N =

Collecting terms with a common denominator
gives:

2373727575
11 1 1
—1—5+§—Z+§—---—ln2

and so 2 = 1.

Paradoxes like these show that it is not permissible
to rearrange the order of terms of a conditionally con-
vergent series. Mathematicians have shown, however,
that rearranging the terms of an absolutely convergent
series is valid.

See also ABSOLUTE VALUE.

absolute value (modulus) Loosely speaking, the
absolute value of a REAL NUMBER is the “positive ver-
sion of that number.” Vertical bars are used to denote
the absolute value of a number. For example, the abso-
lute value of negative three is |-3| = 3, and the absolute
value of four is |4] = 4. The absolute value of a real
number a is typically envisioned three ways:

1. lal equals a itself if a is positive or zero, and equals
—a if it is negative. (For example, |-3] = —(-3) = 3
and |3] = 3.)

2. |al equals the positive square root of a®. (For example,

3= V=37 =9 =3 )

3. lal is the distance between the points a and 0 on
the real number line. (For example, |-3| = 3 = |3|
since both -3 and 3 are three units from the ori-
gin.) More generally, if a and b are two points on
the number line, then the distance between them
on the number line is given by |a — b|. (For exam-
ple, the points 4 and -7 are |[4—(-7)| = 14 + 7| = 11
units apart.)

By examining each of the cases with a and b posi-
tive or negative, one can check that the absolute value
function satisfies the following properties:

i. la+ bl <lal +1b|
ii. la—=bl <lal + bl
iii. |a- bl =lal - bl

Knowing the absolute value of a quantity deter-
mines the value of that quantity up to sign. For exam-
ple, the equation |x+2| = 5 tells us that either x + 2 =5



or x + 2 = =5, and so x equals either 3 or —7. Alterna-
tively, one can read the equation as |x — (-2)| = §, inter-
preting it to mean that x is a point a distance of five
units from —2. Five units to the left means x is the point
-7, five units to the right means x is 3.

The notion of absolute value was not made explicit
until the mid-1800s. KARL WEIERSTRASS, in 1841, was
the first to suggest a notation for it—the two vertical
bars we use today. Matters are currently a little confus-
ing, however, for mathematicians today also use this
notation for the length of a VECTOR and for the MODU-
LUS of a COMPLEX NUMBER.

abstract algebra Research in pure mathematics is
motivated by one fundamental question: what makes
mathematics work the way it does? For example, to a
mathematician, the question, “What is 263 x 178 (or
equivalently, 178 x 263)?” is of little interest. A far
more important question would be, “Why should the
answers to 263 x 178 and 178 x 263 be the same?”

The topic of abstract algebra attempts to identify
the key features that make ALGEBRA and ARITHMETIC
work the way they do. For example, mathematicians
have shown that the operation of ADDITION satisfies
five basic principles, and that all other results about the
nature of addition follow from these.

1. Closure: The sum of two numbers is again a number.

2. Associativity: For all numbers a, b, and ¢, we have:
(@a+b)+c=a+(b+c).

3. Zero element: There is a number, denoted “0,” so
that: a + 0 = a = 0 + a for all numbers a.

4. Inverse: For each number a there is another number,
denoted “—a,” so that: a + (~a) =0 = (-a) + a.

5. Commutativity: For all numbers a and b we have:
a+b=>b+a.

Having identified these five properties, mathemati-
cians search for other mathematical systems that may
satisfy the same five relations. Any fact that is known
about addition will consequently hold true in the new
system as well. This is a powerful approach to matters.
It avoids having to re-prove THEOREMS and facts about
a new system if one can recognize it as a familiar one in
disguise. For example, MULTIPLICATION essentially sat-
isfies the same five AXIOMS as above, and so for any
fact about addition, there is a corresponding fact about
multiplication. The set of symmetries of a geometric

acute angle 5

figure also satisfy these five axioms, and so too all
known results about addition immediately transfer to
interesting statements about geometry. Any system that
satisfies these basic five axioms is called an “Abelian
group,” or just a GROUP if the fifth axiom fails. GRouP
THEORY is the study of all the results that follow from
these basic five axioms without reference to a particu-
lar mathematical system.

The study of RINGs and FIELDs considers mathe-
matical systems that permit two fundamental opera-
tions (typically called addition and multiplication).
Allowing for the additional operation of scalar multi-
plication leads to a study of VECTOR SPACEs.

The theory of algebraic structures is highly devel-
oped. The study of vector spaces, for example, is so
extensive that the topic is regarded as a field of math-
ematics in its own right and is called LINEAR ALGEBRA.

acceleration See VELOCITY.

actuarial science The statistical study of life
expectancy, sickness, retirement, and accident matters
is called actuarial science. Experts in the field are called
actuaries and are employed by insurance companies
and pension funds to calculate risks and relate them to
the premiums to be charged. British mathematician and
astronomer, Edmund Halley (1656-1742) was the first
to properly analyze annuities and is today considered
the founder of the field.

See also LIFE TABLES.

acute angle An ANGLE between zero and 90° is called
an acute angle. An acute-angled triangle is one whose
angles are all acute. According to the LAW OF COSINES, a
triangle with side-lengths a, b, and ¢ and corresponding
angles A, B, C opposite those sides, satisfies:

a? + b2 -2

cosC = >7h

The angle C is acute only if cosC > 0, that is, only if a®
+ b? > 2. Thus a triangle a, b, ¢ is acute if, and only if,
the following three inequalities hold:
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a*+ b*s 2

b* + 2> a?

A+ ats>b?

See also OBTUSE ANGLE; PERIGON; PYTHAGORAS’S
THEOREM; TRIANGLE.

addition The process of finding the sum of two
numbers is called addition. In the elementary ARITH-
METIC of whole numbers, addition can be regarded as
the process of accumulating sets of objects. For exam-
ple, if a set of three apples is combined with a set of
five apples, then the result is a set of eight apples. We
write: 3 + 5 = 8.

Two numbers that are added together are called
addends. For instance, in the equation 17 + 33 = 50,
the numbers 17 and 33 are the addends, and the num-
ber 50 is their sum. Addition can also be regarded as
the process of increasing one number (an addend) by
another (called, in this context, an augend). Thus when
17 is augmented by 33 units, the result is 50.

The PLACE-VALUE SYSTEM we use today for writing
numbers simplifies the process of adding large integers.
For instance, adding together 253 and 589 yields 2 + 5
= 7 units of 100, 5 + 8 = 13 units of 10, and 3 + 9 = 12
units of 1. So, in some sense, it is reasonable to write
the answer to this addition problem simply as 7 | 13 |
12 using a vertical bar to separate units of powers of
10. Since 13 units of 10 is equivalent to one unit of 100
and three units of 10, this is equivalent to 8 | 3 | 12.
Noting, also, that 12 units of one 12 is equivalent to
one unit of 10 and two single units, this can be rewrit-
ten as 8 | 4 | 2. Thus we have: 253 + 589 = 842.

The latter process of modifying the figures into sin-
gle-digit powers of 10 (that is, in our example, the pro-
cess of rewriting 7 | 13 1 12 as 8 | 4 | 2) is called
“carrying digits.” Students in schools are usually
taught an algorithm that has one carry digits early in
the process of completing an addition problem rather
than leaving this work as the final step. Either method
is valid. (The term “carry a digit” dates back to the
time of the ABACUS, where beads on rods represented
counts of powers of 10 and the person had to move—
“carry”—counters from one rod to another if any
count was greater than a single digit.)

The process of addition can be extended to NEGA-
TIVE NUMBERS (yielding an operation called SUBTRAC-

TION), the addition of FRACTIONs (completed with the
aid of computing COMMON DENOMINATORS), REAL
NUMBERS, COMPLEX NUMBERS, VECTORS, and MATRIX
addition. The number ZERO is an additive IDENTITY
ELEMENT in the theory of arithmetic. We have that g + 0
=a =0 + a for any number a.

The sum of two real-valued functions f and g is the
function f + g whose value at any input x is the sum of
the outputs of f and g at that input value: (f + g)(x) =
f(x) + g(x). For example, if f(x) = x> + 2x and g(x) =
Sx+7,then (f+g)(x)=x>+2x+Sx+7=x>+7x+7.

A function with the property that f(x + y) = f(x) +
fly) for all inputs x and y is called “additive.” For
example, f(x) = 2x is additive.

The addition formulae in TRIGONOMETRY assert:

sin(x +vy) = sinxcosy + cosxsiny
cos(x +vy) =cosxcosy—sinxsiny
tanx + tany

t +y)=—
anfx+y) 1-tanxtany

The symbol + used to denote addition is believed to
have derived from a popular shorthand for the Latin
word ef meaning “and” and was widely used by math-
ematical scholars in the late 15th century. The symbol
first appeared in print in Johannes Widman’s 1489
book Behennde unnd hiipsche Rechnung auf fallen
Kauffmannschaften (Neat and handy calculations for
all tradesmen).

See also ASSOCIATIVE; CASTING OUT NINES;
COMMUTATIVE PROPERTY; DISTRIBUTIVE PROPERTY;
MULTIPLICATION; SUMMATION.

affine geometry The study of those properties of
geometric figures that remain unchanged by an AFFINE
TRANSFORMATION is called affine geometry. For exam-
ple, since an affine transformation preserves straight
lines and RATIOs of distances between POINTs, the
notions of PARALLEL lines, MIDPOINTSs of LINE segments,
and tangency are valid concepts in affine geometry. The
notion of a CIRCLE, however, is not. (A circle can be
transformed into an ELLIPSE via an affine transforma-
tion. The equidistance of points on the circle from the
circle center need not be preserved.)

Affine geometry was first studied by Swiss mathe-
matician LEONHARD EULER (1707-83). Only postulates



1, 2, and 5 of EUCLID’S POSTULATES remain valid in
affine geometry.

affine transformation Any map from the PLANE to
itself that transforms straight LINES into straight lines
and preserves RATIOs of distances between POINTS (so
that the midpoint of a line segment, for instance,
remains the midpoint after the transformation) is called
an affine transformation. One can prove that any affine
transformation must be a LINEAR TRANSFORMATION
followed by a translation. Thus an affine transforma-
tion T is completely specified by a MATRIX A and a
VECTOR b so that T(x) = Ax + b for any vector x repre-
senting a point in the plane.
An affine transformation T satisfies the relation:

T(sx + ty) = sT(x) + tT(y)

for any two vectors x and y and any two real numbers
s and ¢ such that s + ¢ = 1. This is sometimes taken as
the definition of what it means for a transformation to
be affine.

Affine transformations generally do not preserve
the lengths of line segments nor the measure of
ANGLEs between segments. It is possible to transform
a CIRCLE into an ELLIPSE, for instance, via an affine
transformation.

See also AFFINE GEOMETRY.

Agnesi, Maria Gaétana (1718-1799) Italian Calcu-
lus  Born on May 16, 1718, to a wealthy family of silk
merchants, Maria Agnesi is best remembered for her
influential expository text outlining the methods and
techniques of the newly invented cALcuLus. Written
with such clarity and precision, Istituzioni analitiche
(Analytical institutions) garnered her international
fame. Agnesi is considered the first major female math-
ematician of modern times, and she holds the distinc-
tion of being the first woman to be awarded a
professorship of mathematics on a university faculty.
Agnesi demonstrated remarkable academic talents
as a young child. By age 13 she had mastered many
languages and had published translations of academic
essays. Although little consideration was given to edu-
cating women at the beginning of the 18th century,
Agnesi’s father encouraged her intellectual develop-
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ment, provided tutors of the highest quality, and pro-
vided forums for her to display her talents to Italian
society. In preparation for these events, Agnesi had pre-
pared discourses on a wide variety of topics in science
and philosophy, which she published as a collection of
190 essays at age 20.

After the death of her mother, Agnesi undertook
the task of instructing her younger brothers in the sub-
ject of mathematics. In 1738 she began preparing a
textbook for their use, and found the topic so com-
pelling that she devoted her complete intellectual atten-
tion to mathematics. Ten vyears later, her famous
two-volume text Istituzioni analitiche was published.

The work was the first comprehensive overview of
the subject of calculus. Although designed for young
students beginning their studies of the subject, Agnesi’s
work was recognized as providing hitherto unnoticed
connections between the different approaches of SIR
IsAAC NEWTON (1642-1727) and GOTTFRIED WIL-
HELM LEIBNIZ (1646-1716), independent coinventors
of the subject. Her piece also provided, for the first
time, clear explanations of previously confusing issues
in the topic. Her text collated and explained the work
of other contributors to the subject from several differ-
ent countries, a task no doubt facilitated by her skills in
translation. Her talents, not just as an expository
writer, but also as a great scholar in mathematics, were
apparent. Mathematicians at the time recognized her
text as a significant contribution to the further develop-
ment of the topic of calculus. In 1750 Agnesi was
appointed the chair of mathematics at the University of
Bologna in recognition of her great accomplishment.
Curiously, she never officially accepted or rejected the
faculty position. It is known that she never visited the
city of Bologna, even though her name appears on uni-
versity records over a span of 45 years.

After the death of her father in 1752, Agnesi with-
drew from mathematics and devoted her life to charita-
ble work, helping the sick and the poor. In 1783 she
was made director of a women’s poorhouse, where she
remained the rest of her life. Having given all her money
and possessions away, Agnesi died on January 9, 1799,
with no money of her own and was buried in a pauper’s
grave. The city of Milan, where she had lived all her
life, today publicly honors her gravesite.

John Colson, Lucasian professor of mathematics at
Cambridge, published an English translation of Is#i-
tuzioni analitiche in 1801. He said that he wanted to
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give the youth of Britain the same opportunity to bene-
fit from this remarkable text as the young scholars
from Italy had been able to enjoy.

Alembert, Jean Le Rond d’ (1717-1783) French
Differential equations, Analysis, Philosophy Born on
November 17, 1717, in Paris, France, scholar Jean le
Rond d’Alembert is best remembered for his 1743 trea-
tise Traité de dymamique (Treatise on dynamics), in
which he attempted to develop a firm mathematical
basis for the study of mechanics. D’Alembert pioneered
the study of partial DIFFERENTIAL EQUATIONSs and their
use in physics. He is also noted for his work on vibrat-
ing strings.

After briefly pursuing theology and medicine at the
Jansenist College des Quatre Nations, d’Alembert set-
tled on mathematics as his choice of academic study.

Jean Le Rond d’Alembert, an eminent mathematician of the 18th
century, pioneered the study of differential equations and their
application to mechanics. (Photo courtesy of Topham/

The Image Works)

He graduated from the Collége in 1735 to then pursue
interests in fluid mechanics. In 1740 he presented a
series of lectures on the topic to members of the Paris
Academy of Science, which earned him recognition as a
capable mathematician and admittance as a member of
the academy. He remained with the institution for his
entire career.

D’Alembert came to believe that the topic of
mechanics should be based on logical principles, not
necessarily physical ones, and that its base is funda-
mentally mathematical. In his 1743 treatise Traité de
dynamique, he attempted to refine the work of SIR
IsaAAC NEWTON (1642-1727) and clarify the underpin-
nings of the subject. The following year d’Alembert
published a second work, Traité¢ de I’équilibre et du
mouvement des fluides (Treatise on the equilibrium and
movement of fluids), that applied his results to the
study of fluid motion and introduced some beginning
results on the study of partial differential equations. He
developed these results further over the following
years. In 1747 d’Alembert submitted a paper “Réflex-
ions sur la cause générale des vents” (Reflections on the
general cause of air motion) for consideration for the
annual scientific prize offered by the Prussian Academy.
He did indeed win.

At the same time d’Alembert also began work as a
writer and science editor for the famous French Ency-
clopédie ou dictionnaire raisonné des sciences, des arts,
et des métiers (Encyclopedia and dictionary of the
rationales of the sciences, arts, and professions), taking
responsibility for the writing of the majority of mathe-
matical entries. The first volume of the 28-volume
work was published in 1751.

D’Alembert published several new mathematical
results and ideas in this epic work. For instance, in vol-
ume 4, under the entry differential, he suggested, for
the first time, that the principles of cALcuLUS should be
based on the notion of a LiIMIT. He went so far as to
consider defining the derivative of a function as the
limit of a RATIO of increments. He also described the
new ratio test when discussing CONVERGENT SERIES.

D’Alembert’s interests turned toward literature and
philosophy, and administrative work, in the latter part
of his life. He was elected as perpetual secretary of the
Académie Francaise in 1772. He died 11 years later on
October 29, 1783.

His work in mathematics paved the way for proper
development of the notion of a limit in calculus, as well



as advancement of the field of partial differential equa-
tions. In mechanics, he is honored with a principle of
motion named after him, a generalization of Sir Isaac
Newton’s third law of motion.

See also DIFFERENTIAL CALCULUS.

algebra The branch of mathematics concerned with
the general properties of numbers, and generalizations
arising from those properties, is called algebra. Often
symbols are used to represent generic numbers,
thereby distinguishing the topic from the study of
ARITHMETIC. For instance, the equation 2 X (5 + 7) =
2 X 5 +2x7is a (true) arithmetical statement about a
specific set of numbers, whereas, the equation x X

History of Equations and Algebra

Finding solutions to equations is a pursuit that dates back to
the ancient Egyptians and Babylonians and can be traced
through the early Greeks” mathematics. The RHIND PAPYRUS,
dating from around 1650 B.C.E., for instance, contains a
problem reading:

A quantity; its fourth is added to it. It becomes
fifteen. What is the quantity?

Readers are advised to solve problems like these by a
method of “false position,” where one guesses (posits) a
solution, likely to be wrong, and adjusts the guess accord-
ing to the result obtained. In this example, to make the divi-
sion straightforward, one might guess that the quantity is
four. Taking 4 and adding to it its fourth gives, however, only
4 + 1 =5, one-third of the desired answer of 15. Multiplying
the guess by a factor of three gives the solution to the prob-
lem, namely 4 x 3, which is 12.

Although the method of false position works only for
LINEAR EQUATIONS of the form ax = b, it can nonetheless be an
effective tool. In fact, several of the problems presented in
the Rhind papyrus are quite complicated and are solved rel-
atively swiftly via this technique.

Clay tablets dating back to 1700 B.c.E. indicate that
Babylonian mathematicians were capable of solving certain
QUADRATIC equations by the method of COMPLETING THE
SQUARE. They did not, however, have a general method of
solution and worked only with a set of specific examples
fully worked out. Any other problem that arose was
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(y +2) =x Xy +x X zis a general statement describing
a property satisfied by any three numbers. It is a state-
ment in algebra.

Much of elementary algebra consists of methods of
manipulating equations to either put them in a more
convenient form, or to determine (that is, solve for)
permissible values of the variables that appear. For
instance, rewriting x> + 6x + 9 = 25 as (x + 3)> = 25
allows an easy solution for x: either x + 3 = 3, yielding
x=2,0rx + 3 =-5, yielding x = -8.

The word algebra comes from the Arabic term
al-jabr w’al-muqabala (meaning “restoration and
reduction”) used by the great MUHAMMAD IBN MUSA
AL-KHWARIZMT (ca. 780-850) in his writings on the
topic.

matched with a previously solved example, and its solution
was found by adjusting the numbers appropriately.

Much of the knowledge built up by the old civilizations
of Egypt and Babylonia was passed on to the Greeks. They
took matters in a different direction and began examining all
problems geometrically by interpreting numbers as lengths
of line segments and the products of two numbers as areas
of rectangular regions. Followers of PYTHAGORAS from the
period 540 to 250 B.C.E., for instance, gave geometric proofs
of the DISTRIBUTIVE PROPERTY and the DIFFERENCE OF TWO
SauARES formula, for example, in much the same geometric
way we use today to explain the method of EXPANDING BRACK-
eTs. The Greeks had considerable trouble solving cuBiC EQUA-
TIoNs, however, since their practice of treating problems
geometrically led to complicated three-dimensional con-
structions for coping with the product of three quantities.

At this point, no symbols were used in algebraic prob-
lems, and all questions and solutions were written out in
words (and illustrated in diagrams). However, in the third
century, DIOPHANTUS OF ALEXANDRIA introduced the idea of
abbreviating the statement of an equation by replacing fre-
quently used quantities and operations with symbols as a
kind of shorthand. This new focus on symbols had the sub-
tle effect of turning Greek thinking away from geometry.
Unfortunately, the idea of actually using the symbols to
solve equations was ignored until the 16th century.

The Babylonian and Greek schools of thought also influ-
enced the development of mathematics in ancient India. The
scholar BRAHMAGUPTA (ca. 598-665) gave solutions to

(continues)
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History of Equations and Algebra

(continued)

quadratic equations and outlined general methods for solving
systems of equations containing several variables. (He also
had a clear understanding of negative numbers and was
comfortable working with zero as a valid numerical quantity.)
The scholar Bhaskara (ca. 1114-85) used letters to represent
unknown quantities and, in working with quadratic equations,
suggested that all positive numbers have two square roots
and that negative numbers have no (meaningful) roots.

A significant step toward the development of modern
algebra occurred in Baghdad, Iraq, in the year 825 when the
Arab mathematician MUHAMMAD IBN MUSA AL-KHWARIzMI (ca.
780-850) published his famous piece Hisab al-jabr w'al-
mugabala (Calculation by restoration and reduction). This
work represents the first clear and complete exposition on
the art of solving linear equations by a new practice of per-
forming the same operation on both sides of an equation. For
example, the expression x—3 =7 can be “restored” to x=10
by adding three to both sides of the expression, and the
equation 5x = 10 can be “reduced” to x = 2 by dividing both
sides of the equation by five. Al-Khwarizm1 also showed how
to solve quadratic equations via similar techniques. His
descriptions, however, used no symbols, and like the ancient
Greeks, al-Khwarizm1 wrote everything out in words. None-
theless, al-Khwarizm1’s treatise was enormously influential,
and his new approach to solving equations paved the way for
modern algebraic thinking. In fact, it is from the word al-jabr
in the title of his book that our word algebra is derived.

Al-Khwarizm1's work was translated into Latin by the
Italian mathematician FiBonAccl (ca. 1175-1250), and his
efficient methods for solving equations quickly spread
across Europe during the 13th century. Fibonacci translated
the word shai used by al-Khwarizm1 for “the thing
unknown” into the Latin term res. He also used the ltalian
word cosa for “thing,” and the art of algebra became
known in Europe as “the cossic art.”

In 1545 GIRoLAMO CARDANO (1501-76) published Ars
magna (The great art), which included solutions to the cubic
and QUARTIC EQUATIONS, as well as other mathematical dis-
coveries. By the end of the 17th century, mathematicians
were comfortable performing the same sort of symbolic
manipulations we practice today and were willing to accept
negative numbers and irrational quantities as solutions to
equations. The French mathematician FRANGOIS VIETE
(1540-1603) introduced an efficient system for denoting
powers of variables and was the first to use letters as coef-
ficients before variables, as in “ax? + bx + ¢,” for instance.
(Viete also introduced the signs “+” and “—," although he
never used a sign for equality.) RENE DESCARTES (1596—1650)
introduced the convention of denoting unknown quantities

by the last letters of the alphabet, x, y, and z and known
quantities by the first, a, b, c. (This convention is now com-
pletely ingrained; when we see, for example, an equation of
the form ax + b = 0, we assume, without question, that it is
for “x” we must solve.)

The German mathematician CARL FRIEDRICH GAUSS
(1777-1855) proved the FUNDAMENTAL THEOREM OF ALGEBRA in
1797, which states that every POLYNOMIAL equation of degree
n has at least one and at most n (possibly complex) roots.
His work, however, does not provide actual methods for
finding these roots.

Renaissance scholars ScipioNE DEL FERRO (1465-1526)
and NiccoLo TARTAGLIA (ca. 1500-57) both knew how to solve
cubic equations, and in his 1545 treatise Ars magna, Car-
dano published the solution to the quartic equation discov-
ered by his assistant Lubovico FERRARI (1522—65). For the
centuries that followed, mathematicians attempted to find a
general arithmetic method for solving all quintic (fifth-
degree) equations. LEoNHARD EuLER (1707-83) suspected
that the task might be impossible. Between the years 1803
and 1813, Italian mathematician Paolo Ruffini (1765—1822)
published a number of algebraic results that strongly sug-
gested the same, and just a few years later Norwegian
mathematician NiELs HENRIK ABEL (1802-29) proved that,
indeed, there is no general formula that solves all quintic
equations in a finite number of arithmetic operations. Of
course, some degree-five equations can be solved alge-
braically. (Equation of the form x> — a = 0, for instance, have
solutions x = 5Va.) In 1831 French mathematician EVARISTE
GAaLois (1811-32) completely classified those equations that
can be so solved, developing work that gave rise to a whole
new branch of mathematics today called GROUP THEORY.

In the 19th century mathematicians began using vari-
ables to represent quantities other than real numbers. For
example, English mathematician GeoRGE BooLE (1815-64)
invented an algebra symbolic logic in which variables rep-
resented sets, and Irish scholar SirR WiLLiAM RowaN HAMIL-
TON (1805-65) invented algebraic systems in which
variables represented VECTORS or QUATERNIONS.

With these new systems, important characteristics of
algebra changed. Hamilton, for instance, discovered that
multiplication was no longer commutative in his systems: a
product a x b might not necessarily give the same result as
b x a. This motivated mathematicians to develop abstract
AXioms to explain the workings of different algebraic sys-
tems. Thus the topic of ABSTRACT ALGEBRA was born. One
outstanding contributor in this field was German mathemati-
cian AmALIE NOETHER (1883-1935), who made important dis-
coveries about the nature of noncommutative algebras.

See also ASSOCIATIVE; BABYLONIAN MATHEMATICS; CANCEL-
LATION; COMMUTATIVE PROPERTY; EGYPTIAN MATHEMATICS; FIELD;
GREEK MATHEMATICS; INDIAN MATHEMATICS; LINEAR ALGEBRA; RING.



In modern times the subject of algebra has been
widened to include ABSTRACT ALGEBRA, GROUP THE-
ORY, and the study of alternative number systems
such as MODULAR ARITHMETIC. BOOLEAN ALGEBRA
looks at the algebra of logical inferences, matrix alge-
bra the arithmetic of MATRIX operations, and vector
algebra the mechanics of VECTOR operations and
VECTOR SPACES.

An algebraic structure is any set equipped with one
or more operations (usually BINARY OPERATIONS) satis-
fying a list of specified rules. For example, any group,
RING, FIELD, or vector space is an algebraic structure. In
advanced mathematics, a vector space that is also a
field is called an “algebra.”

See also BRACKETS; COMMUTATIVE PROPERTY; DIS-
TRIBUTIVE PROPERTY; EXPANDING BRACKETS; FUNDA-
MENTAL THEOREM OF ALGEBRA; HISTORY OF EQUATIONS
AND ALGEBRA (essay); ORDER OF OPERATION.

algebraic number A number is called algebraic if it
is the root of a POLYNOMIAL with integer coefficients.
For example, (1/2) (5 + V13) is algebraic since it is a
solution to the equation x* — 5x + 3 = 0. All RATIONAL
NUMBERS are algebraic (since a fraction a/b is the solu-
tion to the equation bx — g = 0), and all square, cube,
and higher roots of integers are algebraic (since Va is a
solution to x” —a = 0).

At first thought it seems that all numbers are alge-
braic, but this is not the case. In 1844 French mathe-
matician JOSEPH LIOUVILLE made the
discovery that the following number, today called
“Liouville’s constant,” cannot be a solution to any inte-
ger polynomial equation:

surprising

L= ZL,,. =0.11000100000000000000000100...
n=1 .

Numbers that are not algebraic are called “transcen-
dental.”

In 1873 French mathematician Charles Hermite
(1822-1901) proved that the number e is transcenden-
tal, and, nine years later in 1882 German mathematician
CARL Lours FERDINAND VON LINDEMANN established
that 7 is transcendental. In 1935 Russian mathematician
Aleksandr Gelfond (1906—68) proved that any number
of the form a? is transcendental if @ and b are both alge-
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braic, with a different from 0 or 1, and b irrational.
(Thus, for example, 23 is transcendental.)

The German mathematician GEORG CANTOR
(1845-1918) showed that the set of algebraic numbers
is COUNTABLE. As the set of real numbers is uncount-
able, this means that most numbers are transcendental.
The probability that a real number chosen at random is
algebraic is zero. Although it was proven in 1929 that
€™ is transcendental, no one to this day knows whether
or not 7" is algebraic.

In analogy with algebraic numbers, a FUNCTION
y = f(x) is called “algebraic” if it can be defined by a
relation of the form

Pa(X)Y" + Pr= 1H(x)Y" = T+..4pi(x)y + po(x) = 0

where the functions p;(x) are polynomials in x. For

example, the function y = V'x is an algebraic function,

since it is defined by the equation y?> — x = 0. A tran-

scendental function is a function that is not algebraic.

Mathematicians have shown that trigonometric, loga-

rithmic, and exponential functions are transcendental.
See also CARDINALITY.

algorithm An algorithm is a specific set of instruc-
tions for carrying out a procedure or solving a mathe-
problem. Synonyms “method,”
“procedure,” and “technique.” One example of an
algorithm is the common method of LONG DIVISION.
Another is the EUCLIDEAN ALGORITHM for finding the
GREATEST COMMON DIVISOR of two positive integers.
The word algorithm is a distortion of “al-Khwarizm1,”

matical include

the name of a Persian mathematician (ca. 820) who
wrote an influential text on algebraic methods.

See also BASE OF A NUMBER SYSTEM; MUHAMMAD
IBN MUSA AL-KHWARIZMT.

alternating series A SERIES whose terms are alternately
positive and negative is called an alternating series. For

example, the GREGORY SERIES 1— 1 + 11 +o=2 s
’ 3 5 7 4

an alternating series, as is the (divergent) series: 1 — 1 + 1

-1 + 1 -1 +... Alternating series have the form

1, . .
Y (-1)"'a,=a1—ay+as—as+..., with each g; positive
n=1
number.
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In 1705, GOTTFRIED WILHELM LEIBNIZ noticed that
many convergent alternating series, like the Gregory
series, have terms g; that decrease and approach zero:

1. aq > ay > as ...
i. a,—0

He managed to prove that any alternating series satis-
fying these two conditions does indeed converge, and
today this result is called the “alternating series test.”
(One can see that the test is valid if one physically
paces smaller and smaller steps back and forth: a; feet
forward, a, feet backward, a; feet forward, and so on.
This motion begins to “hone in” on a single limiting
location.) We see, for example, that the series

St 1.1 1

4 9 16 25 36
the alternating series test gives us no indication as to
what the value of the sum could be. Generally, finding
the limit value is a considerable amount of work, if at
all possible. The values of many “simple” alternating
series are not known today. (One can show, however,
that the above series above converges to m*/12. See
CONVERGENT SERIES. )

See also ZETA FUNCTION.

1 converges. Unfortunately,

altitude A line segment indicating the height of a
two- or three-dimensional geometric figure such as a
POLYGON, POLYHEDRON, CYLINDER, or CONE is called
an altitude of the figure. An altitude meets the base of
the figure at a RIGHT ANGLE.

Any TRIANGLE has three distinct altitudes. Each is a
LINE segment emanating from a vertex of the triangle
meeting the opposite edge at a 90° angle. The LAW OF
SINES shows that the lengths b, by, and b, of the three
altitudes of a triangle ABC satisfy:

h,=csinB=bsiny
hp=asiny=csina
h.=bsin o =asin B

where a, b, and ¢ are the side-lengths of the triangle,
and o, B, and vy are the angles at vertices A, B, and C,
respectively. Here b, is the altitude meeting the side of
length a at 90°. Similarly, b, and b, are the altitudes
meeting sides of length b and ¢, respectively. It also fol-
lows from this law that the following relation holds:

A
Otﬁ YG
By 5/
0
F

Proving altitudes are concurrent

(abc)3

b hph .= —
b 873

where 7 is the radius of the circle that contains the
points A, B, and C.

The three altitudes of a triangle always meet at a
common point called the orthocenter of the triangle.
Surprisingly, this fundamental fact was not noticed by
the geometer EUCLID (ca. 300 B.C.E.). The claim can be
proved as follows:

Given a triangle ABC, draw three lines, one
through each vertex and parallel to the side
opposite to that vertex. This creates a larger
triangle DEF.

By the PARALLEL POSTULATE, alternate
angles across parallel lines are equal. This
allows us to establish that all the angles in the
diagram have the values as shown. Conse-
quently, triangle DAB is similar to triangle
ABC and, in fact, is congruent to it, since it
shares the common side AB. We have that DA
is the same length as BC. In a similar way we
can show that AE also has the same length as
BC, and so A is the midpoint of side DE of the
large triangle. Similarly, B is the midpoint of
side DE and C the midpoint of side EE The
study of EQUIDISTANT points establishes that



the perpendicular bisectors of any triangle are
CONCURRENT, that is, meet at a point. But the
perpendicular bisectors of triangle DEF are
precisely the altitudes of triangle ABC.

One can also show that the three altitudes of a tri-
angle satisfy:

t,1r 1.1
b, by h. R

where R is the radius of the largest circle that sits inside
the triangle.
See also EULER LINE.

amicable numbers (friendly numbers) Two whole
numbers a and b are said to be amicable if the sum of
the FACTORs of a, excluding a itself, equals b, and the
sum of the factors of b, excluding b itself, equals a. For
example, the numbers 220 and 284 are amicable:

284 has factors 1, 2, 4, 71, and 142, and their sum
1s 220

220 has factors 1, 2, 4, 5, 10, 11, 20, 22, 44, 55,
and 110, and their sum is 284

The pair (220, 284) is the smallest amicable pair. For
many centuries it was believed that this pair was the only
pair of amicable numbers. In 1636, however, PIERRE DE
FERMAT discovered a second pair, (17296, 18416), and in
1638, RENE DESCARTES discovered the pair (9363584,
9437056). Both these pairs were also known to Arab
mathematicians, perhaps at an earlier date.

By 1750, LEONHARD EULER had collated 60 more
amicable pairs. In 1866, 16-year-old Nicolo Paganini
found the small pair (1184, 1210) missed by all the
scholars of preceding centuries. Today more than 5,000
different amicable pairs are known. The largest pair
known has numbers each 4,829 digits long.

See also PERFECT NUMBER.

analysis Any topic in mathematics that makes use of
the notion of a LIMIT in its study is called analysis. CAL-
cULUSs comes under this heading, as does the summa-
tion of infinite SERIES, and the study of REAL NUMBERS.
Greek mathematician PAPPUS OF ALEXANDRIA (ca.
320 c.k.) called the process of discovering a proof or a
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solution to a problem “analysis.” He wrote about “a
method of analysis” somewhat vaguely in his geometry
text Collection, which left mathematicians centuries
later wondering whether there was a secret method hid-
den behind all of Greek geometry.

The great RENE DESCARTES (1596-1650) devel-
oped a powerful method of using algebra to solve geo-
metric problems. His approach became known as
analytic geometry.

See also ANALYTIC NUMBER THEORY; CARTESIAN
COORDINATES.

analytic number theory The branch of NUMBER THE-
ORY that uses the notion of a LIMIT to study the proper-
ties of numbers is called analytic number theory. This
branch of mathematics typically deals with the “aver-
age” behavior of numbers. For example, to answer:

On average, how many square factors does a
number possess?

one notes that all numbers have 1 as a factor, one-
quarter of all numbers have 4 as a factor, one-ninth
have the factor 9, one-sixteenth the factor 16, and

so on. Thus, on average, a number possesses
1 1 1 n? .
1+ 279t et T S 1.64 square factors. This par-

ticular argument can be made mathematically precise.
See also ANALYSIS; ZETA FUNCTION.

angle Given the configuration of two intersecting
LINES, line segments, or RAYs, the amount of ROTATION
about the point of intersection required to bring one
line coincident with the other is called the angle
between the lines. Simply put, an angle is a measure of
“an amount of turning.” In any diagram representing
an angle, the lengths of the lines drawn is irrelevant.
For example, an angle corresponding to one-eighth of a
full turn can be represented by rays of length 2 in., 20
in., or 200 in.

The image of a lighthouse with a rotating beam of
light helps clarify the concept of an angle: each ray or
line segment in a diagram represents the starting or end-
ing position of the light beam after a given amount of
turning. For instance, angles corresponding to a quarter
of a turn, half a turn, and a full turn appear as follows:
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Some simple angles

Mathematicians sometimes find it convenient to deem
an angle measured in a counterclockwise sense as posi-
tive, and one measured in a clockwise sense as negative.

Babylonian scholars of ancient times were aware
that the year is composed of 365 days but chose to
operate with a convenient calendar composed of 12
months of 30 days. Thus the number 360 came to be
associated with the notion of a full cycle. Today, hark-
ing back to the Babylonians, angles are measured in
units of degrees, in which a full rotation corresponds to
360 degrees (written 360°). Thus a half turn corre-
sponds to 180°, and a quarter turn to 90°. A single
degree corresponds to 1/360 of a turn.

Each degree is divided into 60 smaller units called
minutes, denoted with an apostrophe, and each
minute is divided into 60 smaller units called seconds,
denoted with two apostrophes. Thus, for instance,
15°46’23"” represents an angle of 15 degrees, 46 min-
utes, and 23 seconds.

Mathematicians prefer to use a unit of angle mea-
surement independent of the circumstance that we live
on the Earth, i.e., one that is natural to mathematics.
The chosen unit of measurement is called a radian.
Working with the simplest CIRCLE possible, namely, a
circle of radius one, mathematicians match the measure
of a full turn with the distance around that circle,
namely 27, the circumference of the circle. Thus one
full rotation equals 21 radian. A half turn is measured

as half of this, namely, © radian, and a quarter turn as

%ln = g radian.

To convert between degree and radian measures,
one simply notes that 360 degrees corresponds to 2w

3277:) ~0.017 radian,

radian. (Thus one degree equals

360

and one radian equals =— =~ 57.3°.)
2

A unit of measurement called a “gradian” is some-
times used in surveying. In this system, a full turn is
considered 400 gradian (and, consequently, a quarter
turn is divided into exactly 100 parts). This system is
rarely used in mathematics, if at all.

Angles are classified according to their measure:

¢ An angle of zero degree is called a null angle.

¢ An angle between 0° and 90° is called acute.

e An angle of 90° is called a right angle. (It is the angle
formed when one makes a perfect right turn.)

¢ An angle between 90° and 180° is called obtuse.

¢ An angle of 180° is called a straight angle.

¢ An angle between 180° and 360° is called a reflex
angle.

® An angle of 360° is called a PERIGON or a round angle.

Two angles are said to be congruent if they have the
same measure. If two angles have measures summing to
a right angle, then they are said to be complementary,
and two angles are supplementary if their measures sum
to a straight angle. Special names are also given to angles
that appear in a diagram involving a TRANSVERSAL.

The angle of elevation of a point P above the
ground relative to an observer at position O on the
ground is defined to be the angle between the line con-
necting O to P, and the line connecting QO to the point
on the ground directly below P. If P lies below ground
level, then an angle of depression is computed similarly.

The angle between two VECTORs is computed via
the DOT PRODUCT. Using TRIGONOMETRY one shows
that the angle A between two lines in the plane of
slopes m1; and m,, respectively, is given by:

tan A=A """
1+ nmny
(This follows by noting that the angle the first line makes
with the x-axis is tan~!(m2;) and the angle of the second
line is tan~!(2,). Thus the angle we seek is A = tan™! ()
— tan'(m,). The trigonometric identity tan(o— B) =

tano — tan )

tan(a —[3)=—B now establishes the result.)
1+ tano tan

Consequently, if mm, = -1, the lines are PERPENDI-

CULAR. The angle between two intersecting curves in
a plane is defined to be the angle between the TAN-
GENT lines to the curves at the point of intersection.

The link between the measure of an angle and the
length of arcs of a unit circle to define radian measure
can be extended to associate a measure of “angle” with



regions on a unit SPHERE. A SOLID ANGLE of a region is
simply the measure of surface AREA of that region pro-
jected onto a unit sphere. Units of solid angle are called
steradians. The full surface area of the sphere is 4n
steradian.

See also BABYLONIAN MATHEMATICS; DIHEDRAL;
SLOPE; TRIANGLE; TRISECTING AN ANGLE.

angle trisection See TRISECTING AN ANGLE.

annulus (plural, annuli) An annulus is the region
between two CONCENTRIC circles in a plane. The
AREA of the annulus is the difference of the areas of
the two circles.

If a cyclist rides a perfect circle, the region between
the tracks made by the front and rear wheels is an
annulus. If the bicycle is 7 feet long (axel to axel), then,
surprisingly, the area of this annulus is 772 feet squared,
irrespective of the size of the circle the cyclist traces.

antidifferentiation (integration) The process of
finding a function with a given function as its DERIVA-
TIVE is called antidifferentiation. For example, x? is an

S . d
antiderivative of 2x, since d_(xl)zzx. The MEAN
x

VALUE THEOREM shows that two antiderivatives of
the same function differ only by a constant. Thus all
the antiderivatives of 2x, for example, are functions
of the form x? + C.

The antiderivative of a function f(x) is denoted
Jf(x)dx and is called the indefinite integral of f. It is
defined up to a constant, and so we write, for example,
[2x dx = x* + C. (The constant C is referred to as a
“constant of integration.”) The notation is deliberately
suggestive of a definite integral of a function, [, f(x)dx,
for the area under the curve y = f(x) over the INTERVAL
[a,b]. The FUNDAMENTAL THEOREM OF CALCULUS
shows that the two notions are intimately connected.

See also INTEGRAL CALCULUS.

antilogarithm See LOGARITHM.

antipodal points (antipodes) Two points on a
SPHERE at the opposite ends of a diameter are said to be
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antipodal. For example, the north and south poles are
antipodal points on the EARTH, as are any two points
EQUIDISTANT from the equator, with longitudes differ-
ing by 180°.

The famous Borsuk-Ulam theorem, first conjec-
tured by Stanislaw Ulam and then proved by Karol
Borsuk in 1933, states:

Let f be a continuous function that assigns two
numerical values to each and every point on
the surface of a sphere. Then there must exist
two antipodal points which are assigned pre-
cisely the same pair of values.

An amusing interpretation reads:

At any instant there exist two antipodal points
on the Earth’s surface of precisely the same air
temperature and air pressure.

Although the proof of this theorem is difficult, a one-
dimensional version of the result follows as an easy
consequence of the INTERMEDIATE-VALUE THEOREM.

apex (plural, apices) The point at the top of a POLY-
GON or a POLYHEDRON, such as the vertex of a triangle
opposite its BASE or the vertex of a pyramid, is called
the apex of the figure. The distance from the base of
the figure to its apex is called the height of the figure.

Apollonius of Perga (ca. 262-190 B.C.E.) Greek Geo-
metry Born in Perga, Greek Ionia, now Antalya,
Turkey, Apollonius worked during the Golden Age of
Greek mathematics and has been referred to throughout
history as the Great Geometer. His famous work, The
Conics, written in eight volumes, greatly influenced the
development of mathematics. (The names ELLIPSE,
PARABOLA, and HYPERBOLA for the three CONIC SEC-
TIONS, for instance, are said to have been coined by
Apollonius.) Copies of the first four volumes of this
work, written in the original Greek, survive today. Ara-
bic translations of the first seven volumes also exist.
Little is known of Apollonius’s life other than what
can be gleaned from incidental comments made in the
prefaces of his books. As a young man it is known that
he traveled to Alexandria to study with the followers of
EucLID, who then introduced him to the topic of conics.
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The first volume of The Conics simply reviews ele-
mentary material about the topic and chiefly presents
results already known to Euclid. Volumes two and
three present original results regarding the ASYMPTOTES
to hyperbolas and the construction of TANGENT lines to
conics. While Euclid demonstrated a means, for
instance, of constructing a circle passing through any
three given points, Apollonius demonstrated techniques
for constructing circles tangent to any three lines, or to
any three circles, or to any three objects be they a com-
bination of points, lines, or circles. Volumes four, five,
six, and seven of his famous work are highly innovative
and contain original results exploring issues of curva-
ture, the construction of normal lines, and the con-
struction of companion curves to conics. Apollonius
also applied the theory of conics to solve practical
problems. He invented, for instance, a highly accurate
sundial, called a hemicyclium, with hour lines drawn
on the surface of a conic section.

Apollonius also played a fundamental role in the
development of Greek mathematical astronomy. He
proposed a complete mathematical analysis of epicyclic
motion (that is, the compound motion of circles rolling
along circles) as a means to help explain the observed
retrograde motion of the planets across the skies that
had confused scholars of his time.

Apollonius’s work was extraordinarily influen-
tial, and his text on the conics was deemed a stan-
dard reference piece for European scholars of the
Renaissance. JOHANNES KEPLER, RENE DESCARTES,
and SIR Issac NEWTON each made reference to The
Conics in their studies.

See also CIRCUMCIRCLE; CYCLOID.

Apollonius’s circle Let A and B be two points of the
plane and let k be a constant. Then the set of all points
P whose distance from A is k times its distance from B
is a CIRCLE. Any circle obtained this way is referred to
as one of Apollonius’s circles. Note that when k = 1 the
circle is “degenerate,” that is, the set of all points
EQUIDISTANT from A and B is a straight line. When k
becomes large, the Apollonius’s circle approaches a cir-
cle of radius 1.

To see that the locus of points described this way
is indeed a circle, set A to be the origin (0,0), B to be
the point (k + 1, 0) on the x-axis, and P to be a gen-
eral point with coordinates (x,y). The DISTANCE FOR-

MULA then gives an equation of the form

\/x2+y2=k\/(x—k—1)2+y2 .

This is equivalent to

B2 2 p o\
(x— k—l] +y? = (mj , which is indeed the equa-

. . . k
tion of a circle, one of radius -1 APOLLONIUS OF

PERGA used purely geometric techniques, however, to
establish his claim.

Apollonius’s theorem If a, b, and ¢ are the side-
lengths of a triangle and a median of length 2 divides
the third side into two equal lengths ¢/2 and ¢/2, then
the following relation holds:

CZ
612+b2 :74‘27712

This result is known as Apollonius’s theorem. It can be
proved using two applications of the LAW OF COSINES
as follows:

Let B be the ANGLE between the sides of length
a and c. Then m? = a* + (c/2)*—ac cos(B) and b*
= a* + ¢ — 2ac cos(B). Solving for ac cos(B) in
the first equation and substituting into the sec-

ond yields the result.

See also MEDIAN OF A TRIANGLE.

apothem (short radius) Any line segment from the
center of a regular POLYGON to the midpoint of any of
its sides is called an apothem. If the regular polygon
has # sides, each one unit in length, then an exercise in
TRIGONOMETRY shows that each apothem of the figure

1
r=—
has length Ztan(lgoj .

n

An analog of p1 (n) for a regular polygon is the
RATIO of its PERIMETER to twice the length of its
apothem. For a regular n-sided polygon, this ratio has
value 7 tan(180/n). The SQUEEZE RULE shows that this
quantity approaches the value T as # becomes large.

See also LONG RADIUS.



applied mathematics The study and use of the math-
ematical techniques to solve practical problems is called
applied mathematics. The field has various branches
including STATISTICS, PROBABILITY, mechanics, mathe-
matical physics, and the topics that derive from them,
but the distinction from PURE MATHEMATICS might not
be sharp. For instance, the general study of VECTORs
and VECTOR SPACEs can be viewed as either an abstract
study or a practical one if one later has in mind to use
this theory to analyze force diagrams in mechanics.

Many research universities of today possess two
departments of mathematics, one considered pure and
the other applied. Students can obtain advanced degrees
in either field.

approximation A numerical answer to a problem
that is not exact but is sufficient for all practical pur-
poses is called an approximation. For example, noting
that 210 is approximately 1,000 allows us to quickly
estimate the value of 2100 = (210)10 45 103, Students are
often encouraged to use the fraction 22/7 as an approx-
imate value for 7.

Mathematicians use the notation to denote
approximately equal to. Thus, for example, © = 22/7.

Physicists and engineers often approximate func-

tions by their TAYLOR SERIES with the higher-order
x o«
terms dropped. For example, sinx = X—3ytos at
least for small values of x. The theory of INTEGRAL
CALCULUS begins by approximating areas under curves
as sums of areas of rectangles.
See also ERROR; FACTORIAL; NUMERICAL DIFFEREN-

TIATION; NUMERICAL INTEGRATION.

«__»

Arabic mathematics Mathematical historians of
today are grateful to the Arabic scholars of the past for
preserving, translating, and honoring the great Indian,
Greek, and Islamic mathematical works of the scholars
before them, and for their own significant contributions
to the development of mathematics. At the end of the
eighth century, with the great Library of Alexandria
destroyed, Caliph al-Ma’mun set up a House of Wis-
dom in Baghdad, Iraq, which became the next promi-
nent center of learning and research, as well as the
repository of important academic texts. Many scholars
were employed by the caliph to translate the mathemat-
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ical works of the past and develop further the ideas they
contained. As the Islamic empire grew over the follow-
ing seven centuries, the culture of intellectual pursuit
also spread. Many scholars of 12th-century Europe, and
later, visited the Islamic libraries of Spain to read the
texts of the Arabic academics and to learn of the
advances that had occurred in the East during the dark
ages of the West. A significant amount of mathematical
material was transmitted to Europe via these means.

One of the first Greek texts to be translated at the
House of Wisdom was EUCLID’s famous treatise, THE
ELEMENTS. This work made a tremendous impact on
the Arab scholars of the period, and many of them,
when conducting their own research, formulated theo-
rems and proved results precisely in the style of Euclid.
Members of the House of Wisdom also translated the
works of ARCHIMEDES OF SYRACUSE, DIOPHANTUS OF
ALEXANDRIA, MENELAUS OF ALEXANDRIA, and others,
and so they were certainly familiar with all the great
Greek advances in the topics of GEOMETRY, NUMBER
THEORY, mechanics, and analysis. They also translated
the works of Indian scholars, ARYABHATA and
BHASKARA, for instance, and were familiar with the the-
ory of TRIGONOMETRY, methods in astronomy, and fur-
ther topics in geometry and number theory. Any Arab
scholar who visited the House of Wisdom had, essen-
tially, the entire bulk of human mathematical knowledge
available to him in his own language.

Arab mathematician MUHAMMAD IBN MUSA
AL-KHWARIZMT (ca. 800) wrote a number of original
texts that were enormously influential. His first piece
simply described the decimal place-value system he had
learned from Indian sources. Three hundred years later,
when translated into Latin, this work became the pri-
mary source for Europeans who wanted to learn the
new system for writing and manipulating numbers. But
more important was al-Khwarizm1’s piece Hisab al-jabr
w’al-muqgabala (Calculation by restoration and reduc-
tion), from which the topic of “algebra” (“al-jabr”)
arose. Al-Khwarizm1 was fortunate to have all sources
of mathematical knowledge available to him. He began
to see that the then-disparate notions of “number” and
“geometric magnitude” could be unified as one whole
by developing the concept of algebraic objects. This rep-
resented a significant departure from Greek thinking, in
which mathematics is synonymous with geometry.
Al-KhwarizmT’s insight provided a means to study both
arithmetic and geometry under a single framework, and
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his methods of algebra paved the way for significant
developments in mathematics of much broader scope
than ever previously envisioned.

The mathematician al-Mahani (ca. 820) developed
refined approaches for reducing geometric problems to
algebraic ones. He showed, in particular, that the famous
problem of DUPLICATING THE CUBE is essentially an alge-
braic issue. Other scholars brought rigor to the subject
by proving that certain popular, but complicated, alge-
braic methods were valid. These scholars were comfort-
able manipulating POLYNOMIALs and developed rules for
working with EXPONENTs, They solved linear and
QUADRATIC equations, as well as various SYSTEMs OF
EQUATIONS. Surprisingly, no one of the time thought to
ease matters by using symbols to represent quantities: all
equations and all manipulations were described fully in
words each and every time they were employed.

With quadratic equations well understood, the
scholar OMAR KHAYYAM (ca. 1048-1131) attempted to
develop methods of solving degree-three equations.
Although he was unable to develop general algebraic
methods for this task, he did find ingenious geometric
techniques for solving certain types of cubics with the
aid of CONIC SECTIONS. He was aware that such equa-
tions could have more than one solution.

In number theory, Thabit ibn Qurra (ca. 836-901)
found a beautiful method for generating AMICABLE NUM-
BERS. This technique was later utilized by al-Farisi
(ca. 1260-1320) to yield the pair 17,296 and 18,416,
which today is usually attributed to LEONHARD EULER
(1707-83). In his writing, Omar Khayyam referred to
earlier Arab texts, now lost, that discuss the equivalent
of PASCAL’s TRIANGLE and its connections to the
BINOMIAL THEOREM. The mathematician al-Haytham
(ca. 965-1040) attempted to classify all even PERFECT
NUMBERS.

Taking advantage of the ease of the Indian system
of decimal place-value representation, Arabic scholars
also made great advances in numeric computations.
The great 14th-century scholar JAMSHID AL-KASHI
developed effective methods for extracting the nth root
of a number, and evaluated 7 to a significant number of
decimal places. Scholars at the time also developed
effective methods for computing trigonometric tables
and techniques for making highly accurate computa-
tions for the purposes of astronomy.

On a theoretical note, scholars also advanced the
general understanding of trigonometry and explored

problems in spherical geometry. They also investigated
the philosophical underpinnings of geometry, focusing,
in particular, on the role the famous PARALLEL POSTU-
LATE plays in the theory. Omar Khayyam, for instance,
attempted to prove the parallel postulate—failing, of
course—but did accidentally prove results about figures
in non-Euclidean geometries along the way. The mathe-
matician Ibrahim ibn Sinan (908-946) also introduced
a method of “integration” for calculating volumes and
areas following an approach more general than that
developed by Archimedes of Syracuse (ca. 287-212
B.C.E.). He also applied his approach to the study of
CONIC SECTIONS and to optics.

See also BASE OF A NUMBER SYSTEM; HISTORY OF
EQUATIONS AND ALGEBRA (essay); HISTORY OF GEOME-
TRY (essay); HISTORY OF TRIGONOMETRY (essay).

arc Part of a continuous curve between two given
points on the curve is called an arc of the curve. In par-
ticular, two points on a CIRCLE determine two arcs. If the
circumference of the circle is divided by them into two
unequal parts, then the smaller portion is usually called
the minor arc of the circle and the larger the major arc.

Archimedean spiral See SPIRAL OF ARCHIMEDES.

Archimedes of Syracuse (287-212 B.C.E.) Greek
Geometry, Mechanics Born in the Greek colony of
Syracuse in Sicily, Archimedes is considered one of the
greatest mathematicians of all time. He made consider-
able contributions to the fields of planar and solid
GEOMETRY, hydrostatics, and mechanics. In his works
Measurement of a Circle and Quadrature of the Para-
bola, Archimedes solved difficult problems of mensu-
ration in planar geometry by inventing an early
technique of INTEGRAL CALCULUS, which he called the
“method of exhaustion.” This allowed him to compute
areas and lengths of certain curved figures. Later, in his
works On the Sphere and Cylinder and On Conoids
and Spheroids, he applied this technique to also com-
pute the volume and surface area of the sphere and
other solid objects. In his highly original work On
Floating Bodies, Archimedes developed the mathemat-
ics of hydrostatics and equilibrium, along with the LAW
OF THE LEVER, the notion of specific gravity, and tech-
niques for computing the CENTER OF GRAVITY of a
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A 1547 woodcut depicting Archimedes’ realization that a tub of water can be used to compute the volumes and densities of solid figures

(Photo courtesy of ARPL/Topham/The Image Works)

variety of bodies. In mathematics, Archimedes also
developed methods for solving cubic equations,
approximating square roots, summing SERIES, and, in
The Sand Reckoning, developed a notation for repre-
senting extremely large numbers.

Except for taking time to study at EUCLID’s school in
Alexandria, Archimedes spent his entire life at the place
of his birth. He was a trusted friend of the monarch of
the region, Hiero, and his son Gelon, and soon devel-
oped a reputation as a brilliant scientist who could solve
the king’s most troublesome problems. One famous
story asserts that the king once ordered a goldsmith to
make him a crown, and supplied the smith the exact
amount of metal to make it. Upon receiving the newly
forged crown, Hiero suspected the smith of ill doing,

substituting some cheaper silver for the gold, even
though the crown did have the correct weight. He could
not prove his suspicions were correct, however, and so
brought the problem to Archimedes. It is said that while
bathing and observing the water displaced by his body
Archimedes realized, and proved, that the weight of an
object suspended in liquid decreases in proportion to the
weight of the liquid it displaces. This principle, today
known as Archimedes’ principle, provided Archimedes
the means to indeed prove that the crown was not of
solid gold. (It is also said that Archimedes was so excited
upon making this discovery that he ran naked through
the streets shouting, “Eureka! Eureka!”)

Archimedes is also purported to have said, “Give me
a place to stand and I shall move the Earth.” Astonished
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by the claim, King Hiero asked him to prove it.
Archimedes had, at this time, discovered the principles
of the levers and pulleys, and set about constructing a
mechanical device that allowed him, single-handedly, to
launch a ship from the harbor that was too large and
heavy for a large group of men to dislodge.

Dubbed a master of invention, Archimedes also
devised a water-pumping device, now known as the
Archimedes screw and still used in many parts of the
world today, along with many innovative machines of
war that were used in the defense of Sicily during the not-
infrequent Roman invasions. (These devices included
parabolic mirrors to focus the rays of the sun to burn
advancing ships from shore, catapult devices, and spring-
loaded cannons.) But despite the fame he received for his
mechanical inventions, Archimedes believed that pure
mathematics was the only worthy pursuit. His accom-
plishments in mathematics were considerable.

Archimedes of Syracuse, regarded as one of the greatest
scientists of all time, pioneered work in planar and solid geo-
metry, mechanics, and hydrostatics. (Photo courtesy of the
Science Museum, London/Topham-HIP/The Image Works)

By bounding a circle between two regular polygons
and calculating the ratio the perimeter to diameter of
each, Archimedes found one of the earliest estimates for
the value of m, bounding it between the values 3 10/71
and 3 1/7. (This latter estimate, usually written as 22/7,
is still widely used today.) Archimedes realized that by
using polygons with increasingly higher numbers of
sides yielded better and better approximations, and that
by “exhausting” all the finite possibilities, the true value
of m would be obtained. Archimedes also used this
method of exhaustion to demonstrate that the length of
any segment of a parabola is 4/3 times the area of the
triangle with the same base and same height.

By comparing the cross-sectional areas of parallel
slices of a sphere with the slices of a cylinder that
encloses the sphere, Archimedes demonstrated that the
volume of a sphere is 2/3 that of the cylinder. The vol-
ume of the sphere then follows: V = (2/3)(2r x mr?) =
(4/3)mr3. (Here 7 is the radius of the sphere.) Archimedes
regarded this his greatest mathematical achievement,
and in his honor, the figures of a cylinder and an
inscribed sphere were drawn on his tombstone.

Archimedes also computed the surface area of a
sphere as four times the area of a circle of the same
radius of the sphere. He did this again via a method of
exhaustion, by imagining the sphere as well approxi-
mated by a covering of flat tiny triangles. By drawing
lines connecting each vertex of a triangle to the center
of the sphere, the volume of the figure is thus divided
into a collection of triangular pyramids. Each pyramid
has volume one-third its base times it height (essentially
the radius of the sphere), and the sum of all the base
areas represents the surface area of the sphere. From
the formula for the volume of the sphere, the formula
for its surface area follows.

One cannot overstate the influence Archimedes has
had on the development of mathematics, mechanics,
and science. His computations of the surface areas and
volumes of curved figures provided insights for the
development of 17th-century calculus. His understand-
ing of Euclidean geometry allowed him to formulate
several axioms that further refined the logical under-
pinnings of the subject, and his work on fluids and
mechanics founded the field of hydrostatics. Scholars
and noblemen of his time recognized both the theoreti-
cal and practical importance of his work. Sadly,
Archimedes died unnecessarily in the year 212 B.C.E.
During the conquest of Syracuse by the Romans, it is
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A 19th-century engraving of Archimedes’ water screw, a device for pumping water (Photo courtesy of AAAC/Topham/The Image Works)

said that a Roman soldier came across Archimedes con-
centrating on geometric figures he had drawn in the
sand. Not knowing who the scholar was, or what he
was doing, the soldier simply killed him.

Archytas of Tarentum (ca. 428-350 B.C.E.) Greek
Geometry, Philosophy The Greek scholar Archytas of
Tarentum was the first to provide a solution to the clas-
sic DUPLICATING THE CUBE problem of antiquity. By
reducing the challenge to one of constructing certain

ratios and proportions, Archytas developed a geometric
construct that involved rotating semicircles through
certain angles in three-dimensional space to produce a
length essentially equivalent to the construct of the
cube root of two. (Creating a segment of this length is
the chief stumbling block to solving the problem.)
Although his innovative solution is certainly correct, it
uses tools beyond what is permissible with straightedge
and compass alone. In the development of his solution,
Archytas identified a new mean between numbers,
which he called the HARMONIC MEAN.
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Archytas lived in southern Italy during the time of
Greek control. The region, then called Magna Graecia,
included the town of Tarentum, which was home to
members of the Pythagorean sect. Like the Pythagore-
ans, Archytas believed that mathematics provided the
path to understanding all things. However, much to
the disgust of the Pythagoreans, Archytas applied his
mathematical skills to solve practical problems. He is
sometimes referred to as the Founder of Mechanics
and is said to have invented several innovative mech-
anical devices, including a mechanical bird and an
innovative child’s rattle.

Only fragments of Archytas’s original work survive
today, and we learn of his mathematics today chiefly
through the writings of later scholars. Many results
established by Archytas appear in EUCLID’s famous text
THE ELEMENTS, for instance.

arc length To measure the length of a curved path,
one could simply lay a length of string along the path,
pull it straight, and measure its length. This determines
the arc length of the path. In mathematics, if the curve in
question is continuous and is given by a formula y = f(x)
for a < x < b say, then INTEGRAL CALCULUS can be used
to find the arc length of the curve. To establish this, first
choose a number of points (x1, ¥1),...,(x,, v,) along the
curve and sum the lengths of the straight-line segments
between them. Using the DISTANCE FORMULA, this gives
an approximate value for the length s of the curve:

+(yi=yia)

s~zJ x)

Rewriting yields:
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The MEAN-VALUE THEOREM shows that for each 7 there is

Yi —Yix1 ’
< = C;
=T,

and so the length of the curve is well approximated by
the formula:

a value ¢; between x,_; and x; so that

Of course, taking more and more points along the curve
gives better and better approximations. In the limit,
then, the true length of the curve is given by the formula:

s=lim,_,. iw/l + (]"’(c,v))2 (x
i=1

This is precisely the formula for the integral of the

. 2 o .
function 1+(f’(x)) over the domain in question.

Thus we have:

The arc length of a continuous curve y = f(x) over
the interval [a,b] is given by s= J:q/l + (f’(x))2 dx

Alternatively, if the continuous curve is given by a set of
PARAMETRIC EQUATIONS x = x(#) and y = y(¢), fora < t <
b say, then choosing a collection of points along the
curve, given by #y,...,t, say, making an approximation to
the curve’s length, and taking a limit yields the formula:

s=lim, . \/(x(ti) — x(ti1) )2+ (y(ti) - y(ti—l))

= lim,,_,.. \/[ x(t;)— x(ti—l))er (y(ti) —Y(tig ))2 (ti—t,)
ti—tiq ti—tiq

Iy (3]

In a similar way one can show that if the continuous
curve is given in POLAR COORDINATES by formulae and
x = 7(0)cos(0) and y = 7(0)sin(0), for a < 6 < b, then the
arc length of the curve is given by:

dr
s=j 7 +(d9j do

The presence of square-root signs in the integrands
often makes these integrals very difficult, if not impos-
sible, to solve. In practice, one must use numerical tech-
niques to approximate integrals such as these.

See also NUMERICAL INTEGRATION.

area Loosely speaking, the area of a geometric figure
is the amount of space it occupies. Such a definition



appeals to intuitive understanding. In general, how-
ever, it is very difficult to explain precisely just what it
is we mean by “space” and the “amount” of it occu-
pied. This is a serious issue. (See Banach-Tarski para-
dox on following page.)

As a starting point, it seems reasonable to say, how-
ever, that a 1 x 1 square should have “area” one. We
call this a basic unit of area. As four of these basic units
fit snugly into a square with side-length two, without
overlap, we say then that a 2 x 2 square has area four.
Similarly a 3 x 3 square has area nine, a 4 X 4 square
area 16, and so on.

A 3 x 6 rectangle holds 18 basic unit squares and
so has area 18. In general, a rectangle that is / units
long and w units wide, with both / and w whole num-
bers, has area [ x w:

area of a rectangle = length x width

This is a fundamental formula. To put the notion of
area on a sound footing, we use this formula as a defin-
ing law: the area of any rectangle is to be the product
of its length and its width.

Although it is impossible to fit a whole number of
unit squares into a rectangle that is 5 3/4 units long and
V7 units wide, for example, we declare, nonetheless,
that the area of such a rectangle is the product of these
two numbers. (This agrees with our intuitive idea that,
with the aid of scissors, about 5 3/4 x V7 = 15.213 unit
squares will fit in this rectangle.)

From this law, the areas of other geometric shapes
follow. For example, the following diagram shows that
the area of an acute TRIANGLE is half the area of the
rectangle that encloses it. This leads to the formula:

area of a triangle = !/, x base x height

This formula also holds for obtuse triangles.

3
2
I
1 2 6
Abasicunit — Four basic units Eighteen basic units
of area of area fit into a of area fit into a
2 x 2 square 3 x 6 rectangle
Area
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height height

base base o
b e—

area of an obtuse triangle

1/2x b x height — 1/2 x a x height
1/2 x (b-a) x height

1/2 x base x height

area of an acute friangle
=1/2 x base x height

e

( A
I :

height

base

area of a parallelogram
= base x height

0 hase 2

height

base 1

area of a trapezoid
=1/2x (base 1) x height + 1/2 x base 2 x height
=1/2 x (base 1 + base 2) x height

LE]

area of a regular polygon with n sides
=nx1/2xsxr
=1/2 x perimeter x apothem

The areas of basic shapes

By rearranging pieces of a PARALLELOGRAM, we see
that its area is given by the formula:

area of a parallelogram = base x height



24 area

In general we can calculate the area of any POLYGON
as the sum of the areas of the triangles that subdivide
it. For example, the area of a TRAPEZOID is the sum
of the areas of two triangles, and the area of a regu-
lar POLYGON with 7 sides is the sum of the areas of »
triangles.

Curved Figures

It is also possible to compute the area of curved fig-
ures. For example, slicing a circle into wedged-shape
pieces and rearranging these slices, we see that the
area of a circle is close to being the area of a rectangle
of length half the circumference and of width 7 the
radius of the circle.

If we work with finer and finer wedged-shape
pieces, the approximation will better approach that of
a true rectangle. We conclude that the area of a circle is
indeed that of this ideal rectangle:

area of a circle = '/, x circumference x

(Compare this with the formula for the area of a
regular polygon.) As PI (n) is defined as the ratio
of the circumference of a circle to its diameter,
circumference .
== 5, the area of a circle can thus be
written: area = '/, x 2nr x . This leads to the famous
formula:

area of a circle = mr?

The methods of INTEGRAL CALCULUS allow us to
compute areas of other curved shapes. The approach is
analogous: approximate the shape as a union of rectan-
gles, sum the areas of the rectangular pieces, and take
the LIMIT of the answers obtained as you work with
finer and finer approximations.

half the circumference

Establishing the area of a circle

Theoretical Difficuliies
Starting with the principle that a fundamental shape, in
our case a rectangle, is asserted to have “area” given by
a certain formula, a general theory of area for other geo-
metric shapes follows. One can apply such an approach
to develop a measure theory for measuring the size of
other sets of objects, such as the notion of the surface
area of three-dimensional solids, or a theory of VOLUME.
One can also develop a number of exotic applications.

Although our definition for the area of a rectangle
is motivated by intuition, the formula we developed is,
in some sense, arbitrary. Defining the area of a rectan-
gle as given by a different formula could indeed yield a
different, but consistent, theory of area.

In 1924 STEFAN BANACH and Alfred Tarski
stunned the mathematical community by presenting a
mathematically sound proof of the following assertion:

It is theoretically possible to cut a solid ball
into nine pieces, and by reassembling them,
without ever stretching or warping the pieces,
form TWO solid balls, each exactly the same
size and shape as the original.

This result is known as the Banach-Tarski paradox, and
its statement—proven as a mathematical fact—is abhor-
rent to our understanding of how area and volume
should behave: the volume of a finite quantity of material
should not double after rearranging its pieces! That our
intuitive understanding of area should eventually lead to
such a perturbing result was considered very disturbing.

What mathematicians have come to realize is that
“area” is not a well-defined concept: not every shape in
a plane can be assigned an area (nor can every solid in
three-dimensional space be assigned a volume). There
exist certain nonmeasurable sets about which speaking
of their area is meaningless. The nine pieces used in the
Banach-Tarski paradox turn out to be such nonmeasur-
able sets, and so speaking of their volume is invalid.
(They are extremely jagged shapes, FRACTAL in nature,
and impossible to physically cut out.) In particular,
interpreting the final construct as “two balls of equal
volume” is not allowed.

Our simple intuitive understanding of area works
well in all practical applications. The material pre-
sented in a typical high-school and college curriculum,
for example, is sound. However, the Banach-Tarski
paradox points out that extreme care must be taken



when exploring the theoretical subtleties of area and
volume in greater detail.
See also SCALE.

Argand, Jean Robert (1768-1822) Swiss Complex
number theory Born on July 8, 1768, in Geneva,
Switzerland, amateur mathematician Jean Argand is
remembered today for his famous geometrical interpre-
tation for COMPLEX NUMBERS. An ARGAND DIAGRAM
uses two perpendicular axes, one representing a real
number line, the second a line of purely complex num-
bers, to represent complex numbers as points in a plane.

It is not well known that Argand, in fact, was not
the first to consider and publish this geometric
approach to complex numbers. The surveyor Casper
Wessel (1745-1818) submitted the same idea to the
Royal Danish Academy in 1797, but his work went
unnoticed by the mathematics community. At the turn
of the century, Argand independently began to interpret
the complex number i geometrically as a rotation
through 90°. He expounded on the convenience and
fruitfulness of this idea in a small book, Essai sur une
maniére de représenter les quantités imaginaires dans
les constructions géometriques (Essay on a method for
representing imaginary quantities through a geometric
construction), which he published privately, at his own
expense, in 1806. He never wrote his name in the
piece, and so it was impossible to identify the author.
By chance, French mathematician Jacques Francais
came upon the small publication and wrote about the
details of the work in an 1813 article, “A Memoir on
the Geometric Representation of Imaginary Numbers,”
published in the Annales de Mathématiques. He
requested that the unknown originator of the ideas
come forward and receive credit for the work. Argand
made himself known by submitting his own article to
the same journal, presenting a slightly modified and
improved approach to his methods. Although histori-
ans have since discovered that the mathematicians
JoHN WaLLIs (1616-1703) and CARL FRIEDRICH
GAuss (1777-1855) each considered their own geomet-
ric interpretations of complex numbers, Argand is usu-
ally credited as the discoverer of this approach.

Argand was the first to develop the notion of the
MODULUS of a complex number. It should also be noted
that Argand also presented an essentially complete
proof of the FUNDAMENTAL THEOREM OF ALGEBRA in
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his 1806 piece, but has received little credit for this
accomplishment. Argand was the first to state, and
prove, the theorem in full generality, allowing all num-
bers involved, including the coefficients of the polyno-
mial, to be complex numbers.

Argand died on August 13, 1822, in Paris, France.
Although not noted as one of the most outstanding
mathematicians of his time, Argand’s work certainly
shaped our understanding of complex number theory.
The Argand diagram is a construct familiar to all
advanced high-school mathematics students.

Argand diagram (complex plane) See COMPLEX

NUMBERS.

argument In the fourth century B.C.E., Greek
philosopher ARISTOTLE made careful study of the struc-
ture of reasoning. He concluded that any argument,
i.e., a reasoned line of thought, consists, essentially, of
two basic parts: a series of PREMISEs followed by a con-
clusion. For example:

If today is Tuesday, then I must be in Belgium.
I am not in Belgium.
Therefore today is not Tuesday.

is an argument containing two premises (the first two

lines) and a conclusion. An argument is valid if the con-

clusion is true when the premises are assumed to be true.
Any argument has the general form:

If [premise 1 AND premise 2 AND premise 3
AND...], then [Conclusion]

Using the symbolic logic of FORMAL LOGIC and TRUTH
TABLEs, the above example has the general form:

p—q
-q
Therefore —p

The argument can thus be summarized: (p — g) A (—q))
— (=p).

One can check with the aid of a truth table that
this statement is a tautology, that is, it is a true state-
ment irrespective of the truth-values of the component
statements p and g. (In particular, it is true when both
premises have truth-value T.) Thus the argument pre-
sented above is indeed a valid argument.
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An argument that does not lead to a tautology in
symbolic logic is invalid. For example,

If a bird is a crow, then it is black.
This bird is black.

Therefore it is a crow.

is an invalid argument: ((p — g) A q) — p is not a tau-
tology. (Informally, we can assert that a black bird need
not be a crow.)

The following table contains the standard forms of
argument commonly used, along with some invalid
arguments commonly used in error.

Valid Arguments Invalid Arguments

Direct Reasoning Fallacy of the Converse

(modus ponens)
pP—q pP—q
P q
therefore q therefore p

Contrapositive Reasoning
(modus tollens)

pP—q

—q

therefore —p

Disjunctive Reasoning

pvq pvaq

—p —q

therefore g therefore p

Fallacy of the Inverse

pP—q

—p

therefore ~q

Misuse of Disjunctive Reasoning
pvq pvaq

p q

therefore ~q therefore —p

Transitive Reasoning
pP—q

g—>r

therefore p— r

In the mid-1700s LEONHARD EULER invented an
elegant way to determine the validity of syllogisms, that
is, arguments whose premises contain the words all,
some, or no. For example,

All poodles are dogs.
All dogs bark.
Therefore all poodles bark.

is a syllogism, and Euler would depict such an argu-
ment as a diagram of three circles, each representing a
set mentioned in one of the premises. The validity of
the argument is then readily apparent:

harking creatures

dogs

Euler diagrams

An argument of the following structure, for exam-
ple, can be demonstrated as invalid by arranging circles
as shown:

All As are Bs.
Some Bs are Cs.
Therefore, some As are Cs.

Any diagram used to analyze the validity of an argu-
ment is called an Euler diagram.

See also  DEDUCTIVE/INDUCTIVE
QUANTIFIER.

REASONING;

Aristotle (384-322 B.C.E.) Greek Logic, Philosophy,
Physics, Medicine Born in Stagirus, Macedonia, Aris-
totle is remembered in mathematics for his systematic
study of deductive logic. In laying down the founda-
tions of FORMAL LOGIC, Aristotle identified the funda-
mental LAWS OF THOUGHT, the laws of reasoning, and
the fundamental principles that lie at the heart of any
mathematical ARGUMENT. His work in this area so
deeply affected the attitudes and approaches of scien-
tific thinking that Western intellectual culture as a
whole is often referred to as Aristotelian.

At age 17, Aristotle joined PLATO’s Academy in
Athens and remained there for 20 years. He worked
closely with Plato, and also EunoxUs, nephew of Plato.
The equivalent of a modern-day research university, the
Academy brought together scholars from all disciplines
and provided a culturally rich environment that encour-
aged learning and promoted the advancement of knowl-
edge. Due to internal politics, however, Aristotle decided
to leave the Academy after Plato’s death in 347 B.C.E.



After tutoring the heir of King Phillip II, the future
Alexander the Great, for a number of years, Aristotle
returned to Athens in 335 B.C.E. to found his own
school, the Lyceum. He intended the school to be as
broad-based as possible, exploring a wide range of sub-
jects but with prominence given to the study of the nat-
ural world. While at the Lyceum, Aristotle wrote 22
texts covering an astonishing range of topics: logic,
physics, meteorology, theology, meta-
physics, ethics, rhetoric, poetics, and more. He founded
a theory of kinematics, a study of space, time, and
motion, and he established principles of physics that
remained unchallenged for two millennia.

With regard to mathematics, Aristotle is remem-
bered for his writings in logic, a subject he identified as
the basis of all scientific thought. He invented the syllo-
gism, a form of argument that comes in three parts: a
major premise, a minor premise, and a conclusion.
Although a straightforward notion for us today, this
work represented a first fundamental step toward under-
standing the structure of reasoning. He presented the fol-
lowing line of thought as an example of a syllogism:

astronomy,

Every Greek is a person.
Every person is mortal.
Therefore every Greek is mortal.

Aristotle recognized that any line of reasoning follow-
ing this form is logically valid by virtue of its structure,
not its content. Thus the argument:

Every planet is made of cheese.
Every automobile is a planet.
Therefore every automobile is made of cheese.

for example, is a valid argument, even though the valid-
ity of the premises may be in question. Removing con-
tent from structure was a sophisticated accomplishment.
Aristotle called his field of logic “analytics” and
described his work on the subject in his book Prior and
Posterior Analytics. He wanted to demonstrate the effec-
tiveness of logical reasoning in understanding science.
Aristotle also discussed topics in the philosophy of
mathematics. He argued, for instance, that an unknow-
able such as “infinity” exists only as a potentiality, and
never as a completed form. Although, for example,
from any finite set of prime numbers one can always
construct one more, speaking of the set of prime num-
bers as a single concept, he argued, is meaningless.
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(Today we say that Aristotle accepted the “potentially
infinite” but rejected the “actual infinite.”)

It is recorded that Aristotle would often walk
through the gardens of the Lyceum while lecturing,
forcing his pupils to follow. His students became
known as the peripatetics, the word peripatetic mean-
ing “given to walking.” Copies of Aristotle’s lecture
notes taken by the peripatetics were regarded as valu-
able scholarly documents in their own right and have
been translated, copied, and distributed across the
globe throughout the centuries.

Political unrest forced Aristotle to leave Athens
again in 322 B.C.E. He died soon afterward at the age
of 62 of an unidentified stomach complaint.

Aristotle’s analysis of critical thinking literally
shaped and defined the nature of logical thought we
exercise today in any academic pursuit. One cannot
exaggerate the profundity of Aristotle’s influence. By
identifying valid modes of thought and clarifying the
principles of logical reasoning, Aristotle provided the
tools necessary for sensible reasoning and astute sys-
tematic thinking. These are skills today deemed funda-
mental to basic goals of all levels of education.

See also CARDINALITY; DEDUCTIVE/INDUCTIVE REA-
SONING; PARADOX.

arithmetic The branch of mathematics concerned with
computations using numbers is called arithmetic. This
can involve a number of specific topics—the study of
operations on numbers, such as ADDITION, MULTIPLICA-
TION, SUBTRACTION, DIVISION, and SQUARE ROOTS,
needed to solve numerical problems; the methods needed
to change numbers from one form to another (such as
the conversion of fractions to decimals and vice versa);
or the abstract study of the NUMBER SYSTEMS, NUMBER
THEORY, and general operations on sets as defined by
GROUP THEORY and MODULAR ARITHMETIC, for instance.

The word arithmetic comes from the Greek work
arithmetiké, constructed from arithmds meaning “num-
ber” and techné meaning “science.” In the time of
ancient Greece, the term arithmetic referred only to the
theoretical work about numbers, with the word logistic
used to describe the practical everyday computations
used in business. Today the term arithmetic is used in
both contexts. (The word logistics is today a predomi-
nantly military term.)

See also BASE OF A NUMBER SYSTEM; FUNDAMENTAL
THEOREM OF ARITHMETIC; ORDER OF OPERATION.
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arithmetic—geometric-mean inequality See MEAN.

arithmetic mean See MEAN.

arithmetic sequence (arithmetic progression) A SE-
QUENCE of numbers in which each term, except the first,
differs from the previous one by a constant amount is
called an arithmetic sequence. The constant difference
between terms is called the common difference. For
example, the sequence 4, 7, 10, 13, ... is arithmetic with
common difference 3. An arithmetic sequence can be
thought of as “linear,” with the common difference
being the SLOPE of the linear relationship.

An arithmetic sequence with first term a and com-
mon difference d has the form:

a,a+d,a+2d,a+3d, ...

The nth term a, of the sequence is given by a, =
a + (n - 1)d. (Thus, the 104th term of the arithmetic
sequence 4,7,10,13,..., for example, is ajp4 = 4 +
[103 x 3] = 313.)

The sum of the terms of an arithmetic sequence is
called an arithmetic series:

a+(a+d)+(a+2d)+(a+3d)+...

The value of such a sum is always infinite unless the
arithmetic sequence under consideration is the constant
zero sequence: 0,0,0,0,...

The sum of a finite arithmetic sequence can be
readily computed by writing the sum both forward and
backward and summing column-wise. Consider, for
example, the sum 4 + 7 + 10 + 13 + 16 + 19 + 22 + 25
+ 28 + 31. Call the answer to this problem S. Then:

4+7+10+13+16+19+22+25+28+31=3S
31 +28+25+22+19+16+13+10+7+4=S

and adding columns yields:
35+35+35+35+35+35+35+35+35+35=2S§

That is, 25 = 10 x 35 = 350, and so S = 175. In general,
this method shows that the sum of # equally spaced
numbers in arithmetic progression, @ + b + ... + y + g, is
n times the average of the first and last terms of the sum:

atz
2

S=nx

It is said that CARL FRIEDRICH GAUSS (1777-1855), as
a young student, astonished his mathematics instructor
by computing the sum of the numbers 1 though 100 in
a matter of seconds using this method. (We have 1 + 2

+...+100 =100 x % - 5,050.)

See also GEOMETRIC SEQUENCE; SERIES.

arithmetic series See ARITHMETIC SEQUENCE.

array An ordered arrangement of numbers or symbols
is called an array. For example, a VECTOR is a one-
dimensional array: it is an ordered list of numbers. Each
number in the list is called a component of the vector. A
MATRIX is a two-dimensional array: it is a collection of
numbers arranged in a finite grid. (The components of
such an array are identified by their row and column
positions.) Two arrays are considered the same only if
they have the same number of rows, the same number of
columns, and all corresponding entries are equal. One
can also define three- and higher-dimensional arrays.

In computer science, an array is called an identifier,
and the location of an entry is given by a subscript. For
example, for a two-dimensional array labeled A, the
entry in the second row, third column is denoted A,;.
An n-dimensional array makes use of 7 subscripts.

Aryabhata (ca. 476-550 c.t.) Indian Trigonometry,
Number theory, Astronomy Born in Kusumapura,
now Patna, India, Aryabhata (sometimes referred to as
Aryabhata I to distinguish him from the mathematician
of the same name who lived 400 years later) was the
first Indian mathematician of note whose name we
know and whose writings we can study. In the section
Ganita (Calculation) of his astronomical treatise
Aryabbatiya, he made fundamental advances in the the-
ory of TRIGONOMETRY by developing sophisticated
techniques for finding and tabulating lengths of half-
chords in circles. This is equivalent to tabulating values
of the sine function. Aryabhata also calculated the
value of & to four decimal places (n = 62,832/20,000 =
3.1416) and developed rules for extracting square and



cube roots, for summing ARITHMETIC SERIES, and find-
ing SUMS OF POWERS.

As an astronomical treatise, Aryabhatiya is written
as a series of 118 verses summarizing all Hindu mathe-
matics and astronomical practices known at that time.
A number of sections are purely mathematical in con-
text and cover the topics of ARITHMETIC, TRIGONOME-
TRY, and SPHERICAL GEOMETRY, as well as touch on the
theories of CONTINUED FRACTIONS, QUADRATIC equa-
tions, and SUMMATION. Aryabhata also described meth-
ods for finding integer solutions to linear equations of
the form by = ax + ¢ using an algorithm essentially
equivalent to the EUCLIDEAN ALGORITHM.

Historians do not know how Aryabhata obtained
his highly accurate estimate for . They do know, how-
ever, that Aryabhata was aware that it is an IRRA-
TIONAL NUMBER, a fact that mathematicians were not
able to prove until 1775, over two millennia later. In
practical applications, however, Aryabhata preferred
to use V10 = 3.1622 as an approximation for 7.

Scholars at the time did not think of sine as a ratio
of side-lengths of a triangle, but rather the physical
length of a half-chord of a circle. Of course, circles of
different radii give different lengths for corresponding
half-chords, but one can adjust figures with the use of
proportionality. Working with a circle of radius 3,438,
Aryabhata constructed a table of sines for each angle
from 1° to 90°. (He chose the number 3,438 so that the
circumference of the circle would be close to 21,600 =
360 x 60, making one unit of length of the circumfer-
ence matching one minute of an angle.) Thus, in his
table, sine of 90° is recorded as 3,438, and the sine of
30°, for example, as 1,719.

With regard to astronomy, Aryabhatiya presents a
systematic treatment of the position and motions of the
planets. Aryabhata calculated the circumference of the
Earth as 24,835 miles (which is surprisingly accurate)
and described the orbits of the planets as ELLIPSEs.
European scholars did not arrive at the same conclu-
sion until the Renaissance.

associative A BINARY OPERATION is said to be asso-
ciative if it is independent of the grouping of the terms
to which it is applied. More precisely, an operation * is
associative if:
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for all values of a, b, and c. For example, in ordinary
arithmetic, the operations of addition and multiplica-
tion are associative, but subtraction and division are
not. For instance, 6 + (3 + 2) and (6 + 3) + 2 are equal
in value, but 6 — (3 = 2) and (6 — 3) — 2 are not. (The
first equals 6 — 1 = 5, and the second is 3 -2 = 1.) In
VECTOR analysis, the addition of vectors is associative,
but the operation of taking CROSS PRODUCT is not.

From the basic relation a * (b * ¢) = (a * b) * ¢, it
follows that all possible groupings of a finite number
of fixed terms by parentheses are equivalent. (Use an
INDUCTION argument on the number of elements pre-
sent.) For example, that (a = b) = (¢ * d) equals
(@ * (b * c)) = d can be established with two applica-
tions of the fundamental relation as follows: (a * b)
#(crd)=(a*b)~c)rd=(a=(b+c))d Asa
consequence, if the associative property holds for a
given set, parentheses may be omitted when writing
products: one can simply write a = b = ¢ * d, for
instance, without concern for confusion.

These considerations break down, however, if the
expression under consideration contains an infinite
number of terms. For instance, we have:

0=0+0+0+...
=(1-1)+(1-1)+(1-1) + ...

If it is permissible to regroup terms, then we could write:

O=1+-1+1D)+(-1+1)+(-1+1)+...
=1+0+0+0+...
=1

This absurdity shows that extreme care must be taken
when applying the associative law to infinite sums.

See also COMMUTATIVE PROPERTY; DISTRIBUTIVE
PROPERTY; RING.

asymptote A straight line toward which the graph
of a function approaches, but never reaches, is called
an asymptote for the graph. The name comes from the
Greek word asymptotos for “not falling together” (a:

« W

not;” sym: “together;” ptotos: “falling”). For exam-
ple, the function y = 1/x has the lines x = 0 and y = 0
as asymptotes: y becomes infinitely small, but never
reaches zero, as x becomes large, and vice versa. The
function y = (x + 2)/(x — 3) has the vertical line x = 3
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as asymptote: values of the function become infinitely
large as x approaches the value 3 from the right, and
infinitely large and negative as x approaches the value
3 from the left.

A function y = f(x) has a horizontal asymptote y = L
if lim,_,., f(x) = L or lim,_,_., f(x) = L. For example,

2
the function y=_ 5% has horizontal asymp-
y="3
x~+x+1
. : 3x? . 3
tote y = 3, since lim,_,.,,———=lim,_,., ———
x2+x+1 a1
+ot—
x
S 140+0

An asymptote need not be horizontal or vertical,
X+ x?+x+2

however. For example, the function y =
x?+1

—x+1+ approaches the line y = x + 1 as x

x? +
becomes large, thus y = x + 1 is a “slant asymptote” for
the curve.

. . 2
If a HYPERBOLA is given by the equation ¥~ _Y" _1,
272
at b

b\ 2 2
then manipulating yields the equation (—] - (lj =—.
a X X

The right hand side tends to zero as x becomes large,
showing that the curve has slant asymptotes given by

a X

b (yY b
(_) —(l) =0, that is, by the lines y=—x and

b
y= a

Extending the definition, we could say that the

curve 2 +l has the parabola y = x? as
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an asymptote.

automaton (plural, automata) An abstract machine
used to analyze or model mathematical problems is
called an automaton. One simple example of an
automaton is a “number-base machine,” which consists
of a row of boxes extending infinitely to the left. One
places in this machine a finite number of pennies in the
rightmost box. The machine then redistributes the pen-
nies according to a preset rule.

A “1 « 2” machine, for example, replaces a pair
of pennies in one box with a single penny in the box

one place to the left. Thus, for instance, six pennies
placed into the 1 « 2 machine “fire” four times to
yield a final distribution that can be read as “1 1 0.”
This result is the number six written as a BINARY NUM-
BER, and this machine converts all numbers to their
base-two representations.

A 1 « 3 machine yields base-three representations,
and a 1 « 10 machine yields the ordinary base-ten rep-
resentations. The process of LONG DIVISION can be
explained with the aid of this machine.

Variations on this idea can lead to some interesting
mathematical studies. Consider, for example, a 2 < 3
machine. This machine replaces three pennies in one
box with #wo pennies in the box one place to the left.
In some sense, this is a “base one and a half machine.”
For instance, placing 10 pennies in this machine yields

An automaton in action



the representation “2 1 0 1,” and it is true that

3 2 1 0
3 3 3 3
2X(z)+l>((zj +OX(EJ+1X(E) =10.

See also BASE OF A NUMBER SYSTEM.

axiom (postulate) A statement whose truth is
deemed self-evident or to be accepted without proof is
called an axiom. The name comes from the Greek
word axioma for “worth” or “quality.” The alterna-
tive name “postulate” comes from postulatum, Latin
for “a thing demanded.”

One of the great achievements of the great Greek
geometer EUCLID and his contemporaries of around 300
B.C.E. was to recognize that not every statement in
mathematics can be proved: certain terms remain unde-
fined, and basic rules (postulates) about their relation-
ships must simply be accepted as true. One must
develop a mathematical theory with a “big bang,” as it
were, by simply listing a starting set of assumptions.
From there, using the basic laws of reasoning, one then
establishes and proves further statements, or THEO-
REMs, about the system.

For example, in a systematic study of EUCLIDEAN
GEOMETRY, the terms point, line, and plane are unde-
fined, and one begins a systematic study of the subject
by studying a list of basic axioms that tells us how
these quantities are meant to interrelate. (One axiom
of FEuclidean geometry, for instance, asserts that
between any two points one can draw a line.) All the
results presented in a typical high-school text on geom-
etry, for example, are logical consequences of just five
principal assumptions.

In SET THEORY, the terms set and element of a set
are undefined. However, rules are given that define the
equality of two sets, that guarantee the existence of cer-
tain sets, and establish the means of constructing new
sets from old ones. In NUMBER THEORY, PEANO’S POS-
TULATES provide a logical foundation to the theory of
numbers and arithmetic.
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A statement in a mathematical system that appears
true, but has not yet been proved, is called a conjecture.

See also DEDUCTIVE/INDUCTIVE REASONING; ERNST
FRIEDRICH FERDINAND ZERMELO.

axiom of choice First formulated by German mathe-
matician ERNST FRIEDRICH FERDINAND ZERMELO
(1871-1953), the axiom of choice is a basic principle of
SET THEORY that states that from any given collection C
of nonempty sets, it is possible to construct a set S that
contains one element from each of the sets in C. The set S
is called a “choice set” for C. For example, if C repre-
sents the three sets {1,2,3}, {2,4,6,8,...}, and {5}, then
S =1{1,6,5} is a choice set for C. So too is the set § = {2,5}.

The axiom of choice has been considered counter-
intuitive when interpreted on a practical level: although
it is possible to select one element from each of a finite
collection of sets in a finite amount of time, it is physi-
cally impossible to accomplish the same feat when pre-
sented with an infinite collection of sets. The existence
of a choice set is not “constructive,” as it were, and use
of the axiom is viewed by mathematicians, even today,
with suspicion. In 1938 Austrian mathematician KURT
GODEL proved, however, that no contradiction would
ever arise when the axiom of choice is used in conjunc-
tion with other standard axioms of set theory.

Zermelo formulated the axiom to prove that every
ordered set can be well-ordered. The axiom of choice
also proves (and in fact is equivalent to) the trichotomy
law, which states that for any pair of REAL NUMBERS a
and b, precisely one of the following holds:

i.a>b
il.a<b
ii. a=b

Although this statement, on one level, appears obvious,
its validity is fundamental to the workings of the real
numbers and so needs to be properly understood.

See also WELL-ORDERED SET.



Babbage, Charles (1791-1871) British Computation
Born on December 26, 1791, in London, England,
Charles Babbage is best remembered for his work on
the design and manufacture of a mechanical calculator,
the forerunner of a computer. After first constructing a
“difference machine,” Babbage devoted the remainder
of his life to the construction of a superior “analytic
engine” capable of performing all mathematical opera-
tions. His work toward this goal laid the foundations
of computer design used today. Partly due to lack of
funding, however, the machine was never completed.

Babbage entered Trinity College, Cambridge, in
1810. While a student, he and a fellow undergraduate
coauthored Differential and Integral Calculus, an influ-
ential memoir on the history of calculus. After transfer-
ring to Peterhouse College, Babbage received his
bachelor’s degree in mathematics in 1814 to then begin
a career in mathematical research. Babbage published a
number of influential papers on the topic of functional
equations and was honored with election to the ROyaL
SOCIETY in 1816. In 1827 he became the Lucasian Pro-
fessor of Mathematics at Cambridge.

Much of Babbage’s theoretical work relied on
consulting tables of logarithms and trigonometric
functions. Aware of the inaccuracy of human calcula-
tion, Babbage became interested in the problem of
using a mechanical device to perform complex com-
putations. In 1819 he began work on a small “differ-
ence engine,” which he completed three years later.
He announced his invention to the scientific commu-
nity in an 1822 paper, “Note on the Application of
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Charles Babbage, an eminent mathematician of the 19th century,
is best known for his design and manufacture of a mechanical
computer. (Photo courtesy of the Science Museum, London/
Topham-HIP/The Image Works)



Charles Babbage completed work on his “difference engine,”
the world's first sophisticated mechanical computer, in 1822.
(Photo courtesy of the Science Museum, London/Topham-
HIP/The Image Works)

Machinery to the Computation of Astronomical and
Mathematical Tables.”

Although the machine was capable of performing
relatively simple, but highly accurate, computations
(using the method of FINITE DIFFERENCES to compute
values of POLYNOMIAL functions), his invention was
well received and was understood to be a first step
toward a new era in computational capabilities. Bab-
bage was awarded a gold medal from the Astronomical
Society and was given a grant from the Chancellor of
the Exchequer to construct a larger, more complex, dif-
ference engine.

In 1801 Joseph-Marie Jacquard invented a loom
capable of weaving complex patterns by making use of
a set of instructions set out on cards punched with
holes. Two decades later Babbage decided to follow the
same idea and design a steam-powered engine that
would accept instructions and data from punched
cards. With the assistance of Lord Byron’s daughter,
LADY AUGUSTA ADA LOVELACE, Babbage took to work
on creating a sophisticated calculating device. In 1832
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he published a book, On the Economy of Machinery
and Manufactures, offering a theoretical discussion on
the topic. This could be considered the first published
work in the field of OPERATIONS RESEARCH.

Unfortunately, due to financial and technological
difficulties, the machine was never completed. (The
metalwork technology of the mid-1800s was not capa-
ble of the levels of precision Babbage’s machine
demanded.) The device in its unfinished state is pre-
served today in the Science Museum of London.
Although he never realized his dream of building an
operational, mechanical computer, his design concepts
have since been proved correct. It is not an exaggera-
tion to say that the modern computers constructed on
Babbage’s theoretical design have revolutionized almost
all aspects of 20th-century life.

Babbage died in London, England, on October
18, 1871.

Babylonian mathematics The Babylonians of 2000
B.C.E. lived in Mesopotamia, the fertile plain between the
Euphrates and Tigris Rivers in what is now Iraq. We are
fortunate that the peoples of this region kept extensive
records of their society—and their mathematics—on
hardy sun-baked clay tablets. A large number of these
tablets survive today. The Babylonians used a simple sty-
lus to make marks in the clay and developed a form of
writing based on cuneiform (wedge shaped) symbols.

The mathematical activity of the Babylonians seems
to have been motivated, at first, by the practical every-
day needs of running their society. Many problems
described in early tablets are concerned with calculating
the number of workers needed for building irrigation
canals and the total expense of wages, for instance. But
many problems described in later texts have no appar-
ent practical application and clearly indicate an interest
in pursuing mathematics for its own sake.

The Babylonians used only two symbols to repre-
sent numbers: the symbol Y to represent a unit and the

symbol C to represent a group of ten. A simple addi-
tive system was used to represent the numbers 1

through 59. For example, the cluster <YY" represents
“32.” A base-60 PLACE-VALUE SYSTEM was then used to
represent numbers greater than 59. For instance, the
number 40,992, which equals 11 x 602 + 23 x 60 + 12,

was written: <Y «YYY Y. Spaces were inserted

between clusters of symbols.
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Historians are not clear as to why the Babylonians
chose to work with a SEXAGESIMAL system. A popular
theory suggests that this number system is based on
the observation that there are 365 days in the year.
When rounded to the more convenient (highly divisi-
ble) value of 360, we have a multiple of 60. Vestiges of
this number system remain with us today. For exam-
ple, we use the number 360 for the number of degrees
in a circle, and we count 60 seconds in a minute and
60 minutes per hour.

There were two points of possible confusion with
the Babylonian numeral system. With no symbol for
zero, it is not clear whether the numeral Y Y repre-
sents 61 (as one unit of 60 plus a single unit), 3601 (as
one unit of 60% plus a single unit), or even 216,060, for
instance. Also, the Babylonians were comfortable with

A seventh-century cuneiform tablet from northern Iraq records
observations of the planet Venus. (Photo courtesy of the British
Museum/Topham-HIP/The Image Works)

fractions and used negative powers of 60 to represent
them (just as we use negative powers of 10 to write
fractions in decimal notation). But with no notation for
the equivalent of a decimal point, the symbol Y Y
could also be interpreted to mean 1 + (1/60), or (1/60)
+ (1/60%), or even 60 + (1/60%), for instance. As the
Babylonians never developed a method for resolving
such ambiguity, we assume then that it was never con-
sidered a problem for scholars of the time. (Historians
suggest that the context of the text always made the
interpretation of the numeral apparent.)

The Babylonians compiled extensive tables of pow-
ers of numbers and their reciprocals, which they used in
ingenious ways to perform arithmetic computations.
(For instance, a tablet dated from 2000 B.C.E. lists all the
squares of the numbers from one to 59, and all the cubes
of the numbers from one to 32.) To compute the product
of two numbers a and b, Babylonian scholars first com-
puted their sum and their difference, read the squares of
those numbers from a table, and divided their difference
by four. (In modern notation, this corresponds to the
computation: ab = (1/4) [(a + b)*> — (a — b)?].) To divide a
number a by b, scholars computed the product of @ and
the reciprocal 1/b (recorded in a table): ab = a x (1/b).
The same table of reciprocals also provided the means to
solve LINEAR EQUATIONs: bx = a. (Multiply a by the
reciprocal of b.)

Problems in geometry and the computation of area
often lead to the need to solve QUADRATIC equations.
For instance, a problem from one tablet asks for the
width of a rectangle whose area is 60 and whose length
is seven units longer than the width. In modern notation,
this amounts to solving the equation x(x + 7) = x* + 7x =
60. The scribe who wrote the tablet then proffers a solu-
tion that is equivalent to the famous quadratic formula:
x = \(7/2)* + 60 — (7/2) = 5. (Square roots were com-
puted by examining a table of squares.)

Problems about volume lead to cubic equations,
and the Babylonians were adept at solving special
equations of the form: ax? + bx? = c. (They solved these
by setting # = (ax)/b, from which the equation can be
rewritten as 7> + n? = ca’/b3. By examining a table of
values for 73 + #2, the solution can be deduced.)

It is clear that Babylonian scholars knew of
PYTHAGORAS’S THEOREM, although they wrote no
general proof of the result. For example, a tablet now
housed in the British museum, provides the following
problem and solution:



If the width of a rectangle is four units and the
length of its diagonal is five units, what is its

breadth?

Four times four is 16, and five times five is 25.
Subtract 16 from 25 and there remains nine.
What times what equals nine? Three times
three is nine. The breadth is three.

The Babylonians used Pythagoras’s theorem to compute
the diagonal length of a square, and they found an
approximation to the square root of two accurate to five
decimal places. (It is believed that they used a method
analogous to HERON’S METHOD to do this.) Babylonian
scholars were also interested in approximating the areas
and volumes of various common shapes by using tech-
niques that often invoked Pythagoras’s theorem.

Most remarkable is a tablet that lists 15 large
PYTHAGOREAN TRIPLES. As there is no apparent practi-
cal need to list these triples, this strongly suggests that
the Babylonians did indeed enjoy mathematics for its
own sake.

See also BASE VALUE OF A NUMBER SYSTEM.

Banach, Stefan (1892-1945) Polish Analysis, Topol-
ogy Born on March 30, 1892, in Krakéw, now in
Poland, Stefan Banach is noted for his foundational
work in ANALYSIS and for generalizing the notion of
a VECTOR SPACE to a general theory of a space of
functions. This fundamental work allows mathemati-
cians today to develop a theory of FOURIER SERIES, in
some sense, in very abstract settings. Banach is also
remembered for his work leading to the famous
Banach-Tarski paradox that arises in the study of
AREA and volume.

Banach began his scholarly career with a university
degree in engineering from Lvov Technical University.
His academic plans were interrupted, however, with the
advent of World War I. During this time Banach was
forced to work building roads, although he did manage
to find time to also teach at local Krakéw schools dur-
ing this period. Soon after the war Banach joined a
mathematics discussion group in Lvov and soon
impressed mathematical scholars with his abilities to
solve mathematical problems. Within a week of joining
the group, Banach had drafted a coauthored research
paper on the topic of measure theory, a theory that
generalizes the concept of area. Banach continued to
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produce important results in this field at an extremely
rapid rate thereafter.

Banach was offered a lectureship at Lvov Techni-
cal University in 1920 and quickly set to work on a
doctoral thesis. Despite having no previous official
university qualifications in mathematics, Banach was
awarded a doctorate in 1922 by the Jan Kazimierz
University in Lvov.

Banach’s contributions to mathematics were sig-
nificant. His generalized work on Fourier series
founded a branch of mathematics now called func-
tional analysis. It has connections to the fields of
measure theory, integration, and SET THEORY. He and
his colleague Alfred Tarski presented their famous
paradoxical result in 1926 in their paper “Sur la
décomposition des ensembles de points en partiens
respectivement congruent” (On the decomposition of
figures into congruent parts). His 1932 paper,
“Théorie des opérations linéaires” (Theory of linear
operators), which develops the notion of a normed
VECTOR SPACE (that is, a vector space with a notion
of length attached to its vectors), is deemed his most
influential work. As well as conducting research in
mathematics, Banach also wrote arithmetic, algebra,
and geometry texts for high-school students.

In 1939 Banach was elected as president of the Pol-
ish Mathematical Society. Banach was allowed to main-
tain his university position during the Soviet occupation
later that year, but conditions changed with the 1941
Nazi invasion. Many Polish academics were murdered,
but Banach survived, although he was forced to work in
a German infectious diseases laboratory, given the task
to feed and maintain lice colonies. He remained there
until June 1944, but he became seriously ill by the time
Soviet troops reclaimed Lvov. Banach died of lung can-
cer on August 31, 1945.

Banach’s name remains attached to the type of vec-
tor space he invented, and research in this field of func-
tional analysis continues today. The theory has
profound applications to theoretical physics, most
notably to quantum mechanics.

See STATISTICS: DESCRIPTIVE.

bar chart (bar graph)

Barrow, Isaac (1630-1677) British Calculus, Theol-
ogy Born in London, England, (his exact birth date is
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Isaac Barrow, a mathematician of the 17th century, is noted
chiefly for the inspiration he provided others in the development
of the theory of calculus. He may have been the first scholar to
recognize and understand the significance of the fundamental
theorem of calculus. (Photo courtesy of ARPL/Topham/The
Image Works)

not known) Isaac Barrow is remembered in mathemat-
ics for his collection of lecture notes Lectiones geometri-
cae (Geometrical lectures), published in 1670, in which
he describes a method for finding tangents to curves
similar to that used today in DIFFERENTIAL CALCULUS.
Barrow may have also been the first to realize that the
problem of finding tangents to curves is the inverse
problem to finding areas under curves. (This is THE
FUNDAMENTAL THEOREM OF CALCULUS.) The lectures
on which his notes were based were extremely influen-
tial. They provided SIR IsaAc NEWTON, who attended
the lectures and had many private discussions with Bar-
row, a starting point for his development of CALCULUS.
Barrow graduated from Trinity College, Cam-
bridge, with a master’s degree in 1652, but was dissatis-
fied with the level of mathematics instruction he had
received. After leaving the college, Barrow taught him-
self GEOMETRY and published a simplified edition of

EucLID’s THE ELEMENTS in 1655. He became professor
of geometry at Gresham College, London, in 1662, and
was elected as one of the first 150 fellows of the newly
established ROYAL SOCIETY in 1663. He returned to
Cambridge that same year to take the position of
Lucasian Chair of Mathematics, at Trinity College, and
worked hard to improve the standards of mathematics
education and interest in mathematical research at
Cambridge. With this aim in mind, Barrow gave a series
of lectures on the topics of optics, geometry, NUMBER
THEORY, and the nature of time and space. His discus-
sions on geometry proved to be highly innovative and
fundamentally important for the new perspective they
offered. Newton advised Barrow to publish the notes.

In 1669 Barrow resigned from the Lucasian Chair
to allow Newton to take over, and he did no further
mathematical work. He died in London, England, on
May 4, 1677, of a malignant fever. Barrow’s influence
on modern-day mathematics is oblique. His effect on
the development of the subject lies chiefly with the
inspiration he provided for others.

base of a logarithm See LOGARITHM.

base of an exponential See EXPONENT; EXPONEN-
TIAL FUNCTION.

base of a number system (radix, scale of a number
system) The number of different symbols used, per-
haps in combination, to represent all numbers is called
the base of the number system being used. For exam-
ple, today we use the ten symbols 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9 to denote all numbers, making use of the posi-
tion of these digits in a given combination to denote
large values. Thus we use a base-10 number system
(also called a decimal representation system). We also
use a place-value system to give meaning to the
repeated use of symbols. When we write 8,407, for
instance, we mean eight quantities of 1,000 (103), four
quantities of 100 (10%), and seven single units (10°).
The placement of each DIGIT is thus important: the
number of places from the right in which a digit lies
determines the power of 10 being considered. Thus the
numbers 8, 80, 800, and 8,000, for instance, all repre-
sent different quantities. (The system of ROMAN
NUMERALS, for example, is not a place-value system.)



For any positive whole number b, one can create a
place-value notational system of that base as follows:

Werite a given number 7 as a sum of powers of b:
n=apbf + ap b+ o+ b+ ayb + ag

with each number g; satisfying 0 < a; < b. Then
the base b representation of # is the k-digit
quantity a; a_q...a2a1dg. Such a representation
uses only the symbols 0, 1, 2,..., b — 1.

For example, to write the number 18 in base four—
using the symbols 0, 1, 2, and 3—observe that 18 = 1 x
42 4+ 0 x 4 + 2 x 1, yielding the base-4 representation:
102. In the reverse direction, if 5,142 is the base-6 rep-
resentation of a number 7, then # is the number § x 63
+1x62+4x6+2x1=1,142.

One may also make use of negative powers of the
base quantity b. For example, using a decimal point to
separate positive and negative powers of ten, the num-
ber 312.407, for instance, represents the fractional

1 1
quantity:3><102+1><10+2><1+4><E+0><W
1
+ 7 x 703 In base 4, the number 33.22 is the quantity

1 1 2 2 .
3x4+3x1+2x73+2x732=15+ "4 + 74, which
is 15.625 in base 10.

The following table gives the names of the place-
value number systems that use different base values b.
The Babylonians of ancient times used a sexagesimal
system, and the Mayas of the first millennium used a
system close to being purely vigesimal.

base b number system
2 Binary
3 Ternary
4 Quaternary
5 Quinary
6 Senary
1 Septenary
8 Octal
9 Nonary
10 Decimal
1 Undenary
12 Duodecimal
16 Hexadecimal
20 Vigesimal
60 Sexagesimal
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The representation of numbers can be well-
represented with the aid of a simple AUTOMATON
called a number-base machine. Beginning with a row of
boxes extending infinitely to the left, one places in the
rightmost box a finite number of pennies. The automa-
ton then redistributes the pennies according to a preset
rule. A “1 « 2” machine, for example, replaces a pair
of pennies in one box with a single penny in the box
one place to the left. Thus, for instance, six pennies
placed into the 1 <« 2 machine “fire” four times to
yield a final distribution that can be read as “1 1 0.”
This result is the number six written as a BINARY NUM-
BER and this machine converts all numbers to their
base-two representations. (The diagram in the entry for
automaton illustrates this.) A 1 < 3 machine yields
base-three representations, and a 1 <« 10 machine
yields the ordinary base-ten representations.

Long Division

The process of long division in ARITHMETIC can be
explained with the aid of a number-base machine. As
an example, let us use the 1 « 10 machine to divide
the number 276 by 12. Noting that 276 pennies placed
in the 1 < 10 machine yields a diagram with two pen-
nies in the 100s position, seven pennies in the 10s posi-
tion, and six pennies in the units position, and that 12
pennies appears as one penny in a box with two pen-
nies in the box to its right, to divide 276 by 12, one
must simply look for “groups of 12” within the dia-
gram of 276 pennies and keep count of the number of
groups one finds.

[ [11 [ [
e[ o e _[ o
276 = CQ? Cﬁ W+Tx+6= CQf Cﬁ
102 10 ] X X 1
23 2x +3
12)276 x+ DD +Tx +6
4 2L + 4x
36 Ix+6
36 x +6
0 0

Long division base ten
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Long division base five

Notice that we find two groups of 12 at the 10s
position (that is, two groups of 120), and three groups
of 12 at the units position. Thus: 276 + 12 = 23. The
standard algorithm taught to school children is nothing
more than a recording system for this process of find-
ing groups of twelve. Notice too that one does not need
to know the type of machine, that is, the base of the
number system in which one is working in order to
compute a long-division problem. If we simply write
the base number as x, and work with a 1 <~ x machine,
then the same computation provides a method for
dividing polynomials. In our example, we see that:

2x?+7x+6)+(x+2)=2x+3

Thus the division of polynomials can be regarded as a
computation of long division. There is a technical diffi-
culty with this: a polynomial may have negative coeffi-
cients, and each negative coefficient would correspond
to a negative number of pennies in a cell. If one is will-
ing to accept such quantities, then the number-base
machine model continues to work. (Note, in this
extended model, that one can insert into any cell an
equal number of positive and negative pennies without
changing the system. Indeed, it might be necessary to
do this in order to find the desired groups of pennies.)
The process of long division might produce non
zero remainders. For example, in base 5, dividing 1432
by 13 yields the answer 110 with a remainder of 2
units. (In base 10, this reads: 242 + 8 = 30 with a
remainder of 2.) If one is willing to work with negative

powers of five, and “unfire” a group of five pennies,
one can continue the long division process to compute,
in base 5, that 1432 + 13 = 110.1111...

See also BABYLONIAN MATHEMATICS; BINARY NUM-
BERS; DIGIT; MAYAN MATHEMATICS; NESTED MULTIPLI-
CATION; ZERO.

base of a polygon/polyhedron The base of a trian-
gle, or of any POLYGON, is the lowest side of the figure,
usually drawn as a horizontal edge parallel to the bot-
tom of the page. Of course other edges may be consid-
ered the base if one reorients the figure. The base of a
POLYHEDRON, such as a cube or a pyramid, is the low-
est FACE of the figure. It is the face on which the figure
would stand if it were placed on a tabletop.

The highest point of a geometric figure opposite
the base is called the APEX of the figure, and the dis-
tance from the base to the apex is called the height of
the figure.

basis See LINEARLY DEPENDENT AND INDEPENDENT.

Bayes, Rev. Thomas (1702-1761) English Probabil-
ity, Theology Born in London, England, (the exact
date of his birth is not known), theologian and mathe-
matician Reverend Thomas Bayes is best remembered
for his influential article “An Essay Towards Solving a
Problem in the Doctrine of Chances,” published posthu-
mously in 1763, that outlines fundamental principles of
PROBABILITY theory. Bayes developed innovative tech-
niques and approaches in the theory of statistical infer-
ence, many of which were deemed controversial at the
time. His essay sparked much further research in the
field and was profoundly influential. The work also
contains the famous theorem that today bears his name.

An ordained minister who served the community of
Tunbridge Wells, Kent, England, Bayes also pursued
mathematics as an outside interest. As far as historians
can determine, he published only two works during his
lifetime. One was a theological essay in 1731 entitled
“Divine Benevolence, or an Attempt to Prove that the
Principal End of the Divine Providence and Government
is the Happiness of His Creatures.” The other was a
mathematical piece that he published anonymously in
1736, “Introduction to the Doctrine of Fluxions, and a



Defense of the Mathematicians Against the Objections
of the Author of The Analyst,” defending the logical
foundations of SIR IsAAC NEWTON’s newly invented
CALCULUS. Despite the apparent lack of published math-
ematical work, Bayes was nonetheless elected a fellow
of the prestigious academic ROYAL SOCIETY in 1742.

Bayes retired from the ministry in 1752 but
remained in Tunbridge Wells until his death on April
17, 1761. His friend, Richard Price, discovered the
now-famous paper on probability theory among his
belongings and submitted it for publication. A second
paper, “A Letter on Asymptotic Series from Bayes to
John Canton,” one on asymptotic series, was also pub-
lished after Bayes’s death. The theoretical approach of
inferential statistics Bayes proposed remains an active
area of research today.

See also BAYES’S THEOREM; STATISTICS: INFERENTIAL.

Bayes’s theorem In his 1763 paper, published
posthumously, REV. THOMAS BAYES established a fun-
damental result, now called Bayes’s theorem, that
expresses the CONDITIONAL PROBABILITY P(A|B) of an
event A occurring given that event B has already
occurred in terms of the reverse conditional probability
P(BIA). Precisely:

_ P(B)
PATB)= P(BIA)
This formula is easily proved by noting that
paIB="A0B L ppiay=TENB

P(B) P(A)

More generally, suppose By, B,,..., B, is a mutually
exclusive and exhaustive set of events, that is, a set of
nonoverlapping events covering the whole SAMPLE
SPACE. Suppose also that we have been told that
another event A has occurred. Then the probability
that event B; also occurred is given by:

P(A1B;)P(B))
(A1By)P(By)+--+P(A|B,)P(B,)

P(B; 1 A)=5

To illustrate: suppose that bag 1 contains five red balls
and two white balls, and bag 2 contains seven red balls
and four white balls. If a bag is selected at random and
a ball chosen from it is found to be red, what is the
probability that it came from bag 1?
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Here let A be the event “a red ball is chosen” and B
and B, the events “a ball is selected from bag 1/ bag 2,”
respectively. Then P(B;) = 1/2 = P(B,), P(AlB;) = 5/7,
and P(A|B,) = 7/11. Thus the probability we seek,
P(B4]A), is given by:

P(A| By)P(By)
(Al B)P(B;)+ P(A|B,)P(B,)

P(B1A)=

N o
X
N NS
:‘\]N‘H
N =

—_
i
2l

bearing The ANGLE between the course of a ship and
the direction of north is called the ship’s bearing. The
angle is measured in degrees in a clockwise direction
from north and is usually expressed as a three-digit
number. For example, a ship heading directly east has a
bearing of 090 degrees, and one heading southwest has
a bearing of 225 degrees.

The word “bearing” is also used for the measure of
angle from north at which an object is sighted. For
example, a crewman on board a ship sighting a light-
house directly west will say that the lighthouse has
bearing 270 degrees.

Bernoulli family No family in the history of mathe-
matics has produced as many noted mathematicians as
the Bernoulli family from Basel, Switzerland. The family
record begins with two brothers, Jacob Bernoulli and
Johann (Jean) Bernoulli, respectively, the fifth and 10th
children of Nicolaus Bernoulli (1623-1708).

Jacob (December 27, 1654—August 16, 1705) is
noted for his work on CALCULUS and PROBABILITY the-
ory, being one of the first mathematicians to properly
understand the utility and power of the newly pub-
lished work of the great WILHELM GOTTFRIED LEIB-
NIZ (1646-1716). Jacob applied the calculus to the
study of curves, in particular to the logarithmic spiral
and the BRACHISTOCHRONE, and was the first to use
POLAR COORDINATES in 1691. He also wrote the first
text concentrating on probability theory Ars con-
jectandi (The art of conjecture), which was published
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posthumously in 1713. The BERNOULLI NUMBERS also
appear, for the first time, in this text. Jacob occupied
the chair of mathematics at Basel University from
1687 until his death.

Johann (July 17, 1667-January 1, 1748) is also
known for his work on calculus. Being recognized as
an expert in the field, Johann was hired by the French
nobleman MARQUIS DE GUILLAUME FRANCOIS
ANTOINE L’HOPITAL (1661-1704) to explain the new
theory to him, first through formal tutoring sessions in
Paris, and then through correspondence when Johann
later returned to Basel. IHopital published the con-
tents of the letters in a 1696 textbook Analyse des
infiniment petits (Analysis with infinitely small quanti-
ties), but gave little acknowledgment to Johann. The
famous rule that now bears his name, L’HOPITALS
RULE, is due to Johann. Johann succeeded his brother
in the chair at Basel University.

The two brothers, Jacob and Johann, worked on
similar problems, and each maintained an almost
constant exchange of ideas with Leibniz. The rela-
tionship between the two siblings, however, was not
amicable, and they often publicly criticized each
other’s work.

Nicolaus (I) Bernoulli (October 21, 1687-November
29, 1759), nephew to Jacob and Johann, also achieved
some fame in mathematics. He worked on problems in
GEOMETRY, DIFFERENTIAL EQUATIONS, infinite SERIES,
and probability. He held the chair of mathematics at
Padua University, once filled by GALILEO GALILEI
(1564-1642).

Johann Bernoulli had three sons, all of whom
themselves became prominent mathematicians:

Nicolaus (I) Bernoulli (February 6, 1695-July 31,
1726) wrote on curves, differential equations, and
probability theory. He died—by drowning while swim-
ming—only eight months after accepting a prestigious
appointment at the St. Petersberg Academy.

Daniel Bernoulli (February 8, 1700-March 17,
1782), the most famous of the three sons, is noted for
his 1738 text Hydrodynamica (Hydrodynamics),
which laid the foundations for the modern discipline
of hydrodynamics. (Daniel’s father, Johann, jealous of
his son’s success, published his own text on hydrody-
namics in 1739 but placed on it the publishing date
of 1732 and accused his son of plagiarism.) Daniel
also worked on the mathematics of vibrating strings,
the kinetic theory of gases, probability theory, and

partial differential equations. He was awarded the
Grand Prize from the Paris Academy no fewer than
10 times.

Johann (II) Bernoulli (May 28, 1710-July 17,
1790) studied the mathematics of heat flow and light.
He was awarded the Grand Prize from the Paris
Academy four times and succeeded his father in the
chair at Basel University in 1743.

Johann (II) Bernoulli had three sons, two of whom,
Johann (III) Bernoulli (November 4, 1744-July 13,
1807) and Jacob (II) Bernoulli (October 17, 1759-
August 15, 1789), worked in mathematics. Johann (III)
studied astronomy and probability, and wrote on recur-
ring decimals and the theory of equations. He was a
professor of mathematics at Berlin University at the
young age of 19. Jacob (II) Bernoulli wrote works on
the mathematics of elasticity, hydrostatics, and ballis-
tics. He was professor of mathematics at the St. Peters-
burg Academy, but, like his uncle, drowned at the age
of 29 while swimming in the Neva River.

Members of the Bernoulli family had a profound
effect on the early development of probability theory,
calculus, and the field of continuum mechanics. Many
concepts (such as the Bernoulli numbers, a probability
distribution, a particular differential equation) are
named in their honor.

Bernoulli numbers See SUMS OF POWERS.

Bertrand’s paradox French mathematician Joseph-
Louis Frangois Bertrand (1822-1900) posed the fol-
lowing challenge:

ﬁ R short
short short
long
NN
long
answer 1 answer 2

Answering Bertrand’s paradox



Imagine an equilateral TRIANGLE drawn inside
a CIRCLE. Find the PROBABILITY that a CHORD
chosen at random is longer than the side-length
of the triangle.

There are two possible answers:

1. Once a chord is drawn we can always rotate the pic-
ture of the circle so that one end of the selected
chord is placed at the top of the circle. It is clear
then that the length of the chord will be greater than
the side-length of the triangle if the other end-point
lies in the middle third of the perimeter of the circle.
The chances of this happening are 1/3, providing the
answer to the problem.

2. Rotating the picture of the circle and the selected
chord, we can also assume that the chord chosen is
horizontal. If the chord crosses the solid line
shown, then it will be longer than the side-length
of the triangle. One observes that this solid line is
half the length of the diameter. Thus the chances of
a chord being longer than the side-length of the tri-
angle are 1/2.

Surprisingly, both lines of reasoning are mathematically
correct. Therein lies a PARADOX: the answer cannot
simultaneously be 1/3 and 1/2.

The problem here lies in defining what we mean
by “select a chord at random.” There are many dif-
ferent ways to do this: one could spin a bottle in the
center of the circle to select points on the perimeter
to connect with a chord, or one could roll a broom
across a circle drawn on the floor, or perhaps even
drop a wire from a height above the circle and see
where it lands. Each approach to “randomness”
could (and in fact does) lead to its own separate
answer. This paradox shows that extreme care must
be taken to pose meaningful problems in probability
theory. It is very difficult to give a precise definition
to “randomness.”

Bhaskara II (Bhaskaracharya) (1114-1185) Indian
Algebra, Arithmetic Born in Vijayapura, India, Bhas-
kara (often referred to as Bhaskara II to distinguish him
from the seventh-century mathematician of the same
name) is considered India’s most eminent mathemati-
cian of the 12th century. He revised and continued the
studies of the great BRAHMAGUPTA, making corrections
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and filling in gaps in his work, and reached a level of
mastery of ARITHMETIC and ALGEBRA that was not
matched by a European scholar for several centuries to
come. Bhaskara wrote two influential mathematical
treatises: Lilavati (The beautiful), on the topic of arith-
metic, and the Bijaganita (Seed arithmetic) on algebra.

Bhaskara was head of the astronomical observa-
tory in Ujjain, the nation’s most prominent mathemati-
cal research center of the time. Although much of
Indian mathematics was motivated by problems and
challenges in astronomy, Bhaskara’s writings show a
keen interest in developing mathematics for its own
sake. For example, the text Lilavati, consisting of 13
chapters, begins with careful discussions on arithmetic
and geometry before moving on to the topics of
SEQUENCEs and SERIES, fractions, INTEREST, plane and
solid geometry, sundials, PERMUTATIONs and COMBINA-
TIONS, and DIOPHANTINE EQUATIONS (as they are called
today). For instance, Bhaskara shows that the equation
195x = 221y + 65 (which he expressed solely in words)
has infinitely many positive integer solutions, beginning
with x = 6,y = 5, and x = 23, y = 20, and then x = 40,
and y = 35. (The x-values increase in steps of 17, and
the y-values in steps of 15.)

In his piece Bijaganita, Bhaskara develops the
arithmetic of NEGATIVE NUMBERS, solves quadratic
equations of one, or possibly more, unknowns, and
develops methods of extracting SQUARE and CUBE
ROOTs of quantities. He continues the discussions of
Brahmagupta on the nature and properties of the num-
ber ZERO and the use of negative numbers in arith-
metic. (He denoted the negative of a number by placing
a dot above the numeral.) Bhaskara correctly points
out that a quantity divided by zero does not produce
zero (as Brahmagupta claimed) and suggested instead
that a/0 should be deemed infinite in value. Bhaskara
solves complicated equations with several unknowns
and develops formulae that led him to the brink of dis-
covering the famous QUADRATIC formula.

Bhaskara also wrote a number of important texts
in mathematical astronomy and made significant
strides in the development of TRIGONOMETRY, taking
the subject beyond the level of just a tool of calculation
for astronomers. Bhaskara discovered, for example, the
famous addition formulae for sine:

sin(A + B) = sin A cos B + cos A sin B
sin(A — B) =sin A cos B —cos A sin B
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However, as was the tradition at the time, Bhaskara did
not explain how he derived his results. It is conjectured
that Indian astronomers and mathematicians felt it nec-
essary to conceal their methods regarding proofs and
derivations as “trade secrets” of the art.

Bhaskara’s accomplishments were
many centuries. In 1817, H. J. Colebrook provided
English translations of both Lilavati and Bijaganita in
his text Algebra with Arithmetic and Mensuration.

revered for

bias A systematic error in a statistical study is called a
bias. If the sample in the study is large, errors produced
by chance tend to cancel each other out, but those from a
bias do not. For example, a survey on the shopping
habits of the general population conducted at a shopping
mall is likely to be biased toward people who shop pri-
marily at malls, omitting results from people who shop
from home through catalogs and on-line services. This is
similar to a loaded die, which is biased to produce a par-
ticular outcome with greater than one-sixth probability.

Surprisingly, American pennies are biased. If you
delicately balance 30 pennies on edge and bump the sur-
face on which they stand, most will fall over heads up.
If, on the other hand, you spin 30 pennies and let them
all naturally come to rest, then most will land tails.

See also POPULATION AND SAMPLE.

biconditional In FORMAL LOGIC, a statement of the
form “p if, and only if, ¢” is called a biconditional
statement. For example, “A triangle is equilateral if,
and only if, it is equiangular” is a biconditional state-
ment. A biconditional statement is often abbreviated as
p iff g and is written in symbols as p <> g. It is equiva-
lent to the compound statement “p implies ¢, and ¢
implies p” composed of two CONDITIONAL statements.
The truth-values of p and ¢ must match for the bicon-
ditional statement as a whole to be true. It therefore
has the following TRUTH TABLE:

P q pe>q
T T T
T F F
F T F
F F T

The two statements p and g are said to be logically
equivalent if the biconditional statement p <> ¢ is true.
See also ARGUMENT.

bijection See FUNCTION.
bimodal See STATISTICS: DESCRIPTIVE.

binary numbers (base-2 numbers) Any whole num-
ber can be written as a sum of distinct numbers from
the list of powers of 2: 1, 2, 4, 8, 16, 32, 64, ... (Simply
subtract the largest power of 2 less from the given
number and repeat the process for the remainder
obtained.) For instance, we have:

89=64+25=64+16+9=64+16+8+1

No power of 2 will appear twice, as two copies of the
same power of 2 sum to the next power in the list.
Moreover, the sum of powers of 2 produced for a given
number is unique. Using the symbol 1 to denote that a
particular power of 2 is used and 0 to denote that it is
not, one can then encode any given number as a
sequence of Os and 1s according to the powers of 2 that
appear in its presentation. For instance, for the number
89, the number 64 is used, but 32 is not. The number
16 appears, as does 8, but not 4 or 2. Finally, the num-
ber 1 is also used. We write:

89 = 1011001,

(It is customary to work with the large power of 2 to the
left.) As other examples, we see that the code 10001011,
corresponds to the number 128 + 64 + 32 + +6 + 8 + 4 +
2 +1 =139, and the code 10111, to the number 16 + &
+4 +2 + 1 =23. Numbers represented according to this
method are called binary numbers. These representa-
tions correspond precisely to the representations made
by choosing 2 as the BASE OF A NUMBER SYSTEM.

If one introduces a decimal point into the system
and interprets positions to the right of the point as neg-
ative powers of 2, then fractional quantities can also be

represented in binary notation. For instance, 0.101,

_%+1—iand

8~ 8
R R U ;
0.010101..., the quantity Tt et et which,

represents the quantity 27! + 273 =



according to the GEOMETRIC SERIES formula, is the

fraction 1 .

3
Any DYADIC fraction has a finite binary decimal

expansion. As the study of those fractions shows, the
binary code of a dyadic can be cleverly interpreted as
instructions for folding a strip of paper to produce a
crease mark at the location of that dyadic fraction. The
process of RUSSIAN MULTIPLICATION also uses binary
numbers in an ingenious manner.

Binary numbers are used in computers because the
two digits 0 and 1 can be represented by two alterna-
tive states of a component (for example, “on” or “off,”
or the presence or absence of a magnetized region).

It is appropriate to mention that the powers of 2
solve the famous “five stone problem”:

A woman possesses five stones and a simple
two-arm balance. She claims that, with a com-
bination of her stones, she can match the
weight of any rock you hand her and thereby
determine its weight. She does this under the
proviso that your rock weighs an integral num-
ber of pounds and no more than 31 pounds.
What are the weights of her five stones?

As every number from 1 through 31 can be represented
as a sum of the numbers 1, 2, 4, 8, and 16, the woman
has stones of weights corresponding to these first five
powers of 2.

binary operation A rule that assigns to each pair of
elements of a set another element of that same set is
called a binary operation. For example, the addition
of two numbers is a binary operation on the set of
real numbers, as is the product of the two numbers
and the sum of the two numbers squared. “Union” is
a binary operation on sets, as is “intersection,” and
CROSS PRODUCT is a binary operation on the set of
vectors in three-space. However, the operation of DOT
PRODUCT is 70t a binary operation on the set of vec-
tors; the results of this operation are numbers, not
other vectors.

If the set under consideration is denoted S, then a
binary operation on S can be thought of as a FUNCTION
f from the set of pairs of elements of the set, denoted S
xS, totheset S: f: xS — 8.

See also OPERATION; UNARY OPERATION.
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binomial Any algebraic expression consisting of two
terms, such as 2x + y or a + 1, is called a binomial.
See also MONOMIAL; POLYNOMIAL; TRINOMIAL.

binomial coefficient See BINOMIAL THEOREM.

binomial distribution The distribution that arises
when considering the question

What is the probability of obtaining precisely &
successes in 7 runs of an experiment?

is called the binomial distribution. Here we assume the
experiment has only two possible outcomes—“success
or failure,” or “heads or tails,” for example—and that
the probability of either occurring does not change as
the experiment is repeated. The binomial distribution
itself is a table of values providing the answers to this
question for various values of k, from k& = 0 (no suc-
cesses) to k = 7 (all successes).

To illustrate: the chance of tossing a “head” on a
fair coin is 50 percent. Suppose we choose to toss the
coin 10 times. Observe that the probability of attaining
any specific sequence of outcomes (three heads, fol-
lowed by two tails, then one head and four tails, for

1 1 total of 10 times 1 1 10 1
example) is EXEX E= 2 =1024. In

particular, the probability of seeing no heads (all
tails) is also 1/1024, as is the chance of seeing 10
heads in a row.

There are 10 places for a single head to appear
among 10 tosses, thus the chances of seeing precisely

10
1" 10
one head out of 10 tosses is 10 2] T1024 > about

1 percent. According to the theory of COMBINATIONS,

10)_ 100 _,
there are | o |~ 21 8

appear among 10 places, and so the probability of
seeing precisely two heads among the 10 tosses is

10 1\ 45
2 x 21 T 1024, about 4.4 percent.

Continuing this way, we obtain the binomial distri-
bution for tossing a fair coin 10 times:

ways for two heads to
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Number of Heads Probability
10
10 1 1
0 X[=| =——=01%
0 2 1024
10
1 1
1 0 X 1 =—0-~1.0%
1 2 1024
10
5 00 (1) 2% 4y
2 2 1024
10
3 ol /L LT 7
3 2 1024
10
4 ol P L LT
4 2 1024

If the coin is biased—say the chances of tossing a head
are now only 1/3—then a different binomial distribu-
tion would be obtained. For example, the probability
of attaining precisely eight heads among 10 tosses is

10Y 1Y) 2Y’
nowonly | g |3)(3 =0.003 "3bout 0.3 percent.

In general, if p denotes the probability of success,
and g = 1 — p is the probability of failure, then the
binomial distribution is given by the formula

(ijkq"‘k, the probability of attaining precisely &

successes in 7 runs of the experiment. This quantity is
the kth term of the binomial expansion formula from
the BINOMIAL THEOREM:

n n n n n
(p+a) =(ij°q"+@p1q”‘l+ [2)p2q"‘2+ ---+[njp"q°

This explains the name of the distribution.
The binomial distribution has mean value (EXPECTED
n

— < k n—k
vaLug) M= gz)/{ k]P 4" " which equals np. (To see this,

n o (7)o ek
differentiate the formula (P +q) _Zf)(kjp q with

respect to p.) The standard deviation is ¢ = Vupq. (See
STATISTICS: DESCRIPT[VE.)

The Poisson Distribution

It is difficult to calculate the binomial distribution if 7 is
very large. Mathematicians have shown that the bino-
mial distribution can be well approximated by the NOR-
MAL DISTRIBUTION for large values of #, provided the
value p is neither extremely small nor close to one. For
these troublesome values of p, SIMEON-DENIS POISSON

showed in 1837 that the values % e —with u = np, for

k =0,1,2,..—provide a sequence of values close to
the values one would expect from the binomial distribu-
tion. The distribution provided by these approximate
values is called a Poisson distribution.

The Geometric Distribution
Alternatively one can ask: what is the probability that
the first success in a series of experiments occurs on the
nth trial? If p is the probability of success and g =1 -p
is the probability of failure, then one obtains a first
success on the #nth experiment by first obtaining 7 — 1
failures and then a success. The probability of this
occurring is: P(n) = pg™'. The distribution given by
this sequence of probability values (for » = 1, 2, 3, ...)
is called the geometric distribution. It has mean p = 1/p
and standard deviation 6 = Vg/p. The geometric distri-
bution is a special example of Pascal’s distribution,
which seeks the probability P,(n) of the kth success
occurring on the nth trial.

See also HISTORY OF PROBABILITY AND STATISTICS
(essay).

The identi-
=x+2xa +a*and (x + a)® = x3 + 3x%a +

binomial theorem (binomial expansion)
ties (x + a)?



3xa® + a* are used in elementary ALGEBRA. These are

both special cases of the general binomial theorem that
asserts, for any positive integer 7, we have:

(x+a)" Z xrkgk = n | " e lg 4 | 7 len-22
k=0 1 2
+oet+ xa" +a”"
n—1

n!

n
Here each number = 7oLy 1S a COMBINATORIAL
k) R{(n—Fk)!

COEFFICIENT, also called a binomial coefficient.

The binomial theorem is proved by examining the
process of EXPANDING BRACKETS, thinking of the quan-
tity (x + a)” as a product of # factors: (x + a)(x + a)...
(x + a). To expand the brackets, one must select an entry
from each set of parentheses (“x” or “a”), multiply
together all the selected elements, and add together all
possible results. For example, there is one way to obtain
the term x": select x from every set of parentheses.
There are # ways to create a term of the form x"'a:
select a from just one set of parentheses, and x from the

n
remaining sets. In general there are [ k] ways to select k

as and 7 — k xs. Thus, in the expansion, there will be
n
( k] terms of the form x"*ak,

The combinatorial coefficients are the entries of
PASCAL’S TRIANGLE. The binomial theorem applied to
(1 + 1)" explains why the elements of each row of Pas-
cal’s triangle sum to a power of two:

e N

Applying the theorem to (1 - 1)"
alternating sum of the entries is zero:

o=<1—1)"=[gj—@+(;]"”i(:]

Applying the theorem to (10 + 1)” explains why the
first few rows of Pascal’s triangle resemble the powers
of 11:

explains why the
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112=(10+1)>=100 +2x 10 + 1

113 = (10 + 1)3 = 1,000 + 3x 100 + 3x 10 + 1

114 = (10 + 1)* = 10,000 + 4 x 1,000 + 6 x 100 + 4
x10 + 1

(The correspondence would remain valid if we did not
carry digits when computing higher powers of 11.)

The binomial theorem can be used to approximate
high powers of decimals. For example, to estimate
(2.01)19 we observe:

2.01'0 = (2 +0.01)1°

=210410%x27%0.01 + 28 + 45 x28x0.01% +

= 1024 + 10 x 512 x 0.01 + 45 x 256 x 0.00001
=1024 + 51.2 + 1.152

= 1076

In 1665 SIR ISAAC NEWTON, coinventor of CALCU-
LUS, discovered that it is possible to expand quantities
of the form (x + a)” where 7 is not equal to a whole
number. This leads to the generalized binomial theorem:

If 7 is an arbitrary real number, and Ix| < lal,

then:
(x+a)=x"+rx"la+ —WZT ) x"2q?
GHr=0r=2) 55,

3!

The formula is established by computing the TAYLOR
SERIES of f(x) = (x + a)” at x = 0. In 1826 Norwegian
mathematician NIELS ABEL proved that the series con-
verges for the range indicated. Notice that if 7 is a posi-
tive integer, then the theorem reduces to the ordinary
binomial theorem. (In particular, from the n + 1th
place onward, all terms in the infinite sum are zero.)

n
The combinatorial coefficients [ k] arising in the

binomial theorem are sometimes called binomial coeffi-
cients. The generalized combinatorial coefficients appear
in expansions of quantities of the type (x + y + z)” and
(x +y +z+w)", for example.

See also COMBINATION.

bisection method (dichotomous line search, binary line
search) Often one is required to find a solution to an
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equation of the form f(x) = 0 even if there are no clear
algebraic means for doing so. (For instance, there are
no general techniques helpful for solving Vx + Vx + 2

+ Vx+3 =5 = 0. The bisection method provides the
means to find, at least, approximate solutions to such
equations. The method is based on the fact that if two
function values f(a) and f(b) of a CONTINUOUS FUNC-
TION have opposite signs, then, according to the INTER-
MEDIATE VALUE THEOREM, a ROOT of the equation f(x) =
0 lies between a and b. The method proceeds as follows:

1. Find two values @ and b (a < b) such that f(a) and
f(b) have opposite signs.

2. Set m = (a + b)/2, the midpoint of the interval, and
compute f(m).

3. If f(m) = 0, we have found a zero. Otherwise, if f(a)
and f(m) have opposite signs, then the zero of f lies
between a and m; repeat steps 1 and 2 using these
new values. If, on the other hand, f(72) and f(b) have
opposite signs, then the zero of [ lies between 72 and
b; repeat steps 1 and 2 using these new values. In
either case, a new interval containing the zero has
been constructed that is half the length of the origi-
nal interval.

4. Repeated application of this procedure homes in on
a zero for the function.

To solve the equation f(x) = Vx + Vx +2 + Vx+3 - 5
= 0, for example, notice that f(1) = -0.268 < 0 and
f(2) = 0.650 > 0. A zero for the function thus lies
between 1 and 2. Set 72 = 1.5. Since f(1.5) = 0.217 > 0
we deduce that, in fact, the zero lies between 1 and
1.5. Now set m = 1.25 to see that the zero lies between
1.25 and 1.5.

One can find the location of a zero to any desired
degree of accuracy using this method. For example,
repeating this procedure for the example above six
more times shows that the location of the zero lies in
the interval [1.269,1.273]. This shows that to three sig-
nificant figures the value of the zero is 1.27.

The bisection method will fail to locate a root if the
graph of the function touches the x-axis at that location
without crossing it. Alternative methods, such as NEw-
TON’S METHOD, can be employed to locate such roots.

bisector Any line, plane, or curve that divides an
angle, a line segment, or a geometric object into two

equal parts is called a bisector. For example, the equator
is a curve that bisects the surface of the EARTH. A
straight line that divides an angle in half is called an
angle bisector, and any line through the MIDPOINT of a
line segment is a segment bisector. If a segment bisector
makes a right angle to the segment, then it is called a
perpendicular bisector.

Bolyai, Janos (1802-1860) Hungarian Geometry
Born on December 15, 1802, in Kolozsvar, Hungary,
now Cluj, Romania, Janos Bolyai is remembered for
his 1823 discovery of NON-EUCLIDEAN GEOMETRY, an
account of which he published in 1832. His work
was independent of the work of NIKOLAI [IVANOVICH
LOBACHEVSKY (1792-1856), who published an account
of HYPERBOLIC GEOMETRY in 1829.

Bolyai was taught mathematics by his father
Farkas Bolyai, himself an accomplished mathematician,
and had mastered CALCULUS and mechanics by the time
he was 13. At age 16 he entered the Royal Engineering
College in Vienna and joined the army engineering
corps upon graduation four years later.

Like many a scholar throughout the centuries,
Farkas Bolyai had worked, unsuccessfully, on the chal-
lenge of establishing the PARALLEL POSTULATE as a log-
ical consequence of the remaining four of EUCLID’S
POSTULATES. He advised his son to avoid working on
this problem. Fortunately, Janos Bolyai did not take
heed and took to serious work on the issue while serv-
ing as an army officer. During the years 1820 and
1823 Bolyai prepared a lengthy treatise outlining the
details of a new and consistent theory of geometry for
which the parallel postulate does not hold, thereby set-
tling once and for all the problem that had troubled
scholars since the time of EUCLID: the parallel postulate
cannot be proved a consequence of the remaining pos-
tulates of Euclid.

In Bolyai’s system of hyperbolic geometry it is
always the case that, for any point P in the plane, there
are an infinite number of distinct lines through that
point all PARALLEL to any given line not through P. (In
ordinary geometry, where the parallel postulate holds,
there is only one, and only one, line through a given
point P parallel to a given direction. This is PLAYFAIR’S
AXIOM.) In his new geometry, angles in triangles sum to
less than 180°, and the ratio of the circumference of a
circle to its diameter is greater than .



Just before publishing his work, Bolyai learned that
the great CARL FRIEDRICH GAuss (1777-1855) had
already anticipated much of this theory, even though he
had not published any material on the matter. Bolyai
decided to delay the release of his work. In 1832 he
printed the details of his new theory only as a 24-page
appendix to an essay his father was preparing. Later, in
1848, Bolyai discovered that Lobachevsky had pub-
lished a similar piece of work in 1829. Bolyai never
published the full version of his original treatise. His
short 24-page piece was practically forgotten until
Richard Blatzer discussed the work of both Bolyai and
Lobachevsky in his 1867 text Elemente der Mathematik
(Elements of mathematics). At that point, Bolyai’s piece
was recognized as the first clear account of the mathe-
matics of a new type of geometry. He is today regarded
as having independently founded the topic.

Bolyai died on January 27, 1860, in Marosvasarhely,
Hungary (now Tirgu-Mures, Romania). In 1945 the
University of Cluj honored Bolyai by including his name
in its title. It is today known as the Babes-Bolyai Univer-
sity of Cluj.

Bolzano, Bernard Placidus (1781-1848) Czech
Analysis, Philosophy, Theology Born on October 5,
1781, in Prague, Bernard Bolzano is remembered as the
first mathematician to offer a rigorous description of
what is meant by a CONTINUOUS FUNCTION. The related
theorem, the INTERMEDIATE-VALUE THEOREM, is some-
times named in his honor.

Bolzano studied philosophy and mathematics at
the University of Prague and earned a doctoral degree
in mathematics in 1804. He also completed three years
of theological study at the same time and was ordained
a Roman Catholic priest two days after receiving his
doctorate. Choosing to pursue a career in teaching,
Bolzano accepted a position as chair of philosophy and
religion at the university later that year.

In 1810 Bolzano began work on understanding the
foundations of mathematics and, in particular, the log-
ical foundations of the newly discovered carcuLus. He
found the notion of an INFINITESIMAL troublesome and
attempted to provide a new basis for the subject free
from this concept. In his 1817 paper “Rein Analytis-
cher Beweis” (Pure analytical proof), Bolzano explored
the concept of a LIMIT—anticipating the foundational
approach of AUGUSTIN-Louis CAucHY offered four
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years later—and proved the famous intermediate value
theorem. Bolzano was also the first to provide an
example of a function that is continuous at every point
but differentiable at no point.

Bolzano also anticipated much of GEORG CAN-
TOR’S work on the infinite. In his 1850 article “Para-
doxien des Unendlichen” (Paradoxes of the infinite),
published by a student two years after his death,
Bolzano examined the nature of infinite sets and the
paradoxes that arise from them. This piece contains the
first use of the word “set” in a mathematical context.

Bolzano died on December 18, 1848, in Prague,
Bohemia (now the Czech Republic). His work paved
the way for providing rigorous underpinnings to the
subject of calculus. In particular, Bolzano identified for
the first time in “Rein Analytischer Beweis” the “com-
pleteness property” of the real numbers.

Bombelli, Rafael (1526-1572) Italian Algebra Born
in Bologna, Italy, in 1526 (the day and month of his
birth date are not known), scholar Rafael Bombelli is
remembered for his highly influential 1572 book L’Alge-
bra (Algebra). In this work, Bombelli published rules for
the solution to the QUADRATIC, CUBIC, and QUARTIC
EQUATIONS, and was one of the first mathematicians to
accept COMPLEX NUMBERS as solutions to equations.

Bombelli began his career as an engineer specializ-
ing in hydraulics and worked on a number of projects
to turn salt marshes into usable land. Having read the
great Ars magna (The great art) by GIRoLAMO CAR-
DANO (1501-76), Bombelli decided to write an algebra
text that would make the methods developed there
accessible to a general audience and be of interest and
use to surveyors and engineers. He intended to write a
five-volume piece but only managed to publish three
volumes before his death in 1572.

Bombelli noted that Cardano’s method of solving
cubic equations often leads to solutions that, at first
glance, appear unenlightening. For instance, examina-
tion of the equation x* = 15x + 4 leads to the solution:

x=3244-121 +32-+-121

Although scholars at the time rejected such quantities
(because of the appearance of the square root of a neg-
ative quantity) Bombelli argued that such results
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should not be ignored and, moreover, that they do lead
to real solutions. After developing the algebra of com-
plex numbers, Bombelli could show that the answer
presented above, for instance, is just the number x = 4
in disguise. Bombelli went on to show that, in fact,
every equation of the form x3 = ax + b, with 2 and b
positive, has a real solution, thereby justifying the
method of complex numbers.

In addition to developing complex arithmetic,
Bombelli developed the basic algebra of NEGATIVE
NUMBERS. In particular, he provided a geometric argu-
ment to help explain why a negative number times
itself must be positive—a notion that still causes many
people difficulty today.

Bombelli died in 1572. (The exact date of his
death is not known.) GOTTFRIED WILHELM LEIBNIZ
(1646-1716), codiscoverer of CALCULUS, taught himself
mathematics from Bombelli’s I’Algebra and described the
scholar as “an outstanding master of the analytic art.”

Boole, George (1815-1864) British Logic Born on
November 2, 18135, in Lincolnshire, England, algebraist
George Boole is remembered for his highly innovative
work in the field of logic. In his pioneering piece, An
Investigation of the Laws of Thought, on Which are
Founded the Mathematical Theories of Logic and
Probability, published in 1854, Boole established the
effectiveness of symbolic manipulation as a means to
represent and perform operations of reasoning. Boole is
considered the founder of the field of symbolic logic.

Boole received no formal education in mathemat-
ics. As a young man he read the works of JosEPH-Louis
LAGRANGE and PIERRE-SIMON LAPLACE, and by age 20
began publishing original results. His early work in the
field of DIFFERENTIAL EQUATIONs garnered him
national attention as a capable scholar. In 1845 Boole
was honored with a gold medal from the ROYAL SocI-
ETY of London, England’s most prestigious academic
society. Four years later, in 1849, he was appointed
chair of the mathematics department at Queens Col-
lege, Cork, Ireland, despite having no university degree.
Boole stayed at this college for the rest of his life,
devoting himself to teaching and research.

Boole began work in mathematical logic before
moving to Ireland. At the time, logic was considered to
be a topic of interest only to philosophers, but in
1847, in his pamphlet The Mathematical Analysis of
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George Boole, an eminent mathematician of the 19th century,
established the field of mathematical logic. (Photo courtesy of
Topham/The Image Works)

Logic, Boole successfully argued that the topic has
merit in the art of mathematical reasoning. By using
symbols to represent statements, Boole developed an
“algebra of logic” whose rules and valid manipula-
tions matched the processes of reasoning. Thus mathe-
matical arguments and lines of thought could themselves
be reduced to simple algebraic manipulations. For
instance, if the symbol x is used to represent “all but-
terflies,” then 1 — x represents all that is not a butter-
fly. If y represents the color blue, then xy is the set of
all objects that are both butterflies and blue, that is, all
blue butterflies. The expression (1 — x)(1 — y) repre-
sents all the nonblue nonbutterflies.

Algebraically the quantity (1 — x)(1 - y) equals
1 - x -y + xy. One could argue that the INCLUSION-
EXCLUSION PRINCIPLE is at play here, saying that the set
of nonblue nonbutterflies is the set of all objects that
are neither butterflies, nor blue, with an adjustment



made to account for the fact that the set of blue butter-
flies has been excluded twice. These adjustments, how-
ever, are awkward. Boole invented a new system of
“algebra” that avoids such modifications. The axioms
it obeys differ from those of ordinary arithmetic.

The algebra Boole invented proved to be of funda-
mental importance. It gave 20th-century engineers the
means to instruct machines to follow commands and
has since been used extensively in all computer design
and electrical network theory. In a real sense, Boole
was the world’s first computer scientist, despite the
fact that computers were not invented for another cen-
tury to come. Boole died unexpectedly in 1864 at the
age of 49 from pneumonia. (The exact date of his
death is not known.)

Boolean algebra In the mid-1800s GEORGE BOOLE
developed a system of algebraic manipulations suitable
for the study of FORMAL LOGIC and SET THEORY, now
called Boolean algebra. He assumed that one is given a
set of elements, which we will denote x, y, z, ...
which one can perform two operations, today called

, on

Boolean sum, x + y, and Boolean product, x - y. These
operations must satisfy the following rules:

1. The operations are COMMUTATIVE, that is, for all ele-
ments x and y we havex + y=y+xandx-y=1y - x.

2. There exist two special elements, denoted “0” and
“1,” which, for all elements x, satisfy x + 0 = x and
x-1=x.

3. For each element x there is an inverse element “—x’
which satisfies x + (-x) = 1 and x - (—x) = 0.

4. The following DISTRIBUTIVE laws hold for all ele-
ments in the set: x - (y +2) = (x - y) + (x - z) and x +
(y-z)=(x+y)-(x+z).

>

2

One can see that the Boolean operations “ + ” and “ -
are very different from the addition and multiplication
of ordinary arithmetic and so cannot be interpreted as
such. However, thinking of Boolean addition as the
“union of two sets” and Boolean product as “the inter-
section of two sets,” with 0 being the empty set and 1
the universal set, we see that the all four axioms hold,
making SET THEORY a Boolean algebra. Similarly, the
FORMAL LOGIC of propositional calculus is a Boolean
algebra if one interprets addition as the DISJUNCTION of
two statements (“or”) and product as their CONJUNC-
TION (“and”).
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Other rules for Boolean algebra follow from the
four axioms presented above. For example, one can
show that two ASSOCIATIVE laws hold: x + (y + 2) = (x +
y)+zandx-(y-2)=(x-y)-z

See also DE MORGAN’S LAWS.

Borromean rings The term refers to a set of three
rings linked together as a set, but with the property
that if any single ring is cut, all three rings separate.
The design of three such rings appeared on the coat
of arms of the noble Italian family, Borromeo-Arese.
(Cardinal Carlo Borromeo was canonized in 1610,
and Cardinal Federico Borromeo founded the Am-
brosian Art Gallery in Milan, Italy.) The curious
property of the design attracted the attention of
mathematicians.

It is an amusing exercise to arrange four rings such
that, as a set, they are inextricably linked together, yet
cutting any single ring would set all four free. Surpris-
ingly this feat can be accomplished with any number
of rings.

See also KNOT THEORY.

bound A function is bounded if it takes values no
higher than some number M and no lower than some
second value L. For example, the function f(x) = sin x
is bounded between the values -1 and 1. We call M an
upper bound for the function and L a lower bound.

Borromean rings
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A function is bounded above if the function pos-
sesses an upper bound (but not necessarily a lower
bound), and bounded below if it possesses a lower
bound (but not necessarily an upper bound). For exam-
ple, f(x) = x* is bounded below by the value L = 0,
since all output values for this function are greater than
or equal to zero. The EXTREME-VALUE THEOREM
ensures that every CONTINUOUS FUNCTION defined on a
closed INTERVAL is bounded.

A set of numbers is bounded above if every number
in the set is less than or equal to some value M,
bounded below if every number in the set is greater
than or equal to some value L, and bounded if it is
both bounded above and bounded below. For example,
the set S = {0.6, 0.66, 0.666, ...} is bounded below by
0.6 and bounded above by 1. The smallest possible
upper bound for a set is called the least upper bound,
and the largest lower bound, the greatest lower bound.
The set S has 2/3 as its least upper bound and 0.6 as its
greatest lower bound.

The REAL NUMBERS have the property that any
subset S of them that is bounded above possesses a
least upper bound, and, similarly, any subset that is
bounded below possesses a greatest lowest bound.
This is a key property that shows that no numbers are
“missing” from the real number line. (See DEDEKIND
cuUT.) This is not true of the set of rational numbers,
for instance. The set of all rationals whose square is
less than 2, for example, is bounded above, by 3/2 for
example, but possesses no least upper bound in the set
of rationals: the square root of two is “missing” from
the set of rationals.

A sequence is bounded if, as a set of numbers, it is
bounded. A geometric figure in the plane is bounded if
it can be enclosed in a rectangle of finite area. For
example, a CIRCLE is bounded but a HALF-PLANE is not.

Bourbaki, Nicolas Taking the name of a junior
Napoleonic officer, a group of French mathematicians of
the 1930s adopted the pseudonym of Nicolas Bourbaki
to publish a series of books, all under the title Eléments
de mathématiques (Elements of mathematics), that
attempt to present a complete, definitive, and utterly rig-
orous account of all modern mathematical knowledge.
This project continues today. Contributors to the work
remain anonymous and change over the years. To date,
over 40 volumes of work have been produced.

The material presented through Bourbaki is austere
and abstract. The goal of the founding work was to
develop all of mathematics on the axioms of SET THE-
ORY and to maintain the axiomatic approach as new
concepts are introduced.

The work, devoid of narrative and motivational con-
text, is difficult to read and not suitable for use as text-
books. During the 1950s and 1960s, however, there were
often no graduate-level texts in the developing new fields,
and the volumes of Bourbaki were the only sources of
reference. It is unlikely that today a graduate student in
mathematics would consult the work of Bourbaki.

brachistochrone See cycLoID.

brackets Any pair of symbols, such as parentheses ()
or braces { }, that are used in an arithmetic or an alge-
braic expression to indicate that the quantity between
them is to be evaluated first, or treated as a single unit
in the evaluation of the whole, are called brackets. For
example, in the expression (2 + 3) X 4, the parentheses
indicate that we are required to first calculate 2 + 3 =5
and then multiply this result by 4. In complicated
expressions, more than one type of bracket may be
used in the same equation. For instance, the expression
3{2 + 8[2(x + 3) — 5(x — 2)]} is a little easier to read
than 3(2 + 8(2(x + 3) — 5(x - 2))).

Before the advent of the printing press in the 15th
century, the VINCULUM was used to indicate the order
of operations. Italian algebraist RAFAEL BOMBELLI
(1526-1572) was one of the first scholars to use paren-
theses in a printed algebraic equation, but it was not
until the early 1700s, thanks chiefly to the influence of
LEONHARD EULER, GOTTFRIED WILHELM LEIBNIZ, and
members of the BERNOULLI FAMILY, that their use in
mathematics became standard.

Angle brackets <> are typically only used to list the
components of a VECTOR or a finite SEQUENCE. Matters
are a little confusing, for in the theory of quantum
mechanics, angle brackets are used to indicate the DOT
PRODUCT of two vectors (and not the vectors them-
selves). The left angle bracket “<” is called a “bra” and
the right angle bracket “>” a “ket.”

In SET THEORY, braces {} are used to list the ele-
ments of a set. Sometimes the elements of a sequence
are listed inside a set of braces.



If x is a real number, then the bracket symbols [ x|,
[x1, and {x} are used to denote the floor, ceiling, and
fractional part values, respectively, of x.

Square brackets | | and parentheses ( ) are placed at
the end points of an INTERVAL on the real number line
to indicate whether or not the end points of that inter-
val are to be included.

See also EXPANDING BRACKETS; FLOOR/CEILING/
FRACTIONAL PART FUNCTIONS; ORDER OF OPERATION.

Brahmagupta (ca. 598-665) Indian Arithmetic, Geo-
metry, Astronomy Born in Ujjain, India, scholar Brah-
magupta is recognized as one of the important
mathematicians of the seventh century. His famous 628
text Brabmasphutasiddbhanta (The opening of the uni-
verse) on the topic of astronomy includes such notable
mathematical results as his famous formula for the
AREA of a cyclic QUADRILATERAL, the integer solution to
certain algebraic equations, and methods of solution to
simultaneous equations. This work is also historically
significant as the first documented systematic use of
ZERO and negative quantities as valid numbers in
ARITHMETIC.

Brahmagupta was head of the astronomical obser-
vatory at Ujjain, the foremost mathematical center of
ancient India, and took an avid interest in the develop-
ment of astronomical observation and calculation. The
first 10 of the 25 chapters of Brahmasphutasiddhanta
pertain solely to astronomy, discussing the longitude of
the planets, lunar and solar eclipses, and the timing of
planet alignments. Although rich in mathematical com-
putation and technique, it is the remainder of the work
that offers an insight into Brahmagupta’s far-reaching
understanding of mathematics on an abstract level.

Brahmagupta goes on to describe the decimal PLACE-
VALUE SYSTEM used in India at his time for representing
numerals and the methods for doing arithmetic in this
system. (For instance, he outlines a method of “long
multiplication” essentially equivalent to the approach we
use today.) Brahmagupta permits zero as a valid number
in all of his computations, and in fact gives it the explicit
status of a number by defining it as the result of sub-
tracting a quantity from itself. (Until then, zero acted as
nothing more than a placeholder to distinguish 203 from
23, for instance.) He also explains the arithmetical prop-
erties of zero—that adding zero to a number leaves that
number unchanged and multiplying any number by zero
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produces zero, for instance. Brahmagupta also detailed
the arithmetic of negative numbers (which he called
“debt”) and suggested, for the first time, that they may
indeed be valid solutions to certain problems.

Brahmagupta next explores problems in ALGEBRA.
He develops some basic algebraic notations and then
presents a series of methods for solving a variety of lin-
ear and quadratic equations. For instance, he devised
an ingenious technique for finding integer solutions to
equations of the form ax? + ¢ = y*. (For example, Brah-
magupta correctly asserted that x = 226,153,980 and y
= 1,766,319,049 are the smallest positive integer solu-
tions to 61x> + 1 = y%.) Brahmagupta also presents the
famous SUMS OF POWERS formulae:

1+2+“’+H:M
2
12422 42 _nn+1)2n+1)
6
nin 17

B+23++nd =
. 4

as well as algorithms for computing square roots.

Unfortunately, as was the practice of writing at the
time, Brahmagupta never gave any word of explana-
tion as to how his solutions or formulae were found.
No proofs were ever offered.

In the final sections of Brabmasphutasiddhanta,
Brahmagupta presents his famous formula for the area
of a cyclic quadrilateral solely in terms of the lengths
of its sides. Curiously, Brahmagupta does not state
that the formula is true only for quadrilaterals
inscribed in a CIRCLE.

In a second work, Khandakhadyaka, written in
665, Brahmagupta discusses further topics in astron-
omy. Of particular interest to mathematicians, Brah-
magupta presents here an ingenious method for
computing values of sines.

Brahmagupta’s methods and discoveries were
extremely influential. Virtually every text that dis-
cusses Indian astronomy describes or uses some aspect
of his work.

See also BRAHMAGUPTA’S FORMULA.

Brahmagupta’s formula Seventh-century Indian math-
ematician and astronomer BRAHMAGUPTA derived a for-
mula for the AREA of a QUADRILATERAL inscribed in a
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CIRCLE solely in terms of the lengths of its four sides.
His formula reads:

area = V(s —a)(s = b)(s — ¢)(s = d)

where a, b, ¢, and d are the four side-lengths and
a+b+c+d . L, o
s =————— s the figure’s semiperimeter.

2
If p and g are the lengths of the figure’s two diago-

nals then PTOLEMY’S THEOREM asserts that pg = ac + bd.
Brahmagupta’s formula follows from BRETSCHNEIDER’S
FORMULA for the area of a quadrilateral:

area = %\/4([76])2 — (b2 +d? —a? —c?)?

by substituting in this value for pgq.

If one of the sides of the quadrilateral has length
zero, that is, the figure is a TRIANGLE, then Brah-
magupta’s formula reduces to HERON’S FORMULA.

See also CYCLIC POLYGON.

braid A number of strings plaited together is called a
braid. The theory of braids examines the number of
(essentially distinct) ways a fixed number of strings,
held initially in parallel, can be braided. One can com-
bine two braids on a fixed number of strings by repeat-

1§

a braid

its inverse

A braid and its inverse

ing the pattern of the second braid at the end of the
first braid. If, after completing this maneuver, the act of
physically shaking the system of strings settles the
strands to the unbraided state, then we say that the two
braids are “inverse braids.” For example, the two
braids shown in the diagram are inverse braids.

If a braid consists of 7 strings, then the symbol o; is
used to record the act of switching of the ith string over
the (i + 1)th string (for 1 <i<#n - 1) and 6;! for the act
of switching of the same two strings but in the opposite
sense. A general braid is then described as a string of
these symbols (called a “word”). For instance, the two
braids shown in the diagram below, at left, are repre-
sented by the words 6,06,7'0; and 6,7'6,6;7!, respec-
tively. A braid with no crossings (that is, in which no
strings cross) is denoted “1,” and the process of combin-
ing braids corresponds precisely to the process of con-
catenating words. Two braids are inverse braids, if, after
performing the suggested symbolic manipulations, their
resulting concatenated word is 1. For instance, in our
example, we have: 6,6,7'6,6,7'6,0;"! = 6,6,7'6,0;7! =
6:6,"" = 1. It is possible that two different words can
represent the same physical braid. (For instance, on three
strings, the braids 616,06, and ©,6/G, are physically
equivalent.)

Each set of braids on a fixed number of strings
forms a GROUP called a braid group. Austrian mathe-
matician Emil Artin (1898-1962) was the first to
study these groups and solve the problem of determin-
ing precisely when two different words represent the
same braid.

Bretschneider’s formula German mathematician
Carl Anton Bretschneider (1808-78) wrote down a for-
mula for the AREA of a QUADRILATERAL solely in terms
of the lengths of its four sides and the value of its four
internal angles. If, reading clockwise around the figure,
the side-lengths of the quadrilateral are a, b, ¢, and d,
and the angles between the edges are A, B, C, and D
(with the angle between edges d and a being A), then
Bretschneider established that the area K of the quadri-
lateral is given by:

K=\(s—a)(s=b)(s - ¢)(s — d) — abcd cos*(0)

+b+c+d
Here s :aTc

and 0 is the average of any two opposite angles in the

is the semiperimeter of the figure



A+C

figure: @ = r 9= . (Since the interior

B+D
2
angles of a quadrilateral sum to 360 degrees, each

quantity yields the same value for the cosine.)

Many texts in mathematics state Bretschneider’s
result without proof. Although algebraically detailed,
the derivation of the result is relatively straightforward.
One begins by noting that area K is the sum of the
areas of triangles ABC and ADC. We have:

K =%absinB+%cdsinD

Multiplying by four and squaring yields:
16K? = 4a2b? sin?B + 4c2d? sin?D + 8abcd sin B sin D

Call this equation (i). Applying the LAW OF COSINES to
each of the two triangles yields the relationship:

a?>+b*=2abcos B=c*+d*-2cd cos D
which can be rewritten:
a?+b*=c*—d*=2ab cos B-2cd cos D

Call this equation (ii). Also note that, with the aid of
this second equation:

4(s=c)(s=d)=(a+b-c+d)a+b+c-d)
=a?+b*—c2-d*+2ab + 2cd
=2ab cos B—2cd cos D + 2ab + 2cd
=2ab(1 + cos B) + 2¢d(1 = cos D)

Similarly:

4s—a)(s=b)=(-a+b+c+d)a-b+c+d)
= 2ab(1—cos B) + 2¢cd(1 + cos D)

Multiplying these two equations together gives:

16(s—a)(s=b)(s—c)(s—d)
= 4a2b%(1- cos? B) + 4c2d*(1- cos? D)
+ 4abcd((1 + cos B)(1 + cos D)
+ (1—cos B) (1-cos D))
= 4a%b? sin? B + 4c2d? sin? D +
8abcd(1 + cos B cos D)

and substituting back into equation (i) produces:
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16K2=16(s —a)(s - b)(s —c)(s —d) —
8abcd (cos B cos D —sin Bsin D + 1)

The following identities from trigonometry:
cos B cos D —sin B sin D = cos(B + D)

and

cos(x)+1= ZCOSZ(gj

now give:

16K2% = 16(5—a)(s—b)(s—c)(s—d)—16abcdcosz(

B+D
)
which directly yields the famous result.

If, further, the opposite angles of the quadrilateral
sum to 180 degrees (in which case the quadrilateral is a
CYCLIC POLYGON), then Bretschneider’s formula reduces
to BRAHMAGUPTA’S FORMULA for the area of a cyclic
quadrilateral:

K=\(s—a)(s-b)(s-c)(s—d)

If one of the sides has length zero, say d = 0, then
the quadrilateral is a triangle and we have HERON’S
FORMULA for the area of a triangle:

K =Vs(s —a)(s = b)(s - ¢)

This is valid, since every triangle can be inscribed in a
circle and so is indeed a cyclic polygon.

Briggs, Henry (1561-1630) British Logarithms Born
in February 1561 (the exact birth date is not known) in
Yorkshire, England, scholar Henry Briggs is remem-
bered for the development of base-10 logarithms, revis-
ing the approach first taken by the inventor of
logarithms, JOHN NAPIER (1550-1617). Today such
common logarithms are sometimes called Briggsian log-
arithms. In 1617, after consulting with Napier, Briggs
published logarithmic values of the first 1,000 numbers
and, in 1624, in his famous text The Arithmetic of Log-
arithms, the logarithmic values of another 30,000 num-
bers, all correct to 14 decimal places.
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Briggs graduated from St. John’s College of Cam-
bridge University in 1581 with a master’s degree and
was appointed a lectureship at the same institution 11
years later in 1592 to practice both medicine and math-
ematics. Four years later Briggs became the first profes-
sor of geometry at Gresham College, London, when he
also developed an avid interest in astronomy.

Around this time Napier had just developed his
theory of logarithms as a mathematical device specifi-
cally aimed at assisting astronomers with difficult arith-
metical computations. Briggs read Napier’s text on the
subject in 1614 and, with keen excitement, arranged to
visit the Scottish scholar in the summer of 1615. The
two men agreed that the theory of logarithms would
indeed be greatly simplified under a base-10 system,
and two years later Briggs published his first tables of
logarithmic values in Logarithmorum chilias prima
(Logarithms of numbers 1 to 1,000). Later, in his
famous 1624 piece, Briggs published logarithmic values
for the numbers 1 through 20,000 and from 90,000 to
100,000. (The gap of 70,000 numbers was filled three
years later by the two Dutch scholars, Adriaan Vlacq
and Ezechiel de Decker.)

Briggs was appointed chair of geometry at Oxford
University in 1619. He remained at Oxford pursuing
interests in astronomy and classical geometry until his
death on January 26, 1630. In his inaugural lecture at
Gresham College, IsaAC BARROW (1630-77) expressed
gratitude on behalf of all mathematicians for the out-
standing work Briggs had accomplished through the
study of logarithms.

Brouncker, Lord William (ca. 1620-1684) British
Calculus  William Brouncker is best remembered for
his work in the early development of cALcULUS and
also as one of the first mathematicians in Britain to use
CONTINUED FRACTIONS.

Very little is known of Brouncker’s early life,
including the exact year of his birth, for example, and
his nationality. Records do show, however, that he
entered Oxford University at the age of 16 to study
mathematics, languages, and medicine. He received a
doctorate of medicine in 1647, pursuing mathematics
and its applications to music, mechanics, and experi-
mental physics as an outside interest throughout his life.

Brouncker held Royalist views and took an active
part in the political turmoil of the time in England.

With the restoration of the monarchy in 1660 and the
election of King Charles II to the throne, Brouncker was
appointed chancellor to Queen Anne and keeper of the
Great Seal. Brouncker was also appointed president of
the newly created ROYAL SOCIETY of London in 1662.
In mathematics, Brouncker studied infinite SERIES
and made a number of remarkable discoveries. He
devised a series method for computing LOGARITHMS
and a surprising continued-fraction expression for 7
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Brouncker used this formula to correctly calculate the
value of m to the 10th decimal place. The great English
mathematician JOHN WALLIS later published these
results on Brouncker’s behalf.

Brouncker also studied DIOPHANTINE EQUATIONS
and found a general method for solving equations of
the form nx* + 1 = y2. LEONHARD EULER later called
this equation “Pell’s equation,” after English mathe-
matician John Pell (1611-84), not realizing that it was
Brouncker, not Pell, who had studied it so intensively.
Pell’s name, unfortunately, remains attached to this
equation to this day.

Brouncker died on April 5, 1684, in London, Eng-
land. He never received fame as a great mathematician
for he tended to focus on solving problems posed by
others rather than forging original pathways in mathe-
matics research.

brute force The method of establishing the validity
of a claim by individually checking each and every
instance of the claim is called brute force. Mathemati-
cians much prefer devising general arguments and prin-
ciples to demonstrate the validity of a claim, rather
than resort to this method. Some claims, however, seem
amenable only to the technique of brute force. For
instance, the following number-naming puzzle can be
solved only via brute force:

Think of a number between one and 100.
Count the number of letters in its name to
obtain a second number. Count the number of
letters in the name of the second number to



obtain a third number. Continue this way until
the chain of numbers obtained this way ends
on a number that repeats. This repeating num-
ber, in every case, is the number four.

As every number between one and 100 can be written
in 12 or fewer letters, the second number obtained will
lie between three and 12. One checks, by brute force,
that each of these numbers eventually leads to the num-
ber four.

At present, the brute-force method is the only
known technique guaranteed to yield an optimal solu-
tion to the famous TRAVELING-SALESMAN PROBLEM.
This problem is of significant practical importance.
Unfortunately, even with the fastest computers of
today, the brute-force approach cannot be carried out
in any feasible amount of time.

The famous FOUR-COLOR THEOREM was solved in
the 1970s by reducing the problem to a finite, but
extraordinarily large, number of individual cases that
were checked on a computer by brute force.

See also GOLDBACH’S CONJECTURE.

Buffon needle problem (Buffon-Laplace problem)
In 1733 French naturalist Georges Buffon proposed
the following problem, now known as the Buffon nee-
dle problem:

A needle one inch long is tossed at random
onto a floor made of boards one inch wide.
What is the probability that the needle lands
crossing one of the cracks?

One can answer the puzzle as follows:
Suppose that the needle lands with lowest end a
distance x from a crack. Note that 0 < x < 1.
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Solving the Buffon needle problem

In the diagram we see that if the needle lands within
an angle as indicated by either sector labeled 6, then it
will not fall across the upper crack, but it will do so if
instead it lands in the sector of angle ® —20. Thus the
probability that the needle will fall across the crack,
given that it lands a distance x units below a crack, is

T —20

P.= =1- Esin‘lx . Summing, that is, integrating,

over all possible values of x gives us the total probabil-
ity P we seek:

! ! 2. _ 2.
P—J'Odex—-[Ol—Esm xdx—l—;josm xdx
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In principle, this problem provides an experimental
method for computing PI: simply toss a needle onto the
floor a large number of times, say 10,000, and count the
proportion that land across a crack. This proportion

2 .
should be very close to the value . In practice, however,

this turns out to be a very tedious approach.
See also MONTE CARLO METHOD.



calculus (infinitesimal calculus) The branch of math-
ematics that deals with the notion of continuous
growth and change is called calculus. It is based on the
concept of INFINITESIMALS, exceedingly small quanti-
ties, and on the concept of a LIMIT, quantities that can
be approached more and more closely but never
reached. By treating continuous changes as if they con-
sisted of infinitely small increments, DIFFERENTIAL CAL-
CULUS can be used, for example, to find the VELOCITY
of a moving object at any particular instant. INTEGRAL
CALCULUS represents the reverse process, finding the
aggregate end-result if the continuous change is already
known. For example, by integrating the instantaneous
velocity of an object over a given time period, one finds
the total distance the object moved during this time.

The word calculus comes from the Latin word calx
for “pebble,” which in turn is derived from the Greek
word chalis for “limestone.”
arranged in a counting board or on an ABACUS were
often used to aid mathematical calculations, and the
word calculus came to refer to all mathematical activ-
ity. Today, however, the word is used almost exclusively
to denote the study of continuous change.

See also HISTORY OF CALCULUS (essay).

Small beads or stones

cancellation In ARITHMETIC, the process of dividing
the numerator and the denominator of a FRACTION by
a common factor to produce a simpler fraction is called
cancellation. For example, the fraction 18/12, which is
(6 x 3)/(6 x 2), can be simplified to 3/2 by canceling
“6” from the fraction.
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An amusing activity in mathematics searches for
fractions that remain unchanged by the action of
“anomalous cancellation.” For example, deleting the
digit 6 from each of the numerator and denominator of
the fraction 65/26 produces the number 5/2. Curiously,
65/26 does equal five halves. Other fractions with this

. 64 _4 98 _8 95 _ 5
property include: 16 1°29 %> and 9 1- Oof
course deleting digits this way is an invalid mathemati-
cal operation, and the equalities obtained here are
purely coincidental.

In ALGEBRA the word cancellation is used in two
settings. Akin to the process of cancellation for frac-
tions, one may simplify a rational expression of the
form xy/xz by canceling the factor x from both the
numerator and denominator. This gives xy/xz as equal

) ) x24+3x+2
to y/z. Thus, for instance, the expression ——5———
x* +x
C(x+D(x+2) lif x+2
= xw+1)  Simplifiesto ST

The process of removing two equal quantities from
an equation via subtraction is also called cancellation.
For example, in the equation x + 2y = 5 + 2y, the term
2y can be cancelled to leave x = 5.

Both actions fall under the umbrella of a general
cancellation law. In an abstract setting, a BINARY OPER-
ATION “*” is said to satisfy such a law if whenever a*x
= b*x holds, a = b follows. For the operation of addi-
tion, this reads:

a+x=b+ximpliesa=b



History of Calculus

The study of calculus begins with the study of motion, a topic
that has fascinated and befuddled scholars since the time of
antiquity. The first recorded work of note in this direction
dates back to the Greek scholars PYTHAGORAS (ca. 569475
B.C.E) and ZeNO OF ELEA (ca. 500 B.c.E.), and their followers,
who put forward the notion of an INFINITESIMAL as one possi-
ble means for explaining the nature of physical change.
Motion could thus possibly be understood as the aggregate
effect of a collection of infinitely small changes. Zeno, how-
ever, was very much aware of fundamental difficulties with
this approach and its assumption that space and time are
consequently each continuous and thus infinitely divisible.
Through a series of ingenious logical arguments, Zeno rea-
soned that this cannot be the case. At the same time, Zeno
presented convincing reasoning to show that the reverse
position, that space is composed of fundamental indivisible
units, also cannot hold. The contradictory issues proposed by
Zeno were not properly resolved for well over two millennia.
The concept of the infinitesimal also arose in the
ancient Greek study of area and volume. Scholars of the
schools of pLATO (428-348 B.c.E.) and of Euboxus oF CNiDuS
(ca. 370 B.c.E.) developed a “method of exhaustion,” which
attempted to compute the area or volume of a curved figure
by confining it between two known quantities, both of which
can be made to resemble the desired object with any pre-
scribed degree of accuracy. For example, one can sand-
wich a circle between two n-gons, one inscribed and one
circumscribed. As one can readily compute the area of a
regular n-gon, the formula for the area of a circle follows by
taking larger and larger values of n. (See AReA.) The figure
of a regular n-gon as n grows differs from that of a true cir-
cle only by an infinitesimal amount. ARCHIMEDES OF SYRACUSE
(287-212 B.c.E.) applied this method to compute the area of a
section of a PARABOLA, and 600 years later, PAPPUS OF
ALEXANDRIA (ca. 300-350 c.t.) computed the volume of a
SOLID OF REVOLUTION via this technique. Although successful
in computing the areas and volumes of a select collection of
geometric objects, scholars had no general techniques that
allowed for the development of a general theory of area and
volume. Each individual calculation for a single specific
example was hailed as a great achievement in its own right.
The resurgence of scientific investigation in the mid-
1600s led European scholars to push the method of exhaus-
tion beyond the point where Archimedes and Pappus had
left it. JOoHANNES KEPLER (1571-1630) extended the use of
infinitesimals to solve oPTIMIZATION problems. (He also
developed new mathematical methods for computing the
volume of wine barrels.) Others worked on the problem of
finding tangents to curves, an important practical problem
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in the grinding of lenses, and the problem of finding areas of
irregular figures. In 1635, Italian mathematician BONAVEN-
TURA CAVALIERI wrote the first textbook on what we would
call integration methods. He described a general “method
of indivisibles” useful for computing volumes. The principle
today is called CAVALIERI'S PRINCIPLE.

French mathematician Gilles Personne de Roberval
(1602—-75) was the first to link the study of motion to geome-
try. He realized that the tangent line to a geometric curve
could be interpreted as the instantaneous direction of
motion of a point traveling along that curve. Philosopher
and mathematician RENE DESCARTES (1596—1650) developed
general techniques for finding the formula for the tangent
line to a curve at a given point. This technique was later
picked up by PIERRE DE FERMAT (1601-65), who used the
study of tangents to solve maxima and minima problems in
much the same way we solve such problems today. As a
separate area of study, Fermat also developed techniques
of integral calculus to find areas between curves and
lengths of arcs of curves, which were later developed fur-
ther by BLAISE PascaAL (1623-62) and English mathematicians
JOHN WaLLIs (1616-1703) and IsAAc BArRRow (1630-77).

At the same time scholars, including Wallis, began
studying SERIES and INFINITE PRODUCTS. Scottish mathemati-
cian JAMES GREGORY (1638-75) developed techniques for
expressing trigonometric functions as infinite sums, thereby
discovering TAYLOR SERIES 40 years before BRook TAYLOR
(1685—1731) independently developed the same results.

By the mid-1600s, certainly, all the pieces of calculus
were in place. Yet scholars at the time did not realize that all
the varied problems being studied belonged to one unified
whole, namely, that the techniques used to solve tangent
problems could be used to solve area problems, and vice
versa. A fundamental breakthrough came in the 1670s
when, independently, GoTTFRIED WILHELM LEIBNIZ (1646—1716)
of Germany and SIrR IsaaAc NewTon (1642-1727) of England
discovered an inverse relationship between the “tangent
problem” and the “area problem.” The discovery of the FUN-
DAMENTAL THEOREM OF CALCULUS brought together the dis-
parate topics being studied, provided a beautiful and
natural perspective on the subject as a whole, and allowed
scholars to make significant advances in solving geometric
and physical problems with spectacular success. Despite
the content of knowledge that had been established up until
that time, it is the discovery of the fundamental theorem of
calculus that represents the discovery of calculus.

Newton approached calculus through a concept of
“flowing entities.” He called any quantity being studied a
“fluent” and its rate of change a FLUXION. Records show that

(continues)
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History of Calculus
(continued)

he had developed these ideas as early as 1665, but he did
not publish an account of his theory until 1704. Unfortunately,
his writing style and choice of notation also made his ver-
sion of calculus accessible only to a select audience. Leib-
niz, on the other hand, made explicit use of an infinitesimal in
his development of the theory. He called the infinitesimal
change of a quantity x a DIFFERENTIAL, denoted dx. Leibniz
invented a beautiful notational system for the subject that
made reading and working with his account of the theory
immediately accessible to a wide audience. (Many of the
symbols we use today in differential and integral calculus
are due to Leibniz.) Leibniz formulated his approach in the
mid-1670s and published his account of the subject in 1684.
Although it is now known that Newton and Leibniz had made
their discoveries independently, matters at the time were not
clear, and a bitter dispute arose over the priority for the dis-
covery of calculus. In 1712 the RovaL Society of England
formed a special committee to adjudicate the issue.

Applying the techniques to problems of the real world
became the main theme of 18th-century mathematics. New-
ton’s famous 1687 text Principia paved the way with its anal-
ysis of the laws of motion and the mechanics of the solar
system. The Swiss brothers Jakob Bernoulli (1654—-1705)
and Johann Bernoulli (1667-1748) of the famous BERNOULLI
FAMILY, champions of Leibniz in the famous dispute, studied
the newly invented calculus and were the first to give public
lectures on the topic. Johann Bernoulli was hired to teach
differential calculus to the French nobleman GuiLLAUME
Francois DE L' HopiTAL (1661-1704) via written correspon-
dence. In 1696 L'Hopital then published the content of
Johann’s letters with his own name as author. Italian math-
ematician MARIE GAETANA AGNESI (1718-99) wrote the first
comprehensive textbook dealing with both differential and
integral calculus in 1755.

The Swiss mathematician LEONHARD EuLER (1707-83) and
French mathematicians JOSEPH-Louis LAGRANGE (1736—1813)
and PIERRE-SIMON LAPLACE (1749-1827) were prominent in
developing the theory of DIFFERENTIAL EQUATIONS. Euler also
wrote extensively on the subject of calculus, showing how
the theory can be applied to a vast range of pure and applied
mathematical problems. Yet despite the evident success of
calculus, some 18th-century scholars questioned the validity
and the soundness of the subject.

The sharpest critic of Newton's and Leibniz's work was
the Anglican Bishop of Coyne, George Berkeley (1685—1753).
In his scathing essay, “The Analyst,” Berkeley demon-
strated, convincingly, that both Newton’s notion of a fluxion

and Leibniz's concept of an infinitesimal are ill-defined, and
that the foundations of the subject are consequently inse-
cure. (Some historians suggest that Berkeley's vehement
criticisms were motivated by a personal disdain for the
apparent atheism of the type of mathematician who argues
that science is certain and that theology is based on specu-
lation.) Mathematicians consequently began looking for
ways to put calculus on a sound footing. Significant
progress was not made until the 19th century, when French
mathematician AUGUSTINE Louis CAucHy (1789-1857) sug-
gested that the notion of an infinitesimal should be replaced
by that of a LimiT. German mathematician KARL WEIERSTRASS
(1815-97) developed this idea further and was the first to
give absolutely clear and precise definitions to all concepts
used in calculus, devoid of any mystery or reliance on geo-
metric intuition. The work of German mathematician RICHARD
DepekinD (1831-1916) highlighted the role properties of the
real number system play in ensuring the validity of the INTER-
MEDIATE-VALUE THEOREM and EXTREME-VALUE THEOREM and all
the essential results that follow from them.

Initially, calculus was deemed a theory pertaining only
to continuous change and CONTINUOUS FUNCTIONS. German
mathematician BERNHARD RIEMANN (1826—66) was the first to
consider, and give careful discussion on, the integration of
discontinuous functions. His definition of an integral is the
one typically presented in textbooks today. At the end of the
19th century, French mathematician HENRI LEON LEBESGUE
(1875-1941) literally turned Riemann’s approach around and
developed a concept of integration that can be applied to a
much wider class of functions and class of settings. In con-
structing a Riemann integral, one begins by subdividing the
range of inputs, the x-axis, into small intervals and adding
areas of rectangles above these intervals of heights given
by the function. This is akin to counting the value of a pock-
etful of coins by taking one coin out at a time, and adding
the outcomes as one goes along. Lebesgue suggested, on
the other hand, subdividing the range of outputs, the y-axis,
into small intervals and measuring the size of the sets on
the x-axis for which the function gives the desired output on
the y-axis. This is akin to counting coins by first collecting
all the pennies and determining their number, all the nickels
and ascertaining the size of that collection, and so forth. In
order to do this, Lebesgue had to develop a general “mea-
sure theory” for determining the size of complicated sets.
His new theory proved to be fundamentally important, and it
now has profound applications to a wide range of mathe-
matical topics. It proved to be especially important to the
sound development of PROBABILITY theory.

See also CALCULUS; DIFFERENTIAL CALCULUS; GRAPH OF A
FUNCTION; INTEGRAL CALCULUS; VOLUME.



and for multiplication, assuming that x is not zero:
axx=bxximpliesa=b

The cancellation law holds for any mathematical
system that satisfies the definition of being a GrRoOuP.
With the guaranteed existence of inverse elements, we
have a*x = b*x yields a*x*x ~! = b*x*x ~ !, which is
the statement a = b. It holds in MODULAR ARITHMETIC
in the following context:

ax = bx (mod N) implies a= b (mod N),
only if x and N are COPRIME

This follows since the statement ax = bx (mod N) holds
only if x(a — b) is a multiple of N. If x and N share no
prime factors, then it must be the case that the term a —
b contains all the prime factors of N and so is a multiple
of N. Consequently, a = b(mod N). The fact that 4 x 2
is congruent to 9 x 2 modulo 10, without 4 and 9 being
congruent modulo 10, shows that the cancellation law
need not hold if x and N share a common factor.

See also ASSOCIATIVE; COMMUTATIVE PROPERTY;
DISTRIBUTIVE PROPERTY.

Cantor, Georg (1845-1918) German Set theory Born
on March 3, 1845, in St. Petersburg, but raised in Wies-
baden and in Frankfurt, Germany, mathematician
Georg Cantor is remembered for his profound work on
the theory of sets and CARDINALITY. From the years
1874 to 1895, Cantor developed a clear and compre-
hensive account of the nature of infinite sets. With his
famous DIAGONAL ARGUMENT, for instance, he showed
that the set of rational numbers is DENUMERABLE and
that the set of real numbers is not, thereby establishing
for the first time that there is more than one type of infi-
nite set. Cantor’s work was controversial and was
viewed with suspicion. Its importance was not properly
understood at his time.

Cantor completed a dissertation on NUMBER THE-
ORY in 1867 at the University of Berlin. After working
as a school teacher for a short while, Cantor completed
a habilitation degree in 1869 to then accept an
appointment at the University of Halle in 1869. He
worked on the theory of trigonometric SERIES, but his
studies soon required a clear understanding of the
IRRATIONAL NUMBERs. This need turned Cantor to the
study of general sets and numbers.
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In 1873 Cantor proved that the set of all ratio-
nals and the set of ALGEBRAIC NUMBERs are both
COUNTABLE, but that the set of real numbers is not.
Twenty years earlier, French mathematician JOSEPH
LIOUVILLE (1809-82) established the existence of
TRANSCENDENTAL NUMBERs (by exhibiting specific
examples of such numbers), but Cantor had managed
to show, in one fell swoop, that in fact almost all
numbers are transcendental.

Having embarked on a study of the infinite, Cantor
pushed forward and began to study the nature of space
and dimension. In 1874 he asked whether the points of
a unit square could be put into a one-to-one correspon-
dence with the points of the unit interval [0,1]. Three
years later Cantor was surprised by his own discovery
that this is indeed possible. His 1877 paper detailing the
result was met with suspicion and was initially refused
publication. Cantor’s friend and colleague, the notable
JuLius WiLHELM RICHARD DEDEKIND (1831-1916),
intervened and urged that the work be printed. Cantor
continued work on transfinite sets for a further 18
years. He formulated the famous CONTINUUM HYPOTH-
ESIs and was frustrated that he could not prove it.

Cantor suffered from bouts of depression and men-
tal illness throughout his life. During periods of dis-
comfort, he turned away from mathematics and wrote
pieces on philosophy and literature. (He is noted for
writing essays arguing that Francis Bacon was the true
author of Shakespeare’s plays.)

Cantor died of a heart attack on January 6, 1918,
while in a mental institution in Halle, Germany. Even
though Cantor’s work shook the very foundations of
established mathematics of his time, his ideas have now
been accepted into mainstream thought. Beginning
aspects of his work in SET THEORY are taught in ele-
mentary schools.

capital See INTEREST.

Cardano, Girolamo (Jerome Cardan) (1501-1576)
Italian Algebra Born on September 24, 1501, in
Pavia, Italy, scholar Girolamo Cardano is remembered
as the first to publish solutions to both the general
CUBIC EQUATION and to the QUARTIC EQUATION in his
1545 treatise Ars magna (The great art). Even though
these results were due to SCIPIONE DEL FERRO
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(1465-1526), NICCOLO TARTAGLIA (1499-1557), and
to his assistant LupovicO FERRARI (1522-65), Car-
dano unified general methods. He was an outstanding
mathematician of the time in the fields of ALGEBRA,
TRIGONOMETRY, and PROBABILITY.

At the age of 19, Cardano entered Pavia University
to study medicine but quickly transferred to the Uni-
versity of Padua to complete his degree. He excelled at
his studies and earned a reputation as a top debater. He
graduated with a doctorate in medicine in 1526.

Cardano set up a small medical practice in the vil-
lage of Sacco, but it was not at all successful. He
obtained a post as a lecturer in mathematics at the
Piatti Foundation in Milan, where he pursued interests
in mathematics while continuing to treat a small clien-
tele of patients.

In 1537 Cardano published two mathematics texts
on the topics of arithmetic and mensuration, marking
the start of a prolific literary career. He wrote on such
diverse topics as theology, philosophy, and medicine in
addition to mathematics.

In 1539 Cardano learned that an Italian mathe-
matician by the name of Tartaglia knew how to solve
cubic equations, a topic of interest to Cardano since he
and Ferrari, his assistant, had discovered methods for
solving quartics, if the method for cubics was clear.
Tartaglia revealed his methods to Cardano under the
strict promise that the details be kept secret. (At the
time, Renaissance scholars, such as Tartaglia, were
often supported by rich patrons and had to prove their
worth in public challenges and debates. Keeping meth-
ods secret was thus of key importance.) When Cardano
later learned that another scholar by the name of del
Ferro had discovered methods identical to those of
Tartaglia decades earlier, Cardano no longer felt
obliged to keep the solution secret and published full
details in his famous 1545 piece Ars magna (The great
art). Tartaglia was outraged by this act, and a bitter
dispute between the two men ensued.

Although Cardano properly credits Ferrari and
Tartaglia as the first scholars to solve the cubic equa-
tion, it should be noted that Cardano properly identi-
fied general approaches that unified previous methods.
Cardano also recognized that solutions would often
involve COMPLEX NUMBERS and was the first scholar to
make steps toward understanding these quantities. He
died on September 21, 1576, in Rome.

See also RAFAEL BOMBELLI.

Cardano’s formula (Cardano-Tartaglia formula) See
CUBIC EQUATION.

cardinality In common usage, the cardinal numbers
are the counting numbers 1, 2, 3, ... These numbers
represent the sizes of FINITE sets of objects. (Unlike the
ORDINAL NUMBERS, however, the cardinal numbers do
not take into account the order in which elements
appear in a given set.)

In the late 1800s German mathematician GEORG
CANTOR (1845-1918) extended the notion of cardinal-
ity to include meaningful examination of the size of
infinite sets. He defined two sets to be of the same car-
dinality if their members can be matched precisely in a
one-to-one correspondence. That is, each element of
the first set can be matched with one element of the
second set, and vice versa. For example, the set of peo-
ple {Jane, Lashana, Kabeer} is of the same cardinality
as the set of dogs {Rover, Fido, Spot}, since one can
draw leashes between owners and dogs so that each
owner is assigned just one dog, and each dog is leashed
to one owner. Each of these sets is said to have cardi-
nality 3. (Both sets are of the same cardinality as the set
{1, 2, 3}.) Two sets of the same cardinality are said to
be equipotent (equipollent, equinumerable, or, simply,
equivalent).

The set of all counting numbers {1, 2, 3, ...} is
equipotent with the set of all integers {..., =2, -1, 0, 1,
2, ...}. This can be seen by arranging each set of num-
bers in a list and matching elements according to their
positions in the list:

6
7
-3

O o=

2 3
T 7
1

PRGN
PPE

—_
[\

This procedure shows that any two sets whose elements
can be listed are equipotent. Such a set is said to be
DENUMERABLE, and Cantor denoted the cardinality of
any denumerable set X, pronounced “aleph null.” Can-
tor’s first DIAGONAL ARGUMENT shows that the set of all
counting numbers, the set of integers, and the set of all
rational numbers are each denumerable sets and so each
have cardinality X,. Mathematicians have shown that
the set of all ALGEBRAIC NUMBERs is also denumerable.
Not all infinite sets, however, are denumerable, as

Cantor’s second diagonal argument shows. For



instance, it is not possible to place the set of all real
numbers in a list, and so, in some well-defined sense,
the set of real numbers is “more infinite” than the set
of counting numbers or the rationals. Cantor denoted
the cardinality of the set of real numbers ¢, for “contin-
uum.” We have:

Rp<c

In general, the cardinality of one set A is said to be less
than the cardinality of another set B if it is possible to
match each element of A with a unique element of B,
but not vice versa. (Thus A is equipotent with a proper
subset of B but not equipotent with B itself.) For exam-
ple, the cardinality of {Jane, Lashana, Kabeer}, which we
denote as 3, is less than the cardinality of the set {Rover,
Fido, Spot, Tess, Rue, Tucker, Jet}, which we denote as
7. Although we can match the owners with distinct
dogs, we cannot match the dogs with distinct owners.
An infinite set has the property that it is equipotent
with a proper subset of itself. (This is usually taken as
the definition of what it means for a set to be infinite.)
For example, since the set of integers is equipotent with
the subset of counting numbers, the set of integers is
indeed an infinite set. The graph of the tangent function

y = tan x between X = —% and x = % shows that each

point on the y-axis is matched with a unique point on
the x-axis in the interval (_%’ %j, and vice versa.
Thus the set of all points on the entire number line (the
y-axis) has the same cardinality as the set of all points
just in a finite interval. The set of all real numbers is
indeed an infinite set.

The set of all subsets of a set A is called the “power
set” of A, denoted P(A). For example, the power set
of {a,b,c,} is the set of eight elements: {O,{a},
{b},{c},{a,b},{a,c},{b,c},A}. (In general, the power set of
a set with n elements has 2”7 elements.) In some sense,
the power set of the set of all counting numbers A =
{1,2,3,...} matches precisely with the set of all real
numbers between zero and one. This can be seen as
follows:

Given a subset B of counting numbers, let x be
the real number written as a decimal in base
two whose kth digit is 1 if k& belongs to B, and
0 otherwise. (Thus, for instance, the subset of
odd counting numbers yields the real number x

cardinality 61

= .1010101... .) And conversely, given a real
number x between zero and one, create a sub-
set B of counting numbers as dictated by the
placement of 1s in its binary expansion. (Thus,
for instance, the real number x = .010000...
corresponds to the subset {2}.)

(There is one technical difficulty with this correspon-
dence. The numbers 0.01000... and 0.001111..., for
instance, represent the same real number, yet corre-
spond to different subsets of the counting numbers.
Mathematicians have shown that this difficulty can be
obviated.) We have:

P(N) =R

where N denotes the set of natural numbers and R the
set of real numbers.

The cardinality of the counting numbers is X, and
the above argument shows that the cardinality of its
power set is ¢. This suggests, as for finite sets, that the
power set of a set is always of “larger” cardinality than
the original set. Cantor used the following argument to
prove that this is indeed the case:

Let A be a set and consider its power set P(A).
Since every element a of A gives rise to the ele-
ment {a} of P(A), we can certainly match the
elements A with distinct elements of P(A). We
now show, however, that it is not possible to
reverse the process and match the elements of
P(A) with distinct elements of A.

Suppose, to the contrary, we have speci-
fied a way to associate with each subset of A
a distinct element of A. For example, the sub-
set {a,b,c} might be matched with the element
a, and the subset {g,c,e,g,...} with b. Notice
that the first subset contains the element a
with which it is matched, but the second sub-
set does not contain the element b with which
it is matched.

Let U be the set of all elements of A that
are used in the above correspondence, but are
not elements of the subsets to which they are
assigned. (For instance, b above is an element
of U, but a is not.) The subset U must be
assigned some element of A, call it #. Now ask:
Is # a member of U? The set U cannot contain
u by the very definition of U.

But in that case u satisfies the definition
of being in U. So by not being in U, # must
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be in U, and by being in U, # cannot be in U.
This absurdity shows that there cannot be a
meaningful correspondence that assigns dis-
tinct elements of A to subsets of A after all.

Given an infinite set A, Cantor had thus shown
that the sets P(A), P(P(A)), P(P(P(A))), ... form a never-
ending chain of increasingly larger infinite sets. Thus,
in a very definite sense, there are infinitely many differ-
ent types of infinity. At the other end of the spectrum,
the study of denumerable sets shows that every infinite
set contains a denumerable subset. Thus of all the infi-
nite sets, denumerable sets are the “smallest” type of
infinite sets. The CONTINUUM HYPOTHESIS asks whether
or not there is an infinite set with cardinality that lies
somewhere between that of N and P(N) = R.

One might suppose that P(R), the power set of the
set of all points on the real number line, is R?, the set
of all points in the plane, or, equivalently, that the
power set of the set of all points in the unit interval
[0,1] is the set of all points inside the unit square [0,1]
x [0,1]. Surprisingly, this is not the case: there are just
as many points in the unit square as there are in a unit
interval. This is seen as follows:

Associate to each point (x,y) with 0 < x <1 and
0 <y <1, each written as an infinite decimal
expansion, x = 0.x1x,x3... and y = 0.y1y2Y3...,
the real number » = 0.x;y;x;y,x3y3... in the
interval [0,1], and, conversely, match each real
number 7 = 0.r177374757¢... with the point
(0.717375..., 0.ry747¢...) in the unit square.

(Again there is a technical difficulty caused by those
real numbers that have two different decimal represen-
tations. For instance, one-half can be written both as
0.5000... and 0.4999... Mathematicians have shown
that this difficulty can be obviated.) It turns out that
P(R) corresponds to the set of all possible real-valued
functions y = f(x).
See also INFINITY; PEANO’S CURVE.

cardioid The heart-shaped curve traced by a point on
the circumference of one circle as it rolls around
another circle of equal size is called a cardioid. In
POLAR COORDINATES, the cardioid is given by an equa-
tion of the form r = a(1- cos®) where a is the common
radii of the circles, and in CARTESIAN COORDINATES by

(x* + y* — ax)? = a*(x* + y?). The PARAMETRIC EQUA-
TIONS of the curve are x = acos®(1 + cos) and y =
asinf(1 + cosB). The curve has area one-and-a-half
times the area of either generating circle, and perimeter
eight times the radius.

The cardioid was first studied extensively by Italian
mathematician Johann Castillon, who also coined its
name in 1741,

See also CYCLOID.

Cartesian coordinates (orthogonal coordinates, rect-
angular coordinates) One of the biggest break-
throughs in the development of mathematics occurred
when geometry and algebra were united through the
invention of the Cartesian coordinate system. Credited
to 17th-century French mathematician and philosopher
RENE DESCARTES (whose name Latinized reads Carte-
sius), Cartesian coordinates provide a means of repre-
senting each point in the plane via a pair of numbers.

One begins by selecting a fixed point O in the plane,
called the origin, and drawing through it two perpendic-
ular number lines, called axes, one horizontal and one
vertical, and both with the point O at the zero position
on the line. It has become the convention to set the posi-
tive side of the horizontal number line to the right of O,
and the positive side of the vertical number line above
O, and to call the horizontal axis the x-axis, and the ver-
tical one the y-axis. The Cartesian coordinates of a point
P in the plane is a pair of numbers (x,y) which then
describes the location of that point as follows:

The x-coordinate, or “abscissa,” is the hori-
zontal distance of the point from O along the
horizontal axis. (A positive distance repre-
sents a point to the right of the vertical axis; a
negative distance one to the left.) The y-coor-
dinate, or “ordinate,” is the vertical distance
of the point from O along the vertical axis. (A
positive distance represents a point located
above the horizontal axis, and a negative dis-
tance one located below.)

For example, if the bottom left corner of this page is
the origin of a Cartesian coordinate system, with x-
and y-axes marked in units of inches, then the point
with coordinates (4, 1) lies four inches to the right of
the left edge of the page, and one inch above the bot-
tom of the page.



Extending this idea to three-dimensions, points in
space can be specified by a triple of numbers (x,),z)
representing the distances along three mutually perpen-
dicular number lines. The coordinate axes are usually
called the x-, y-, and z-axes. They intersect at a point
O, called the origin, which is zero on all three number
lines. The axes could be oriented to either form a left-
handed or a right-handed system.

Coordinate Geometry

The advent of a coordinate system allowed mathemati-
cians, for the first time, to bring the power of algebra
to the study of geometry. For example, straight lines
are represented as sets of points (x,y) that satisfy equa-
tions of the form y = mx + b. Multiplying the SLOPE m
of one line with the slope of another quickly ascertains
whether or not those two lines are perpendicular, for
example. (The product of the slopes of two perpendicu-
lar lines is —1.)

French mathematician NICOLE ORESME (1323-82)
was the first to describe a way of graphing the relation-
ship between an independent variable and a dependent
one, and thus the first to make steps toward uniting
geometry and algebra. The explicit construction of
what we would call a coordinate system first appeared
with the work of French lawyer and amateur mathe-
matician PIERRE DE FERMAT (1601-65). Starting with
some horizontal reference line to represent an indepen-
dent variable x, Fermat would graphically depict the
relationship of a second variable y to it as a line seg-
ment, held at a fixed angle to the reference line, whose
length would vary according to the variable y as it
slides along the x-axis. Fermat did not think in terms,
however, of identifying a second axis, nor did he
require the line segment representing y to be perpendic-
ular to the x-axis.

In his famous 1637 text La géométrie (Geometry),
René Descartes independently described similar meth-
ods for representing algebraic relationships graphically.
Because the work of Fermat was not published until
after his death, the discovery of coordinate geometry
was attributed to Descartes.

Because Fermat and Descartes interpreted the
unknown variable y in an algebraic relationship as a
physical length, both scholars only ever considered posi-
tive coordinates. English mathematician JoHN WALLIS
(1616-1703) was the first to introduce the possibility of
negative coordinates. The idea of setting a fixed second
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axis, the y-axis, perpendicular to the x-axis was not
popular until the mid 1700s. It was an idea that seemed
to evolve gradually. SIR IsAAC NEWTON (1642-1727) is
considered the originator of POLAR COORDINATES.

See also COORDINATES; GRAPH OF A FUNCTION.

Cartesian product (cross product, external direct
product, product set, set direct product) Given two
sets A and B, their Cartesian product, denoted A X B, is
the set of all ordered pairs (a,b), where a € A and b €
B. For example, if A ={1,2,3} and B = {o,}, then:

Ax B = [ (La), (2,0), 3,0, (1,B), (2,B), (3,8 )
This is different from the set B x A.

If sets A and B are both finite, with 7 and m ele-
ments, respectively, then A X B is a finite set with nm
elements. German mathematician GEORG CANTOR
(1845-1918) showed that if A and B are both infinite
COUNTABLE sets, then their Cartesian product A x B is
again countable.

The Cartesian product of three sets A, B, and C,
denoted A x B x C, is defined as the set of all ordered
triples (a,b,c), with a € A, b € B, and ¢ € C. The
Cartesian product of any finite collection of sets is
defined similarly. Any SEQUENCE can be thought of as
an element of the Cartesian product of a countable
number of sets.

If two sets A and B have a particular structure
(they might both be GROUPs or VECTOR SPACEs, for
instance), then it is usually possible to give the Carte-
sian product A x B the same structure. For example, if
A and B are groups with group operations * and e,
respectively, then A X B has the structure of a group
with group operation given by:

(a1, by) - (a2, by) = (a1 * ap, by @ by)

The Klein four-group is the Cartesian product of the two-

element group Z, = {0,1} with itself. (The group opera-

tion for Z, is addition in mod 2 MODULAR ARITHMETIC.)
See also SET THEORY.

casting out nines The DIVISIBILITY RULES show that
the remainder of any number, when divided by 9, is the
sum of its digits. For example, 59,432,641 leaves a
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remainder of 5+ 9 +4 +3 +2+ 6 +4 + 1 =34 when
divided by 9, which corresponds to a remainder of 3 +
4 = 7. Any sets of digits that sum to 9, such as the 5
and the 4 in the first and third positions of the number
above, can be ignored when performing this calcula-
tion, for they will not contribute to the remainder.

The method of “casting out nines” is the process of
deleting groups of digits summing to 9. The sum of the
digits that survive is the remainder that number yields
upon division by 9. For example, 59,432,641 —
932,641 — 934 — 34 shows, again, that this number
leaves a remainder of 3 + 4 = 7 when divided by 9.

This method is often used to check arithmetical
work. For example, we can quickly determine that 563
x 128 cannot equal 72,364. Upon division by 9, 563
leaves a remainder of 5, 128 a remainder of 2, and so
their product leaves a remainder of 5 x 2 = 10, which is
1. Yet 72,364 has a remainder of 4.

Long lists of additions, subtractions, and multipli-
cations can be quickly checked this way. Of course,
errors may still be present if, by chance, remainders
happen to match. For example, casting out nines will
not detect that 632 x 723 = 459,636 is incorrect.

Catalan, Eugéne Charles (1814-1894) Belgian Num-
ber theory Born on May 30, 1814, mathematician
Eugene Catalan is best remembered for his work in NUM-
BER THEORY and for the famous series of numbers that
bears his name. In 1844 Catalan conjectured that 8 and 9
are the only two consecutive integers that are both non-
trivial powers (8 = 23 and 9 = 32). Establishing this claim,
today known as the CATALAN CONJECTURE, stymied
mathematicians for over a century. It was only recently
resolved.

Catalan’s career in academia was turbulent. After
entering the Ecole Polytechnique in 1833 he was
expelled the following year for engaging in radical
political activity. He was later given permission to
return to complete his degree and in 1838 was offered
a post as lecturer at the institution, which he accepted.
His political conduct, however, hampered his ability to
advance beyond this entry-level position.

Catalan worked in the field of CONTINUED FRAC-
TIONs and achieved some fame for publishing a sim-
plified solution to LEONHARD EULER’s “polygon
division problem.” This challenge asks for the number
of ways to divide a regular polygon into triangles

using nonintersecting diagonals. While not being the
first to solve the problem (in fact the problem was
first stated and solved by 18th-century Hungarian
mathematician J. A. Segner and then studied by
Euler), Catalan used an approach that was particu-
larly elegant. His 1838 paper on the topic, “Note sur
une équation aux differences finie” (Note on a finite
difference equation), was very influential because of
the method it detailed. The sequence of numbers that
arise in the study of the problem are today called the
CATALAN NUMBERS. They remain his standing legacy.

Catalan died on February 14, 1894, in Liege,
Belgium.

Catalan conjecture In his 1844 letter to Crelle’s
Journal, EUGENE CHARLES CATALAN conjectured that
the integers 8 and 9 are the only two consecutive inte-
gers that are both powers (8 = 23 and 9 = 3%). He was
not able to prove his claim, and establishing the truth
or falsehood of the conjecture became a longstanding
open problem. In April 2002, amateur mathematician
Preda Mihailescu announced to the mathematics com-
munity that he had completed a proof demonstrating
Catalan’s assertion to be true. Beforehand, Mihailescu
had proved a series of related results, all while working
at a Swiss fingerprinting company and exploring math-
ematics as an outside interest. Mathematicians are cur-
rently reviewing his final step of the work.

Catalan numbers In 1838 EUGENE CHARLES CATA-
LAN studied the problem of finding the number of dif-
ferent ways of arranging » pairs of parentheses. For
example, there is one way to arrange one set: ( ), two
ways to arrange two pairs: () () and (( )), and five
ways to arrange three pairs: ((( ), (()()), () (), ()
(()),and () () (). Is there a general formula for the
number of ways to arrange 7 pairs of parentheses? This
puzzle is today known as “Catalan’s problem.” As
Catalan showed, the solution is given by the formula:

2610 (4n—2)

Cn (n+1)!

yielding the sequence of numbers C; = 1, C, = 2, C; = 5,
C4 =14, C5 =42, ..., now called the Catalan numbers. It
is convenient to set Cy = 1. Some algebraic manipulation



shows that the Catalan numbers can also be expressed in
terms of BINOMIAL COEFFICIENTS:

C271-3-5--2n-1)

Cy

(n+1)!

246 (2,1).1.3.5 ..... 2n-1)
- n! (n+1)!
1 (2ay

T n+l an!

Thus the Catalan numbers can be found in PASCAL’s
TRIANGLE as the middle entry of every alternate row
divided by one more than the row number, regarding
the apex of the triangle as row zero.

One can show that the Catalan numbers satisfy the
relationship:

Co=1
Cn = COCn—l + Clcn_z + .0+ Cn_1C0

The Catalan numbers appear as the solution to a sur-
prising number of different mathematical problems. We
list here just a few examples.

1. Euler’s Polygon Division Problem: How
many ways are there to divide an (7 + 2)-
sided polygon into 7 triangles using nonin-
tersecting diagonals of the polygon?

A three-sided polygon, that is, a triangle, is already
appropriately subdivided. There is one solution to the
problem, namely, do nothing. A square can be subdi-
vided into two triangles two different ways. One can
check that a pentagon can be so subdivided five differ-
ent ways. In general the solution to this puzzle is the
nth Catalan number.

2. Laddered Exponents: How many ways can
one interpret a laddered exponent?

For example, 3% has only one interpretation: it means
3 x 3 = 9. The expression 234, however, can be inter-
preted two ways: (23" = 4096 or 206Y =
2417851639229258349412352. In general, a lad-
dered exponent with (# + 1) terms can be interpreted
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C, different ways. (This problem is equivalent to
Catalan’s original parentheses puzzle.)

3. Handshakes across a Table: In how many
different ways can #n pairs of people sitting
at a circular table shake hands simultane-
ously? No pair of handshakes may cross.

Two people sitting at a table can shake hands only one
way. Four people can accomplish the feat in only two
ways. (Diagonal handshakes cross.) In general, 7 pairs of
people can shake hands C, different ways, for one can
interpret two hands shaking as a pair of parentheses.

4. Stair Climbing: Starting at the base of a
flight of stairs, in how many ways can one
take 7 steps up and # steps down, in any
order? (You will necessarily return to the
base of the steps on completion of the walk.)

There is one way to take two steps: one step up followed
by one step down, and two ways to take four steps: two
up, two down, or one up, one down, repeated twice. In
general there are C, ways to accomplish this task.
(Thinking of a left parenthesis as an “up step” and a
right parenthesis as a “down step,” we can see that this
puzzle too is equivalent to Catalan’s original problem.)

5. Summation Problem: Select n numbers from
the set {1,2,3,...,2n} so that their sum is a
multiple of # + 1. Can this be done? If so, in
how many different ways?

Consider the case 7z = 3, for example. There are five ways
to select three numbers from the set {1, 2, 3, 4, 5, 6} with
sum divisible by four: 1 +2 +5=8;1+3+4=8;1+35
+6=12;2+4+6=12;3+4 +5 =12. In general, these
puzzles can always be solved, and there are C, ways to
do them.

See also CATALAN CONJECTURE.

catenary The shape of the curve formed by a uniform
flexible cable hanging freely between two points, such as
an electric cable between two telegraph poles, is called a
catenary. GALILEO GALILEI (1564-1642) thought this
curve to be a PARABOLA, but German scholar Joachim
Jungius (1587-1657) later proved that this could not be
the case. Jacques Bernoulli (1654-1705) of the famous
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BERNOULLI FAMILY was the first to write down the for-
mula for the catenary. Up to constants, it is given by:

y= % = cosh(x)

This is the hyperbolic cosine function from the set of
HYPERBOLIC FUNCTIONS. Engineers, in designing sus-
pension bridges such as the Golden Gate Bridge in San
Francisco, make extensive use of this function in their
work. The name catenary comes from the Latin word
catena for “chain.”

Cauchy, Augustin-Louis (1789-1857) French Anal-
ysis, Calculus, Number theory Born on August 21,
1789, French scholar Augustin-Louis Cauchy is remem-
bered as one of the most important mathematicians of

Augustin-Louis Cauchy, an eminent mathematician of the 19th
century, was the first to use the notion of a “limit,” as it is now
known, to develop a sound model of continuity and convergence
in the theory of calculus. (Photo courtesy of the Science
Museum, London/Topham-HIP/The Image Works)

his time. With 789 mathematical papers and seven
influential textbooks to his credit, Cauchy made signifi-
cant contributions to the study of NUMBER THEORY,
ANALYSIS, GROUP THEORY, DIFFERENTIAL EQUATIONS,
and PROBABILITY. In his famous 1821 text Cours d’ana-
lyse (A course of analysis), Cauchy was the first to pro-
vide an exact, rigorous meaning of the terms derivative
and integral as used in CALCULUS through the develop-
ment of the notion of a LMIT. Cauchy also properly
defined the terms continuity and convergence. His insis-
tence on the absolute need for rigor and clarity in all of
mathematics had a lasting effect and set the standards
of rigor required today of all mathematical research.

After graduating from the I’Ecole Polytechnique
in 1807 with a degree in mathematics, Cauchy pur-
sued a career in engineering. Noted as a promising
practitioner in the field, Cauchy was assigned to the
Ourcq Canal project and by age 21 managed to
receive a high-ranking commission in Cherbourg as a
military engineer.

Despite his busy work life, Cauchy continued to
pursue interests in mathematics. In 1811 he proved a
result on the geometry of polyhedra, which he submit-
ted for publication. He received considerable praise for
this accomplishment and decided to change careers and
pursue research in mathematics full time. A year later
he returned to Paris and began looking for a faculty
position at an academic institution. Cauchy was finally
awarded an assistant professorship at the I’Ecole Poly-
technique in 1815.

All the while, Cauchy continued to produce and pub-
lish mathematical results. The same year as his appoint-
ment, Cauchy won the Grand Prize of the I’Académie
Royale des Sciences for his outstanding mathematical dis-
coveries on the theory of waves. This recognition gar-
nered him some notice in the scientific community, but
real fame came to Cauchy when, another year later, he
solved an outstanding problem posed by PIERRE DE FER-
MAT (1601-1665) on the properties of FIGURATE NUM-
BERS. Cauchy had now proved himself an expert in a
surprisingly large number of disparate fields.

Cauchy published an incredible number of papers
during this early period of his life, at a rate of as many
as two a week. He was so prolific that the editors of
the French journal Comptes Rendu imposed a quota on
him. In response, Cauchy persuaded a family member,
who worked in the publishing field, to create a new
journal that contained nothing but papers by him!



The main thrust of much of Cauchy’s work was to
make mathematics rigorous and precise. He insisted on
providing clarity, precision, and rigor in all the courses
he taught and in his published work. His famous 1821
text was in fact a course book for students developed
with the intention of “doing calculus the correct way.” It
is fair to say that Cauchy influenced the entire course of
mathematical research by pointing out, and demanding,
the need for absolute clarity and care in the development
of new (and even previously established) ideas. It is said
that the great mathematician PIERRE-SIMON LAPLACE
(1749-1827), after attending a lecture given by Cauchy
on the importance of the convergence of an infinite
series, quickly ran home to check the convergence of all
the infinite series he had used in his already published
popular text Mécanique céleste on celestial mechanics.

In 1826 Cauchy published seminal works in the
field of number theory, and in 1829 he defined, for the
first time, the notion of a complex function of a com-
plex variable.

Cauchy left Paris and the brewing politics of the
royal regime in 1830. Upon his return a year later, he
refused to swear an oath of allegiance to the new
regime and consequently lost his academic position. It
was not until the overthrow of Louis Philippe in 1848
that Cauchy regained his university position. Even
though Cauchy’s publication rate slowed considerably
during this trying time, he did accomplish important
work on the theory of differential equations and appli-
cations to mathematical physics during this period.

Cauchy left a standing mark on the development of
calculus with his work on refining the logical basis of
the subject and greatly influenced the study of complex
functions. A number of fundamental concepts in the
field of analysis are named in his honor, including a pair
of equations known as the Cauchy-Riemann equations
that determine whether or not a complex function is
differentiable. Cauchy died in Sceaux, near Paris,
France, on May 22, 1857. His collected works, Oeuvres
completes d’Augustin Cauchy (The complete works of
Augustin Cauchy), collated under the auspices of the
Académie des Sciences, were published throughout the
years 1882 to 1970 in a total of 27 volumes.

Cavalieri, Bonaventura Francesco (1598-1647) Ital-
ian Geometry Born in Milan, Italy, in 1598 (his exact
birth date is not known), mathematician, and disciple of
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GALILEO, Bonaventura Cavalieri is best remembered for
his 1635 work Geometria indivisibilibus continuorum
(A new geometry of continuous indivisibles) in which he
introduced his famous “method of indivisibles” for
determining the areas and volumes of curved figures.
This work is considered a forerunner to the entire theory
of INTEGRAL CALCULUS.

While still a boy, Cavalieri joined the religious
order Jesuati in Milan. In 1616, he transferred to the
monastery in Pisa, where he met Galileo and developed
an interest in mathematics. Even though Cavalieri
taught theology for many years and became a deacon
in the order, he actively pursued employment as a
mathematician. In 1629 he received a position as a
chair of mathematics at Bologna.

By this time Cavalieri had developed his method
of indivisibles. Based on ARCHIMEDES’ method of
exhaustion and JOHANNES KEPLER’s theory of the
infinitely small, Cavalieri’s technique provided a
means to rapidly compute the area and volumes of
certain geometric figures previously deemed too diffi-
cult for analysis. Cavalieri’s famous 1635 work
describing these methods, however, was not well
received and was widely attacked for its lack of rigor.
In response, Cavalieri published a revised piece,
Exercitationes geometricae sex, which successfully
settled all concerns. This second piece was acknowl-
edged as a masterpiece and deemed a necessary text
of study for all 17th-century scholars.

Cavalieri also studied and wrote extensively on the
topics of LOGARITHMS, CONIC SECTIONS, TRIGONOME-
TRY, optics, and astronomy. He developed a general rule
for computing the focal length of lenses, and described
the principles and design of a reflecting telescope.

Cavalieri died on November 30, 1647, in Bologna,
Italy. His name appears in all high-school geometry
textbooks of today for the principle he devised.

See also CAVALIERI’S PRINCIPLE.

Cavalieri’s principle Italian mathematician BONAVEN-
TURA CAVALIERI (1598-1647) identified a general princi-
ple today known as Cavalieri’s principle:

Solids of equal height have equal volumes if
cross-sections made by planes parallel to the
bases at the same distances from these bases
have equal areas.
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It is based on the idea that the volume of a deck of
cards, for example, does not change even if the deck is
skewed. A close examination of VOLUME explains why
Cavalieri’s principle is true.

Cayley, Arthur (1821-1895) British Matrix theory,
Geometry, Abstract algebra, Analysis Born on August
16, 1821, in Richmond, England, Arthur Cayley is
remembered as a prolific writer, having produced 967
papers in all, covering nearly every aspect of modern
mathematics. His most significant work, Memoir on the
Theory of Matrices (1858) established the new field of
matrices and MATRIX algebra. Cayley studied abstract
groups and was the first to study geometry in 7-dimen-
sional space with 7 a number greater than three.

Cayley demonstrated a great aptitude for mathemat-
ics as a child. A schoolteacher recognized his talent and
encouraged Cayley’s father to allow him to pursue stud-
ies in mathematics rather than leave school and enter the
family retail business. Cayley attended Trinity College,
Cambridge, and graduated in 1842. Unable to find an
academic position in mathematics, Cayley pursued a law
degree and practiced law for 14 years. During this time,
however, Cayley actively studied mathematics and
published over 250 research papers. In 1863 he was
finally appointed a professorship in mathematics at
Cambridge.

In 1854, while working as a lawyer, Cayley wrote
“On the Theory of Groups Depending on the Symbolic
Equation 6” = 1” and other significant papers that
defined, for the first time, the notion of an abstract
GROUP. At that time, the only known groups were PER-
MUTATION groups, but Cayley realized that the mathe-
matical principles behind these structures also applied
to matrices, number systems, and geometric transforma-
tions. This work allowed Cayley to begin analyzing the
geometry of higher-dimensional space. This, in turn,
coupled with his newly developed matrix algebra, pro-
vided the foundation for the theory of quantum
mechanics, as developed by Werner Heisenberg in 1925.

Cayley was elected president of the British Associa-
tion for the Advancement of Science in 1883. From the
years 1889 to 1895, Cayley’s entire mathematical out-
put was collated into one 13-volume work, The Col-
lected Mathematical Papers of Arthur Cayley. This
project was supervised by Cayley himself until he died
on January 26, 1895, at which point only seven vol-

umes had been produced. The remaining six volumes
were edited by A. R. Forsyth.
See also CAYLEY-HAMILTON THEOREM.

Cayley-Hamilton theorem English mathematician
ARTHUR CAYLEY (1821-95) and Irish mathematician
SIR WILLIAM ROWAN HAMILTON (1805-65) noted that
any square MATRIX satisfies some polynomial equa-
tion. To see this, first note that the set of all square 7 x
n matrices with real entries forms a VECTOR SPACE
over the real numbers. For example, the set of 2 x 2
square matrices is a four-dimensional vector space
with basis elements:

o otlo ol o(o )

Zj is indeed a linear

and any 2 X 2 matrix A:(a
c

combination of these four linearly independent matrices:

a=(2 2)=o oo o)+t o+ Y

In general, the set of all 7 x 7 square matrices is an
n’-dimensional vector space. In particular then, for
any 7 X n matrix A, the n* + 1 matrices I, A, A%, A3,
ooy A" must be linearly dependent, that is, there is a
linear combination of these elements that yields the
Zero matrix:

2
col + 1A + A% + ..+ c,pA" =0

for some numbers ¢y, ..., ¢,2. This shows:

Any n X n square matrix satisfies a polynomial
equation of degree at most 7.

Cayley and Hamilton went further and proved that
any square matrix satisfies its own “characteristic
polynomial”:

Let A be an 7 X 7 square matrix and set x to be
a variable. Subtract x from each diagonal entry
of A and compute the DETERMINANT of the
resulting matrix. This yields a polynomial in x



of degree n. Then the matrix A satisfies this
particular polynomial equation.

3 4

Then the “characteristic polynomial” of this matrix is:

21
For example, consider the 2 x 2 matrix A =[ j
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One now checks that
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is indeed the zero matrix.
See also IDENTITY MATRIX; LINEARLY DEPENDENT
AND INDEPENDENT.

ceiling function See FLOOR/CEILING/FRACTIONAL PART
FUNCTIONS.

center of gravity (balance point) The location at
which the weight of the object held in space can be
considered to act is called the object’s center of gravity.
For example, a uniform rod balances at its midpoint,
and this is considered its center of gravity. A flat rect-
angular plate made of uniform material held parallel to
the ground balances at its center. This point is the fig-
ure’s center of gravity.

Archimedes’ LAW OF THE LEVER finds the balance
point P of a system of two masses 72; and 7, held in
space. The two-mass system can then be regarded as a
single mass 1, + m, located at P.

The center of gravity of a system of three masses in
the space can be found by finding the balance point of
just two masses, using ARCHIMEDES’ law of the lever,
and then applying the law a second time to find the
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center of gravity of this balance point and the third
mass. This procedure can, of course, be extended to
find the center of gravity of any finite collection of
masses. (A location computed this way is technically
the center of mass of the system. If the force of gravity
is assumed to be uniform, then the center of mass coin-
cides with the center of gravity of the system.)

This principle can be extended to locate the center
of gravity of arbitrary figures in the plane (viewed as
flat, uniformly dense objects held parallel to the
ground). If the figure is composed of a finite collection
of rectangles glued together, one locates the center of
each rectangle, the mass of each rectangle, and then
regards the system as a collection of individual masses
at different locations. Applying Archimedes’ law of the
lever as above locates the figure’s center of gravity. If a
figure can only be approximated as a union of rectan-
gles, one can find the approximate location of the cen-
ter of gravity via this principle, and then improve the
approximation by taking the LIMIT result of using finer
and finer rectangles in the approximations. This
approach will yield an INTEGRAL formula for the loca-
tion of the center of gravity.

See also CEVA’S THEOREM; SOLID OF REVOLUTION.

central-limit theorem In the early 1700s scientists
from a wide range of fields began to notice the recur-
ring appearance of the NORMAL DISTRIBUTION in their
studies and experiments. Any measurement that repre-
sents an average value of a sample, or an aggregate
value of a series of results, tends to follow this classical
bell-shaped distribution. The work of MARQUIS DE
PIERRE-SIMON LAPLACE in 1818 and Aleksandr
Mikhailovich Lyapunov in 1901, and others, led to the
establishment of the central-limit theorem:

If an experiment involves the repeated compu-
tation of the average value of N measurements
(a different set of N measurements each time),
then the set of average values obtained very
closely follows a normal distribution—even if
the original experiments do not. The larger the
value of N, the better the approximation to a
normal curve.

One can go further and say that if the original
experiments have mean 1 and standard deviation o, then
the collection of average values also has mean , but
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. o
standard deviation E For example, a factory may

produce light bulbs packaged in large shipping cartons,
100 per carton. Even though the lifespan of individual
light bulbs may vary wildly following no recognizable
distribution of values, the central limit theorem asserts
that the average lifespan of the bulbs per carton is given
by a normal distribution. Since the height of an individ-
ual is the aggregate effect of the growth rate of a large
number of individual cells, the distribution of heights of
men and woman is essentially normal, as is the distribu-
tion of heights of most anything that grows—cats, maple
trees, or carrots, for example.

Another version of the central-limit theorem is use-
ful when trying to ascertain what proportion p percent
of the entire population possesses a certain property
(such as “Has blood type AB” or “Will vote Republi-
can next November”). As it is impossible to examine
every individual on the globe, or poll every individual
in the nation, one can examine a sample of individuals
and compute the percentage in this sample with the
desired property. The central-limit theorem also asserts:

If many different samples of N individuals are
examined, then the distribution of the percent-
ages of those samples possessing a particular
property very closely follows a normal distri-
bution (and the larger the value of N, the bet-
ter is the approximation to a normal curve).
This distribution has mean p, the true percent-
age of the population with this property, and

p(100-p) .

standard deviation g =
N

Both versions of the central-limit theorem allow statis-
ticians to make inferences and predictions based on sta-
tistical data.

See also GEORGE POLYA; STATISTICS: INFERENTIAL.

Ceva’s theorem Let P, O, and R be, respectively,
points on sides BC, CA, and AB of a triangle ABC.
(One is permitted to extend one or more sides of the
triangle.) Then the lines connecting P to A, QO to B, and
R to C are CONCURRENT if, and only if:

BP CO AR_

Here BP, for instance, represents the distance between
points B and P, and the ratio 1‘;—2 is considered positive

if the direction from B to P is the same as the direc-
tion from P to C, and negative if they are in opposite
directions.

This result is due to Italian mathematician Giovanni
Ceva (1647-1734). It is equivalent to the statement that
the operation of finding the CENTER OF GRAVITY of point
masses is ASSOCIATIVE. For instance, given three masses
at locations A, B, and C in a plane, one could locate the
center of mass of the entire system by first computing
the center of mass of just two points and then compute
the center of mass of that result with the third point.
Ceva proved that the same final result is produced no
matter which two points are chosen initially.

Ceva’s theorem can be proved mathematically by
making repeated use of MENELAUS’S THEOREM.

chain rule (function of a function rule) If y = f(u) is
a function of a quantity #, which in turn is a function
of another quantity x, # = g(x) say, then y itself can be
thought of as a function of x as a COMPOSITION of
functions: y = f(g(x)). The chain rule states that the rate
of change of y with respect to the quantity x is given by
the formula:

dy dy du

dx  du dx

This can also be written: (f(g(x)))’
example, to differentiate y = (x?

= flg . For
2)100, we can write

y = u'% where # = x*> + 2 and so:
dy dyd_“ d 1ooi 2 _ 99,
dx  du dx du( ) dx(x +2)=100u"2x
=200x(x?+1)%°

The chain rule can be proved by making use of the for-
mal definition of a derivative as a LIMIT:

4 flgt) =t o B+ A= /lel)
~lim,,_,, (8 +P) ~f(glx)) glx+h)-glx)
70 gl h) - glx) h

=f'(g(x)- g’(x)



Intuitively, the concept is easy to grasp if we think of
derivatives as rates of change. For example, if y changes
a times as fast as #, and u changes b times as fast as x,
then we expect y to change ab times faster than x.

The chain rule extends to functions of more than
one variable. For example, if z = f(x, y) is a function of
two variables with each of x and y a function of #, then
one can show that the total derivative of z with respect
to ¢t is given by:

df _of dx of dy
dt  ox dt 9Jy dt

See also PARTIAL DERIVATIVE.
change of variable See INTEGRATION BY SUBSTITUTION.

chaos A situation in which a DYNAMICAL SYSTEM can
appear to be random and unpredictable is called chaos.
More precisely, mathematicians define a dynamical sys-
tem to be chaotic if the set of all equilibrium points for
the system form a FRACTAL.

The term chaos was introduced by American math-
ematician James Yorke and Chinese mathematician
Tien-Yien Li in their 1975 seminal paper on iterations
of functions on the real number line.

characteristic polynomial See CAYLEY-HAMILTON
THEOREM.

Chebyshev, Pafnuty Lvovich (Tchebyshev) (1821-
1894) Russian Number theory, Analysis, Statistics
Born on May 16, 1821, in Okatova, Russia, Pafnuty
Chebyshev is remembered for his significant contribu-
tions to NUMBER THEORY, ANALYSIS, PROBABILITY the-
ory, and the development of inferential statistics. In
1850 he proved a conjecture posed by French mathe-
matician Joseph-Louis Francois Bertrand (1822-1900)
stating that for any value n > 3, there is at least one
PRIME between n and 27 — 2. Chebyshev is also noted
for founding an influential school of mathematics in
St. Petersburg.

Chebyshev entered Moscow University in 1837
and graduated four years later with an undergraduate
degree in mathematics. Driven by an unabashed
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desire to achieve international recognition, Cheby-
shev immersed himself in mathematical work. He
earned a master’s degree in 1846 at the same institu-
tion, all the while publishing results on integration
theory and methods, the convergence of TAYLOR
SERIES, and the development of analysis. Chebyshev
also examined the principles of probability theory
and developed new insights that prove the main
results of the theory in an elementary, but rigorous,
way. In particular, Chebyshev was able to offer an
elegant proof of SIMEON-DENIS POISSON’s weak LAW
OF LARGE NUMBERS.

In 1849 Chebyshev wrote a thesis on the theory
of MODULAR ARITHMETIC, earning him a doctorate in
mathematics from Moscow University, as well as a
prize from the Russian Academy of Science in recog-
nition of its originality and its significance. In his
study of prime numbers, Chebyshev not only estab-
lished Bertrand’s conjecture, but also made signifi-
cant steps toward proving the famous PRIME-NUMBER
THEOREM.

Chebyshev was elected as a full professor in math-
ematics at the University of St. Petersburg in 1850,
and, by this time, had indeed achieved international
fame. He traveled extensively throughout Europe and
collaborated with many scholars on research projects
on topics as diverse as mechanics, physics, mechanical
inventions, and the construction of calculating
machines, as well as continued work in mathematics.
He was awarded many honors throughout his life,
including membership to the Berlin Academy of Sci-
ences in 1871, the Bologna Academy in 1873, the
ROYAL SOCIETY of London in 1877, the Italian Royal
Academy in 1880, and the Swedish Academy of Sci-
ences in 1893. Every Russian university elected him to
an honorary faculty position, and Chebyshev was even
awarded honorary membership to the St. Petersburg
Artillery Academy, as well as to the French Légion
d’Honneur. He died on December 8, 1894, in St.
Petersburg, Russia.

A number of results and concepts are today named
in Chebyshev’s honor. For example, in analysis, the
“Chebyshev polynomials” provide a basis for the VEC-
TOR SPACE of CONTINUOUS FUNCTIONSs and have impor-
tant applications to approximation theory. In statistics
and probability theory, CHEBYSHEV’S THEOREM pro-
vides a “weak law of large numbers.”

See also STATISTICS: INFERENTIAL.
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Chebyshev’s theorem (Chebyshev’s inequality) This
result, due to the Russian mathematician PAFNUTY
LvoviCH CHEBYSHEV (1821-94), can be thought of as
an extension of the 68-95-99.7 rule for the NORMAL
DISTRIBUTION to one applicable to all distributions. It
states that if an arbitrary DISTRIBUTION has mean u and
standard deviation o, then the probability that a mea-
surement taken at random will have value differing
from p by more than k standard deviations is at most
1/k?. This shows that if the value ¢ is small, then all
DATA values taken in an experiment are likely to be
tightly clustered around the value L.

Manufacturers make use of this result. For exam-
ple, suppose a company produces pipes with mean
diameter 9.57 mm, with a standard deviation of 0.02
mm. If manufacturer standards will not tolerate a pipe
more than four standard deviations away from the
mean (0.08 mm), then Chebyshev’s theorem implies
that on average about 1/16, that is 6.25 percent, of the
pipes produced per day will be unusable.

The LAW OF LARGE NUMBERS follows as a conse-
quence of Chebyshev’s theorem.

See also STATISTICS: DESCRIPTIVE.

chicken See PRISONER’S DILEMMA.

Ch’in Chiu-shao (Qin Jiushao) (1202-1261) China
Algebra Born in Szechwan (now Sichuan), China,
mathematician and calendar-maker Ch’in Chiu-shao is
remembered for his 1243 text Shushu jiuzhang (Mathe-
matical treatise in nine sections), which contains,
among many methods, an effective technique of iter-
ated multiplication for evaluating polynomial equa-
tions of arbitrary degree. (In modern notation, this
technique is equivalent to replacing a polynomial such
as 4x3 + 7x> — 50x + 9, for instance, with its equivalent
form as a series of nested parentheses: ((4x + 7)x —
50)x + 9. In this example, only three multiplications
are needed to evaluate the nested form of the polyno-
mial compared with the six implied by the first form of
the expression. In practice, this technique saves a con-
siderable amount of time.) This approach was discov-
ered 500 years later in the West independently by
Italian mathematician Paolo Ruffini (1765-1822) and
English scholar William George Horner (1786-1837).
Ch’in Chiu-shao also extended this method to find
solutions to polynomial equations.

His text is also noted for its development of MODU-
LAR ARITHMETIC. In particular, Ch’in Chiu-shao proved
the following famous result, today known as the Chi-
nese remainder theorem:

If a set of integers m; are pair-wise COPRIME,
then any set of equations of the form
x = a; (mod m,) has a unique solution modulo
the product of all the ;.

For example, this result establishes that there is
essentially only one integer x that leaves remainders
of 1, 11, and 6, respectively, when divided by 5, 13,
and 16 (namely, 726, plus or minus any multiple of
5% 13 x 16 = 1040).

After serving in the army for 14 years, Ch’in Chiu-
shao entered government service in 1233 to eventually
become provincial governor of Qiongzhou. His 1243
piece Shushu jiuzhang was his only mathematical work.

Chinese mathematics Unfortunately, very little is
known about early Chinese mathematics. Before the
invention of paper around 1000 C.E., the Chinese
wrote on bark or bamboo, materials that were far
more perishable than clay tablets or papyrus. To make
matters worse, just after the imperial unification of
China of around 215 B.C.E., Emperor Shi Huang-ti of
the Ch’ih dynasty ordered that all books from earlier
periods be burned, along with the burying alive of any
scholars who protested. Only documents deemed “use-
ful,” such as official records and texts on medicine,
divination, and agriculture were exempt. Consequently
very little survived beyond this period, although some
scholars did try to reconstruct lost materials from
memory.

The art of mathematics was defined by ancient
Chinese scholars as suan chu, the art of calculation.
Often the mathematics studied was extremely practical
in nature, covering a wide range of applications,
including engineering, flood control, and architecture,
as well astronomy and divination. Practitioners of the
art were capable scientists. Records show, for example,
that the Chinese had invented seismographs to measure
earthquakes by the year 1000 C.E., and used compasses
made with magnetic needles a century later.

Evidence of mathematical activity in China can be
dated back to the 14th century B.C.E.. Tortoise shells and
cattle bones inscribed with tally marks indicate that the



people of the ancient Shang dynasty had developed a
base-10 notational system utilizing place value. This
establishes that the Chinese were one of the first civiliza-
tions to invent a DECIMAL REPRESENTATION system
essentially equivalent to the one we use today. Like other
civilizations of the time, however, the Chinese had not
developed a notation for zero and so wrote, for exam-
ple, the numbers 43 and 403 the same way, namely as
“lIl lll,” relying on context to distinguish the two.

The most important early Chinese mathematical
text is Jiuzhang suanshu (Nine chapters on the mathe-
matical art) dating from the period of the Han dynasty
(206 B.C.E. to 220 C.E.). The author of the work is
unknown, but it is believed to be a summary of all
mathematical knowledge possessed in China up to the
third century C.E., and may well have been the result of
several authors contributing to the same work. The
text is a presentation of 246 problems replete with
solutions and general recipes for solving problems of a
similar type. The work is generally very practical in
nature, with three chapters devoted to issues of land
surveying and engineering, and three to problems in
taxation and bureaucratic administration. But the text
does describe sophisticated mathematical techniques of
an abstract nature, and it offers many problems of a
recreational flavor. The document thus also clearly
demonstrates that scholars of the time were also inter-
ested in the study of mathematics for its own sake.

Jiuzhang suanshu is clearly not written for begin-
ners in the art of mathematics: many basic arithmetic
processes are assumed known. Another text of the
same period, Chou pei suan ching (Arithmetic classic of
the gnomon and the circular paths of heaven),
describes basic mathematical principles such as work-
ing with fractions (and establishing common denomi-
nators), methods of extracting square roots, along with
basic principles and elements of geometry, and surpris-
ingly, what appears to be a proof of what we today call
PYTHAGORAS’S THEOREM. At the very least, the Chinese
of this period knew the theorem for right triangles with
sides of length 3, 4, and 5 as the diagram of hsuan-
thu—four copies of a 3-4-5 right triangle arranged in a
square—appears in the text. Although this diagram in
itself does not constitute a “proof” of Pythagoras’s the-
orem, the idea embodied in the diagram can nonethe-
less easily be expanded upon to establish a general
proof of the result. For this reason, it is believed that
the Chinese had independently established the same
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famous result. This is certainly verified in the text of
Jiuzhang suanshu, as many problems posed in the piece
rely on the reader making use of the theorem.

Many scholars from the second to the 15th cen-
turies wrote commentaries on the work Jiuzhang suan-
shu and extended many of the results presented there.
Perhaps the most famous of these were the commen-
taries of Liu Hui who, in 263 C.E., offered written
proofs of the formulae for the volumes of a square
pyramid and a tetrahedron presented in Jiuzhang suan-
shu, as well as developed a more precise value for ©
than presented in the text. Liu Hui later went on to
write Haidao suanjing (Sea island mathematical man-
ual), in which he solved problems related to the survey-
ing and mapping of inaccessible objects using a refined
method of “double differences” arising from pairs of
similar triangles. This extended the work of propor-
tions presented in Jiuzhang suanshu. Liu Hui also
claimed that the material of Jiuzhang suanshu dates
back to 1100 B.C.E., but added that the actual text was
not written until 100 B.C.E. Historians today differ
about how seriously to take his claim.

The text Jiuzhang suanshu also contains recipes for
extracting square and cube roots, and methods for solv-
ing systems of linear equations using techniques very
similar to the methods of LINEAR ALGEBRA we use today.
Liu Hui’s commentary gives justification for many of the
rules presented. Although not formal proofs based on
axioms, it is fair to describe Liu Hui’s justifications as
valid informal proofs. It seems that mathematicians for
the centuries that followed remained satisfied with sim-
ple informal arguments and justifications, and no formal
rigor was deemed necessary.

Chinese scholars also made significant contribu-
tions to the study of COMBINATORICS, NUMBER THEORY,
and ALGEBRA. Mathematician CH’IN CHIU-SHAO (ca.
1200 c.E.) developed inventive methods for evaluating
polynomial expressions and solving polynomial equa-
tions. He also established the famous “Chinese remain-
der theorem” of number theory. The work of L1 YE of
the same period also establishes an algebra of polyno-
mials. Although Chinese mathematicians of the time
were familiar with negative numbers, they ignored neg-
ative solutions to equations, deeming them absurd.

The famous text Su-yuan yu-chien (The precious
mirror of the four elements) written by the scholar CHU
SHIH-CHIEH (ca. 1300 C.E.) contains a diagram of what
has in the West become known as PASCAL’S TRIANGLE.
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This text was written 300 years before French mathemati-
cian BLAISE PASCAL was born. (Some historians believe
that this work in fact dates back 200 years earlier to the
writings of mathematician Jia Xian.) Scholars of this time
routinely used the triangle to approximate nth roots of
numbers using the equivalent of the BINOMIAL THEOREM
of today. They preferred their procedural methods of
extracting square roots to solve QUADRATIC equations,
rather than make use of the general quadratic formula.

Soon after JOHN NAPIER (1550-1617) of the West
published an account of his new calculating aid, the
NAPIER’S BONES, the Chinese developed an analogous
system of graded bamboo rods that could be used to
quickly compute long multiplications and divisions. It
is not known if the Chinese invented this system inde-
pendently, or whether the idea was perhaps brought to
them by 17th-century Jesuit missionaries. Along with
the ABACUS developed in China 500 years earlier, the
calculating rods allowed for improved arithmetic com-
putations, especially useful for the precise computa-
tions needed in astronomy.

Early scholar Zu CHONGzHI (ca. 500 C.E.) com-
puted the volume of a sphere by a principle identical to
that of BONAVENTURA CAVALIERI (1598-1647).

See also MAGIC SQUARE.

chi-squared test The chi-squared test is a statistical
test (see STATISTICS: INFERENTIAL) used to determine
whether or not two characteristics of a population are
independent or associated in some way. For example,
imagine a social study looking for a possible correla-
tion between the type of milk people prefer on their
cereal and the number of body piercings they possess.
Five hundred people were surveyed and the results
obtained are displayed in a CONTINGENCY TABLE.

No One ortwo More than two
piercings piercings piercings
Fat-Free Milk 47 33 22 102
2% Milk 40 80 44 164
Whole Milk 113 37 84 234
200 150 150 500

Observe, in this study, that 102/500 = 0.204 of the
participants are fat-free milk users. If milk choice

bears no relationship to body piercings, we would
expect then about 0.204 of the 200 folk with no pierc-
ings to use fat-free milk. We observed a value of 47 (the
observed frequency) but expect a value of 0.204 x 200 =
40.8 (the expected frequency). Similarly, the expected
value for fat-free milk users with more than two pierc-
ings is 0.204 x 150 = 30.6 and for whole milk users
with one or two piercings: (234/500) x 150 = 70.2. In
this way we compute all expected frequencies, here
shown in parentheses:

No One ortwo More than two
piercings piercings piercings
Fat-Free Milk | 47(40.8) | 33(30.6) 22 (30.6) 102
2% Milk 40(65.6) | 80(49.2) 44 (49.2) 164
Whole Milk | 113(52.9) | 37(70.2) 84 (70.2) 234
200 150 150 500

Denoting the observed frequencies by the letter o and
the expected frequencies by e, we compute the chi-
squared statistic, 2, as:

2

XZ :z(o_e)

e

where the sum is over all entries in the table. (In the
1800s it was customary to convert all differences to a
positive value by use of the squaring function rather
than the ABSOLUTE VALUE function. This way, techniques
of calculus could be readily applied—it is straightfor-
ward to differentiate the square function, for example.)
A large value for y? indicates that there is considerable
discrepancy between observed and expected values, sug-
gesting that the two features of the population are not
independent, i.e., that there is a CORRELATION. A small
x? value suggests that there is no correlation.

Our particular example yields the value:

, (47-40.82  (33-30.6)%  (22-30.6)
T 40.8 30.6 30.6
(40-65.6)2 (80—-49.2)2 (44—-49.2)%
65.6 49.2 49.2
113-52.92 (37-70.2)> (84-70.2)2
52.9 70.2 70.2
=120.1



The chi-squared distribution is a DISTRIBUTION repre-
senting the values one would expect x> to adopt given
the assumption that the two features being studied are
independent. There is one distribution for each table of
given dimensions. Statistics texts usually present lists of
values for this statistic. It turns out that the %2 value in
this example is extraordinarily high, suggesting that
this study indicates a strong correlation between milk
choice and body piercings. The chi-squared test does
not give any information about the nature of the corre-
lation detected, only that it seems to exist. Further
examination of the data by alternative methods may
provide details of the association.
See also KARL PEARSON.

chord If A and B are two points on a continuous
curve, then a straight-line segment connecting A to B is
called a chord to the curve. This is not to be confused
with the ARC of the curve connecting A to B.

The CIRCLE THEOREMS show that any chord of a
circle is bisected by a radius that is perpendicular to
it. BERTRAND’S PARADOX shows that the act of select-
ing chords of a circle at random can lead to philo-
sophical difficulties.

See also CIRCLE.

Chu Shih-Chieh (Zhu Shijie) (ca. 1270-1330) Chi-
nese Algebra Often regarded as one of China’s great-
est mathematicians, Chu Shih-Chieh is remembered for
his influential 1303 text Su-yuan yu-chien (Precious
mirror of the four elements). It contains a diagram of
PASCAL’S TRIANGLE, as it has become known in the
West, representing one of the earliest appearances of
the figure in the history of mathematics. In the work,
Chu Shih-Chieh uses the triangle to describe a general
method for extracting roots to equations. He also pre-
sents a system of notation for polynomials in four
unknowns, which he calls the four elements—namely,
the celestial, the earthly, the material, and the human—
and provides effective techniques for manipulating
them to solve problems.

His section on FINITE DIFFERENCES gives formulae
for the sums of the first # terms of each diagonal of
Pascal’s triangle (for instance, that 1 + 2 + 3 + ... + 7
n(n+ 1)

equals M,andtbatl+3+6+10+...+ 5

2
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nn+1)(n+2)

6
techniques for summing arbitrary series. He also pro-
vides methods for solving equations via a process of
successive approximations.

Many historians claim that Chu Shih-Chieh’s impres-
sive work represents the peak of ancient Chinese mathe-
matics, noting that relatively little progress was made for
a long time after the publication of this piece. Four years
before the release of Su-yuan yu-chien, Chu Shih-Chieh
wrote a mathematical text intended to help beginners in
the subject. Extremely little is known of his personal life.

equals ), and also provides general

circle The set of all points in a plane a fixed distance
7 from a given point O forms a closed curve in the
plane called a circle. The length 7 is called the radius of
the circle, and the point O its center. If the center point
has CARTESIAN COORDINATES O = (a,b), then the DIs-
TANCE FORMULA shows that any point (x,y) on the cir-
cle satisfies the equation:

(x=af+(y-b?=1

If the point (x,y) on this circle makes an angle 6 with
a horizontal line through the center of the circle, then
we have:

X =a + rcosO
y = b + rsind

These are the PARAMETRIC EQUATIONS of a circle of
radius 7 and center (a,b).

The DIAMETER of a circle is the maximal distance
between two points on the circle. It equals twice the
radius of the circle. A circle is a figure of CONSTANT
WIDTH.

The length of the curve closed to form a circle is
called the circumference of the circle. Scholars since
the time of antiquity have observed that the ratio of
the circumference of a circle to its diameter is the same
for all circles. This constant value is called p1, denoted
7. We have:

m=3.14159265...

That all circles yield the same value for w is not imme-
diately obvious. This is a property of EUCLIDEAN
GEOMETRY of the plane, and a careful study of SCALE
explains why it must be true. (The value of m varies
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from 2 to 3.141592... for different circles drawn on
the surface of a SPHERE, for instance, since the diameter
of a circle must be measured as the length of a curved
line on the surface.)

If C is the circumference of a planar circle and
D = 2r is its diameter, then, by definition, © = C/D.
This yields a formula for the circumference of a circle:

C=2nr

A study of AREA also shows that the area A of a circle
is given by:

A =mr?
It is not immediate that the value 7 should also appear
in this formula.

A study of EQUIDISTANCE shows that it is always
possible to draw a circle through any three given points
in a plane (as long as the points do not lie in a straight
line), or, equivalently, it is always possible to draw a
CIRCUMCIRCLE for any given TRIANGLE. APOLLONIUS OF
PERGA (ca. 262-190 B.C.E.) developed general methods
for constructing a circle TANGENT to any three objects
in the plane, be they points, lines, or other circles.

Any line connecting two points on a circle is called
a CHORD of the circle. It divides the circle into two
regions, each called a segment. A chord of maximal
length passes through the center of a circle and is also
called a diameter of the circle. (Thus the word diameter
is used interchangeably for such a line segment and for
the numerical value of the length of this line segment.)
A radius of a circle is any line segment connecting the
center of the circle to a point on the circle. Two differ-
ent radii determine a wedge-shaped region within the
circle called a sector. If the angle between the two radii
is 0, given in RADIAN MEASURE, then the area of this

segment is zi-n r? = %9 r%. The length of the ARC of
T

. ... 6
the circle between these two radii is o 2nr=16.

Any two points P = (a,b1) and O = (a,,b,) in the
plane determine a circle with the line segment connect-
ing P to O as diameter. The equation of this circle is
given by:

(x—aj)(x—ay) + (y - bl)()’ -by)=0

The JORDAN CURVE THEOREM establishes that a cir-
cle divides the plane into two regions: an inside and an

outside. (This seemingly obvious assertion is not true for
circles drawn on a TORUS, for example.) Two intersect-
ing circles divide the plane into four regions; three inter-
secting circles can be arranged to divide the plane into
eight regions; and four mutually intersecting circles can
divide the plane into 14 regions. In general, the maximal
number of regions into which 7 intersecting circles
divide the plane is given by the formula: #* — 7 + 2.

The region formed at the intersection of two inter-
secting circles of the same radius is called a lens.

There are a number of CIRCLE THEOREMS describ-
ing the geometric properties of circles. A circle is a
CONIC SECTION. It can be regarded as an ELLIPSE for
which the two foci coincide.

If one permits the use of COMPLEX NUMBERS, then
any two circles in the plane can be said to intersect. For
example, the two circles each of radius one centered
about the points (0,0) and (4,0), respectively, given by
the equations x> + y* = 1 and (x — 4)? + y> = 1 intersect
at the points (2,/V3) and (2,-iV3).

The three-dimensional analog of a circle is a
SPHERE: the locus of all points equidistant from a fixed
point O in three-dimensional space. In one-dimension,
the analog of a circle is any pair of points on a number
line. (Two points on a number line are equidistant from
their MIDPOINT.)

The midpoint theorem asserts that all midpoints of
line segments connecting a fixed point P in the plane to
points on a circle C form a circle of half the radius of C.

See also APOLLONIUS’S CIRCLE; BRAHMAGUPTA’S
FORMULA; CYCLIC POLYGON; FAREY SEQUENCE; NINE-
POINT CIRCLE; UNIT CIRCLE; VENN DIAGRAM.

circle theorems A CIRCLE is defined as the set of
points in a plane that lie a fixed distance 7, called the
radius, from some fixed point O, called the center. This
simple definition has a number of significant geometric
consequences:

1. Tangent Theorems

The point of contact of a TANGENT line with a circle
is the point on that line closest to the center point
O. As a consequence of PYTHAGORAS’S THEOREM,
the line connecting the point of contact to O is at
an angle 90° to the tangent line. This proves:

The tangent to a circle is PERPENDICULAR to
the radius at the point of contact.
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Tangent theorems

This is illustrated in the diagram above, left.

The above diagram to the right shows that two
tangents through a common point P outside the circle
produce line segments PA and PB of equal length.
This follows from the fact that the two triangles pro-
duced are both right triangles of the same height with
a shared hypotenuse, and are hence congruent. Thus:

If PA and PB are tangents to a circle at
points A and B, respectively, then PA and
PB have the same length.

2. Inscribed-Angle Theorems
In the diagram below, left, angles o (the peripheral
angle) and B (the central angle) are subtended by the
same ARC. Thus we have:

For angles subtended by the same arc, the
central angle is always twice that of the
peripheral angle.

This is proved by drawing a radius from the cen-
ter O to the point at which angle o lies to create two

180 — 2x

D

i
. W’

1802y

Proving the central-angle/peripheral-angle theorem

isosceles triangles. Following the left-hand side of the
next diagram, and noting that the interior angles of a
triangle sum to 180°, we thus have x + y = o0 and
(180 — 2x) + (180 = 2y) + B = 360, from which it fol-
lows that B = 20.. A modification of this argument
shows that the result is still true even if the peripheral
angle is located as shown in the right-hand side of
the diagram, or if the arc under consideration is
more than half the PERIMETER of the circle.

The next three results follow (see diagram
below, right):

i. All angles inscribed in a circle subtended by the
same arc are equal,

ii. All angles inscribed by a diameter are right
angles. (This is known as the theorem of Thales.)

/2>

Lo

NOYZA
D&

<\

O

x+y=180°

Central and peripheral angles

Consequences of the central-angle/peripheral-angle theorem
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Chord theorems

iii. Opposite angles in a cyclic QUADRILATERAL
sum to 180°.

3. Two-Chord Theorem
In the diagram above, we have: ab = cd.

This is proved by connecting the endpoints of
the chords to create two triangles. The inscribed-
angle theorems show that these two triangles are
similar by the AAA rule. Consequently, a/c = d/b.

4. Radius-Chord Theorem
In the right-hand side of the diagram, we see that:

The radius of a circle bisects a chord (that
is, we have a = b) if, and only if, the radius
is perpendicular to the chord.

This is proved by drawing two radii to the endpoints
of the chord to produce a large isosceles triangle. If
the central radius is at 90° to the chord, this produces
two congruent right triangles, and so a = b. Con-
versely, if we are told a = b, then the LAW OF COSINES,
applied to each base angle of the isosceles triangle,
shows that the central radius intercepts the chord at
an angle of 90°.

See also AAA/AAS/ASA/SAS/SSS; CONGRUENT FIGURES;
CYCLIC POLYGON; PTOLEMY’S THEOREM; SECANT; SIMI-
LAR FIGURES.

circumcircle A circle that passes through all three ver-
tices of the triangle is called a circumcircle for the trian-
gle. That three distinct points in the plane determine a
unique circle was first proved by EUCLID in his treatise,
THE ELEMENTS, Book III. Euclid also presented a gen-
eral method for actually constructing the circumcircle of
a triangle. (This result was later generalized by ApoLLO-

NIUS OF PERGA, who showed how to construct a circle
tangent to any three points, lines, or circles in the plane.)

The center of the circumcircle of a triangle is called
its circumcenter. Clearly, it is a point EQUIDISTANT from
the three vertices, and so it must lie on each line of
points equidistant from any two vertices. The circum-
center of a triangle can thus be found by drawing the
perpendicular bisectors of the sides of the triangle and
locating where these three lines meet.

By the LAW OF SINES, the radius of the circumcircle

of a triangle is given by r= Zs%(m , where a is
a side-length of the triangle and A is the angle opposite
that chosen side. If the remaining two sides of the trian-

gle have lengths b and ¢, then the area of the triangle

can be written: area:%bcsin(A). By HERON’S

FORMULA, this area can also be computed via

a+b+c

area =\/ s(s—a)(s —b)(s —c) where s= . Equating

these two equations, solving for sin(A), and substitut-
ing into the formula above produces a formula for the
radius of the circumcircle of a triangle solely in terms
of its side lengths:

abc

e 4\/s(s—a)(s—b)(s—c)

The circumcircle of a regular POLYGON is that cir-
cle that passes through all the vertices of the polygon.
The radius of the circumcircle of a square, for example,
of side-length x is 7 = x/V2.

See also CONCURRENT; LONG RADIUS; TRIANGLE.

circumscribe/inscribe If A and B are two geometric
figures, with A inside B, drawn so that the two figures
have points in common but do not have edges that
cross, then we say that figure A is inscribed in B, or,
alternatively, that figure B is circumscribed about A.
For example, a polygon lying inside a circle with all its
vertices on that circle is said to be inscribed in the cir-
cle, and a circle inside a polygon touching each side of
the polygon is inscribed in the polygon. A circle that
passes through all three vertices of a triangle circum-
scribes that triangle, and the smallest square that sur-
rounds a circle circumscribes that circle.
See also CIRCUMCIRCLE; INCIRCLE.

clock math See MODULAR ARITHMETIC.



closure property A BINARY OPERATION on a set § is
said to be closed if the combination of two elements in
that set yields another member of that set. For exam-
ple, the set of positive whole numbers is closed under
addition, since the sum of any two positive integers is
itself a positive integer. This set is also closed under
multiplication (the product of two positive whole num-
bers is a positive integer), but not subtraction: if # and
m are positive whole numbers, then # — m could be
zero or negative and thus no longer in the set of posi-
tive whole numbers. (For instance, 3 -7 = -4.)

For a more unusual example, consider the set S of all
whole numbers that can be expressed as the sum of two
SQUARE NUMBERS. We have S = {0, 1, 2, 4, 5, 8,9, 10, 13,
16, 17, 20, 25,...}. (For instance, 0 = 0% + 02, 5 = 1% + 22,
20 = 2% + 4%, and 25 = 02 + 5% = 3% + 4% Surprisingly,
this set is closed under multiplication. For example, both
5 and 8 belong to S, and so does 5 x 8 = 40. (We have
40 = 22 + 6%.) Also, 10 and 13 belong to S, and so too
does 130. (We have 130 = 3% + 112.) This general
observation follows from the algebraic identity that if
N=a?+b*and M = & + d% then N x M = (ac + bd)* +
(ad - be)?.

This set S is also closed under exponentiation: if N
and M are each a sum of two squares, then so is NM.
For example, 513 = (12,625)% + (31,250)>.

See also SQUARE.

coefficient A numerical or constant multiplier of
the variables in a term of an algebraic expression is
called the coefficient of that term. For example, con-
sider the equation 5x3 — 2x + 7 = 0, where x is the
variable, the coefficient of x3 is 5, the coefficient of x
is =2, and the coefficient of x? is zero. In the equation
3 cos y — 4xy*> = 7, the coefficients of cos y and xy?
are 3 and -4, respectively.

Sometimes the value of a coefficient is not known
and a symbol is used in its stead. For instance, in the
expression ax® + bx + ¢ with x the variable, the num-
bers a and b are coefficients (and ¢ is a constant term).
Although the values of a, b, and ¢ are not specified, it is
understood that their values do not change even as the
value of x varies.

In a more general context, the term coefficient is
used for any number that serves as a measure of some
property or characteristic of a set of data or a physical
property. For instance, a CORRELATION COEFFICIENT in

collinear 79

STATISTICS gives a measure of the extent to which two
data sets are interdependent, while the heat coefficient
in physics gives a measure as to how well a material
conducts heat.

See also BINOMIAL COEFFICIENT; COMBINATO-
RIAL COEFFICIENT; CONSTANT; LEADING COEFFICIENT;
POLYNOMIAL.

Collatz’s conjecture (“3n + 1” mapping problem)
Consider the following process:

Select a positive integer. If it is odd, triple it
and add one; otherwise, divide the number by
two. Now perform the same operation again
on the result. Repeat this process indefinitely
to produce a sequence of numbers.

The number 7, for example, yields the sequence:

7,22, 11, 34, 17, 52, 26, 13, 40, 20, 10, S, 16,
8,4,2,1,4,2,1,4,2,1,...

Notice that this sequence finally falls into a 4-2-1 cycle.

In 1937 German mathematician Lothar Collatz
conjectured that, no matter the starting integer selected,
all sequences lead to the same 4-2-1 cycle. Collatz was
unable to prove this claim, but he was also unable to
find an example of a starting number that does not
behave this way. To this day, no one knows whether or
not Collatz’s conjecture is true. All integers up to 2.702
x 101 have been checked.

As a first step toward understanding this problem,
mathematicians have proved that 4-2-1 is the only cycle
of reasonable size that could possibly appear; it has
been established that any other cycle that might appear
would be at least 275,000 numbers long.

collinear Any number of points are said to be
collinear if they all lie on the same straight line. Two
points are always collinear. Three points in a plane A =
(a1,a2), B = (b1,b,), and C = (cy,¢,) are collinear only if
the lines connecting points A and B and the points con-
necting A and C have the same SLOPE. This means that
the following relationship must hold:

by —a, _a—a
bi-a; c-m




80 combination

Three points A, B, and C in three-dimensional
space are collinear if the triangle they form has zero
area. Equivalently, the three points are collinear if the
angle between the VECTORs AB and AC is zero, and
consequently the CROSS PRODUCT AB x AC equals
the zero vector.

The collinearity of points in a plane is a topic of
interest to geometers. In the mid-1700s, LEONHARD
EULER discovered that several interesting points con-
structed from triangles are collinear, yielding his
famous EULER LINE. In 1893 British mathematician
James Sylvester (1814-97) posed the question of
whether it is possible to arrange three or more points in
a plane, not all on a line, so that any line connecting
two of the points from the collection passes through a
third point as well. Forty years later Tibor Gallai
(1912-92) proved that there is no such arrangement.

Two or more distinct PLANEs are said to be
collinear if they intersect in a common straight line. In
this case, the vectors normal to each plane all lie in a
plane perpendicular to the common line. Thus one can
determine whether or not a collection of planes is
collinear by noting whether or not the cross products
of pairs of normal vectors are all parallel.

See also GRADIENT; NORMAL TO A PLANE.

combination (selection, unordered arrangement) Any
set of items selected from a given set of items without
regard to their order is called a combination. Repetition
of choices is not permitted. For example, there are six
distinct combinations of two letters selected from the
sequence A,B,C,D, namely: AB, AC, AD, BC, BD, and
CD. (The selection BA, for example, is deemed the
same as AB, and the choice AA is not permitted.)

The number of combinations of k items selected

n
from a set of n distinct objects is denoted [kj The

4
number [2], for instance, equals six. The quantity

n
( kj is called a combinatorial coefficient and is read as

“n choose k.” Given their appearance in the BINOMIAL
THEOREM, these numbers are also called binomial

coefficients. [n

One develops a formula for kj by counting the

number of ways to arrange n distinct objects in a
row. There are, of course, n! different ways to do
this. (See FACTORIAL.) Alternatively, we can imagine
selecting which k objects are to be arranged in the

n
first k positions along the row (there are [/J ways

to do this), ordering those k items (there are k! differ-
ent ways to do this), and then arranging the remain-
ing n — k objects for the latter part of the row (there
are (n — k)! different ways to accomplish this). This

n
yields [ kjk!(n—k)! different ways to arrange 7 objects

in a row. Since this quantity must equal 7!/, we have

n n!
the formula [k]:k!(n—k)! for the combinatorial

coefficient.

It is appropriate to define 0! as equal to one. In
this way, the formula just established holds even for
k = n. (There is just one way to select # objects from

n n!
a collection of n items, and so (nj =100 should equal

n n!
one.) It then follows that (0] o L (There is just

one way to select no objects.) Mathematicians set

n
(kj to be zero if k is negative or greater than 7.

The combinatorial coefficients appear as the entries
of PASCAL’S TRIANGLE. They also satisfy a number of
identities. We list just four, which we shall phrase in
terms of the process of selecting k students to be in a
committee from a class of 7 students.

AN

(Selecting k students to be in a committee is the same as
selecting 7 — k students not to be in the committee.)

5 n) n—1 N n—1
k) k-1 k
(Any committee formed either includes, or excludes, a

particular student John, say. If John is to be on the
committee, then one must select & — 1 more students



from the remaining 7 — 1 students. If John is not to be
on the committee, then one must select k students from
the pool of 7 — 1 students that excludes John.)

»
e o)1)

any size. But this number can also be computed by
deciding, student by student, whether or not to put that
student in the committee. As there are two possibilities
for each student, in or out, there are 2” possible com-
mittees. These counts must be the same.)

. zk[kj(ljz(2j3(3][jz

(Suppose, in the committee, one student is to be
selected as chair. In a committee of size k there are k

n
+[n] possible committees of

possible choices for chair. Thus ZZ) k| counts the

total number of committees possible, of any size, with
one student selected as chair. But this quantity can also
be computed by selecting some student to be chair
first—there are n choices for this—and then deciding,
student by student, among the remaining 7 — 1 students
whether that student should be on the committee. This
yields 727! possibilities.)

Property 1 explains why Pascal’s triangle is sym-
metric. Property 2 shows that each entry in Pascal’s tri-
angle is the sum of the two entries above it, and
property 3 shows that the sum of all the entries in any
row of Pascal’s triangle is a power of two.

n
In 1778 LEONHARD EULER used the notation (Z)

for the combinatorial coefficients, which, three years

later, he modified to [%} In the 19th century, mathe-

maticians started following Euler’s original notation,
dropping the VINCULUM for the purposes of easing
typesetting. Many textbooks today use the notation
.Ci, or C", or even C(m,k), for the combinatorial

n
coefficient k-
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Generalized Coefficients

n
The generalized combinatorial coefficient (kl k... krj’

where kq,k,,...,k, are nonnegative integers summing to
n, is defined to be the number of ways one can select,
from 7 items, k; objects to go into one container, k,
objects to go into a second container, and so forth, up
to k, objects to go into an rth container. (Notice that

n
(k e kj is the ordinary combinatorial coefficient.)

Mimicking the argument presented above, note that
one can arrange 7 items in a row by first selecting
which k; items are to go into the first part of the row
and ordering them, which k, items are to go in the
next portion of the row and ordering them, and so on.

This shows that n!=( jkllkz!...k,!, yielding

n
ki ky ok,

the formula:

n _ n!
ki ky ...k, ) kilkyl.. k!

Generalized combinatorial coefficients show, for

7 7!
example, that there are (1 13 2]:1!1!3!2!:420

ways to rearrange the letters CHEESES: Of the seven
slots for letters, one must choose which slot is assigned
for the letter C, which one for the letter H, which three
for the letter E, and which two for letter S.

The generalized combinatorial coefficients also
appear in generalizations to the BINOMIAL THEOREM.
For example, we have the trinomial theorem:

(x+y+z)”=2[k :kakfyklzk3
1 Ry k3

where the sum is taken over all triples kq,k,,k; that
sum to 7. The proof is analogous to that of the ordi-
nary binomial theorem.

Multi-Choosing

4
The quantity ((ZD , read as “n multi-choose k,” counts

the number of ways to select k objects from a collection
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of n items, where order is not important, but repetition

is allowed. For example, there are 10 ways to multi-

choose two objects from the set A, B, C, and D,

namely: AB, AC, AD, BC, BD, CD, and AA, BB, CC,
4

and DD. Thus (2] =10. One can show that a multi-

choose coefficient equals an ordinary combinatorial co-

W

combinatorial coefficient See COMBINATION.

efficient:

combinatorics (combinatorial analysis) The branch
of mathematics concerned with the theory and prac-
tices of counting elements of sets and the construction
of specified arrangements of objects, along with the
study of COMBINATIONs and PERMUTATIONS, is called
combinatorics. GRAPH THEORY is also regarded as an
aspect of combinatorics.

The technique of “double counting,” that is, count-
ing the same set of objects in two different ways, is a
common practice in combinatorics used to yield inter-
esting results. For example, counting the dots in an 7 x n
square array along diagonals as opposed to across the
rows gives the surprising formula:

14243+ +m-1+n+m-1)+...+3+2+1=n?

Counting the number of subsets of a set of # ele-
ments, either by summing the number of subsets con-
taining, in turn, 0, 1, 2, up to 7 elements, or by noting
that each subset is decided by making 7 choices
between two options—whether or not each element in
turn is to be in the subset—yields the formula:

(Do) (2o 1) 202

EULER’S THEOREM can be considered a result in combi-
natorial geometry.
See also DISCRETE; FIGURATE NUMBERS.

commensurable Two quantities having a common
measure, meaning that they can be measured in terms of

whole numbers of a common unit, are said to be com-
mensurable. For example, the quantities one month and
one week are commensurable because they can both be
measured in terms of a whole number of days. In GEOM-
ETRY, two line segments are said to be commensurable if
there is another segment whose measure goes evenly,
without remainder, into the measures of each segment.
For instance, segments of lengths 20 and 12 in. are com-
mensurable for they can each be evenly divided into
lengths of 1 (or 2 or 4) in. In general, two segments of
lengths a and b units are commensurable if the ratio a/b
is a RATIONAL NUMBER. As 2 is irrational, segments of
length 1 and V2 (respectively, the side-length and the
diagonal of a unit square) are incommensurable.

A study of the EUCLIDEAN ALGORITHM shows that
if given two commensurable line segments of lengths a
and b, say, then repeatedly subtracting the shorter
length from the longer to produce a new pair of lengths
eventually produces two line segments equal in length.
This final shared measure is the largest length that
divides evenly into the two original segments. (If a and
b are whole-number measurements, then the length of
the final measure is the GREATEST COMMON DIVISOR of
a and b.) If, on the other hand, one can demonstrate
that the process of repeatedly erasing the shorter line
segment from the longer will continue indefinitely
without ever producing two line segments equal in
length, then the original two segments cannot be com-
mensurable. Around 425 B.C.E. Greek mathematician
THEODORUS OF CYRENE used precisely this observa-
tion to prove the irrationality of V2.

In NUMBER THEORY, two real numbers a and b are
said to be commensurable if their ratio is rational. For
instance, the numbers V48 and V3/2 are commensu-
rable. No one to this day knows whether or not © and
e are commensurable. The numbers logs(3) and logs(7)

are incommensurable. (If log_57:£ for some whole
logs3 g

numbers p and g, then 77 = 37, which is absurd since

every power of 7 is 1 more than a multiple of 3.)

common denominator Two or more fractions are
said to have a common denominator if the denomi-
nator of each fraction is the same. For example, the

. S )
fractions 12 and 12 have a common denominator of

12. It is a straightforward matter to add and subtract



fractions with a common denominator. For instance,
S 3 8 S 3 2
12+12=120d 733 -12 = 12-

It is possible to rewrite the terms of an arbitrary

collection of fractions so that they all share a common

. . o1 2 5
denominator. For instance, the rewriting 3 and 5 as 5

6 . .
and 75, respectively, shows that the two fractions have

a common denominator 15. In fact, any COMMON
MULTIPLE of 3 and 5 serves as a common denominator
10 2 12

1 2 1
of 3 and 3. For instance, we have 3 = 35 and 5 = 3,

1 15 2 18
andg:ﬁandg:ﬁ.

The LEAST COMMON MULTIPLE of the denominators
of a collection of fractions is called the least common
denominator of the fractions. For example, the least

1 2
common denominator of 3 and § is 15, and the least

. 33 S .
common denominator of Qs 4> and 6 is 24. One adds
and subtracts arbitrary fractions by rewriting those
fractions in terms of a common denominator.

common factor (common divisor) A number that
divides two or more integers exactly is called a com-
mon factor of those integers. For example, the numbers
20, 30 and 50 have 2 as a common factor, as well as 1,
5, and 10 as common factors. It is always the case that
the largest common factor a set of integers possesses is
a multiple of any other common factor. In our example,
10 is a multiple of each of 1, 2, and 5. The value 1 is
always a common factor of any set of integers.

The FUNDAMENTAL THEOREM OF ARITHMETIC shows
that any number can be uniquely expressed as a product
of PRIME factors. Any common factor of two or more
integers is a product of primes common to all those inte-
gers, and the largest common factor is the product of all
the primes in common, with repetition permissible. (This
explains why the largest common factor is a multiple of
any other common factor.) If the integers have no primes
in common, then their largest common factor is one.

See also GREATEST COMMON DIVISOR; RELATIVELY
PRIME.

common multiple A number that is a multiple of two
or more other numbers is called a common multiple of
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those numbers. For example, 60 is a common multiple
of 5, 6, and 10. The lowest number that is a common
multiple of a given set of numbers is called their LEAST
COMMON MULTIPLE. In our example, 30 is the least com-
mon multiple of 5, 6, and 10. Every common multiple is
a multiple of the least common multiple.

The FUNDAMENTAL THEOREM OF ARITHMETIC
shows that any number can be uniquely expressed as a
product of PRIME factors. Any common multiple of two
or more integers is the product of, at the very least, all
the primes that appear in the factorizations of the given
integers, with the necessary repetitions, with perhaps
additional factors. With no additional factors present,
one obtains the least common multiple.

commutative property A BINARY OPERATION is said
to be commutative if it is independent of the order of
the terms to which it is applied. More precisely, an
operation * is commutative if:

a*b=b%"a

for all values of a and b. For example, in ordinary
arithmetic, the operations of addition and multiplica-
tion are commutative, but subtraction and division are
not. For instance, 2 + 3 and 3 + 2 are equal in value,
but 2 — 3 and 3 - 2 are not.

If an operation is both commutative and ASSOCIA-
TIVE, then all products of the same set of elements are
equal. For example, the quantity a*(b*c) equals
(a*c)*b and b*(c*a). In this case, one is permitted to
simply write a*b*c, with terms in any order, without
concern for confusion.

In SET THEORY, the union and intersection of two
sets are commutative operations. In VECTOR analysis,
the addition and DOT PRODUCT of two vectors are com-
mutative operations, but the CROSS PRODUCT operation
is not. The multiplication of one MATRIX with another
is not, in general, commutative.

Geometric operations generally are not commuta-
tive. For example, a reflection followed by a rotation
does not usually produce the same result as performing
the rotation first and then applying the reflection. One
could also say that the operations of putting on one’s
shoes and one’s socks are not commutative.

A GROUP is called commutative, or Abelian, if the
operation of the group is commutative.

See also NIELS HENRIK ABEL; DISTRIBUTIVE PROP-
ERTY; RING.
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comparison test See CONVERGENT SERIES.

completing the square A QUADRATIC quantity of the
form x? + 2bx can be regarded, geometrically, as the
formula for the area of an incomplete square.

Adding the term b? completes the picture of an
(x + b) X (x + b) square. We have:

x% + 2bx + b% = (x + b)?

This process of completing the square provides a
useful technique for solving quadratic equations. For
example, consider the equation x? + 6x + 5 = 21. Com-
pleting the square of the portion x> + 6x requires the
addition of the constant term 9. We can achieve this by
adding 4 to both sides of the equation. We obtain:

x2+6x+5+4=21+4
x2+6x+9=25
(x +3)%2=25

from which it follows that x + 3 equals either 5 or -5,
that is, that x equals 2 or -8.

The process of completing the square generates a
general formula for solving all quadratic equations.
We have:

The solutions of a quadratic equation ax? + bx
+ ¢ =0, with a # 0, are given by:

_—bx+b* —4ac

X

2a
X X! bx
X b

Completing the square

This formula is known as the quadratic formula. To see
why it is correct, divide the given equation through by
a and add a term to complete the square of resultant

. b
portion x? + X We have:

b c
x2+=x+—=0
a a

- b _ Vb —4ac
2~ 2a
T b* —4ac

- 2a

For example, to solve x> + 6x + § = 21, subtract 21 from
both sides of the equation to obtain x* + 6x — 16 = 0. By
the quadratic formula:

x:—6iw/36—4-(—16)

2

=2 or—-8

-6+100  —-6+10
2 )

The quadratic formula shows that the two roots rq
and r, of a quadratic equation ax?> + bx + ¢ = 0 (or
the single double root if the DISCRIMINANT b? —4ac

) b c
equals zero) satisfy 7+, == and nn = It also

shows that every quadratic equation can be solved if
one is willing to permit COMPLEX NUMBERS as solu-
tions. (One may be required to take the square root of
a negative quantity.)

There do exist analogous formulae for solving
CUBIC EQUATIONS ax> + bx? + ¢x + d = 0 and QUARTIC
EQUATIONS ax* + bx3 + cx? + dx + e = 0 in terms of the
coefficients that appear in the equations. Algebraist
NIELS HENRIK ABEL (1802-29) showed that there can
be no analogous formulae for solving fifth- and higher-
degree equations.

See also FACTORIZATION; FUNDAMENTAL THEOREM
OF ARITHMETIC; HISTORY OF EQUATIONS AND ALGEBRA
(essay); SOLUTION BY RADICALS.



complex numbers There is no real number x with
the property that x> = —1. By introducing an “imagi-
nary” number 7 as a solution to this equation we obtain
a whole host of new numbers of the form a + ib with a
and b real numbers. These new numbers form the sys-
tem of complex numbers. It is customary to use the
variable z to denote an arbitrary complex number:
z=a+ib.If b =0, then z is a real number. Thus the set
of complex numbers includes the set of real numbers. If
a = 0 so that z is of the form z = ib, then z is said to be
purely imaginary. In general, if z = a + ib, then a is
called the real part of z and b the imaginary part of z.
We write: Re(z) = a and Im(z) = b.

The number 7 is usually regarded as the square
root of negative one: i = V—1. (One must be careful as
there are, in fact, two square roots of this quantity,
namely i and —i.) The roots of other negative quanti-
ties follow: V=9 = V=1 * V9 = +3i and V=30 = +iV30,
for instance.

The set of all complex numbers is denoted C.
Arithmetic can be performed on the complex numbers
by following the usual rules of algebra and replacing
by =1 whenever it appears. For example, we have:

(2+3i)+(4—i)=6+2i
2+3) = (4—i)=-2+4i
(243i)(4—i)=8 + 12i— 2i — 332
=8+10i+3=11+10i

The QUOTIENT of two complex numbers can be
computed by the process of RATIONALIZING THE
DENOMINATOR:

2+3i _ 2+3i . 4+ _ (2+30)(4+1) _ S+14 :1+ﬁi
4—i  4—i 4+i (@A-i)@d+i)  4-42 5
One can show that with these arithmetic properties,
the set of complex numbers constitutes a mathemati-
cal FIELD.

In the early 18th century, French mathematician
ABRAHAM DE MOIVRE noticed a striking similarity
between complex multiplication and the ADDITION for-
mulae of the sine and cosine functions from TRIGONOM-
ETRY. Given that:

(a+1b) - (c+id) = (ac - bd) + i(ad + bc)

and:
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cos(x + y) = cos(x)cos(y) — sin(x)sin(y)
sin(x + y) = sin(x)cos(y) + cos(x)sin(y)

we obtain the compact formula:
(cos(x) + isin(x))(cos(y) + isin(y)) = cos(x + y) + isin(x + y)

This observation formed the basis for the famous for-
mula that now bears his name:

(cos(x) + isin(x))” = cos(nx) + isin(nx)

A few years later LEONHARD EULER (1707-83) took
matters one step further and used the techniques of cal-
culus to establish his extraordinary formula:

e™ = cos(x) + isin(x)

from which DE MOIVRE’S FORMULA follows easily.
(Use (e)" = ei("x) ) Moreover, this result shows that
de Moivre’s formula also holds for noninteger values
of n.

That the cosine and sine functions appear as the
real and imaginary parts of a simple EXPONENTIAL
FUNCTION shows that all of trigonometry can be
greatly simplified by rephrasing matters in terms of
complex numbers. Although some might argue that
complex numbers do not exist in the real world, the
mathematics of the complex number system has proved
to be very powerful and has offered deep insights into
the workings of the physical world. Engineers and
physicists phrase a great deal of their work in terms of
complex number theory. (Engineers prefer to use the
symbol j instead of i.)

It is a surprise to learn that the introduction of a
single new number i as a solution to the equation x> +
1 = 0 provides all that is needed to completely solve
any POLYNOMIAL equation a,x" + a,1x"' + ... + a;x +
ap = 0.

The FUNDAMENTAL THEOREM OF ALGEBRA asserts
that a polynomial equation of degree 7 has precisely 7
roots (counted with multiplicity) in the complex num-
ber system.

It is possible to raise a real number to a complex
power to obtain a real result. For example, by EULER’S
FORMULA, we have:

€™ =cos(nt) + isin(m) =1 +i-0=-1
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Multiplying by —1 and multiplying by i

.TT
. i— T .. T .
Also, noting that e 2 = Cos(—2)+lsm(—) =1, we see that

2

it is also possible to raise a complex number to a com-
plex power to obtain a real result:

T
. . . iE+2km)
(Technically, since 7 can also be expressed as e 2

for any whole number k, there are infinitely different
(real) values for the quantity #'.)

The Geometry of Complex Numbers
Multiplying the entries of the real NUMBER LINE by —1
has the effect of rotating the line about the point 0
through an angle of 180°. It is natural to ask: multipli-
cation by which number creates a 90° rotation about
the point zero?

Call the desired number x. Multiplication by x
twice, that is, multiplication by x X x = x2, would have
the effect of performing two 90° rotations, namely, a

imaginary axis

rsin(0)

1

1

i

1
@ ! real
r cos(6) a axis

Polar coordinates of a complex number

rotation by 180°. Thus multiplication by x? has the
same effect as multiplication by -1, and the desired
number x must therefore satisfy the equation x* = —1.
This shows that x = i and that it is natural to interpret
purely imaginary numbers of the form ib as members
of a vertical number line.

This model provides a natural correspondence
between complex numbers and points in the plane. The
horizontal axis is called the real axis, the vertical axis
the imaginary axis, and an arbitrary complex number
z = a + ib appears as the point with coordinates (a,b)
on the plane.

This representation of complex numbers as points
on a plane is called an Argand diagram in honor of
JEAN ROBERT ARGAND (1768-1822) who, along with
surveyor Casper Wessel (1745-1818), first conceived of
depicting complex numbers in this way. The plane of
all complex numbers is also called the complex plane.

The angle 6 that a complex number z = a + ib
makes with the positive real axis is called the argument
of the complex number, and the distance 7 of the com-
plex number from the origin is called its modulus (or,
simply, absolute value), denoted Izl. PYTHAGORAS’S
THEOREM and the DISTANCE FORMULA show that:

lz] = \/612 + b2
Using trigonometry we see that the values a and b can

be expressed in terms of r and 6 in a manner akin to
POLAR COORDINATES. We have:

a=rcos6
b=rsin®

With the aid of Euler’s formula, this shows that any
complex number z can be expressed in polar form:

Z=7cos 0 +irsin O = re®

From this it follows, for instance, that the product of

two complex numbers z; = 7€ and 2z, = 7,6 has

modulus 77, and argument 6, + 0,:
212y = 116017262 = 117,01+ 0)

It is convenient to define the conjugate of a complex
number z = a + ib to be the number Z = a — ib. We have:

z-2=a2+b2=|Z|2



and, in polar form, if z = re®, then Z = re 7. Taking the
conjugate of a complex number has the geometric
effect of reflecting that number across the real axis.

History of Complex Numbers

The first European to make serious use of the square
root of negative quantities was GIROLAMO CARDANO
(1501-76) of Italy in the development of his solutions
to CUBIC EQUATIONs. He noted that quantities that
arose in his work, such as an expression of the

form i/2+ J-121 +3\/2_ J-121 for instance, could be

manipulated algebraically to yield a real solution to

equations. (We have ?{/2+'\/—121 +%/2—m = 4.)

Nonetheless, he deemed such a manipulation only as a
convenient artifice with no significant practical mean-
ing. French philosopher RENE DESCARTES (1596-1650)
agreed and coined the term imaginary for roots of neg-
ative quantities.

During the 18th century, mathematicians continued
to work with imaginary roots, despite general skepti-
cism as to their meaning. Euler introduced the symbol i
for V=1, and Argand and Wessel introduced their geo-
metric model for complex numbers, which was later
popularized by CARL FRIEDRICH GAuss (1777-18535).
His proof of the fundamental theorem of algebra con-
vinced mathematicians of the importance and validity
of the complex number system.

Irish mathematician SIR WiLLIAM ROWAN HAMIL-
TON (1805-65) is credited as taking the final step to
demystify the meaning of the complex-number system.
He extended the notion of the complex numbers as
arising from 90° rotations by showing that any rota-
tion in three-dimensional space can naturally and easily
be represented in terms of complex numbers. He also
noted that the complex numbers are nothing more than
ordered pairs of numbers together with a means for
adding and multiplying them. (We have (a,b) + (¢,d) =
(@ + ¢,b + d) and (a,b)-(c,d) = (ac — bd,ad + bc).) In
Hamilton’s work, the number i became nothing more
than the point (0,1).

See also NEGATIVE NUMBERS;
PROJECTION.

STEREOGRAPHIC

composite Used in any context where it is possible to
speak of the multiplication of two quantities, the term
composite means “having proper factors.” For exam-
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ple, the number 12, which equals 3 x 4, is a COMPOSITE
NUMBER, and y = x% + 2x — 3 = (x=1)(x + 3) is a com-
posite polynomial (not to be confused with the compo-
SITION of two polynomials).

A quantity that is not composite is called irre-
ducible, or, in the context of number theory, PRIME.

composite number A whole number with more than
two positive factors is called a composite number. For
example, the number 12 has six positive factors, and so
is composite, but 7, with only two positive factors, is
not composite. The number 1, with only one positive
factor, also is not composite. Numbers larger than one
that are not composite are called PRIME.

The sequence 8, 9, 10 is the smallest set of three
consecutive composite numbers, and 24, 25, 26, 27, 28
is the smallest set of five consecutive composites. It is
always possible to find arbitrarily long strings of com-
posite numbers. For example, making use of the FAC-
TORIAL function we see that the string

m+IN+2, (n+ 1N +3,..,(n+ 1)+ (n+1)

represents # consecutive integers, all of which are com-
posite. (This shows, for example, that there are arbi-
trarily large gaps in the list of prime numbers.)

See also FACTOR.

composition (function of a function) If the outputs
of one function f are valid inputs for a second function
g, then the composition of g with £, denoted g-f, is the
function that takes an input x for f and returns the out-
put of feeding f(x) into g:

(g )(x) = g(f(x))

For example, if feeding 3 into f returns 5, and feeding 5
into g returns 2, then (g-f)(3) = 2. If, alternatively,

flx)=x?>+1and g(x) =2 + 9—16, then

(g )(x) = g(f(x))
glx? +
2+

)

1
1
xr+1

Typically g-f is not the same as fog. In our last example,
for instance,
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(f-8)(x) = (g(x))

o)
2
:(2+%j +1

which is a different function. As another example, if M
is the function that assigns to each person of the world
his or her biological mother, and F is the analogous
biological father function, then (M-F)(John) represents
John’s paternal grandmother, whereas (F-M)(John) is
John’s maternal grandfather.

The notation gof is a little confusing, for it needs to
be read backwards. The function f is called the “core
function” and needs to be applied first, with the
“external function” g applied second. The composition
of three functions f, g, and b is written hofog (here b is
the external function), and the repeated composition of
a function f with itself is written /. Thus, for exam-
ple, f® denotes the composition fofefef. A set of
repeated compositions is called a DYNAMICAL SYSTEM.

Mathematicians have shown that the composition
of two CONTINUOUS FUNCTIONS is itself continuous.
Precisely, if f is continuous at x = g, and g is continuous
at x = f(a), then gof is continuous x = a.

The composition of two differentiable functions is
differentiable. The CHAIN RULE shows that the DERIVA-

TIVE of g-f is given by (g-f) (x) = g'(f(x))-f"(x).
compound interest See INTEREST.
compound statement See TRUTH TABLE.

computer An electronic device for automatically
performing either arithmetic operations on DATA or
sequences of manipulations on sets of symbols (as
required for ALGEBRA and SET THEORY, for instance),
all according to a precise set of predetermined
instructions, is called a computer. The most widely
used and versatile computer used today is the digital
computer in which data are represented as sequences
of discrete electronic pulses. As each pulse could
either be “on” or “off,” it is natural to think of

sequences of Os and 1s in working in computer theory
and, consequently, to work with the system of BINARY
NUMBERS to represent data.

A digital computer has a number of separate parts:

—_

An input device, such as a keyboard, for entering a

set of instructions (program) and data.

2. A central processing unit (CPU) that codes informa-
tion into binary form and carries out the instruc-
tions. (This unit consists of a series of electronic
circuit boards on which are embedded a large num-
ber of “logic gates,” akin to the CONJUNCTION and
DISJUNCTION configurations.)

3. Memory units, such as disks and magnetic tape.

4. An output device for displaying results, such as a

monitor or a printer.

The study of computer science typically lends itself
to the theoretical capabilities of computing machines
defined in terms of their programs, not the physical
properties of actual computers. The HALTING PROBLEM
and the question of being NP COMPLETE, for instance,
are issues of concern to scientists in this field.

See also ABACUS; CHARLES BABBAGE; DIGIT.

concave/convex A curve or surface that curves
inward, like the circumference of a circle viewed from
the interior, or the hollow of a bowl, for example, is
called concave. A curve or surface that curves outward,
such as the boundary of a circle viewed from outside
the circle, or the surface of a sphere, is called convex.

A geometric shape in the plane or a three-
dimensional solid is called convex if the boundary of
the shape is a convex curve or surface. For example,
triangles, squares, and any regular POLYGON are con-
vex figures. Cubes and spheres are convex solids. Any
shape that is not convex is called concave. A deltoid
QUADRILATERAL, for example is a concave polygon.

A polygon is convex if each of its interior angles
has value less than 180°. Equivalently, a polygon is
convex if the figure lies entirely on one side of any line
that contains a side of the polygon. A POLYHEDRON is
convex if it lies entirely on one side of any plane that
contains one of its faces.

A convex figure can also be characterized by the
property that, for any two points inside the figure, the
line segment connecting them also lies completely
within the figure.



concave up/concave down The graph of a function
y = f(x) may be described as concave up over an inter-
val if, over that interval, the slope of the tangent line to
the curve increases as one moves from left to right.
Assuming the function is twice differentiable, this
means that the DERIVATIVE f’(x) is a strictly increasing
function and consequently, the double derivative satis-
fies /”(x)>0. (See INCREASING/DECREASING.) For exam-
ple, the double derivative of f(x) = x? is always positive,
f”(x) = 250, and the parabola y = x? is concave up. A
concave-up graph also has the property that any
CHORD joining two points on the graph lies entirely
above the graph.

The graph of a function y = f(x
over an interval if, over that interval, the slope of the
tangent line to the curve decreases as one moves from
left to right. Assuming the function is twice differen-
tiable, this means that f’(x) is a strictly decreasing func-
tion and, consequently, /”(x)<0 for all points on the
interval. As an example, since the double derivative of
f(x) = x? is negative only for negative values of x (f”(x)
= 6x<0 for x<0), we have that the cubic curve y = x3 is
concave down only to the left of the y-axis. A concave-
down graph has the property that any chord joining
two points on the graph lies entirely below the graph.

A point at which the concavity of the graph
changes is called an inflection point or a point of inflec-

) is concave down

concave up

N;A/

concave down

=~

@ inflection point

Concavity
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tion. (Alternative spelling: inflexion.) If x = a is a point
of inflection for a twice-differentiable curve f(x), then
the double derivative f”(x) is positive to one side of
x = a and negative to the other side. It must be the case
then that /”(a) = 0. The converse need not hold, how-
ever. The function f(x) = x* for example, satisfies
f7(0) = 0, but the concavity of the curve does not
change at x = 0.

A study of the concavity of a graph can help one
locate and classify local maxima and minima for
the curve.

See also GRAPH OF A FUNCTION; MAXIMUM/
MINIMUM.

concentric/eccentric Two circles or two spheres are
called concentric if they have the same center. Two fig-
ures that are not concentric are called eccentric. The
region between two concentric circles is called an
ANNULUS.

concurrent Any number of lines are said to be con-
current if they all pass through a common point. Many
interesting lines constructed from triangles are concur-
rent. Two lines a;x + b1y = ¢ and a,x + byy = ¢, in the
Cartesian plane are concurrent if a1b, — a,b; # 0.

See also TRIANGLE.

In FORMAL LOGIC a state-
then...” is known as a condi-

conditional (hypothetical)
ment of the form “If ...
tional or an implication. For example, “If a polygon
has three sides, then it is a triangle” is a conditional
statement.

A conditional statement has two components: If p,
then q. Statement p is called the antecedent (hypothesis,
or premise) and statement g the consequent (or conclu-
sion). A conditional statement can be written a number
of different, but equivalent, ways:

If p, then g.

p implies g.

q if p.

p only if g.

p is sufficient for q.
q is necessary for p.

It is denoted in symbols by: p—q.
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The TRUTH TABLE of the conditional is motivated
by intuition. Consider, for example, the statement:

If Peter watches a horror movie, then he eats
popcorn.

The statement is certainly true if we observe Peter
watching a horror movie and eating popcorn at the
same time (that is, if the antecedent and consequent are
both true), but false if antecedent is true but the conse-
quent is false (that is, Peter is watching a horror movie
but not eating popcorn). This justifies the first two
lines of the truth table below.

The final two lines are a matter of convention. If
Peter is not watching a horror movie, that is, if the
antecedent is false, then the conditional statement as a
whole is moot. FORMAL LOGIC, however, requires us to
assign a truth-value to every statement. As watching a
romance movie and eating (or not eating) popcorn does
not imply that the conditional statement is a lie, we go
ahead and assign a truth-value “true” to the final two
lines of the table:

m M H 4 S

This convention does lead to difficulties, however. Con-
sider, for example, the following statement:

If this entire sentence is true, then the moon is
made of cheese.

Here the antecedent p is the statement: “the entire sen-
tence above is true.” The consequent is: “the moon is
made of cheese.” Notice that p is true or false depend-
ing on whether the entire statement p—q is true or
false. There is only one line in the truth table for which
p and p—q have the same truth-value, namely the first
one. It must be the case, then, that p, ¢, and p—q are
each true. In particular, g is true. Logically, then, the
moon must indeed be made of cheese.

See also ARGUMENT; BICONDITIONAL; CONDITION—
NECESSARY AND SUFFICIENT; SELF-REFERENCE.

conditional convergence See ABSOLUTE CONVER-
GENCE.

conditional probability The probability of an EVENT
occurring given the knowledge that another event has
already occurred is called conditional probability.

For example, suppose two cards are drawn from
a deck and we wish to determine the likelihood that
the second card drawn is red. Knowledge of the first
card’s color will affect our probability calculations.
Precisely:

i. If the first card is black, then the probability that the
second is red is 26/51 (there are 26 red cards among
the remaining 51 cards),

ii. If the first card is red, then the probability that the
second is also this color is now only 25/51.

(If we have no knowledge of the color of the first card,
then the chances that the second card is red are /,.)

If A and B are two events, then the notation AlB is
used to denote the event: “A occurs given that event B
has already occurred.” The notation P(AlB) denotes the
probability of A occurring among just those experi-
ments in which B has already happened. For instance,
in the example above:

P(the second card is red | the first card is black) = %—?
P(the second card is red | the first card is black) = %—i

If, in many runs of an experiment, event B occurs b
times, and events A and B occur simultaneously a
times, then the proportion of times event A occurred
when B happened is a/b. This motivates the mathemati-
cal formula for conditional probability:

P(ANB)
P(A|B)=———

(AlB) P(B)
As an example, suppose we are told that a card drawn
from a deck is red. To determine the probability that
that card is also an ace we observe:

2
P(red ace) _ 52 _ 1
Pred) 1 13
2



That is, the probability that a red card is an ace is
1/13. Of course, counting the number of times “ace”
occurs among the red cards also yields P(ace | red) =
2/26 = 1/13.

Conditional probability is useful in analyzing
more complex problems such as the famous TwoO-
CARD PUZZLE.

If two events A and B are INDEPENDENT EVENTS,
then the probabilities satisfy the relation P(ANB) =
P(A) x P(B). This shows P(A | B) = P(A), that is, the
probability of event A occurring indeed is not altered
by information of whether or not B has occurred.

See also BAYES’S THEOREM.

condition—necessary and sufficient In logic, a
condition is a proposition or statement p required to be
true in order that another proposition g be true. If g
cannot be true without p, then we call p a necessary
condition. If the validity of p ensures that g is true,
then we call p a sufficient condition. For example, for a
quadrilateral to be a rectangle it is necessary for it to
possess two parallel sides, but this condition is not suf-
ficient. (A trapezoid, for example, has two parallel
sides but is not a rectangle.) For a number to be even it
is sufficient that the number end with a four, but this
condition is not necessary.

If p is a sufficient condition for g, then the CONDI-
TIONAL (implication) p—q holds. Mathematicians usu-
ally write: g is true if p is true. If p is a necessary
condition for g, then the implication g—p holds. Math-
ematicians usually write: g is true only if p is true.

If the BICONDITIONAL holds: p<>q, then p is neces-
sary and sufficient for q. For example, for a number to
be divisible by 10 it is necessary and sufficient that the
number end with a zero. Such a statement is usually
written: p if, and only if, q or, compactly, as “p iff q.”

See also FORMAL LOGIC; TRUTH TABLE.

cone In three-dimensional space, a cone is the surface
formed by an infinite collection of straight lines drawn
the following way: each line passes through one point
of a fixed closed curve inscribed in a plane, called the
directrix of the cone, and through a fixed given point
above the plane, called the vertex of the cone. The lines
drawn are called the generators of the cone.

In elementary work, the directrix is usually taken
to be a circle so that the cones produced are circular
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cones. A circular cone is “right” if its vertex lies
directly above the center of the circle, and “oblique”
otherwise. Points on the surface of a right circular cone
satisfy an equation of the form x? + y* = 4?22, for some
constant 4.

Technically, the generators of a cone are assumed
to extend indefinitely in both directions. Thus an arbi-
trary cone consists of two identical surfaces meeting
at the vertex. Each surface is called nappe (French for
“sheet”) or a half-cone. However, if the context is
clear, the word cone often refers to just one nappe, or
just the part of a nappe between the vertex and the
plane of the directrix. The object in this latter case is
sometimes called a finite cone. It is bounded and
encloses a finite volume.

For a finite cone, the planar region bounded by the
directrix is called the base of the cone, and the vertex is
called the APEX of the cone. The vertical distance of the
apex from the base is called the height of the cone, and

the volume V of a finite cone is given by V = %Ah,

where b is the height of the cone and A the area of its
base. (See VOLUME.) Thus:

The volume of any cone is one-third of the
volume of the CYLINDER that contains it.

ARCHIMEDES OF SYRACUSE (ca. 287-212 B.C.E.)
established that the volume of a SPHERE is two-thirds
the volume of the cylinder that contains it. (By drawing
a cone in this cylinder, Archimedes established that the
area of each horizontal slice of a sphere equals the area
of the ANNULUS between the cone and the cylinder at
the same corresponding height.) The formula for the
volume of a sphere readily follows.

See also CONIC SECTIONS.

conformal mapping (equiangular transformation, iso-
gonal transformation) Any geometrical transforma-
tion that does not change the angles of intersection
between two lines or curves is called a conformal map-
ping. For example, in GEOMETRY, reflections, transla-
tions, rotations, dilations, and inversions all preserve
the angles between lines and curves and so are confor-
mal mappings. MERCATOR’S PROJECTION of the Earth
onto a cyclinder preserves every angle on the globe and
so is a conformal projection.
See also GEOMETRIC TRANSFORMATION.
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congruence Two numbers a and b are said to be con-
gruent modulo N, for some positive integer N, if 4 and
b leave the same remainder when divided by N. We
write: a = b (mod N). For example, since 16 and 21 are
both 1 more than a multiple of 5, we have 16 =
21(mod5). Also 14 = 8(mod3) and 28 = 0(mod7).

One can equivalently interpret the statement a
b(modN) to mean: “the difference a — b is divisible by
N.” Since -2 and 16, for instance, differ by a multiple
of 9, we have -2 = 16(mod9). Two numbers that are
not congruent modulo N are called incongruent mod-
ulo N.

One can add, subtract, and multiply two congru-
ences of the same modulus N in the same manner
one adds, subtracts, and multiplies ordinary quantities.
For example, noting that 14 = 4(mod10) and 23 =
3(mod10), we do indeed have:

14 + 23 =4 + 3(mod10)
14 - 23 = 4 - 3(mod10)
14 x 23 =4 x 3(mod10)

Unfortunately the process of division is not preserved
under congruence. For example, 14 + 2 is not congru-
ent to 4 + 2 modulo 10. A careful study of MODULAR
ARITHMETIC explains under which circumstances divi-
sion is permissible.

The arithmetic of congruence naturally occurs in
any cyclic phenomenon. For example, finding the day
of the week for a given date requires working with
congruences modulo 7, and the arithmetic for count-
ing hours as they pass works with congruences mod-
ulo 24 or modulo 12. (This leads to the study of
CLOCK MATH.)

Certain DIVISIBILITY RULES can be explained via
congruences. For example, since 10 = 1 (mod9), any
power of 10 is also congruent to 1 modulo 9: 10" = 1"
= 1 (mod9). Consequently, any number is congruent
modulo 9 to the sum of its digits. For example,

486 =4x%x102+8x10+6x1
=4x1+8x%x1+6x1(mod9)
=4 + 8 + 6(mod9)

Since 4 + 8 + 6 is a multiple of 9, it follows that 486 is
divisible by 9.

See also CASTING OUT NINES; DAYS-OF-THE-WEEK
FORMULA.

congruent figures Two geometric figures are congru-
ent if they are the same shape and size. More precisely,
two POLYGONS are congruent if, under some correspon-
dence between sides and vertices, corresponding side-
lengths are equal and corresponding interior angles are
equal. Two different squares with the same side-length,
for example, are congruent figures.

Note that two plane figures can be congruent with-
out being identical: one figure may be the mirror image
of the other. Two figures are called directly congruent if
one can be brought into coincidence with the other by
rotating and translating the figure in the plane and
oppositely congruent if one must also apply a reflec-
tion. Two identical squares, for example, are directly
congruent no matter where on the plane they are
placed. Two scalene triangles with matching side-
lengths might or might not be directly congruent. There
are a number of geometric tests to determine whether
or not two triangles are congruent as given by the
AAAJAAS/ASA/SAS/SSS rules.

In three-dimensional space, two solids are directly
congruent if they are identical. If each is the mirror
image of the other, they are oppositely congruent.

The term congruent is sometimes applied to other
geometric constructs to mean “the same.” For exam-
ple, two line segments are congruent if they have equal
length, or two ANGLEs are congruent if they have equal
measure.

See also SIMILAR FIGURES.

conic sections Slicing a right circular CONE with a
plane that does not pass through the vertex of the cone
produces curves called the conic sections, or simply
conics. If the slicing plane is parallel to a straight line
that generates the cone, then the resulting conic is a
PARABOLA. Otherwise, if the slicing plane passes
through just one nappe of the cone, the curve produced
is either a CIRCLE or an ELLIPSE, or a HYPERBOLA if the
slicing plane cuts both nappes.

If we think of the cone as light rays emanating
from a light source held at the vertex, then the shadow
cast by a circular ring onto a sheet of card will be a
conic section; the particular conic produced depends on
the angle at which the card is held. The open ring at
the top of a lampshade, for example, casts a hyperbolic
shadow on the wall. In the same way, shadows cast by
solid balls are conic sections.



The Greek scholars of antiquity were the first to
study conic sections. With no practical applications in
mind, mathematicians pursued the topic solely for its
beauty and its intellectual rewards. Around 225 B.C.E.
APOLLONIUS OF PERGA wrote a series of eight books,
titled The Conics, in which he thoroughly investigated
these curves. He introduced the names parabola,
ellipse, and hyperbola. ARCHIMEDES OF SYRACUSE (ca.
287-212 B.C.E.) also wrote about these curves. Almost
2,000 years later, scientists began finding applications
of conic sections to problems in the real world. In 1604
GALILEO GALILEI discovered that objects thrown in the
air follow parabolic paths (if air resistance can be
neglected), and in 1609 astronomer JOHANNES KEPLER
discovered that the orbit of Mars is an ellipse. He con-
jectured that all planetary bodies have elliptical orbits,
which, 60 years later, [SAAC NEWTON was able to prove
using his newly developed law of gravitation. This cen-
tury, scientists have discovered that the path of an
alpha particle in the electrical field of an atomic
nucleus is a hyperbola.

The conic sections can be described solely by prop-
erties they possess as curves in a plane. We see this by
drawing spheres internally tangent to the cone and tan-
gent to the slicing plane defining the curve. For exam-
ple, given an ellipse, if two internal spheres are tangent
to the plane at points F; and F,, then for any point P
on the ellipse, its distance from F; is the same as its dis-
tance from the circle of tangency of the lower sphere,
and its distance from F, is the same as its distance from
the circle of tangency of the upper sphere. Conse-
quently, the sum of its distances from F; and F, equals
the fixed distance between the two spheres as measured
along the side of the cone. This property can be used to
define an ellipse:

An ellipse is the set of all points in the plane
whose distances from two given points, F; and
F,, have a constant sum.

By drawing spheres, one in each nappe of the cone and
tangent to the slicing plane of a hyperbola, one can
show in an analogous way:

A hyperbola is the set of all points in the plane
whose distances from two given points, F; and
F,, have a constant difference.
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hyperhola
parabola cirde yp

ellipse

The conic sections

For a parabola, one draws a single sphere tangent to
the slicing plane of the parabola and considers the
point F at which the sphere touches the plane, and the
line L of intersection of the slicing plane with the plane
of the circle along which the sphere is tangent to the
cone. We have:

A parabola is the set of all points in the plane
the same distance from a point F in the plane
and a given line L.

The conic sections have remarkable reflection properties.
See also PROJECTION.

conjunction (“and” statement) In FORMAL LOGIC a
compound statement of the form “p and ¢” is known
as a conjunction. For example, “A triangle has three
sides and a square has four sides” is a conjunction. A
conjunction is denoted in symbols by p A q.

For a conjunction as a whole to be considered true,
each component (or conjunct) p and g must itself be
true. Thus a conjunction has the following TRUTH TABLE:
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S

p q
Conjunction circuit
P | a |prg
T T T
T F F
F T F
F F F

A conjunction can be modeled via a series circuit. If T
denotes the flow of current, then current moves through
the circuit as a whole if, and only if, both switches p
and g allow the flow of current (that is, are closed).

See also DISJUNCTION.

connected Informally, a geometric object is “con-
nected” if it comes in one piece. For example, a region in
the plane is connected if, for any two points in that
region, one can draw a continuous line that connects the
two points and stays within the region. For example, a
HALF-PLANE is connected. The set of all real numbers on
the number line different from zero is not connected.

A surface sitting in three-dimensional space, such
as a SPHERE or a TORUS, is connected if any two points
on the surface can be connected by a continuous path
that stays on the surface. A GRAPH is connected if, for
any two vertices, there is a contiguous path of edges
that connects them.

The connectivity of a geometric object is the num-
ber of cuts needed to break the shape into two pieces.
For example, a circle (interior and circumference) and a
solid sphere each have connectivity one. An ANNULUS
and a torus each have connectivity two.

consistent A set of equations is said to be consistent
if there is a set of values that satisfies all the equations.
For example, the equations x + y = 7 and x + 2y = 11

are consistent, since they are satisfied by x = 3 and
y = 4. On the other hand, the equations x + y = 1 and
X + y = 2 are inconsistent.

In FORMAL LOGIC, a mathematical system is said to
be consistent if it is impossible to prove a statement to
be both true and not true at the same time. That is, a
system is consistent if it is free from CONTRADICTION.
Mathematicians have proved, for example, that arith-
metic is a consistent logical system.

See also ARGUMENT; GODELS INCOMPLETENESS
THEOREMS; LAWS OF THOUGHT; SIMULTANEOUS LINEAR
EQUATIONS.

constant The word constant is used in a number of
mathematical contexts. In an algebraic expression, any
numeric value that appears in it is called a constant. For
example, in the equation y = 2x + 5 with variables x
and v, the numbers 2 and 5 are constants. These num-
bers may be referred to as absolute constants because
their values never change. In general applications, how-
ever, constants may be considered to take any one of a
number of values. For example, in the general equation
of a line y = mx + b the quantities m and b are consid-
ered constants even though they may adopt different
values for different specific applications.

A specific invariant quantity whose value is deter-
mined a priori, such as & or e, is also called a constant.
In physics, any physical quantity whose value is fixed
by the laws of nature, such as the speed of light ¢, or the
universal gravitational constant G, is called a constant.

The constant term in a POLYNOMIAL is the term
that does not involve any power of the variable. For
example, the polynomials x3 — Sx + 7 and 22° — 3z2% + 2
have constant terms 7 and 0, respectively.

A constant function is any function [ that yields the
same output value, a say, no matter which input value
is supplied: f(x) = a for all values x. The graph of a
constant function is a horizontal line. It is surprising,

for instance, to discover that the function given by
1

f(x) = x'o80x  defined for all positive numbers x, is a

constant function. The formula always returns the value
10 no matter which value for the input x is chosen.

constant of integration The MEAN-VALUE THEO-
REM shows that any two antiderivatives of a given



function differ only by a constant. For example, any
antiderivative of the function f(x) = 2x must be of the
form x? + C for some constant C, called the constant
of integration. An antiderivative is usually expressed
as an INDEFINITE INTEGRAL. In our example we have
J2xdx = x* + C.

Care must be taken when working with an arbi-
trary constant of integration. For example, consider

computing the integral j% dx via the method of INTEGRA-

1
TION BY PARTS. Set # = % and v/ = 1 (so that u’ = = 3
and v = x) to obtain:
1 1 1
J‘; dx = ;-x—j(—?)x dx
1
=1+|—d
Jdx

Subtracting the integral under consideration suggests the

absurdity: 0 = 1. Of course, this argument failed to take

care of the constants of integration that should appear.
See also ANTIDIFFERENTIATION; INTEGRAL CALCULUS.

constant width A circular wheel has the property
that it has constant height as it rolls along the ground.
Alternatively, one could say that the width of the curve
is the same no matter which way one orients the figure
to measure it. Any shape with this property is called a
curve of constant width. The so-called Reuleaux trian-
gle, constructed by drawing arcs of circles along each
side of an equilateral triangle (with the opposite vertex
as center of each circular arc) is another example of
such a curve. Wheels of this shape also roll along the
ground with constant height.

One can construct wheels of constant height with
the aid of a computer. One begins with the PARAMETRIC
EQUATIONS of a circle of radius 1 and center (0,0) given
by x(#) = 0 + cos(¢) and y(¢) = 0 + sin(z), for 0 <t <360°.
Certainly the distance between any two points on this
circle that are separated by an angle of 180° is always
2. By changing the location of the center of the circle
slightly, we can preserve this distance property, as long
as we ensure that the center returns to the same loca-
tion every 180°. Thus, for example, the equations:

x(t)= %sin(lt) + cos(t)

y(t)= %cos(Zt) + sin(t)
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are the parametric equations of another curve with
the same constant-width property. (The fractional
coefficients were chosen to ensure that the resulting
figure is CONVEX.)

French mathematician Joseph Barbier (1839-89)
proved that all curves of constant width d have the
same perimeter, @ d. It is also known that, for a given
width, Reuleaux’s triangle is the curve of constant
width of smallest area.

constructible A geometric figure is said to be con-
structible if it can be drawn using only the tools of a
straightedge (that is, a ruler with no markings) and a
compass. The straightedge allows one to draw line seg-
ments between points (but not measure the lengths of
those segments), and the compass provides the means
to draw circles with a given point as center and a given
line segment from that point as radius.

The Greek scholars of antiquity were the first to
explore the issue of which geometric constructs could
be produced with the aid of these primitive tools alone.
The geometer EUCLID (ca. 300 B.C.E.) explicitly stated
these limitations in his famous text THE ELEMENTS.
Despite the fact that his exercise has no real practical
application (it is much easier to draw figures with rulers
to measure lengths and protractors to measure angles),
the problem of constructibility captured the fascination
of scholars for the two millennia that followed. This
illustrates the power of intellectual curiosity alone for
the motivation of mathematical investigation. Students
in high schools today are still required to study issues of
constructibility.

The compass used by the Greeks was different from
the one we use today; it would not stay open at a fixed
angle when lifted from the page and would collapse.
Thus it was not directly possible to draw several circles
of the same radius, for instance, simply by taking the
compass to different positions on the page. However, in
his work The Elements, Euclid demonstrated how to
accomplish this feat with the Greek collapsible compass.
This shows that any construction that can be accom-
plished with a modern compass can also be accom-
plished with a collapsible compass. For this reason, it is
assumed today that the compass used is a modern one.

A surprising number of constructions can be
accomplished with the aid of a straightedge and com-
pass alone. We list here just a few demonstrations.
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1. Copy a given line segment AB onto a given line L

Place the compass with point at one endpoint of
the line segment and pencil tip at the other, thus
setting the compass to the length of the line seg-
ment. Label one point A” on the line L, place the
point of the compass at A” and use it to mark off a
point B’ on the line. The segment A’B’ is congruent
to the segment AB.

. Draw a line perpendicular to a given line L
through a given point P on L.

Set the compass at an arbitrary radius and, with
the tip of the compass placed on point P, mark off
two points A and B on line L equidistant from P.
Now draw two circles of the same radius, one with
center at A and the other with center at B. These
circles intersect at two positions X and Y. These
points X and Y are the same distance from each of
X and Y, and so, as the study of EQUIDISTANCE
proves, the line through X and Y (and P) is the per-
pendicular bisector of the line segment AB. In par-
ticular, it is a line through P perpendicular to L.

. Construct the perpendicular bisector of a given line
segment AB.

The construction described in 2 above accomplishes
this feat.

. Draw a line perpendicular to a given line L through
a given point P not on L.

Set the compass with its point at P and draw a
large circle that intersects the line L at two points
A and B. Now follow the procedure for 2.

. Draw an equilateral triangle.

The points A, B, and X described in 2 are the ver-
tices of an equilateral triangle.

. Copy an arbitrary triangle to a different position
on the page.

Suppose the given triangle has vertices labeled A,
B, and C. Set the compass with point at A and tip
at B. Arbitrarily choose a point A” elsewhere on the
page, and use the compass to draw a circle with
center A” and radius equal to length of the segment
AB. Label an arbitrary point on this circle B". Use
the compass to draw a second circle with center A’,
but this time with radius equal to the length of AC.

10.

We must now select an appropriate point C’ on this
second circle. Draw a third circle with center B’ of
radius equal to the length of BC. Label a point of
intersection between the final two circles C'. Then
A’B’C’ is a congruent copy of the original triangle.

. Copy a given angle to a different location on

the page.

Simply regard the angle as part of a triangle and
follow the instructions of part 6.

. Construct a line parallel to a given line L through a

point P not on L.

Draw an arbitrary line through P that intersects the
line L. Copy the angle these two lines make at
position P and draw a third line through P at this
angle. This produces a diagram of a TRANSVERSAL
crossing a pair of lines possessing equal corre-
sponding angles. By the converse of the PARALLEL
POSTULATE, the two lines are parallel.

. Construct a line that divides a given angle precisely

in half.

Draw a circle of arbitrary radius with center at the
vertex of the angle. Suppose this circle intersects
the rays of the angles at positions A and B. Now
draw two circles of the same radius centered about
each of these two points. Let P be a point of inter-
section of the two circles. Then the line connecting
the vertex of the angle to P is an angle bisector.
(The SSS principle of similarity shows that the two
triangles produced in the construction are congru-
ent, demonstrating then that the original angle is
indeed divided into two equal measures.)

Draw a perfect square.

Draw an arbitrary line segment. This will be the
first side of the square. Label its endpoints A and
B. Using part 2, construct a line through B perpen-
dicular to the line segment. Use a circle centered
about B of radius equal in length to AB to find a
point C on this perpendicular line so that BC is the
same length as AC. This provides the second side
of the square. Repeat this procedure to construct
the remaining two sides of the square.

Not every geometric feat can be accomplished with

straightedge and compass alone. For example, although
it is possible to also construct a regular pentagon and a



regular hexagon with these primitive tools, the con-
struction of a regular heptagon (a seven-sided polygon)
is impossible. CARL FRIEDRICH GAuss (1777-1855)
proved that a regular n-gon is constructible if, and only
if, 2 is a number of the form 2* pyp,...p,, with each p;
a distinct PRIME of the form 2% + 1 (such as 3, 5, 17,
257, and 65,537.) Although one can bisect an angle
with straightedge and compass, the problem of TRI-
SECTING AN ANGLE is unsolvable. The two classical
problems of SQUARING THE CIRCLE and DUPLICATING
THE CUBE also cannot be solved.

Constructible Numbers

A real number 7 is said to be constructible if, given a
line segment on a page deemed to be of unit length, it
is possible to construct from it a line segment of
length 7 using only the tools of a straightedge and a
compass. For instance, the number 2 is constructible.
(Given a line segment AB of length one, use the
straightedge to extend the length of the line. Draw a
circle of radius equal to the length of AB, centered
about B, to intersect the line at a new point C. Then
the length of AC is 2.) Any positive whole number is
constructible.

Suppose a and b are two constructible numbers
with b > a. (That is, given a line segment of length 1,
we can also produce line segments of lengths a and b.)
Then the following is true:

a
The numbers a + b, b —a, a x b, B> and Va are
constructible.

The diagram at right indicates how to construct these
quantities.

(In the third and fourth diagrams, draw lines par-
allel to the lines connecting the endpoints of the two
segments of lengths a and b. Examination of similar
triangles shows the segments indicated are indeed of
lengths a x b and a/b, respectively. For the fifth dia-
gram, add lines to produce a large right triangle
within the circle with the diameter of length a + 1
as hypotenuse. Application of PYTHAGORAS’S THEO-
REM shows that the segment indicated is indeed of
length Va.)

It follows now that any rational number is con-
structible as is any number that can be obtained from the
rationals by the application of a finite number of addi-
tions, subtractions, multiplications, divisions, and square
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given: a
b
0 a | h
I

a+b

° b |
| a
b—a '

o /

axh

Constructing the sum, difference, product, quotient, and roots of

aand b
\/7§+\/2+13 2442
\/w/w/3+\/§

is constructible.) Mathematicians have proved that these
are the only types of real numbers that are constructible.
Mathematicians have also proved that any number that
is constructible is an ALGEBRAIC NUMBER. As T, for
instance, is not algebraic, it is not constructible.

See also AAAJAAS/ASA/SAS/SSS.

roots. (For instance, the number
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contingency table A table showing the number of
units from a sample having certain combinations of
attributes is called a contingency table. For example, a
marketing research project records the hair color of
participating men and women and presents the results
in a contingency table:

Hair Color

Black Brown Blonde Red
Male 25 23 8 2
Female 18 16 14 5

The CHI-SQUARED TEST can be used to look for correla-
tions between attributes displayed in such tables.

continued fraction A number that is an integer plus
a fraction with denominator that is itself an integer
plus a fraction—and continued this way—is called a
continued fraction. For example,

1402 4
=2+
457 7
3+—F—
1
9+
2+3
5
and
1
«E=1+
1
2+
1
2+
1
2+
2+ 1
24

are continued-fraction representations of the quantities
1,402/457 and V2 (as we shall establish below). The
first continued fraction stops after a finite number of
steps, and the second continues forever. A continued
fraction is said to be in standard form if, like the sec-
ond example, all the numerators are equal to one, and
all the integers involved are positive.

Every positive real number x can be written as a
continued fraction in standard form. If [ x] denotes the
largest integer less than or equal to x, and {x} the frac-

tional part of x as given by the FRACTIONAL PART
FUNCTION, then:

x=LxJ+{x} =|_xj+%
{x}

As the quantity 1/{x} itself is a positive real number
greater than one, we can, in the same way, write it as
an integer plus another fraction with unit numerator.
Repeated application of this procedure produces a con-
tinued fraction in standard form.

. 1,402 .
For example, if x = =57 then we can write
31 1 457 23 1
x—3+ﬁ—3+ﬁ’ and ?—14+ﬁ—14+§,
31 23

and so on. This produces the standard-form continued
fraction:

1,402 1 _
=3 : =(3,14,1,2,1,7]

It is not difficult to show that if x = a/b is a frac-
tion, then 1/{x} is a new fraction with denominator
smaller than b. Repeated application of this procedure
must eventually produce a continued fraction with
denominator equal to one, so that the procedure ter-
minates. This shows that all numbers that are rational
(that is, equal to a fraction) have continued-fraction
representations that stop after a finite number of
steps. (And, conversely, any such continued fraction
“unravels” to produce a quantity that is rational.)
Consequently:

All quantities with infinitely long continued-
fraction representations are irrational.

1
For example, one can check that V2=1+ and
1++2

substituting this formula into itself gives the continued
fraction representation presented above:



1 1 1
2= =1+
1+\/E 1 2+ 1
1+‘/§ 2+ 1
1+«/E
=-..=1+ 1
1
2+
1
2+
2+ 1
2+

That this process does not terminate proves that V2 is
not a fraction. In a similar way, one establishes:

=1+ L =1112)
1+
1
2+
1+ !
2+
1 —
Vs=2+ - =[2,4]
44 -
1
4+
4+ L
4+
and V6 = [2,2,4], showing that these quantities are also

irrational. The number e also has an infinite continued-
fraction representation: ¢ = [2,1,2,1,1,4,1,1,6,1,1,8,1,

1445

1,10,...], as does the golden mean ¢ = 7—[1 11,..]-

Mathematicians have proved that fmlte continued
fractions in standard form have a curious property:

Reversing the order of the integers that appear
in a finite continued fraction produces a new
fraction with the same numerator as the origi-
nal quantity.

For example, as we have seen,
1,402/457, and one calculates that:

[3314515251’7] =

[7,1,2,1,14,3]=7 +

equals the fraction 1,402/181.
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Continued fractions were systematically studied by
LEONHARD EULER (1707-83), and he was the first to
formally introduce them in a written text. JOSEPH-
Lours LAGRANGE (1736-1813) extended much of
Euler’s work. Continued fractions have proved to be
very useful in solving a large selection of DIOPHANTINE
EQUATIONs. They also provide excellent rational
approximations to irrational numbers. For example,
terminating the continued fraction representation for
V2 after a finite number of steps yields good approxi-
mations to the square root of 2:

1=1,1+l=i 1+ !
2+

2 2

1
2 1

17 41 99 239

S 12729707 169°

This particular sequence of fractions, generated by the

a+2b

a+
early as the first century C.E. It holds some mysterious

properties. For example, every second term of the
sequence corresponds to a PYTHAGOREAN TRIPLE:

, was used by Theon of Smyrna as

formula % N

7 3+4

and 32 +42 = 5
5 +
420420 g
55="75 and 20% +212 =29
239 194120 104 1192 +1202 = 1692

169 169

and every other term, rounding the numerator and
denominator each down to the half, yields FIGURATE
NUMBERS that are both square and triangular:

i%%and T,=8 =1

2

17 8

E%—and Tg _S6 =36

99 49

70_>3 and T49—S35—1 225
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Unraveling the continued-fraction expansions of other
irrational numbers can yield analogous discoveries.

continuous function Informally, a function is said to
be continuous if one can draw its graph without ever
lifting the pencil from the page. This means that the
graph of the function consists of a single curved line
with no gaps, jumps, or holes.

More precisely, a function is continuous at a point
x = a, if the function is defined at the point g, and the
LIMIT of f(x) as x approaches a equals the value of the
function at a:

lim,_,.f(x) = f(a)

(If, for example, a function has values f(0.9) = 1.9,
£(0.99) = 1.99, 1(0.999) = 1.999, and so on, then one
would be very surprised to learn that f(1) equals 18.
The function would not be deemed continuous at x =
1.) A function that is not continuous at a point is said
to be discontinuous, or to have a discontinuity, at that
point. A function that is continuous at every point in
its domain is called continuous.
Mathematicians have proved that:

i. The sum of two continuous functions is continuous.

ii. The product of two continuous functions is
continuous.

iii. The quotient of two continuous functions is con-
tinuous at each point where the denominator is
not zero.

iv. The COMPOSITION of two continuous functions is
continuous.

Since the straight-line graph f{x) = x is continuous, it fol-
lows from properties i and ii that any POLYNOMIAL func-
tion p(x) = a,Xx"+...+a1x + a is continuous. By property
iii, any RATIONAL FUNCTION is continuous at all points
where the denominator is not zero. The functions sin x
and cos x from TRIGONOMETRY are both continuous.

The tangent function, tan x = gg;g;, i1s continuous
. n 3t , Sn
at every point other than iz’iT’iT’m’ the

locations where cosine is zero.

It is possible to remove a discontinuity of a function
at x = a if the limit lim,_,, f(x) exists. For example, the
x> -
X —

function f(x) = 11 is not defined at x = 1, since

the quantity 8 has no meaning. Nonetheless, algebra

shows that the limit of this function as x approaches
the value 1 exists:

2 _ _
lim, ;=L = lim,_,, XD+
X

3 o =lim, yx+1=2
(Dividing through by the quantity x — 1 is valid in this
calculation since, for values of x close to, but not equal
to, 1, the quantity x — 1 is not zero.) Consequently, if
we declare the value of the function to be 2 at x = 1:

if x is different from 1

2 if x is equal to 1

we now have a continuous function. A discontinuity
at x = a for a function f is called removable if
lim,_,, f(x) exists.

The issue of continuity is fundamental to the foun-
dation of cALcuLus. A study of the INTERMEDIATE-
VALUE THEOREM and its consequences illustrates this.

continuum hypothesis A study of DENUMERABLE
sets shows that every infinite set contains a denumer-
able subset. Thus, in a well-defined sense, denumerable
sets are the “smallest” types of infinite sets. The DIAGO-
NAL ARGUMENT of the second kind shows that the set
of real numbers is not denumerable, that is, in a mean-
ingful sense, the CARDINALITY of the real numbers,
denoted ¢, is “larger” than the cardinality of denumer-
able sets, which is denoted (. We have:

N0<C

German mathematician GEORG CANTOR (1845-
1918), father of cardinal arithmetic, conjectured that
there is no type of infinite set “larger” than an infinite
set of denumerable objects, but “smaller” than the con-
tinuum of the real numbers. (That is, there is no cardi-
nal number strictly between X and c.) This conjecture
became known as the continuum hypothesis. It can be
stated equivalently as follows:

Any infinite subset of real numbers can either
be put in one-to-one correspondence with the



set of natural numbers, or can be put in one-
to-one correspondence with the entire set of
real numbers.

Despite his efforts, Cantor was unable to establish
whether or not his continuum hypothesis was true. In
1940 Austrian mathematician KURT GODEL proved
that the continuum hypothesis cannot be proved false.
Unfortunately, as GODEL’S INCOMPLETENESS THEOREMS
show, this does not mean that the continuum hypothe-
sis is true: there exist statements in mathematics that
are undecidable, that is, ones that cannot be proved
true and cannot be proved false. It was suspected that
the continuum hypothesis might be such an undecid-
able statement. Twenty-three years later in 1963,
American logician Paul Cohen managed to prove that
this is indeed the case. Consequently one can either
deem the continuum hypothesis as true or as false, an
arbitrary choice, and be certain never to run into a
mathematical contradiction as a result.

contour integral (curvilinear integral, line integral)
If Cis a curve in the xy-plane and z = f(x,y) is a func-
tion of two variables, then one can attempt to compute
the surface AREA (one side) of a “wall” that follows the
curve C and has “height” the height of the function
above the curve. The integral that computes this, called
a contour integral and denoted | f ds, is constructed by
selecting a large number of points pg, pi,...,p, along
the curve C and approximating the surface under con-
sideration by a collection of rectangular sections. The
ith rectangle can be taken to have base-length the dis-
tance between the points p; and p;, 1, which we denote
d;, and height f(p;). The surface area is thus
n-1

approximated by the sum 2 fpid; Taking the limit
i=0

as we take finer and finer approximations defines the
desired contour integral.

If the curve C is defined by parametric equations:
x = x(t) and y = y(¢) for some parameter t, a < ¢ < b,
then this procedure gives the contour integral as:

[l Fds =] fletn),pon (x0) 2+ (v (0) de

In physics and in advanced VECTOR calculus, one
also considers integrating, for example, the work done
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in moving a particle along a curve C through a VECTOR
FIELD (force field). Such considerations lead to other
types of integrals, also called line integrals.

contour line A line on a map that joins points of
equal height is called a contour line. Contour lines are
usually drawn for equal intervals of height. This gives
experienced map readers a clear mental picture of the
three-dimensional topography of the land: contour
lines close together, for example, indicate that the slope
of the land is steep.

In mathematics, contour lines are used to portray
the shapes of surfaces sitting in three-dimensional
space. For example, all points of the same height z = ¢
on the surface z = x% + y? satisfy the equation x? + y* =
¢ and so lie on a circle of radius Vec. This leads to a con-
tour map for the graph of the function f(x,y) = x? + y?
consisting of sets of concentric circles about the origin.
The surface described is a PARABOLOID with vertex at
the origin.

contradiction In FORMAL LOGIC, any statement that
yields a TRUTH TABLE with final entries all false is called
a contradiction. For example, the statement (—p) A p is
a contradiction. From any contradiction, it is possible
to prove that any statement in mathematics is true. For
example, one can check that the compound statement
(=p) A p — g is a tautology. Consequently, in mathe-
matics, if one can prove that some statement p and its
negation —p are both true, then since both (=p) A p
and (=p) A p — g are valid, no matter what statement
g represents, ¢ is also true by inference. Any contradic-
tion that appears in mathematics would prove, for
example, that 1 = 2, and that every irrational number is
a fraction. Mathematicians sincerely hope that mathe-
matics is free from contradiction.
See also CONSISTENT.

contrapositive The contrapositive of a CONDITIONAL
statement “p implies q” is the statement: “not q implies
not p.” It is the statement obtained by switching the
antecedent with the consequent, and negating each. For
example, the contrapositive of the statement, “If it is a
poodle, then it is a dog,” is “If it is not a dog, then it is
not a poodle.” The contrapositive of a statement is a
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logically equivalent form of the statement, and so can
be used at any time in its stead. (One shows that p — g
and (—q) — (—p) have identical TRUTH TABLES.)

In mathematics it is sometimes convenient to prove
the contrapositive form of a theorem rather than prove
the assertion directly. This approach is called contra-
positive reasoning (or modus tollens), and the proof
presented is a proof by contraposition. For example,
the theorem: if #* is odd, then n is odd, is best proved
by assuming that 7 is even (that is, # = 2k for some
integer k) and then showing that 72 is also even.

The contrapositive of a conditional “p implies q”
should not be confused with the inverse of the state-
ment: “not p implies not q.” This variation is not a log-
ically equivalent form of the original conditional.

See also ARGUMENT; CONVERSE; PROOF.

convergent improper integral See IMPROPER

INTEGRAL.

convergent sequence A SEQUENCE of numbers
a1,d»,d3,... is said to converge if the terms of the
sequence become arbitrarily close to, but do not nec-
essarily ever reach, a particular finite value L. For
example, the numbers in the sequence 0.9, 0.99,
0.999,... approach the value 1. We call 1 the L1MIT of
this sequence.

Any sequence that converges is called a convergent
sequence. If a sequence {a,} converges to limit L, we
write lim,,_,..a, = L, or, alternatively, a,, — L as n — oo,
which is read as “a,, approaches L as # becomes large.”

13715
For example, the sequence 5:4°8°16 has limit one

21 1111
~__—=1), and the sequence 1,—2,3,—4,5,...

(lim,,_,..

(_1)n+1

has limit zero (lim,_,., —0 as n — o). The

notions of limit and convergence can be made mathe-
matically precise with an “e =N definition” of a limit.
(See LIMIT.)

A sequence that does not converge is said to
diverge. A divergent sequence could have terms that
grow in size without bound (1,4,9,16,25,..., for exam-
ple), terms that oscillate without converging to a limit

1 2 4
(5,—5,%,—5,%,—%,..., for example), or terms that

oscillate without bound (1,2,1,3,1,4,1,5,1,6,1,7,1,...,
for instance).
See also DIVERGENT; INFINITE PRODUCT; SERIES.

convergent series An infinite SERIES 21 dp=artdyt
n=

ast... is said to converge to a value L if the sequence
of PARTIAL SUMS, S, = @ + ar+...+a,, approaches the
value L in the LIMIT as n—oo. To illustrate, the series

-1 1 1 1 1
=5 74751 1g T has partial sums:

n:lzn

1
S ==
)

1 1 3
2737973
S l+l+l—z
3727478 8
S,,=1—i

2n

which approach the value 1 as # grows. In this sense we

say that the series Y, — converges to 1, and we write:
n
n=1

If the limit of the partial sums does not exist, then
the series is said to diverge. For example, the series
1-1+1-1+1-...diverges because the partial sums
oscillate between being 1 and 0 and never settle to a
particular value. The series 1 + 2 + 3 + 4 + ... diverges
because the partial sums grow arbitrarily large. The

=3

series T diverges for the same reason, which can
n=1\Nn

be seen as follows:



n

n
=/n

and so §,, — o as 1 grows.
There are a number of tests to determine whether
or not a given series converges.

The nth-Term Test

If a series Y. a, converges, then it must be the
n=1

case that lim,_,.a, = 0. Consequently, if the
terms a, of the series do not approach zero,
then the series must diverge.

To see why this is true, note that S, = @y + ay+...+d,_1 + a,
= S, + a,. If the partial sums converge to L, then we
must have that lim,_,..a,, = lim,_,..(S,, - S,1) = L - L =0.
This test shows, for example, that the

$n-l_g,1,2,3,
T 273,

of the series do not become small.

series

. diverges because the terms

The Comparison Test

This test applies only to series with positive terms.

A series Y a,, with positive terms converges if
n=1

each term g, of the series is less than or equal

to the terms of another series with positive

terms already known to converge.

A series Y a, with positive terms diverges if
n=1

each term a, of the series is greater than or

equal to the terms of another series with posi-

tive terms already known to diverge.

For example, the series Y,
n=1

converges because

ZL< zzin, a series which we already know

o 3
. n+7
converges. The series Y

n=1 \/;

diverges, since
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R

n=1 n

2 , which we know diverges.

The Ratio Test
This test applies only to series with positive terms.

A series Y a, with all terms positive:
n=1

1 .
exists and equals

. o a
i. converges if lim,_,..
n
a value smaller than 1

N o1 a
ii. diverges if lim,,_,,, =+
n

a value greater than 1

exists and equals

If the limit in question actually equals 1, then
nothing can be concluded from this test.

This test was first developed by French mathematician
AUGUSTIN-Louis CAUCHY (1789-1857). It is proved in
CALCULUS texts by making clever comparison to a

<r<d,

. . Ay
GEOMETRIC SERIES. (Briefly, if for all terms —=

n
then a, < ray, a; < ra, < r’ay, a4 < ray < r’ay, etc., and
SO a; +ay + ay + dy +... <ay(1 + 7+ 7%+ r’+...), which

S vn+1

converges.) Consider, for example, the series Z I

n=1

o _An+l
Here the nth term is given by a, = ETE
At _ ), yn+2 3t 1 |n+

m,_,~——— ——=lim,_ .=
ay " 3n+1 Jn+1 " 3 n+l

= % 1= % < 1. By the ratio test, this series converges.

, and we have:

[\

lim,,_,.

The Root Test
This test applies only to series with positive terms.

A series Y., with all terms positive:
n=1
i. converges if lim,_,., ’(/aj, exists and equals
a value smaller than 1
ii. diverges if lim,_,.. % exists and equals
a value greater than 1

If the limit in question actually equals 1, then
nothing can be concluded from this test.
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The proof of this test relies on making clever compari-
son to a geometric series. (If, for all terms, Va, < r for
some value 7, then a, < 7" and a comparison can be
made.) This test is often used if the series contains
terms involving exponents. For example, consider the

1

series z « . Here the nth term of the series is
n=1 (n2 + n)

1
given by 4~ (n2 +n)n , and we have: lim,,_,x,’(/z =

lim, .. — =0<1. By the root test, the series must
n*+n

converge.

The Integral Test

This test applies only to series with positive terms.

Suppose the terms of a series Y a, are given
n=1

by a formula a,, = f(n), where the function f(x) is

continuous, positive, and decreasing for x > 1:

i. If the IMPROPER INTEGRAL ] f(x)dx con-

verges, then the series Z a4, converges.
n=1

ii. If the improper integral [{f(x)dx diverges,

then the series . @ diverges.

n=1

This can be proved geometrically by drawing rectan-
gles of width 1 just above and just below the graph of
y = f(x) for x > 1, and then comparing the total area
of all the rectangles with the area under the curve.

To illustrate the test, consider the series Zn—z Since
n=1

fmidx Y 0—(-1)=1 converges, we have that
1 xz X ’
w1 .
the series zn_z converges. In general, one can establish
n=1

in this way the p-series test.

The p-Series Test

A series of the form Zn—p with p a real
n=1

number converges if p > 1 and diverges if p < 1.

- 1
A series of the form 2 PRt called a p-series.
n=1

Absolute Convergence Test

Suppose Y. a, is a series with both positive

n=1

and negative terms. If the corresponding series

Y la,| with all terms made positive converges,
n=1

then the original series Y, a, also converges.

n=1

One can use any of the first six tests described above

to determine whether or not X!l converges. The
n=1

validity of the absolute convergence test is established
in the discussion on ABSOLUTE CONVERGENCE.
Since we have established, for example, that

the absolute

o 1 1 1 1
Z—:1+Z+—+—+~-- converges,

2 9 16

convergence test now assures us that the variant series

I S SR N L S L S S
4 9 16 25 36 49 64 81 100
converges (as does any other variation that involves the
insertion of negative signs).
The absolute-convergence test does not cover all

cases. It is still possible that a series with negative

n=1"

terms, Zan, might converge even though D la,l

n=1 n=1
diverges. This phenomenon is called CONDITIONAL
CONVERGENCE.

Alternating-Series Test

If the terms of a series Y. a,, alternate in sign
n=1

and satisfy

L a12a>2az>...
ii. a,—> 0

then the series converges.

(See ALTERNATING SERIES.) This test shows, for
example, that the alternating HARMONIC SERIES

1_1+1_l+

1 converges though the
2 3 4°5

even



corresponding series with all terms positive does not.
It is possible to multiply convergent series by con-
stants, and to add and subtract two convergent series.

Precisely, if ) a, and Y b, both converge, and k is a
n=1 n=1
number, then:

i(/za,,) =k Zan

n=1

3 (a+b,)= X o+ 3 b,
n=1 n=1 n=1
-89-S0

These properties can be used to evaluate new infinite
sums. For example, in 1740 LEONHARD EULER showed
that a particular value of the ZETA FUNCTION is given

) 2
by 2i:]+l+l+i+...:n_

" 2797 1¢ < It then follows

11 1 1 1
l-——t———+———+--=| 1+
4 9 16 25 36

+
6 4l 4 9
2 1x?
6 2 6
_n?
12

See also ARITHMETIC SERIES; GEOMETRIC SERIES;
POWER SERIES.

converse (reverse implication) The converse of a
CONDITIONAL statement “p implies q” is the statement:
“q implies p.” It is the statement obtained by reversing
the roles of the antecedent and consequent. The con-
verse of a conditional statement might, or might not, be
true. For example, the converse of the true statement,
“If a triangle has three equal sides, then it has three
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equal angles,” is valid—a triangle with three equal
angles does indeed have three equal sides—whereas the
converse of the statement, “If n is divisible by 6, then n
is divisible by 2,” is false—an even number need not be
divisible by 6.

See also ARGUMENT; CONTRAPOSITIVE.

convex See CONCAVE/CONVEX.

coordinates A set of numbers used to locate a point
on a number line, in a plane, or in space are called the
coordinates of that point. For example, the coordinates
of points on a number line could be given by their dis-
tances from a fixed point O (called the origin), with
points on one specified side of O being deemed a posi-
tive distance from O, and the points on the opposite
side of O a negative distance from O.

One way of assigning coordinates to points in the
plane is to establish a fixed point O in the plane (again
called the origin), and two lines of reference (called
axes) that pass through O. Each axis is divided into a
positive side and a negative side by O. Given a point P
in the plane, one draws lines through P parallel to each
of the axes. The distances along which these new lines
intersect the axes specify the location of the point P.

When the axes are drawn at right angles, the sys-
tem is called a Cartesian coordinate system, or a rect-
angular coordinate system. The axes are usually called
the x- and y-axes, and the pair of numbers (x,y) speci-
fying the location of a point P (as x units along one
axis, and y units along the second) are called the
CARTESIAN COORDINATES of P. In three-dimensional
space, the location of points can be specified via three
mutually perpendicular (or oblique) axes passing
through a common point O.

The idea of assigning sets of numbers to points to
specify locations is on old one. By the third century
B.C.E., Greek scholars APOLLONIUS OF PERGA and
ARCHIMEDES OF SYRACUSE had used longitude, lati-
tude, and altitude to define the position of a point on
the Earth’s surface. Roman and Greek surveyors
labeled maps with grid lines, so as to specify locations
via row and column numbers.

See also CYLINDRICAL COORDINATES; DIMENSION;
EARTH; POLAR COORDINATES; RIGHT-HANDED/LEFT-
HANDED SYSTEM; SPHERICAL COORDINATES.
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coplanar See PLANE.

coprime Another name for RELATIVELY PRIME.

correlation See CORRELATION COEFFICIENT; SCATTER
DIAGRAM.

correlation coefficient Any numerical value used to
indicate the extent to which two variables in a study are
associated is called a correlation coefficient. For exam-
ple, a medical study might record the height and shoe
size of adult participants suspecting that there might be
a relationship between these two features. If two vari-
ables are such that when one changes, then the other
does so in a related manner (generally the taller an indi-
vidual, the greater the shoe size on average, say) then
the two variables are said to be correlated. A SCATTER
DIAGRAM is used to detect possible correlations. If the
points of the scatter diagram tend to follow a straight
line, then the two variables are linearly correlated.

KARL PEARSON (1857-1936) developed a measure
to specifically detect linear relationships. If the DATA
values in a study are represented as pairs of values,
(X15Y1)5-+-5(XN5 YN), first define:

1N Nox? o o_
Sxx=NE(xi_x)2=§{ﬁ_x2
S 15 )2 NJ’iZ 52
yy_ﬁgl,(yz_y) =i§iw—y

and
1N _ . X — —
Sxy=ﬁ§7l,(xi—x)(yi—y)=E Yi %y

Here x is the MEAN of the x-values and y the mean of
the y-values. The quantities S,, and S, are called the
VARIANCEs and S,, the COVARIANCE of the two vari-
ables. Then Pearson’s correlation coefficient, denoted
R?, is given by:

This quantity only adopts values between 0 and 1. A
value of R? = 1 indicates a perfect linear relationship
between the two variables, with the points in the asso-
ciated scatter diagram lying precisely on a straight line.
A value R? = 0 indicates that there is no relationship
between the two variables. (In particular, the covari-
ance of the two variables is zero.) All these claims can
be proved through a study of the LEAST SQUARES
METHOD. An R? value close to 1, say 0.9 or higher,
indicates that a linear correlation is very likely.

See also RANK CORRELATION; REGRESSION; STATIS-
TICS: DESCRIPTIVE.

countable Any set, finite or infinite, whose elements
can be placed in a list is said to be countable. More
precisely, a set S is countable if there is a one-to-one
correspondence between the elements of S and a subset
of the NATURAL NUMBERS (that is, it is possible to
match each element of S with a unique natural num-
ber). For example, the set {knife, fork, spoon} is count-
able because its elements can be matched with the
elements of the subset {1, 2, 3} of natural numbers: list
knife as first, fork as second, and spoon as third, for
instance. The set of all integers is countable, for its ele-
ments can be placed in the list:

0,1,- 1,2, - 2,3, - 3,...

The set of all English words that exist today and might
be of use in the future is countable: list all letters of the
alphabet (possible one-lettered words), then, in alpha-
betical order, all combinations of a pair of letters (the
two-lettered words), followed by all possible combina-
tions of three letters, and so forth, to produce a well-
defined list of all possible strings of letters.

The DIAGONAL ARGUMENT of the first kind shows
that the set of all RATIONAL NUMBERS is countable. The
diagonal argument of the second kind, however, estab-
lishes that the set of REAL NUMBERS is not. In a definite
sense then, the set of reals is an infinite set “larger”
than the set of rationals.

A set is called DENUMERABLE if it is infinite and
countable. Matters are a little confusing, however, for
some authors will interchangeably use the terms couni-
able and denumerable for both finite and infinite sets.

The CARDINALITY of an infinite countable set is
denoted X,. A countable set that is not infinite is said
to be FINITE.



counterexample An example that demonstrates that
a claim made is not true or, at the very least, not always
true is called a counterexample. For instance, although
the assertion Ya + b = Va + Vb happens to be true for
a =1 and b = 0, this identity is false in general, as the
counterexample a = 9 and b = 16 demonstrates. We can
thus say that the claim Va + b = Va + Vb is an invalid
statement.

In the mid-1800s French mathematician Alphonse
de Polignac (1817-90) made the assertion:

Every odd number can be written as the sum of
a power of two and a PRIME number.

For instance, the number 17 can be written as 17 = 2% +
13,37 as 37 = 23 + 29, and 1,065 as 1,065 = 210 + 41,
De Polignac claimed to have checked his assertion for all
odd numbers up to 3 million, and consequently was con-
vinced that his claim was true. Unfortunately it is not,
for the number 127 provides a counterexample to this
assertion, as none of the following differences are prime:

127-2=125=5x%x2$
127 -4 =123 =3 x 41
127-8=119=7x17
127 -16 =111 =3 x 37
127-32=95=5x%x19
127 -64=63=3x21

(We need not go further, since the next power of two,
128, is larger than 127.) De Polignac overlooked this
simple counterexample.

No counterexamples have yet been found to the
famous GOLDBACH’S CONJECTURE and COLLATZ’S
CONJECTURE.

covariance If a scientific study records numerical
information about two features of the individuals or
events under examination (such as the height and shoe
size of participating adults, or seasonal rainfall and
crop yield from year to year), then the DATA obtained
from the study is appropriately recorded as pairs of
values. If a study has N participants, with data pairs
(X15 ¥1)5-+-5(XN5 YN), then the covariance of the sample is
the quantity:
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where X is the MEAN x-value and j the mean y-value.
An exercise in algebra shows that this formula can also
be written:

Mz

XV, — —
So =X N FT

1

Il
—_

The covariance is used to calculate CORRELATION
COEFFICIENTs and REGRESSION lines such as for the
LEAST SQUARES METHOD, for instance. Pearson’s corre-
lation coefficient shows that two variables with covari-
ance zero are independent, that is, the value of one
variable has no effect on the value of the other.

See also STATISTICS: DESCRIPTIVE.

Cramer, Gabriel (1704-1752) Swiss Algebra, Geom-
etry, Probability theory Born on July 31, 1704, in
Geneva, Switzerland, scholar Gabriel Cramer is remem-
bered for his 1750 text Introduction a Panalyse des
lignes courbes algébriques (Introduction to the analysis
of algebraic curves), in which he classifies certain types
of algebraic curves and presents an efficient method,
today called CRAMER’S RULE, for solving systems of
linear equations. Cramer never claimed to have dis-
covered the rule. It was, in fact, established decades
earlier by Scottish mathematician COLIN MACLAURIN
(1698-1746).

Cramer earned a doctorate degree at the young age
of 18 after completing a thesis on the theory of sound,
and two years later he was awarded a joint position as
chair of mathematics at the Académie de Clavin in
Geneva. After sharing the position for 10 years with
young mathematician Giovanni Ludovico Calandrini
(senior to him by just one year), Cramer was eventually
awarded the full chairmanship.

The full position gave Cramer much opportunity to
travel and collaborate with other mathematicians
across Europe, such as LEONHARD EULER, Johann
Bernoulli and Daniel Bernoulli of the famous
BERNOULLI FAMILY, and ABRAHAM DE MOIVRE.
Cramer wrote many articles in mathematics covering
topics as diverse as geometry and algebra, the history
of mathematics, and a mathematical analysis of the
dates on which Easter falls.

His 1750 text Introduction a Panalyse des lignes
courbes algébriques was Cramer’s most famous work.
Beginning chapter one with a discussion on the types of
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curves he considers, Cramer presents effective tech-
niques for drawing their graphs. In the second chapter
he discusses the role of geometric transformations as a
means of simplifying the equations to curves (akin to
today’s approach using the notion of PRINCIPAL AXES).
This leads to his famous classification of curves in the
third chapter. Here Cramer also discusses the problem
of finding the equation of a degree-two curve ax? + bxy
+ ¢y + dx + ey = 0 that passes through five previously
specified points in the plane. Substituting in the values
of those points leads to five linear equations in the five
unknowns a, b, ¢, d, and e. To solve the problem
Cramer then refers the reader to an appendix of the
text, and it is here that his famous rule for solving sys-
tems of equations appears. Cramer made no claim to
the originality of the result and may have been well
aware that Colin Maclaurin had first established the
famous theorem. (Cramer cited the work of Colin
Maclaurin in many footnotes throughout his text, sug-
gesting that he was working closely with the writings
of Maclaurin.)

Cramer also served in local government for many
years, offering expert opinion on matters of artillery
and defense, excavations, and on the reconstruction
and preservation of buildings. He died on January 4,
1752, in Bagnols-sur-Céze, France. Although Cramer
did not invent the rule that bears his name, he deserves
recognition for developing superior notation for the
rule that clarified its use.

Cramer’s rule Discovered by Scottish mathematician
COLIN MACLAURIN (1698-1746), but first published
by Swiss mathematician GABRIEL CRAMER (1704-52),
Cramer’s rule uses the DETERMINANT function to find a
solution to a set of SIMULTANEOUS LINEAR EQUATIONS.
An example best illustrates the process.

Consider the set of equations:

2x +3y+2=3
x-2y+2z=11
3x+y—-22=-6

Set A to be the matrix of coefficients:

2 3 1
A=|1 2 2
31 2

The determinant of this matrix is not zero: det(A) = 35.

A standard property of determinants asserts that
if the elements of the first column are multiplied by
the value x, then the determinant changes by the fac-
tor x:

2x 3 1
det| x -2 2 |=xdet(A)
3x 1 =2

Adding a multiple of another column to the first does
not change the value of the determinant. We shall add y
times the second column, and z times to the third to
this first column:

2x+3y+z 3 1
det| x-2y+2z -2 2
Ix+y-2z 1 -2

= xdet(A)

But of course this first column equals the column of
values of the simultaneous equations:

2x+3y+z 3 1
xdet(A)=det| x-2y+2z -2 2
3x+y-2z 1 -2

3 3 1
=det| 11 -2 2 |=35
-6 1 -2

This tells us that the value of x we seek is:

_.35 35,
~det(A) 35

X

In the same way, the value y is found as the ratio of the
determinant of the matrix A with the second column
replaced by the column of values of the simultaneous
equations and the determinant of A:

2 3 1
ded 1 11 2

3 -6 2] 35

YT der(d) 35



and z is a similar ratio of determinants:

2 3 3
detf 1 -2 11
31 —-6) 140
z= = —= 4
det(A) 35

In a general situation, Cramer’s rule states:

If A is the matrix of coefficients of a system of
linear equations, then the value of the ith vari-
able x; in that system of equations is:

.- det(A;)
" det(A)

provided the determinant of A is not zero.
Here A; is the matrix A with the ith column
replaced with the column of values of the set
of equations.

Notice that Cramer’s rule shows that there can only be
one solution to a system of equations for which the
determinant of the coefficient matrix is nonzero.

In the study of determinants, Cramer’s rule is used
to prove that a matrix A is invertible if, and only if, its
determinant is not zero.

critical path Suppose that we are given a sequence of
tasks that need to be accomplished in order to complete
a large project, such as building a house or publishing
an encyclopedia, and suppose that these tasks have the
following properties:

1. There is an order of precedence for certain tasks.
2. Some tasks can be carried out simultaneously.
3. The duration of each task is known.

Then the critical path for the project is the longest (in
time) chain of tasks that must be completed in the spec-
ified order. The critical path thus puts a bound on the
minimum amount of time it takes to complete the
entire project.

For example, consider the project of preparing
hamburgers and salad for an evening meal. The follow-
ing table describes the tasks that must be completed,
their prerequisite tasks, and their duration.
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Time to Complete Prerequisite

TASK (in minutes) Tasks

W: wash hands 1 None

D: defrost hamburger 10 None

P: shape meat into patties 5 W, D

C: cook hamburgers 10 P

S: wash and slice 8 W
salad items

M: mix salad 4 S

T: set table 3 W

E: serve meal 2 C.M,T

The top diagram below provides a useful
schematic of the ordering of the tasks. (Their times
are written in parentheses.) We see from it that the
longest chain, that is, the critical path of the project,
is the sequence D-P-C-E requiring 27 min to com-
plete. That all the tasks in this example can indeed be
accomplished in exactly 27 min is demonstrated in
the second diagram. In general, there is no guarantee
that the time dictated by the critical path is actually
attainable.

Computers are used to look for critical paths in
complex projects.

See also OPERATIONS RESEARCH.
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cross product (vector product) Many problems in
three-dimensional geometry require physicists and
mathematicians to find a VECTOR that is perpendicular
to each of two given vectors a and b. The cross prod-
uct, denoted a x b, is designed to be such a vector.

One begins by positioning the two vectors a and b
at the same point in space. These vectors define a plane
in space, and one sees that there are two possible direc-
tions for a third vector to point so as to be perpendicu-
lar to this plane. Mathematicians have settled on the
convention of following the “right-hand rule” to deter-
mine which direction to choose:

Take your right hand and point your fingers in
the direction indicated by the first vector a.
Now orient your hand, with your fingers still
pointing in this direction, in such a way that
your palm faces to the side of the plane con-
taining the vector b. (If you curl your fingers,
they will consequently turn through the small-
est angle that leads from a to b.) The direction
in which your thumb now points is the direc-
tion the vector a x b will take.

Thus a x b will be a vector that points in one direction
while b x a will point in the opposite direction. (In fact:
bxa=-axb.)

Mathematicians have settled on a second conven-
tion to define the magnitude of a X b:

The magnitude of a x b is the area of the PAR-
ALLELOGRAM defined by the vectors a and b.

If 6 is the smallest angle between a and b, then the par-
allelogram defined by the two vectors has side-lengths
lal and Ibl. Taking lal as the base, the height of the par-
allelogram is then given by Ibl-sinf, and consequently
the AREA of the parallelogram is lal-|bl-sin®. Thus:

a x b is defined to be the vector of magnitude
lal-|bl-sin® with direction given by the right-
hand rule.

For example, if i = <1,0,0> is the unit vector pointing
in the direction of the x-axis, and j = <0,1,0> the unit
vector in the direction of the y-axis, then i X j is a vec-
tor pointing in the direction of the z-axis, with length
equal to the area of the unit square defined by i and j,
namely 1. Thus:

ixj=<0,0,1>=k

If two vectors a and b are parallel, then the angle
between them is zero and ax b = 0.

There is an alternative method for computing cross
products. If a is given by a = <ay,a,,a3> = a4 + ayj + azk
and b is given by b = <by,b,,b5> = byi + b,j + b3k, then
one can check that the DOT PRODUCT of the vector:

(ayb3 — a3by)i + (asby — a1bs)j + (a1b; — azby)k

with each of a and b is zero. Thus this new vector is
perpendicular to both a and b. Mathematicians have
shown that it also has direction given by the right-hand
rule and magnitude equal to the parallelogram defined
by a and b. Thus this new vector is indeed the cross
product of a and b:

axb= (d2b3 - dgbz)i + (Cl3b1 - (11b3 )] + ((llbz - a2b1 )k

1 ik
=@ a as
by by bs

where, for the final equality, we have written the for-
mula in terms of the DETERMINANT of a 3 X 3 matrix.
(To prove that this new vector does indeed match the
quantity a X b, rotate the system of vectors a, b and
a X b so that a points in the direction of the x-axis and
b lies in the xy-plane. Then, for the rotated system we
have: a; = lal, a, = 0, a3 = 0, b; = |blcos®, b, = Iblsin®,
b; = 0. One can now readily check that the formula
above yields a vector of the required length |al-|bl-sin6
pointing in the correct direction. One then argues that
the formula continues to hold when the system of three
vectors is rotated back to its original position.) Thus,
for example, if a = <1,4,2> and b = <3,0,1>, then a x b
= <41 - 20,23 — 111, 10 — 43> = <4,5, — 12>
According to the DISTANCE FORMULA, this vector has
length V42 + 52 + (=12)> = V185, which must be the
area of the parallelogram formed by a and b.

i
)

In two-dimensions, the determinant

@)i—ayj=<a,,—a;> gives a vector the same length as
a = <ay,a,> and perpendicular to it. In four-dimensional
space one can always find a fourth vector perpendicu-
lar to each of any given three vectors.

See also ORTHOGONAL; TRIPLE VECTOR PRODUCT;
VECTOR EQUATION OF A PLANE.



cryptography The practice of altering the form of a
message by codes and ciphers to conceal its meaning to
those who intercept it, but not to those who receive it,
is called cryptography. If letters of the alphabet and
punctuation marks are replaced by numbers, then
mathematics can be used to create effective codes.

In 1977 three mathematicians, Ron Rivest, Adi
Shamir, and Leonard Adleman, developed a public-key
cryptography method in which the method of encoding
a message can be public to all without compromising the
security of the message. The RSA encryption method, as
it is known today, is based on the mathematics of the
MODULAR ARITHMETIC and relies on the fact that it is
extraordinarily difficult to find the two factors that pro-
duce a given large product. It is the primary encryption
method used today by financial institutions to transmit
sensitive information across the globe.

The RSA encryption method is based on the fol-
lowing result from modular arithmetic:

Suppose p and g are distinct PRIME numbers. If
7 is a number with neither p nor g a factor,
then #»-14-1) = 1(mod pq). Moreover, we have
P11+l = y(mod pq) for any two natural
numbers 7 and m, even if # is a multiple of p
or g.

(We prove this result at the end of this entry.) One pro-
ceeds as follows:

1. Encode your message as a string M of numbers.

2. Choose two large prime numbers p and g so that their
product N = pq is larger than M. Letk = (p — 1)(g - 1)
and choose a number e with no common factor to k.
The numbers N and e can be made public.

3. Raise the number M to the eth power, modulo N.
This gives the encoded message M”:

M’ = M? (mod N)

4. Since the GREATEST COMMON DIVISOR of k and e is
one, the EUCLIDEAN ALGORITHM shows that we can
find numbers d and 7 so that 1 = de — mk. In partic-
ular there is a number d such that ed = 1(mod k).
Keep the number d secret.

5. To decode the message, raise M’ to the dth power.
By the result stated above, this does indeed return
the original message M:

M’d - Med — Mkm+1 = Mmp-1)(g-1)+1
=M (mod N)
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If one works with very large prime numbers, say,
10,000-digit primes, it is virtually impossible to factor
the public number N and find & and d. Thus the RSA
system is extremely secure. (This use of large primes
also explains the current excitement over the discovery
of larger and larger prime numbers.) On the other
hand, multiplying and raising large numbers to powers
is easy for computers to do, and so the RSA method is
also very easy to implement.

Proof of Result

Suppose first that 7 is not a multiple of p and consider
the numbers 1,2,...,p — 1. Multiply each by n. If, for
two numbers x and y in the list, we have nx = ny(mod
p), then n(x — y) is a multiple of p. This can only hap-
pen if x and y are the same number. Thus, up to multi-
ples of p, the products 7n-1,n-2,...,n-(p — 1) are distinct
and so must represent a rearrangement of the original
list, modulo p. Consequently, n-1-7:2-....n(p — 1) =
1-2-...«(p = 1) (mod p), and the factor n*~! in the left
must be congruent to 1 modulo p: #~! = 1(mod p).
Similarly, we have #9! = 1(mod q) if 7 is not a multiple
of g. It follows from these two results that if 7 is not a
multiple of p or g, then:

nlp=0@-1) = (P~1)4-1 = 1(mod p)
nP=0@-1) = (5711 = 1(mod gq)

which shows that #(-Dla-1) — 1 is divisible by both p
and ¢, and hence by pq. This proves the first claim
made. The second follows by noting that 77®-1) (a-1)+1 =
n-(n"1)" " = 1 (mod p) is a true statement even if 7 is
a multiple of p, and »”P~D¢-D+1 = 5 (mod gq) is also
true for all values of 7. Any quantity #”®~1@-D+1 _ 4 js
thus always divisible by both p and q.

cube (hexahedron) The third PLATONIC SOLID, the
cube, is the solid figure bounded by six identical square
faces that meet at right angles. It has eight vertices and
12 edges. Because the VOLUME of a cube of side-length
a is given by a’, any number raised to the third power
is sometimes called a cube. The “cubic numbers” are
the cubes of the counting numbers: 0, 1, 8, 27, 64,
125,...

It is possible to subdivide a large cube into 27
smaller cubes with six planar cuts. This number of cuts
cannot be improved upon even if one is permitted to
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“stack” pieces of the cube during the slicing process so
as to cut through several pieces at once. (To see this,
consider the innermost cube among the 27 little cubes.
It has six planar faces, each of which need to be cut. As
no single planar cut will slice two of those faces, a min-
imum of six cuts is indeed required to form the 27 little
cubes.) It is possible, however, to dice a large cube into
4 x 4 x 4 = 64 smaller cubes in fewer than nine slices if
“stacking” is permitted (six will suffice). Nine slices
suffice to dice a cube into § x § x 5 = 125 smaller
cubes. In general, the minimum number of slices
required to subdivide a large cube into 7 x n x n = n?
smaller cubes is given by the formula:

3[ logyn |

making use of the CEILING FUNCTION.

The four-dimensional analog of a cube is a
HYPERCUBE.

See also FLOOR/CEILING/FRACTIONAL PART FUNC-
TIONS; DUPLICATING THE CUBE; PARALLELEPIPED; PRISM.

cube root/nth root The cube root of a number a is a
value x such that x3 = a. We write a for the cube root
of a.

Every real number a has exactly one real cube root.
For instance, the cube root of 27 is 3 (since 3 X 3 x 3
equals 27), and the cube root of -8 is -2 (since -2 x -2
x =2 equals -8). If one works within the realm of com-
plex numbers, then the FUNDAMENTAL THEOREM OF
ALGEBRA shows that every number has exactly three
complex cube roots. For instance, the three cube roots

of 27 are —§+i£ —i—iﬁ

2 27 2 2
the #nth roots of unity shows that the three complex
cube roots of a number lie on the vertices of an equilat-
eral triangle in the complex plane.

In general, the nth root of a number a is a value x
such that x” = 4. Again, the fundamental theorem of
algebra shows that every number has exactly #» com-
plex nth roots. If a is a real number, then a has a real
nth root if a is positive. (For example, a fourth root of
16 is 2.) If a is a negative real number, then a real nth
root exists only if 7 is odd. (For example, —243 has a
fifth root, namely -3, but no real fourth root.) The real
nth root of a number a, if it exists, is denoted Va.

See also CUBIC EQUATION; ROOT; SQUARE ROOT.

, and 3. A study of

cubic equation Any degree-three POLYNOMIAL equa-
tion of the form ax® + bx> + ¢cx + d = 0 with a # 0 is
called a cubic equation.

During the Renaissance, scholars sought for a gen-
eral arithmetic formula in terms of the coefficients a, b,
¢, and d that would solve all cubic equations (one akin
to the famous QUADRATIC formula for solving degree-
two equations). At the time, however, scholars were not
comfortable working with NEGATIVE NUMBERS, or with
ZERO as a number, and wrote equations in a form that
avoided their appearance. (For instance, the cubic x3 —
2x + 5 = 0 was cast as x> + 5 = 2x.) Mathematicians
consequently thought that there were eight different
types of cubic equations to solve.

Italian scholar SCIPIONE DEL FERRO (1465-1526)
was the first to make progress in solving certain cubics,
but never published his results. Later, the scholar Nic-
COLO TARTAGLIA (ca. 1499-1557) succeeded in solving
some additional classes of cubics. GIROLAMO CAR-
DANO (1501-76) published Tartaglia’s work (without
Tartaglia’s consent) in his epic 1545 piece Ars magna
(The great art) and developed a general approach that
solves all cubic equations. The formula he devised is
today called “Cardano’s formula” or the “Cardano-
Tartaglia formula.” We describe it here using modern
notation:

By dividing the cubic equation through by the lead-
ing coefficient a, we can assume that we are working
with a cubic of the form:

X +Bx2+Cx+D=0

for numbers B = %, C= %, and D = %. Substituting
B
x=y-3 simplifies the equation further to one without

a square term:

Y +py+q=0
B _ 2B BC .
(Here P—C—? and 6]—2_7—T+D.) This form

of the cubic is called the reduced cubic, and any solu-
tion y to this equation corresponds to a solution

b . .
X=Y-3- of the original equation.

Assume that the equation has a solution that can
be written as the sum of two quantities: y = # + v. Sub-
stituting these variables yields:



(W +03) + Quv+p)u+v)+g=0

This equation will be satisfied if we can choose # and v
so that u? + v* = —=q and 3uv + p = 0. This yields a pair
of equations for #3 and v*:

Solving for 3 in the first equation and substituting the
result into the second shows that #° must satisfy the
quadratic equation:

() + gfed) - (gj _o

and using the quadratic formula, this gives %3, and con-
sequently 3 = —u® — g, to be the two numbers:

—g+ 242
q q+(3

A

We must now take the cube root of these quantities.

Note first that any number M has three cube roots: one
3 o 3

real, denoted YM, and two imaginary, w x IM, and

—1+i«E
T . Set:

uw? and 3 =

3
w? x AIM, where w =

and
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2 3
i
2 3
e f3 5

One can now check that the three quantities #; + vy, u,
+ vy, and u3 + v3 represent the three solutions to the
reduced cubic y* + py + g = 0. They constitute Car-
dano’s formula.

The quantity under the square root sign:

()

is called the discriminant of the cubic, and it determines
the nature of the solutions:

W

If A > 0, then the equation has one real root
and two complex roots.

If A = 0, then the equation has three real roots,
at least two of which are equal.

If A < 0, then the equation has three distinct
real roots.

In the third case, one is required to take combinations
of cube roots of complex numbers to yield, surpris-
ingly, purely real answers. For example, Cardano’s
method applied to the equation x> = 15x + 4 yields as
one solution the quantity:

x =3{/2+\/—121 +%/2—\/—121

It is not immediate that this number is x = 4.

This confusing phenomenon of using complex
quantities to produce real results was first explored by
Italian mathematician RAFAEL BOMBELLI (1526-72).
French mathematician FRANCOISE VIETE (1540-1603)
used trigonometric formulae as an alternative approach
to identifying the three distinct real roots that appear in
this puzzling scenario.

Another Method

French mathematician Viéte also developed the follow-
ing simpler approach to solving cubic equations. This
method was published posthumously in 1615.



114 curl

Take the reduced form of the cubic y3 + py + ¢ = 0
and rewrite it as:

y3 + 3ry =2t

here 7=5 and ==L Substitute ¥=—-2
where 3 an 2 - ubstitute 2 to

obtain the simpler equation:
() +2t(2%) - =0

which is a quadratic in z°. All one need do now is solve
for 2% and extract its three cube roots.
The solution to the cubic equation is needed in the
solution to the QUARTIC EQUATION.

See also FUNDAMENTAL THEOREM OF ALGEBRA; HIS-
TORY OF EQUATIONS AND ALGEBRA (essay).

curl See Div.

curve A set of points that form a line, either straight
or continuously bending, is called a curve. The GRAPH
OF A FUNCTION plotted in CARTESIAN COORDINATES,
for example, is a curve. A curve can also be considered
as the path of a moving particle (and, consequently,
PARAMETRIC EQUATIONS can be used to describe it).

As the graph of a function, a curve is called alge-
braic if it is given by a formula y = f(x) with f an alge-
braic function, and transcendental if f is transcendental.
(See ALGEBRAIC NUMBER.) For example, the PARABOLA y
= x? is algebraic, as is any CONIC SECTION, but the sine
curve y = sin x is transcendental.

A curve that lies in a plane is called a planar curve.
A curve in three-dimensional space that does not
remain in a plane, such as a HELIX, is called skew or
twisted. Any curve that lies in three-dimensional space
is called a space curve (whether or not it is twisted).

A curve is called closed if one can traverse the
curve and return to the same point an indefinite num-
ber of times. For example, a CIRCLE is closed. In some
settings it is appropriate to allow for a point at infinity,
in which case a straight line would also be considered a
closed curve. (One can head to infinity in one direction
and return from infinity from the other direction and
repeat this journey an indefinite number of times.) A
curve with ENDPOINTS is called open.

See also ARC; LOCUS.

cusp See TANGENT.

cyclic polygon A POLYGON is called cyclic if all its
vertices (corners) lie on a circle. As every triangle can
be inscribed in a circle, all triangles are cyclic. So too
are all squares, rectangles, and all regular polygons.
However, not every quadrilateral or higher-sided poly-
gon is cyclic

BRAHMAGUPTA (598-665) gave a formula for the
area of a cyclic quadrilateral. The CIRCLE THEOREMS
show that opposite angles of any cyclic quadrilateral
are supplementary. The converse is also true: any
quadrilateral with opposite angles summing to 180°
is cyclic.

See also BRAHMAGUPTA’S FORMULA; CIRCUMCIRCLE;
PTOLEMY’S THEOREM.

cycloid The shape traced out by a point on the cir-
cumference of a circle rolling along a straight line is
called a cycloid. (In particular, it is the curve traced out
by a piece of gum stuck to the rim of a bicycle wheel.)
This curve has many remarkable geometric properties
and was studied extensively by mathematicians of the
16th and 17th centuries, and later.

GALILEO GALILEI (1564-1642) was the first to
study the curve and gave it its name. In 1644 Galileo’s
disciple Evangelista Torricelli (who invented the
barometer) proved that the area under one arch of the
cycloid equals three times the area of the rolling circle.
In 1658 English architect Christopher Wren showed
that the length of one arch of the cycloid is four times
the diameter of the circle. In 1696 Johann Bernoulli of
the famous BERNOULLI FAMILY posed and solved the
now-famous brachistochrone problem:

Imagine a small ball starting at a point A and
rolling down along a curve to a lower point B
to the right of A. The ball is propelled only by
the force of gravity. What shape curve connect-
ing A to B allows the ball to travel between
them the fastest?

Surprisingly, a straight line does not give the shortest
time, but an upside-down cycloid does.

In 1658 Dutch scientist Christiaan Huygens con-
sidered the cycloid in his work on pendulums. He dis-
covered that a simple pendulum in which the bob is



forced to follow a cycloid-shaped path always has the
same period irrespective of the length of the pendulum.
This is called the tautochrone property of the cycloid.
(It is also the case that if a ball starts at rest at any
point of an inverted cycloid and travels along the curve
under the force of gravity, then the time it takes to
reach the lowest point of the curve is independent of
the starting location of the ball.)

Related curves can be considered by following the
path traced by a point on the circumference of a circle
as that circle rolls along another circle. If the circle rolls
on the inside of a fixed circle, then the curve traced is
called a hypocycloid. If a circle rolls on the outside of a
fixed circle, then the curve traced is called an epicy-
cloid. In both cases the fixed circle is called the defer-
ent, and the moving circle is the epicycle.

Some special names are given to the curves cre-
ated in particular situations. For example, when the
two circles have the same radius, the epicycloid pro-
duced is heart-shaped and is called a cARDIOID. When
the rolling outer circle has diameter one-fourth that of
the fixed circle, the four-pointed curve produced is
called an astroid. An epicycloid with five cusps is
called a ranunculoid.

The epicycloid was known to APOLLONIUS OF
PERGA of the third century B.C.E., who used it in his
descriptions of planetary motion.

cylinder In three-dimensional space, a cylinder is the
surface formed by an infinite collection of parallel
straight lines, each passing through one point of a fixed
closed curve drawn in a plane. The closed curve is
called the directrix of the cylinder, and the lines drawn
are called the generators of the cylinder. Often the term
cylinder is used for the solid figure of finite volume con-
fined between two parallel planes. In this setting, the
cylinder has three faces: the two parallel planar regions,
each called a base of the figure, and the lateral surface
given by the straight lines that generate the cylinder. The
base of a cylinder need not be a circle. For example, a
CUBE satisfies the definition of being a cylinder.

If the lateral surface is at right angles to the base,
then the cylinder is called a right cylinder. All other
cylinders are called oblique. The height of a cylinder is
the perpendicular distance between the two bases.
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All horizontal cross-sections of a cylinder are the
same size and shape as the base of the cylinder. CAvaA-
LIERI’S PRINCIPLE then shows that the volume V of a
cylinder is given by V = Ah, where b is the height of the
cylinder and A is the area of its base.

ARCHIMEDES OF SYRACUSE (ca. 287-212 B.C.E.)
showed that the volume of a SPHERE is two-thirds that
of the volume of the cylinder that contains it. The for-
mula for the volume of a sphere readily follows.

See also CONE.

cylindrical coordinates (cylindrical polar coordinates)
In three-dimensional space, the location of a point P can
be described by three coordinates—, 6, and z—called
the cylindrical coordinates of P, where (r, 0) are the
POLAR COORDINATES of the projection of P onto the xy-
plane, and z is the height of P above the xy-plane. Cylin-
drical coordinates are useful for describing surfaces with
circular symmetry about the z-axis. For example, the
equation of a cylinder of radius 5 with a central axis, the
z-axis can be described by the simple equation r = 5. (As
the angle 6 varies between zero and 360°, and the height
z varies through all values, points on an infinitely long
cylinder are described.) The surface defined by the equa-
tion 0 = ¢, for some constant ¢ (allowing r and z to vary),
is a vertical HALF-PLANE with one side along the z-axis,
and the surface z = ¢ is a horizontal plane.

A point P with cylindrical coordinates (r, 0, z) has
corresponding CARTESIAN COORDINATES (x, y, z) given by:

X =rcos0
y =rsin@
=X

These formulae follow the standard conversion formu-
lae for polar coordinates.

It is usual to present the angle 8 in RADIAN MEA-
SURE. In this case, a triple integral of the form
wf(x,y,z)dx dy dz over a volume V described in Carte-
sian coordinates converts to the corresponding integral
[[[f(rcos®,rsin®,z) r dr d6 dz in cylindrical coordinates.

he appearance of the term 7 in the integrand follows
for the same reason that 7 appears in the conversion of
a DOUBLE INTEGRAL from planar Cartesian coordinates
to polar coordinates.

See also ANGLE; SPHERICAL COORDINATES.



data (singular, datum) Information of a numerical
nature is called data. For example, records of the daily
numbers of visitors to a tourist attraction, or the mea-
surement of growth rates of a yeast culture under differ-
ent temperature conditions, would be examples of data.
Direct counts from observational studies or measure-
ments from experiments like these are called primary or
raw data. Numerical information describing the raw data
(such as the average value, largest value, range of values,
and so on) is sometimes called secondary data. The sci-
ence of developing methods for collecting, organizing,
and summarizing data is called descriptive statistics.
See also STATISTICS; STATISTICS: DESCRIPTIVE.

days-of-the-week formula It is a challenging exercise
to derive a mathematical formula that determines the day
of the week on which a particular calendar date falls.

As a first step, knowing the day on which January
1 of a year falls, it is reasonably straightforward to
determine on which day any other date of that year
falls. For example, New Year’s Day in the year 2000
was a Saturday. As the days of the week cycle in peri-
ods of seven, it follows that January 8, January 15, and
January 22 of that year were also Saturdays. Since
there are 31 days in January, and because 31 is three
more than a multiple of 7, it follows that February 1,
2000, fell on the weekday three days later than Satur-
day, namely, Tuesday. As there were 29 days in Febru-
ary that year, and 29 is one more than a multiple of 7,
March 1 fell on the weekday that directly follows Tues-
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day, namely Wednesday; and April 1, 30 days later, fell
on a weekday two days after Wednesday, namely Fri-
day. In this way we can determine the weekday of any
first day of the month, and from there, the weekday of
any particular day of that month.

It is convenient to label Sunday as “day 0,” Monday
as “day 1,” up to Saturday as “day 6.” As the weekdays
cycle in units of 7, it is also appropriate to ignore all mul-
tiples of 7 and work only with the remainders of num-
bers upon division by 7. (That is, we shall work in a
base-7 system of MODULAR ARITHMETIC.) For example,
dates 16 and 30 days into a year fall on the same week-
day as the day 2 days into the year: all numbers involved
here are 2 more than a multiple of 7. We shall call the
numbers 16, 30, and 2 “equivalent” and write 16 = 2
and 30 = 2, for instance.

January 1, 2000, fell on day 6. As we have noted,
February 1 falls 31 = 3 days later and so lands on day
6 + 3 =2, Tuesday. March 1 falls another 29 = 1 days
later, and so lands on day 6 + 3 + 1 = 3, Wednesday. In
general, the following table shows the amount by
which a particular date must be adjusted depending on
the month in which it lies:

Month  Jan. Feb. March  Aprii  May June
Add 0 3 3(4) 60 1(2) 4(5)
Month  July Aug. Sept. Oct. Nov. Dec.
Add 6(0) 2(3) 5(6) 0(1) 3(4) 5(6)



The numbers in parentheses pertain to leap years.
Thus, for example, July 1, 2000, fell on day 6 + 0 = 6,
Saturday; and December 1, 2000, fell on day 6 + 6 = 5,
Friday.

Now it is a matter of determining on which week-
day the first day of any given year fell. Assume, for the
sake of the mathematical argument, that the Gregorian
calendar has been in use for two millennia, and that
January 1 in the year 0 was day d. Consider the day the
weekday of New Year’s Day N years later.

As each ordinary year contains 365 (=1) days, the
day on which January 1 falls advances one weekday
each year. For each leap year, it advances an additional
day. We need to determine the number of leap years
over a period of N years.

In general, a leap year occurs every 4 years, yielding

N
[ 2 “ possible occurrences of a leap year, including year

zero. (Here we are making use of the CEILING FUNC-
TION.) However, no leap year occurs on a year value

N
that is a multiple of 100—and this occurs [W—‘

times—except if N is a multiple of 1,000, which occurs

N
’VW-‘ times. (The year 1900, for instance, was not a

leap year, but the year 2000 was.) The total number of
leap years L that occur in a period of N years from year
zero is thus given by:

L= NI N N
| 4] |100] | 1000
For instance, February 29 appeared, in theory,
2000 | | 2000 | |2000 .
[ 2 —‘—{ 100 -‘+[1OOO-|_500—20+2_482 times

before the date of January 1, 2000. Thus, the weekday
of January 1, year N, is given by:

d+ N+ L

(January 1 year zero, was day d. There is an advance
for each of the N years, and an advance of an addi-
tional day for each of the L leap years.)

Knowing that New Year’s day, 2000, was day 6, we
deduce then that the appropriate value of d is given by:

d+2000 +482 =6
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That is, working with remainders upon division by 7,
d + 5 + 6 =6, yielding d = 2. Thus, in our theory, Jan-
uary 1 in the year zero was a Tuesday.

We now have the following ALGORITHM for com-
puting the weekday of any given date. Assume we wish
to compute the weekday of the Dth day, of month M,
in year N.

1. Consider the year number N and compute
its remainder upon division by 7.

2. C L= ﬁ — i + L d
. ompute = 4 100 1000 and 1ts

remainder upon division by 7.

3. Sum the answers of the previous two steps
and add 2. Compute the remainder of this
number, if necessary, when divided by 7.
This is the weekday number of January 1 of
year N.

4. To this weekday number add the day D,
subtract 1, and add the appropriate month
number from the table above. Look at the
remainder upon division by 7, if necessary.
This final result is the weekday number of
the desired day.

For example, for the date of March 15, 2091, N = 2091
=5,L=523-21+3 =505 =1, yielding January 1 of
that year to be day 2 + 5 + 1 = 1, a Monday. To this we
add 14 days (the number of days later is 1 less than the
date D) with a month adjustment of value 3 (this is not
a leap year). Thus March 15, 2091, will fall on day
1 + 14 + 3 =4, a Thursday. (Warning: as the Gregorian
calendar was not used before October 15, 1582, this
algorithm cannot be applied to dates earlier than this. )

Simplifying the Procedure

This method can be simplified to some extent. Write
the year number as mcyy, with m for millennia, ¢ for
century, and yy as the two-digit year number. More
precisely, we mean:

N =1000m + 100c¢ + yy

with 0 < ¢ <9 and 0 < yy < 99. For example, the year
3261 will be written:

N=1000x3 +100x2 + 61

Notice that
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N=1000m+100c +yy=6m+2c +yy

N_ yy yy
— frd — = 4 —
’V —250m+256+|7 -|_5m+ c+|r

N | yy yy
— =1 =22 | = 27
[100 0m+c+[100—| 3m+c+(100

N | _ c vy
[1000 _mJ{lo " 1000}

yielding:

N][N].[N
N+L=N+[— | 4]
i J{J {100}{1000}
— R U DR A I B
= 2””441{1&1000} [100}

One can check that the quantity IV%+ 13}30—‘—[%

equals 1 if yy = 00 and ¢ # 0, and zero in every other
case. Rewriting steps 1 and 2 from the above algo-
rithm, we have:

January 1 of year mcyy falls on day number
2+2m—25+yy+(¥—|+8

where € is 1 if the year is a turn of the cen-
tury, but not the turn of a millennium, and
zero otherwise.

Thus, for example, consider New Year’s Day of the
year 3261. The millennium number here is 72 = 3, the
century number is ¢ = 2, and we have yy = 61. Also,
61

[T—I = ’—15~25-| =16 and, since this is not a turn of the
century, € = 0. Thus New Year’s Day of this year will
fallonday 2 + (2 x3)-(2%x2)+61 +16 +0=4,a
Thursday. We can now compute the weekday of any
other day that year if we wish.

An Alternative Method

Mathematician Chris McManus has observed that what-
ever day of the week “March 0” (the last day of Febru-
ary) falls, so do 4/4 (April 4), 6/6 (June 6), 8/8 (August
8), 10/10 (October 10), and 12/12 (December 12). The

same is true of 9/5 (September 5) and 7/11 (July 11), and
their inverses 5/9 and 11/7. (One can remember this
with the mnemonic, “I work from 9 to 5 at the 7-to-11
store.”) So, for example, if you know that December 20,
2002, was a Friday, and you wish to determine the day
on which April 10 of that year fell, quickly compute that
December 12 was a Thursday, yielding April 4 also as a
Thursday, making April 10 a Wednesday.

decibel Denoted dB, a decibel is a measure of the
intensity of sound, with zero decibels representing the
lowest intensity at which a sound can be heard.
Decibels follow a base-10 LOGARITHMIC SCALE.
This means that each increase of 1 dB represents a 10-
fold increase in the intensity of the sound. For example,
a note played at 1 dB is 10 times as strong as the soft-
est sound, and one played at 2 dB is 100 times as
strong as the softest sound. Normal human speech is at
a level of about 60 dB, and a whisper is around 20 dB.
The threshold of pain for the human ear is about 90
dB. Rock concerts have been known to reach levels of
120 dB at a distance of 50 m from the sound system.
The decibel level of a sound is computed by the

formula:
P
10 10g10 (P—O)

where P is the intensity of the note being played, and P,
is the lowest intensity at which that note can be heard.

An interval of 10 dB is called a bel. Sound inten-
sity was originally measured in terms of bel, the name
being chosen in honor of the American inventor of the
telephone, Alexander Graham Bell. Today, however,
the unit of a decibel is considered more useful and
is the one most commonly used.

decimal representation See BASE OF A NUMBER
SYSTEM.

decomposition (factorization) The result of express-
ing a given object or quantity in terms of simpler com-
ponents is called a decomposition. For example, the
FUNDAMENTAL THEOREM OF ARITHMETIC shows that
any natural number decomposes as a product of prime



numbers. Also, any rational function decomposes into
a sum of PARTIAL FRACTIONS. The process of GAUSSIAN
ELIMINATION shows that any square MATRIX A decom-
poses into the product of a lower triangular matrix L
and an upper triangular matrix U. An example of such
an LU factorization is:

2 1) (1 0y2 1)

6 7) 3 1)0 4,
Any VECTOR decomposes into a sum of basis vectors.
For instance:

<3,2,1>=3<1,0,0>+2< 0,1, 0> +< 0, 0, 1>

And in GEOMETRY, as any polygon can be divided into
triangles, one could say that all polygons “decompose”
into a union of triangles.

Studying the simpler pieces in the decomposition of
an object can lead to general results about the object.
For instance, knowing that the interior angles of a tri-
angle sum to 180° allows us to immediately deduce
that the interior angles of any quadrilateral (the union
of two triangles) sum to 360°, and that the interior
angles of any pentagon (the union of three triangles)
sum to 540°.

See also FACTORIZATION.

Dedekind, Julius Wilhem Richard (1831-1916)
German Amnalysis Born on October 6, 1831, in
Braunschweig, now a part of Germany, Richard
Dedekind is remembered for his elegant construction of
the REAL NUMBER system, which is based on an idea
today known as a DEDEKIND cUT. This work repre-
sented an important step in formalizing mathematics.
In particular, it offered the means to finally put caLcu-
LUS on a sound mathematical footing.

Dedekind studied NUMBER THEORY and calculus at
the University of Gottingen. He earned a doctoral
degree in 1852 wunder the supervision of CARL
FRIEDRICH GAUSS (he was Gauss’s final pupil), and two
years later obtained a habilitation degree granting him
the right to be a member of the university faculty.

In 1858 Dedekind accepted a position at the Poly-
technikum in Zurich. Dedekind realized that the foun-
dations of calculus, in particular, the properties of the
real-number system on which calculus rests, were not
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properly understood. When faced with the challenge of
teaching calculus to students at the Polytechnikum for
the first time, Dedekind decided not to sidestep the
issue, but rather develop an approach that would prop-
erly justify the principles of the subject to himself and
to his students. This is when the idea of a Dedekind cut
came to him.

Dedekind published the details of this construc-
tion several years later in his famous 1872 paper
“Continuity and Irrational Numbers.” This paper was
extremely well received and was admired not only for
the brilliant ideas it contained, but also for the man-
ner in which those ideas were detailed. Dedekind
exhibited a talent for explaining mathematical con-
cepts with exceptional clarity.

In 1862 Dedekind returned to his hometown to
accept a position at the Brunswick Polytechnikum. He
remained there for the rest of his life. He never married
and lived his life with one of his sisters, who also
remained unmarried.

Dedekind received many honors for his outstanding
work, including election to the Berlin Academy in 1880,
the Academy of Rome and the Académie des Sciences,
Paris, in 1900, as well as honorary doctorates from the
Universities of Zurich, Brunswick, and Oslo. Dedekind
died in Brunswick, Germany, on February 12, 1916.

Dedekind made a lasting impact on the modern
understanding of the real-number system. Most every
college-level course on the topic of the real numbers
will discuss in detail the issues Dedekind explored.

Dedekind cut During the 1800s it became clear to
mathematicians that in order to prove that CALCULUS
is mathematically sound one needs to properly define
what is meant by a real number and, moreover, show
that the real number system is “complete,” in the
sense that no points are “missing” from it. This is par-
ticularly important for establishing the EXTREME-
VALUE THEOREM, the INTERMEDIATE-VALUE THEOREM,
and the MEAN-VALUE THEOREM. All the key theorems
in calculus rely on these three results.

Although the RATIONAL NUMBERS Q are relatively
easy to define, the system of rationals is certainly not
complete: the square root of 2, for example, is not a
fraction and so is “missing” from the set of rationals.
The task of defining exactly what is meant by an irra-
tional number perplexed scholars for a very long time,
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and the definition of a REAL NUMBER was subject to
much debate.

In 1872 JurLius DEDEKIND had the very simple and
elegant idea to simply define the irrationals to be the
gaps in the rational number line. He noted that each
“gap,” like the square root of 2 for example, divides the
line of rationals into two pieces—a left piece and a right
piece. One can focus one’s attention on just the left
piece (for those points that are not in it constitute the
right piece) and this left piece L satisfies the following
three properties:

1. It is not empty, nor is it the whole set of points.

2. If a is a number in L, and b<a, then b also belongs
to L.

3. If a is a number in L, it is possible to find another
number ¢ also in L but slightly larger than a.

Dedekind simply defined a real number to be any subset
L of the rational numbers satisfying these three proper-
ties. Such a set is today known as a Dedekind cut.

Every rational number » defines a cut. One can
check that the set 7* = {a € Q : a < 7} satisfies the three
properties. Thus the set of Dedekind cuts “contains”
all the rational numbers as sets of this type. It also con-
tains other types of numbers. For example, the square
root of 2 is given by the set:

L ={ae Q :ais negative, or a is positive and a*<2}

One can check that any union of cuts, in the context
of SET THEORY, is again a cut. With this surprisingly
simple definition of a real number, Dedekind was
able to prove all the properties of the real-number
system required for establishing the soundness of cal-
culus. In particular, he was able to show that any col-
lection of real numbers with an upper BOUND
necessarily possesses a least upper bound. (This least
upper bound is the union of all the cuts listed in the
collection.)

deductive/inductive reasoning In the scientific meth-
od, there are two general processes for establishing
results. The first, called inductive reasoning, arrives at
general conclusions by observing specific examples,
identifying trends, and generalizing. “The sun has
always risen in the past, therefore it will rise tomor-
row,” for example, illustrates this mode of reasoning.

The inductive process relies on discerning patterns
but does not attempt to prove that the patterns
observed apply to all cases. (Maybe the sun will not
rise tomorrow.) For this reason, a conclusion drawn by
the inductive process is called a conjecture or an edu-
cated guess. If there is just one case for which the con-
clusion does not hold, then the conjecture is false. Such
a case is called a COUNTEREXAMPLE.

To illustrate, in the mid-1700s LEONHARD EULER
observed that the product of two consecutive integers
plus 41 seems always to yield a PRIME number. For exam-
ple, 2 x 3 + 41 = 47 is prime, as is 23 X 24 + 41 = 593
and 37 x 38 + 41 = 1447. By inductive reasoning, we
would conclude that 7 x (n + 1) + 41 is always prime.
However, this is a false conclusion. The case 7=40 pro-
vides a counterexample: 40 x 41 + 41 = 41 x 41 = 1681
is not prime. (Curiously 7 X (7 + 1) + 41 is prime for all
values n between 40 and 39.)

Many intelligence tests ask participants to identify
“the next number in the sequence.” These questions
rely on inductive reasoning, but are not mathematically
sound. For example, given the challenge:

What number comes next in the sequence:
2462

any answer is actually acceptable (although the test
designers clearly expect the answer “8”). One can
check that the POLYNOMIAL

—%(n—Z)(n—S)(n—4)+2(n—1)(n—3)(n—4)

—3(11—1)(n—2)(n—4)+§(n—1)(n—2)(n—3)

a—8 11a-76
= (Tjﬂ3 +(8—d)7’l2 +(Tjn+(8—a)

for example, has values 2, 4, and 6 when n equals 1, 2,
and 3, respectively, and value a when 7 equals 4. Setting
a to be an arbitrary value of your choice gives justifica-
tion to any answer to this problem. (This particular
polynomial was devised using LAGRANGE’S FORMULA.)
On the other hand, deductive reasoning works to
prove a specific conclusion from one or more general
statements using logical reasoning (as given by FORMAL
LOGIC) and valid ARGUMENTs. For example, given the
statements, “All cows eat grass” and “Daisy is a cow,”



we can conclude, by deductive reasoning, that Daisy
eats grass.

Deductive reasoning does not rely on the premises
that are made necessarily being true. For example,
“Sydney and Boston are planets, therefore Boston is a
planet” is a valid argument, whereas “Either Boston or
Venus is a planet, therefore Venus is a planet” is invalid.

Mathematicians are not satisfied with conclusions
drawn via inductive reasoning only. They always seek
logical proof to conjectures made. But this certainly
does not bar mathematicians from making conjectures.
For instance, GOLDBACH’S CONJECTURE is an example
of an outstanding conjecture still awaiting mathemati-
cal proof (or disproof).

deformation In TOPOLOGY, any geometric transfor-
mation that stretches, shrinks, or twists a shape, but
does not tear or break apart any lines or surfaces that
make the shape, is called a (continuous) deformation.
For example, it is possible to mold a solid spherical ball
made of clay into the shape of a cube without tearing
any portions of the clay. In this sense, a cube may be
considered a deformation of a sphere. It is not possible,
however, to mold a sphere into the shape of a TORUS
(donut) without creating a tear. Topologists conse-
quently regard a sphere and a torus as distinct shapes
(but a cube and a sphere as the “same” surface).

The notion of a deformation can be made mathe-
matically precise. If, for a fixed set S, one object A is
the image of a map f, and a second object B is the
image of a second map g:

f:S—A
g:8S—>8B

then B is a deformation of A if there is a continuous
function H(s,z) where s €S and 0 < ¢ < 1, so that H(s,0)
is the map f, and H(s,1) is the map g. One also says
that the map H “deforms A into B.”

For example, the function H(x,?) = tcosx + (1 —¢t)
sinx continuously transforms a sine curve into a
cosine curve.

degree measure See ANGLE.

degree of a polynomial The highest power of the
variable that appears (with nonzero COEFFICIENT) in a
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POLYNOMIAL is called the degree of that polynomial. For
instance, the polynomial 4x> — 2x + 7 has degree three,
and the polynomial 7’ — 154w'® + w’ - 73w* + muw?
has degree 57. Any nonzero constant can be thought
of as a polynomial of degree zero. In some mathemati-
cal problems it is convenient to regard the constant 0
as a polynomial of degree “negative infinity.” A
POWER SERIES, in some sense, is a polynomial of posi-
tive infinite degree.

degree of a vertex (valence) In any GRAPH, the
number of edges meeting at a particular vertex is called
the degree of that vertex. Summing all the degrees of
vertices in a graph counts the total number of edges
twice. The famous HANDSHAKE LEMMA from GRAPH
THEORY is an amusing consequence of this result.

degrees of freedom The number of independent
variables needed to specify completely the solution set
of a SYSTEM OF EQUATIONS is called the number of
degrees of freedom of the system. For example, the
mathematical system described by the equations:

3x+2y-2=7
x+4y-3z2=6

has just one degree of freedom: if the value of z is speci-
fied, then x and y are given by x = (8-z)/5 and
y = (11+82)/10.

In physics, the number of degrees of freedom of a
mechanical system is the minimum number of coordi-
nates required to describe the state of the system at any
instant relative to a fixed frame of reference. For
instance, a particle moving in a circle has one degree of
freedom: its position is completely specified by the
angle between a fixed line of reference and the line con-
necting the center of the circle to the particle. A particle
moving in a PLANE, or on the surface of a SPHERE, has
two degrees of freedom.

See also INDETERMINATE EQUATION.

De Moivre, Abraham (1667-1754) French Geome-
try, Statistics Born on May 26, 1667, French scholar
Abraham De Moivre is remembered for his pioneering
work in the development of analytic geometry and the
theory of probability. He was the first to introduce
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COMPLEX NUMBERS into the study of TRIGONOMETRY,
leading to the famous formula that now bears his
name. He was also the first to describe and use the nor-
mal frequency curve in statistics.

Immigrating to England in 1685, De Moivre
worked as a private tutor in mathematics. He had
hoped to receive a faculty position in mathematics but,
as a foreigner, was never offered such an appointment.
He remained a private tutor all his life, despite the rep-
utation he had garnered as a capable and influential
scholar. He was elected a fellow of the ROYAL SOCIETY
in 1697 and, in 1710, was appointed to a commission
set up by the society to adjudicate on the rival claims of
SIR IsAAC NEWTON and GOTTFRIED WILHELM LEIBNIZ
as the discoverers of CALCULUS.

De Moivre published two notable texts. The first,
Doctrine of Chance (1718), carefully examined the
underlying principles of PROBABILITY theory and soundly
developed fundamental notions such as “statistical inde-
pendence” and the “probability product law,” as well as
established foundations for applications to the theory of
annuities. The second, Miscellanea analytica (1730), suc-
cessfully identified the principles that later allowed him
to write down a formula for the NORMAL DISTRIBUTION,
a task that had stymied scholars before this time. This
second work also contained the mathematics necessary
to establish STIRLING’S FORMULA.

It is said in all seriousness that De Moivre correctly
predicted the day of his own death. Noting that he was
sleeping 15 minutes longer each day, De Moivre sur-
mised that he would die on the day he would sleep for
24 hours. A simple mathematical calculation quickly
yielded the date, November 27, 1754. He did indeed
pass away on that day.

See also DE MOIVRE’S FORMULA.

De Moivre’s formula (De Moivre’s identity) In
1707 French mathematician ABRAHAM DE MOIVRE
discovered the following formula, now called De
Moivre’s formula:

(cos O + isin0)” = cos(n0) + isin(n0)

For positive integers 7 the formula can be proved by
INDUCTION, making use of the addition formulae for
the sine and cosine functions from TRIGONOMETRY. A
much simpler approach follows by making use of

EULER’S FORMULA cos0+isin@ = ¢ and realizing that De
Moivre’s result is nothing more than a restatement of
the exponent rule:

(eie)” = oi"®

This shows that the De Moivre’s formula actually holds
for any real value for 7.

De Morgan, Augustus (1806-1871) British Alge-
bra, Logic Born on June 27, 1806, in Madura,
India, English citizen Augustus De Morgan is remem-
bered in mathematics for his considerable contribu-
tions to FORMAL LOGIC and ALGEBRA. In 1847 he
developed a formal system of symbolic manipulations
that encapsulated the principles of Aristotelian logic
and included the famous laws that now bear his
name. He is also remembered for properly defining
the process of mathematical INDUCTION and setting
this method of proof in a rigorous context.

De Morgan entered Trinity College, Cambridge, at
the age of 16, and, at the completion of his bachelor’s
degree, applied for the chair of mathematics at the newly
founded University College, London, at the young age of
21. Despite having no mathematical publications at the
time, he was awarded the position in 1827.

De Morgan became a prolific writer in mathemat-
ics. His first text, Elements of Arithmetic, published in
1830, was extremely popular and saw many improved
editions. He later wrote pieces on the topics of CALCU-
LUS and algebra, and his 1849 text Trigonometry and
Double Algebra was also extremely influential. This
latter piece contained a useful geometric interpretation
of COMPLEX NUMBERS. De Morgan also wrote literally
hundreds of articles for the Penny Cyclopedia, a publi-
cation put out by the Society for the Diffusion of Use-
ful Knowledge. He presented many original pieces as
entries in this work. His precise definition of induction,
for instance, appears in an article in the 1838 edition.

Taking an active interest in the general dissemina-
tion of mathematical knowledge, De Morgan cofounded
in 1866 an academic society, the London Mathematical
Society, and became its first president. The society still
exists today and works to facilitate and promote mathe-
matical research.

As a collector of odd numerical facts, De Morgan
noted that being 43 in the year 1849 was a curious



event, given that the number 1,849 is 43 squared. He
also observed that all those born in the year 1892
would enjoy a similar coincidence in the year 1936,
and those born in 1980 one in the year 2025. (The
number 2,025 is 45 squared.)

De Morgan died in London, England, on March
18, 1871.

See also DE MORGAN’S LAWS.

De Morgan’s laws If A and B are two subsets of a
universal set, and A” and B” denote their complements,
then the following two identities, known as De Mor-
gan’s laws, hold:

(ANB)Y = A’ U B’
(AUB) = A’ A B’

These identities can be used to convert any intersection
of sets into a union of sets, or vice versa.

These laws can be seen to hold true with the aid of
a VENN DIAGRAM (by shading the region outside the
intersection or the union of the two sets), or by a formal
SET THEORY argument. For instance, to prove the first
law, one must establish that any element that belongs to
(ANB)” also belongs to A"UB’, and vice versa. This can
be done as follows:

If x € (AnB)’, then x ¢ ANB, meaning that x
does not belong to both A and B. Conse-

quently, x belongs to at least one complement
A’ or B’, and so x € A’UB’.

Conversely, if y € A’UB’, then y does not
belong to one (or both) of A and B. Conse-
quently, y is not an element of AnB, and so
y €(ANBY)'.

The second law can be proved similarly.
De Morgan’s laws can be extended to the intersec-
tion or union of more than two sets. We have:

(ANBNCN...nZ) = AuB’UC'U...uZ’
(AUBUCU...uZ) = A\nB'nC'N...nZ’

When a set A is interpreted as “the set of all instances
in which a claim p is true,” and B “the set of all
instances in which a claim ¢ is true,” then De Morgan’s
laws in set theory translate to the following two identi-
ties in FORMAL LOGIC:
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—(pAg) = (mp)v(—g)
=(pvq) = (=p)A(—q)

A TRUTH TABLE establishes that these corresponding
pairs of compound statements are logically equivalent.
These equivalences are also called De Morgan’s laws.

The formulae presented above were proposed in
1847 by Indian-born British mathematician and logi-
cilan AUGUSTUS DE MORGAN (1806-71).

denumerable (enumerable, numerable) A COUNT-
ABLE infinite set is said to be denumerable. Thus a
denumerable set is any infinite set whose elements can
be placed in a list akin to the list of natural numbers 1,
2, 3, ... The first DIAGONAL ARGUMENT shows that the
set of RATIONAL NUMBERS is denumerable. The diago-
nal argument of the second kind establishes that the set
of REAL NUMBERS is not. In some definite sense then,
the set of real numbers is a “larger” infinite set than
the infinite set of rationals. A denumerable set is said to
have CARDINALITY X,. Every infinite set contains a
denumerable subset. This can be established as follows:

Suppose X is an infinite set. Let x; be any ele-
ment of X. Since X is infinite, this is not the
only element of X. Let x, be another element
of X. Since X is infinite, these are not the only
two elements of X. Let x3; be another element
of X. Thus continuing this way produces a list
of elements of X: x4, x5, x3, ... This list repre-
sents a denumerable subset of X.

One can legitimately say, then, that a denumerable set
is the “smallest” type of infinite set. That is, X is the
“smallest” transfinite cardinal number.

See also CONTINUUM HYPOTHESIS.

derivative See DIFFERENTIAL CALCULUS.

Desargues, Girard (1591-1661) French Geometry,
Engineering Born on February 21, 1591, in Lyon,
France, mathematician Girard Desargues is considered
the founder of PROJECTIVE GEOMETRY, an innovative,
non-Greek, approach to geometry. His highly original
and famous 1639 text Brouillon project d’une atteinte
aux evenemens des recontres du cone avec un plan
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(Rough draft for an essay on the results of taking plane
sections of a cone) outlined the principles of the new
theory, contained many new results, and offered, for
the first time, a unified theory of the CONIC SECTIONS.
His work, however, was largely ignored at the time of
its release, and the important impact of its ideas was
not properly recognized until the 19th century.

Very little is known of Desargues’s personal life.
Born into a family of wealth, Desargues certainly had
access to an excellent formal education and the free-
dom to explore scholarly interests. His first works in
mathematics, although pertaining to practical themes—
the construction of sundials, stone-cutting techniques,
and the use of perspective in art—were highly theoreti-
cal, densely written, and difficult to read, and conse-
quently were of little use to practitioners in the
respective fields. This may explain why the release of
his famous 1639 piece, written in equally obscure lan-
guage, was largely ignored. Only a few copies of the
text were printed, only one of which survives today.

Desargues’s famous theorem, the “perspective the-
orem” that bears his name, was published in 1648 by
French engraver and painter Abraham Bosse (1602-76)
in his treatise Maniére universelle de Mr. Desargues
(General methods of Desargues) on the role of perspec-
tive in art. This single result provided a gateway to a
whole new approach to geometric thinking. Desargues
died in Lyon, France, in September 1661. (The exact
date of his death is not known.)

Desargues’s theorem Named after its discoverer,
French mathematician and engineer GIRARD DESAR-
GUES (1591-1661), this theorem states:

Suppose two triangles ABC and A’B’C’ are posi-
tioned in two- or three-dimensional space so that
the lines joining the corresponding vertices A
and A’, B and B’, and C and C’ pass through a
common point (that is, so that the two triangles
are in “perspective from a point”). Then, if none
of the pairs of sides AB and A’B’, AC and A’C,
or BC and B’C’ is parallel, then the three points
of intersection of these pairs of sides lie on a
straight line. (That is, the two triangles are in
“perspective from a line.”)

The case of three dimensions is easiest to prove. Noting
that the two triangles cannot lie in parallel planes, one

can show that each point of intersection of a pair of
sides lies on the line of the intersection of the two
planes. The proof of the two-dimensional version of
the theorem is delicate. The converse of Desargues’s
theorem is also true:

If corresponding sides of two triangles have
intersections along the same straight line, then
the lines joining corresponding vertices pass
through a common point.

Desargues’s theorem played a key role in the devel-
opment of PROJECTIVE GEOMETRY. As noted, the theo-
rem does not hold if some pair of lines under
consideration turn out to be parallel. But Desargues
observed that this difficulty can be obviated if one were
to adjoin to space additional points, “points at infin-
ity,”
gues to develop a notion of geometry in which each
pair of points determines a unique line and, moreover,
each pair of lines determine (intersect at) a unique
point. In this system, the notions of “point” and “line”
play dual roles, leading to a general principle of duality

>

where parallel lines do meet. This inspired Desar-

in this new projective geometry:

Interchanging the roles of “point” and “line”
in any theorem of projective geometry leads to
another statement that is also true in projective
geometry.

The dual of Desargues’s theorem is its converse.
See also PERSPECTIVE.

Descartes, René (1596-1650) French Geometry, Alge-
bra, Philosophy Born on March 31, 1596, in La Haye
(now Descartes), France, philosopher René Descartes is
remembered in mathematics for his 1637 influential
work La géométrie (Geometry), in which he introduced
fundamental principles for incorporating ALGEBRA into
the study of GEOMETRY, and vice versa. This work
paved the way for developing the notion of a coordinate
system and, although not featured in his work, CARTE-
SIAN COORDINATES are today named in his honor.
Descartes is also noted for his “rule of signs” for count-
ing the number of solutions to POLYNOMIAL equations,
and for promoting the use of symbols in algebraic
work. He advocated the use of letters to represent vari-
ables, suggesting the convention that letters first in the



alphabet should refer to known quantities and letters in
the latter part of the alphabet unknown quantities. (For
instance, we today, without question, interpret the
equation ax+b=0 as one containing a variable x, with a
and b assumed to be known quantities.) Descartes also
developed the index notation for EXPONENTS: x2, x3,
and the like. As a philosopher, Descartes was interested
in exploring the deepest underlying principles of all of
scientific knowledge. He felt that mathematics lay at the
base of all understanding.

After receiving a law degree from the University of
Poitiers in Paris in 1616, Descartes traveled to Holland
to enlist in the military school at Breda to study mathe-
matics and mechanics. Duty with the army took him
across Europe for a number of years, but in 1628
Descartes returned to Holland and began a comprehen-
sive treatise on physics, optics, and celestial mechanics.
He decided, however, not to publish this work after
hearing that GALILEO GALILEI (1564-1642) was con-
demned to house arrest for espousing modern scientific
thought. Descartes later modified the piece and pub-
lished a treatise on science in 1637 in which La
géomeétrie appeared as an appendix.

In 1644 Descartes published Principia philo-
sophiae, a comprehensive tome exploring all aspects in
scientific investigation and knowledge. Divided into
four parts—The Principles of Human Knowledge, The
Principles of Material Things, Of the Visible World,
and The Earth—Descartes’s work argued that mathe-
matics lies at the foundation of all thinking and that
all studies of nature and of the universe can be
reduced to the mathematical principles of mechanics.
This work was extremely influential, but the specific
details of some of the theories Descartes outlined in it
were problematic. For instance, Descartes believed
that forces, such as gravitational forces, could not be
transmitted without some kind of ambient medium.
Thus, he was forced to conclude that vacuums do not
exist, and that the entire universe is filled with matter.
He developed a “vortex theory” in which he argued
that the planets and the Sun are carried through space
by a system of vortices in the ambient medium. This
theory of vortices was accepted for nearly 100 years
in France until SIR IsAAC NEWTON (1642-1727)
demonstrated mathematically that such a dynamical
system is impossible.

In 1649 Descartes moved to Stockholm to accept a
position to tutor Queen Christina of Sweden in mathe-
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René Descartes, an eminent scholar of the 17th century, was the
first to apply methods from algebra to solve problems in geometry.
The field of analytic geometry was born. (Photo courtesy of
Topham/The Image Works)

matics. The cold climate did not suit Descartes well,
and he died a few months later on February 11, 1650,
of pneumonia.

Descartes instigated a philosophical shift as to how
mathematics and analytical thought are utilized in the
role of scientific investigation. Rather than shape scien-
tific theories around what is observed experimentally,
Descartes argued to identify fundamental “self-evident”
principles first and to use logical reasoning to under-
stand the causes behind experimental phenomena. His
desire to carry the topic of geometry into physics as a
part of this process is still felt today: most every branch
of modern physics is described in geometric terms.

Descartes’s rule of signs Discovered by philosopher
and mathematician RENE DESCARTES (1596-1650), the
“rule of signs” gives a bound on the maximum number
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of positive roots a POLYNOMIAL equation may possess.
This bound is given by the number of sign changes that
occur when the terms of the polynomial are written in
descending order of degree. As an example, in reading
from left to right, the polynomial equation:

X0+ 7x5 = 2x*—6x3—7x*2+8x-2=0

has three sign changes (from positive to negative, nega-
tive to positive, and back again), and so the equation
has at most three positive solutions.

The rule can be extended to count negative roots as
well by replacing “x” with “—x” (which, in effect,
reflects the negative x-axis to the positive side) and
applying the same rule to the polynomial that results.
In the example above, the resultant polynomial is:

(=) + 7(=x)° = 2(=x)* = 6(—x)3 = 7(-=x)* + 8(-x) =2 =0
that is,
X0 —7x3 = 2x*+ 6x3—7x*-8x-2=0

That there are four sign changes indicates that there are
at most four negative solutions to the original equation.
As another example, one can quickly check that
the equation x® — 64 = 0 has at most one positive solu-
tion (which must be x = 2), and no negative solutions.

Proof of the Rule

Very few mathematics texts present a proof of
Descartes’s famous result. The argument, unfortunately,
is not elementary and relies on techniques of CALCULUS.
We present here a proof that also makes use of the
principle of mathematical INDUCTION.

Descartes’s rule of signs certainly works for polyno-
mial equations of degree one: an equation of the form
ax + b = 0, with a and b each different from zero, has
one positive solution if a and b are of different signs,
and no positive solutions if they are the same sign.

Assume Descartes’s rule of signs is valid for any
polynomial equation of degree 7, and consider a poly-
nomial p(x) = a,,1x"*! + apx + ag of degree
n + 1. Its derivative p’(x) = (n + 1)a,,,1x" + na,x"' + ...
+ayq is a polynomial of degree 7 and so, by assumption,
has at most k positive roots, where k is the number of
sign changes that occur. Each root of p’(x) represents a
local maximum (hill) or local minimum (valley) of the

+a,x" + ...

original polynomial, and a root of the original polyno-
mial can only occur directly after one such location.
Thus the original polynomial has at most k positive
roots after the location of the first positive root of
p’(x). Whether the graph of p(x) crosses the positive x-
axis just before this first local maximum or minimum
depends on the signs of p(0) = ag and p’(0) = ay. If
both are positive, then the graph is increasing to a
local maximum just to the right of x = 0, and there is
no additional root. Similarly, there is no additional
root if both are negative. Only if ag and a; have oppo-
site signs could the original equation have k + 1 rather
than just k positive roots.

As the sign changes of the derivative p’(x) match
those of p(x), and with the additional consideration of
a possible sign change between gy, and a;, we have that
the number of sign changes of p(x) does indeed match
the number of possible positive roots it could possess.
This proves the rule of signs.

We can further note that if a local maximum to a
graph occurs below the x-axis, or if a local minimum
occurs above the axis, then the polynomial fails to
cross the x-axis twice. Thus, the number of positive
roots a polynomial possesses could miss the number
indicated by the count of sign changes by a multiple of
2. This leads to a more refined version of Descartes’s
rule of signs:

Write the terms of a polynomial from highest
to lowest powers, and let k& be the number of
sign changes that occur in reading the coeffi-
cients from left to right. Then that polynomial
has at most k positive roots. Moreover, the
number of positive roots it does possess will be
even if k is even, and odd if k is odd.

A bound on the number of negative roots can
be found substituting —x for x and applying the
same rule to the modified polynomial.

determinant In the study of SIMULTANEOUS LINEAR
EQUATIONS, it is convenient to assign to each square
MATRIX (one representing the coefficients of the terms
of the simultaneous equations) a number called the
determinant of that square matrix. To explain, consider
the simple example of a pair of linear equations:

ax +by=e
cx+dy=f



Solving for x in the first equation and substituting the
result into the second equation yields the solution:

de-bf
X = 2d—be
_af —ce
Y= 2d—be

This, of course, is valid only if the quantity ad — bc is
not zero. We call ad — bc the “determinant” of the 2 x 2
matrix of coefficients:

a b

c d

Notice that this determinant is obtained from the
matrix by selecting two elements of the matrix at a
time, one located in each row and column of the
matrix, and assigning a + or — sign according to
whether the order in which the columns are chosen is
an even or an odd PERMUTATION:

(g Z] column 1, column 2 — +ad
c

(g bj column 2, column 1 - -bc
e d

In the same way, a system of three simultaneous
equations:

ax +by+cz=p
dx+ey+fz=¢q
gx+hy+iz=r

has a solution provided the quantity aei — afb + bfg -
bdi + cdh - ceg is not zero. We call this quantity the
determinant of the 3 x 3 square matrix:

a b ¢
d e f
g h i

It is obtained from the matrix by selecting three ele-
ments of the matrix at a time, one located in each row
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and column of the matrix, and assigning a + or — sign
according to whether the order in which the columns
are chosen is an even or an odd permutation:

/| Column 1, Column 2, Column 3 — +aei

e Q. &

Column 1, Column 3, Column 2 — —afh

Q

QU

£ | Column 2, Column 3, Column 1 — +bfg

e &%
S0 TS
~

Notice that the signs of the products can equivalently
be evaluated in terms of the sign of row permutations.

In general, the determinant of an 7 X 7 matrix is
formed by selecting 7 elements of the matrix, arranged
one per row and one per column, forming the product
of those entries, assigning the appropriate sign, and
adding together all possible results. The determinant of
a square matrix A is denoted det(A) or, sometimes, |Al.

The determinant function satisfies a number of key
properties:

1. If a column or a row of a matrix A is
entirely zero, then det(A) = 0.

(Each product formed in computing the determinant
will contain a term that is zero.)

2. If two columns or two rows of the matrix
are interchanged, then the sign of det(A)
changes.

(If two columns undergo one more interchange, then the
sign of each permutation alters. Since the process of
forming the determinant can equivalently be viewed in
terms of row permutations, the same is true if two rows
are interchanged.)

3. If a matrix A has two identical columns, or
two identical rows, then det(A) = 0.

(Interchange those two columns or two rows. The
matrix remains unchanged, yet the determinant has
opposite sign. It must be the case then that det(A) = 0.)
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It is sometimes convenient to think of the determi-
nant of a matrix A as a function of its columns written
as vectors vy, va,..., U,. We write det(A) = det(vy, v,...,
v,). Then, by the above observations, we have:

det(vyy...y 0,...,v,) =0
det(V1ynny Vigenns Ujpenny V) = =det(Vyyensy Ujyersy Ujpenny U)
det(V1yees Vyerrs ey v,) = 0

We also have:

4. det(V1yeees U + Wyeony U),) = det (V1yenny Uyeury Uyy)
+ det(vy,..., ..., v,)

and
5. det(vy,..., ku,..., v,) = k det(vq,..., v)..., v,)
and consequently

6. The value of det(A) is not altered if a multi-
ple of one column is added to another col-
umn: det(vy,..., v; + kvj,..., v,) = det(vy,...,
Viyeues Uy)

These results follow from the definition of the deter-
minant. The corresponding results about rows are
also valid.

CRAMER’S RULE shows that the notion of a deter-
minant is precisely the concept needed to solve simulta-
neously linear equations. We have:

A system of simultaneous linear equations has a
(unique) solution if the determinant of the cor-
responding matrix of coefficients is not zero.

Cramer’s rule goes further and provides a formula for
the solution of a system in terms of determinants.

The determinant has another important property.
After some algebraic work it is possible to show:

The determinant of the product of two n X n
matrices A and B is the product of their
determinants:

det(AB) = det(A) x det(B)

The determinant of the IDENTITY MATRIX [ is one. If a
square matrix A is invertible, then the equation:

1 = det(I) = det(A - A™") = det(A) - det(A™")
shows that det(A) is not zero and that

1

det(A™) = det(A)

We have:

If a matrix is invertible, then its determinant is
not zero.

The converse is also true:

If the determinant of a matrix is not zero, then
the matrix is invertible.

To see why this holds, suppose that A is a matrix
with nonzero determinant. Let ¢; denote the ith column
of the identity matrix. By Cramer’s rule, since the deter-
minant is not zero, the system of equations Ax = ¢; has a
solution x = s;, say. Set B to be the matrix with ith col-
umn s;. Then AB = I. This shows at least that A has a
“right inverse” B. To complete the proof, let AT denote
the transpose of A, that is, the matrix obtained from A
by interchanging its rows and columns. Since the deter-
minant can be viewed equivalently well as a function of
the rows of the matrix as its columns, we have that
det(AT) = det(A). Since the determinant of AT is also
nonzero, there is a matrix C so that ATC = I. One can
check that the transpose of the product of two matrices is
the reverse product of their transposes. We thus have:
CTA = (ATC)T = IT = I. This shows that the matrix A also
has a left inverse CT. The left and right inverses must be
equal, since CT = C'I = CT AB = IB = B. Thus the matrix
B is indeed the full inverse matrix to A: AB=BA =I.

See also INVERSE MATRIX.

diagonal Any line joining two nonadjacent vertices
of a POLYGON is called a diagonal of the polygon. For
example, a square has two diagonals, each cutting the
figure into two congruent right-angled triangles, and a
pentagon has five different diagonals. There are no
diagonals in a triangle. In general, a regular ngon has
n(n - 3)

2

A diagonal for a POLYHEDRON is any line joining
two vertices that are not in the same face. A cube, for

distinct diagonals.



example, has four distinct diagonals. A diagonal plane
for a polyhedron is any plane that passes through two
edges that are not adjacent.

diagonal argument The diagram at bottom right
shows that it is possible to match the elements of an
infinitely long line of objects with the elements of a
two-dimensional array of objects in a perfect one-to-
one correspondence (meaning that each and every ele-
ment of the first set is matched with exactly one
element of the second set, and vice versa). In some
sense, this shows that an infinite two-dimensional
array is no “larger” than an infinite one-dimensional
array. Similar constructions can be used to match ele-
ments of higher-dimensional arrays with the elements
of a single infinite line of objects.

The correspondence described is called a diagonal
argument of the first kind. It was first introduced by
German mathematician GEORG CANTOR (1845-1918)
in 1891. This argument shows that the set of positive
RATIONAL NUMBERS is of the same CARDINALITY (that
is, of exactly the same “size”) as the set of NATURAL
NUMBERS:

First list an infinite string including all of the

. . 1
rationals with numerator 1: 1553w Under-

neath this string, list all the rationals with

numerator 2 that do not reduce to a fraction

. 2 2
with numerator 1: 153550 and under-

neath this, write the string of all rationals with
numerator 3 that do not reduce to a fraction

3333

with numerator 1 or 2: 10245505 and so

forth. The diagonal argument now shows that
the set of all positive rationals can indeed be
presented as a single denumerable list:

This shows that the set of rationals is COUNTABLE.

One can also use this argument to show that the
union of a countable number of countable sets is itself
countable: simply list the elements of each set in an
infinite string, one per line of a two-dimensional array,
and use the diagonal argument to provide a method of
listing all the elements in the array.
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Cantor provided a “diagonal argument of the sec-
ond kind” to show that the set of real numbers is an
infinite set that, in some definite sense, is “larger” than
the set of counting numbers or the set of rationals. For
convenience, work with the set of real numbers in the
INTERVAL [0,1]. Each such real number can be written
as an infinite decimal, using an infinite string of nines
if necessary. For example, 1/3 = 0.3333 ... and 1/2 =
0.5 = 0.49999 ... Cantor’s second-diagonal argument
proceeds as follows:

Suppose it is possible to produce a complete
list of all the real numbers from the interval
[0,1], each written as an infinite decimal
expansion:

0.a; ay az a4 as ag...
0.by by bs by bs b...
O.Cl Cy) C3 C4 C5 Cq.ee

O.dl dz d3 d4 d5 d6..-

0.81 €) €3 €4 €5 €E¢...

Construct another real number x = 0.0 0,03 ...
as follows:

Set o, equal to 1 if aq is equal to an 8
or a 9, and equal to 8 if gy is any
other number; set o, equal to 1 if b, is

second diagonal third diagonal

first diagonal

The diagonal correspondence
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equal to an 8 or a 9, and equal to 8 if
b, is any other number; set o3 equal
to 1 if ¢3 is equal to an 8 or a 9, and
equal to 8 if c3 is any other number;
and so forth.

Then the number x does not appear on the list.
It is not the first number on the list, since x and
0.ay a, a3 ay ... differ in the first decimal place;
nor is it the second number in the list, since x
and 0. by b, bs ... differ in the second decimal
place; nor is it the third, fourth, or 107th num-
ber in the list. Thus from any list of real num-
bers, it is possible to construct another real
number that fails to be on the list.

Even if one were to include the number x constructed
above on a new list of real numbers, one can repeat the
diagonal argument again to produce a new real number
y that fails to be on the list. In this way, one can argue
that there are always “more” real numbers than can be
listed. The set of real numbers is thus of greater cardi-
nality than the set of rational numbers. (It is worth
commenting that, at first, it seems easier to simply con-
struct the real number x = 0.040,053 ... by selecting oy
to be any digit different from o, o, any digit different
from b,, oz any digit different from c3, and so forth.
Arbitrary choices, however, could lead to ambiguity
and damage the argument. For instance, the number x
produced could be 0.50000 ... which already appears
on the list as 0.49999... The approach taken above
carefully obviates this concern.)

Cantor also proved that there is an infinitude of
infinite sets all larger than the infinite set of natural
numbers.

diameter The furthest distance between two points
on the boundary of a geometric figure is called the
diameter of the figure. For example, the diameter of a
square of side-length 1 is the distance between two
opposite corners of the square. This distance is V2. An
equilateral triangle of side-length 1 has diameter equal
to 1. In this context, the diameter of an object is always
a number.

Sometimes the term diameter also refers to the line
segment itself connecting two boundary points of max-
imal distance apart. For example, the diameter of a cir-
cle is any line segment through the center of the circle

connecting two boundary points. A diameter of a
SPHERE also passes through its center.
Circles and spheres are figures of CONSTANT WIDTH.
See also DIAGONAL.

Dido’s problem According to legend, in the year 800
B.C.E., Princess Dido of Tyre fled her Phoenecian home-
land to free herself of the tyranny of her murderous
king brother. She crossed the Mediterranean and
sought to purchase land for a new city upon the shores
of northern Africa. Confronted with only prejudice and
distrust by the local inhabitants, she was given permis-
sion to purchase only as much land as could be sur-
rounded by a bull’s hide. The challenge to accept these
terms and still enclose enough land to found a city
became known as Dido’s problem.

The Roman poet Virgil (70-19 B.C.E.), in his epic
work Aeneid, refers to the legend of Dido and her
clever solution to the problem. He claims that Dido cut
the hide into very thin strips and pieced them together
to form one very long strand, which she then used to
enclose a proportion of land of maximal area, as given
by the shape of a circle. (More precisely, with coastline
as part of the boundary, Dido formed a semicircle with
bull-hide strips.) The portion of land she consequently
purchased for a minimal price was indeed large enough
to build a city. According to Virgil, this story represents
the founding of the city of Carthage, which is now a
residential suburb of the city of Tunis.

In this story, Princess Dido solved the famous
ISOPERIMETRIC PROBLEM:

Of all figures in the plane with a given perime-
ter, which encloses the largest area?

Mathematical analysis of this problem is difficult. It was

not until the late 19th century that mathematicians were

finally able to prove that the solution presented in this

ancient tale—namely, the circle—is the correct shape.
See also ISOPERIMETRIC PROBLEM.

difference In ARITHMETIC, the result of subtracting
one quantity from another is called the difference of the
two quantities. For example, the difference of 105 and
83 is 22. The minus sign is used to denote differences.
For instance, we write: 105 — 83 = 22. The difference



of two quantities could be negative. We have, for
example, 5 — 7 = -2. The minus sign was first used in a
printed text in 1489 by German mathematician
Johannes Widman (1462-98).

The absolute difference of two quantities @ and b is
the ABSOLUTE VALUE of the difference of the two quan-
tities: la — bl. The absolute difference of 13 and 8, for
example, is 3, as is the absolute difference of 8 and 13.
Some authors use the symbol ~ to denote absolute dif-
ference: 8 ~ 13 = 5.

In SET THEORY, the difference of two sets A and B
(also called the relative complement of B in A) is the set
of elements that belong to A but not to B. This differ-
ence is denoted A\B or A — B. For example, A =
{1,2,3,6,8,} and B = {2,4,5,6}, the A\B = {1,3,8}. Also,
B\A = (4,5).

The symmetric difference of two sets A and B,
denoted either AVB, A+B, or A®B, is the set of all ele-
ments that belong to one, but not both, of the two sets
A and B. It is the union of the differences A\B and B\A.
It is also the difference of the union of A and B and
their intersection:

AVB = (A\B)U(B\A)
=(AUB) - (ANB)

For the example above, we have: AVB = {1,3,4,5,8}.
See also FINITE DIFFERENCES.

3 3

difference of two cubes The equation x3 - & =
(x —a)(x* + ax + a?) is called the difference of two cubes
formula. One can check that it is valid by EXPANDING
BRACKETS. Since the sum of two cubes can also be writ-
ten as a difference, x> + a® = x3 — (-a)?
panion equation x> + a3 = (x + a)(x* — ax + a%).

The DIFFERENCE OF TWO SQUARES and the differ-
ence of two cubes formulae generalize for exponents
larger than 3. We have:

, we have a com-

1 n-2

X'—a" = (x —a)(x" L + ax™ 2 + @’ + .+ ad"x + a7

for n > 2. This shows that the quantity x — a is always a
factor of x” — a”. This observation is useful for factor-
ing numbers. For example, we see that 63! — 1 is divisi-
ble by 6 — 1 = 5. Since we can also write 6°! — 1 =
(63)17 = 117 we have that 63 — 1 = 215 is also a factor

of 651 - 1.
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If 7 is odd, then there is a companion formula:

X"+ d" = (x +a) (X" —ax™? + a2 -
—a"2x + oY)

This shows, for example, that 2'> + 1 (which equals
(243 + 13) is divisible by 17.
See also MERSENNE PRIME.

2 2

difference of two squares The equation x> — 4 =
(x — a)(x + a) is called the difference-of-two-squares
formula. One can check that it is valid by EXPANDING
BRACKETS. It can also be verified geometrically: place a
small square of side-length a in one corner of a larger
square of side-length x. The area between the two
squares is x> — g?. But this L-shaped region can be
divided into two rectangles: one of length x and width
(x — a) and a second of length a and width (x — a).
These stack together to form a single (x — a) X (x + a)
rectangle. Thus it must be the case that x> — a? equals
(x —a)(x + a).

The conjugate of a sum x + a is the corresponding
difference x — a, and the conjugate of a difference x — a
is the corresponding sum x + a. Multiplying an alge-
braic or numeric quantity by its conjugate and invok-
ing the difference-of-two-squares formula can often
simplify an expression. For example, if we multiply the

1
uantit by “one,” we obtain:
quantity S by

11 _2+£= 2443
2-43 2-43 2443 22_(\5)2

:2+\/§=2+\/§

1

(We have “rationalized” the denominator.)

A sum of two squares, x> + a®, can be regarded as a
difference if one is willing to work with COMPLEX NUM-
BERS. We have: x* + a® = x* — (ia)? = (x — ia)(x + ia).

See also DIFFERENCE OF TWO CUBES; RATIONALIZ-
ING THE DENOMINATOR.

differential Close to any point x, the graph of a dif-
ferentiable function y = f(x) is well approximated by a
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small straight-line segment tangent to the graph at x.
The slope of this tangent line is the DERIVATIVE f"(x).
Using the symbol dx to represent a small change in the
x-variable, we see that the corresponding change in the
y-variable is approximately dy = f’(x)dx. The quantities
dx and dy are called differentials.

GOTTFRIED WILHELM LEIBNIZ (1646-1716) based
his development of the theory of CALCULUS on the idea

d
of a differential. Today we use the notation d—z for the

derivative f’(x), deliberately suggestive of Leibniz’s ideas.
See also HISTORY OF CALCULUS (essay); NUMERICAL
DIFFERENTIATION.

differential calculus This branch of caLcuLus deals
with notions of SLOPE, rates of change and ratios of
change. For example, a study of VELOCITY, which can
be described as the rate of change of position, falls
under the study of differential calculus, as do other
concepts that arise in the study of motion.

If a quantity y is a FUNCTION of another quantity
x, y = f(x) say, then each change in the x-variable,
x — x + b, produces a corresponding change in the

y-variable: f(x) — f(x + b). The ratio of the changes of
flx + h) - f(x)

the two variables is: A . Graphically, this

represents the slope (the “rise” over the “run”) of the
line segment connecting the two points (x,f(x)) and
(x+h,f(x+h)) on the graph of the curve y = f(x).

The slope of this line segment, for a fixed change 5
in the x-variable, depends on the shape of the curve
and will typically change from point to point. A very

steep curve will give a large rise for a fixed run, for
example, whereas a curve that rises slowly will give a
low value for slope. In all cases, if the value b is very
small, then the slope of the line segment described
above approximates the slope of the TANGENT line to
the curve at position x. The smaller the value of b, the
better is the approximation.

In another setting, if y = f(#) represents the position
of a car along a highway at time ¢, then, over s seconds
of travel, the automobile changes position by amount

fit + b) = f(t), and the ratio w

represents

the average rate of change of position, or the average
velocity, of the car over b seconds of travel. If the value »
is small, then this quantity approximates the actual speed
of the car at time ¢ as read by the speedometer. The
smaller the value of A, the better is the approximation.

flx + h) - f(x)

The ratio A is called a “Newton

quotient” to honor the work of SIR IsaAAC NEWTON
(1642-1727) in the discovery and development of cal-
culus, and the LIMIT,

lirnh—)O

if it exists, is called the derivative of the function f(x). It
represents the slope of the (tangent line to the) graph
y = f(x) at position x, or, alternatively, the instantaneous
rate of change of the variable y = f(x) at position/time x.

tangent line to curve has slope =

fix+h) — f(x)
h

y=flx)
f(x+h)

rise = f(x+h) — f(x)
f(x)

run=h

X x+h

Computing the derivative



The derivative of a function y = f(x) at position x is
df dy

n ither —— or —— (o, make th in
denoted eithe I °F dx (or, to make the point at

which the derivative is being computed explicit, Ix
X

or 7
read as “f prime of x.”

As an example, the derivative of the function
y = f(x) = x? at position x = 7 is given by:

). The derivative is also written f’(x), which is

dy
dx

f(7+h)-1(7)
b

= lim,_,g

x=7

(7 +h)?:-72%
h

49+14h+h% - 49
b

14h + h?
b

= lim/,]_)o 14 + h
~14

= limy,_g

= lirnh—)O

=limj,_o

That is, the slope of the tangent line to the curve
y = x> at x=7 is 14. In general, the derivative of
f(x) = x* at an arbitrary point x is given by: f’(x)=
(x +h)? —x?
h
able amount of algebra is usually needed to compute
these limits. The aim is to cancel » in the denomina-
tor so as to avoid division by zero.

The process of finding the derivative of a function
is called differentiation. A function y = f(x) is called dif-
ferentiable at a point x if the derivative of the function
f’(x) exists at that position. A function is differentiable
if its derivative can be computed at every point under
consideration. Not every function is differentiable.

For example, the ABSOLUTE VALUE function y = lx|
has no well-defined tangent line at its vertex at position

[0+h1-101 . lhl

x = 0, and limit lim}HOT = hmb%OT does

limy,_o =limy,_02x+h=2x. A consider-

not exist. (Consider the cases b positive and negative sep-
arately.) It can be shown that every differentiable func-
tion is continuous, but, as the absolute-value function
shows, a continuous function need not be differentiable.
The thrust of differential calculus is thus the com-
putation of the derivatives of functions. The following
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table shows the derivatives of some standard functions.
The PRODUCT RULE, QUOTIENT RULE, and the CHAIN
RULE also assist in the computation of derivatives.

f(x) F(x)

k (constant) 0

mx+b (straight line of slope m) m

X 1

X rx!

sin x coSs X

coS X —sin x

tan x sec? x=—
cos® x

sec x sec xtan x

COSec X —Cosec x cot x

cot x —cosec 2x

e* e

ekx kekx

a a*Ina

sinh x cosh x

cosh x sinh x

In x 17

Apart from dealing with issues of rates of change,
differential calculus is also used to solve OPTIMIZATION
problems, that is, problems of finding the maximum or
minimum values for a given function (which are called
MAXIMUM/MINIMUM problems).

ANTIDIFFERENTIATION is intimately connected with
INTEGRAL CALCULUS, the general problem of computing
areas under curves and volumes under surfaces. The
FUNDAMENTAL THEOREM OF CALCULUS explains this
connection.

The derivative of a function y = f(x) at the point
x = x1 can alternatively be defined as the limit:

e in, ., 2210

Some authors of mathematics textbooks prefer this def-
inition. Of course, setting x; = x and x, = x + b, it is
equivalent to the definition presented above.

See also CONCAVE UP/CONCAVE DOWN; DIFFEREN-
TIAL; DIFFERENTIAL EQUATION; DIRECTIONAL DERIVA-
TIVE; HIGHER DERIVATIVE; HISTORY OF CALCULUS
(essay); IMPLICIT DIFFERENTIATION; INCREASING/
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DECREASING; MAXIMUM/MINIMUM; MEAN-VALUE THEO-
REM; NUMERICAL DIFFERENTIATION; PARTIAL DERIVA-
TIVE; ROLLE’S THEOREM.

differential equation Any equation that contains
one or more derivatives is called a differential equation.
If such an equation involves just a single independent
variable x and a single dependent variable y and its
derivatives, then it is described as “ordinary.” For

. d . .
example, the equation L 4x+3=0isan ordinary

dx
differential equation.

A solution of a differential equation is any func-
tion y = f(x) that satisfies the equation. For example,
y = 2x% — 3x is a solution to the above equation. So too
is y = 2x% — 3x + 5. These solutions were found by

writing d—z = 4x - 3 and integrating: y = [4x — 3dx

= 2x? - 3x + C. If particular values of x and y are
known, say y = 0 when x = 1, then a value for C is
determined, in this case C = 1, yielding the particular
solution: y = 2x? — 3x + 1.

The “order” of a differential equation is the order
of the highest derivative that appears in the equation,
and the “degree” of the equation is the power to which
the highest-order derivative is raised. Thus, for example,
d—3y+2x4yﬂ+x6y2 =0 is a third-order differential
dx? dx

d3y : d?*y ’
: - 24| =2 | +3=y
equation of the first degree, and [ dx3 J ( dx? j

is a third-order equation of degree 2.

An equation involving more than one independent
variable and PARTIAL DERIVATIVEs with respect to those
variables is called a partial-differential equation. For

92

2z dz oz .
example, Fyel xy + e a_y +xyz =2 is a second-order

partial differential equation of degree 3.

Differential equations arise in virtually every
branch of science, economics, and engineering. Any
theory that attempts to describe relationships between
the rates of change of continuously varying quantities
leads to a differential equation. For example, one
model of population growth describes the rate of
change of population size P as proportional to the size

of the population. This leads to the equation g—f = kP,

where k is some constant. (See POPULATION MODELS.)

Finding solutions to differential equations is an essen-
tial part of scientific investigation.

There are a number of standard techniques for
solving certain types of differential equations. All
involve rearranging terms or transforming the equation
into a form that can be readily integrated. We outline a
selection of some basic techniques.

Directly Integrable Equations: A first-order equation of
the form:

dy
%=f(x)

is directly integrable and has solution given by y =
Jf(x)dx. Similarly, a second-order equation of the form:

d*y _
W—f()’)

can be solved by integrating twice.

Separation of Variables: A first-order equation of the
form:

Fn) 2 = gt

where f is a function of y only and g is a function of x
only, can be solved by integrating both sides of the
equation with respect to x. This yields:

If(y)j—zdﬁ [ glx)dx

The method of INTEGRATION BY SUBSTITUTION shows
that the left integral can be interpreted simply as an
integral with respect to the variable y, and so we are
permitted to write:

[f(y)dy = Ig(x)dx

We can now evaluate these integrals and solve for y.

d . .
For example, to solve % =y’ write, with an abuse

. 1 . . 1
of notation, de = dx Integration gives Jde = [1dx,

o 1_ . 1
y1eld1ng,—y_x C,ory—c_x.



Homogeneous Equations: A first-order equation of the

form:
dy _
dx f(xj

can be solved by substituting y = vx. This reduces the
equation to one in v and x alone. Separation of vari-

ables will now work.
dy x*+y?
For example, to solve o "

, which can

du_l y 2
be written .7 + ) > set y = vx to obtain:

v . . .
v +v=1+v2. Separation of variables now applies.

Linear Equations: A first-order equation of the form:

Z—z + flx)y = g(x)

can be solved by multiplying through by the integrating
factor ef®dx_ This yields the equation:

ejf(x)dx j_z " le(x)dxf(x)y _ eJ.f(x)dxg(x)

which can be rewritten:

A [ [fedx )_ [
4 it g

This is directly integrable.

dy %:x2 has inte-

For example, the equation It

1
. —dx .
grating factor eJ x =el* =x and so the equation

can be rewritten % (xy) = x3, yielding xy = %x" +C,
ory= %x3 + %

Basic Second-Order Equations: A second-order equa-
tion of the form:
42

dx_z=f(y)

d
can be solved by multiplying through by Zd—z to
obtain:
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2
df(a V)b dy by
dx [(dx) J_ 2dx dx?2 2f) dx

Integrating gives:

d 2
(ﬁ] =2[fy)dy+C

After taking square roots, one can now separate
variables.

It is often the case that no known techniques will
solve a particular differential equation that arises in a
particular scientific study. In this case, mathematicians
will often assume that the solution function y = f(x) can
be written as a TAYLOR SERIES: y = dy + aiX + ax’
+ asx’ + ... By substituting the series into the differen-
tial equation, it is usually possible to compute the val-
ues of at least the first few coefficients a¢,a1,a,,.... This
approach is called the “method of undetermined coeffi-
cients.” In this context, the Taylor series used is some-
times called a perturbation function.

digit A symbol that forms part of a number is called
a digit. For example, the number 42.768 has five digits.
Ten digits are used in decimal notation, namely, 0, 1, 2,
3, 4,5, 6, 7, 8, and 9. In hexadecimal notation
(base 16), the digits are 0, 1, 2, 3,4, 5,6,7,8,9, A, B,
C, D, E, and F. In the system of binary numbers only
two digits are used: 0 and 1. In general, a counting sys-
tem in base b uses b different digits to represent the
numbers 0 through b — 1.

In the vernacular, the word digit means a finger or
a toe. As one learns to count with one’s digits it is not
surprising that the word has come to be used for spe-
cific numbers the fingers represent. The measure of a
digit, defined as the width of one finger, about 3/4 of an
inch, was a standard Old English unit of LENGTH.

A digital watch displays specific symbols (num-
bers) as discrete units of time (seconds) pass, and a
digital computer processes information supplied to it
in the form of numbers. An analog watch, however,
uses the sweeping entity of a moving hand as an ana-
log to the passing of time, and an analog computer, now
generally considered obsolete, uses a varying voltage to
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mimic continuously changing input information, such as
the rate of flow of oil through a pipeline, for example.
See also BASE OF A NUMBER SYSTEM; ERROR.

dihedral Any geometric construct formed by the
intersection of two planes is called dihedral. For exam-
ple, the line of intersection of two nonparallel planes is
called a dihedral line, and the angle between the two
planes is called a dihedral angle (or, sometimes, a dihe-
dron). A dihedral angle can be computed by taking the
DOT PRODUCT of the two normal vectors to the planes.
The dihedral angle of a polyhedron is the angle
between two adjacent faces of the solid.

The word dibedral comes from the Greek prefix di-,
meaning “two,” and the word hedra, meaning “base,”
“seat,” or “surface.”

See also NORMAL TO A PLANE.

dilation See GEOMETRIC TRANSFORMATION; LINEAR
TRANSFORMATION.

dimension The number of coordinates needed to
specify the position of a particular point in space is
called the dimension of that space. Lines and curves are
considered one-dimensional, since the location of any
point on a curve can be specified by a single parameter,
namely, the distance along the curve at which it lies.
Points in two-dimensional space form a surface, and
points in three-dimensional space lie within a volume.

A physical theory is said to be multidimensional if it
describes the universe with a large number of parameters.
Since events in the world occur at specific locations and
specific times, four parameters are needed to describe
them: three spatial parameters x, 9, and z and a fourth
parameter ¢ for time. Because of this, “time” is often
cited as being the fourth dimension. However, a theory
that also considers the electric charge g of objects, say,
would be described as “five-dimensional,” and one that
also considers magnetic strength as “six-dimensional.”
Physicists have asserted that we live in a universe that is
as much as 18-dimensional. There is little meaning here
other than that scientists are asserting that all events in
the universe can be described fully through 18 different
variables. There is no specific reason for the fourth vari-
able to always be interpreted as “time.”

To a mathematician, an z-dimensional object is one
that is fully described by # parameters. For example, a
circle sitting in two-dimensional space is described by
an equation with two variables: x>+y?=1. A SPHERE in
three-dimensional space is described by an equation
with three variables: x?+y?+z?=1. Adding more vari-
ables to the equation gives higher-dimensional spheres:
the equations x2+y*+z2+w?=1 and x*+y*+2%+w?
for instance, might be said to describe “hyperspheres”
in four- and five-dimensional space. Although one can-
not envision what these objects are, the mathematics of
these objects is little different from the mathematics of
ordinary circles and spheres.

In a geometric context, “dimension” can be
described through the notion of scaling. If we SCALE a
geometric object by a factor k, then its size changes
accordingly: any line of length @ becomes a line of
length ka, any planar region of area A becomes a pla-
nar region of area k*A, and any solid of volume V is
replaced by a solid of volume k3V. An object can thus
be described as d-dimensional if its “size” scales
according to the rule:

+1/t2 = 1,

new size=k9 x old size

In this context, it is possible for a geometric object to
have fractional dimension. Such an object is called a
FRACTAL.

See also HYPERCUBE.

Diocles (ca. 240-180 B.C.E.) Greek Geometry Born
on Evvoia (Euboea), a Greek island (the exact birth
date is not known), Diocles is remembered for his work
on CONIC SECTIONS and his innovative solution to the
DUPLICATING THE CUBE problem via the invention of a
new curve called the cissoid curve.

Almost nothing is known of Diocles’ life, and
knowledge of his work (until recently) came to us
chiefly through references made by scholars after his
time. It is known that Diocles was a contemporary of
APOLLONIUS OF PERGA (ca. 260-190 B.C.E.) and may
have spent considerable time at Arcadia, the intellectual
center of Greek culture.

Diocles wrote one significant text, On Burning
Mirrors, which, although chiefly ignored by Greek
scholars, had considerable influence on Arab mathe-
maticians. A translation of this work was only



recently discovered in the Shrine Library in Mashhad,
Iran, and an English edition of the text was first pub-
lished in 1976.

The piece is organized as a collection of 16 discus-
sions on original results in geometry, chiefly concerned
with the topic of CONIC SECTIONS. One sees that Dio-
cles was the first to prove the reflection property of a
PARABOLA, thereby solving an old problem presented
by ARCHIMEDES OF SYRACUSE (ca. 287-212 B.C.E.) of
finding a mirror surface that produces heat when
placed facing the sun. (It is said that Archimedes pro-
posed using curved mirrors to reflect the Sun’s rays and
burn the sails of enemy ships.) Diocles also describes
his “cissoid” curve in this text and a method of con-
structing, geometrically, the cube root of any given
length with its aid. As the construction of the cube root
of 2 is the chief stumbling block in the solution of the
duplication of the cube problem, the cissoid provides a
solution to this classic challenge. Today we describe the
cissoid as the plane curve with equation y?(2a — x) = x3,
where a is a constant. The appearance of the cube
power makes the construction of cube roots possible.

Some historians suggest Diocles may have used the
terms parabola, hyperbola, and ellipse for the conic
sections before Apollonius, the scholar usually credited
with the invention of these names. Diocles’ work on
conics greatly influenced the development of the sub-
ject. The exact date of Diocles’ death is not known.

Diophantine equation Any equation, usually in sev-
eral unknowns, that is studied and required to have
only integer-valued solutions is called a Diophantine
equation. For example, the JUG-FILLING PROBLEM
requires us to find integer solutions to 3x + 5y = 1, and
the classification of PYTHAGOREAN TRIPLES seeks inte-
ger solutions to x> + y? = z2. These are Diophantine
problems. FERMAT’S LAST THEOREM addresses the
nonexistence of integer solutions to the generalized
equation x” + y" = 2" for higher-valued exponents.
Problems of this type are named after DIOPHANTUS OF
ALEXANDRIA, author of the first known book devoted
exclusively to NUMBER THEORY.

In 1900 DAvID HILBERT challenged the mathemati-
cal community to devise an ALGORITHM that would
determine whether or not any given Diophantine equa-
tion has solutions. Seventy years later Yuri Matyasevic
proved that no such algorithm can exist.
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Diophantus of Alexandria (ca. 200-284 c.E.) Greek
Number theory Diophantus is remembered as the
author Arithmetica, the first known text devoted exclu-
sively to the study of NUMBER THEORY. Ten of the orig-
inal 13 volumes survive today. In considering some 130
problems, Diophantus developed general methods for
finding solutions to some surprisingly difficult integer
problems, inspiring a field of study that has since
become known as DIOPHANTINE EQUATIONS.

Essentially nothing is known about Diophantus’s
life, not even his place of birth nor the date at which he
lived. Author Metrodorus (ca. 500 C.E.), in the Greek
Anthology, briefly described the life of Diophantus
through a puzzle:

His boyhood lasted one-sixth of his life; his
beard grew after one- twelfth more; he married
after one-seventh more; and his son was born
five years later. The son lived to half his
father’s age, and the father died four years
after the son.

Setting L to be the length of Diophantus’s life, we
deduce then that the quantity:

L L L L
E+ﬁ+7+5+§+4

equals the total span of his life. Setting this equal to L
and solving then yields L = 84. Of course the informa-
tion provided here (that Diophantus married at age 26,
lived to age 84, and had a son who survived to age 42)
is likely fictitious. The puzzle, however, is fitting for the
type of problem Diophantus liked to solve.

In his famous text Arithmetica (Arithmetic) Dio-
phantus presents a series of specific numerical prob-
lems, with solutions provided, that cleverly lead the
reader to an understanding of general methods and
general solutions. Diophantus ignored any solution to a
problem that was negative or involved an irrational
square root. He generally permitted only positive ratio-
nal solutions. Today, going further, mathematicians call
any problem requiring only integer solutions a Dio-
phantine equation.

Some of the problems Diophantus considered are
surprisingly difficult. For instance, in Book IV of Arith-
metica Diophantus asks readers to write the number 10
as a sum of three squares each greater than three. He
provides the answer:
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(1321 (1285)"  (1288Y
| 711 711 711

Although Diophantus did not use sophisticated alge-
braic notation, he was the first to use a symbol for an
unknown quantity and to introduce a notation for
powers of that unknown. He also used an abbreviation
for the word equals. This represents the first step in
history toward moving from verbal algebra to sym-
bolic algebra.

Diophantus’s text was profoundly influential and,
centuries later, was deemed essential reading for Euro-
pean scholars of the Renaissance. Inspired by an exer-
cise in the text, scholar PIERRE DE FERMAT (1601-65)
scrawled the famous comment in the margin of his per-
sonal copy of Arithmetica that spurred three centuries
of intense mathematical research in number theory. This
comment became known as FERMAT’S LAST THEOREM.

direction cosines Each point P on the surface of a
unit sphere determines a unique direction in three-
dimensional space: if O is the center of the sphere, then
the ray connecting O to P specifies a direction. Con-
versely, the direction of any given line in space corre-
sponds to a point P on the unit sphere.

Setting O to be the origin of a CARTESIAN COORDI-
NATE system, the “direction cosines” of any directed
line in three-dimensional space are simply the coordi-
nates of the point P on the unit sphere that corresponds
to the direction of that line. For example, the direction
cosine of the positive x-axis is (1,0,0), and that of the
negative z-axis is (0,0,—1).

The use of the word cosine in the name of this con-
cept comes from the observation that the direction of a
line through O is completely specified by the three
angles o, B, and y it makes with each of positive the x-,
y-, and z-axes, respectively. (These angles are assumed
to lie between zero and 180°. They are called the direc-
tion angles.) An exercise in geometry then shows that
the corresponding point P on the unit sphere has coor-
dinates (cos o, cos B, cos7).

The three direction cosines are not independent.
Two applications of PYTHAGORAS’S THEOREM show
that these numbers satisfy the relation: cos® o + cos® B
+ cos? y = 1. Thus any two direction cosines determine

the third.

The direction cosines of an arbitrary line are often
denoted ([,m,n). The “direction ratios” or “direction
numbers” of a line are defined as any set of three num-
bers in the ratio [ : m : n. The angle 6 between two
lines with direction cosines (l1,m1,n1) and (ly,m1,,1,) is
given by:

cosO = 1112 + mqmy + nn)

This is simply the DOT PRODUCT of the two VECTORs
that describe the directions of the lines.

directional derivative The graph of a function z =
f(x,y) is a surface sitting in three-dimensional space.
The directional derivative of f at a point P = (x,y) and
in the direction given by a VECTOR v = < vy, vy >,
denoted D,f, is simply the SLOPE of the surface above
the point P in the direction of v. It is assumed that v is
a vector of length 1.

Specifically, if ¢ is a variable, best thought of as
“time,” then the expression P + #v represents a straight-
line path starting at P pointing in the direction of v,
and f(P + tv) is the “slice” of the surface above this
line. The directional derivative is then the DERIVATIVE
of this quantity with respect to #:

d ) fl(x + bvy,y + bvy)
Dyf =2 f(P+1v),_ =lim;, ( 7 2)

(We require v to be a vector of unit length so that the
“speed” at which we traverse the path P + v is 1 unit
of length per unit time.)

If we take v to be the unit vector in the direction
of the positive x-axis, v = (1,0), then D,f=
f(x+hy) 9

; =50 the PARTIAL DERIVATIVE of the
X

function with respect to x. Similarly, the directional
derivative in the direction of the positive y-axis is the
partial derivative with respect to y. In general, the CHAIN
RULE shows:

hmh—)O

_8_f'd(x+tv1)+i'd(y+tuzj
t=0 "~ Jx dt ot dt

D.f =L fP+ev)



which can be rewritten as the DOT PRODUCT of two
vectors:

Dyf=Vf-v

af 9
where Vf = <£,£> is the GRADIENT of f. This pro-

vides the easiest method for computing the directional
derivative of a function.

Note that Vf - v = IVfl - vl cos(8), where 8 is the
angle between the two vectors. Since the cosine func-
tion has maximal value for 6 = 0°, this shows that the
direction v of steepest slope for a graph at a point P
occurs in the direction v = Vf. This proves:

The vector Vf points in the direction in which f
increases most rapidly.

Similarly, the cosine function has minimal value for 6 =
180°, which shows that the steepest decline occurs in
precisely the opposite direction:

The vector =V points in the direction in which
f decreases most rapidly.

These ideas extend to functions of more than just two
variables.

direct proof Most claims made in mathematics are
statements of the form:

If the premise A is true, then the conclusion B
is true.

A direct proof of such a statement attempts to establish
the validity of the claim by assuming that the premise A
is true and showing that the conclusion B follows from
a series of logical inferences based on A and other pre-
viously established known facts. Typically, a direct
proof has the form:

1. Assume A is true.

2. Show that A implies B.
3. Conclude that B is true.

The main part of the proof is the demonstration that A
implies B.

As a simple example, we prove: if a natural num-
ber 7 is even, then #? is a multiple of 4. We will base its
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proof on the known fact that any even number is a
multiple of two (as well as the standard algebraic
manipulations).

Proof: Assume that 7 is even.

Then 7 can be written in the form »n = 2k, for
some number k.

Consequently, 7> = (2k)*> = 4k%, and so is a
multiple of four.

This completes the proof.

An INDIRECT PROOF or a PROOF BY CONTRADICTION
attempts to establish that the conclusion B must be true
by showing that it cannot be false.

See also DEDUCTIVE/INDUCTIVE REASONING; CON-
TRAPOSITIVE; LAWS OF THOUGHT; PROOF; QED; THEOREM.

Dirichlet, Peter Gustav Lejeune (1805-1859) Ger-
man Analysis, Number theory Born on February 13,
1805, near Liege, now in Belgium (although he consid-
ered himself German), scholar Lejeune Dirichlet is
remembered for his significant contributions to the
field of ANALYTIC NUMBER THEORY and to the study of
FOURIER SERIES. In particular, he is noted for proving
that any ARITHMETIC SEQUENCE 4, a+d, a+2d, a+3d, ...
must contain an infinite number of primes, provided
the starting number a and the difference d are RELA-
TIVELY PRIME. (This shows, for instance, that there are
infinitely many prime numbers that are 7 greater than a
multiple of 13.) Dirichlet was the first to provide the
modern definition of a FUNCTION we use today and, in
the study of trigonometric series, was the first to pro-
vide conditions that ensure that a given Fourier series
will converge. For this reason, despite the work of
JEAN-BAPTISTE JOSEPH FOURIER (1768-1830), Dirichlet
is often referred to as the founder of the theory of
Fourier series.

Dirichlet graduated from the gymnasium (high
school) in Bonn at the age of 16 and went to Paris to
study mathematics. He never formally completed an aca-
demic program there and consequently never obtained a
university degree. In 18235, at the age of 20, Dirichlet
received instant fame as a worthy mathematician by
publishing a proof that there can be no positive-integer
solutions to the fifth-degree equation x° + y° = 2°. This is
a special case of FERMAT’S LAST THEOREM, and Dirich-
let’s work on it represented the first significant step
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toward solving the general problem since the time of
PIERRE DE FERMAT (1601-65), who had established that
there are no solutions to the fourth-degree equation, and
LEONHARD EULER (1707-83), who had proved that
there are no solutions to the third-degree equation.
Dirichlet was later able to extend his work to the degree-
14 equation, but to no other cases.

In honor of his achievement, Dirichlet was
awarded an honorary doctorate from the University of
Cologne, and with an advanced degree in hand, Dirich-
let then pursued an academic career. He was appointed
professor of the University of Berlin in 1828, where he
remained for 27 years. In 1855 Dirichlet succeeded
CARL FRIEDRICH GAUSS (1777-1855) as chair of math-
ematics at the University of Gottingen.

Dirichlet developed innovative techniques using the
notion of a LIMIT in the study of NUMBER THEORY that
allowed him to make significant advances in the field.
He presented his famous result on ARITHMETIC
SEQUENCES to the Academy of Sciences on July 27,
1837, and published the work in the two-part paper
“Recherches sur diverses applications de I’analyse
infinitésimale a la théorie des nombres” (Inquiry on
various applications of infinitesimal analysis to number
theory) during the 2 years that followed. Dirichlet also
found applications of this work to mechanics, to the
solution of DIFFERENTIAL EQUATIONS, and to the study
of Fourier series. He consistently published papers on
both number theory physics
throughout his career. His most notable works include
the 1863 book Vorlesungen iiber Zahlentheorie (Lec-
tures on number theory), the 1846 article “Uber die
Stabilitdt des Gleichgewichts” (On the stability of the
solar system), and the 1857 article “Untersuchungen
uber ein Problem der Hydrodynamik” (Investigation
on a problem in hydrodynamics).

Dirichlet died on May 5, 1859, in Gottingen, Ger-
many. Given the significance of his mathematical work,
many mathematicians of today regard Dirichlet as the
founder of analytic number theory.

and mathematical

discontinuity See CONTINUOUS FUNCTION.

discrete A set of numerical values in which there are
no intermediate values is said to be discrete. For exam-
ple, the set of INTEGERs is discrete, but the set of all

REAL NUMBERS is not: between any two real numbers,
no matter how close, there is another real number. Any
finite set of values is considered discrete.

Since a COUNTABLE set of values can be put in one-
to-one correspondence with the integers, a countable
set is usually regarded as discrete. This can be confus-
ing, however, since the countable set of RATIONAL
NUMBERS, for instance, is discrete in this second sense,
but not in the first: between any two rational numbers
p*tq

2
must rely on the context of the problem under study to
determine whether or not the set of rational numbers
should be regarded as discrete.

In STATISTICS and PROBABILITY theory, a set of DATA
or set of EVENTs is called discrete if the underlying pop-
ulation is finite or countably infinite. The results of
tossing a die, for instance, form a discrete set of events,
since the die must land on one of six faces. In contrast,
for example the range of heights of Australian women
aged 36 is not discrete but continuous.

In GEOMETRY, an ISOMETRY with the property that
each point is moved more than some fixed positive dis-
tance further away is called a discrete transformation.
For example, a translation is discrete, but a rotation or
reflection is not.

Discrete geometry is the study of a finite set of
points, lines, circles, or other simple figures.

p and g lies another rational ( , for instance). One

discriminant A QUADRATIC equation of the form
ax? + bx + ¢ = 0 has solutions given by the quadratic
formula:

-b++b*-4ac

x =2 V7 Tade
2a

The quantity under the square root sign, b* —4ac, is
called the discriminant of the equation. If the discrimi-
nant of a quadratic is positive, then the equation has two
distinct real roots. For example, the equation 2x> —5x + 2
= 0 has discriminant 3 and the two real solutions x = 2
and x = 1/2. If the discriminant of a quadratic is zero,
then the equation has just one real root. For instance,
x> —6x + 9 = 0, with discriminant zero, has only x = 3 as
a root. (It is a DOUBLE ROOT.) If the discriminant is nega-
tive, then the quadratic has no real solutions. It does,
however, have (distinct) complex solutions. For example,



2

x* + x + 1 = 0, with discriminant -3, has solutions

x:# and x:#

More generally, the discriminant of any POLYNO-
MIAL equation is defined to be the product of the differ-
ences squared of all the possible pairs of roots of the
equation. For example, if a CUBIC EQUATION has three
roots 71, r,, and r3 (possibly repeated), then the dis-
criminant of cubic is the product:

(r1 = 72)2(72 - 7’3)2(7’3 - 7’1>2

It is possible to find a formula for the discriminant in
terms of the coefficients appearing in the equation. For
the case of a quadratic, it turns out to be precisely the
quantity b> —4ac described above.

disjunction (“or” statement) A compound statement
of the form “p or ¢” is known as a disjunction. For
example, “I visited Sydney or Melbourne” is an exam-
ple of a disjunction.

Disjunctions can be interpreted in one of two ways.
If a disjunction “p or q¢” is read as

p or g, but not both

(“I visited just one of the two cities”), then it is said to
be “exclusive,” and the disjunction is called an “exclu-
sive or” (sometimes denoted XOR). Interpreted as

p or g, or possibly both

(“I visited at least one of the cities”), then the disjunc-
tion is said to be “inclusive” and is called an “inclusive
or.” In FORMAL LOGIC (and in most of mathematics),
disjunctions are always used in the inclusive sense. It is
denoted in symbols by p v g and has the following
TRUTH TABLE:

m T H4 4|
m 4 T |
m =4 4 4 (<
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J
J

Disjunction circuit

A disjunction can be modeled via a parallel circuit.
If T denotes the flow of current, then current moves
through the circuit as a whole precisely when one, or
both, switches p and g admit current flow.

See also CONJUNCTION.

displacement The distance traveled by a moving
object is sometimes called its displacement. Physicists
often use the symbol s to denote displacement. The rate
of change of displacement is called VELOCITY.

See also DIFFERENTIAL CALCULUS.

distance formula The distance d between two given
points Py = (x1,y;) and P, = (x,,y,) in the plane is the
length of the line segment that connects Py to P,. If one
regards this line segment as the hypotenuse of a right
triangle with one leg horizontal, that is, parallel to the
x-axis, and one leg vertical, parallel to the y-axis, then
PYTHAGORAS’S THEOREM can be employed to find a
formula for d. The length of the horizontal leg is the
difference of the x-coordinates x, — x; or x; — x»,
whichever is positive, and the length of the vertical leg
is the difference of the y-coordinates, y, — y; or y; — y,.
Thus, by Pythagoras’s result, we have:

d= \/(xz —x1)? +(y2 —y)?

This is called the two-dimensional distance formula.
For example, the distance between the points (-3,5)
and (2,1) is V(2 = (=3))2 + (1 = 5)2 = V52+ (—4)2 = \41.
Notice that, as one would expect, the distance formula
is symmetric in the sense that the distance between P
and P, is the same as the distance between P, and P;.

The set of all points (x,y) in the plane a fixed distance r
from a given point C = (a,b) form a CIRCLE with radius
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7 and center C. The distance formula gives the equation
of such a circle as 7 = \(x —a)? + (y — b), or (x — a)* +
(y—b)* =1~

In three-dimensional space, the distance d between
two points Py = (x1,Y1,21) and P,=(x,,Y2,2) is found via
two applications of Pythagoras’s theorem. For instance,
the distance between the points O = (0,0,0) and A =
(a,b,c) is found by first noting that P = (a,b,0) is the
point directly below A lying in the xy-plane, and that
the triangle OPA is a right triangle. By the two-dimen-
sional distance formula, the distance between O and P
is V(a—0)% + (b—0)2 = Va? + b%. The length of the ver-
tical line connecting P to A is ¢, and the length of the
hypotenuse OA is the distance d we seek. By Pythagoras’s
theorem we have: d2 = (Va2 + b2 )2 +E=a+ b+ A
Thus: d = Va? + b* + ¢*.

A slight modification of this argument shows that
the general three-dimensional distance formula for the
distance between two points P; = (x1,y1,21) and P, =

(Xz,yz,ZZ) is:

d=N(xy—x1)* + (y2-y1)* + (2 —21)°

The set of all points (x,)z2) in space a fixed distance r
from a given point C = (a,b,c) form a SPHERE with radius
7 and center C. The distance formula gives the equation
of such a sphere as (x —a)? + (y = b)* + (z—c)*> =%

The distance formula generalizes to points in 7-
dimensional space as the square root of the sum of the
differences of the 7 coordinates squared. This works even
for one-dimensional space: the distance between two
points x; and x, on the number line is d = V(x; - x1)%.
This is precisely the ABSOLUTE VALUE lx; — x4l.

The LENGTH of a VECTOR Vv = < a,b,c > is given by
the distance formula: If we place the vector at location
O = (0,0,0) so that its tip lies at A = (a,b,c), then its
length is Ivl = Na? + b* + 2.

Distance of a Point from a Plane in

Three-Dimensional Space

The distance of a point P from a plane is defined to be the
distance between P and the point N in the plane closest to
P. Suppose that the point P has coordinates P = (x,Y0,20)
and the VECTOR EQUATION OF A PLANE is ax + by + cz + d
= 0 where n = < a,b,c > is the normal to the plane. Th_er}
N is the point (x1,y1,21) in the plane with vector | NP
90° to the plane. This means that the vector NP is

parallel to n, and so NP = kn for some constant k. This

gives the equation <xg — x1,y0 — Y1,20 — 21> = k <a,b,c>,
and so x; = xo — ka,y; = yg — kb, and z; = gy — kc. Since
N = (x1,y1,21) lies in the plane, this point also satisfies
the equation of the plane. Algebraic manipulation then
axy+byg+czy+d
a’? +b? +¢?
formula, the distance between P and N is:

shows that k= . By the distance

\/(xo— x1)2+ (Yo— 1)+ (20 —21)* = \/kzaZ + k2% + k22

=lklva*+b*+c?

_laxy +byy +czp |

\/a2+b2 +c2

This establishes:

The distance of a point P = (x0,y0,29) from
the plane ax + by + cz + d = 0 is given by the
formula:

laxy +byy +czy +d|
NI

Distance of a Point from a Line in

Two-Dimensional Space

The distance of a point P from a line is defined to be
the distance between P and the point N in the line clos-
est to P. The EQUATION OF A LINE is a formula of the
form ax + by + ¢ = 0. An argument analogous to the
one presented above establishes:

The distance of a point P = (xg,yy) from the
line ax + by + ¢ = 0 is given by the formula:

| axy + by +cl

va? +b?

See also COMPLEX NUMBERS.

distribution Any table or diagram illustrating the
frequency (number) of measurements or counts from
an experiment or study that fall within certain preset
categories is called a distribution. (See STATISTICS:
DESCRIPTIVE.) For example, the heights of 1,000 8-year-
old children participating in a medical study can be



recorded via a histogram. The categories considered are
conveniently chosen intervals of height ranges, such as
36.1-40.0 in., 40.1-44.0 in., and so on, for example.

If the DATA gathered is numerical and can adopt a
continuous array of values, including fractional values
(for example, height can adopt fractional values—48
3/4 in., or 52.837 in. are possible measurements), then
one can choose narrower and narrower interval ranges
for categories. In the LIMIT, the histogram becomes
then the graph of a smooth curve representing the dis-
tribution of measurements over a continuous spectrum
of values. In some sense, the total area under the curve
represents the total number of measurements observed,
and the area above an interval [a,b] represents the
number of measurements that have value greater than a
and less than b. To make this more precise, it is appro-
priate to scale the distribution so that the total area
under the curve is one (that is, one draws histograms
with vertical bars of heights representing the percentage
of measurements recorded within that category—”rela-
tive frequencies”—with the total area under such a his-
togram representing 100 percent). The ideal curve
obtained in the limit is called a “probability density
function.” The area under the curve above an interval
[a,b] here represents the PROBABILITY that a measure-
ment taken at random falls within the range [a,b].

A numerical quantity that can adopt a continuous
array of values (such as height, weight, or temperature)
is usually called a continuous random variable. One
ascertains the distribution (probability density func-
tion) of a random variable by conducting experiments
or studies—for example by recording the heights of
1,000 8-year-old children—or from mathematical rea-
soning, making use of the CENTRAL-LIMIT THEOREM,
the NORMAL DISTRIBUTION, or perhaps the BINOMIAL
DISTRIBUTION, for example. Often the distribution of a
random, variable is unknown, and “hypothesis testing”

FFHW{ ) 5

A distribution as a limit

ab
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is used to check the validity of an assumption that a
SAMPLE follows a particular distribution. This is part of
inferential statistics.

If a random variable has probability density func-
tion given by a formula f(x), then the area under the
curve to the left of a value x gives a new function F(x)
called the cumulative distribution function. The quan-
tity F(x) represents the probability that a measurement
taken at random has value less than or equal to x.

See also STATISTICS: INFERENTIAL.

distributive property Given a mathematical system
with two operations, such as addition and multiplica-
tion, or union and intersection, we say that one opera-
tion distributes over the second if applying the first
operation to a set of elements combined via the second
produces the same result as applying the first operation
to the individual members of the combination, and
then combining them via the second. For example, in
ordinary arithmetic, multiplication distributes over addi-
tion. We have, for instance:

IX2+5+4)=3x2+3x5+3x4

that is, tripling a sum of numbers produces the same
result as tripling each individual number and then sum-
ming. (In arithmetic, the distributive property corre-
sponds to the operation of EXPANDING BRACKETS.)
Notice that addition is not distributive over multiplica-
tion, however. For instance: 4 + (6 X 7)#(4 + 6) X (4 + 7).
(The first quantity equals 4 + 42 = 46, whereas the sec-
ondis 10 x 11 = 110.)

In arithmetic, the distributive property is usually
expressed as a multiplication applied to the sum of just
two terms:

ax(b+c)=axb+axc

That it applies to a sum of three or more terms follows
from applying this basic law more than once. For
instance:

axb+c+d)=ax((b+c)+d)
=ax(b+c)+axd
=axb+axc+axd

Multiplication also distributes over addition “from the
right.” We have:
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(@a+b)xc=cx(a+b)
=cXa+cxb
—axc+bxc

In SET THEORY, “intersection” distributes over “union”
both from the left and from the right:

AN(BUC) = (AnB)U(ANC)
(AUB)NC = (AnC)u(BNC)

As a mnemonic device, it is helpful to think of the
phrase “distributes over” as synonymous with “sprin-
kles over.” We have: multiplication “sprinkles over”
additions and intersection “sprinkles over” union. In
any RING, the distributive property is the single axiom
that combines the two defining operations.

See also ASSOCIATIVE; COMMUTATIVE PROPERTY.

div A VECTOR FIELD assigns to every point (x,),z) in
space a vector F = <f1(x,J’;Z);fz(x,)’,z),]%(x;y’z)>- The
divergence of F, denoted div F, is the quantity:

div F= oh

oh b o
8x+8y+az

given as a sum of PARTIAL DERIVATIVEs. Physicists have
shown that this quantity represents the amount of flux
leaving an element of volume in space. For example, if
F represents the velocity field of a turbulent fluid, and p
is the density of the fluid, then pdivF, calculated at a
point P, is the rate at which mass is lost from an
(infinitely small) box drawn around P. (At any instant,
fluid is flowing into and out of this box.)

The divergence operator is often written as though
it is a DOT PRODUCT of two vectors:

divF=V -F
here V= 9 99 is the del operator. The CROSS
W “\ox’9dy’ oz P '

PRODUCT of V with F is called the curl of F:

_yxF=| % L) (9 ), (9 _dh
curlF—VxF—(ay 8z}+(8z ax)]+(ax ayjk

If F is the velocity field of a turbulent liquid, then
physicists have shown that 1/2 curl F, calculated at a

point P, is the angular velocity of an element of fluid
located at P, that is, it is a measure of the amount of
turning it undergoes.

See also GRADIENT.

divergent This term simply means “does not con-
verge.” For example, an infinite SEQUENCE is said to
diverge if it has no LIMIT, and an infinite SERIES
diverges if the sequence of partial sums diverges.

A divergent sequence is said to be “properly diver-
gent” if it tends to infinity. For example, the sequence
1,2,3, ... is properly divergent (but the sequences 1,
-1,1, -1,1, ... and 1, -2,3, -4,5, ... are not). One also
describes a series as properly divergent if the corre-
sponding sequence of partial sums has this property.
For example, the series 1 + 2 + 4 + 8 + 16 +... is prop-
erly divergent.

An INFINITE PRODUCT is divergent if it has value
zero or does not converge. An IMPROPER INTEGRAL
diverges if the limit defining it does not exist.

See also CONVERGENT SEQUENCE.

divisibility rules A number is said to be divisible by
n if, working solely within the integers, the number
leaves a remainder of zero when divided by 7. For
example, 37 leaves a remainder of 1 when divided by
3, and so is not divisible by 3. On the other hand, 39,
leaving a remainder of zero, is divisible by 3.

There are a number of rules to quickly test the
divisibility of numbers by small integers. We present
divisibility rules for the first 12 integers.

Divisibility by 1
All numbers are divisible by 1.

Divisibility by 2

As all multiples of 10 are divisible by 2, it suffices to
check whether or not the final digit of a number is divisi-
ble by 2. For example, 576 = 57 x 10 + 6. That 6 is a
multiple of 2 ensures that 576 is too. We have the rule:

A number is divisible by 2 only if its final digit
is0,2,4, 6 or 8.

Divisibility by 3
That 10, 100, 1000,... all leave a remainder of 1 when
divided by 3 allows us to quickly determine the remain-



der of any number divided by 3. For example, 3,212
equals 3 X 1000 + 2 x 100 + 1 x 10 + 2 X 1 and so leaves
aremainder of 3x1+2x1+1x1+2x1=8when
divided by 3. This is the sum of its digits. Of course, a
remainder of 8 is equivalent to a remainder of 2. We
have:

The remainder of any number divided by 3 is
the sum of its digits. Thus a number is divisi-
ble by 3 only if the sum of its digits is a multi-
ple of 3.

One can make repeated use of this rule to check for
divisibility. For example, 55,837 leaves a remainder of
5+5+8+3+7=28 when divided by 3. This corre-
sponds to a remainder of 2 + 8 = 10, which, in turn, is
a remainder of 1 + 0 = 1.

This rule shows that scrambling the digits of any
multiple of 3 produces a new number that is still a mul-
tiple of 3.

Divisibility by 4

As any multiple of 100 is divisible by 4, it suffices to
check whether or not the final two digits of a number
represent a two-digit multiple of 4. For example,
18,736 equals 187 x 100 + 36. As 36 is a multiple of 4
(it can be divided by 2 twice), we are sure then that
18,736 is a multiple of 4. We have:

A number is divisible by 4 if its final two digits
represent a two-digit number that can be
divided by 2 twice.

Divisibility by 5

Any number N can be written in the form N = 10a + b
where b is the final digit in N. (For example, 739 = 73
x 10 + 9.) As 10 is divisible by 5, we need only check
whether or not the final digit b is divisible by 5. This
gives:

A number is divisible by 5 only if its final digit
1s 0 or S.

Divisibility by 6
For a number to be divisible by 6 it must both be even

and a multiple of 3. This gives:

A number is divisible by 6 only if it is an even
number whose digits sum to a multiple of 3.
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Divisibility by 7

Every number N is of the form N = 10a + b, that is, a
multiple of 10 plus a single digit. As 7a and 7b are
clearly divisible by 7, we have that 10a + b leaves the
same remainder as 10a + b — 7a — 7b = 3(a — 2b) does
when divided by 7. Thus it suffices to check whether
the quantity 3(a — 2b) is a multiple of 7. This can only
occur if a — 2b is a multiple of 7. Noting that a is the
original number N with its final digit removed and b is
the final digit of N, we have the rule:

To test whether or not a number is divisible by
7, remove the last digit and subtract twice that
digit from the number remaining. Then the
original number is divisible by 7 only if the
result of this operation is divisible by 7.

For example, to test whether or not 68,978 is divisible
by 7, remove the 8 and subtract twice this, 16, from
6,897, the number remaining. This gives 6,897 — 16 =
6,881. We can test whether or not 6,881 is a multiple
of 7 the same way: 6,881 — 688 — 2 = 686, and once
more: 686 — 68 — 12 = 56. That the final result, 56, is
divisible by 7 assures us that 68,978 is a multiple of 7.

Divisibility by 8

As any multiple of 1,000 is divisible by 8, it suffices to
check whether or not the final three digits of a number
represent a three-digit multiple of 8. For example,
648,728 equals 648 x 1000 + 728. As 728 can be
divided by 2 three times, and hence is a multiple of 8,
we have that 648,728 is divisible by 8.

A number is divisible by 8 if its final three dig-
its represent a three-digit number that can be
divided by 2 three times.

Divisibility by 9

Given that 10, 100, 1000,... all leave a remainder of
one when divided by 9, the divisibility rule for 9 is
identical to that of 3.

The remainder of any number divided by 9 is the
sum of its digits. Thus a number is divisible by 9
only if the sum of its digits is a multiple of 9.

Again, one may make repeated use of this rule. For
example, 76,937 leaves a remainder of 7 + 6 + 9 + 3 +
7 = 32 when divided by 9, which, in turn, corresponds
to a remainder of 3 + 2 = 5. This rule is often used to
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check arithmetical work via the method of CASTING
OUT NINES.

Divisibility by 10

Any number N can be written in the form N = 10a + b,
where b is the final digit of N. Thus a number is divisi-
ble by 10 only if its final digit is a multiple of 10. We
have:

A number is divisible by 10 only if its final
digit is a zero.

Divisibility by 11

The numbers 100, 1000,... alternately leave remainders
of 1 and -1 when divided by 11. (For example, 100 is 1
more than a multiple of 11, but 1,000 is 1 less.) Thus
the remainder of a number when divided by 11 is
obtained as the alternate sum of its digits. For example,
69,782, which equals 6 x 10,000 + 9 x 1,000 + 7 x 100
+8x10 + 2 x 1, leaves a remainder 6 x 1 + 9 x (1) +
7Xx1+8x(-1)+2x1=6-9+7-8+2=-2when
divided by 11. (This is equivalent to a remainder of 9.)
We have:

The remainder of any number when divided by
11 is the alternate sum of its digits. Thus a
number is divisible by 11 only if the alternate
sum of its digits is a multiple of 11.

Divisibility by 12
A number is divisible by 12 only if it is divisible by
both 3 and 4. Thus we have:

A number is divisible by 12 only if its final two
digits represent a two-digit multiple of 4, and
the sum of all the digits of the number is a
multiple of 3.

The divisibility rule for 7 can be extended to other
numbers as well. For example, N = 10a + b is divisible
by 17 only if 10a + b — 51b = 10(a — 5b) is. This, in
turn, shows that N is divisible by 17 precisely when
quantity a — 5b, obtained by deleting and subtracting 5
times the final digit, is divisible by 17. Notice here that
51 is the first multiple of 17 that is 1 more than a mul-
tiple of 10.

In the same way we can use that fact that 111 is
the first multiple of 37 that is 1 more than a multiple of
10 to obtain a similar divisibility rule for 37, for exam-

ple. Divisibility rules for all PRIME numbers, except 2
and 5, can be created this way.

division The process of finding the QUOTIENT of two
numbers is called division. In elementary arithmetic,
the process of division can be viewed as repeated SUB-
TRACTION. For instance, 60 divided by 12 equals §
because 12 can be subtracted from this number five
times before reaching zero: 60 — 12 - 12 - 12 - 12 - 12
= 0. We write: 60 + 12 = 5. Division can also be
described as the process of finding how many subsets
or magnitudes are contained within a set or given
quantity. For instance, 5 + 1/2 = 10 because 10 lengths
of one-half are contained in a length of 5 units.

If a number a is divided by a number b to produce
a quotient g, a + b = g, then a is called the dividend
and b the divisor. The quotient can also be expressed as
a FRACTION, a/b, or a RATIO, a:b. In general, the quo-
tient ¢ of two numbers a and b satisfies the equation
q X b = a. Thus division may also be thought of as
the inverse operation to MULTIPLICATION. Thus, since
5 x 12 = 60, for instance, 5 is indeed the quotient of 60
and 12. This reasoning also shows that, since 0 x b = 0
for any nonzero number b, we have 0 + b = 0. Unfortu-
nately, one cannot give meaning to the quantity 0 + 0.
(Given that 53 x 0 = 0, we may be forced to conclude
that 0 + 0 = 53. At the same time, since 117 x 0 = 0,
we also have that 0 + 0 = 117. We have inconsistency.)
It is also not possible to give meaning to the term a + 0
for any nonzero value a. (If a + 0 = g, then g X 0 = g,
yielding a CONTRADICTION.)

The LONG DIVISION algorithm provides a means to
divide large integers. The process of division can be
extended to NEGATIVE NUMBERS, FRACTIONS, REAL
NUMBERS, and COMPLEX NUMBERS. In all settings, the
number 1 acts as an identity element—provided it
operates as a divisor: @ + 1 = a for all numbers 4.

The symbol + is called the “obelus” and first
appeared in print in Johann Heinrich Rahn’s 1659 text
Teutsche algebra.

See also DIVISIBILITY RULES; DIVISOR; DIVISOR OF
7ZFRO; EUCLIDEAN ALGORITHM; FACTOR; FACTORIZA-
TION; FACTOR THEOREM; RATIONAL FUNCTION; REMAIN-
DER THEOREM.

divisor Another name for FACTOR.



divisor of zero Two quantities, neither of which are
zero, yet multiply together to give zero as their product
are called divisors of zero. In ordinary arithmetic, divi-
sors of zero never arise: if a X b = 0, then at least one of
a or b must be zero. In MODULAR ARITHMETIC, however,
divisors of zero can exist. For example, 3 x 2 equals zero
in arithmetic modulo 6. Two nonzero matrices may mul-
tiply to give the zero MATRIX, and the product of two
nonzero functions could be the zero function.

The presence of zero divisors in a mathematical
system often complicates the arithmetic one can per-
form within that system. For example, for arithmetic
modulo 10, 2 X 4 equals 2 x 9, but dividing by 2, a
divisor of zero in this system, leads to the erroneous
conclusion that 4 and 9 are equal in this system. In
general, one can never perform division when a divisor
of zero is involved.

dot product (inner product, scalar product) Denoted
a-b, the dot product of two VECTORs a and b is the sum
of the products of respective components of the vectors.
Precisely, if a = <ay,a2,...,a,> and b = <by,b,,...,b,>,
then a-b is the number:

a-b=ab; + aby+...+ a.b,

The result of the dot product operation is always a real
number (scalar). For example, the dot product of the
two vectors a =< 1,4>and b=<23>isa-b=1-2 +
4.3 =14.

The dot product arises in many situations. For
example, a local delicatessen receives the following
lunch order form:

How Many? Cost
2 Ham @$2.80 _
Turkey @$3.15 _—
1 Egg Salad @$1.95 _—
3 Tuna @$2.50 _
Roast Beef  @$3.60 _
Total Cost: _—

One could interpret the order as a five-dimensional vec-
tor <2,0,1,3,0> to be matched with a five-dimensional
“cost vector” <2.80,3.15,1.95,2.50,3.60>. The total
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la—bl

lal

Ibl

Triangle of vectors

cost of the order is then the dot product of these two
vectors:

2x280+0x3.15+1x1.95+3x%x2.50+0x3.60=
$15.05

Geometrically, the dot product gives a means of
computing the angle between two vectors. For exam-
ple, two two-dimensional vectors a = < a1,d4, > and b =
< by,b, >, with angle 6 between them, form a triangle
in the plane with side-lengths given by the DISTANCE

FORMULA: lal = Va;? + a,2, Ibl = Vby? + by, and la - bl
=N(a; - by)* + (ay - by)* .

By the LAW OF COSINES we have:
la — bl? = lal?> + Ibl% — 2lallbl cos(6)
from which it follows that:
a-b=aby+ab, =lallbl cos(0)

Thus the angle between two vectors a and b can be
computed via the formula:

cos(0) = ﬂ

lallbl

This formula also holds true for three- and higher-dimen-
sional vectors. For example, consider the unit vector i =
<1,0,0> in three-dimensional space pointing in the direc-
tion of the x-axis, and j = <0,1,0> the corresponding vec-
tor pointing in the direction of the y-axis. As the angle
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between these two vectors is 90°, their dot product i - j
will be zero (i-j=1.0 + 0.1 + 0.0 = 0). In general:

Two vectors a and b are at right angles if,
and only if, their dot product a - b is zero.

The dot product has the following commutative and
distributive properties:

ab=b-a

a-(b+c)=a-b+a-c

See also CROSS PRODUCT; NORMAL TO A PLANE;
ORTHOGONAL; TRIPLE VECTOR PRODUCT; VECTOR
EQUATION OF A PLANE,

double integral The volume under a graph z = f(x,y)
of two variables (which is drawn as a surface sitting in
three-dimensional space) above a region R in the xy-
plane is computed via a double integral, denoted:

[[f(x,)dA
R

One approximates this volume by subdividing the
region R into small rectangular pieces, drawing a rect-
angular cuboid above each rectangle with height reach-
ing the surface, and summing the volumes of each of
these cuboids. As one takes finer and finer approxima-
tions, this process produces better and better approxi-
mations to the true volume under the graph. The limit
of this process is the double integral:

[[ Fley)dA =tim Y flxe, yildA,
R k=1

where dAy denotes the area of the kth rectangular
region used to approximate R.

GOTTFRIED WILHELM LEIBNIZ (1646-1716) showed
that if the region R is itself a rectangle, say, given by
a <x < b and c £y <d, then the double integral can be
computed as either of the two iterated integrals:

.Q.f(x,y)dA = Jj(ff(x,y)dy)dx = Jj(ﬁf(x,y)dy)dx

(In an iterated integral, one integrates one variable at a
time, regarding the second variable as a constant.) This

result holds true for other shaped regions R as well, as
long as they are not too complicated.

For example, the volume under the graph z = xy
above the rectangle R = [1,2] x [2,3] is:

xydA = g 3xydydx= g lxy2 ar”
) 1|2 -

R y=2
29 25 15
:_[1 Ex—Zxdxz.[l 2~ dxz?

Notice that the integration is performed from the
inside out.

A triple integral J.J.If (x,9,2)dV of a function of
%

three variables f(x,y,z), computed over a volume V in
space, can often be computed as a triple iterated inte-
gral, integrating each variable in turn. Again, the order
of the integration, typically, does not matter.

See also GEORGE GREEN.

double point A location on a curve where the curve
either crosses itself, or is tangential to itself, is called a
double point. In the first case, the point of intersection
is called a node, and the curve has two distinct tangents
at that point. In the second case, the point of contact is
called a tacnode or an osculation. The two tangents to
the curve coincide at this point.

See also ISOLATED POINT; SINGULAR POINT; TANGENT.

double root See ROOT.

dummy variable A variable appearing in a mathe-
matical expression is a dummy variable if it is assigned
no specific meaning and if the letter being used for it
could equally well be replaced by another letter. An
index of SUMMATION, for instance, is a dummy variable:

4
the sum k% of denoting 1% + 23 + 3% + 43, for exam-
k=1

4
ple, could equally well be represented as Y,7> or
r=1

4
>nd say. The variable used for the integrand of a
n=1

DEFINITE INTEGRAL is a dummy variable. The two
) 1 1 :
expressions Jo x% dx and Jo t* dt, for instance, represent



the same definite integral, a number, and so x and ¢ are
dummy variables. (The variable x, however, is not a
dummy variable in the INDEFINITE INTEGRAL Jx? dx.
This expression is a function of the specific variable x.)

duplicating the cube (Delian altar problem, doubling
the cube) One of the problems of antiquity (like
SQUARING THE CIRCLE and TRISECTING AN ANGLE) of
considerable interest to the classical Greek scholars is
the task of constructing a cube whose volume is twice
that of a given cube. Legend has it that this problem,
known as duplicating the cube, arose during the Greek
plague of 428 B.C.E. It is said that the oracle of Delos
instructed the people of Athens to double the size of the
cubic altar to Apollo as an attempt to appease the god.
They were unable to accomplish this feat.

APOLLONIUS OF PERGA (ca. 260-190 B.C.E.) solved
the problem with the use of CONIC SECTIONS, but schol-
ars later decided to add the restriction that only the
primitive tools of a straightedge (that is, a ruler with no
markings) and a compass be used in its solution. The
difficulty of the problem increased significantly.

If we assume that the side-length of the original
cube is a units long, then one is required to construct a
new length b so that b3 = 24°. Consequently, b = 2a,
and so the problem essentlally reduces to the challenge
of constructing a length A2 units long using only a
straightedge and compass.

The theory of CONSTRUCTIBLE numbers shows that,
in this setting, any quantity of rational length can be
constructed, and that if two lengths /; and [, can be
produced, then so too can their sum, difference, prod-
uct and quotient, along with the square root of each
quantity. It seems unlikely that a length of \/_ being
neither rational, nor the square root of a rational num-
ber, could be produced. Indeed, in 1837, French mathe-
matician Pierre Laurent Wantzel (1814-48) proved that
the number V2 is not constructible and, consequently,
that the problem of duplicating the cube is unsolvable.
(To see that V2 is not rational, assume to the contrary

that it can be written as a ratio of two integers: 2 = %

Then 243 = p3. If the number p has m factors of 2, then
the quantity p® has 3m factors of 2. Consequently, so
too must 2g°. But this is impossible, as the number of
factors of 2 in 2¢> must be 1 more than a multiple of 3.
This absurdity shows that 2 cannot be a ratio of two
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. _ 3
integers. A similar argument shows that Y2 does not
equal the square root of a rational quantity either.)

Diirer, Albrecht (1471-1528) German Geometry Born
on May 21, 1471, in Nirnberg, Germany, artist
Albrecht Diirer is remembered in mathematics for his
significant accomplishments in the development of
descriptive GEOMETRY and its applications to the theory
of art. In four famous texts, Diirer explained the theory
of proportions and described ruler-and-compass tech-
niques for the construction of regular polygons. He
explored the art of placing figures in a manner that is
pleasing to the eye, thereby beginning a developing the-
ory of PERSPECTIVE, and began a study of the shadows
cast by three-dimensional objects. Diirer is noted as the
first scholar to publish a mathematics book in German,
and also as the first Western scholar to give an example
of a MAGIC SQUARE.

Direr studied painting and woodcut design as a
young man. He apprenticed with the leading producer
of altarpieces of his time, Michael Wolgemut, until the
age of 20 and learned to appreciate the role mathemat-
ics could play in the design of artistic works. After read-
ing the works of EucLID (ca. 300-260 B.C.E.), as well as
a number of famous texts on the theory of architecture,
Direr traveled to Italy, the site of the Renaissance
revival of mathematics, to study the mathematics of
shape, motion, and perspective. Around 1508 Diirer
began collating and processing all the material he had
studied with the aim of producing one definitive text on
the mathematics of the visual arts. This work was never
completed, but he did later publish his four volumes on
the theory of proportions Underweysung der Messung
mit Zirckel und Richtscheyt in Linien, Ebnen, und
gantzen Corporen (Treatise on mensuration with the
compass and ruler in lines, planes, and whole bodies)
in 1525.

Diirer is noted for his inclusion of the following
array of numbers in the background of his 1514
engraving Melancholia:

16 3 2 13
5 10 " 8
9 6 7 12
4 15 14 1
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Each row and column, as well as the two main diago-
nals, sum to 34, and so this array represents a fourth-
order magic square. It is the first example of a magic
square ever recorded in Western Europe. (It has the
added feature of including the year the engraving was
completed in the two middle cells of the bottom row.)

Diurer died in Nirnberg, Germany, on April 6,
1528. His theory of proportions allowed artists who
succeeded him to easily perform the transformations on
figures needed to translate them across a canvas and
maintain the correct sense of perspective. (Prior to
Diirer, artists accomplished this feat purely by intuition
or by trial and error.) In doing so, Diirer had provided
a well-thought-out theory of geometric perspective that
was also valued by mathematicians.

dyadic Any quantity related to the concept of base 2 is
sometimes referred to as dyadic. For example, the dyadic
rationals are those fractions whose denominators are

3 173 173

3
powers of 2. Thus 4 = 22 and 7024 = 210, for

. . . 1.
instance, are dyadic rationals, but 3 is not.

Folding a strip of paper 1 ft long in half produces
a crease at the position of the dyadic rational 1/2. If
one continues to fold the left or right end of the strip
to previously constructed crease marks, then crease
marks appear at all the dyadic rationals (and only the
dyadic rationals).

This paper-folding activity is intimately connected
to the construction of BINARY NUMBERS. For instance,
to create a crease mark along a strip of paper at the
position of the dyadic rational 13/16, write the numer-
ator 13 in binary:

13 =1101,

(This is equivalent to writing the fraction 13/16 as a
binary “decimal:” 13/16 = .1101 in base 2.) Now read
the binary expansion backwards, interpreting the digit
1 as the instruction “lift right and fold” and the digit 0
as “lift left and fold.” In this example we have:

1 : Lift the right end of the strip and fold to produce
a crease at position 1/2.

0 : Lift the left end and fold to the previous crease.
This produces a new crease at position 1/4.

1 : Lift the right end and fold to the previous crease.
This produces a new crease at position 5/8.

1 : Lift the right end and fold to the previous crease.
This produces a new crease at position 13/16,
as desired.

In general:

The binary representation of the numerator of
any dyadic rational represents instructions for
the construction of that dyadic rational along a
strip of paper.

In some limiting sense, this procedure also works for
fractions that are not dyadic. For example, the number
1/3 written as decimal in base 2 is .010101... If one
were to read this as a set of instructions to “fold right
and fold left indefinitely,” then the sequence of creases
produced do indeed converge to the position 1/3.

dynamical system Any process in which each suc-
cessive state is a function of the preceding state is
called a dynamical system. For instance, the feedback
from a microphone as part of a public announcement
system is a dynamical system: the amplifier transmits
minute erroneous sounds, which the microphone
hears and amplifies, which it then hears and amplifies,
and so on.

In mathematics, if f is a mapping from a space X to
itself, then the ITERATION of f defines a dynamical sys-
tem—the successive states of the system are the iterates
of f arising from a given starting point x:

x,f(x).f(F(x)L((f(f(x))),...

1
For example, the mapping f(x) = 5 x of the real number

. . . . . . 1
line to itself, starting with x = 1, gives the iterates L3,

%,%,.... If X is a circle in the plane and f is the function

that rotates that circle 10° clockwise, then the iterates of
any point on the circle constitute 36 evenly spaced
points on that circle.

The “orbit” of a point x is the sequence of iterates
it produces. If the system reaches an equilibrium, that
is, tends toward a stable state, or if it cycles between a
number of states, then the equilibrium point (or sets of
equilibrium points) are called “attractors” of the sys-



tem. For example, the number zero is an attractor for

the system given by f(x) = 5 x: no matter the starting

value, all iterates converge to the value zero.

The iterates of very simple functions f can exhibit
extremely surprising behavior. Take, for instance, the
iterates of the function f(x) = 1 — cx?, with initial value
x = 0. (Here c is a constant. Each value of ¢ determines
its own dynamical system.)

Set ¢ = 0.1. The first five iterates of the system x,,,;
=1-0.1x,? are:

0, 1.000, 0.900, 0.919, 0.916, 0.916

The system seems to stabilize to the value 0.916. One
checks that the same type of behavior occurs if we
repeat this exercise for ¢ set to any value between 0 and
0.75. There is a marked change in behavior for ¢ =
0.75, however—the system no longer converges to a
single value but rather oscillates between two values:
0.60 and 0.72. We say that the value ¢ = 0.75 is a bifur-
cation point and that the system has undergone
“period doubling.”

At the value ¢ = 1.25, the system bifurcates again
to yield systems that oscillate between four separate
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values. For higher values of ¢, the system continues to
bifurcate, until finally a so-called CHAOS is reached,
where the results jump around in a seemingly haphaz-
ard manner. This phenomenon is typical of many
dynamical systems: the behavior they exhibit is highly
dependent on the value of some parameter c. (Such
dynamical systems are said to be “sensitive” to the
parameter set.)

Researchers have shown that many natural pro-
cesses that appear chaotic, such as the turbulent flow
of gases and the rapid eye movements of humans, can
be successfully modeled as dynamical systems, usually
with very simple underlying functions defining them.
Meteorologists model weather as a dynamical system,
which helps them make forecasts. However, extreme
sensitivity to parameters can easily lead to erroneous
predictions: one small change in the value of just one
parameter may produce very different outcomes. The
so-called butterfly effect, for instance, claims that the
minute changes in air pressures caused by a butterfly
flapping its wings might be all that is needed to tip a
meteorological dynamical system into chaos.

Iteration of functions with COMPLEX NUMBERS
leads to a study of FRACTALS.



e (Euler’s number) Swiss mathematician LEONHARD
EULER (1707-83) introduced a number, today denoted e,
that plays a fundamental role in studies of compound
INTEREST, TRIGONOMETRY, LOGARITHMS, and CALCULUS,
and that unites these disparate fields. (EULER’S FORMULA,
for instance, illustrates this.) The number e has approxi-
mate value 2.718281828459045 ... and can be defined
in any of the following different ways:

1. The number e is the limit value of the expression

1 : .
[1+; raised to the nth power, as 7 increases

1 n
e=lim,_,., (1 + —j
n

. If L(a) denotes the area under the curve y = 1/x
above the interval [1,4], then e is the location on the
x-axis for which L(e) = 1.

. If f(x) is a function that equals its own DERIVATIVE,

indefinitely:

%f(x) = f(x), then f(x) is an EXPONENTIAL

FUNCTION with base value e: f(x) = ¢*.

that is,

4. e is the value of the infinite sum 1 + 1 + 1 +

1

3!

Definition 1 is linked to the problem of computing
compound interest. As we show below, definition 2
defines the natural logarithm, and definition 3 arises
from studies of natural growth and decay, and conse-
quently the consideration of EXPONENTIAL FUNCTIONS.
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The fourth definition arises from the study of TAYLOR
SERIES. One proves that all four definitions are equiva-
lent as follows:

First consider the curve y = 1/x. It has the remarkable
property that rectangles touching the curve and just under
it have the same area if the endpoints of the rectangles are
in the same ratio 7 For example, in the first diagram on
the opposite page, the rectangles above the intervals [a,7a]

r—1
T

narrower rectangles, all in the same ratio 7 it then fol-
lows that the area under the curve above any two inter-
vals of the form [a,ra] and [b,rb] are equal.

Following definition 2, let L(x) denote the area
under this from position 1 to position x. (If x is less
than 1, deem the area negative.) Notice that L(1) = 0.
Also, set e to be the location on the x-axis where the
area under the curve is 1: L(e) = 1.

Notice that the area under the curve from 1 to
position ab, L(ab), is the sum of the areas under the
curve above the intervals [1,4] and [4,ab]. The first area
is L(a) and the second, by the property above, equals
L(b). We thus have:

and [b,rb] each have area . By taking narrower and

L(ab) = L(a) + L(b)

This shows that L is a function that converts multipli-
cation into addition, which is enough to prove that it is
the LOGARITHMIC FUNCTION base e. We have L(x) =
log,(x). This function is called the natural logarithm
function and is usually written In(x).



By the FUNDAMENTAL THEOREM OF CALCULUS, the
derivative of an area function is the original function
and so we have:

d 1
T In(x) = *

Now consider the corresponding exponential func-
tion y = e*. By taking logarithms, we obtain In(y) = x.

d
Differentiating yields %% =1, and so d_z =1y = ¢ This

establishes definition 3 stating that f(x) = ¢ is the func-
tion that equals its own derivative.
Now that we know the derivative of y = ¢*, we can
compute its Taylor series. We obtain:
2,3

X X
X —
e —1+x+—2! +—3! +

Setting x = 1 establishes definition 4.
It remains now to establish definition 1. From the
graph of the curve y = 1/x, it is clear that the region

1. )
between x =1 and x =1 + e sandwiched between a

1 1
1~ 77+1 and a rectangle of

—x
rectangle of area 7,

n

area = % x1= % Thus:

Lanf1+1)<d

n+ n n

Multiplying through by 7 yields:

LSln[(1+l) ]31
n+1 n

As n becomes large, the quantity

n
7+ 1 approaches

1 n
the value 1. It must be the case, then, that (1+;)

approaches a value for which its logarithm is 1.

Consequently lim,,_,., ln[(l+ 1] ] equals 1. This gives:
n

lim,,_,.. (1 + lj =e
n
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y=1/x
i th
y=1/x
i a ra b th
i th

y=1/x

The curve y =1/x

With regard to the issue of compound interest, it

n
. r
is necessary to compute the limit hmn—)m(]-"';) .
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We have:

" ’ (mrr) Y
lim,,_,.. (1 + Lj =lim, .|| 1+ —— =e’
n (n / r)

This represents the value of an investment of $1 after 1
year accruing continuously compounded interest at an
interest rate of 7 percent per annum.

One can use the fourth definition to prove that e is
an IRRATIONAL NUMBER. One begins by assuming, to

. . p
the contrary, that e is a fraction of the form 7 and

multiplies the formula presented in definition 4 by q!.
The fractional parts that remain cannot add to a
whole number.

In 1873 French mathematician Charles Hermite
(1822-1901) proved that e is a TRANSCENDENTAL
NUMBER.

Earth Our planet, the third from the Sun, is often
assumed to have the shape of a perfect SPHERE, but
detailed measurements show it to be the shape of an
oblate spheroid with equatorial radius 3,963 miles
(6,378 km) and polar radius 3,950 miles (6,357 km).
Its mean orbital distance from the Sun is 9.296 x 107
miles (1.496 x 10% km), one “astronomical unit,” and
its mass is 1.317 x 10%° 1b (5.976 x 10** kg).

The Earth takes 23 hours, 56 minutes, and 4.1 sec-
onds to complete a sidereal day, that is, one full rota-
tion about its axis as measured relative to the fixed
stars. The solar day, the time it takes for a point P on
the surface of the Earth initially facing the Sun to
return to that position is, by definition, precisely 24
hours. The difference in time measurements is
explained by the fact that the Earth advances in its
orbit as it rotates: the Earth must turn slightly more
than 360° to bring P back to face the Sun as the planet
moves forward.

The first known attempt to calculate the circum-
ference of the Earth was made by the Greek scholar
ERATOSTHENES OF CYRENE (ca. 275-195 B.C.E.).
Eratosthenes observed that at the summer solstice,
noon on June 21 of every year, the Sun shone directly
to the bottom of a well in the city of Syene (present
day Aswan). This meant that the Sun was directly

overhead at this time. He also noted that at the same
time in Alexandria, a city approximately 500 miles
due north of Syene, objects cast shadows, meaning
that the Sun was not directly overhead at this loca-
tion. These observations provided Eratosthenes the
means to compute the radius of the Earth. He
assumed that the Sun was sufficiently far away from
our planet that the rays of light that reach us from it
can be regarded as essentially parallel. Eratosthenes
measured the angle cast by shadows at Alexandria
(by using an object of known height and measuring
the length of the shadows cast) and found the angle
to be 1/50 of a full turn, about 7.2°. The circumfer-
ence of the Earth follows: if 1/50th of a full turn cor-
responds to a distance of 500 miles, then a full turn
must correspond to a distance of 50 x 500 = 25,000
miles.

Geographical Coordinates

The lines of latitude and longitude form a system of
COORDINATES on the Earth. The “parallels of lati-
tude” are circles parallel to the equator, labeled
according to a measurement of angle. Stated pre-
cisely, if O is the center of the Earth, P is a point on a
circle of latitude, P” is the point on the equator
directly south of P, and o is the angle POP’, then the
circle of latitude containing P is labeled o. The lati-
tude of any point can thus be 0° (on the equator) up
to 90° north (the North Pole) or 90° south (the South
Pole). New York City, for example, has a latitude of
40°4506" N.

Conveniently, the North Star lies directly above the
North Pole. By measuring the angle of elevation of the
North Star (90° at the North Pole, 0° at the equator),
one can quickly determine the latitude of any location
in the Northern Hemisphere. Using sextants to measure
elevation, sailors of the past relied on the North Star to
help determine their locations. The meridians, or lines
of longitude, run from the North Pole to the South
Pole, perpendicular to the circles of latitude. Each
meridian is a semicircle. The equator is divided into
360°, with the meridian passing through Greenwich,
England (called the prime meridian), deemed angle
zero, and the angle of any other meridian ranges from
180° east to 180° west. Stated precisely, the longitude
of a point P on the sphere is given by the angle P’OG’,
where P’ is the point on the equator directly south or



north of P, and G’ is the point on the equator south of
Greenwich. New York City, for example, has longitude
73°59'39” W.

The longitude of a point P on the Earth’s surface
can be measured by identifying the time difference
between high noon at P and high noon at Greenwich.
As the day is divided into 24 1-hour periods, each
delay of 1 hour corresponds to 1/24 of a full turn
about the Earth’s circumference. Thus, at 360/24 = 15°
longitude west, for instance, the Sun reaches its highest
point in the sky 1 hour later than it does at Greenwich;
at 30° longitude west, it occurs 2 hours later, and so
forth. After about 1735, sailors were able to carry
accurate chronometers to keep track of Greenwich
time. By measuring the time of high noon at any given
location, sailors could accurately determine the longi-
tude of that location.

See also OBLATE/PROLATE.

eccentricity For any CONIC SECTION, the ratio of the
distance of a point on the curve from a fixed point, the
focus, to its distance from a fixed line, the directrix, is
constant. The value of this ratio, denoted e, is called
the eccentricity of the curve, and it gives a measure of
the curve’s shape. For a PARABOLA, e equals one. If ¢
lies between zero and one, then the curve is an ELLIPSE.
If e is greater than one, then the curve is a HYPERBOLA.
The eccentricity of a CIRCLE is defined to be zero. (In
this context, the eccentricity e is not to be confused
with LEONHARD EULER’s number e.)

Egyptian fractions Any fraction with unit numerator,

11 1 . . .
such as 5,75, and 3og, is called an Egyptian fraction.

The Egyptians of 4,000 years ago expressed all frac-

tional quantities as sums of distinct Egyptian fractions.

2 o1 1 3 1 1
For example, g was written 7 + Tg,and 75 as 5 + 5

1
+ 30.

In 1202, FIBONACCI began his own investigation of
Egyptian fractions and was the first to prove that every
fraction can indeed be expressed as a finite sum of dis-
tinct Egyptian fractions. (It is not clear whether the
ancient Egyptians ever questioned this.) He showed
that subtracting a quantity of the form 1/n, with 7 as
small as possible, from a given fraction always pro-
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duces a new fraction with a smaller numerator. Thus
repeated application of this procedure must eventually
produce a fraction with unit numerator itself.

As an example, for the fraction 5/17 we have:

15—7 - % = 63_8 (% is too large a quantity to subtract.)
and
3 011 . ‘
eS8~ 23 - 1564 (2—2 is too large a quantity to subtract.)
giving:
s 1,1, 1
17~ 4 723 " 1564

Such representations need not be unique. For example,

3 1. 1.1 1. 1
10 equals both tis* 30 and %20

See also EGYPTIAN MATHEMATICS.

Egyptian mathematics Our knowledge of ancient
Egyptian mathematics from around 2000 B.C.E. comes
chiefly from the RHIND PAPYRUS. There we learn, for
example, that the Egyptians followed a very natural sys-
tem for denoting numerals: 1 was a vertical stroke |, 2
was two of them I, 3 was lll; and 4 was llll, and separate
symbols were used for 5, 6, 7, 8, and 9, and for 10,
20,..., 100, 200,..., 1000, and so on. All other numbers
were represented as groups of these symbols, usually
arranged in order from largest to smallest. Like the
ROMAN NUMERAL system, the Egyptian system did not
use a PLACE-VALUE SYSTEM (the symbol for 5, for exam-
ple, denoted “5” no matter where it appeared in the
number). It is very difficult to do pencil-and-paper cal-
culations without place-value notation, but the Egyp-
tians always used a calculating board, much like an
ABACUS, to perform arithmetic calculations, and needed
only to record the results. They were therefore not hin-
dered by their cumbersome numerical system. The
ancient Egyptians were adept at multiplication, using a
method of successive doubling to calculate products.
This method is today called EGYPTIAN MULTIPLICATION.

Division problems lead to FRACTIONs. It did not
occur to the ancient Egyptians to express fractions with
numerators and denominators. In the Rhind papyrus,
the mathematician Ahmes simply placed a dot over a
number to indicate its reciprocal, except in the case of

the fractions % ; % , and 1, each of which had its
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own symbol. Thus the Egyptians only dealt with frac-
tions of the form % (with the exception of two-thirds).

Fractions with unit numerators are known today as
EGYPTIAN FRACTIONS. All other fractional quantities
were expressed as sums of distinct Egyptian fractions.

1 + 1 was written

2 .
For example, 5 which equals 3 15

3+15, and % as 4+18+468.

The Egyptian’s ability to compute such expressions
is impressive. The Rhind papyrus provides reference
lists of such expressions, and the first 23 problems in
the document are exercises in working with such frac-
tional representations.

The ancient Egyptians were adept at solving LIN-
EAR EQUATIONS. They used a method called false posi-
tion to attain solutions. This involves guessing an
answer, observing the outcome from the guess, and
adjusting the guess accordingly. As an example, prob-
lem 24 of the Rhind papyrus asks:

Find the quantity so that when 1/7 of itself is
added to it, the total is 19.

To demonstrate the solution, the author suggests a
guess of 7. That plus its one-seventh is 8, by far too
small, but multiplying the outcome by 19/8 produces
the answer of 19 that we need. Thus 7 x (19/8) must be
the quantity we desire.

The majority of problems in the Rhind papyrus are
practical in nature, dealing with issues of area (of rect-
angles, trapezoids, triangles, circles), volume (of cylin-
ders, for example), slopes and altitudes of pyramids
(which were built 1,000 years before the text was writ-
ten), and number theoretic problems about sharing
goods under certain constraints. Some problems, how-
ever, indicate a delight in mathematical thinking for its
own sake. For example, problem 79 asks:

If there are seven houses, each house with
seven cats, seven mice for each cat, seven ears
of grain for each mouse, and each ear of grain
would produce seven measures of grain if
planted, how many items are there altogether?

This problem appears in FIBONACCIs Liber abaci, writ-
ten 600 years before the Rhind papyrus was discovered.
A version of this problem also appears as a familiar
nursery-rhyme and riddle, “As I Was Going to St. Ives.”

Egyptian multiplication The RHIND PAPYRUS indi-
cates that the ancient Egyptians of around 2000 B.C.E.
used a process of “successive doubling” to multiply
numbers. They computed 19 x 35, for example, by
repeatedly doubling 35:

35
70
140
280
560

D oo AN =

Since 19 = 16 + 2 + 1, summing 560 + 70 + 35 = 665
gives the product. This method shows that knowledge
of the two-times table is all that is needed to compute
multiplications. RUSSIAN MULTIPLICATION follows an
approach similar to this method.

See also EGYPTIAN MATHEMATICS; ELIZABETHAN
MULTIPLICATION; FINGER MULTIPLICATION; MULTIPLICA-
TION; NAPIER’S BONES; RUSSIAN MULTIPLICATION.

eigenvalue (e-value, latent root) See EIGENVECTOR.

eigenvector (e-vector, latent vector, characteristic vec-
tor, proper vector) For a square #n X n MATRIX A, we
say a nonzero VECTOR X is an eigenvector for A if there
is a number A such that Ax = Ax. The number A is
called the eigenvalue associated with that eigenvector. If
x is an eigenvector of A, then we have that (A — Al)x =
0, where I is the IDENTITY MATRIX. This shows that the
matrix A — Al is not invertible, and so must have zero
determinant: det(A — AI) = 0. This is a polynomial equa-
tion in A of degree 7, called the “characteristic polyno-
mial” of A. As there can only be at most 7 solutions to
such an equation, we have that an # X 7 matrix A has at
most 7 distinct eigenvalues. Mathematicians have
proved that associated with each possible eigenvalue
there is at least one corresponding eigenvector. More-
over, it has been established that eigenvectors associated
with distinct eigenvalues are linearly independent.

The study of eigenvectors and eigenvalues greatly
simplifies matrix manipulations. Suppose, for example,
a square 3 X 3 matrix A has three distinct eigenvalues
A1, Ay, and A3. Set D to be the diagonal matrix



A 0 0
D= O 7\.2 0
0 0 2

and set B to be the matrix whose columns are the cor-
responding eigenvectors of A. Then it is possible to
show that:

A =BDB™!

This observation allows one to compute high powers of
A with very little work. For instance, the quantity A'00,
for instance, is just a product of three matrices:

AlOO — (BDB—I)IOO
— BD]OOB—I

noting that D10 is simply:

)4100 0 0
D= o ' o0
0 0 /13100

This work also allows mathematicians to define the
square root of a matrix:

Vo0 0
JA=B 0 &, o0 [B!

0 0

(provided the square roots of the eigenvalues are
defined), or to define new quantities, such as the loga-
rithm of a matrix:

Such actions have proved useful in the study of theoret-
ical physics and engineering.

The prefix eigen is German for “characteristic” or
“own.” The eigenvalues and eigenvectors of a matrix
completely characterize the matrix.

See also CAYLEY-HAMILTON THEOREM; INVERSE

MATRIX; LINEARLY DEPENDENT AND INDEPENDENT.
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Einstein, Albert (1879-1955) German Relativity,
Quantum mechanics Born on March 14, 1879, in
Ulm, Germany, Albert Einstein is recognized as an
outstanding mathematical physicist whose work on
the special and general theories of relativity com-
pletely revolutionized how scientists think about
space, matter, and time. Although he regarded himself
as a physicist, Einstein’s work inspired many signifi-
cant developments in modern mathematics, including
the development of TENSOR analysis as the appropri-
ate means to describe the curvature of space.

The classical school environment did not suit Ein-
stein well. In 1895 he failed the entrance exam for a
Swiss technical school, where he hoped to study electri-
cal engineering. After attending a second school at
Aarau, he did eventually manage to enter the Zurich

Albert Einstein, an eminent mathematical physicist of the 20th
century, revolutionized our understanding of space, matter, and
time through his theories of special and general relativity. (Photo
courtesy of Topham/The Image Works)
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school to graduate there in 1900 with a degree in
teaching. Unable to find a university position, Einstein
accepted a job at the Swiss Patent Office in Bern in
1902 and remained there for 7 years.

During his time at the patent office, Einstein stud-
ied theoretical physics in the evenings, without the ben-
efit of close contact with the scientific literature or
colleagues, and managed to produce and publish, all in
the year 1908, five truly outstanding papers:

e “Uber einen die Erzeugung und Verwandlung des
Lichtes betreffenden heuristischen Gesichtspunkt”
(On a heuristic concerning the production and trans-
formation of light), published in Annalen der Physik,
March 1905.

e “Die von der molekularkinetischen Theorie der
Wirme gefurdete Bewegung von in ruhenden Fliis-
sigkeiten suspendierten Teilchen” (On the movement
of small particles suspended in a stationary liquid
demanded by the molecular kinetic theory of heat),
published in Annalen der Physik, May 1905.

e “Zur Elektrodynamik bewegter Korper” (On the
electrodynamics of moving bodies), published in
Annalen der Physik, June 1905.

o “Ist die Tragheit eines Korpes von seinem Energiein-
halt abhingig?” (Does the inertia of a body depend
upon its energy-content?), published in Annalen der
Physik, September 19035.

e “Eine neue Bestimmung der Molekiildimensionen”
(A new determination of molecular dimension), writ-
ten in April 1905, published in Annalen der Physik,
April 1906.

The first paper was concerned with the puzzling
photoelectric effect observed by scientists of the time.
Heinrich Hertz (1857-94) noticed that the number of
electrons released from a section of metal bombarded
with a beam of light was determined not by the inten-
sity of the beam, but rather by its wavelength. Max
Planck (1858-1947) also observed that electromagnetic
energy was emitted from radiating objects according to
discrete quantities, again in direct proportion to the
wavelength of the radiation. Einstein proposed that
light and radiation itself travel in discrete bundles,
which he called quanta, and described the mathematics
that would consequently explain these phenomena.

In his second paper, Einstein developed mathemati-
cal equations that correctly described the motion of
atoms and molecules under “Brownian motion.” In his
third paper, Einstein proposed his theory of special rela-
tivity. He noted that because light is able to travel

through a vacuum, there is no natural frame of refer-
ence for measuring its speed. (The speed of sound, for
instance, is measured with respect to the medium of air
through which it passes.) Also, since it is impossible to
determine whether one is stationary in space or moving
through space at a uniform velocity, it follows then that
all observers must observe light traveling at the same
speed. From this, Einstein developed a series of
“thought experiments” that clearly establish that
observers traveling at different speeds must hence
record different values when measuring quantities such
as length and time. (For instance, imagine a light beam
bouncing back and forth between two fixed mirrors set
at a distance so that the time taken to bounce between
the two mirrors is 1 sec. Suppose that a second observer
moves past the “clock” with uniform speed. According
to this observer, the clock moves past her at uniform
speed. A straightforward calculation shows that, since
the speed of light is unchanged for this observer, she
would see the light beam taking longer than 1 sec to
complete a cycle between the two mirrors.) The fourth
paper developed the special theory of relativity further,
culminating with his famous equation E = mc?, show-
ing that energy and mass are equivalent (with a factor
of the speed of light squared incorporated).

Einstein submitted his final paper as a doctoral the-
sis to the University of Zurich to receive a Ph.D. By
1909 Einstein had been recognized as a leading scien-
tific thinker. He resigned from the patent office and
was appointed a full professor at the Karl-Ferdinand
University in Prague in 1911. That same year, based on
his theory of relativity, Einstein made a prediction
about how light rays from distant stars would bend
around the Sun, hoping that some day astronomers
might be able to observe this effect and verify that his
theory of relativity is correct. He also began working
on incorporating the role of acceleration (nonuniform
motion) into his special theory to develop a general
theory of relativity. After a number of false starts, Ein-
stein finally published a coherent general theory in
1915. Four years later, during a solar eclipse, British
scientists were able to observe the bending of light rays
just as Einstein had predicted. The popular press cov-
ered the story, and Einstein immediately received world
attention for his achievement.

In 1921 Einstein received the Nobel Prize not for
his relativity theory, but, surprisingly, for his work on
the photoelectric effect. He also received the Copley



Medal from the RoyaL SOCIETY of London in 1925,
and the Gold Medal from the Royal Astronomical
Society in 1926.

With the rise of anti-Semitism in Europe, Einstein
accepted a position at the Institute of Advanced Study
at Princeton, N.J., in 1933. He stayed there until his
death on April 18, 1955.

One cannot exaggerate the effect that Einstein’s
work has had on modern physics. One of his principal
goals was to unite the discrete description of particles
and matter with the continuous description of electro-
magnetic radiation and develop a single unified theory
of the two. The result is quantum mechanics. Intense
work continues today to incorporate other physical
forces, such as gravity, into a grand unified theory.

elementary matrix See GAUSSIAN ELIMINATION.

The Elements No doubt the most influential mathe-
matics text of all time, The Elements, written by EuCLID
(ca. 300-260 B.C.E.), provided the model for all of math-
ematical thinking for the two millennia that followed it.
Mathematicians agree that this work defines what the
pursuit of PURE MATHEMATICS is all about. More than
2,000 editions of The Elements have been printed since
the production of its first typeset version in 1482.

Written in 13 volumes (called “books”) The Ele-
ments represents a compilation of all the mathematics
that was known at the time. Organized in a strict logi-
cal structure, Euclid begins the work with a set of basic
definitions, “common notions,” and axioms (EUCLID’S
POSTULATES), and deduces from them, by the process of
pure logical reasoning, some 465 propositions (THEO-
REMS) on the topics of plane geometry, number theory
(typically presented in terms of geometry), and solid
geometry. The work is revered for its clarity, precision,
and rigor.

The work is extremely terse in its presentation.
There is no discussion or motivation, and results are
simply stated and proved, often referring to a figure
accompanying the statement. Each proof ends with a
restatement of the proposition studied along with the
words, “which was to be proved.” The Latin transla-
tion of this phrase is quod erat demonstrandum, and
many mathematicians today still like to end a formal
proof with the abbreviation Q.E.D.
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Although it is generally believed that no result pre-
sented in The Elements was first proved by Euclid, the
organization of the material and the logical develop-
ment presented is original. Euclid’s choice of beginning
postulates shows remarkable insight and a deep wis-
dom of the subject. His recognition of the need to for-
mulate the controversial PARALLEL POSTULATE, for
instance, shows a level of genius beyond all of those
who tried to prove his choice irrelevant during the two
millennia that followed. (It was not until the 19th cen-
tury, with the development of NON-EUCLIDEAN GEOME-
TRY, did mathematicians realize that the parallel
postulate was an essential assumption in the develop-
ment of standard planar geometry.)

The first six books of The Elements deal with the
topic of plane geometry. In particular, Books I and II
establish basic properties of triangles, parallel lines,
parallelograms, rectangles, and squares, and Books III
and IV examine properties of circles. In Book V, Euclid
examines properties of magnitudes and ratios, and
applies these results back to plane geometry in Book
VI. Euclid presents a proof of PYTHAGORAS’S THEOREM
in Book 1.

Books VII to X deal with NUMBER THEORY. The
famous EUCLIDEAN ALGORITHM appears in book VII,
and EUCLID’S PROOF OF THE INFINITUDE OF PRIMES in
book IX. Book X deals with the theory of irrational
numbers, and Euclid actually proves the existence of
these numbers in this work.

The final three volumes of The Elements explore
three-dimensional geometry. The work culminates with
a discussion of the properties of each PLATONIC SOLID
and proof that there are precisely five such polyhedra.

elimination method for simultaneous linear
equations Another name for GAUSSIAN ELIMINATION.

Elizabethan multiplication Also known as the gal-
ley method and the lattice method, this multiplication
technique was taught to students of mathematics in
Elizabethan England. To multiply 253 and 27, for
example, draw a 2 x 3 grid of squares. Write the first
number along the top, and the second number down
the right side. Divide each cell of the grid diagonally.
Multiply the digits of the top row, in turn, with each of
the digits of the right column, writing the products in
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2 5 3
0 ] 0 )
0/ 4 0 6
! 3 2
6/ 4 5 o
+1
8 3 !

Elizabethan multiplication

the appropriate square cells of the grid as two-digit
entries. (Thus compute 3 x 2 as 06, for example.)

Add the entries in each diagonal starting with the
bottom right diagonal. Write down the units figure and
carry any tens figures that appear to the next diagonal.
The answer, 6,831, now appears along the left column
and bottom row.

This procedure works for multidigit multiplications
of any size. Its success relies on the DISTRIBUTIVE PROP-
ERTY of arithmetic and the process of EXPANDING
BRACKETS. In our example,

253x27=(2%x102+5%x10+3)x(2x10 +7)
S(2x2)x 103+ (2% 7)x 102+ (3 x2) x 10
+(5x2)x102+ (5x7)x 10
+3x7

Each diagonal corresponds to a powers-of-10 place,
with entries placed in an upper portion of a square cell
corresponding to carried figures to the next powers-of-
10 position. Try computing a multiplication problem
both the Elizabethan way and the usual way, side-by-
side, to see that the two methods do not differ.

See also EGYPTIAN MULTIPLICATION; FINGER MULTI-
PLICATION; MULTIPLICATION; NAPIER’S BONES; RUSSIAN
MULTIPLICATION.

ellipse As one of the CONIC SECTIONS, an ellipse is
the plane curve consisting of all points P whose dis-
tances from two given points F; and F, in the plane
have a constant sum. The two fixed points F; and F,
are called the foci of the ellipse. An ellipse also arises as
the curve produced by the intersection of a plane with
a single nappe of a right circular CONE.

Using the notation IPF;l and IPF,| for the lengths of
the line segments connecting P to F; and F,, respectively,
the defining condition of an ellipse can be written:

IPF,| + IPE,) = d

where d denotes the constant sum.

The equation of an ellipse can be found by intro-
ducing a coordinate system in which the foci are
located at positions F; = (—¢,0) and F, = (c, 0), for some
positive number c¢. It is convenient to write d = 24, for
some a > 0. If P = (x,y) is an arbitrary point on the
ellipse, then the defining condition states:

Ve +c)?+y? +V(x—c)> +y* =2a

Moving the second radical to the right-hand side,
squaring, and simplifying yields the equation:

lx—cPey2 =a- S
(xc)yaax

Squaring and simplifying again yields:

2
x? Y 4
612+ d2—62

Noting that a is greater than ¢, we can set the positive
quantity a*> — ¢* as equal to b2, for some positive num-
ber b. Thus the equation of the ellipse is:

S5}

x2
aZ

=1

+
®‘|‘<
o

Ellipse



Conversely, one can show that any equation of this
form, with a > b, does indeed vyield an ellipse with foci
at positions (£/;Z2_ 2, 0), and whose points P have

distances from the foci a constant sum 2a. If, on the
other hand, b > a, the equation is again an ellipse, but
this time with foci along the y-axis at (0,£Vb% - ¢%).
The common sum of distances is 2b. (If a equals b, the
curve is a CIRCLE.)

The equation shows that an ellipse crosses the x-
axis at x = g and the y-axis at y = £b. The numbers a
and b are called the semimajor axis and the semiminor
axis, respectively.

Ellipses have the following reflection property: any
ray of light emanating from one focus is reflected off the
side of the ellipse directly toward the other focus. This
can be proved by solving an OPTIMIZATION problem.
Any room with walls curved in the shape of an ellipse
has the property that any whisper uttered at one focus
can be heard by anyone located at the second focus: not
only do sound waves bounce off the curved wall directed
from one focus to the other, but they also travel the same
distance and so arrive synchronized at the second focus.
The Mormon Tabernacle in Salt Lake City, Utah, and
the Whispering Gallery in the U.S. Capitol building in
Washington, D.C., are built to have this property.

Elliptical mirrors are used for the treatment of kid-
ney stones. By positioning a mirror so that the kidney
stone lies at one focus, medical practitioners can place
a high-intensity sound wave generator at the second
focus. Waves from the generator pass harmlessly
through the patient’s body to then concentrate at the
stone and destroy it.

An ellipse can be drawn using a pencil, a string and
two thumbtacks. Tacking each of the two ends of the
string at fixed locations (the foci), one pulls the string
taut with the tip of the pencil, and then slowly moves
the pencil around, all the while keeping the string taut.
The curve traced is an ellipse, with constant sum of the
distances from the foci being the length of the string.

In the process of deriving the equation of an
ellipse, we presented the equation

c
(x—c)}+y?=a——x
a

is called the

22 b2
Set e=5=\/“—=\/1——2. This
a a a
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ECCENTRICITY of the ellipse and has value between zero
and 1. The above equation can be rewritten:

V=P +y?

2o

The numerator of the quantity on the left side is the dis-
tance of a given point P from a focus, and the denomina-
tor is the distance of the point P from the vertical line x =
—ale, called a directrix of the ellipse. This formulation
provides an alternative characterization of the ellipse:

An ellipse is the set of all points P such that the
ratio of its distance from a fixed point (the
focus) to its distance from a fixed line (the direc-
trix) equals a constant e with value 0 < e < 1.

The ECCENTRICITY of a circle is defined to be e = 0.
If e = 1, this characterization gives a PARABOLA. For
e > 1, we have a HYPERBOLA.

See also APOLLONIUS’S CIRCLE; PROJECTION.

ellipsoid Any geometrical surface or solid sitting in
three-dimensional space possessing the property that
any plane that slices it produces a cross-section that is
either an ELLIPSE or a circle is called an ellipsoid. Such a
figure has three axes of symmetry.

An ellipsoid, centered about the origin (0,0,0) has
equation:

o

2 2
Y
+F

1
—_

+
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The points (+a,0,0), (0,+b,0) and (0,0,+¢) are the loca-
tions where the ellipsoid crosses the x-, y-, and z-axes,
respectively.

One can create an ellipsoid by rotating an ellipse
about one of its axes. This produces a figure with two of
the three quantities a, b, ¢ equal in value. An ellipsoid
produced in this way is called a spheroid, but not every
ellipsoid is a spheroid. If all three quantities @, b, and ¢
have the same value 7 the ellipsoid is a SPHERE of radius .

Mathematicians have shown that the volume of an
ellipsoid is given by (4/3)rabc. (Compare this with the
equation for the volume of a sphere.) Since the time of
LEONHARD EULER (1707-83), mathematicians have
attempted to find a simple formula for the surface area
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of a general ellipsoid. This has proved to be a very dif-
ficult problem, and no closed-form formula exists. (The
surface area of an ellipse can only be expressed in
terms of a difficult “elliptic integral.”)

empty set (null set) Any set that contains no ele-
ments is called an empty set. For example, the set of all
real numbers greater than three and less than two is
empty, as is the set of all people with gills.

A set A is said to be a subset of a set B, written
A < B, if all elements of A belong to B. Consequently
any empty set is a subset of any other set. In particular,
if A and B are both empty, then A € B and B € A, and
the two empty sets are equal. This shows that there is
only one empty set. It is usually denoted as O, but it
can also be written as { }.

The set with the empty set as its one member is
written {JJ}, and the set with the set containing the
empty set as its lone member is written {{J}}. In this
way we construct a chain of sets:

g, {9}, ({9}, ({9},

which naturally corresponds to the sequence of count-
ing numbers 0, 1, 2, 3, ... In this context one could
argue that all of mathematics arises from the empty set.
It is an interesting exercise then to give a numerical
interpretation to a two-member set of the form
{9,{D}}, for instance.

A set that is not empty is called nonempty.

See also SET THEORY.

endpoint See INTERVAL.

epicycle See cycLOID.

epsilon-delta definition See LimIT.

equality Two quantities are said to be equal if, in
some meaningful sense, they are equivalent. For exam-
ple, the quantities 2 + 3 and 5 have the same value and
so are equal. The two sets {a,b,c} and {c,a,b} are equal
since they contain the same elements. The symbol = is

used to denote the equivalence of two quantities, and
so we write 2+3 = 5 and {a,b,c} = {c,a,b}.

Two algebraic expressions are said to be equal if
one can be transformed into the other by the standard
rules of algebra. For instance, (x + 1)?
4. Two functions are said to be equal if they have the
same domains and produce the same output value for

each input. For example, the functions f(x) = 9x and
2+logs x

+3=x%+2x +

glx)=x losx , defined on positive values of x, are
equal.

The symbol = (a pair of parallel line segments to
denote equality) was introduced in 1557 by Welsh math-
ematician ROBERT RECORDE (ca. 1510-58) “because
noe 2 thynges can be more equalle.”

See also EQUATION.

equating coefficients Two polynomials f(x) = a,x" +
a,.1x" '+ ...+ a;x + apand g(x) = b,x" + b,_;x" + ...
+ bix + by are identical as functions, that is, give the
same output values for each input value of x, only if
the coefficients of the polynomials match: a,, = b,,, a,_;
= b,_1,...,a9 = by. (The general study of POLYNOMIALs
establishes this.) The process of matching coefficients if
two polynomials are known to be the same is called
“equating coefficients.”

For example, if x*> equals a polynomial of the form
A + B(x = 1) + C(x — 1)(x — 2), then, after EXPANDING
BRACKETS, we have x> = Cx? + (B - 3C)x + (A - B +
2C). Equating coefficients yields: C = 1, B — 3C = 0
(and so B=3),and A-B +2C =0 (and so A = 1).
Thus x> = 1 + 3(x = 1) + (x — 1)(x = 2). (This technique
is often used in the method of PARTIAL FRACTIONS.)

As another example, if o and B are the roots of a
quadratic equation of the form x? — mx + n, then: x? —
mx +n=(x-a)(x-PB)=x>-(a+P)x + af. We con-
clude then that m is the sum of the roots, and 7 their
product.

equating real and imaginary parts Two COMPLEX
NUMBERS a + ib and ¢ + id are equal only if a = c and b
= d. Using this fact is called “equating real and imagi-
nary parts.” For example, if (x + y)(2 + 3i) = 4 + 5i,
then we must have 2x — 3y =4 and 3x + 2y = 5.
LEONHARD EULER (1707-83) made clever use of
this technique to find formulae for PYTHAGOREAN



TRIPLES. Also, using his famous formula e = cos(0) +
isin(0), today called EULER’S FORMULA, many trigono-
metric identities can be established quickly by equat-
ing real and imaginary parts. As another application,

consider the series 2, €08(78) _ Since cos(n0) is the real
n=0

part of " the series in question is the real part of

the GEOMETRIC SERIES . (eie) . Evaluating, gives
n=0
3 () = e
0 1-¢ (1 - cos(G)) —1sin(0)
_1 ; sin(0)
2 "2-2cos(6)

& 1
Thus we have 2 cos(n0) = 7
n=0

equation A mathematical statement that asserts that
one expression or quantity is equal to another is called
an equation. The two expressions or quantities involved
are connected by an equals sign, “=.” For instance, the
statement (a + b)*> = a® + 2ab + b? is an equation, as are
the statements 2x + 3 =11 and 10 =2 x 5.

An equation that is true for all possible values of
the variables involved is called an IDENTITY. For
instance, y> — 1 = (y — 1)(y + 1) is an identity: this equa-
tion is true no matter which value is chosen for y. An
equation that is true only for certain values of the vari-
ables is called a conditional equation. For instance, the
equation 2x + 3 = 11 is conditional, since it is true only
if x is four. The equation 2¢ + d = 6 is also a condi-
tional, since it holds only for certain values of ¢ and d.

The numbers that make a conditional equation
true are called the solutions or roots of the equation.
For example, the solution to 2x + 3 = 11 is x = 4. An
equation may possess more than one solution, and the
set of all possible solutions to a conditional equation is
called its solution set. For example, the equation y* = 9
has solution set {3, — 3}, and the solution set of the
equation 2¢ + d = 6 is the set of all pairs of numbers of
the form (¢, 6 — 2¢).

The basic principle in solving an equation is to
add, subtract, multiply, or divide both sides of the
equation by the same number until the desired variable
is isolated on one side of the equation. For example,
the equation 2x + 7 = 5x + 1 can be solved by subtract-

equation of a line 163

ing 1 from both sides to give 2x + 6 = 5x, then sub-
tracting 2x from both sides to obtain 6 = 3x, and,
finally, dividing both sides by 3 to obtain the solution x
= 2. This approach works well for LINEAR EQUATIONS
of one variable. For QUADRATIC equations, and POLY-
NOMIAL equations of high degree, one may also be
required to take square and higher roots in the process
of solving the equation. Not all equations, however,
can be solved algebraically, in which case one can seek
only a GRAPHICAL SOLUTION.

It should be noted that performing the same arbi-
trary operation on both sides of an equation need not
necessarily preserve the validity of the equation. For
example, although the statement 9 = 9 is certainly
valid, taking a square root on both sides of this trivial
equation could be said to yield the invalid result -3 = 3.
Although 2(x — 1) = 3(x — 1) is true for the value x = 1,
dividing through by the quantity x — 1 yields the

invalid conclusion 2 = 3. And finally, since }_2 = %,

selecting the numerator of each side of the equation
yields the absurdity 12 = 3. Care must be taken to
ensure that the operations being used in solving an
equation do indeed preserve equality.

Even if the application of the same operation on
both sides on an equation is deemed valid, such an act
may nonetheless yield a new equation not necessarily
exactly equivalent to the first. For instance, starting with
a = b, squaring both sides yields the equation a4 = b?,
which now means a = b or a = —b. Mathematicians use
the symbol “=” to denote that one equation leads to a
second, but that the second need not imply the first. For
example, it is appropriate to write: a = b = a®> = b2, (But
a* = b> spa = b.) The symbol “=” is used to indicate
that two equations are equivalent, that is, that the first
implies the second, and that the second implies the first.
For example, we have: 4x = 12 & x = 3.

See also CUBIC EQUATION; HISTORY OF EQUATIONS
AND ALGEBRA (essay).

equation of a line A straight LINE in two-dimen-
sional space has the property that the ratio of the dif-
ference in y-coordinates of any two points on the line
(rise) to the difference of their x-coordinates (run) is
always the same. That is, the SLOPE of a straight line is
constant and can be computed from any two given
points on the line. Precisely, if (a1,b;) and (a,,b,) are
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two points on the line, and (x,y) are the coordinates of
an arbitrary point on the line, then we have:

by - by

a -4

This provides the “two-point form” equation of the line.

For example, the equation of the line passing through
y-3 5-3 2

x-2~-1-27 3-

the points (2,3) and (-1,5) is

b,-b
The quantity ﬁ is the slope m of the line.

Thus one can rewrite the two-point form of the equation

y-b . .
as y —g, - Rearranging yields:

y=by=m(x-a)

This is called the “point-slope form” equation of the
line. For example, the equation of a line of slope 4 that
passes through the point (5,7) is simply y — 7 = 4(x - 5).
Working with this form of equation is useful if the slope
of the line is already specified.

Rearranging the point-slope equation yields y = mx
+ (may + by). Denoting the constant ma; + by simply as
b yields the equation:

y=mx+b

Noting that if x = 0, then we have y = b. This shows
that the constant b is the y-intercept of the line. For
this reason, the above equation is called the “slope-
intercept form” equation of the line. Thus, for exam-
ple, the equation of a line with slope -1 crossing the
y-axis at position 3 is y = —x + 3.

One disadvantage of the slope-intercept form is
that it does not allow one to write down the equation
of a vertical line, that is, one that does not intercept the
y-axis at all. Returning to the two-point form and
cross-multiplying yields the equation (a, — a1)(y — by) =
(x = aq)(by — by). EXPANDING BRACKETS and rearrang-
ing terms again yields the general equation:

cx+dy=r

for some constants ¢, d, and . This is called the general
form of the equation of a line. For instance, the equa-
tion of the vertical line three units to the right of the y-
axis is obtained by selecting ¢ = 1, d = 0, and r = 3, to
yield the equation x = 3.

Some authors prefer to divide the general form of
the equation of a line through by the constant r and
change the names of the remaining labels so that the
equation reads:

%+-Z—=1

This is called the intercept form of the equation of a line.
In three-dimensional space a line is specified by a
point (a,b,c) on the line and a VECTOR by v = <vy,v,,v3>,
representing the direction of the line. Thus the coordi-
nates (x,),z) of any other point on the line are given by:

X =a+tvy
y=b+itv,
Z=c+1lug

for some value of the real number z. These are the PARA-
METRIC EQUATIONS of the line. (The parametric equa-
tions of a line in two-dimensional space are analogous.)

If the vector v is computed via the difference of
coordinates of the point (a,b,c) and a second point
(a1,b1,¢1) on the line—i.e., v = a; — a,, v, = by — b, and
v3 = ¢ — c—then solving for ¢ in the parametric equa-
tions yields:

x—a y->b zZ-c
G =a=b-b=c-c

These are the “two-point form” equations of a line in
three-dimensional space.

See also DIRECTION COSINES; LINEAR EQUATION;
SIMULTANEOUS LINEAR EQUATIONS; SKEW LINES; VECTOR
EQUATION OF A PLANE.

equation of a plane See VECTOR EQUATION OF A
PLANE.

equiangular A POLYGON is said to be equiangular if
all of its interior angles are equal. For example, a rect-
angle is equiangular (each interior angle equals 90°), as
is an EQUILATERAL triangle (each interior angle equals
60°). A polygon is called regular if it is both equiangu-
lar and equilateral.

A point (x,y) in the Cartesian plane is said to be a
lattice point if both x and y are integers, and a polygon
drawn in the plane is said to be a lattice polygon if its



vertices lie at lattice points. Mathematicians have
proved that it is impossible to draw an equiangular lat-
tice polygon with 7 sides if # is a number different
from 4 or 8. (Any four-sided equiangular lattice poly-
gon is a rectangle, and any eight-sided equiangular lat-
tice polygon has eight interior angles, each equal to
135°.) The square and the octagon are the only two
regular lattice polygons.
See also CARTESIAN COORDINATES.

equidecomposable Two geometric figures are said
to be equidecomposable if it is possible to dissect one
figure into a finite number of pieces that can be rear-
ranged, without overlap, to form the second figure. For
example, an equilateral triangle of side-length 1 is
equidecomposable with a square of the same area.

_4
In the picture, a is of length # and b is of
3-1
4

triangle into a square by dissection was a puzzle first
posed by English puzzlist Henry Ernest Dudeney in 1907.
The challenge is also known as Haberdasher’s puzzle.)

Scottish ~ mathematician ~ William  Wallace
(1768-1843) proved that any two polygons of the
same area are equidecomposable. Mathematicians
have since proved that the result remains valid even
for figures with curved boundaries. In particular,
Hungarian mathematician Miklov Laczovich demon-
strated in 1988 that almost 10°° pieces are needed to
convert a circle into a square.

Surprisingly, the corresponding result in three
dimensions does not hold, even for simple polyhedra.

length . (The challenge to convert an equilateral

Equidecomposable figures
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German mathematician Max Dehn (1878-1952)
proved, for instance, that a cube and a regular tetrahe-
dron of the same volume are not equidecomposable.

equidistant Two points P and Q are said to be
equidistant from a third point O if they are the same
distance from O. We write: [POl = IQOI.

Given a single point O in a plane, the set of all
points equidistant from O is a CIRCLE with O as its
center. Given two points A and B in a plane, the set of
all points equidistant from A and B is the perpendicu-
lar bisector of the line segment AB, that is, a straight
line perpendicular to AB and passing through the mid-
point of AB. (To see this, let M be the midpoint of the
line segment AB, and let P be any point in the perpen-
dicular bisector to AB. Suppose that IPM| = x and |AMI
=y = IMBIl. Then, by PYTHAGORAS’S THEOREM, we
have IPAl = Vx? +y> = IPBIl, and so P is equidistant
from A and B. One can also use Pythagoras’s theorem
to check that any point not on this line is not equidis-
tant from those two points.)

Given three points A, B, and C in a plane, not in a
straight line, there is just one point P equidistant from
all three. (To see this, draw the perpendicular bisectors
of AB and BC, and let P be the unique point at which
they intersect. Then P is equidistant from A and B, and
P is also equidistant from B and C. Consequently, P is
the same distance from all three points.) Noting that
the points A, B, and C can be viewed as the vertices of
a TRIANGLE, this proves:

The three perpendicular bisectors of the sides
of any triangle meet at a common point P.

(This observation is used to prove that the three ALTI-
TUDESs of any triangle are also CONCURRENT.)

Taking matters further, suppose the common dis-
tance of P from each of the three points A, B, and C is
7. It then follows that a circle of radius 7 centered about
P passes through each of these points. This proves:

For any triangle ABC there exists a single circle
that passes through each of its vertices A, B,
and C.

This circle is called the CIRCUMCIRCLE of the triangle,
and the point P, the common point of intersection of
the three perpendicular bisectors of the triangle, is
called the circumcenter of the triangle.
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In three-dimensional space, the set of all points
equidistant from a single point O is a sphere with O as
its center. Given two points A and B, the set of all
points equidistant from them is a plane that passes
through the midpoint of the line segment AB and is
perpendicular to it. Given three points A, B, and C, not
all in a straight line, the set of all points P equidistant
from all three is a straight line perpendicular to the
plane formed by the three points and passing through
the circumcenter of the triangle ABC. There need not
be a point equidistant from four given points in three-
dimensional space.

The distance of a point from a line is the length of
a line segment from the point meeting that line at right
angles. Again, using Pythagoras’s theorem and similar
triangles, one can show that the set of all points
equidistant from two intersecting lines in a plane is a
pair of perpendicular lines that each pass through the
point of intersection of the two lines, and each bisects
an angle formed by the lines. Furthermore, arguing as
above, one can prove:

In any triangle, the three lines that bisect the
interior angles of the triangle meet at a com-
mon point.

(Consider first the point of intersection of just two
angle bisectors. This point must, in fact, be equidistant
from all three sides of the triangle, and so lies on the
third angle bisector.)

See also EULER LINE; INCIRCLE.

equilateral A POLYGON is said to be equilateral if all
of its sides have the same length. For example, a square
is equilateral, as is a triangle with each interior angle
equal to 60°. A polygon is called “regular” if it is both
equilateral and EQUIANGULAR.

A point (x,y) in the Cartesian plane is said to be a
“lattice point” if both x and y are integers, and a poly-
gon drawn in the plane is said to be a “lattice polygon”
if its vertices lie at lattice points. Mathematicians have
proved that it is impossible to draw an equilateral lat-
tice polygon with an odd number of sides, although
equilateral lattice polygons with any even number of
sides do exist. The square and the octagon are the only
two regular lattice polygons.

See also CARTESIAN COORDINATES.

equivalence relation See PAIRWISE DISJOINT.

Eratosthenes of Cyrene (ca. 275-195 B.C.E.) Greek
Geometry, Number theory, Astronomy, Geographer
Born in Cyrene, in North Africa, (the exact birth date
is not known), Eratosthenes is remembered as the first
person to calculate the circumference of the Earth. (See
EARTH.) Using the known distance between two partic-
ular cities, the lengths of shadows cast by the noonday
sun at those cities, and simple geometric reasoning,
Eratosthenes determined the circumference of the Earth
to be 250,000 “stadia.” Unfortunately, the exact length
of a “stade” is not known today, and so it is not possi-
ble to be certain of the accuracy of this result. If we
take, as many historians suggest, that the likely length
of this unit is 515.6 ft (157.2 m), then Eratosthenes’
calculation is extraordinarily accurate.

Eratosthenes traveled to Athens in his youth and
spent many years studying there. Around 240 B.C.E. he
was appointed librarian of the greatest library of the
ancient world, the Library of Alexandria. Early in his
scholarly career, Eratosthenes wrote the expository
piece Platonicus as an attempt to explain the mathe-
matics on which PLATO based his philosophy. Although
this work is lost today, scholars of later times referred
to it frequently and described it as an invaluable source
detailing the mathematics of geometry and arithmetic,
as well as the mathematics of music. In this work,
Eratosthenes also described the problem of DUPLICAT-
ING THE CUBE and provided a solution to it making use
of a mechanical device he invented.

Eratosthenes also worked on the theory of PRIME
numbers and discovered a famous “sieve” technique
for finding primes. This method is still used today and
is named in his honor.

Along with measuring the circumference of the
Earth, Eratosthenes also devised ingenious techniques
for determining the distance of the Earth from the Sun
(which he measured as 804 million stadia), the distance
between the Earth and the Moon (780,000 stadia), and
the tilt of the Earth’s axis with respect to the plane in
which the Earth circles the Sun (which he measured as
11/83 of 180°, that is, 23° 51" 15”). Eratosthenes also
accurately mapped a significant portion of the Nile
River and correctly identified the occurrence of heavy
rains near its source as the reason for its erratic flood-
ing near its mouth. He compiled an astronomical cata-



log listing over 675 specific stars and devised an effec-
tive calendar system that included leap years.

As an extraordinarily well-rounded scholar,
Eratosthenes wrote literary works on the topics of
theater and ethics, and also wrote poetry. His famous
poem “Hermes” was inspired by his studies of
astronomy.

It is believed that Eratosthenes stayed in Alexan-
dria for the entire latter part of his life. The exact date
of his death is not known.

Erdos, Paul (1913-1996) Hungarian Discrete math-
ematics, Number theory Born on March 25, 1913, in
Budapest, Hungary, prolific mathematician Paul Erdos
(pronounced “air-dish”) is remembered as one of the
greatest problem-solvers and problem posers of all
time. With an uncanny ability to create problems that
led to productive new areas of mathematics research,
Erdos is credited as founder of the field of “discrete
mathematics,” the mathematics of computer science.
With no permanent home, Erdos traveled the globe
multiple times throughout his life, collaborating and
writing papers with scholars from all countries. His
colleagues invented the term Erdds number to describe
their close connections to him, assigning an Erdos
number of 1 to all those who had coauthored a paper
with Erdos, the number 2 to those who had worked
with someone who had worked with Erdos, and so on.
According to his obituary in the New York Times, 458
mathematicians can claim an Erdés number of 1, and
over 4,500 scholars an Erdés number of 2.

Erdos entered the University of Budapest in 1930
at the age of 17, and within just a few years, he began
making significant contributions to the field of NUMBER
THEORY. At age 20 he discovered a new and elementary
proof of conjecture of Joseph Bertrand (1822-1900),
stating that at least one PRIME lies between any number
n and its double 2. (Russian mathematician PAFNUTY
LivovicH CHEBYSHEV established the validity of this
claim, by complicated means, in 1850.) Later in life,
Erdos also found an elementary proof of the famous
PRIME NUMBER THEOREM.

In 1934, at the young age of 21, Erdos was
awarded a Ph.D. in mathematics from the University of
Budapest. Because of his Jewish heritage, Erdos was
forced to leave Hungary, and he accepted the offer of a
postdoctoral fellowship in Manchester, England. As the
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situation in Europe worsened, Erdos decided to move
to the United States in 1938.

Erdos never accepted a permanent academic posi-
tion. He preferred to devote his entire waking hours to
the pursuit of mathematics and traveled from one
mathematics conference or seminar to another, building
up a growing circle of collaborators. In the latter part
of his life, Erdos owned nothing more than a suitcase
of clothes and traveled from university to university,
and from the home of one mathematician to another.
He developed a reputation as a brilliant mathematician
and an appalling houseguest. Sleeping only 3 to 5
hours a day, Erdos would often wake his mathematical
hosts at all hours of the night, eager to get cracking on
more mathematical research. By the end of his life,
Erdos had worked on over 1,500 mathematical papers.
He died in Warsaw, Poland, on September 20, 1996.

Erdos won many prizes during his life, including
the 1951 Cole Prize from the American Mathematical
Society for his 1949 paper “On a New Method in Ele-
mentary Number Theory which Leads to an Elemen-
tary Proof of the Prime Number Theorem,” and the
1983 Wolf Prize of $50,000 from the Wolf Foundation.
He was also awarded a salary from the Hungarian
Academy of Sciences. With no need of money, Erdos
often gave it away, either to students in need, or as
prizes for solving problems he had posed, of which
there were many. Mathematicians today are still pub-
lishing papers inspired by those challenges.

error The difference between the approximate value
of a quantity and the true numerical value of that
quantity is called the error of the approximation. There
is some confusion in the literature, however, as to how
to interpret this definition. If x is an approximation of
the value X, then some texts work with the difference
X — x when speaking of the error, whereas other texts
use the difference x — X. (Thus, the error in using 3.6
as an approximation for 3.59, say, could be deemed as
either 0.01 or -0.01.) For this reason, many authors
prefer to work with the “absolute error,” IX — xl, and
avoid the issue of sign altogether.

The term error is also used for the uncertainty in a
measurement. For example, one can typically read tem-
perature only to the nearest degree Fahrenheit. Thus a
temperature recording of 75°F should be written, or at
least interpreted as, (75 £+ 0.5)°F to indicate that there
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is a possible error of as much as half a degree. When a
measurement is written in decimal notation, it is gener-
ally understood that the absolute error does not exceed
a half unit in the last digit. Thus, for example, a
recording of 2.3 indicates that the error does not
exceed +£0.05, whereas recording 2.30 indicates that the
error does not exceed 0.005. In this context, the final
digit recorded is usually understood to be reliable.

If a number representing a measurement does not
have a decimal part, then a dot is sometimes used to
indicate up to which point the digits are reliable. For
example, in recording a measurement as 2300, we are
being told that the 3 is the final reliable digit and that
the error in this measurement could be as much as +50
(half the 100s place). A recorded measurement of 2300,
on the other hand, indicates that the first zero is reli-
able and that the error in this measurement is at most
+5 (half the 10s place).

The digits up to, and including, the reliable digit
are called the significant figures of the measurement.
Thus the measurement 2300 has two significant figures,
for example, whereas the recorded measurement 2300
has three significant figures. If a result is expressed in
SCIENTIFIC NOTATION, p X 107, it is generally under-
stood that all the digits of p are significant. For exam-
ple, in writing a value 0.0170 as 1.70 x 1072, we are
indicating that the final 0 is the result of a measure-
ment, and so this digit is reliable. The quantity 0.0170
thus has three significant digits (and the error of this
measurement is at most £0.00005). Similarly a
recorded measurement of 0.00030300, for example,
has five significant figures. (The initial three zeros of
the decimal expansion serve only to place the decimal
point correctly. The remaining five digits represent the
result of recording a measurement.)

When calculating with approximate values, it is
important to make sure that the result does not imply
an unrealistic level of precision. For example, if the
dimensions of the room are measured as 14.3 ft by
10.5 ft, multiplying length by width gives the area of
the room as 150.15 ft2. The answer presented this way
suggests a level of accuracy up to the nearest 1/100,
which is unreasonable given that the initial measure-
ments are made to the nearest 1/10. Generally, the
result of a calculation should be presented as no more
accurate than the least accurate initial measurement.
For example, in adding measurements 2300 and 1068,
the result should be recorded as 3370 (the number

3368 is rounded to the nearest 10). In multiplying 14.3
and 10.5, each with three significant figures, the result
should be written 150 ft? (again three significant figures).

See also PERCENTAGE ERROR; PRECISION; RELATIVE
ERROR; ROUND-OFF ERROR.

Euclid (ca.300-260 B.C.E.) Greek Geometry The geo-
meter Euclid is remembered as author of the most
famous text in the whole of mathematics, THE ELE-
MENTS. In 13 books, the work covers all that was known
in mathematics at his time, from elementary geometry
and number theory, to sophisticated theories of propor-
tion, irrationals, and solid geometry. But Euclid is revered
today primarily for his unique approach in organizing
the material he presented. Starting with a small set of def-
initions, “common notions,” and AXIOMs (basic state-
ments whose truth seems to be self-evident), Euclid
derived by pure logical reasoning some 465 propositions
(THEOREMS) in mathematics. This established standards
of rigor and powers of deduction that became the model
of all further work in mathematics for the two millennia
that followed. It can be said that The Elements defines
what PURE MATHEMATICS is about.

Close to nothing is known of Euclid’s life. It is
believed that he lived and taught in Alexandria, a Greek
city near the mouth of the Nile in what is now Egypt,
and may have been chief librarian of the great library at
the Alexandria Academy. Many ancient historical texts
describing the work of Euclid confuse the mathemati-
cian Euclid of Alexandria with philosopher Euclid of
Megara, who lived about 100 years earlier. Moreover,
Euclid was a very common name at the time, and there
were many prominent scholars from a variety fields
throughout this period. Because of the subsequent con-
fusion and the lack of specific information about the
mathematician Euclid, some historians have put for-
ward the theory that Euclid was not, in fact, a historical
figure, but the name adopted by a team of mathemati-
cians at the library of Alexandria who published a com-
plete work under the single name Euclid. (Compare this
with the fictitious NICOLAS BOURBAKI of the 20th cen-
tury). This is not the popular view, however.

The Elements was deemed a standard text of study
for Greek and Roman scholars for 1,000 years. It was
translated into Arabic around 800 C.E. and studied
extensively by Arab scholars. With the revival of scien-
tific interest during the Renaissance, Euclid’s work



became the model of logical thinking in Europe. More
than 2,000 different editions of the text have appeared
since the first typeset version produced in the year 1482,
and many great scientists of the West, including SIR
IsAAC NEWTON (1642-1627) for instance, described
their mastering the work of Euclid as a significant part
of their development of scientific thinking. Study of The
Elements was an integral part of the standard U.S. high-
school mathematics curriculum up until the 1950s.

Other works attributed to Euclid of Alexandria that
have survived today include Data, on the properties of
figures; On Divisions, studying the geometric theory of
dividing the areas of figures into certain proportions;
and Optics, the first Greek work on the theory of PER-
SPECTIVE. It is also known that Euclid produced at least
five other texts in geometry, including a four-book trea-
tise on CONICS, as well as a work on music and another
discussing general scientific principles.

See also EUCLID’S POSTULATES.

Euclidean algorithm In his third book of THE ELE-
MENTS, EUCLID describes a systematic procedure for
finding the GREATEST COMMON DIVISOR of any two
positive integers. The method is as follows:

1. Write down the pair of numbers.

2. Subtract the smaller number from the larger.

3. Rewrite the pair of numbers but replace the larger
number with the answer from step two.

4. Repeat steps two and three until you have two iden-
tical numbers. This repeated value is the greatest
common factor of the two original numbers.

As an example, we calculate the greatest common fac-
tor of 42 and 60:

42:60 — 42:18 — 24:18 — 6:18 — 6:12 — 6:6

Their greatest common factor is 6. Each step of the
procedure produces a pair of numbers with smaller dif-
ference. Eventually, a pair with difference zero will
result. The Euclidean algorithm is therefore sure to
stop after a finite number of calculations.

Why the Algorithm Works
Suppose two numbers a and b eventually produce the
value z via this procedure:
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a:b—sc:d—>...su:v-z2:2

Then it is not too difficult to show that z is indeed the
greatest common factor of @ and b.

Firstly, if @ and b are both multiples of any number
n, then so is their difference. This means that all the
pairs of numbers produced by this procedure remain
multiples of 7. In particular, z is a multiple of 7. (In the
example above, both 42 and 60 are multiples of 3, for
example. All the numbers produced via the procedure
remain multiples of 3. They are also multiples of 2 and
of 6.) This establishes that z is at least as large as any
common factor of @ and b.

Secondly, working backward through the proce-
dure, we see that the penultimate pair # : v is obtained
from z : z via addition. (Look at the example above.)
Thus both # and v are multiples of z. Working all the
way back, we have in fact that all the numbers appear-
ing in the list must be multiples of z, including both a
and b. Thus z is a common factor.

These two conclusions show that z is indeed the
greatest common factor we seek. As a bonus, the above
two paragraphs also show that the greatest common
factor of two numbers is a multiple of any other com-
mon factor.

Linear Combinations

A surprising consequence of the Euclidean algorithm is

that it also gives a constructive method for writing the

greatest common factor of two positive integers a and b

as a linear combination of the original numbers.
Keeping track of the subtractions performed in the

example above, we have:

42 :60 — 42:18 = (42) : (60-42)
— 24:18 =(42)-(60-42): (60 -42)
=(2x42-60):(60-42)
— 6:18=(2x42-60)-(60-42):(60-42)
=(3x42-2x60):(60-42)
— 6:12=(3x42-2x60):(60-42)-
(3 x42-2x%60)
=(3x42-2x60):(3x60-4x42)
— 6:6=(3x42-2x60):(3x60-4x42)
- (3x42-2x%x60)
=(3%x42-2x60):(5x60-7x42)

Thus we can write 6 = 3 x 42 — 2 x 60 (and also 6 = 5 x
60 — 7 x 42.) In general, this shows that it is always
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possible to write the greatest common factor of two
numbers @ and b in the form:

xa + yb

for some integers x and y. This fact is useful for solving
the famous JUG-FILLING PROBLEM, for example.
See also FUNDAMENTAL THEOREM OF ARITHMETIC.

Euclidean geometry The GEOMETRY based on the
definitions and AX10Ms set out in Euclid’s famous work
THE ELEMENTS is called Euclidean geometry. The
salient feature of this geometry is that the fifth postu-
late, the PARALLEL POSTULATE, holds. It follows from
this that through any point in the plane there is pre-
cisely one line through that point parallel to any given
direction, that all angles in a triangle sum to precisely
180°, and that the ratio of the circumference of any cir-
cle to its diameter is always the same value 7.

Two-dimensional Euclidean geometry is called
plane geometry, and the three-dimensional Euclidean
geometry is called solid geometry. In 1899 German
mathematician DAVID HILBERT (1862-1943) proved
that the theory of Euclidean geometry is free from
CONTRADICTION.

See also EucLID; EUCLID’S POSTULATES; HISTORY OF
GEOMETRY (essay); NON-EUCLIDEAN GEOMETRY.

Euclidean space (Cartesian space, n-space) The VEC-
TOR SPACE of all #-TUPLES (x,x5,...,x,,) of real numbers
X1, X2,...,X, with the operations of addition and scalar
multiplication given by:

(xl’ X5eees xn) + (ylayZ’-"ayn) = (xla + Y1, X2 + V2s--05
Xy + Vi)
k(xb xZJ""xn) = (kxh ka)'-',kxn)

and equipped with the notion of distance between
points X = (X1, X2,...,X,) and y = (y1, y2,...,Y,,) as given
by the DISTANCE FORMULA:

d(x,y) = V(g = y1)? + (X2 + y2)H4.e+(x, — y,)?

is called a Euclidean space.

Elements of a two-dimensional Euclidean space can
be identified with points in a plane relative to a set of
CARTESIAN COORDINATE axes. The vector space of all

n-tuples of COMPLEX NUMBERS under an analogous set
of operations is called a complex Euclidean space.

Euclid’s postulates EucLiD of Alexandria (ca.
300-260 B.C.E.) began his famous 13-volume piece
THE ELEMENTS with 23 definitions (of the ilk, “a point
is that which has no part” and “a line is that which has
no breadth”) followed by 10 axioms divided into two
types: five common notions and five postulates. His
common notions were:

1. Things that are equal to the same thing are equal to
one another.

2. If equal things are added to equals, then the wholes
are equal.

3. If equal things are subtracted from equals, then the
remainders are equal.

4. Things that coincide with one another are equal to
one another.

5. The whole is greater than the part.

Euclid’s postulates were:

1. A straight line can be drawn to join any two points.

2. Any straight line segment can be extended to a
straight line of any length.

3. Given any straight line segment, it is possible to
draw a circle with center one endpoint and with the
straight line segment as the radius.

4. All right angles are equal to one another.

5. If two straight lines emanating from the endpoints of
a given line segment have interior angles on one given
side of the line segment summing to less than two
right angles, then the two lines, if extended, meet to
form a triangle on that side of the line segment.

(His fourth postulate is a statement about the homogene-
ity of space, that it is possible to translate figures to dif-
ferent locations without changing their basic structure.)

It is worth noting that Euclid deliberately avoided
any direct mention of the notion of infinity. His word-
ing of the second postulate, for instance, avoids the
need to state that straight lines can be extended indefi-
nitely, and his fifth postulate, also known as the PARAL-
LEL POSTULATE, avoids direct mention of parallel lines,
that is, lines that never meet when extended indefinitely.

From these basic assumptions Euclid deduced, by
pure logical reasoning, 465 statements of truth (THEO-



REMs) about geometric figures. The systematic approach
he followed and the rigor of reasoning he introduced
was hailed as a great intellectual achievement. His model
of mathematical exploration became the standard for all
mathematical research for the next 2,000 years.

Euclid’s fifth postulate was always regarded with
suspicion. It was never viewed as simple and as self-evi-
dent as his remaining four postulates, and Euclid himself
did his utmost to avoid using it in his work. (Euclid did
not invoke the fifth postulate until his 29th proposition.)
Over the centuries scholars came to believe that the fifth
postulate could be logically deduced from the remaining
four postulates and therefore did not need to be listed as
an axiom. Many people proposed proofs for it, includ-
ing the fifth-century Greek philosopher Proclus, who is
noted for his historical account of Greek geometry.
Unfortunately his proof was flawed, as were the proofs
proposed by Arab scholars of the eighth and ninth cen-
turies, and by Western scholars of the Renaissance.

In 1733 Ttalian teacher and scholar GIROLAMO SAC-
CHERI (1667-1733) believed that because Euclid’s
axioms model the real world, which he thought to be
consistent, they cannot lead to a CONTRADICTION. If the
first four postulates do indeed imply that the fifth pos-
tulate is also true, then assuming the four postulates
together with the negation of the fifth postulate should
lead to a logical inconsistency. Unfortunately, in follow-
ing this tact, Saccheri never came across a contradiction.

In 1795 Scottish mathematician and physicist John
Playfair (1748-1819) proposed an alternative formula-
tion of the famous fifth postulate (today known as PLAY-
FAIR’S AXIOM). This version of the axiom is considerably
easier to handle, and its negation is easier to envision. In
an attempt to follow Saccheri’s approach, Russian math-
ematician ~ NICOLAI ~ IVANOVICH  LOBACHEVSKY
(1792-1856) and Hungarian mathematician JANOS
Boryar (1802-1860), independently came to the same
surprising conclusion: the first four of Euclid’s postulates
together with the negation of Playfair’s version of the
fifth postulate will not lead to a contradiction. This
established, once and for all, that the fifth postulate is an
INDEPENDENT AXIOM and cannot be deduced from the
remaining four postulates. More important, by explor-
ing the geometries that result in assuming that the fifth
postulate does not hold, scholars were led to the discov-
ery of NON-EUCLIDEAN GEOMETRY.

In the late 1800s the German mathematician DAVID
HILBERT (1862-1943) noted that, despite its rigor,
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Euclid’s work contained many hidden assumptions. He
also realized, despite Euclid’s attempts to describe them,
that the notions of “point,” “line,” and “plane” cannot
be properly defined and must remain as undefined
terms in any theory of geometry. In his 1899 work
Grundlagen der Geometrie (Foundations of geometry)
Hilbert refined and expanded Euclid’s postulates into a
list of 28 basic assumptions that define all that is needed
in a complete account of Euclid’s geometry. His axioms
are today referred to as Hilbert’s axioms.

See also EUCLIDEAN GEOMETRY; HYPERBOLIC
GEOMETRY; SPHERICAL GEOMETRY.

Euclid’s proof of the infinitude of primes Around
the third century B.C.E., EUCLID proved that there is no
such thing as a largest PRIME number, meaning that the
list of primes goes on forever. He presented his proof as
Proposition IX.20 in his book THE ELEMENTS, and he
was the first to recognize and prove this fact about
prime numbers.

Euclid’s proof relies on the observation that any
number N is either prime, or factors into primes. His
argument proceeds as follows:

Suppose to the contrary that there is a largest
prime number p. Then the finite list 2, 3, 5, 7,
..., p contains all the prime numbers. But con-
sider the quantity:

N=2X3x5x7x.xp+1

It is not divisible by any of prime numbers in
our list (it leaves a remainder of one each
time), and so it has no prime factor. It must be
the case then that N is prime. Thus we have
created a new prime number larger than the
largest prime p. This absurdity shows that our
assumption that there are only finitely many
primes must be false.

Euclid’s argument is a classic example of a PROOF BY
CONTRADICTION. His argument also provides an
ALGORITHM for generating new primes from any finite
list of primes. For example, from the list of primes 2,
3, 7, Euclid’s argument yields N=2 -3 -7 +1=43 as
a new prime, and from the list 2,3,7,43, we have N =
2-3-7-43+1=1807 =13 x 139, yielding 13 as a
new prime.
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Euclid’s argument can be developed further to obtain
other interesting facts about prime numbers. For exam-
ple, we can prove:

There are infinitely many primes that leave a
remainder of 3 when divided by 4. (That is,
there are infinitely many primes of the form
4n + 3.)

Again, suppose to the contrary, that the list of such
primes is finite: 3, 7, 11,...,p, and this time consider
the quantity. N = 4 x (3 x 7 x 11 x...x p) =1. If this
number is prime, then we have found a new prime of
the required form. If it is not, then it factors into
primes: N = p; X p, X...x pg. Notice that since N is not
divisible by 3, none of its prime factors is equal to 3. It
also cannot be the case either that all of the prime fac-
tors p; leave a remainder of 1 when divided by 4 (for
then N would also leave a remainder of 1). Thus at
least one of these prime factors is a prime of the form
4n + 3 not already in our list of such primes. It must
be the case then that the list of such primes goes on
forever.

In a similar way (though it is a little more compli-
cated) one can also prove:

There are infinitely many primes of the form
6n+35.

(Use N=2x3 x5 x..xp-1.) PETER GUSTAV LEJEUNE
DIRICHLET (1805-59) generalized these results to prove
that if 4 and b are any two RELATIVELY PRIME whole
numbers, then there are infinitely many primes of the
form an + b.

See also FUNDAMENTAL THEOREM OF ARITHMETIC.

Eudoxus of Cnidus (ca. 408-355 B.C.E.) Greek Geo-
metry, Number theory, Astronomy Born in Cnidus, in
Asia Minor (now Turkey), Eudoxus is remembered as
one of the greatest mathematicians of antiquity. All of
his original work is lost, but it is known from later writ-
ers that he was responsible for the material presented in
Book V of EucLID’s famous treatise THE ELEMENTS. In
his theory of proportions, Eudoxus developed a coher-
ent theory of REAL NUMBERS using absolute rigor and
precision. The full importance of this sophisticated
work came to light some two millennia later, when
scholars of the 19th century attempted to resolve some

fundamental difficulties with the theory of cArLcuLus.
They discovered that Eudoxus had already anticipated
these fundamental problems and had made significant
steps toward resolving them. Eudoxus is also remem-
bered as the first to develop a “method of exhaustion”
for computing the AREA of curved figures.

As a young man Eudoxus traveled to Tarentum,
now in Italy, to study number theory, geometry, and
astronomy with ARCHYTAS OF TARENTUM, a follower
of PYTHAGORAS. Both men worked to solve the famous
problem of DUPLICATING THE CUBE and, in fact,
Eudoxus came up with his own geometric solution to
the challenge using special curved lines as an aid.
(Although the problem calls for the use of nothing
more than a compass and a straight edge, this partial
solution was nonetheless a significant achievement.)

Eudoxus studied the theory of proportions. This
blend of GEOMETRY and NUMBER THEORY calls two
lengths a and & COMMENSURABLE if they are each a
whole-number multiple of some smaller length #: a = mt
and b = nt. In this approach, two ratios @ : b and ¢ : d
are said to be equal if they are the same multiples of
some fundamental lengths ¢t and s: a = m#, b = nt and ¢
=ms, d = ns.

For a long time it was believed that all lengths were
commensurable and hence all ratios could be com-
pared. Consequently, the Pythagorean discovery of two
incommensurable lengths, namely 1 and V2, the side
length and the diagonal of a unit square, caused a crisis
in the mathematical community. As HIPPASUS OF
METAPONTUM (ca. 470 B.C.E.) discovered, there is no
small value ¢ such that 1 = mt and V2 = nt. (This is
equivalent to the statement that the number V2 cannot
be written as a fraction n/m.)

Eudoxus came to resolve the crisis of comparing
ratios even if they are not commensurable by avoiding
all use of a common length . He defined ratios a : b
and ¢ : d to be equal if, for every possible pairs of inte-
gers n and m:

1. ma < nb if mc < nd
il. ma = nb if mc = nd
iii. ma > nb if mc > nd

With this formulation, Eudoxus was able to compare
lines of any length, either rational or irrational, and
obviate all philosophical difficulties associated with
incommensurable quantities. Mathematician JULIUS
WILHELM RICHARD DEDEKIND (1831-1916) based his



theory of DEDEKIND CUTs on this approach developed
by Eudoxus.

In geometry, Eudoxus was the first to establish that
the volume of a cone is one-third the volume of the
cylinder that surrounds it, and also that the volume of
a pyramid is one third the volume of a prism of the
same base and height. ARCHIMEDES OF SYRACUSE (ca.
287-212 B.C.E.) made use of these results in his famous
treatise On the Sphere and Cylinder, citing Eudoxus as
the person who first proved them.

Eudoxus maintained an active interest in astron-
omy throughout his life. He built an observatory in the
city of Cnidus and made careful note of the motion of
the planets and stars across the night skies. Outside of
mathematics, Eudoxus is best known for his ingenious
theory of planetary motion based on a system of 27
nested spheres. Using advanced techniques in three-
dimensional geometry, Eudoxus was able to use this
model to explain the puzzling retrograde motion of the
heavenly bodies.

Euler, Leonhard (1707-1783) Swiss Analysis, Geom-
etry, Number theory, Graph theory, Mechanics, Physics
Born on April 15, 1707, in Basel, Switzerland, genius
Leonhard Euler was, beyond comparison, the most pro-
lific mathematician of all time. With over 850 books
and papers to his name, Euler made fundamental con-
tributions to virtually every branch of mathematics of
his day. He formalized the notion of a FUNCTION (and
introduced the notation f(x) for it), and thereby
changed the focus of mathematics from a study of fixed
curves and lines to a more powerful study of transfor-
mation and change. (He was the first, for instance, to
regard the special functions from TRIGONOMETRY as
functions.) Euler published works on ANALYSIS, DIFFER-
ENTIAL CALCULUS, INTEGRAL CALCULUS, DIFFERENTIAL
EQUATIONS, NUMBER THEORY, GEOMETRY, LOGIC, COM-
BINATORICS, approximations for T, planetary motion
and astronomy, navigation, cartography, mechanics,
and more. He introduced and made popular many of
the standard symbols we use today (such as i for V-1, &
for P, E for his famous number, and T for SUMMATION).
It is simply not possible in a short piece to give proper
justice to the phenomenal quantity of contributions
Euler made to the study of mathematics.

Euler obtained a master’s degree in philosophy
from the University of Basel in 1723, following the
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Leonhard Euler, the most prolific of famous mathematicians, made
significant contributions to almost every field of pure and applied
mathematics studied at his time while also establishing new
courses of research. Much of the mathematical notation used
today was either introduced or made standard by Euler. (Photo
courtesy of Topham/The Image Works)

path his father set for him to study theology. Euler’s
interests, however, lay with mathematics, and Euler
remained at the university another three years to pur-
sue a course of study in the subject. In 1727 he sub-
mitted an entry for the Grand Prize of the Paris
Academy of Sciences on the best arrangement of
masts on a ship. Euler won second prize, which gar-
nered the attention of the scientific community as an
outstanding young graduate. Euler accepted a position
at the St. Petersburg Academy of Science that year and
was promoted to a full professor of the academy just
three years later.

In 1736 Euler published Mechanica (Mechanics), a
landmark piece that introduced rigorous mathematical
techniques as a means for studying the subject. He won
the Grand Prize of the Paris Academy in 1738, and
again in 1740, and by this time was a highly regarded
scholar. At the invitation of Frederick the Great, Euler
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joined the Berlin Academy of Science in 1741. He
remained there for 25 years, assuming the leadership of
the academy in 1759.

During his time at Berlin, Euler wrote over 350
articles and several influential books on a wide variety
of topics in both pure and applied mathematics. In
1753 he invented the paddle wheel and the screw pro-
peller as means of propelling ships without wind. In
1761 he developed a method of using observational
data about the planet Venus to determine the distance
of the Earth from the Sun, and also to make measure-
ments of longitude on the Earth’s surface.

In 1766 Euler returned to St. Petersburg, but soon
afterward fell ill and lost his eyesight. Despite being
blind, Euler continued to produce significant pieces of
work. (He published approximately 500 books and
papers while blind.) Euler also worked to popularize the
scientific method and wrote, between the years 1768
and 1772, his famous three-volume piece Letters to a
German Princess on the topic of popular science. Euler
remained at St. Petersburg until his death in 1783.

Euler’s name is attached to at least one fundamen-
tal concept in nearly every branch of mathematics. For
instance, EULER’S THEOREM is a key result in GRAPH
THEORY, linking the number of vertices and edges of a
graph to the number of regions it produces. The num-
ber e plays a fundamental role in the theory of differen-
tial calculus, differential equations, PROBABILITY theory,
STATISTICS, the theory of SUBFACTORIALs and derange-
ments, the study of COMPOUND INTEREST, and the
study of COMPLEX NUMBERS through EULER’S
FORMULA, for instance. In number theory, EULER’S
CONSTANT plays a key role in the study of the HAR-
MONIC SERIES, for instance. Euler found a formula for
the “Euler totient function” that provides, for a num-
ber #n, the count of numbers less than # that are RELA-
TIVELY PRIME to 7 and showed its importance in the
theory of MODULAR ARITHMETIC. Euler’s name is inti-
mately associated with the study of the zETA
FUNCTION, with the gamma function in the examina-
tion of the FACTORIAL function, with the study of
LATIN SQUARES, and with the construction of even PER-
FECT NUMBERS. (No one to this day knows whether or
not examples of odd perfect numbers exist.)

Less well known is Euler’s polynomial, n? — n + 41,
which produces a PRIME output for every integer input
from -39 through to 40. The 40 x 117 x 240 rectangu-
lar block, called “Euler’s brick,” has the property that

any diagonal drawn on the face of this solid also has
integer length. Euler showed that there are infinitely
many such blocks with integer side-lengths and integer
face diagonals. (No one to this day knows whether or
not there exists an Euler brick with internal space diag-
onals also of integer length.)

Euler died in St. Petersburg, Russia, on September
18, 1783. It is not an exaggeration to say that Euler
offered profound insights on practically every branch
of mathematics and mathematical physics studied at his
time and, moreover, paved the way for many new
branches of mathematics research. In 1915 the Euler
Committee of the Swiss Academy of Science began col-
lating and publishing his complete works. Divided into
four series—mathematics, mechanics and astronomy,
optics and sound, and letters and notebooks—76 vol-
umes of work have been released thus far (covering
approximately 25,000 pages of written material), and
the committee projects another eight volumes of mate-
rial still to be released.

Eulerian path/circuit See GRAPH THEORY.

Euler line For any triangle the following are true:

1. The three MEDIANS OF A TRIANGLE meet at a point
G, the centroid of the triangle.

2. The three ALTITUDES of a triangle meet at a point H,
the orthocenter of the triangle.

3. The perpendicular bisectors of each side of a triangle
meet at a point O, the circumcenter of the triangle.

The Euler line



These statements are proved through a study of the
median of a triangle, the altitude of a triangle, and the
consideration of EQUIDISTANT points, respectively.

In the mid-1700s LEONHARD EULER (1707-83)
made the astounding discovery that furthermore, for
any triangle, the three points G, H, and O are
COLLINEAR, that is, lie on a straight line. This line is
called the Euler line of the triangle.

Euler proved this observation as follows: If, by
chance, the points O and G coincide, then each median
of the triangle is also an altitude. This means that the
triangle is symmetric about each median, and so must
be equilateral. Consequently, the point H occurs at the
same location as O and G, and the three points, triv-
ially, lie on a straight line. If, as is more likely the case,
O and G do not coincide, then draw a line through
them and consider a point ] on this line that is situated
so that the length of the segment GJ is twice that of
OG. Let M be the midpoint of the base of the triangle.

From a study of the medians of a triangle, we know
that length of the segment AG to that of GM in the dia-
gram above is in ratio of 2 to 1. Consequently, the two
shaded triangles are similar, and, in particular, angles
AJG and GOM match. By the converse of the PARALLEL
POSTULATE, lines OM and A] are parallel. Since OM
makes an angle of 90° to the base of the triangle, so too
must line AJ, making this line an altitude to the triangle.

Nothing in this argument thus far has relied on
vertex A being the object of focus. The same reasoning
shows that the altitude from vertex B also passes
through the point ], as does the altitude from vertex C.
This shows that the point ] is in fact the orthocenter H
of the triangle. Consequently, O, G, and H do indeed
all lie on the same straight line.

Euler’s constant In drawing rectangles of width 1
that just cover the curve y = 1/x, one sees that the
“excess area” above the curve fits inside the first rect-
angle of height 1, and so sums to a finite value no
larger than 1. The amount of excess area, denoted v, is
called Euler’s constant. To eight decimal places, it has
value 0.57721566. No one knows whether vy is a ratio-
nal or irrational number.

As the area under the curve from x = 1 to x = 7 is
;tdx:lnn,wehavethatl + % + % oo+ ,1%1 is
approximately equal to In(zz). More precisely, the sum

of the areas of the first # rectangles is given by:
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Understanding Euler’s constant

11 1
1+7% +3 +...+4 3 =lnn+y+error

. 1 .
where the “error” is the term 5 minus all the “excess
areas” above the curve from position # onward. Notice
that these excess areas all fit within the rectangle of

height %, so this error is no bigger than % In particular,
it is negligibly small if 7 is large.
See also HARMONIC SERIES.

Euler’s formula In 1748 LEONHARD EULER noted
that the TAYLOR SERIES for the functions e*, sin x, and
cos x are intimately connected. Since

ex—1+£+ﬁ+x_3+£+£+x_6+
R TR TR TR TR VRS
. x x3+x5
A TR TR
cosx =1 x2+x4
TR T

setting x = 10, where i is the square root of -1 and 0 is a
real number (usually thought of as an angle), yields:

2 3 4 s
) 10 10 10 0 0
e’9=1+(1!)+(22 +(3z) +(4? +(5!) i

:1+i%+i2—922! +i3—2j +i4—?;:+i5—ij+--»
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= cos(e) + isin(e)

The formula ¢® = cos® + isin® is today known as
Euler’s formula. It has some interesting consequences:

Setting © = m, we obtain: ¢ = cosm + isinT =
-1 +i-0 =-1. Mathematicians often deem this
as one of the most beautiful facts of mathemat-
ics: it is a remarkably simple equation that
connects the mysterious, and pervasive, num-
bers e, m, 7, and 1.

.U
Setting 0 = % yields €2 =i, which shows that

T

T o T
ii:(eli)l:el 5:6_2 ..

. Thus raising a complex
number to a complex power can yield a real
answer as a result.

Euler’s formula provides a very simple means for
deriving (and memorizing) certain identities from
TRIGONOMETRY. For example, since

oA . piB = pilA+B)

we have:
(cosA +isinA) - (cosB + isinB) = cos(A + B) + isin(A + B)

Expanding the brackets on the left and collecting terms
that contain i and those that do not quickly yields:

cos(A + B) = cosA - cosB —sinA - sinB

sin(A + B) = sinA - cosB + cosA - sinB
Similarly, the equations (¢'4)? = ¢/?4), (¢/4)3 = ¢/34)] and
so forth yield double-angle and triple-angle formulae,
for example.

Euler’s formula is also used to represent complex
numbers. For example, if z is a point in the complex
plane a distance 7 from the origin, making an angle 6
with the x-axis, then its x- and y-coordinates can be
written:

X =7 cosO
y =7 sinf

and the complex number is thus:

2 =x +1y =7 cosO + ir sinf = re®

This is called the polar form of the complex number. If
one multiples two complex numbers, z = r¢® and
w = se’*, we see that z - w = rse’®*7, that is:

The product of two complex numbers is a new
complex number whose distance from the ori-
gin is the product of the distances from the ori-
gin of the two original numbers, and whose
angle with the x-axis is the sum of the two
angles made by the two original numbers.

Euler’s formula makes the derivation of this fact swift
and easy.

See also COMPLEX NUMBERS; DE MOIVRE’S FOR-
MULA; E HYPERBOLIC FUNCTIONS.

Euler’s theorem (Euler’s formula, Euler-Descartes for-
mula) A GRAPH is a collection of dots, called vertices,
connected in pairs by line segments, called edges, sub-
sequently dividing the plane into a finite number of
regions. In 1752 LEONHARD EULER showed that if a
graph drawn on the plane has v vertices, e edges, and
divides the plane into a total of r regions (this includes
the large “outer region”), then:

v—e+r=1+c¢

where ¢ is the number of “connected components” of
the graph, that is, the number of distinct pieces of
which it is composed. For example, the graph shown
is composed of two “distinct pieces” (¢ = 2) and has
nine vertices, 13 edges, and divides the plane into
seven distinct regions, and indeed v — e + r equals 3,
one more than c.

The formula is easily proved via an INDUCTION
argument on the number of edges: if a graph has no
edges, then it consists solely of v disconnected points.
Thus it has ¢ = v components and divides the plane into
just one region. The formula v — e + r = 1 + ¢ holds
true. One checks that adding an edge either divides a
region into two (thereby increasing the value of r by
one), creates an extra region if that edge is a loop
(again increasing the value of r by 1), or connects two

disconnected components of the graph (thereby



decreasing the value of ¢ by 1). In all cases the formula
v—e+r=1+cremains balanced.

The formula is usually applied to a graph that is
connected, that is, has only one component (¢ = 1). In
this case the formula reads:

v—e+r=2

and this version of the equation is usually called Euler’s
theorem.

The vertices, edges, and faces of a POLYHEDRON can
be thought of as a connected graph. For example, a
cube with its top face removed and pushed flat onto a
plane yields a graph with eight vertices and 12 edges
dividing the plane into six regions. (The large “outer”
region corresponds to the top face of the cube that was
removed.) We still have: v — e + 7 = 2. In general, for any
polyhedron with v vertices, e edges, and [ faces we have:

v—e+f=2

This was first observed by RENE DESCARTES in 1635.
Euler had no knowledge of Descartes’s work when he
developed the formula in the more general setting of
graph theory. For this reason, this famous formula is
also called the Euler-Descartes formula.

This result holds true only for graphs that lie on
the plane (or polyhedra that can be pushed flat onto a
plane). One can show that for connected graphs drawn
on a TORUS, for example, the formula must be adjusted
to read: v — e + r = 0. For example, if a polyhedron

A graph with two components
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contains a hole (say, a cube with a square hole drilled
through it), one has: v — e + f = 0. (There is one techni-
cal difficulty here: one needs to be sure that each region
or face under consideration is not itself an ANNULUS.
One may need to draw in extra edges to break regions
into suitable form.)

even and odd functions A function y = f(x) is said
to be even if, for each x, the function takes the same
value at both x and —x, that is, f(-x) = f(x) for all val-
ues of x. The graph of an even function is consequently

symmetrical about the vertical axis. The functions x2,

3x2-§

cos(x), and T+ for example, are even functions.
A function y = f(x) is said to be odd if, for each x,

the function takes opposite values at x and —x, that is,
f(=x) = —f(x) for all values of x. The graph of an odd
function is consequently symmetric with respect to a
180° rotation about the origin. The functions x, x3,
x+5x3 —17x%3

31 0.8 , for example, are odd

sin(x), and

functions.
Any function g(x) can be expressed as the sum of
an even and an odd function. Let:

x)+ g(—x)
feven (x)= %
x)—gl-x
Fogal) = S =8 Zg( )
Then feven(x) is even, fodd(x) is Odda and g(x) = feven(x) +
fodd(x)-

The FOURIER SERIES of any even function contains
only cosine terms, and the Fourier series of any odd
function only sine terms. The absolute value of any odd
function f(x) is an even function, that is, if y = If(x)l,
then vy is even.

even and odd numbers Working solely in the realm
of the whole numbers, a number is said to be even if it
is divisible by 2, and odd if it leaves a remainder of 1
when divided by 2. For example 18 is divisible by 2 and
so is even, and 23 leaves a remainder of 1 and so is odd.

There is a physical interpretation to the evenness or
oddness of a number: An even number of pebbles, say,
represents a pile that can be split into two equal
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parts—18 pebbles split into two piles of 9, for exam-
ple. An odd pile of pebbles leaves an extra pebble when
one attempts to accomplish this feat: 23 pebbles splits
into two piles of 11, with one left over. This interpreta-
tion shows that the number zero is even: an empty pile
of pebbles can be split into two equal piles of nothing.

Combining together several piles of pebbles, each
of which can be evenly split, produces a large pile that
still can be so separated. This shows that the sum of
any collection of even numbers is even. Combining two
odd piles of pebbles produces a result that is even—the
two “errant” pebbles combine to produce a result that
can be evenly split. The sum of three odd numbers
leaves a single errant pebble, however, and so is odd. In
summary we have:

The sum of any number of even numbers
is even.

The sum of an even number of odd numbers
is even.

The sum of an odd number of odd numbers

is odd.

These simple ideas are quite powerful. For example, we
can quickly ascertain that:

The sum of the numbers 1 through 100 will
be even.

(This sum contains 50 even numbers and 50 odd
numbers.)

It is impossible to make change for a dollar
using a combination of 13 pennies, nickels and
quarters.

(Thirteen coins of odd denomination will sum to an odd
amount. It is impossible then to reach a sum of 100.)

If 15 arbitrary sheets are torn from a textbook,
then the sum of the missing page numbers is
necessarily odd.

(Each sheet contains an odd page number on one side
and an even page number on the other. The sum of 15
odd numbers and 15 even numbers is necessarily odd.)

Seventeen cups are placed upside-down on a
tabletop. Turning four cups over at a time, it is
impossible to reach a state in which every cup
is upright.

(To be left upright, each cup must be turned over an odd
number of times in the process of the game. Thus an odd
number of inversions must occur in all, being a sum of
17 odd numbers. But an odd total will never occur when
turning an even number of cups over at a time.)

See also PARITY.

event Any subset of the SAMPLE SPACE of all possible
outcomes of an experiment is called an event. For exam-
ple, the act of casting a die has sample space {1, 2, 3, 4,
5, 6}—all six possible scores—and the event “the score is
even” is the subset {2, 4, 6}. An event could be a single
outcome (“rolling a two,” for example, is the subset {2}),
the whole sample space (“rolling a number less then
10”), or the empty set (“rolling a multiple of seven”).
The probability of an event E occurring is the ratio
of the number of outcomes in that event to the total
number of outcomes possible. This ratio is denoted

P(E). For example, in casting a die, P(even) = 6 =72

P({5,6}) = % = %, and P(multiple of 7) = % =0.

SET THEORY is useful for analyzing the chances of
combinations of events occurring. If A and B represent
two events for an experiment, then:

The intersection A N B represents the event
“both A and B occur.”

The union A U B represents the event “either
A or B occurs.”

The complement A’ represents the event “A
does not occur.”

}

To illustrate: if, in casting a die, A is the event {2, 4, 6
2,4,

and B the event {5,6}, then AN B ={6}, AU B = {2,
5,6}, and A" = ({1, 3, 5}.

The following probability laws hold for two events
A and B:

i. PPLAn B) = P(A) + P(B) - P(A U B).
ii. When A and B are disjoint events, that is have no
outcomes in common, then P(A U B) = P(A) + P(B).
iii. P(A’) =1-P(A).
iv. When A and B are INDEPENDENT EVENTS, P(A N B)
= P(A) x P(B).

The study of PROBABILITY explains these rules.
See also CONDITIONAL; MUTUALLY EXCLUSIVE
EVENTS; ODDS.
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Computing the product of 23 and 42

expanding brackets The geometric figure of a rectan-
gle explains the process of expanding brackets. Take, for
example, a 23-by-42 rectangle. Its AREA is given by the
product 23 x 42. This product can easily be computed
by thinking of 23 as 20 + 3 and 42 as 40 + 2. This corre-
sponds to subdividing the rectangle into four pieces:

We thus have (20 + 3) x (40 + 2) = 20 x 40 + 20 x
2 + 3 x40 + 3 x 2, which equals 800 + 40 + 120 + 6,
or, 966, which is indeed 23 x 42.

Note that each of the four terms in the sum is the
product of one number in the first set of parentheses
(20 or 3), and one number in the second set (40 and 2),
with all possible pairs of numbers appearing. This prin-
ciple holds in general. For example, the quantity (x +
y)(@ + b + ¢) equals the sum of six products: xa + xb +
xc + ya + yb + yc (this corresponds to subdividing a
rectangle into six pieces), and (r + s + t + u + v)(k + [ +
m+n+0+p +q)is the sum of 35 individual products.

This principle extends to any number of sets of
parentheses. For example:

R2+3)X4+5)X(6+7)=2Xx4X6+2x4Xx7+2
XIX6+2Xx5%x7+3x4
X6+3X4X7+3x5%x6
+3x5x7

(Again select one term from each set of parentheses,
making sure to include all possible combinations.) This
corresponds to subdividing a cube into eight pieces.

It also holds for products containing single terms
along with sets of parentheses. For example, we have:
(@a+b)xxX(c+d)=axxXc+axxxd+bxxxc+
bxxxd.

Many schools teach mnemonic devices for cor-
rectly expanding brackets. These can be more compli-
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cated than simply understanding the simple process
at hand.

See also DISTRIBUTIVE PROPERTY;
MULTIPLICATION.

NESTED

expected value (expectation, mean) The expected
value of a game of chance involving monetary bets is
the average or MEAN profit (or loss) per game you
would expect if the game were played a large number
of times. The expected value illustrates the extent to
which a game is set to, or against, your favor. To
demonstrate: imagine you have the opportunity to play
the following dice game:

You toss a single die and look at the score cast.
If a 1 comes up you win $10, and if a 2
appears you win $5. If any other number is
cast, you pay a fee of $3 for playing the game.

Is this a game worth playing?

With 600 plays of this game, one would expect
close to one-sixth of those rolls (around 100 of them)
to yield a 1, and hence a gain of $10, another sixth of
the rolls (that is, about 100 rolls) to yield a 2 and a
gain of $5, and two-thirds of the rolls (around 400 of
them) to result in a loss of $3 (that is, a —$3 profit).
The average profit over 600 rolls would thus be:

100x10+100 % 5+400 x(-3)

1
600 6
0.

1 4
x10+gx5+gx03)

=0.50

that is, a gain of 50 cents per game. This positive
expected value shows that the game is indeed worth play-
ing. Note, however, that one might still lose money while
playing the game. What has been demonstrated here is
that, for the long run, the game is set to your favor.

Note the appearance of the fractions 1/6, 1/6, and
4/6 in our computation of expected value. These are
the probabilities of each identified outcome actually
occurring. Such probabilities always appear when com-
puting expected value. In general, if an experiment
yields numerical values xq, x,,...,x,, with p; being the
probability that outcome x; occurs, then the expected
value of the experiment is given by:

xlpl + XZPZ +...+ x,,p,,
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For example, in tossing a pair of dice, the expected
sum is:

1 2 3 4 5 6
2x%+3x%+4x%+5x%+6x£+7x%

5 4 3 2 1
+8x£+9x£+10x£+11x£+12x£_7
(The possible sums are the numbers 2 through 12, with
the probability of casting 2 being 1/36, a 3 being 2/36,
and so on.)

Expected value is usually denoted by the letter u from
the GREEK ALPHABET. If an experiment has an infinite
number of possible outcomes, then the expected value
is given by an infinite sum (SERIES). The BINOMIAL DIS-
TRIBUTION is an example of this. If the random phe-
nomenon can produce a continuous array of values (for
example, the height of an individual can be any value,
including fractional ones), then the expected value is
given by an INTEGRAL:

w=["_xp(x) dx

Here p(x) is the probability density function of the
random variable under consideration for the given
DISTRIBUTION.

The notion of expected value was first developed
by Dutch scientist Christiaan Huygens (1629-935) in his
treatise On Reasoning in a Dice Game.

See also HISTORY OF PROBABILITY AND STATISTICS
(essay).

exponent (index) For a real number b and a posi-

tive whole number 1, the shorthand 67 is used for

the repeated multiplication of b with itself 7 times:

b = b x b x...x b (m times). Thus, for example, 2° =

2x2X2X2x2 =32, (1) = (=1) X (1) x (~1) = -1,
1 1.1 1

2
= | ==x==—, and 10' = 10. In the expression b™,
3 33 9

m is called the exponent, or the index, and b is called
the base of the exponent. We also call 6™ a power
of b.

The product of two expressions b and b” with the
same base b is itself a repeated multiplication of the
number b. Precisely:

m times n times

" xb" =(bxbx---xb)x(bxbx---xb)

m-+n times

=bxbx---xbxb=b""
This establishes the multiplication rule for exponents:

To multiply two expressions with the same
base, retain the common base and add together
the exponents: b X b" = b™ *+ ",

The power rule for exponents, (b™)* = b, follows.
(One must add m with itself 7 times.) The multiplica-
tion rule is considered fundamental and allows us to
define exponential quantities b” for values of m other
than whole numbers. We follow the principle that the
multiplication rule is to always hold.

Consider, for example, the expression 2°. This
quantity has no meaning when interpreted as “the mul-
tiplication of two with itself zero times.” However, one
can assign a meaningful value to this expression by
multiplying it with another power of two. For example,
according to the multiplication rule, it must be the case
that 20 x 25 = 295 = 25, This says that 2° x 32 = 32,
which tells us that 2° must equal one. The multiplica-
tion rule thus leads to the rule:

The zero exponent for any nonzero base equals
1: 60 = 1.

To make sense of the quantity 27!, again invoke the
multiplication rule. We have, for example, 271 x 23 =
2-1+3 = 22 This reads: 2! x 8 = 4. It must be the case
then that 27! = 1/2. Similar calculations show that 22
must equal 1/4, and that 273 must equal 1/8. In general,

rm=L

=S This works for any nonzero base b.

A negative exponent indicates that a reciprocal

must be taken: 67 = 1

=

6
We can make use of this observation to compute % ,
" 50 oy L _ o6y
for example. Rewriting, we have — =5°x—=15°%5
54 54

=564=52=25,

To divide two expressions with the same
base, retain the common base and subtract

bm
the exponents: = = b"™™

b~



The multiplication rule also allows us to make sense of
fractional exponents. an51der the quantity 122 It must
be the case that 27 x 27 = 2! = 2. Thus 2? is a value
that when multiplied by itself, equals 2. Consequently

= V2. Similarly, 27 is a value that, when multiplied
by itself three times, equals 2, and so 2 . \/7 the cube
root of 2. In general, 27 equals the nth root of 2. This
works for any nonzero base.

A fractional exponent indicates that a root is

to be taken: b™ = \b.

We use the power rule to make sense of other types of
fractional exponents. For example, the quantity 27°

1

2_ (27§ )2 _ (%/5)2: 3

can be computed as 273

=9. In general, we have:

Finally, to compute a quantity raised to an irrational
power, one approximates the exponent by a fraction,
computes the corresponding exponential expression,
and takes the LIMIT as one uses better and better
approximations. For example, writing V2 = 1.414...,

14 141 1414
we see that any of the fractions 1,7, 10°100°1000°"

be used to approximate \2 with better and better degrees
of accuracy. We define 22 to be the limit of the values:

14 14 141 141
2122, 210 =(1%) ~2.639, 2100 :(“’95) ~2.657,
1414
21000 ~ 2,665, ....

The multiplication and power rules are valid even
for irrational exponents. For example, we have:

N
v V2x+/
(ﬁzj :«/EZXZ:«/EZ:Z

The Greek mathematician ARCHIMEDES OF SYRA-
CUSE (287-212 B.C.E.) was one of the first scholars to
use a special word for the power of a number. He
called the quantity 10,000, 10*, a myriad, and he used
the phrase “myriad of myriads” for 10,000 squared,
10* x 10* = 103. The ancient Greeks, for whom mathe-
matics was synonymous with geometry, called the

exponential function 181

square of an unspecified quantity a tetragon number,
meaning a “four-corner number.” DIOPHANTUS OF
ALEXANDRIA (ca. 200-284 c.E.) used the Greek word
dynamis, meaning “power,” for the square of an
unknown, and called a third power a “cube,” a fourth
and fifth and sixth powers
“power-cube” and “cube-cube,” respectively.

It took many centuries for scholars to begin using
symbols to denote unknown quantities. German
mathematician Michael Stifel (ca. 1487-1567) was
the first to develop a notational system for powers of
an unspecified quantity x. He denoted the fourth
power of x simply as xxxx. Other scholars developed
alternative notational systems. Scholars eventually
settled on the notational system French mathemati-
cian and philosopher RENE DESCARTES (1596-1650)
introduced in 1637, the one we use today. Although
Descartes considered only positive integral expo-
nents, later that century the English mathematician
SIR Isaac NEWTON (1642-1727), inspired by the
work of JoHN WALLIS (1616-1703), showed that the
same notational system can be extended to include
negative, fractional, and irrational exponents. LEON-
HARD EULER (1707-83) later allowed for the possibil-
ity of complex exponents.

See also COMPLEX NUMBERS; EXPONENTIAL FUNC-
TION; LOGARITHM.

ower a “power-power,”
3

exponential function Any function or quantity that
varies as the power of another quantity is called expo-
nential. Precisely, if b is a positive number different
from one, then the function f(x) = b~ is called the expo-
nential function with base b. The function is defined
for all real numbers x. (This would not be the case if
b were negative: the value b%, for example, would

not make sense.) The graphs of y = 2¥ and y= [%)

——t— —t—
-3 -2 -1 0 1 2 3

Exponential functions
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illustrate the essential differences between the cases
b>1land0<b<1.

Many types of growth and decay occur at a rate
that involves exponential variation. For example, a
colony of bacteria might reproduce at a rate that dou-
bles the size of the colony every 24 hours. If initially
500 organisms are present, then after 1 day the culture
grows to a size of 1,000 organisms, after 2 days to a
size of 2,000 organisms, and by the end of day three
there are 4,000 organisms. In general, the population
size by the end of day N is given by 500 x 2N. Any for-
mula of the form AB* with b > 1 and A constant is said
to represent exponential growth. This formula is a sim-
ple example of a POPULATION MODEL.

The analogous formula with 0 < b < 1 represents
exponential decay. The decay of radioactive material is
a typical example of this. For example, if 50 percent of
the radioactivity produced by a nuclear explosion dis-
appears after 5 days, then after 10 days only 25 percent
of radioactivity remains, and 12.5 percent remains
after 15 days. The percentage of radioactivity present

SN
after N days is given by the formula (%j . The level of

radioactivity decreases but will never reach zero.

The DERIVATIVE of an exponential function f(x) = b*
can be computed via IMPLICIT DIFFERENTIATION after
first taking a LOGARITHM. Precisely, if y = b*, then

Iny = x - Inb. Differentiation yields % . d—z = Inb, and so
dy

e =V Inb = b* - Inb. That is:

d x\_ Lx .
—x(b )=b%-Inb

This formula for the derivative is greatly simplified
if one works with base b = e, where e is defined to be
the number such that In e = 1. We have:

The derivative of ¢* is ¢*. Consequently, the
graph of the exponential function f(x) = e* has
the property that the slope of the graph at any
point is the same as the value of the function at
that point.

The function f(x) = " is sometimes called the expo-
nential function. Because the derivative of this function
is particularly simple, it is not surprising that the num-
ber e is ubiquitous throughout studies in CALCULUS.

exponential series The TAYLOR SERIES of the func-
. . x* X Xt

tion f(x) = €%, given by e* :1+x+7!+§+T!+

is called the exponential series. The RATIO TEST from the

study of CONVERGENT SERIES shows that this series con-

verges for all values of x. LEONHARD EULER (1707-83)

made use of this series to prove his famous formula e =

cosx + isinx, today called EULER’S FORMULA.

expression Any meaningful combination of symbols
that represent numbers, operations on numbers, or
other mathematical entities is called an expression. For
example, 2 + x and a’*¢ are expressions. One could
argue that x + y = 2 is an expression, although mathe-
maticians may prefer to call it an equation. Similarly,
8 could be called an expression even though it is
equivalent to a single number. In FORMAL LOGIC, com-
pound statements are sometimes called expressions.
For example, =(p A (g v 7)) is an expression.

The word express is often used in the sense “to
transform.” For example, the product (x — y)(x + y) can
be expressed equivalently as the DIFFERENCE OF TWO

SQUARES: x% — y2.

exterior angle An ANGLE contained between one side
of a POLYGON and the extension of an adjacent side is
called an exterior angle of the polygon. Since two edges
of a polygon meet at a vertex, there are two exterior
angles at each vertex. One can easily see, however, that
these two angles are equal in value.

The sum of exterior angles in a convex polygon is
360°, since these angles correspond to one full turn.
This result is also true for concave polygons if one
deems angles that turn to the left as positive and ones
that turn to the right as negative.

The EXTERIOR-ANGLE THEOREM, first proved by
the geometer EUCLID (ca. 300-260 B.C.E.), states that

Exterior angles



the exterior angle at one vertex of a triangle is greater
in value than that of an interior angle at either of the
remaining two vertices.

See also CONCAVE/CONVEX.

exterior-angle theorem In his famous work THE
ELEMENTS, the geometer EUCLID (ca. 300-260 B.C.E.)
established the following result, which he called the
exterior-angle theorem:

For a given triangle ABC with interior angles x
and y and exterior angle z as shown, we have z
>xand z > y.

The result is proved as follows:

Let M be the midpoint of side BC, and extend
a line from point A through M to a new point
D so that AM and DM are the same length.
Consider triangles AMB and DMC. They share
two sides of the same lengths and a common
angle at M. By the SAS principle for similarity,
the two triangles are congruent figures. Conse-
quently, angle MCD matches angle MBA,
which is y. Since z is clearly larger than angle
MCD, we have that z > y.

An analogous argument based on a line
drawn through the midpoint of side AC estab-
lishes that z is also greater than x.

This theorem has one very important consequence.

If two lines cut by a transversal produce equal
alternate interior angles, then the two lines
are parallel.

In the diagram above, if the two angles labeled x are
indeed equal, then the lines cannot meet to the right to
form a triangle: the exterior angle x cannot be greater

Understanding the exterior angle theorem
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Equal alternate interior angles

than the interior angle x. Similarly, the lines cannot
meet to the left to form a triangle by the same reason.
(Work with the angle 180 — x.) It must be the case then
that the lines are parallel.

This result is the CONVERSE of Euclid’s famous, and
controversial, PARALLEL POSTULATE.

It is important to note that Euclid proved the
exterior-angle theorem and its consequence without
assuming that the parallel postulate holds. If one is
willing to assume that the three angles in a triangle
always sum to 180° (a statement equivalent to the par-
allel postulate), then the proof of the exterior angle
theorem is TRIVIAL.

extraction The process of finding the ROOT of a
number or the solution to an algebraic equation is
sometimes called extraction. For example, extracting
the square root of 3 is the process of finding its square
root. (One might use HERON’S METHOD, for example,
to compute V3 = 1.7320508...)

The term digit extraction is often used to describe
any method that allows one to compute a specific digit
of a number without computing earlier digits. For
example, in 1995 mathematician Simon Plouffe discov-
ered the following remarkable formulae for n:

-3 4 2 1 1 Y1y
&\ 8n+1 8n+4 8n+5 8n+6 )16

It has led mathematicians to a technique that com-
putes the Nth digit of @ in base 16 without having to
calculate the preceding N — 1 digits. (In base 16, the
number 1 appears as 3.243F6A8885A308D ... where
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A represents 10, B represents 11, and so forth, with F
representing 15. Each decimal place is a power of a
sixteenth.) Unfortunately no analogous technique is
currently known to compute the ordinary base-10 dig-
its of m with ease.

extrapolation The process of estimating the value
of a function outside a known range of values is called
extrapolation. For example, if the temperature of a
cup of tea was initially 200°F and then was measured
to be 100°F and 50°F 10 and 20 minutes later, respec-
tively, then one might guess that its temperature after
30 minutes would be 25°F. Methods of extrapolation
are normally far less reliable than INTERPOLATION, the
process of estimating function values between known
values. Scientists generally prefer to avoid making pre-
dictions based on extrapolation. Meteorologists, how-
ever, must use extrapolation techniques to make
weather predictions. Long-range forecasts are gener-
ally considered unreliable.
See also POPULATION MODELS.

extreme-value theorem This theorem asserts that a
CONTINUOUS FUNCTION f(x), defined on a closed
INTERVAL [a,b], reaches a maximum value and a mini-
mum value somewhere within that interval. That is,
there is a point ¢ in the interval [a,b] such that f(x),
< fle), for all x in [a,b], and there is another point d in
[a,b] such that f(x) = f(d) for all x in [a,b]. For exam-
ple, the extreme-value theorem tells us that, on the
interval [1,5] say, the function f(x) = 3x - cos(x?
does indeed adopt a largest value. It does not tell us,
however, where that maximum value occurs. A point at
which a function has a maximum or minimum value is
called an extremum.

The theorem is intuitively clear if we think of a
continuous function on a closed interval as one whose
graph consists of a single continuous piece with no

+ sinx)

gaps, jumps, or holes: in moving a pencil from the left
end point (a,f(a)) to the right end point (b,f(b)), one
would not doubt that there must be a high point on
the curve where f(x) reaches its maximum value, and
a low point where it attains its minimum value. A rig-
orous proof of the theorem, however, relies on the
notion of the completeness of the real numbers (mean-
ing that no points are missing from the real line). This
is a subtle property, one that was not properly under-
stood until the late 1800s with the invention of a
DEDEKIND CUT. For example, the function f(x) = 2x —
x? = x(2 — x) has no maximum value on the interval
[0, 2] if the value 1 is excluded from our considera-
tions. Although this seems an artificial example, one
still needs to be sure that this type of problem can
never occur.

It is vital that the function under consideration be
continuous and that the interval under study be closed
for the theorem to be true. For example, the (discontin-
uous) function

2x—x2ifx#1
f(x)_{o ifx=1

does not reach a maximum value in the closed interval

[0,2]; nor does the (continuous) function f(x) = %,

defined on the open interval (0,2), since the function is
arbitrarily large for values x close to zero.

The INTERMEDIATE-VALUE THEOREM is a compan-
ion result to the extreme-value theorem. It asserts that
not only does a continuous function on a closed inter-
val actually attain maximum and minimum values, but
it also takes on every value between those two extreme
values. ROLLE’S THEOREM and the MEAN-VALUE THEO-
REM follow from the extreme-value theorem if we fur-
ther assume that the function under consideration is
differentiable.

See also DIFFERENTIAL CALCULUS;
MINIMUM.

MAXIMUM/



face A flat surface on the outside of a solid figure,
typically a POLYHEDRON, is called a face of the figure.
For example, a cube has six identical faces, and a cylin-
der has two faces. (The lateral surface of a cylinder is
not flat.) In the mid-1700s, Swiss mathematician LEON-
HARD EULER established that if all the outside surfaces
of a convex solid are flat, then the number of faces f
the figure possesses is given by the formula:

f=2-v+e

Here v is the number of vertices and e is the number of
edges the figure has.

The angle between two edges of a polyhedron meet-
ing at a common vertex is sometimes called a face angle.

In GRAPH THEORY, any region of plane bounded by
edges of a planar graph is sometimes called a face of
the graph. EULER’S FORMULA v — e + f = 2 also holds
for connected planar graphs if one is willing to regard
the large unbounded region outside the graph as a face.

See also DIHEDRAL.

factor The term factor is used in two mathematical
settings: NUMBER THEORY and ALGEBRA. In number
theory, if a, b, and 7 are whole numbers and if a times
b equals n, then a and b are called factors of n. For
example, 3 and 4 are both factors of 12 (since 12 = 3 x
4), as are the numbers 1,2, 6,and 12 (2 x 6 =12 and 1
x 12 = 12). Any number that divides the given number
evenly is a factor. For this reason, factors are sometimes
called divisors.
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The factors of a given number have a geometric
interpretation. For example, one can arrange 12 peb-
bles into six different rectangular arrays: a 1 by 12
rectangle, a 2 by 6 rectangle, a 3 by 4 rectangle, a 4 by
3 rectangle, a 6 by 2 rectangle, and finally a 12 by 1
rectangle. The dimensions of these rectangles are pre-
cisely the factors of 12. This interpretation shows that
the factors of a number come in pairs—unless, one of
the rectangles formed is a perfect square (in which case,
one factor is “paired with itself”). This shows:

Square numbers have an odd number of fac-
tors. All other numbers have an even number
of factors.

For example, 36, which equals 6 x 6, has an odd num-
ber of factors: 1 and 36, 2 and 18, 3 and 12, 4 and 9,
and 6. This simple observation solves the famous
prison warden puzzle:

A prison warden and 100 inmates, residing in
cells numbered 1 through 100, agree to per-
form the following experiment over 100 days.
In the process of the experiment some cell
doors will be left unlocked and the prisoners
agree not to escape.

On the first day, the prison warden will turn
the key of each cell door and leave all the
doors unlocked.

On the second day, the warden will turn the
key of every second door. This will lock doors
numbered 2, 4, ..., 100 and leave the odd-
numbered doors open.
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On the third day, starting with door number
3, he will turn the key of every third door. This
will leave a mixture of doors locked and
unlocked.

On the fourth day he will turn the key of
every fourth door, on day five the key of every
fifth door, and so on, all the way until day 100,
when he will turn the key of every 100th door,
namely, just the final door. At this time, any
prisoner who finds his door open will be
allowed to go free.

Which doors will be left unlocked as a result
of this experiment?

Observe that the warden will turn the key to door
number 7 on each day d that is a factor of n. For exam-
ple, the key of door number 39 will be turned on days
1, 3, 13, and 39 only, and the key of door number 25
on days 1, 5, and 25. For a door to be left unlocked at
the end of the experiment its key must be turned an
odd number of times. As only the square numbers have
an odd number of factors we have that prisoners 1, 4,
9,16, 25, 36,49, 64, 81, and 100 are set to go free.

Any number 7 always has 1 and itself as factors.
These are called “improper factors.” Any other factor
of n, if there is one, is called a “proper factor.” For
example, 1 and 12 are improper factors of 12, and 2,
3, 4, and 6 are proper factors. A number, different
from 1, that possesses proper factors is called “com-
posite,” or a COMPOSITE NUMBER, and one that does
not is called PRIME. For example, the number 25 has a
proper factor, namely 5, and so is composite; whereas 7
has only two factors, both of which are improper, and
SO 1s prime.

Any proper factor of a composite number, if not
itself prime, can be written as a product of two smaller
factors. Repeated application of this process shows that
any number different from 1, if not already prime, can
be written as a product of prime numbers. For example:

180 =30x6=(6Xx5)x(2x3)=2x3x%x3$
X2 X 3.

The FUNDAMENTAL THEOREM OF ARITHMETIC asserts
that every integer greater than 1 factors into primes in
only one way (up to the order of the primes). A factor-
tree is a diagram that describes this factoring process
pictorially. Two students drawing different factor trees
for the same number will arrive at the same list of
primes at the bases of their trees.

In algebra, a factor is a POLYNOMIAL that divides
another given polynomial exactly. For example, 2x + 1
and x — 1 are both factors of 2x% — x — 1, since 2x2 — x
—1=(2x + 1)(x — 1). It is generally agreed that the fac-
tors of a polynomial should themselves be nonconstant
polynomials with coefficients that are real numbers.

A polynomial that cannot be factored is called irre-
ducible. For example, x> + 1 cannot be factored over
the real numbers and so is irreducible. If one permits
COMPLEX NUMBERS as coefficients, then the situation
changes: we can write: x> + 1 = (x + )(x — 7). The FUN-
DAMENTAL THEOREM OF ALGEBRA asserts that every
polynomial factors in the realm of complex numbers.

See also COMMON FACTOR; DIVISIBILITY RULES;
FACTOR THEOREM; GREATEST COMMON DIVISOR; LONG
DIVISION; PERFECT NUMBER; PRIME.

factorial If 7 is a natural number, then the symbol 7!
(read as “n factorial”) denotes the product of all posi-
tive integers from 1 to n:

nt=1-2-3...n

For example, 6! = 1:2:3:4.5-6 = 720. The order in
which the terms of the product are multiplied is imma-
terial. (We have that 6! also equals 6:5-4:3-2-1.)

Factorials naturally arise when counting the num-
bers of ways a collection of objects can be arranged.
Given 7 objects, there are 7 choices for which object we
wish to regard as “first.” Once this selection is made,
n — 1 choices remain for which object to select as sec-
ond, and after the first and second are chosen, there
remain 7 — 2 choices for third. This process continues
until two objects remain, yielding two choices for which
to regard second-to-last, and just one object to select as
last. By the MULTIPLICATION PRINCIPLE, there are thus
n-n-1)-(n=-2)-...-2-1=n! different PERMUTA-
TIONS (or arrangements, or orders) of 7 objects.

If one wishes to arrange just 7 objects chosen from a
collection of # different things, there are n choices for
which object to regard as first, 7 — 1 choices for which to
regard as second, and so on, to # — r + 1 choices for
which object to deem rth, yielding a total of #n - (n — 1)

.. *(n —r + 1) different arrangements of r objects selected
from . This formula can be more compactly written as:

(n—7)



When r equals 7 (arrange all # objects) this formula
n

reads m To coincide with our previously computed
answer of 7!, it is natural to define 0! as equal to 1.

The exclamation-point notation for factorial was
first used by Christian Kramp in 1808, in his paper
“Elémens d’arithmétique universelle,” though other
notations for 7! popular at the time, and later, included
n, ', I(n) and T(n+1).

LEONHARD EULER (1707-83) attempted to general-
ize the factorial function to noninteger values. At the
age of 22 he discovered the following LIMIT quantity
that helps achieve this:

n*n!

)= lim s 2l xm)

(He called this expression the gamma function to
honor ADRIEN-MARIE LEGENDRE’s use of the symbol T’
for factorial.) This expression has the property, as you
may check, that T(x + 1) = x - T'(x) for all positive
n-n! . " _q

. Fl :l. _—
real values x. Also T(1) ngr;(n+1)! lim ——

Consequently, T'(m2) = (m — 1)! for all positive integers 1.
Thus, for example, T'(7) = 6! = 720. It is now possible to

. .. 1 . .
also define quantities such as ) ! and (V2)! using this

expression.

INTEGRATION BY PARTS shows that the IMPROPER
INTEGRAL [y e7'#"=1 dt also has value (m — 1)!. Mathe-
maticians have shown that Euler’s gamma function and
the corresponding improper integral agree for all posi-
tive real values x:

T(x) = Jo et dt
This integral has the unexpected value Vit when x = %
Thus we may conclude, for example, that (—%)!z
1 1 3) (1) (1) _+r
rl=|= —h=p2l=l2|1=|=22.
[2) oo )=rf3)-(3)1(3)- 3

See also BINOMIAL THEOREM;
STIRLING’S FORMULA.

PERMUTATION;

factorization The process or the result of writing a
number or a POLYNOMIAL as a product of terms is
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called factorization. For example, the FUNDAMENTAL
THEOREM OF ARITHMETIC asserts that every whole num-
ber can be written as a product of PRIME numbers and,
up to the order of the terms, this factorization is unique.
(For instance, 132 = 2 x 2 x 3 x 11.) Thus every whole
number has a unique “prime factorization.” The FUN-
DAMENTAL THEOREM OF ALGEBRA asserts that, in the
realm of COMPLEX NUMBERS, every polynomial factors
completely into linear terms. (For instance, 2x° — x?
—13x-6=(x=-3)(x+2)2x + 1) and x2 —4x + 5 =
(x =2 + i)(x — 2 — 1).) If one wishes to remain in the
realm of the REAL NUMBERS, then every polynomial with
real coefficients is guaranteed to factor into a product of
linear terms and irreducible QUADRATIC terms. (For
instance, x* — 1 = (x% + 1)(x — 1)(x + 1).)
See also DECOMPOSITION; FACTOR THEOREM.

factor theorem The REMAINDER THEOREM shows
that if a POLYNOMIAL p(x) is divided by a term of the
form x — a for some constant a, then the remainder
term is the constant p(a):

p(x) = (x —a)Qlx) + pla)

Thus if the value of the polynomial is zero at x = a,
that is, p(a) = 0, then the polynomial factors as p(x) =
(x — a)O(x). This leads to the following factor theorem:

A linear term x — a is a factor of a polynomial

p(x) if, and only if, p(a) = 0.

For example, for p(x) = 2x> — 4x> — 10x + 12, we have

p(1) =0, p(-2) = 0, and p(3) = 0. Consequently, x — 1, x

+ 2, and x — 3 are each factors of the polynomial. (In

this example we have p(x) = 2(x — 1)(x + 2)(x - 3).)

Since 2 and -2 are clearly each zeros of x® —64, this

polynomial must be divisible by (x — 2)(x + 2) = x*> — 4.
See also FUNDAMENTAL THEOREM OF ALGEBRA.

fair division (cake cutting) A classic puzzle asks for
a fair way to divide a piece of cake between two greedy
brothers. The “you cut, I choose” scheme asks one
brother to slice the cake into what he believes to be
two equal parts and has the second brother choose one
of the two pieces. The first is then guaranteed to
receive, in his measure, precisely 50 percent of the cake
and the second brother, if he has a different estimation
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of half, has the advantage of receiving more then 50
percent of the slice according to his own measure. One
can avoid this perceived advantage with a different
sharing scheme. In the following “knife holding”
scheme, each brother is guaranteed to feel that he has
the advantage:

Each brother holds a knife vertically across the
cake at the location he believes cuts the cake
precisely in half. (If the brothers have different
estimation of what constitutes “half,” then the
knives will be at different locations.) Cutting
the cake anywhere between these two positions
guarantees each brother a piece, in his estima-
tion, greater than a 50 percent.

This scheme generalizes to sharing among any
number of players. For instance, it is possible to share a
cake among three players in such a manner that each
player honestly believes he is receiving more than one-

third of the cake.

Each player holds a knife vertically across the
cake at the location he believes cuts off
exactly one-third of the cake from the left.
The cake is then cut between the two leftmost
positions, giving that piece to the player hold-
ing the leftmost knife. This player has
received, in his estimation, more than one-
third of the cake, and each of the remaining
two players believes that more than two-
thirds of cake remains. The second two broth-
ers then perform the cake division scheme
described above for two players.

Any cake-sharing scheme among 7 players that guaran-
tees each player, in his estimation, at least 1/n of the
cake is called a fair-division scheme.

The scheme described above among three players,
however, is not “envy free.” Although each player
believes that he received more than his fair share of the
cake, it is not assured that he also believes that he
received the largest piece ever cut. (Every fair division
scheme between two players is envy free.) Complicated
envy-free fair-division schemes do exist for sharing
cake among any number of players. There are also fair-
division methods for dividing collections of indivisible
objects (such as the furniture in an estate) among two
or more people using cash payments to even up the
final division.

Farey sequence (Farey series) For a given positive
whole number 7, the sequence of all proper fractions,
written in reduced form, with denominators no larger
than 7 and arranged in order of magnitude is called the
nth Farey sequence. For example, the fifth Farey
sequence is:

These sequences have a number of arithmetic properties.
. L a < .
For instance, if 7' and " are consecutive terms of a

Farey sequence, then the numbers ad and bc, arising
from taking their cross product, are always consecutive

. . .3 2
integers. (For example, the consecutive pair 5 and 3

c e

. . 4
yield consecutive integers 9 and 10.) Also, if 3, 7, 7
are three successive terms of a Farey sequence, then the

middle term 5 is the mediant fraction Z;j. (For

) h b 3 di' 343 6 2
instance, the term between 5 and 7 is 5,4 =9 = 3.)

This observation allows one to quickly build up from
one Farey sequence to the next: simply compute the
mediants between all terms present and retain those
whose denominators are not too large.

The Farey sequence was first studied by C. Haros
in 1802, but interest in the topic did not stir until
British geologist John Farey (1766-1826) published his
1816 piece, “On a Curious Property of Vulgar Frac-
tions” in Philosophical Magazine. (Farey was unaware
of Haros’s work.) In 1938 American mathematician
Lester R. Ford presented a remarkable geometric inter-
pretation of the Farey sequence:

. a
Above each reduced fraction 3, on the number

1
line, draw a circle of radius 72 touching the

number line at that point. Despite expectation,
these circles never overlap, although they do
often touch. Moreover, two circles at positions

% and % touch precisely when ad and bc are

consecutive integers, and furthermore the
largest circle that fits in the space between

them above the number line is the circle at the

] a+c
mediant 3, 7.



(These claims can be proved by making use of the DIs-
TANCE FORMULA to establish that the distance between
the centers of two touching circles equals the sum of
the radii of the two circles.)

Fermat, Pierre de (1601-1665) French Number the-
ory, Calculus, Probability theory Born on August 17,
1601, in Beaumont-de-Lomagne, France, Pierre de Fer-
mat is remembered as a leading mathematician in the
first half of the 17th century, recognized for his founding
work in the theory of numbers. Fermat is also responsi-
ble for some pioneering work in CALCULUS and the the-
ory of tangents to curves, PROBABILITY theory, and
analytic GEOMETRY. His 1679 piece Isagoge ad locos
planos et solidos (On the plane and solid locus), pub-
lished posthumously, foreshadowed the work of RENE
DESCARTES (1596-1650) on the application of algebra to
geometry, allowing him to define algebraically important
curves such as the HYPERBOLA and the PARABOLA. In
optics, he is acknowledged as the first scholar to formu-
late the “fundamental property of least time,” stating
that light always follows the shortest paths. Perhaps
most notably, Fermat is remembered for the enigmatic
comment he scribed in the margin of one of his reading
books claiming to have solved a novel problem in num-
ber theory. Search for a solution to this problem (if not
the one Fermat had in mind) spurred three centuries of
important and spirited research in mathematics. FER-
MAT’S LAST THEOREM was finally resolved in 1994.

Fermat received a bachelor’s degree in civil law
from the University of Orléans in 1631 and began
work as a lawyer for the local parliament of Toulouse
that same year. He followed this career path through-
out his entire life—accepting a position as a criminal
court judge in 1638 and, finally, the high position of
king’s counselor in 1648. Fermat’s work in mathemat-
ics was an outside interest.

Fermat first developed a passion for reading and
“restoring” classic Greek texts. This meant completing
the mathematics of any passages that were missing
from the records that survived from ancient times. His
work on the text Plane loci by APOLLONIUS OF PERGA
(ca. 262-190 B.C.E.) garnered the attention of the
mathematics community at the time, not only for the
restoration work itself, but also for the new geometric
methods Fermat had devised for computing tangents to
curves and solving maxima/minima problems. Fermat
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developed a correspondence with French monk MARIN
MERSENNE (1588-1648), who served the role of dis-
persing mathematical information to the notable schol-
ars of the time. Despite the attention Fermat received,
he did not seek fame by publishing any of his work.
(He published one small piece in his life, which he did
anonymously.) Fermat shared his discoveries and
results with Mersenne and other scholars, but not his
methods for obtaining them. This both inspired and
frustrated mathematicians at the time.

In 1654 notable scholar BLAISE PASCAL (1623-62)
wrote to Fermat with some mathematical questions
about gambling and games of chance. The correspon-
dence that ensued led to the joint development of a
new mathematical theory of probability. Fermat is
today considered one of the founders of the field. How-
ever, Fermat had developed a great interest in the the-
ory of numbers, in particular, the properties of whole
numbers. This topic was of little interest to mathemati-
cians at the time—perhaps because of its lack of appar-
ent immediate application—but Fermat attempted to
spark interest in the subject by posing challenging ques-
tions to his contemporaries. He asked scholars to
prove, for instance, that the equation x> + 2 = y* has
only one positive integer solution. His colleagues, how-
ever, regarded questions such as these as too specific to
be of serious concern and often dismissed then. Fermat,
on the other hand, realized that understanding the
solutions to such specific questions provides a gateway
to great insight on the very general and mysterious
properties of whole numbers. It was not until Fermat’s
son Samuel published Fermat’s annotated copy of the
Arithmetica by the classic scholar DIOPHANTUS OF
ALEXANDRIA (ca. 200-284 C.E.)—the text containing
the famous marginal note—that interest in number the-
ory was revived and Fermat’s brilliant work on the
topic was fully recognized.

Fermat died in Castres, France on January 12,
1665. The claim posed in the note scrawled in the mar-
gin of Arithmetica is called Fermat’s last theorem. It
inspired over three centuries of intense mathematical
research in the field of NUMBER THEORY.

See also MAXIMUM/MINIMUM.

Fermat’s last theorem Since ancient times, scholars
have been aware of many, in fact infinitely many, dif-
ferent integer solutions to the equation x> + y* = 22.
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(Solutions to this equation are called PYTHAGOREAN
TRIPLES.) Around 1637 PIERRE DE FERMAT conjectured
that no positive integer solutions exist, however, for
the equations

xn

with 7 greater than two. In his copy of the translated
works of DIOPHANTUS OF ALEXANDRIA, next to a prob-
lem about Pythagorean triples, Fermat wrote his now
famous note:

On the other hand, it is impossible to separate
a cube into two cubes, or a fourth power into
two fourth powers, or generally any power
except a square into two powers with the
same exponent. [ have discovered a truly
admirable proof of this, but the margin is too
narrow to contain it.

For over 350 years mathematicians tried to reproduce
Fermat’s alleged proof. The claim itself became known
as Fermat’s last theorem, and it was one of the greatest
unsolved problems of all time. Although the problem
lends itself to no obvious practical applications,
attempts to solve it helped motivate the development of
a great deal of important mathematics.

It is generally believed that Fermat did not have a
proof of the theorem. In his correspondences with col-
leagues he mentions only the cases 7 equals 3 and 4
and provides no details of proof even for those special
cases. Fermat, again as a marginal note in his copy of
Diophantus’s work, does provide a detailed proof of
another challenge posed by Diophantus, one about tri-
angles of rational side length. Although not explicitly
mentioned, the proof of the n equals 4 case follows
readily from mathematical argument he provides. It is
thought that Fermat was aware of this.

With the case # = 4 taken care of, it is not difficult
to see that one need only study the cases where 7 is an
odd prime. For example, if it is known that x” + y” = 2’
has no positive integer solutions, then x** + y* =
can have no positive integer solutions either. (Rewrite
the latter equation as (x¢)7 + (y°)” = (2°).)

In the mid-1700s, LEONHARD EULER proved that
the equation with 7 = 3 has no positive integer solu-
tions. The extensive work of MARIE-SOPHIE GERMAIN
(1776-1831) during the turn of the century allowed
mathematicians to later show that the theorem holds

for all values of 7 less than 100. During the 19th and
20th centuries mathematicians developed the fields of
algebraic geometry and arithmetic on curves. In 1983,
Gerd Faltings proved the so-called Mordell conjecture,
an important result with the following immediate con-
sequence: any equation of the form x” + y" = 2" with n
> 3 has, at most, a finite number of positive integer
solutions. This led mathematicians a significant step
closer to proving Fermat’s last theorem for all values of
n: is it possible to show that that finite number is zero
in every case? Finally, in 1995, almost 360 years since
Fermat’s claim, the English mathematician ANDREW
WILES, with the assistance of Richard Taylor, presented
a completed proof of Fermat’s last theorem. It is, not
surprisingly, very long and highly advanced, relying
heavily on new mathematics of the century. Needless to
say, the proof is certainly beyond Fermat’s abilities.
Although Wiles’s proof is deservedly regarded as a high
point of 20th-century mathematics, mathematicians
still search for a simplified argument.

Ferrari, Ludovico (1522-1565) Italian Algebra Born
on February 2, 1522, in Bologna, Italian scholar
Ludovico Ferrari is remembered as the first person to
solve the QUARTIC EQUATION. He worked as an assis-
tant to GIROLAMO CARDANO (1501-76), who pub-
lished Ferrari’s solution in his famous 1545 work Ars
magna (The great art).

Assigned to be a servant at the Cardano household
at age 14, Ferrari soon impressed his master with his
agile mind and with his ability to read and write. Car-
dano decided to train Ferrari in the art of mathematics.
In exchange, Ferrari helped Cardano prepare his
manuscripts. Four years after his arrival, and with the
blessing of Cardano, Ferrari accepted a post at the Piatti
Foundation in Milan as public lecturer in geometry. Fer-
rari, however, continued to work closely with Cardano.

Ferrari discovered his solution to the quartic equa-
tion in 1540, but it relied on the methods of solving the
CUBIC EQUATION that had been developed by NiccoLo
TARTAGLIA (ca. 1499-1557) and revealed to Cardano in
secrecy. (Mathematicians at the time were supported by
patrons and protected their methods as trade secrets:
they were often required to prove their worth by solving
challenges no other scholar could solve.) Unable to pub-
lish the result without breaking a promise, Ferrari and
Cardano felt stymied. However, a few years later, Fer-



rari learned that another scholar SCIPIONE DEL FERRO
(1465-1526) had also developed methods of solving
certain types of cubic equations. Although essentially
identical to the work of Tartaglia, Ferrari and Cardano
decided to publish the solution to the quartic, attribut-
ing the work on the cubic needed to del Ferro, with
whom no promise of secrecy had been made.

Tartaglia was outraged, and a bitter dispute that
lasted for many years ensued between Tartaglia and Fer-
rari. On August 10, 1548, as was common at the time,
Tartaglia challenged Ferrari to an open contest and pub-
lic debate as an attempt to demonstrate that he was in
fact the expert on cubic equations. But it was clear from
the contest that Ferrari had a more complete under-
standing of both cubic and quartic equations. Tartaglia
left before the contest was over, and victory was given
to Ferrari. He immediately garnered national fame and
was given many offers of employment, including a
request from the emperor himself to act as royal tutor.
Ferrari, however, accepted no position offered at the
time, left mathematics, and accepted a lucrative position
as tax assessor to the governor of Milan.

Ferrari died in Bolgna, Italy, in October 1565 (the
exact date is not known) and is remembered in mathe-
matics solely for his work on the quartic equation.

Ferro, Scipione del (Ferreo, dal Ferro) (1465-1526)
Italian Algebra Born on February 6, 1465, in Bolo-
gna, Italy, Scipione del Ferro is remembered as the first
mathematician to solve the CUBIC EQUATION. Unfortu-
nately none of his writings survive today, and we learn
of his work chiefly through the manuscripts of GIRO-
LAMO CARDANO (1501-76) and LupOVICO FERRARI
(1522-65).

Del Ferro was appointed lecturer in arithmetic and
geometry at the University of Bologna in 1496, a posi-
tion he retained for all his life. Little is known of his
academic work. Letters to other scholars at the time
suggest that del Ferro studied methods for rationalizing
rational expressions, ruler-and-compass constructions
in geometry, and methods for solving cubic equations.

Mathematicians of del Ferro’s time were familiar
with the general solution to a QUADRATIC equation of
the form ax? + bx + ¢ = 0. (It should be mentioned,
however, that 16th-century scholars did not use zero as
a number in an expression, nor permitted the use of
negative numbers. Thus the equation x> — 3x + 2 = 0,
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for instance, was written x> + 2 = 3x.) Mathematicians
also knew that, with the appropriate use of substitu-
tion, any cubic equation could be reduced to one of
two forms: x> 3 = ax + b. (Here, again, a
and b are positive.) Del Ferro was the first mathemati-
cian to solve equations of the first type. Some histori-
ans suggest that he was able to solve equations of the
second type as well.

Del Ferro recorded all his results in a personal
notebook, which he bequeathed to his son-in-law Han-
nibal Nave, also a mathematician. Nave later shared
the contents of the notebook with Cardano and Fer-
rari. After seeing the method of solving the cubic fully
explained, Cardano and Ferrari realized that del Ferro
had in fact solved the famous cubic equation some 30
years before NICCOLO TARTAGLIA (ca. 1499-1557),
their contemporary, had claimed to do the same. In
1545 Cardano published Ars magna (The great art),
outlining Ferrari’s solution to the QUARTIC EQUATION
making use of del Ferro’s methods for the cubic.

Del Ferro died in Bologna, Italy, some time between
October 29 and November 16, 1526. He is remembered
in mathematics solely for his work on cubic equations.

+ax=borx

Fibonacci (Leonardo Fibonacci, Leonardo of Pisa)
(ca. 1170-1250) Italian Arithmetic, Number theory
Born in Pisa, Italy (the exact birth date is not known),
mathematician Leonardo of Pisa, better known by his
nickname Fibonacci, is best remembered for his help
in introducing the HINDU-ARABIC NUMERAL system to
the merchants and scholars of Europe. He strongly
advocated the system in his famous 1202 text Liber
abaci (The book of counting), a treatise on the tech-
niques and practices of arithmetic and algebra, which
proved to be extremely influential. This work also
contained a large collection of arithmetical problems,
including one that leads to the famous sequence of
numbers that bears his name. Considered the most
important middle
Fibonacci also wrote extensively on the topics of
EUCLIDEAN GEOMETRY and DIOPHANTINE EQUATIONS.
He is recognized as the first scholar in the West to
make advances in the field of NUMBER THEORY since
the time of DIOPHANTUS OF ALEXANDRIA.

Although born in northern Italy, Fibonacci was
raised and educated in northern Africa, where his
father, a merchant and a government representative,

mathematician of the ages,
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held a diplomatic post. As he grew older, Fibonacci
also traveled to Greece, Egypt, Syria, France, and Sicily,
and took special note of the arithmetic systems used by
local merchants of those areas. He became convinced
that the number system used by the Arabs with its
roots from India—the actual way they wrote numbers
and the way they manipulated them to perform calcula-
tions—was far superior to any other arithmetic system
he had encountered, including the clumsy system of
ROMAN NUMERALS in use at the time in Europe. Upon
his return to Pisa around the year 1200, Fibonacci
began writing his famous piece. Its aim was to simply
explain the Hindu-Arabic numerals, the role of a
PLACE-VALUE SYSTEM, and illustrate its
approach. The text begins simply:

superior

These are the nine figures of the Indians: 9, 8,
7,6,35,4, 3,2, 1. With these nine figures, and
with this sign 0, ... any number may be writ-
ten, as will be shown.

Divided into four sections, the work outlines the meth-
ods of addition, multiplication, subtraction, and divi-
sion. It also discusses fractions (including a discussion
on EGYPTIAN FRACTIONS), as well as some geometry
and algebra. (Some parts of the text are written from
right to left, indicating, perhaps, the extent to which
influenced by Arabic scholars.)
Although complete acceptance of the Hindu-Arabic
system in the West did not occur until about 300 years
later, Fibonacci’s work in this area is recognized as the
first significant step in this direction.

Fibonacci also wrote extensively in the fields of
number theory, trigonometry, and geometry. It is said
that the advances Fibonacci presented in his 1225
piece Liber quadratorum (The book of square num-
bers) were of such interest and value that they sparked
renewed interest in theoretical mathematics and
revived Western mathematics from its slumber during
the Middle Ages.

During his life Fibonacci was recognized as a great
scholar. Word of his abilities reached the Emperor
Frederick II, seated in Palermo, who invited him to
compete against other mathematicians of the day in a
mathematical tournament. Fibonacci correctly solved
all three challenges put before him, garnering him fur-
ther attention and fame. In 1240 Fibonacci was

Fibonacci was

awarded a salary from the city of Pisa in recognition of
his services to the community.

All of Fibonacci’s texts, and their reproductions,
were written by hand. Copies of Liber abaci still sur-
vive today.

Fibonacci’s name is derived from the shortening of
the Latin filius Bonacci, meaning the son of Bonaccio,
his father’s family name. During his life, Fibonacci was
also known as Leonardo of Pisa or, in Latin, Leonardo
Pisano. Sometimes, Fibonacci also identified himself as
Leonardo Bigollo, following the Tuscan word bigollo
for “a traveler.”

By introducing the Hindu-Arabic numeral to
Europe, his influence on Western mathematics was pro-
found. He died in the city of Pisa, Italy, likely in the
year 1250. (The exact date of death is not known.)

See also FIBONACCI NUMBERS.

Fibonacci numbers Any one of the numbers that
appears in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, ..., where each number, after the second, is the sum
of the two preceding numbers, is called a Fibonacci
number. If F,, denotes the nth Fibonacci number, then
we have

Fnan—l +Fn—2

Wlth F] = F2 = 1.
These numbers arise from a famous rabbit-breed-
ing problem described in FIBONACCI’s text Liber abaci:

How many rabbits would be produced in the
nth month if, starting from a single pair, any
pair of rabbits of one month produces one pair
of rabbits for each month after the next?

(The initial pair of rabbits, for example, do not pro-
duce another pair of rabbits until month 3. This same
pair produces a new pair for each month thereafter.)

In any month, the totality of rabbits present con-
sists of all pairs of the previous month together with all
the new offspring. The number of offspring equals the
population size of two months previous. Thus the solu-
tion to the problem is the sequence described above.

Any problem whose nth case solution is the sum of
the two previous case solutions produces the Fibonacci



sequence. For example, there are F,, ways to climb 7 — 1
steps, one or two steps at a time (consider beginning the
climb with either a single step or a double step). There
are also F,, ways to tile a 1 X (7 — 1) row of squares with
1 x 1 tiles and 1 x 2 dominoes, and there are F,
sequences of 0s and 1s n-digits long beginning and end-
ing with 1 and containing no two consecutive 0Os.
Regarding a 1 as “tails” and 0 and “heads,” and
ignoring the initial and final 1s, this latter example can
be used to show that the PROBABILITY of not getting
two heads in a row when tossing a coin # times is

]

F .

#*2. One can also use it to show that there are F,,,
subsets of {1,2,...,n} lacking two consecutive numbers
as members.

Perhaps the most surprising appearances of
Fibonacci numbers occur in nature. The seeds in a sun-
flower’s head, for example, appear to form two systems
of spirals—often with 55 spirals arcing in a clockwise
tilt, and 34 spirals with a counterclockwise tilt. (Large
species of sunflowers have 89 and 144 spirals, again
consecutive Fibonacci numbers.) This appears to be
typical of all natural objects containing spiral floret,
petal, or seed patterns: pineapples, pinecones, and even
the spacing of branches around the trunk of a tree. The
botanical name for leaf arrangement is phyllotaxis.

It is useful to ask whether it is possible to find a
value x so that the sequence 1,x,x2,x3,...
same recursive relationship as the Fibonacci numbers,
namely that every term after the second equals the
sum of the two preceding terms. This condition there-
fore requires x to be a number satisfying the equation
1 + x = x2. By the QUADRATIC formula there are two
solutions:

satisfies the

:1+«E

2

_1-4s
T2

¢

T

It follows that any combination of the form a@” + bt”
satisfies the same recursive relation as the Fibonacci
sequence. Choosing the constants @ and b appropri-
ately, so that the first two terms of the sequence pro-
duced are both 1, yields the following formula, called
Binet’s formula, for the nth Fibonacci number:
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This pineapple has five diagonal rows of hexagonal scales in one
direction and eight rows in the other direction. (Note that the
sixth unmarked row of scales in the left picture is not a new row;
itis a continuation of the bottommost row of scales.)

1445 ) [1=45Y

2 2

Vs Vs

(It is surprising that this formula yields an integer for
every value of 7). One can use this result to show that

F
the ratio F “— of Fibonacci numbers approaches the

n-1
value ¢ as n becomes large. This happens to be the
GOLDEN RATIO.

The properties of the Fibonacci numbers are so
numerous that there is a mathematical periodical, The
Fibonacci Quarterly, devoted entirely to their contin-
ued study.

See also PASCAL’S TRIANGLE; POLYOMINO.

field See RING.

Fields medals These are prizes awarded to young
researchers for outstanding achievement in mathemat-
ics. The awards are regarded as equivalent in stature to
Nobel Prizes (which do not exist for mathematics).
“International medals for outstanding discoveries in
mathematics” were first proposed at the 1924 Interna-
tional Congress of Mathematicians meeting in Toronto.



194 figurate numbers

Canadian mathematician John Charles Fields
(1863-1932) later donated funds to support this idea,
and the awards were created and named in his honor. It
was agreed that two gold medals would be awarded
every four years—at each quadrennial meeting of the
International Congress of Mathematicians. The first
awards were given in 1936 and, following a wartime
hiatus, were resumed in 1950. In 1966, due to the sig-
nificant expansion of mathematical research, it was
agreed that up to four medals could be awarded at any
given meeting.

The award itself consists of a cash prize and a
medal made of gold. A picture of ARCHIMEDES OF
SYRACUSE, along with the quotation, “Transire suum
pectus mundoque potiri” (Rise above oneself and take
hold of the world), appears on one side of the medal.
On the reverse side is the inscription, “Congregati ex
toto orbe mathematici ob scripta insignia tribuere” (the
mathematicians of the world assembled here pay trib-
ute for your outstanding work).

Following Fields’s wish, the awards are presented
in recognition of existing work completed by a mathe-
matician, as well as potential for future achievement.
For this reason, the awards are usually given to mathe-
maticians under the age of 40.

A board of trustees set up by the University of
Toronto administers the awards, and a committee of
mathematicians appointed by the International
Congress of Mathematicians presents the medals to
recipients.

Laurent Lafforgue of the Institut des Hautes
Etudes Scientifiques, Buressre-Yvette, France, and
Vladimir Voevodsky of the Institute of Advanced
Study, Princeton, New Jersey, were the 2002 recipients
of the award. Lafforgue made significant contributions
to the so-called Langlands program, a series of far-
reaching conjectures proposed by Robert Langlands in
1967 that, if true, would unite disparate branches of
mathematics. Voevodsky was awarded the prize for his
work in algebraic geometry, a field that unites number
theory and geometry.

figurate numbers Arranging dots to create geomet-
ric figures leads to a class of numbers called figurate
numbers. For example, the triangular numbers are
those numbers arising from triangular arrangements of
dots, and the square numbers those from square arrays.
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Triangular and square numbers

Other geometric shapes are possible, leading to other
sequences of figurate numbers.

Figurate numbers were of special importance to the
Pythagoreans of sixth century B.C.E. Believing that
everything in the universe could be explained by the
“harmony of number,” they imparted special impor-
tance, even personality, to the figurate numbers. For
example, 10, being the sum of the first four counting
numbers 1 + 2 + 3 + 4, in their belief united the four
elements—earth, water, fire, and air—and so was to be
held in the greatest of reverence. (They named this
number tetraktys, “the holy four.”)

Many arithmetic properties of sums can be read-
ily explained by the figurate numbers. For example,
the nth triangular number, T,, is given by the sum: 1
+ n. As two triangular configurations placed
together produce an 7 X (n + 1) array of dots, 2T, =
n X (n + 1), we have:

+2 + ...

T,,:1+2+m+n:M
2
1 2345
4 9
3 7
), S
3
| ﬂi

Me=5x6 1424344454443+ 241 = 55 = 25

T4+T5=S(,

1+3+547+49 =5x5=25

Properties of figurate numbers



The nth square number is given by the formula: S, =
x n = n?. Looking at the diagonals of the square reveals
the sum:

1+24etn=-D+n+mn-1)+..+2+1=n?

Also hidden in a square is the sum of the first # odd
numbers. We thus have:

The sum of the first # odd numbers is 72.

Adding one to each of these summands gives the sum
of the first # even numbers. Thus we have:

The sum of the first # even numbers is 72

+ 7.
There is a nice interplay between the triangular and
square numbers. For example, the sum of any two con-
secutive triangular numbers is always a square number:
1 + 3 equals 4, 3 + 6 equals 9, and 6 + 10 equals 16,
for instance. In general:

Tn—l + Tn = Sn

The center diagram in the figure at the bottom of page
194 explains why this is the case.

Similarly, one can arrange eight copies of the one
triangle to form a square with its center removed to
prove that 8T, is always one less than a square number.
In the same way, one can also establish that the follow-
ing combination of three consecutive triangular num-
bers is always square: T, + 6T, + T,,;.

The numbers 1 = Ty = §y, 36 = Tg = S4 and 1225 =
T49 = S35 are both square and triangular, as are 41,616
and 1,413,721. Mathematicians have proved, using
CONTINUED FRACTIONS, that there are infinitely num-
bers with this property.

The alternate triangular numbers 1, 6, 15, 28, ...
are sometimes called the Bohlen numbers. The #nth
Bohlen number x is divisible by # and is the unique

multiple of 7 satisfying: 1 + 2 +...+ % = X.

In 1796 KARL FRIEDRICH GAUSS proved that every
natural number is the sum of at most three triangular
numbers, and JOSEPH-LOUIS LAGRANGE in 1770 proved
that every natural number is the sum of no more than
four square numbers.

One can extend the scope of figurative numbers to
three dimensions to produce the cube numbers, tetrahe-
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dral numbers, and the like. The nth cube number is
given by the formula 73 . It is a three-dimensional cubi-
cal array of dots, with each layer being a square array
of dots. (Thus # layers of #? dots gives a total of 1 x 7?
= n3 elements.) The nth tetrahedral number is produced
by stacking together the first # triangular numbers:
Ty + T, +...+ T,. This gives the sequence:

1,4=1+3,10=1+3+6,20=1+3+6+ 10,...

One can prove t{lat the nth tetrahedral number is given
by the formula gnin+ 1)(n +2).

Both the triangular numbers and the tetrahedral
numbers appear as diagonals in PASCAL’S TRIANGLE. The
successive stacking of tetrahedral numbers produces
hypertetrahedral numbers: 1, 5, 15, 335, ... These corre-
spond to four-dimensional geometric arrangements of
dots. They also appear as a diagonal in Pascal’s triangle.

See also NESTED MULTIPLICATION; PERFECT NUMBER;
SQUARE; TRIANGLE.

finger multiplication Having memorized the 2-, 3-,
4-, and 5-times tables, there is a popular finger met-
hod for computing all values of the 6- through 10-
times tables. It is based on the following rule for
encoding numbers:

A closed fist represents 5 and any finger raised
on that hand adds 1 to that value.

Thus a hand with one finger raised, for example, repre-
sents 6. A hand with three fingers raised represents 8.
To multiply two numbers between 5 and 10, one then
follows these steps:

1. Encode the two numbers, one on each hand.

2. Count 10 for each finger raised.

3. Count the number of unraised fingers on each hand
and multiply together the two counts.

4. Add the results of steps two and three. This is the
desired product.

For example, “6 times 8” is represented as one raised
finger on the left hand, three on the right hand. There
are four raised fingers in all, yielding the number 40 for
step 2. The left hand has four lowered fingers, and the
right has two fingers lowered. We compute 4 x 2 = 8.
Thus the desired product is 40 + 8 = 48. Similarly, “8
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times 8” is computed as 60 + 2 x 2 = 64, “9 times 7” as
60 + 1 x 3 =63, and “6 times 7” as 30 + 3 x 4 = 42.
Notice that one is never required to multiply two num-
bers greater than five. That the method works is
explained by the algebraic identity:

(S+a)5+b)=10(a+b) + (5-a)(5-b)

The identity (N + a)(N + b) = 2N(a + b) + (N—a)(N - b)
shows that we can extend this method to use of a differ-
ent number of digits on each hand. For example, with
N = 10, using fingers and toes, one can readily compute
17 x 18 as “seven raised fingers” and “eight raised
toes.” Counting each raised digit as 20 (2N) we have:
17x18 =20 x 15 + 3 x2 = 306.

See also EGYPTIAN MULTIPLICATION; ELIZABETHAN
MULTIPLICATION; MULTIPLICATION; NAPIER’S BONES;
RUSSIAN MULTIPLICATION.

finite Intuitively, a set is said to be finite if one can
recite all the elements of the set in a bounded amount
of time. For instance, the set {knife, fork, spoon} is
finite, for it takes only a second or two to recite the ele-
ments of this set. On the other hand, the set of natural
numbers {1, 2, 3, ...} is not finite, for one can never
recite each and every element of this set.

Despite our intuitive understanding of the concept,
it is difficult to give a precise and direct mathematical
definition of a finite set. The easiest approach is to
simply define a finite set to be one that is not INFINITE,
since the notion of an infinite set can be made clear.
Alternatively, since there is a well-defined procedure
for mechanically writing down the string of natural
numbers 1, 2, 3, ..., one can define a finite set to be
any set S whose elements can be put in one-to-one cor-
respondence with a bounded initial segment of the
string of natural numbers. For instance, matching
“knife” with 1, “fork” with 2, and “spoon” with 3,
the set {knife, fork, spoon} is finite because its ele-
ments can be matched precisely with the string of nat-
ural numbers {1, 2, 3}.

finite differences To analyze the terms of a
SEQUENCE, it can be useful to create a table of successive
differences (in the sense of “right minus left”) between
the terms of the sequence, and subsequent differences of

the differences. For example, for the sequence
1,2,4,8,15,26,42,64,... we obtain the difference table:

12 48 15 26 42 64 ..
12 47 11 16 22 ..
12345 6
11 111 ..
0 00 O0..
00 O0..

From the pattern that is now apparent, it is clear that
the next number in the original sequence will be
64 +29 =93.

The entries in the first row under the original
sequence are said to be the “first finite differences”; the
second row under the sequence depicts the “second
finite differences,” and so forth. All the terms that
appear in a table of finite differences are completely
determined by the values that appear in the leading
diagonal. For instance, if the values a, b, ¢, ... shown
below are known, then the remainder of the table must
appear as follows:

a a+b a+2b+c a+3b+3c+d a+4b+6c+4d+e...
b b+c b+2c+d b+3c+3d+e ...
c c+d c+2d+e ...

d d+e ...

e ...

The coefficients that appear in the top row match
the entries in each row of PASCAL’S TRIANGLE, which are
given by the BINOMIAL COEFFICIENTs. This suggests that
it would be enlightening to examine the finite difference

n)(n)(n
tables of the sequences 0Pl Plap We obtain:



Each such sequence produces a table with a straightfor-
ward leading diagonal: one that is zero in all places
except for the appearance of a single 1. Using this to our
advantage, recall that the leading diagonal of the
sequence 1, 2, 4, 8, 15, 26, 42, 64, ... 1s 1,1,1,1,0,0,0,...,
which is the sum of the leading diagonals for the four

sequences given by [g}(?}(;} and (z] . Thus the nth

term in our original sequence must equal the sum of the
nth terms of each of the four sequences, namely:

(n)+(nJ+(nj+(n]:1+n+n(n—1)+n(n—l)(n—2)
0 1 2 3 2 3

B w+5n+6
a 6

Thus we now have a formula for the sequence 1, 2, 4,
8,15, 26, 42, 64,...

In general, one can use this technique to find a for-
mula for any sequence whose difference table eventu-
ally contains a row of constant finite differences. Not
all sequences, however, have this property. For exam-
ple, the difference table for the sequence of FIBONACCI
NUMBERS cycles indefinitely:

112 3 5 8 13 21 34 ..
011 235 8 13 ..
0011 23 5

One must employ alternative techniques to compute
formulae for such sequences.
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first- and second-derivative tests See MAXIMUM/

MINIMUM.

Fisher, Sir Ronald Aylmer (1890-1962) British
Statistics, Genetics Born on February 17, 1890, in
London, England, Sir Ronald Fisher is considered the
most important statistician of the early 20th century.
His landmark 1925 text Statistical Methods for
Research Workers established methods of designing
experiments and analyzing results that have been used
extensively by scientists ever since. Fisher was also an
able geneticist and made significant contributions to
the fields of selection and genetic dominance.

After obtaining a degree in astronomy from Cam-
bridge in 1912, Fisher developed an interest in the
theory of errors in astronomical observation. This
work led him to a general interest in statistical prob-
lems and the analysis of ERROR in all disciplines,
including those arising in biology. In 1919 Fisher
accepted a position at the Rothamsted Agricultural
Experiment Station as a biologist. There he developed
his key ideas in the theory of genetics while also
founding the theory of experimental design described
in his 1925 piece.

Fisher was professor of genetics at University Col-
lege, London, from 1933 to 1943, and then professor
of genetics, University of Cambridge, until 1957. Upon
his retirement, Fisher moved to Australia to become a
research fellow at the Division of Mathematics and
Statistics, CSIRO, Adelaide.

His method of multivariate analysis allowed scien-
tists, for the first time, to properly analyze problems
involving more than one variable, and his notion of
“likelihood” provided the means to draw general con-
clusions on the basis of relative probabilities of differ-
ent events. Fisher also contributed to the science of
HYPOTHESIS TESTING by identifying and analyzing new
key DISTRIBUTIONS. His work, without doubt, trans-
formed statistics from a general science into a practical
and powerful scientific tool. He is considered the
founder of modern statistics.

Fisher was elected a fellow of the ROYAL SOCIETY
in 1929, and was awarded the Royal Medal of the
Society in 1938, the Darwin Medal of the Society in
1948, and the Copley Medal of the Society in 1955.
He was knighted in 1952 in recognition of his influen-
tial work in statistics and for his development of a
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statistical theory of natural selection. Fisher died in
Adelaide, Australia, on July 29, 1962.

See also HISTORY OF PROBABILITY AND STATISTICS
(essay); KARL PEARSON.

fixed point Any point that is mapped to itself by a
given TRANSFORMATION is called a fixed point. For
example, the points x = 0 and x = 1 are fixed points
for the function f(x) = x%. Any point on the line of
REFLECTION for a reflection in a plane is a fixed point
for that reflection.

Any continuous map f that maps points in the unit
interval [0,1] to points in the same interval must pos-
sess a fixed point. (By the INTERMEDIATE-VALUE THEO-
REM, the graphs of y = f(x) and y = x for 0 <x <1 must
intersect.) This is a special case of a more general result
proven by Luitzen Egbertus Jan Brouwer in 1915 stat-
ing that, for all values 7, any continuous map f:[0, 1]"
— [0,1]" must possess at least one fixed point. (For
n =2, [0,1]> = [0,1] x [0,1] is the unit square in the
plane, and for »# = 3, [0,1]3 = [0,1] x [0,1] x [0,1] is a
unit cube in three-dimensional space.) This theorem has
the following amusing consequences:

Consider two square sheets of paper, one lying
directly on top of the other. Initially each point
of the upper sheet lies directly above its corre-
sponding point on the lower sheet. Now crum-
ple the top sheet and rest the crumpled ball
anywhere on the lower sheet. By the Brouwer
fixed-point theorem there is still at least one
point of the crumpled sheet lying directly above
its corresponding point on the bottom sheet.

As a thought experiment, imagine the
molecules of the liquid in a cup of coffee as the
points in a three-dimensional cube. After the
coffee is stirred, the Brouwer fixed point theo-
rem assures that at least one molecule will
return to its original location.

See also ITTERATION.

floor/ceiling/fractional part functions The floor
function, also known as the greatest-integer function,
takes a real number x and returns the greatest integer
not exceeding x. This quantity is denoted: [x]. For
example, [7.2] = 7, 17.9998] = 7 and [ 7] = 7. Also,
[-6.34]=-7.

The ceiling function, also known as the least-
integer function, takes a real number x and returns the
least integer not smaller than x. This quantity is
denoted: [x]. For example, [7.2] =8, [7.998] = 8

and [ 71=7. Also, [-6.341= —6. The fractional part of
a real number x, denoted {x}, is given by: {x} = x — | x .
For example, {7.2} = 0.2, {7.998} = 0.998 and {7} = 0.
Also, {-6.34} = 0.66.

The names “floor” and “ceiling,” as well as the
notation for these functions, were introduced by Ken-
neth Iverson in his 1962 computer science text A Pro-
gramming Language. These functions often arise in

applications of counting. For example, there are {%J

multiples of 4 less than, or equal, to N, and, for any
two real numbers x and y with x < v, the closed interval
[x, y] contains [ y]— [x]+ 1 integers.

See also DAYS-OF-THE-WEEK FORMULA.

floor function See FLOOR/CEILING/FRACTIONAL PART
FUNCTIONS.

fluxion In his version of CALCULUS, SIR IsAAC NEW-
TON thought of variable x as a flowing quantity, or a
fluent, and called the rate of change of x the “fluxion”
of x. He used the notation x for the fluxion of x, ¥ for
the fluxion of the fluxion of x, and so forth. Thus if
x = f(#), where x is the distance and ¢ the time for a
moving object, then X is the instantaneous VELOCITY of
the object, and % its instantaneous ACCELERATION.
Today the term fluxion is considered obsolete, and we
use the word DERIVATIVE in its stead. The raised-dot
notation for derivative, however, is still used by physi-
cists for denoting derivatives with respect to time.
See also CALCULUS; HISTORY OF CALCULUS (essay).

focal chord Any cHORD of a conic curve—a

PARABOLA, an ELLIPSE, or a HYPERBOLA—that passes

through a FOcus of the conic is called a focal chord.
See also CONIC SECTIONS; FOCAL RADIUS.

focal radius Any line from the FOCUS of a conic
curve—a PARABOLA, an ELLIPSE, or a HYPERBOLA—tO a
point on the conic is called a focal radius.

See also CONIC SECTIONS; FOCAL CHORD.



focus (plural, foci) Each CONIC SECTION has associ-
ated with it one or two special points each called a
focus of the conic.

See also ELLIPSE; HYPERBOLA; PARABOLA.

formal logic (symbolic logic) In mathematics, the
systematic study of reasoning is called formal logic. It
analyzes the structure of ARGUMENTs, as well as the
methods and validity of mathematical deduction and
proof.

The principles of logic can be attributed to ARISTO-
TLE (384-322 B.C.E.), who wrote the first systematic
treatise on the subject. He sought to identify modes of
inference that are valid by virtue of their structure, not
their content. For example, “Green and blue are colors;
therefore green is a color” and “Cows and pigs are rep-
tiles; therefore cows are reptiles” have the same structure
(“A and B, therefore A”), and any argument made via
this structure is logically valid. (In particular, the second
example is logically sound.) This mode of thought
allowed EucLID (ca. 300-260 B.C.E.) to formalize geom-
etry, using deductive proofs to infer geometric truths
from a small collection of AXIOMs (self-evident truths).

No significant advance was made in the study of
logic for the millennium that followed. This period was
mostly a time of consolidation and transmission of the
material from antiquity. The Renaissance, however,
brought renewed interest in the topic. Mathematical
scholars of the time, Pierre Hérigone and Johann Rahn
in particular, developed means for representing logical
arguments with abbreviations and symbols, rather than
words and sentences. GOTTFRIED WILHELM LEIBNIZ
(1646-1716) came to regard logic as “universal mathe-
matics.” He advocated the development of a “universal
language” or a “universal calculus” to quantify the
entire process of mathematical reasoning. He hoped to
devise new mechanical symbolism that would reduce
errors in thinking to the equivalent of arithmetical
errors. (He later abandoned work on this project,
assessing it too daunting a task for a single man.)

In the mid-1800s GEORGE BOOLE succeeded in cre-
ating a purely symbolic approach to propositional
logic, that part which deals with inferences involving
simple declarative sentences (statements) joined by the
connectives:

not, and, or, if ... then..., iff
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(These are called the NEGATION, CONJUNCTION, DISJUNC-
TION, CONDITIONAL, and the BICONDITIONAL, respec-
tively.) He successfully applied it to mathematics, thereby
making a significant step to achieving Leibniz’s goal.

In 1879 the German mathematician and philoso-
pher Gottlob Frege constructed a symbolic system for
predicate logic. This generalizes propositional logic by
including QUANTIFIERS: statements using words such as
some, all, and, no. (For example, “All men are mortal”
as opposed to “This man is mortal.”) At the turn of the
century DAVID HILBERT sought to devise a complete,
consistent formulation of all of mathematics using a
small collection of symbols with well-defined meanings.
English mathematician and philosopher BERTRAND
RUSSELL, in collaboration with his colleague ALFRED
NORTH WHITEHEAD, took up Hilbert’s challenge. In
1925 they published a monumental work. Beginning
with an impressively minimal set of premises (“self-evi-
dent” logical principles), they attempted to establish
the logical foundations of all of mathematics. This was
an impressive accomplishment. (After hundreds of
pages of symbolic manipulations, they established the
validity of “1 + 1 = 2,” for example.) Although they
did not completely reach their goal, Russell and White-
head’s work has been important for the development of
logic and mathematics.

Six years after the publication of their efforts, how-
ever, KURT GODEL stunned the mathematical commu-
nity by proving Hilbert’s (and Leibniz’s) goal to be
futile. He demonstrated once and for all that any for-
mal system of logic sufficiently sophisticated to incor-
porate basic principles of arithmetic cannot attain all
the statements it hopes to prove. His results are today
called GODEL’S INCOMPLETENESS THEOREMS. The vision
to reduce all truths of reason to incontestable arith-
metic was thereby shattered.

Understanding the philosophical foundations of
mathematics is still an area of intense scholarly research.

See also ARGUMENT; DEDUCTIVE/INDUCTIVE REA-
SONING; LAWS OF THOUGHT.

formula Any identity, general rule, or general expres-
sion in mathematics that can be applied to different
values of one or more quantities is called a formula.
For example, the formula for the area A of a circle is:

A:Tl:r2
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where 7 represents the radius of the circle. The
QUADRATIC formula for the roots of a quadratic equa-
tion of the form ax? + bx + ¢ = 0 is:

_ —b+~b*—4ac

X 2a

foundations of mathematics The branch of mathe-
matics concerned with the justification of mathematical
rules, AXIOMs, and modes of inference is called founda-
tions of mathematics. The paradigm for critical mathe-
matical analysis came from the work of the great
geometer EUCLID (ca. 300-260 B.C.E.) who, in his work
THE ELEMENTS, demonstrated that all geometry known
at his time can be logically deduced from a small set of
self-evident  truths (axioms). LEONHARD EULER
(1707-83) produced fundamental results in disparate
branches of mathematics and often saw connections
between those branches. He too searched for small col-
lections of concepts that were fundamental and, hope-
fully, common to all fields. In the late 1800s and at the
turn of the century with the discovery of RUSSELLS
PARADOX in SET THEORY, mathematicians were led to
apparent paradoxes and inconsistencies within the
seemingly very basic notions of “set” and “number.”
This led to the fervent study of the fundamental princi-
ples of elementary mathematics and even to the study of
the process of mathematical thinking itself (FORMAL
LOGIC). In the 1930s Austrian mathematician KURT
GODEL (1906-78) stunned the mathematical commu-
nity by proving, essentially, that any formal system of
mathematics that incorporates the principles of arith-
metic will contain statements that can neither be proved
nor disproved, and, in addition, such a system will nec-
essarily be incapable of establishing that it is free from
CONTRADICTIONS. Despite these disturbing conclusions,
the study of the founding principles of mathematics is
still an active area of research today.

See also GEORG CANTOR; GODELS INCOMPLETE-
NESS THEOREMS; BERTRAND ARTHUR WILLIAM RUSSELL;
ALFRED NORTH WHITEHEAD; ERNST FRIEDRICH FERDI-
NAND ZERMELO.

four-color theorem For centuries, cartographers have
known that four colors suffice to color any geographical
map (that is, any division of the plane into regions). It is

required that regions sharing a common length of
boundary be painted different colors (but two regions
meeting at a point, such as the states Arizona and Col-
orado on a map of the United States, may be painted the
same tint). Cartographers had also observed that the
same is true for any map drawn on a SPHERE (the globe).

The question of whether this observation could be
proved true mathematically was first posed by English
scholar Francis Guthrie in 1852. Mathematicians
Aucustus DE MORGAN (1806-71) and ARTHUR CAY-
LEY (1821-95) worked to solve the problem and, in
1872, Cayley’s student Alfred Bray Kempe (1849-1922)
produced the first attempt at a proof of the four-color
conjecture. Unfortunately, 11 years later English scholar
Percy Heawood (1861-1955) found that Kempe had
made an error in his work. In 1890 Headwood later
proved that five colors will always suffice to color a pla-
nar map, but the proof that just four will actually suf-
fice eluded him. Heawood also looked beyond just
planar and spherical maps and made a general conjec-
ture that if a surface contains g holes (such as TORUS
with g = 1 hole, or a sphere with g = 0 holes), then any
map drawn on that surface can be colored with
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colors, and that there do exist examples of maps on
these surfaces that do require precisely this many col-
ors. (The brackets indicate to round down to the near-
est integer.)

In 1968 two mathematicians, Gerhard Ringel and
J. W. T. Youngs, proved Heawood to be correct for all
surfaces with two or more holes and for the torus.
Unfortunately, their work did not apply to the case of a
sphere an