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PREFACE

This book provides a whole coverage of the course of Digital Electronics for Engineering 
graduates of various Universities across the country. The topics presented in this book are 
discussed using a simplified approach that greatly enhances learning. The book contains eleven 
chapters and each chapter is organized in a step-by-step progression of concepts and theory. 
The text is written in a simple language with an emphasis of clarity of the topics. A large 
number of solved examples have been included in theory as well as end of each chapter. The 
key features of the books are summarized as follows:

Key Features:
  Standardized Chapter Organization
  Succinct and Well-explained Theory
  Reader Notes, Do Remember and Confusion Clearing points in the side column
  Illustrative Diagrams
  Problem Solving Methodology
  Examples associated with Problem Solving Methodology
  More than 550 Solved Examples at the End of Chapter
  Review Question and Problems

The author would like to thank editorial and production team of JHUNJHUNUWALA for 
providing professional support for this project through all phases of its development. Finally, 
we want to express our appreciation to our family for their support and motivation.

Although we have put a vigorous effort in preparing this book, some errors may have crept in. 
We shall appreciate and greatly acknowledge the comments, criticism  and suggestion from the 
users of this book which leads to some improvement.

Authors
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1
NUMBER SYSTEMS

1.1 INTRODUCTION

In this modern world of electronics, the term digital is mostly 
associated with a computer. Today, digital circuits and systems 
has a wide range of application in almost every field of electronics. 
In communications, the principles of digital electronics are found 
in satellites, telephone switching and transmission networks, and 
navigation systems. In consumer electronics, digital circuits are found 
in compact discs, VCRs, and television. Similarly, digital systems are 
also used in process controls in industrial applications and in the field 
of medical science.

In this chapter, we will begin the discussion with the introduction 
of digital and analog system and then we shall study different number 
systems used to represent data in digital systems.

1.2 ANALOG AND DIGITAL SYSTEMS

There are two types of electronic circuits and systems; analog and 
digital. Analog systems are those in which physical quantities are 
represented over a continuous range of values. They can take infinite 
values within the specified range. For example, the amplitude of the 
output signal to the speaker in a radio receiver can have any value 
between zero and its maximum limit.

On the other hand, digital systems are those in which physical 
quantities are represented in digital form; that is, the quantities can 
take on only discrete values. Any quantity in the physical world, such 
as temperature, pressure, or voltage, can be symbolized in a digital 
circuit by a group of logic levels that, taken together, represent a 
binary number. Logic levels are usually specified as 0 or 1; at times, it 
may be more convenient to use low/high, false/true, or off/on.

1.2.1 Advantages of Digital Systems

Following are some of the advantages of digital systems over analog 
systems:

Digital systems are easier to design
Since all the modern digital circuits use only two voltage levels, HIGH 
and LOW, hence they are easier to design. The exact numerical 
values of voltages are not important because they have only logical 
significance; only the range in which they fall is important. In analog 

READER NOTE
Digital circuits are also called logic circuits, 
because each type of digital circuit obeys a 
certain set of logic rules. The manner in which 
a logic circuit responds to an input is referred 
to as the circuit logic.
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systems, signals have numerical significance; so, their design is more 
complex.

Storage of information is easy
The storage of digital information is easy because there are many 
types of semiconductor and magnetic memories of large capacity 
which can store digital data for periods as long a necessary.

Greater accuracy and precision
Digital systems are much more accurate and precise than analog 
systems, because digital systems can be expanded to handle more 
digits simply by adding more switching circuits. Analog systems are 
quite complex and costly for the same accuracy and precision.

Digital systems are less affected by noise
Unwanted electrical signals are called noise. Since in analog systems 
the exact values of voltages are important and in digital systems only 
the range of values is important, the effect of noise is more critical in 
analog systems. In digital systems, noise is not critical as long as it is 
so large that we can not distinguishing a HIGH from a LOW.

Operation can be controlled by a program
It is quite easy to design digital systems whose operation is controlled 
by a set of stored instructions called a program. If we want to change 
the system operation, we can do it easily by modifying the program. 
The analog systems can also be programmed, but the variety of the 
available operations are limited.

More digital circuitry can be fabricated on integrated circuit (IC) 
devices
The fabrication of digital ICs is simpler and economical compared to the 
analog ICs. Moreover, higher densities of integration can be achieved in 
digital ICs than in analog ICs, because digital design does not require 
high value capacitors, precision resistors, inductors and transformers 
(which cannot be integrated economically) like the analog design.

Digital System are more reliable
Digital systems are more reliable than analog systems.

1.2.2 Limitations of Digital Systems

We have already discussed the advantages digital systems, but there 
are some limitation of digital systems. In real world, most physical 
quantities are analog in nature. These quantities are used as input 
signals of system and monitored for controlling the system. In digital 
system these analog quantities are used through following steps:
1. Convert the analog inputs to digital form by a using analog to 

digital converted, ADC.

2. Process the digital information.

3. Convert the digital outputs back to analog form by digital to 
analog converter, DAC.
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Because of these conversions, the processing time increases and the 
system becomes more complex. In most cases, these disadvantages are 
outweighed by numerous advantages of digital techniques. 

1.3 NUMBER SYSTEMS

Number system is one of the most basic topics in digital electronics. 
The knowledge of number systems is important to understand how 
data are represented before they can be processed by any digital 
system including a digital computer.

A number system is nothing more than a code that uses symbols 
to represent a number. In general, in any number system, there 
is an ordered set of symbols known as digits.

The most widely used number system is positional number 
system. In positional number system, a number is represented by 
a string of digits and each digit position has an associated weight. 
A number is made up of a collection of digits and it has two parts ; 
integer and fraction, both are separated by a radix point (.). The 
number is represented as,

intpo

( .... . ... )d d d d d d d
Integer part Radix Fractional part

n n m r1 2 1 0 1 2
-

- - - - -
1 2 34444 4444 1 2 3444 444

where,  r  = radix or base of the number system

 n  = number of digits in the integer part

 m  = number of digits in fractional part

 dn 1-  = most significant digit (MSD)

 d m-  = least significant digit (LSD)

Radix or Base (r )

The number of independent digits or symbols used in a number 
system, is known as radix or base of the number system.

All positional number systems must have a radix or base denoted as 
r . It is defined as the weight of a digit which depends on its relative 
position within the number. The weights of different digits in the 
integer part of the number are given by r 0, r 1, r 2, r 3, and so on, 
starting with the digit adjacent to radix point. For the fractional part, 
these are r 1- , r 2- , r 3- , and so on, again starting with the digit next 
to the radix point.

The value of number is the sum of each digit multiplied by the 
corresponding power of the radix, given as

 N
r_ i  ....d r d r d r d r1

1
2

2
1

1
0

0
n

n
n

n# # # #= + + + +-
-

-
-

_ _ _ _i i i i

  ....d r d r d r1
1

2
2

m
m# # #+ + + +-

-
-

-
-

-
_ _ _i i i (1.3.1)

where d  is the integer in the range 0 d r 1i# # -_ i. On the 
basis of number of different symbols used (radix), number systems 
are classified as, (i) decimal number system, (ii) binary number (iii) 
octal number system, and (iv) hexadecimal number system. Now, we 
discuss each number system in following sections.

SIGNIFICANCE OF RADIX
It is important to note that, maximum 
numbers that can be written with n  digits in 
a given number system are equal to r n , where 
r  is the base or radix.

DO REMEMBER
The value obtained by Eq. (1.3.1) is simply 
equivalent decimal value of the number.
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1.3.1 Decimal Number System

The decimal number system is a radix 10 number system and therefore  
has 10 different digits or symbols to represent a number. These are 0, 
1, 2, 3, 4, 5, 6, 7, 8, and 9. All higher numbers after ‘9’ are represented 
in terms of these 10 digits only. The radix point is known as the 
decimal point.

The weights of different digits in a mixed decimal number, 
starting from the decimal point, are 10 0, 101, 10 2, and so on for the 
integer part and 10 1- , 10 2- , 10 3- , and so on for the fractional part. 
The value of a given decimal number can be expressed as a sum of 
various digits multiplied by their place values or weights.
For example,

 .145 86
10_ i  10 10 5 10 10 101 4 8 62 1 0 1 2# # # # #= + + + +- -

  . .100 40 5 0 8 0 06= + + + +

  .145 86=

1.3.2 Binary Number System

Binary number system is a radix-2 number system with ‘0’ and ‘1’ as 
the two independent digits. All larger binary numbers are represented 
in terms of ‘0’ and ‘1’. The radix point is known as the binary point. 
These symbols are known as bits (binary digits). It is a positional 
number system; the weight of a bit is defined by its position with 
base 2.

Starting from the binary point, the weights of different digits in 
a mixed binary number are 2 0, 21, 2 2, and so on for the integer part 
and 2 1- , 2 2- , 2 3- , and so on for the fractional part.

For example,

 .1011 101
2_ i  1 2 2 1 2 1 2 1 203 2 1 0 1# # # # #= + + + + -

   2 1 20 2 3# #+ +- -

Advantages
1. The binary number system is used in digital computers because 

the basic electronics devices used in these computers can be 
conveniently and efficiently operated in two distinctly different 
modes. For example, a bipolar transistor could be operated 
either in the cut-off or in saturation very efficiently.

2.  The another advantage of this number system is that all kinds of 
data could be conveniently represented in terms of 0’s and 1’s.

3. Lastly, the circuits required for performing arithmetic operations 
such as addition, subtraction, multiplication, division, etc. 
become simpler when the data involved are represented in the 
binary number system.

1.3.3 Octal Number System

The octal number system has a radix of 8 and therefore has 8 digits to 
represent a number. The independent digits are 0, 1, 2, 3, 4, 5, 6, and 
7. All higher order numbers are expressed as a combination of these 

COUNTING IN DECIMAL NUMBER SYSTEM
The process of writing higher order numbers 
after 9 consists of writing the second digit, 
that is 1, first and then following it up with 
other digits, one by one, to obtain the next 10 
numbers from 10 to 19. The next 10 numbers 
from 20 to 29 are obtained by writing the 
third digit, that is 2, first and then following 
it with digits 0 to 9 one by one. The process 
continues till we have used all possible two-
digit combinations and reached 99. 

COUNTING IN BINARY NUMBER SYSTEM
The procedure for writing higher order binary 
numbers after 1 is similar to the one explained 
in case of decimal number system. For example, 
the first 16 numbers in the binary number 
system would be 0, 1, 10, 11, 100, 101, 110, 
111, 1000, 1001, 1010, 1011, 1100,  1101, and 
1111. The also proves the point made earlier 
that a maximum of only 16 2 4=_ i numbers 
could be written with four digits(bits).
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SOLUTION :

Since there are 3 independent digits in the given number system, 
radix is 3. The counting process is same as that of other number 
systems described above. First 10 numbers are as follows 0, 1, X , 10, 
11, 1X , 0X , 1X , XX , 100.

1.4 NUMBER SYSTEM CONVERSION

We know that computer systems process binary data, but the 
information given by the user may be in the form of decimal number, 
hexadecimal number, or octal number. So it is required to study the 
conversion of the numbers from one number system to another.

1.4.1 Finding the Decimal Equivalent

The decimal equivalent of a given number in another number system 
is given by the sum of all the digits multiplied by their respective 
position weight. We can use Eq. (1.3) to obtain decimal equivalent of 
a number represented in any base r , that is

 N
r_ i  ....d r d r d r d r1

1
2

2
1

1
0

0
n

n
n

n# # # #= + + + +-
-

-
-

_ _ _ _i i i i

  ....d r d r d r1
1

2
2

m
m# # #+ + + +-

-
-

-
-

-
_ _ _i i i (1.3.1)

Binary-to-decimal, octal-to-decimal, and hexadecimal-to-
decimal conversions are illustrated in the following sections with the 
help of examples.

Binary-to-Decimal Conversion
For binary number system, base r 2= . So we substitute r 2=  into Eq. 
(1.3) to obtain decimal equivalent of any binary number represented 
as (d d dn n n1 2- - ... .d d d d1 0 1 2- - ...d m- ).

 N 10^ h  ....d d d d2 2 2 2n
n

n
n

1
1

2
2

1
1

0
0# # # #= + + + +-

-
-

-
_ _ _ _i i i i

  ....d d d2 2 2m
m

1
1

2
2# # #+ + + +-

-
-

-
-

-
_ _ _i i i

For example, the decimal equivalent of a binary number 110101 can 
be obtained as,
110101 1 2 1 2 0 2 1 2 0 2 1 2

2
5 4 3 2 1 0# # # # # #= + + + + +_ _ _ _ _ _ _i i i i i i i

    32 16 0 4 0 1= + + + + +
    53

10
= _ i

Similarly, we can convert the binary number 11101.1011 into equivalent 
decimal number as follows

 .11101 1011
2

_ i  1 2 1 2 1 2 0 24 3 2 1# # # #= + + +_ _ _ _i i i i

                       1 2 1 2 0 2 1 2 1 21 2 3 40# # # # #+ + + + +- - - -
_ _ _ _ _i i i i i

                  4 0 1 0.5 0 0. 25 0.062516 8 1= + + + + + + + +

               .29 6875
10

= _ i

Octal-to-Decimal Conversion
For octal number system, base r 8= . So we substitute r 8=  into  Eq. 
(1.3) to obtain decimal equivalent of any octal number represented as 
(d d dn n n1 2- - ... .d d d d1 0 1 2- - ...d m- ). Therefore,

DO REMEMBER
The value obtained by Eq. (1.3.1) is simply 
equivalent decimal value of the number 
represented in any base r .



Chapter 1 Number Systems Page 7

 N 10^ h  ....d d d d8 8 8 8n
n

n
n

1
1

2
2

1
1

0
0# # # #= + + + +-

-
-

-
_ _ _ _i i i i

  ....d d d8 8 8m
m

1
1

2
2# # #+ + + +-

-
-

-
-

-
_ _ _i i i

For example, the decimal equivalent of octal number 4057.06
8_ i  can 

be obtained as

 4057.06
8_ i  4 8 0 8 5 8 7 8 0 8 6 83 2 1 0 1 2# # # # # #= + + + + +- -

  .2048 0 40 7 0 0 0937= + + + + +  2095.0937
10

= _ i

Hexadecimal-to-Decimal Conversion
For hexadecimal number system, base r 16= . So we substitute r 16=  
into Eq. (1.3) to obtain decimal equivalent of any hexadecimal number 
represented as (d d dn n n1 2- - ... .d d d d1 0 1 2- - ...d m- ).

N 10^ h  ....d d d d16 16 16 16n
n

n
n

1
1

2
2

1
1

0
0# # # #= + + + +-

-
-

-
_ _ _ _i i i i

  ....d d d16 16 16m
m

1
1

2
2# # #+ + + +-

-
-

-
-

-
_ _ _i i i

For example, the decimal equivalent of hexadecimal number 5 7C
16_ i  

can be obtained as

 5 7C
16_ i  5 16 12 16 7 162 1 0# # #= + +_ _ _i i i

  1280 192 7= + +  1479
10

= _ i

1.4.2 Decimal-to-Binary Conversion

The most common method to convert a decimal number to a binary 
number is known as repeated division and multiplication method. In 
this method the integer and fractional parts of a decimal number are 
treated separately for the conversion. 

For the integer part, the binary equivalent can be found by 
successively dividing the integer part of the number by 2, and for the 
fractional part, it is found by successively multiplying the fractional 
part of the decimal number by 2. This is also known as the double-
dabble method.

Integer part Conversion (Repeated Division Method)
In the repeated division method, the decimal number is divided by 2 
and the remainder is found after each division, until the quotient 0 is 
obtained. The last remainder is the MSB. The remainders read from 
bottom to top give the equivalent binary integer number. 

For example, the binary equivalent of decimal number 25
10_ i  

can be obtained as

Hence, 25
10_ i  11001

2
= _ i
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Fractional part Conversion (Repeated Multiplication Method)
In the repeated multiplication method, the fractional part of the decimal 
number is multiplied by 2; the integer part of the multiplication is 
found after each multiplication operation, until the fractional part of a 
decimal number becomes zero. The first integer is the MSB. Thus, the 
integers read from top to bottom give the equivalent binary fraction.

For example, the binary equivalent of decimal number .0 625
10_ i  

can be obtained as

Hence, .0 625
10_ i  .0 101

2
= _ i

EXAMPLE 1.2
Convert the decimal number .57 825

10_ i  to its equivalent binary,

SOLUTION :

The integer part of this decimal number is 57 and the fractional part 
is .0 825. The decimal to binary equivalent can be obtained as follows:

Conversion of integer part :

Hence, 57 111001
10 2
=_ _i i

Conversion of fractional part :

Note that multiplication process goes continue, so we obtain the 
result upto bits only.

DO REMEMBER
If the result of multiplication does not seem 
to be resulting into zero, the process may be 
continued till the desired accuracy or required 
number of bits are obtained.

CONVERSION OF MIXED NUMBERS
To convert a mixed number to binary, convert 
the integer and fraction parts separately to 
binary and then combine them.
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result 0. So, consider the conversion upto 5 bits only.

Hence, .0 201
10_ i  .0 14672

8
= _ i

Combining result of integer and fractional parts, we get the equivalent 
octal number.

 .125 201
10_ i  .175 14672

8
= _ i

1.4.4 Decimal-to-Hexadecimal Conversion

The process of decimal-to-hexadecimal conversion is also similar as 
the two conversion discussed earlier. Again, the integer and fractional 
parts of the decimal number are treated separately. 

To convert the given decimal integer number to hexadecimal, 
successively divide the given number by 16 till the quotient is 0. The 
last remainder is the MSD. The remainders read from bottom to top 
give the equivalent octal integer number.

To convert the given decimal fraction to hexadecimal, 
successively multiply the decimal fraction and the subsequent decimal 
fractions by 16 till the product is 0 or till the required accuracy 
is obtained. The first integer from the top is the MSD. Thus, the 
integers read from top to bottom give the equivalent octal fraction. 

EXAMPLE 1.4
Convert the decimal number .125 201

10_ i  to its equivalent hexadecimal 
number.

SOLUTION :

The integer part of .125 201
10_ i .is 125 and the fractional part is 0.201.

Conversion of integer part :

Hence, 125
10_ i  7D

8
= _ i

Conversion of fractional part :

DO REMEMBER
The process of decimal to hexadecimal 
conversion is same as decimal to binary and 
decimal to octal conversion, except that in this 
case repeated multiplication and division are 
by 16 which is the base of hexadecimal number 
system.
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1.4.6 Binary-to-Octal Conversion

A binary number can be converted into an equivalent octal number 
by splitting the integer and fractional parts into groups of three bits, 
starting from the binary point on both sides. Then, replace each 3-bit 
binary group by the equivalent octal digit given in Table 1.4.1 The 0’s 
can be added to complete the outside groups if required.

EXAMPLE 1.6
Convert the following binary number to their octal equivalents.
(a) 10010111

2_ i  (b) .0 0110101
2_ i  (c) .1110100 0100111

2_ i

SOLUTION :

(a) 10010111
2_ i

Thus, 10010111
2_ i  227

8
= _ i

(b) .0 0110101
2_ i

Thus, .0 0110101
2_ i  .0 324

8
= _ i

(c) .1110100 0100111
2_ i

Thus, .1110100 0100111
2_ i  .164 234

8
= _ i

1.4.7 Hexadecimal-to-Binary Conversion

To convert a hexadecimal number to binary, replace each hex digit 
by its 4-bit binary equivalent. So, we just have to remember the 
4-bit binary equivalents of the basic digits of the hexadecimal number 
system, given in Table 1.4.2.

Table 1.4.2: Hexadecimal digit and its binary equivalent

Hexadecimal Binary Hexadecimal Binary

0 0000 8 1000

1 0001 9 1001

CONFUSION CLEARING
Note that for integer part we start making 
group of 3-bits from left to right and for the 
fractional part we make groups started from 
right to left. We can add 0’s on the extreme 
left of the integer part or extreme right of the 
fractional part to complete a 3-bit group.
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EXAMPLE 1.8
Convert the following binary numbers to their hexadecimal equivalents.
(a) 1011011011

2_ i

(b) .0 010011011
2_ i

(c) .1011001110 011111
2_ i

SOLUTION :

For conversion to hexadecimal, we make group of 4-bits, and replace 
each 4-bit group by a hexadecimal digit.

(a) 1011011011
2_ i

Thus, 1011011011
2_ i  2DB

16
= _ i

(b) .0 010011011
2_ i

Thus, .0 010011011
2_ i  4 8D

16
= _ i

(c) .1011001110 011111
2_ i

Thus, .1011001110 011111
2_ i  .CE C2 7

16
= _ i

1.4.9 Hexadecimal-to-Octal and Octal-to-Hexadecimal 
Conversion

To convert a hexadecimal number to octal, the easiest way is to first 
convert the given hexadecimal number to binary and then the binary 
number to octal.

Similarly, to convert an octal number to hexadecimal, first 
convert the given octal number to binary and then the binary 
number to hexadecimal. Two types of conversion are illustrated in 
the following example.
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(a) An integer decimal number can be converted to any other base r
, by repeatedly dividing the given decimal number by r  until the 
quotient becomes zero. The remainders written from bottom to 
top gives the equivalent.

(b) A fractional decimal number can be converted to any other base 
r , by repeatedly multiplying the given decimal number by r  until 
a number with zero fractional part is obtained. The integer parts 
of multiplication taken from top to bottom gives the equivalent.

3(a). To perform octal−to−binary conversion, replace each digit in the 
octal number with its three-bit binary equivalent. For binary-to-
octal conversion, split the binary number into groups of three 
bits, starting from the binary point, and, if needed, complete the 
outside groups by adding 0’s, and then write the octal equivalent 
of these three-bit groups. 

(b) Similarly, for hexadecimal–binary conversion, replace each 
hex digit with its four-bit binary equivalent. For binary-to-
hexadecimal conversion, split the binary number into groups 
of four bits, starting from the binary point, and, if needed, 
complete the outside groups by adding 0’s, and then write the 
hex equivalent of the four-bit groups.

4(a). For hexadecimal-to-octal conversion, first we convert the given 
hexadecimal number into its binary equivalent and further this 
binary number converted into its octal equivalent.

(b) For octal-to-hexadecimal conversion, the octal number may first 
be converted into an equivalent binary number and then the 
binary number transformed into its hexadecimal equivalent.

EXAMPLE 1.10
Convert the following numbers to their decimal equivalents.
(a) .11101 1011

2_ i       (b) .651 7
8_ i      (c) 9.EF B

16_ i

SOLUTION :

(a)  .11101 1011
2_ i  1 2 1 2 1 2 0 2 1 24 3 2 1 0# # # # #= + + + +_ _ _ _ _i i i i i

   1 2 0 2 1 2 1 21 2 3 4# # # #+ + + +- - - -
_ _ _ _i i i i

  16 8 4 0 1 0.5 0.125 0.06250= + + + + + + + +

  .29 6875
10

= _ i

Thus, .11101 1011
2_ i  .29 6875

10
= _ i

(b) .651 7
8_ i  6 8 5 8 1 8 7 82 1 0 1# # # #= + + + -

_ _ _ _i i i i

  .384 40 1 0 875= + + +  .425 875=

 .651 7
8_ i  .425 875

10
= _ i

(c) .EF B9
16_ i  E F B16 16 9 16 162 1 0 1# # # #= + + + -

_ _ _ _i i i i

  14 256 15 16 9 1 11 16 1# # # #= + + + -
_ _ _ _i i i i

  .3584 240 9 0 6875= + + +

  .3833 675=

Thus, .EF B9
16_ i  .3833 675

10
= _ i

DO REMEMBER
If the result of multiplication does not seem 
to be resulting into zero, the process may be 
continued till the desired accuracy or required 
number of bits are obtained.
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Thus, 543
10_ i  1037

8
= _ i

Conversion of fractional Part:

So on

Thus, .0 815
10_ i  .0 641

8
= _ i

Combining results of integer and fractional part, we get

 .543 815
10_ i  .1037 641

8
= _ i

(c) The integer part of the number .683 275
10_ i  is 683 and fractional 

part is .0 275.

Conversion of Integer Part:

Thus, 683
10_ i  2AB

16= _ i

Conversion of fractional part

Thus, .0 275
10_ i  .0 46

16
= _ i

Combining results of integer and fractional part, we get

 .683 275
10_ i  2 .46AB

16
= _ i

EXAMPLE 1.12
Convert the octal number .527 64

8_ i  to its binary equivalent and the 
binary number .11011101111001 011111

2_ i  to its octal equivalent.

SOLUTION :

To perform octal-to-binary conversion, we replace each octal digit 
with its 3-bit binary equivalent.
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operations such as  binary addition, binary subtraction, binary 
multiplication, and binary division.

1.6.1 Binary Addition

The rules of binary addition are as following:

 0 0+  0=

 1 0+  1=

 0 1+  1=

 1 1+  0=  and a carry 1 (i.e. 10 in binary)

 1 1 1+ +  1=  and carry 1 (i.e. 11 in binary)

The addition of two binary numbers is performed columnwise 
exactly in the same manner as the addition of decimal numbers. When 
the binary numbers are more than one bit, the addition takes place 
bit by bit, which starts from left side. If the sum in one column is a 
two-bit number, the least significant bit is written as part of the total 
sum and the most significant bit is carried to the next left column as 
carry. An example of binary addition is given below.

EXAMPLE 1.14

Add the binary numbers 1101.101 and 111.011.

SOLUTION :

We perform column by column addition as explained below:

In the 2 3- ’s column:
 1 1 0+ = , with a carry of 1 to the 2 2-  column
In the 2 2- ’s column:
 0 1 1 0+ + = , with a carry of 1 to the 2 1-  column
In the 2 1- ’s column:

 1 0 1 0+ + = , with a carry of 1 to the 1’s column
In the 1’s column:

 1 1 1 1+ + = , with a carry of 1 to the 2’s column
In the 2’s column:

 0 1 1 0+ + = , with a carry of 1 to the 4’s column
In the 4’s column:

 1 1 1 1+ + = , with a carry of 1 to the 8’s column
In the 8’s column:

 1 1 0+ = , with a carry of 1 to the 16’s column
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1.6.2 Binary Subtraction

The rules for binary subtraction are as following:

 0 0-  0=

 1 0-  1=

 1 1-  0=

 0 1-  1=  with a borrow of 1
The substraction of two binary numbers is also performed 

columnwise exactly in the same manner as the substraction of 
decimal numbers. When the binary numbers are more than one bit, 
the substraction takes place bit by bit, starting from left side(LSB). 
When 1 is subtracted from 0, we borrow a 1 from the next higher 
significant bit. The following examples illustrate the subtraction of 
two binary number.

EXAMPLE 1.15
Subtract 111.111 from 1010.01.

SOLUTION :

We perform the column by column subtraction as explained below:

Therefore, in the 2 3-  column, 10 1 1- =
In the 2 2- ’s column  10 1 1- =
In the 2 1- ’s column  1 1 0- =
In the 1’s column  1 1 0- =
In the 2’s column  10 1 1- =
In the 4’s column  1 1 0- =
In the 8’s column  0 0 0- =
Hence, the result is .0010 0112

Explanation:
In the 2 3-  column, a 1 cannot be subtracted from a 0. So, borrow a 1
from the 2 2-  column making the 2 2-  column 0. The 1 borrowed from 
the 2 2-  column becomes 10 in the 2 3-  column. .

In the 2 2-  column, a 1 cannot be subtracted from a 0. So, borrow 
a 1 from the 2 1-  column, but it is also a 0. So, borrow a 1 from the 1’s 
column. That is also a 0, so borrow a 1 from the 2’s column making 
the 2’s column 0. This 1 borrowed from the 2’s column becomes 10 
in the 1’s column. Keep one 1 in the 1’s column, bring the other 1 to 
the 2 1-  column, which becomes 10 in this column. Keep one 1 in the 
2 1-  column and bring the other 1 to the 2 2-  column, which becomes 
10 in this column. Therefore,

Now, in the 2’s column, a 1 cannot be subtracted from a 0; 

READER NOTE
In 0 1- , the result is negative. It indicates 
that the second number is greater than the 
first one. Similar to decimal number system, a 
borrow is generated.

READER NOTE
There are another methods of binary 
subtraction know as 1’s and 2’s complements 
methods. These methods are better than 
conventional method and discussed latter on.
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EXAMPLE 1.17
Divide 11011011

2_ i  by 110
2_ i

SOLUTION :

 

Thus, 11011011 110
2 2'_ _i i  .10010 1

2
= _ i

Explanation:
Diviser 110 can go in 110, one time with a remainder of 0. Next bit 
is 1, 110 can not go in 1 so we take another next bit and put 0 in 
quotient. Now we have 11. Again 110 can not go in 11, so we take 
another next bit 0 and put 0 in quotient. Now we have 110. 110 can 
go in 110, one time with a remainder 0. Similarly we can perform the 
complete division operation.

1.7 COMPLEMENTS OF NUMBERS

Complements are used in digital systems to simplify the subtraction 
operation. For each base−r  system there are two useful types of 
complements, the r ’s−complement, and the 1r -_ i’s−complement. 
These are also referred to as the radix complement and the diminished 
radix complement respectively. 

Accordingly, for the base−10(decimal) system we have the 10’s 
-complements and the 9’s-complements, for the base−2(binary) system 
we have the 2’s−complements and 1’s-complements, for the base−8(octal) 
system we have the 8’s−complements and 7’s−complements, and for 
the base−16 we have the 16’s−complements and the 15’s−complements. 
We consider each in next sections.

1.7.1 Diminished Radix Complement or r 1-_ i’s 
Complement

Consider a number N  in base-r  system having n  digits, then the 
r 1-_ i’s complement of N  is defined as r N1- -n

_ i . 

For decimal number, r 10=  and r 1 9- = , so the 9’s 
complement of N  is N10 1n - -_ i . In this case, 10n  represents a 
number that consists of single 1 followed by n  0’s. 10 1n -  is a number 
represented by n  9’s. For example, if n 4= , we have ,10 10 0004 =  
and 10 1 99994 - = . Hence, it follows that the 9’s complement of a 
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decimal number is obtained by subtracting each digit from 9. For 
example; the 9’s complement of 645800 is 999999 006458 354199- = .

For binary numbers, r 2=  and r 1 1- = , so the 1’s complement 
of N  is N2 1n - -_ i . Again, 2n  is represented by a binary number 
that consists of a 1 followed by n  0’s.2 1n -  is a binary number 
represented by n  1’s. For example, if n 4= , we have 2 100004

2
= _ i  

and 2 1 11114
2

- = _ i . Thus, the 1’s complement of a binary number is 
obtained by subtracting each digit from 1. However, when subtracting 
binary digits from 1, we can have either 1 0 1- =  or 1 1 0- = , which 
causes the bit to change from 0 to 1 from 1 to 0, respectively. Therefore, 
the 1’s complement of a binary number is formed by changing 1’s to 
0’s and 0’s to 1’s. 

Similarly we can obtain simplified results of finding 1’s, 7’s and 
15’s complements also discussed later in this section.

1.7.2 Radix Complement or r ’s Complement

The r ’s complement of an n -digit number N  in base-r  is defined as 
r Nn -  for N 0!  and as 0 for N 0= . Comparing with the 1r -_ i’s 
complement, we note that the r ’s complement is obtained by adding 
1 to the r 1-_ i’s complement, since 1r N r N 1n n- = - - +_ i7 A . 
Thus, the 10’s complement of decimal 8932 is 11067 1068+ =  and is 
obtained by adding 1 to the 9’s complement

Based on above generalized method of finding complements, 
now we will discuss complements for each number system as follows.

1’s and 2’s Complements
The 1’s complement of a binary number is obtained by complementing 
all its bits, that is, by replacing all 0’s by 1’s and all 1’s by 0’s. For 
example, 1’s complement of 10010110

2_ i  is 01101001
2_ i . 

The 2’s complement of a binary number is obtained by adding 
‘1’ to its 1’s complement. The 2’s complement of 10010110

2_ i  is 
01101010

2_ i .

9’s and 10’s Complement
Corresponding to the 1’s and 2’s complement in the binary system, 
in the decimal number system, we have the 9’s complement and 
10’s complement. The 9’s complement of a given decimal number 
is obtained by subtracting each digit from 9. For example, the 9’s 
complement of 2568

10_ i  would be 7431
10_ i .

 On the other hand, the 10’s complement is obtained by adding 
‘1’ to 9’s complement. For example, the 10’s complement of 2568

10_ i  
is 7432

10_ i .

7’s and 8’s Complement
In the octal number system, we have the 7’s and 8’s complement. The 
7’s complement of a given octal number is obtained by subtracting 
each octal digit from 7. For example, the 7’s complement of 653

8_ i  
would be 124

8_ i .
The 8’s complement is obtained by adding ‘1’ to the 7’s 

complement. For example, the 8’s complement of 653
8_ i  would be 

125
8_ i .

DO REMEMBER
It is important to note that the complement 
of the complement results into its original 
value. To see this relationship, note that 
the r ’s complement of N is r Nn - , so 
that the complement of the complement is 
r r N Nn n- - =_ i  and is equal to the original 
number.
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15’s and 16’s Complement
The 15’s complement and 16’s complement are defined with respect to 
the hexadecimal number system. The 15’s complement is obtained by 
subtracting each hex digit from 15. For example, the 15’s complement 
of 3BF

16_ i  would be C40
16_ i . 

The 16’s complement is obtained by adding ‘1’ to the 15’s 
complement. For example, the 16’s complement of 2AE

16_ i  would be 
D52

16_ i .

EXAMPLE 1.18
Find the 1’s complement of the following binary numbers.
(a) 1101100 
(b) 0.1011 
(c) 1101100.1011

SOLUTION :

(a) Replacing all ones with zeros and all zeros with ones we find that 

the 1’s complement of 1101100 is 0010011. 

(b) Replacing all ones with zeros and all zeros with ones we find that 

the 1’s complement of .0 1011 is .0 0100.
(c) Replacing all ones with zeros and all zeros with ones we find that 
the 1’s complement of .1101100 1011 is .0010011 0100

EXAMPLE 1.19
Find the 2’s complement of the following binary numbers.
(a) 1101100 (b) .0 1011 (c) .1101100 1011

SOLUTION :

First we find 1’s complement of given number and then add 1 to the 
1’s complement to obtain 2’s complement.

(a) 1101100

 

(b) .0 1011

 

READER NOTE
The leading 0 to the left of the binary point 
that separates the integer and fractional parts 
remains unchanged.
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(b) 0.8642

 

(c) 1056.074

 

EXAMPLE 1.22
Find the 7’s complement of the following octal numbers.
(a) .407 270

8_ i  (b) .0156 0037
8_ i

SOLUTION :

(a) We subtract every digit of given number from 7 and we find 7’s 
complement of .407 270 is .370 0507

 

(b) .0156 0037
8_ i

 

EXAMPLE 1.23
Find the 8’s complement of the following octal numbers.
(a) 346

8_ i  (b) .217 275
8_ i

SOLUTION :

First we find 7’s complement of given number and then add 1 to the 
7’s complements to obtain the 8’s complement.
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(a) 346
8_ i

 

(b) .217 275
8_ i

 

EXAMPLE 1.24
Find the 15’s complement of the following hexadecimal numbers.
(a) A B9

16_ i  (b) .D F83 9
16_ i

SOLUTION :

We subtract every digit of the given number from 15 and find the 15’s 
complement.

(a) A B9
16_ i

 

(b) .D F83 9
16_ i

 

EXAMPLE 1.25
Find the 16’s complement of the following hexadecimal numbers.
(a) A C8

16_ i  (b) .C B E0070 6
16_ i

SOLUTION :

First we find 15’s complement of the given number and then add 1 to 
the 15’s complement to obtain the 16’s complement.

(a) A C8
16_ i
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numbers. In the 1’s complement representation, the positive numbers 
remain unchanged i.e. positive number are represented in its true 
binary form. 1’s complement representation of negative number can 
be obtained using following steps:

M E T H O D O L O G Y
1. Write the positive number in binary form.
2. Find the 1’s complement of the binary number.

For example, 1’s complement representation of 41+  and 41-  is shown 
below

The 1’s complement of a positive binary number is negative and 
vice-versa. 8

10
+_ i  is represented by 00001000

2_ i , whereas 11110111
2_ i  

represents 8
10

-_ i  in 1’s complement representation of binary number.

1.8.3 2’s Complement Representation

In the 2’s complement representation of binary numbers, the MSB 
represents the sign with a ‘0’ used for a plus sign and a ‘1’ used for 
a minus sign. 

Again, the positive numbers remain unchanged in 2’s 
complement binary form i.e., positive number are represented in its 
true binary form. 1’s complement representation of negative number 
can be obtained using following steps:

M E T H O D O L O G Y
1. Write the positive sign number.
2. Find the 1’s complement of the number by replacing 0 by 1 

and 1 by 0.
3. Find the 2’s complement of the number by adding 1 to 1’s 

complement of the number.

For example, 2’s complement representation of 41+  and 41-  is shown   
below.

RANGE OF NUMBERS REPRESENTED IN 
1’S COMPLEMENT FORM
n -bit notation can be used to represent 
numbers in the range from 2 1n 1- --

_ i 
to 2 1n 1+ --

_ i using the 1’s complement 
format. The eight-bit representation of the 1’s 
complement format can be used to represent 
decimal numbers in the range from 127-  to 

127+ .

RANGE OF NUMBERS REPRESENTED IN 
2’S COMPLEMENT FORM
The n -bit notation of the 2’s complement 
representation can be used to represent all 
decimal numbers in the range from 2 n 1- -

_ i 
to. 2 1n 1+ --

_ i 
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 25
10

+_ i  00011001
2

= _ i

Step 3 : Find 1’s complement by replacing 0 by 1 and 1 by 0.

1’s complement of 25
10

+_ i   11100110=

So, 1’s complement representation of 25
10

-_ i  11100110=

(e) 2’s complement representation of 25+ .
Step 1 : Find the binary equivalent of the number.

 25
10_ i  0011001

2
= _ i

Step 2 : Write the positive number using 8-bits

 25
10

+_ i  00011001
2= _ i

The 2’s complement representation of a positive number is same as 
the sign magnitude representation of positive number.

Hence, 2’s complement representation of 25 00011001
10

+ =_ i

(f ) 2’s complement representation of 25-

Step 1 : Find the binary equivalent of the number

 25
10_ i  0011001

2
= _ i

Step 2 : Write the positive number using 8-bits

 25
10

+_ i  00011001
2

= _ i

Step 3 : Find 2’s complement of 25
10

+_ i

 25
10

+_ i  00011001=

Hence, 2’s complement representation of  25
10

-_ i  11100111=

1.9 COMPLEMENT BINARY ARITHMETIC

In basic binary arithmetic discussed in section 1.6, we assumed that 
the numbers are unsigned numbers. The logic of binary arithmetic 
of unsigned number is not applicable to sign-binary numbers. The 
sign numbers are represented by 1’s complement representation or 2’s 
complement representation and the arithmetic operations are relatively 
easier to perform using the 1’s complement or 2’s complement form 
of signed binary numbers.

1.9.1 Addition using 1’s Complement

The addition of sign-numbers can be performed using 1’s complement. 
The methodology for sign-binary number addition using 1’s 
complement is  given below. Consider A and B  are two sign-numbers.

ADVANTAGE OF COMPLEMENT BINARY 
ARITHMETIC
The advantage of performing subtraction by 
the complement method is reduction in the 
hardware. Instead of having separate digital 
circuits for addition and subtraction, only 
adding circuits are needed. That is, subtraction 
is also performed by adders only. Instead of 
subtracting one number from the other, the 
complement of the subtrahend is added to the 
minuend.
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M E T H O D O L O G Y
1. Obtain the number of bits that are required to represent the 

sign number. The number of bits required to represent the 
sign number is n , such that 2 1n 1--  is greater than or equal 
to the maximum of the magnitude of A; B ; A B+ .

2. Represent the two numbers to be added in 1’s complement 
form.

3. Perform the addition using basic rules of binary arithmetic.
4. Check the carry, if the carry is generated, add the carry in 

LSB position.
5.  If the MSB of the result is 0, then the answer is positive 

and in true form. If the MSB of result is 1, then the answer 
is negative i.e. it is in 1’s complement form. So, we have 
to obtain 1’s complement of result to obtain the original 
number.

The methodology can be best illustrated using the following examples.

1. Addition of two positive numbers

 8 9+  17=
Step 1: Find the number of bits required to represent the number.

 2 1n 1--  > max , ,8 9 17_ i

 2 1n 1--  17>  and n 6=
Step 2: The 1’s complement representation of a positive number is 
same as its binary equivalent, therefore
1’s complement representation of 8 001000+ =_ i

1’s complement representation of 9 001001+ =_ i

Step 3: Binary addition :

 

The most significant bit is 0, so the sign of the number is 
positive.

 Result 010001 17
2 10

= + = +_ _i i

2. Addition of positive and negative number

 8 9+ -_ i 1=-
Step 1: Find the number of bits required to represent the number.

 2 1n 1--  > max (8, 9, 1)

 2 1n 1--  > 9 and n 5=
Step 2: 
1’s complement representation of 8 01000+ =_ i

1’s complement representation of 9 1- =_ i ’s complement of 9+_ i

    1= ’s complement of 01001_ i 10110=
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M E T H O D O L O G Y
1. Obtain the number of bits required to represent the sign 

number. The number of bits required to represent the sign 
number is n , such that 2 1n 1--  is greater than or equal to 
the maximum of the magnitude of A; B ; A B- .

2. Obtain the 1’s complement of the subtrahend(the number 
to be subtracted).

3. Add A and the 1’s complement of the subtrahend.
4. Check the carry, if the carry is generated, add the carry in 

LSB position.
5. If the MSB of result is 0, then the answer is positive and 

in true form. If the MSB of result is 1, then the answer 
is negative i.e. it is in 1’s complement form. So, we have 
to obtain 1’s complement of result to obtain the original 
number

READER NOTE
The number to be subtracted is referred to as 
subtrahend and the number from which it is 
subtracted is referred to as minuend.

(i) 8 9 1- =-
 8 9 8 1- = + ’s complement of 9.

Step 1: Find the number of bits required to represent the number.

 2 1n 1--  > max , ,8 9 1_ i

 2 1n 1--  9>  and n 5=
Step 2:
1’s complement of 9 1+ =_ i ’s complement of 01001_ i

  10110=

Step 3: Binary addition

 

The most significant bit is 1, the answer is negative, and it is in 1’s 
complement form.

 Result (1=- ’s complement of 0)1111

  100001
2 10

=- = -_ _i i

(ii) 9 8 1- =
 9 8 9 1- = + ’s complement of 8

Step 1: Find the number of bits required to represent the number.

 2 1n 1--  > max , ,8 9 1_ i

 2 1n 1--  9>  and n 5=

Step 2: 
1’s complement representation of 9 01001+ =_ i

1’s complement of 18- =_ i ’s complement of 8+_ i

   1= ’s complement of 01000_ i

   10111=
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Step 3: Binary addition :

 

The most significant bit is 0, the answer is positive, and it is 
true form.

 Result 100001
2 10

= =_ _i i

1.9.3 Addition using 2’s Complement

The 2’s complement is the most commonly used code for processing 
positive and negative binary numbers. It forms the basis of arithmetic 
circuits in modern computers. The addition of sign-binary numbers 
takes place using 2’s complement.

The methodology for sign binary number addition using 2’s 
complement is given below. Consider A and B  are two sign numbers.

M E T H O D O L O G Y
1. Find the number of bits requried to represent the sign 

number. The number of bits required to represent the sign 
number is n , such that 2 1n 1--  is greater than or equal to 
the maximum of the magnitude of A; B ; A B+

2. Represent the two numbers two be added in 2’s complement 
form.

3. Do the binary addition using binary arithmetic.
4. Ignore the carry, if it is generated.
5. If the MSB is 0, then the answer is positive i.e., it is in true 

form. If MSB of the result is 1, then the answer is negative 
i.e., it is in 2’s complement form. So, we have to obtain 2’s 
complement of this result to get final answer.

1. Addition of Two Positive Numbers
 8 9 17+ =
Step 1: Find the number of bits required to represent the number.

 2 1n 1--  > max , ,8 9 17_ i

 2 1n 1--  17>  and n 6=
Step 2:
2’s complement representation of 8 001000+ =_ i

2’s complement representation of 9 001001+ =_ i

Step 3: Binary addition :
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                                          1110110= +  110111=
Step 4: Binary addition:

 

The most significant bit is 1, the answer is negative; and it is in 2’s 
complement form.

 Result 2=- ’s complement of 101111_ i

  1=- ’s complement 101111 1+_ i

  010000 1=- +_ i

  010001 17
2 10

=- = -_ _i i

1.9.4 Subtraction using 2’s Complement

Subtraction is similar to addition. The subtraction of a binary number 
B  from another binary number A is equivalent to the addition of the 
2’s complement of B  with A, i.e. A B A 2- = +_ i ’s complement of 
B . 

The methodology for binary subtraction using 2’s complement 
is as follows:

M E T H O D O L O G Y
1. Find the number of bits required to represent the sign 

number. The number of bits required to represent the sign-
binary number is n , such that 2 1n 1--  is greater than or 
equal to the maximum of the magnitude of A; B ; A B- .

2. Represent the subtrahend in 2’s complement form.
3. Add the 2’s complement of subtrahend to the minuend.
4. Ignore the carry, if it is generated.
5. If the MSB is 0, then the answer is positive i.e., it is in true 

form. If MSB of the result is 1, then the answer is negative 
i.e., it is in 2’s complement form. So, we have to obtain 2’s 
complement of this result to get final answer.

We consider the following example for a better understanding 
of the above process.
(i) 8 9 1- =-

 8 9 8 2- = + ’s complement of 9
Step 1: Find the number of bits required to represent the number.

 2 1n 1--  > max , ,8 9 1_ i

 2 1n 1--  9>  and n 5=

Step 2:
2’s complement representation of 29- =_ i ’s complement of 9+_ i

                                          1= ’s complement of 19+ +_ i

                                          1= ’s complement of 1001001 +_ i

                                          1110110= +  110111=
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Step 4: Binary addition 

 

The most significant bit is 1, the answer is negative, and it is 
in 2’s complement form.

 Result 2=- ’s complement of 11111_ i

  1=- ’s complement of 11111 1+_ i

  00000 1=- +_ i

  00001 1
2 10

=- = -_ _i i  1=-
(ii) 9 8 1- =
 9 8 9 1- = + ’s complement of 8

Step 1: Find the number of bits required to represent the number.

 2 1n 1--  > max , ,8 9 1_ i

 2 1n 1--  9>  and n 5=

Step 2:
2’s complement representation of 28- =_ i ’s complement of 8+_ i

                                          1= ’s complement of 18+ +_ i

                                          1= ’s complement of 1001000 +_ i

                                          1110111= +  111 000=

Step 4: Binary addition

 

The MSB is 0, the answer is positive, and it is in true form.

 Result 00001 1= =_ i

EXAMPLE 1.27
Perform the following arithmetic operations by using 1’s complement 
method.
(a) 25 14+  (b) 28 15-
(c) 20 42-     (d) 42 20- -

SOLUTION :

(a) 25 14 39+ =

Step 1: Find the number of bits required to represent the number.

 2 1n 1--  , ,max 25 14 39> _ i

 2 1n 1--  39> , n 7=



Chapter 1 Number Systems Page 41

(d)  42 20- -  62=-

Step 1: Find the number of bits required to represent the number.

 2 1n 1--  , ,max 42 20 62> _ i

 2 1n 1--  62>  and n 7=
Step 2: 1’s complement representation of 42 1- =_ i ’s complement of 

42+_ i

  1= ’s complement of 0101010_ i

  1010101=
1’s complement representation of 20 1- =_ i ’s complement of 20+_ i

  1= ’s complement of 0010100_ i

  1101011=

Step 3: Binary addition :

 

The MSB is 1, the answer is negative, and it is 1’s complement form.

 Result 1=- ’s complement of 1000001_ i

  0111110=-_ i

  62=-

EXAMPLE 1.28
Perform the following arithmetic operations by using 2’s complement 
methods.
(a) 76 12+  (b) 56 27-
(c) 21 42-  (d) 46 25- -

SOLUTION :

(a) 76 12 88+ =

Step 1: Find the number of bits required to represent the number.

 2 1n 1--  , ,max 76 12 88> _ i

 2 1n 1--  88> , n 8=
Step 2: 2’s complement representation of positive number is same as 
its binary form.

 76
10_ i  01001100

2
= _ i

 12
10_ i  00001100

2
= _ i
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Step 3: Binary Addition

 

There is no carry and MSB is 0. So, the result is positive.

 Result 01011000 88
10

=+ = +_ _i i

(b) 56 27 29- =

Binary Equivalents

 56
10_ i  111000

2
= _ i

 27
10_ i  011011

2
= _ i

Step 1: Find the number of bits required to represent the number.

 2 1n 1--  , ,max 56 27 29> _ i

 2 1n 1--  56> , n 7=
So, binary equivalents are

 A 56 0111000
10 2

= =_ _i i

 B  27 0011011
10 2

= =_ _i i

Step 2:
2’s complement of 27

10
+_ i

 

Step 3: Binary Addition

 

There is carry, ignore it. The MSB is 0. So, the result is positive and 
is in normal binary form.

 Result 0011101=+_ i

  29
10

= +_ i

(c) 21 42-  21=-

 21 42-  21 2= + ’s complement of 42
Step 1: Find the number of bits required to represent the number.

 2 1n 1--  , ,max 21 42 21> _ i

 2 1n 1--  42>  and n 7=
Step 2: 1’s complement of 42+_ i
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The MSB is 1, the answer is negative and it is in 2’s complement 
form.

 Result 2=- ’s complement of 10111001_ i

  01000111 71=- =-_ i

1.10 ARITHMETIC OVERFLOW

When we add two numbers and the number of bits required to 
represent the sum exceeds the number of bits in the two numbers, it 
is known as overflow result. This overflow condition can occur only 
when two positive or two negative are being added, and it always 
produces an incorrect result. Overflow can be detected by checking to 
see that the sign bit of the result is the same as the sign bits of the 
numbers being added.

For illustration, we consider the sum of two positive binary 
numbers as Case 1 and the sum of two negative binary numbers as 
Case 2.

Case 1 : Sum of two positive numbers
Consider the sum of 125+  and 75+

 

As the decimal sum of 125+  and 75+  is 200+ ; the length 
of the number is 8-bit, the result is 9-bit and an overflow occurs. 
This overflow changes the sign of the result and the answer is wrong. 
Result shows that the sum of two positive numbers is negative, which 
is wrong.

Case 2 : Sum of two negative numbers
Consider the sum of 61-  and 43-

 

As the decimal sum of 61-  and 43-  is 104- , the length of the 
number is 8-bit, the result is 9-bit and an overflow occurs.
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1.11 HEXADECIMAL ARITHMETIC

The rules of arithmetic operation in hexadecimal number system are 
same as in binary and decimal systems. But, we are not interested 
in performing hexadecimal arithmetic operation using hexadecimal 
representation of numbers. The better way to perform arithmetic 
operation of hexadecimal numbers is using 1’s or 2’s complement and 
other is using 15’s and 16’s complement, discussed as follows.

1.11.1 Hexadecimal Arithmetic using 1’s or 2’s Complements

In this method first we convert the hexadecimal numbers into 
equivalent binary numbers and then addition and subtraction can be 
performed using 1’s or 2’s complement as discussed earlier in section 
1.9. Then, convert the result to hexadecimal again.

EXAMPLE 1.29
Perform the following arithmetic operation using 2’s complement 
method.
(a) 6 5E C

16 16
+_ _i i  (b) 4 7C B

16 16
-_ _i i

(c) 3 5A D
16 16
-_ _i i  (d) 4 . 29.F B A

16 16
-_ _i i

SOLUTION :

(a) 6 5E C
16 16
+_ _i i

 A 6E 0110 1110
16 2

= =_ _i i

 B  5C 1100 0101
16 2

= =_ _i i

We know that 2’s complement representation of positive number is 
same as its binary equivalent.

 

 Result 100110011 133
2 16

= =_ _i i

(b) 4 7C B
16 16
-_ _i i

 A 4C 1100 0100
16 2

= =_ _i i

 B  7B 01111011
16 2

= =_ _i i

 4 7C B
16 16
-_ _i i  4 2C

16
= +_ i ’s complement of 7B

16_ i

 

Thus, we perform subtraction as below
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1.11.2 Hexadecimal Subtraction using 15’s or 16’s 
complement

Similar to 1’s and 2’s complement subtraction in binary system, the  
hexadecimal subtraction can also be performed using 15’s and 16’s 
complement methods. The methodology for hexadecimal subtraction 
using 15’s complement is as given below:

M E T H O D O L O G Y
1. Find the 15’s complement of the subtrahend(the number to 

be subtracted).
2. Add 15’s complement of subtrahend to the minuend.
3. If there is a carry, it indicates that the answer is positive. 

Add the carry to the LSD of this result to get the answer.
4. If there is no carry, it indicates that the answer is negative 

and the result obtained is its 9’s complement. So, Take the 
9’s complement of this result and place a negative sign in 
front to get the final answer.

EXAMPLE 1.30
Perform the following subtractions using 15’s complement.
(a) 02 98B F

16 16
-_ _i i  (b) 69 14B C

16 16
-_ _i i

 minuend,  A 02B=

 Subtrahend,  B  98F=
Step 1: Find the 15’s complement of B

 

Step 2: 02 98B F
16 16
-_ _i i  02 15B

16
= +_ i ’s complement of 98F

16_ i

 

(b) 69 14B C
16 16
-_ _i i

 Minuend,  A 69B=

 Subtrahend,  B  14C=

Step 1: Find the 15’s complement of B .
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Step 2: 69 14B C
16 16
-_ _i i  69 15B

16
= +_ i ’s complement of 14C

16_ i

 

There is no carry, therefore result is in its 9’s complement form end 
it is negative

 Result 9=- ’s complement of 86A

 

 Result 579
16

=-_ i

The methodology for hexadecimal subtraction using 16’s 
complement is as given below:

M E T H O D O L O G Y
1. Find the 16’s complement of the subtrahend(the number to 

be subtracted).
2. Add 16’s complement of subtrahend to the minuend.
3. If there is a carry, ignore it. The presence of the carry 

indicates that the answer is positive; the result obtained is 
itself the answer. 

4. If there is no carry, it indicates that the answer is negative 
and the result obtained is its 16’s complement. Obtain the 
16’s complement of the result and place a negative sign in 
front to get the answer.

EXAMPLE 1.31
Perform the following subtractions using 16’s complement method.
(a) 2CB 972

16 16
-_ _i i  (b) 3 7B 854

16 16
-_ _i i  (c) 2 9B1352

16 16
-_ _i i

SOLUTION :

(a) 2CB 972
16 16
-_ _i i

 Minuend,  A 2CB=

 Subtrahend,  B  972=
Step 1: Find 16’s complement of subtrahend
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Step 1: Find 16’s complement of Subtrahend

 

Step 2: Add 16’s complement of B  to A.

 

There is no carry, so answer is negative and is in its 16’s complement 
form.

 Result 16=- ’s complement of 2099
16_ i

 

Thus,

 2 9B1352
16 16
-_ _i i  67DF

16
= -_ i

1.12 OCTAL ARITHMETIC

The rules of octal arithmetic are same as binary and decimal systems.  
Similar to hexadecimal arithmetic we will not consider the arithmetic 
operation using octal representation of number. Again, the better 
way to perform octal arithmetic is is using 1’s or 2’s complement and 
other is using 7’s and 8’s complement, discussed as follows.

1.12.1 Octal Arithmetic using 1’s or 2’s Complements

Convert the octal numbers into equivalent binary numbers and then 
addition and subtraction can be performed using 1’s or 2’s complement 
as discussed earlier in section 1.9. Convert the result back into octal 
number system.

EXAMPLE 1.32
Perform the following addition and subtraction using 8-bit 2’s 
complements.
(a) . .27 5 74 4

8 8
+_ _i i  (b) 66 45

8 8
-_ _i i  (c) 25 73

8 8
-_ _i i
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SOLUTION :

(a) . .27 5 74 4
8 8
+_ _i i

In binary form

 A . .27 5 010 111 101
8 2

= =_ _i i

 B  . .74 4 111100 100
8 2

= =_ _i i

Here, both the numbers are positive, so we can directly perform the 
addition.

 

Octal equivalent of . .001 010100 001 124 1
2 8
=_ _i i

(b) 66 45
8 8
-_ _i i

In binary form (8-bit)

 A 66 00 110 110
8 2

= =_ _i i

 B  45 00 100 101
8 2

= =_ _i i

Step 1: Find 2’s complement of B .

 

Step 2: Add 2’s complement of B  to A

 

MSB is 0, so answer is positive and in true binary form.

 Result 00 010 001 21
2 8

= =_ _i i

(c) 25 73
8 8
-_ _i i

In 8-bit binary form

 A 25 00 010 101
8 2

= =_ _i i

 B  73 00 111 011
8 2

= =_ _i i

Step 1: Find 2’s complement of 73
8_ i
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Step 1: Find 7’s complement of subtrahend

 

Step 2:

 176 157
8 8
-_ _i i  176 7= +_ i ’s complement of 157

8_ i

 

There is a carry, so answer is positive and in its true form. Thus,

 176 157
8 8
-_ _i i  017

8
= _ i

(b) 153 243
8 8
-_ _i i

 Minuend,  A 153=

 Subtrahend,  B  243=
Step 1: Find 7’s complement of subtrahend

 

Step 2:

 153 243
8 8
-_ _i i  153 7

8
= +_ i ’s complement of 243

8_ i

 

There is no carry, so answer is negative and in its 7’s complement of 
707

8_ i

   So, 153 243
8 8
-_ _i i  70

8
= -_ i

Similarly, the methodology for octal subtraction using 8’s 
complement is as given below:
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M E T H O D O L O G Y
1. Find the 8’s complement of the subtrahend(the number to 

be subtracted).
2. Add 8’s complement of subtrahend to the minuend.
3. If there is a carry, ignore it. The presence of the carry 

indicates that the answer is positive; the result obtained is 
itself the answer. 

4. If there is no carry, it indicates that the answer is negative 
and the result obtained is its 8’s complement. Obtain the 8’s 
complement of the result and place a negative sign in front 
to get the answer.

EXAMPLE 1.34
Using 8’s complement, perform the following subtractions.
(a) 516 413

8 8
-_ _i i  (b) 316 451

8 8
-_ _i i

SOLUTION :

 Minuend,  A 516=

 Subtrahend,  B  413=
Step 1: Find 8’s complement of subtrahend

 

Step 2:

 516 413
8 8
-_ _i i  516 8

8
= +_ i ’s complement of 413

8_ i

 

There is carry, so answer is positive and in its true form. Therefore,

 516 365
8 8
-_ _i i  103

8
= _ i

(b) 316 451
8 8
-_ _i i

 Minuend,  A 316=

 Subtrahend,  B  451=
Step 1: Find 8’s complement of subtrahend
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EXAMPLE 1.35
Subtract the following numbers using 9’s complement method.
(a) 7842 3791-  (b) 265 894-
(c) . .745 81 436 62-  (d) . .73 68 538 9-

SOLUTION :

(a) 7842 3791
10 10
-_ _i i

 Minuend,  A 7842=

 Subtrahend,  B  3791=
Step 1:  Find 9’s complement of subtrahend

 

Step 2:

 7842 3791
10 10
-_ _i i  7842 9

10
= +_ i ’s complement of 3791

10_ i

 

(b) 265 894
10 10
-_ _i i

 Minuend,  A 265=

 Subtrahend,  B  894=
Step 1: Find 9’s complement of subtrahend

 

Step 2:

 265 894
10 10
-_ _i i  265 9

10
= +_ i ’s complement of 897

10_ i

 

There is no carry in the result, so answer is negative and is in 9’s 
complement form.

 Result 9=- ’s complement of 370
10_ i
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So, 265 894
10 10
-_ _i i  629

10
= -_ i

(c) . .745 81 436 62
10 10
-_ _i i

 Minuend,  A .745 81=

 Subtrahend,  B  .436 62=
Step 1: Find 9’s complement of subtrahend

 

Step 2:

 . .745 81 436 62
10 10
-_ _i i  .745 81 9

10
= +_ i ’s complement of .436 62

10_ i

 

There is carry, so answer is positive and in its true decimal form.

(d) . .73 68 538 9
10 10
-_ _i i

Note : Represent both operands using of digits same number.

 Minuend,  A .073 68=

 Subtrahend,  B  .538 90=

Step 1: Find 9’s complement of subtrahend

 

Step 2:

 . .73 68 538 9
10 10
-_ _i i  .73 68 9

10
= +_ i ’s complement of .538 9

10_ i

 

There is no carry, it indicates the answer is negative and result 
obtained is its 9’s complement. So take 9’s complement of this result 
and place a negative sign in front to get final answer.
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There is a carry indicating that answer is positive and in its decimal 
form.

Thus, 546 232
10 10
-_ _i i  314

10
= _ i

(b) 384 726
10 10
-_ _i i

 Minuend,  A 384=

 Subtrahend,  B  726=
Step 1: Find 10’s complement of subtrahend.

 

Step 2:

 384 726
10 10
-_ _i i  384 10

10
= +_ i ’s complement of 726

10_ i

 

There is no carry, it means answer is negative and in its 10’s 
complement form. So

 Result 10=- ’s complement of 658
10_ i

 

Thus, 384 726
10 10
-_ _i i  342

10
= -_ i

(c) . .326 4 87 2
10 10
-_ _i i

 Minuend,  A .326 4=

 Subtrahend,  B  .087 2=
Step 1: Find 10’s complement of subtrahend

 

Step 2:

 . .326 4 087 2
10 10
-_ _i i  .326 4 10

10
= +_ i ’s complement of .087 2

10_ i

READER NOTE
It is important to note that when dealing with 
complement representations, the two operands 
must have the same number of digits.
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The presence of carry indicates that answer is positive and in its true 
decimal form. Thus,

 . .326 4 87 2
10 10
-_ _i i  .239 2

10
= _ i

(d) . .76 23 209 4
10 10
-_ _i i

 Minuend,  A .076 23=

 Subtrahend,  B  209.40=
Step 1: Find 10’s complement of subtrahend

 

Step 2:

 . .76 23 209 4
10 10
-_ _i i  .76 23 10

10
= +_ i ’s complement of .209 4

10_ i

 

There is no carry, it means answer is negative and in its 10’s 
complement form.

 Result 10=- ’s complement of .866 83
10_ i

  

So, . .76 23 209 4
10 10
-_ _i i  .133 17

10
= -_ i

1.14 FLOATING POINT NUMBERS

In the decimal number system many bits are required to represent 
very large integer numbers. There is also a problem when numbers 
with both integer and fractional parts, such as .35 2582, need to be 
represented. Floating-point notation can be used conveniently to 
represent both large as well as small fractional or mixed numbers. 
Also arithmetic operations on these numbers becomes much easier if 

READER NOTE
It is important to note that when dealing with 
complement representations, the two operands 
must have the same number of digits.

READER NOTE
Floating-point representation increases the 
range of numbers, from the smallest to the 
largest, that can be represented using a given 
number of digits.
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The number is positive, hence the sign bit is 0, and the single precision 
floating point representation of the given number is :

Double Precision Floating Point Binary Numbers
In double precision, the word size of the floating point number is 64-
bits. The format of single precision floating point number is shown 
in Figure 1.14.2. Out of these 64-bits, the left most bit is used for 
sign(S), the next 11 bits are used for bias exponent and LSB 52-bits 
are used for mantissa.

Figure  1.14.2: Double precision format

To illustrate, let us consider the example of a decimal number 
.144 125. Its binary representation is

 .144 125
10_ i  .10010000 001=

  .1 0010000001 27#=
The mantissa is converted to 52-bits significant value by putting 

zeros to the left side of number as

 Significant 

           1001000000100000000000000000000000000000000000000000=
The bias exponent is the sum of exponent value 7 and bias 256. It is 
given as

 Bias exponent 2567 263
10

= + = _ i

Using the conversion techniques, its 11-bits binary representation is

 Bias exponent 00100000111=
The number is negative, hence the sign bit is 1, and the double 
precision floating point representation of the given number is :

EXAMPLE 1.37
Find the single precision floating point representation of the decimal 
number 23

10_ i .

SOLUTION :

Step-by-Step transformation of 23
10_ i  into an equivalent floating-

BIAS EXPONENT
In this case bias exponent is obtained by adding 
1023 to the actual exponent. The addition of 
bias allows the use of an exponent in the range 
from 1023-  to 1024+ , corresponding to a 
range of 0–2047.
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point number in single-precision IEEE format is as follows :

1. First find the binary equivalent of given number.

 23
10_ i  10111

2
= _ i

2. 23
10_ i  1.0111 210111

2
4#= =_ i

The mantissa is converted to 23-bits significant value by putting 
zeros to the left side of the number as

 Mantissa 0111000 00000000 00000000=
3. The bias exponent is the sum of exponent value (4) and bias (127). 
It is given as

 Bias exponent 4 127 131
10

= + = _ i

Using the conversion techniques, its binary representation is

 Bias exponent 10000011=
4. The number is positive, hence the sign bit is 0, and the single 
precision floating point representation of the given number is :
 23 0100000110111000 00000000 00000000

10
+ =_ i

EXAMPLE 1.38
Determine the floating-point representation of 142

10
-_ i  using IEEE 

single precision format.

SOLUTION :

1. As a first step, we will determine the binary equivalent of 142
10_ i

. Following the procedure outlined in the earlier part of the chapter, 
the binary equivalent can be written as 142 10001110

10 2
=_ _i i .

2. 10001110
2_ i  1.000 1110 27#=

 Mantissa 0001110 00000000 00000000= .
3. Exponent 00000111= .

The bias exponent is the sum of exponent value (7) and bias (127). 
It is given as

 Bias exponent 1277 134
10

= + = _ i

Using the conversion techniques, its binary representation is

 Bias exponent 10000110=
4. Sign of mantissa 1=

Therefore, 142 11000011 00001110 00000000 00000000
10

- =_ i

Range of Numbers and Precision
The range of numbers that can be represented in any digital system 
depends upon the number of bits in the exponent, while the fractional 
accuracy or precision is defined by the number of bits in the mantissa. 
The higher the number of bits in the exponent, the larger is the range 
of numbers that can be represented. 

For example, the range of numbers possible in a floating-point 
binary number format using six bits to represent the magnitude of the 
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EXAMPLE 1.40
Subtract 17

8_ i  from 21
8_ i  using floating point numbers and verify the 

answer.

SOLUTION :

 21
8_ i  .010001 0 010001 2

2
6#= =_ i

 17
8_ i  .001111 0 001111 2

2
6#= =_ i

Therefore,

 21 17
8 8
-_ _i i  . .0 010001 0 001111 2 6#= -_ i

  .0 000010 2 000010 026
8#= = = _ i

Also, 21 17
8 8
-_ _i i  02

8
= _ i  and hence is verified.

***********
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EXAMPLES

EXAMPLE 1.41
Find the sign-magnitude representation of numbers using 8 bits:
(a) 27+  (b) 27-
(c) 101+  (d) 106-

SOLUTION :

(a) 27
10_ i

 27
10_ i  11011

2
= _ i

  0011011
2

= _ i  (Magnitude is represented by 7bits)
The number is positive and the most significant bit is 0.

Hence, the sign-magnitude representation of 27 00011011
10
=_ i .

(b) The binary equivalent of 27 0011011
10 2
=_ _i i

The number is negative and the most significant bit is 1.

Hence, sign-magnitude representation of 27 10011011
10

- =_ i

(c) 101
10_ i

Hence, 101
10_ i  1100101

2
= _ i

The number is positive and the most significant bit is 0.

Hence, the sign-magnitude representation of 101 01100101
10

+ =_ i .
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Hence, 88
10_ i  1011000

2
= _ i

Step 2 : Write the positive number using 8-bits.

 88
10

+_ i  01011000
2

= _ i

Step 3 : Find the 1’s complement by replacing 0 by 1 and 1 by 0

 1’s complement of 88
10

+_ i  88 10100111
10 2

= - =_ _i i

EXAMPLE 1.44
Find decimal equivalent of the following binary numbers.
(a) 10100111

2_ i  (b) 01010011
2_ i

(c) 10111011
2_ i

Assume the given numbers in 1’s complement representation.

SOLUTION :

(a) Step 1 : Check the sign of the given number.

The most significant bit of the given number is 1; the sign of the 
number is negative.

Step 2 : Find the 1’s complement of the number.

1’s complement of 10100111 01011000
2
=_ i

Step 3 : Find the decimal equivalent.

 1011000 1 2 0 2 1 2 1 2 0 226 5 4 3# # # # #= + + + +

   0 2 0 21 0# #+ +

  64 16 8= + +  88=
Hence, the decimal equivalent of 10100111 88

2 10
= -_ _i i

(b) Step 1 : Check the sign of the given number.

The most significant bit of the given number is 0; the sign of the 
number is positive.

Step 3 : Since the number is positive so 1’s complement representation 
is same as its binary equivalent. Therefore, the decimal equivalent is

 1010011 1 2 0 2 1 2 0 2 0 26 5 4 3 2# # # # #= + + + +

   1 2 1 21 0# #+ +

  64 16 2 1= + + +   83=
Hence, the decimal equivalent of 01010011 83

2 10
= +_ _i i
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Hence, 64
10_ i  1000000

2
= _ i

Step 2 : Write the positive number using 8-bits.

 64
10

+_ i  01000000
2

= _ i

The 2’s complement representation of a positive number is same as 
the sign magnitude representation of a positive number.

(c) Step 1 : Find the binary equivalent of the number.

Hence, 89
10_ i  1011001

2
= _ i

  01011001
2

= _ i  (adding 0 to the left)
Step 2 : Write the positive number using 8-bits.

 89
10

+_ i  01011001
2

= _ i

Step 3 : Find the 1’s complement by replacing 0 by 1 and 1 by 0.

1’s complement of 89 89 10100110
10 10 2

+ = - =_ _ _i i i

Step 4 : Find the 2’s complement by adding 1 to 1’s complement.

 

Hence, the 2’s complement representation of 89 10100111
10

- =_ i

EXAMPLE 1.46
Find decimal equivalent of the following binary numbers.
(a) 10011001

2_ i  (b) 01100111
2_ i

(c) 10101011
2_ i

Assume the given number in 2’s complement representation.

SOLUTION :
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(a) Step 1 : Check the sign of the given number.

The most significant bit of the given number is 1; the sign of the 
number is negative.

Step 2 : Find the 1’s complement of the number.

 1’s complement of 10011001
2_ i  01100110=

Step 3 : Find the 2’s complement of the number.

 

Step 4: Find the decimal equivalent.

 110 0111 1 2 1 2 0 2 0 2 1 246 5 3 2# # # # #= + + + +

   1 2 1 21 0# #+ +

  64 32 4 2 1= + + + +

  103=
Hence, the decimal equivalent of 10011001 103

2 10
= -_ _i i

(b) Given number is 01100111
2_ i

Step 1 : Check the sign of the given number.

The most significant bit of the given number is 0, the sign of the 
number is positive.

Step 2 :Since the number is positive so 2’s complement representation 
is same as its binary equivalent. Therefore, the decimal equivalent is

 110 0111 1 2 1 2 0 2 0 2 1 26 5 4 3 2# # # # #= + + + +

   1 2 1 21 0# #+ +

  64 32 4 2 1= + + + +

  103=
Hence, the decimal equivalent of 01100111 103

2 10
= +_ _i i

(c) Step 1: Check the sign of the given number.

The most significant bit of the given number is 1; the sign of the 
number is negative.

Step 2: Find the 1’s complement of the number.

 1’s complement of 10101011
2_ i  01010100=

Step 3: Find the 2’s complement of the number.

 

Step 4: Find the decimal equivalent.

 1010101 1 2 0 2 1 2 0 2 1 26 5 4 3 2# # # # #= + + + +

   0 2 1 21 0# #+ +

  64 16 4 1= + + +

  85=
Hence, the decimal equivalent of 10101011 85

2 10= -_ _i i



Page 74 Number Systems Chapter 1

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

 A 1101101=

 B  0110110=
Step 2 : 1’s complement of 0110110 1001001=

Step 3 : Binary addition

 

The MSB is 0. So, the result is positive and is in its true form.

 Result 0110111=+_ i

(b) 10100 110000-

Step 1 : In the complement representation the two operands must 

have same number of bits.

 A 010100=

 B  110000=
Step 2 : 1’s complement of 110000 001111=

 

There is no carry. The MSB is a 1. So, the result is negative and is its 
1’s  complement form.

 Result =-[1’s complement of 100011]

  011100=-_ i

(c) . .1101 1011 10110 11-

Step 1 : In the complement representation the two operands must 
have same number of bits.

 A .01101 1011=

 B  .10110 1100=
Step 2 : 1’s complement of . .10110 1100 01001 0011=

Step 3 : Binary Addition

 

There is no carry MSB is 1 so the result is negative and is in its 1’s 
complement form.

 Result =-[1’s complement of .10110 1110]

  .01001 0001=-_ i

(d) . .10110 01 1011 1101-
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Step 2 : 1’s complement representation of . .27 50 11100100 0111- =_ i

Step 3 : Binary Addition

The MSB is 0. So, the result is positive and in its true binary form.

 Result .00101001 0100= _ i

  .41 25
10

= _ i

EXAMPLE 1.50
Perform the following binary subtraction using 2’s complement 
method.
(a) 1001 101000-
(b) 10100 110000-
(c) . .1101 1011 10110 11-

SOLUTION :

(a) 1001 101000-

Step 1 : In the complement representation the two operands must 
have same number of bits.

 A 001001 9
10

= = _ i

 B  101000 40
10

= = _ i

Step 2 : Find 2’s complement of B

 

Step 3 : Binary Addition

 

There is no carry, the MSB is 1. So, the result is negative and is in 
2’s complement form.

 Result 2= ’s complement of 10001

  011111 31
10

= = -_ i

(b) 00110011 00010000-

Step 1 : Both the operands are in 8-bits.

 A 00110011 51
2 10

= =_ _i i

 B  00010000 16
2 10

= =_ _i i
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REVIEW QUESTIONS

1. What are the salient features of digital systems over analog-
systems?

2. What is the radix called in case of decimal, binary, octal, 
and hexadecimal number systems?

3. What is the advantage of octal and hexadecimal numbers 
over binaries?

4. Discuss (a) double precision numbers and (b) floating point 
system.

5. What represents in a floating-point representation:

(a) the range of representable numbers;

(b) precision with which a given number can be represented?

6. What decides the following in a number system:

(a) place value or weight of a given digit;

(b) maximum numbers representable with given number of 
digits?

7. Answer the following questions in brief:

(a) What is the necessity of Octal Number System?

(b) Write down the rules for subtraction of signed binary 
numbers using 2’s complement representation.

(c) What is signed-magnitude representation in binary 
system

(d) Define the term ‘overflow’ in number system

REVIEW PROBLEMS

8. Convert the decimal number .250 5 to base 3, base 4, base 
7, base 8 and base 16.

9. Convert the following decimal numbers to binary: .12 0625, 
10 4 , .673 23, and 1998.

10. Convert the following numbers from the given base to the 
bases indicated:

(a) decimal .225 225 to binary, octal, and hexadecimal

(b) binary .11010111 110 to decimal, octal and hexadecimal

(c) octal .623 77 to decimal, binary and hexadecimal

(d) hexadecimal .AC D2 5  to decimal, octal and binary

11. Obtain the 1’s and 2’s complement of the following binary 

numbers: 1010101, 0111000, 0000001, 10000, 00000.

12. Obtain the 9’s and 10’s complement of the following decimal 
numbers: 13579, 09900, 90090, 10000, 00000.

13. Convert the following numbers to hexadecimal.

(a) 360
8_ i    (b) .22 62

10_ i

(c) .10011 1101
2_ i   (d) .10 1

2_ i

14. Convert following numbers to it’s octal equivalent.

(a) .1100101011 1110
2_ i  

(b) .37 29
10_ i

(c) 672
16_ i

15. Using 2’s complement method perform.

(a) 57 28
10 10
-_ _i i

(b) 432 579
10 10
-_ _i i

16. Convert .268 75
10_ i  to binary, octal and hexadecimal.

17. Solve for x

(a) x1256
8 2
=_ _i i   (b) . x19 125

10 8
=_ _i i

(c) .AC x2
16 8=_ i   (d) . x10011 11

2 16=_ i

(e) x432
5 7
=_ _i i   (f) x1431

8 10
=_ _i i

(g) A B to x98
12 3_ _i i

18. Perform the following binary arithmetic operations using 1’s 
complement and 2’s complement

(a) . .1101 1101 1011 10-  (b) 101101 100001-

(c) 01100 00011-   (d) BD AC-

(e) 642 530
8 8
-_ _i i

19. Convert the following numbers to the base indicated:

(a) 1431
8_ i  to base 10  (b) .0 4375

10_ i  to binary

(c) .53 1575
10_ i  to base 2 (d) FACE

16_ i  to binary

(e) .11011 11
2_ i  to decimal (f) .0 00625

10_ i  to base 2

20. Perform the following subtraction using both 9’s and 10’s 
complement method

(a) 1402 812-    (b) 97 82-

(c) 627.1 442.1-

21. Represent the following decimal numbers in single-precision 
and double-precision floating point representation.

(a) .25 53   (b) .45 20

***********
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BINARY CODES

2.1 INTRODUCTION

The electronic digital systems like computers, microprocessors etc., 
are required to process data which may include numbers, alphabets 
or special characters. The binary system of representation is the most 
extensively used one in digital systems i.e, digital data is represented, 
stored and processed as group of binary digits (bits). Hence the 
numerals, alphabets, special characters and control functions are 
to be converted into binary format. The process of conversion into 
binary format is known as binary coding. Several binary codes have 
developed over the years. These are discussed in this chapter.

2.2 CLASSIFICATION OF CODES

The commonly used binary codes are classified as:
1. Weighted and non-weighted codes

2. Numeric and alphanumeric codes

3. Error detecting and correcting codes

4. Self-complementary codes

5. Unit distance codes (Cyclic codes)

6. Sequential Codes

7. Reflective Codes

Now, we will discuss each of above codes in the following sections.

2.2.1 Weighted and Non-Weighted Codes

The weighted codes are those which follow the principal of position-
weighting, that is, each binary bit is assigned by a weight and values 
depend on the position of the binary bit. The sum of the weights of 
these binary bits, whose value is 1 is equal to the decimal digit which 
they represent. Examples for these codes are: BCD, 8421, 2421 etc, 
which will be discussed in next section.

Non-weighted codes are codes which are not assigned with 
any weight to each digit position, i.e. each digit position within the 
number is not assigned fixed value.

2.2.2 Numeric and Alphanumeric Codes

Binary codes are also classified as numeric codes and alphanumeric 
codes. Numeric codes are codes which represent numerical data, i.e. 

EXAMPLE OF NON WEIGHTED CODE
Excess-3 (XS-3) code and Gray code are non-
weighted codes.
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2.2.7 Reflective Codes

A reflective code is a binary code in which the n  least significant bits 
for code words 2n  through 2 1n 1-+  are the mirror images of those for 
0 through 2 1n - . The Gray code is a reflection code.

2.3 BINARY CODED DECIMAL (BCD) CODE OR 8421 CODE

The binary coded decimal (BCD) is a type of binary code used to 
represent a given decimal number in an equivalent binary form. The 
BCD equivalent of a decimal number is written by replacing each 
decimal digit in the integer and fractional parts with its four-bit 
binary equivalent. The BCD code for 0 to 9 are given in Table 2.3.1.

Table 2.3.1: Decimal Digits and their BCD Codes

Decimal Digit 0 1 2 3 4 5 6 7 8 9

BCD Code 0000 0001 0010 0011 0100 0101 0110 0111 0100 1001

As an example, the BCD equivalent of 23.15
10_ i  is written 

as0010 0011.0001 0101. It is a weighted code, with 8, 4, 2 and 
1 representing the weights of different bits in the four-bit groups, 
starting from MSB and going towards LSB. Hence, BCD code is also 
known as 8421 code or natural binary code. There are six invalid 
codes 1010, 1011, 1100, 1101, 1110 and 111 in this code which are not 
the part of 8421 BCD code systems.

Other weighted BCD codes include the 4221 BCD and 5421 
BCD codes. Again, 4, 2, 2 and 1 in the 4221 BCD code and 5, 4, 2 and 
1 in the 5421 BCD code represent weights of the relevant bits. But, 
the 8421 BCD code is so widely used that it is a common practice to 
refer to it simply as BCD code. 

Remark:
BCD code is less efficient than pure binary. An N  digit decimal 
number is represented by N4 #  bits in BCD code. For example, the 
BCD code of decimal number 13 is 0001 0101, and the binary code of 
13 is 1101. The BCD code of 13 is eight bits and the binary code of 13 
is four bits; it shows that the BCD code is not efficient as compared 
to binary. The BCD code requires more space and time to transmit 
the information.

EXAMPLE 2.1
Represent the following decimal numbers into BCD Code.
(a) 8620 (b) 96.42

SOLUTION :

(a) 8620

 BCD Equivalent 1000 0110 0010 0000=

DO REMEMBER
BCD code is weighted and sequential code.

CONFUSION CLEARING
Note that the decimal number 14 can be 
represented as 1110 in pure binary but as 0001 
0100 in BCD code. Similarly decimal number 
15 can be represented as 1111 in pure binary 
but as 0001 0101 in BCD code.
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(b) 96.42

 BCD Equivalent .1001 0110 1000 0010=
Now, we will consider BCD to binary and binary to BCD conversion.

2.3.1 BCD-to-Binary Conversion

BCD to binary conversion is simple and can be performed in two steps 
only. First, write the decimal equivalent of given BCD number and 
then convert it into binary equivalent. Decimal to binary conversion 
have discussed earlier in chapter-1. 

EXAMPLE 2.2
Convert the following BCD code into its equivalent binary.

.00101001 01110101
BCD7 A

SOLUTION :

We convert decimal number .29 75
10_ i  into equivalent binary using the 

methodology discussed in previous chapter.

Conversion of integer part:

            

Conversion of fractional part:

Thus .29 75
10_ i  .11101 11

2
= _ i

Therefore, BCD-to-binary conversion is

 .0010 1001 0111 0101
BCD7 A  .11101 11

2
= _ i

29
10_ i  11101

2
= _ i  

.0 75
10_ i  .0 11

2
= _ i
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EXAMPLE 2.4
Perform the following decimal addition in BCD code.
(a) 147 380+  (b) 385 118+
(c) 191 171+  (d) 917 215+

SOLUTION :

(a)

(b)

(c)

Since a carry is propagated from the second digit, the second digit is 
an invalid BCD. Add 6 to the second digit to get correct result.

(d)
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BCD Subtraction using 9’s Complement
The steps for BCD subtraction using 9’s complement are given in 
following methodology. 

M E T H O D O L O G Y
1. Find the 9’s complement of the second number(i.e., number to 

be subtracted).

2. Convert first number and 9’s complement of second number 
into their equivalent BCD codes.

3. Perform BCD addition of the first number with the 9’s 
complement of the second number.

4. If carry is generated, then the result is positive. Add the carry 
to the result to get the correct result. I

5. If carry is not generated, then the result is negative and it is 
in 9’s complement form. So, Take the 9’s complement of this 
result and place a negative sign in front to get the final answer.

DO REMEMBER
The 9’s complement of a decimal number 
is obtained by subtracting each digit of the 
decimal number from 9. 

EXAMPLE 2.6
Perform the following decimal subtraction in BCD by the 9’s 
complement method.
(a) 68 24-  (b) 24 68-
(c) 897 768-  (d) 130 245-

SOLUTION :

(a)  68 24-_ i (68 9= + ’s complement of 24)

  68 75= +

(b)  24 68-_ i (24 9= + ’s complement of 68) 24 31= +

Carry is not generated, the result is negative and in its 9’s complement 
form.
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In decimal the above subtraction can be performed using 9’s 
complement as shown below.

(b)

 . .679 6 885 9-  .679 6 9= + ’s complement of 885.9

  . .679 6 114 0= +

There is no carry, so answer is negative and in its 9’s complement 
form.

 Result 9=- ’s complement of 793.6 

  .206 3=-

In decimal the above subtraction can be performed as shown below.

There is no carry, so answer in negative and in its 9’s complement 
form.

 Result 9=- ’s complement of .793 6
10_ i

  .206 3=-

BCD Subtraction using 10’s Complement
Similarly, subtraction of the second number from the first number 
is the addition of 10’s complement of the second number with the 
first number. The steps to perform BCD substraction using 10’s 
complements are given as below:
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Carry is not generated, the result is negative and in its 10’s complement 
form.

 Result 10=- ’s complement of 56
10_ i

  44=-
(c)

 897 768-  897 10= + ’s complement of 768

  (897 9= + ’s complement of )768 1+

  897 231 1= + +_ i

  897 232= +

There is carry, so answer is positive and in its true form.

(d)

 130 245-  130 10= + ’s complement of 245

  (130 9= + ’s complement of )245 1+

  130 754 1= + +_ i

  130 755= +

 

There is no carry, so answer is negative and in its 10’s complement 
form.

 Result 10=- ’s complement of 885

  115=-

EXAMPLE 2.9
Perform the following subtraction using BCD arithmetic.
(a) . .342 7 108 9-  (b) . .206 4 507 6-
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code. It is a modified form of BCD code. 

The excess-3 code for a given decimal number is determined by 
adding ‘3’ to each decimal digit in the given number and then 
replacing each digit of the newly found decimal number by its 
four-bit binary equivalent. 

The excess-3 codes of single decimal digits 0-9 are given in 
Table 2.5.1 below:

Table 2.5.1: Excess-3 code equivalent of decimal numbers

Decimal Digit 0 1 2 3 4 5 6 7 8 9

Excess-3 Code 0011 0100 0101 0110 0111 0100 1001 1010 1011 1100

The XS-3 code has six invalid states 0000, 0001, 0010, 1101, 
1110 and 1111.  For example let us find out the excess-3 code of 56

Self Complementary Feature of Excess-3 Code
As we have already discussed that excess-3 code is self complementing. 
This is a special feature of this code. It means that the excess-3 
code for the 9’s complement of a decimal number can be obtained by 
taking 1’s complement of the excess-3 code of that decimal number. 
For example take decimal number 3. Its 9’s complement is 6 for which 
excess-3 code is 1001. Now, this code can be obtained directly by 
taking 1’s complement of excess-3 code of 3. The excess-3 code of 3 is 
0110 and its 1’s compelment is 1001.

Remarks:
1. Similar to BCD code, in excess-3 code, the N  digit decimal is 

represented by N4 #_ i bits. For example, excess-3 code of 12 is 
01000101 and there are 8 bits. On the other hand, the binary 
code of 12 is 1100 and there are 4 bits. This shows that the 
excess-3 code is not efficient as compared to binary. It requires 
more space and time to transmit the information.

2. It is very useful for arithmetic operations as it overcomes the 
problem encountered in BCD addition of two numbers whose 
sum exceeds 9. The excess-3 code has no such limitation, and it 
simplifies arithmetic operations.

3. Another feature that makes this code useful for performing 
arithmetic operations is its self-complimenting nature. The 
addition and subtraction of excess-3 codes will be explained in 
appendix.

READER NOTE
Excess-3 code is non-weighted and sequential 
code.

FINDING DECIMAL EQUIVALENT OF A 
GIVEN EXCESS-3 CODE
Corresponding to a given excess-3 code, the 
equivalent decimal number can be determined 
by first splitting the number into four-bit 
groups, starting from the radix point, and 
then write decimal equivalent of each group. 
Now subtract 3 from each decimal digit, the 
result will give decimal equivalent.
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Reflection of Gray Codes
Gray codes are also reflected code. The reflection of Gray code upto 
4-bit is shown in Table 2.6.2. Following steps show how an n -bit Gray 
codes can be obtained using reflection. 
1. We can generate an n -bit Gray code by reflecting an n 1-  bit 

Gray code about an axis at the end of the code as shown in Table 
1.6.2. The reflected Gray code is nothing but the code written in 
reverse order. 

2. To obtain the first 2 1n -  numbers, prefix a ‘0’ to the Gray code 
for n 1-  bits above the axis.

3. To obtain the remaining 2 1n -  numbers, prefixing ‘1’ to the 
reflected Gray code for n 1-  bits below the axis.

Table 2.6.2 : Generation of higher-bit Gray code numbers

For example to generate a 4-bit Gray code, we reflect 3-bit 
Gray codes about an axis as shown in second column of 3-bit Gray 
codes. Then we prefix a ‘0’ to the first eight Gray codes above the axis 
and then prefix ‘1’ to the reflected eight Gray codes below the axis. It 
generates the complete four bit Gray codes.

2.6.1 Binary-to-Gray Code Conversion

A given binary number can be converted into its Gray code equivalent 
by going through the following steps:
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(b) 14
10_ i  1110

2
= _ i

 Gray code of 14 1001=

(c) 74
10_ i  1001010

2
= _ i

 Gray code of 74 1101111=

2.6.2 Gray-to-Binary Code Conversion

A given Gray code number can be converted into its binary equivalent 
by going through the following steps:

M E T H O D O L O G Y
1. The most significant bit(lef-most bit) of the equivalent 

binary code is the same as the MSB of the given Gray code.
2. Add the MSB of the binary to the next significant bit of the 

Gray code, note the sum and ignore the carry.
3. Add the 2nd bit of the binary to the 3rd bit of the Gray; the 

3rd bit of the binary to the 4th bit of the Gray code, and so 
on, each time note the sum and ignore the carry.

4. Continue above step till all Gray bits are used. This sequence 
of bits is the binary equivalent of the Gray code number.

For example the conversion of Gray code 11011 is shown as 
below.

 

EXAMPLE 2.13
Convert the following Gray code number into binary.
(a) 101101 (b) 10101111

SOLUTION :

(a)

 Gray code of 101101
2_ i  110110=
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Suppose the disk is coded in binary as shown in Figure 2.6.1(a). 
Consider now what happens when the brushes are on the 111 sector 
and almost ready to enter the 000 sector. If one brush were slightly 
ahead of the other, say the 3rd brush, the position would be indicated 
by a 011 instead of a 111 or 000. Therefore, a 180c error in disk 
position would result. Since it is physically impossible to have all 
the brushes precisely aligned, therefore some error would always be 
present at the edges of the sectors. 

The Gray code is used to reduce the error. Suppose the disk is 
coded in Gray as shown in Figure 2.6.2(b). For example if the brushes 
are on the sector 010 and almost ready to enter the 110 sector and if 
the 3rd brush is slightly ahead, the position would be indicated by 110 
instead of 010 resulting in a very small error. In this case the only two 
outputs during the transition are 110 and 010 irrespective of brush 
alignment. A similar situation occur at the transition between each 
two adjacent sectors.

2.7 2-4-2-1 CODE

This is a numeric code, where each digit of a decimal number is 
represented using four bits. It is another self-complementing code. 
Also, it is a weighted code, the weight of binary symbol 1 depends 
on its position. The weights of b3, b2, b1, and b0 are 2, 4, 2, and 1, 
respectively. Thus, this code is referred to as 2-4-2-1 code. Table 2.7.1 
shows the decimal digit and their 2-4-2-1 codes.

Table 2.7.1: Decimal digits and their 2-4-2-1 codes

Decimal Digit 0 1 2 3 4 5 6 7 8 9

Excess-3 Code 0011 0001 0010 0011 0100 1011 1100 1101 1110 1111

2.7.1 Other 4-bit BCD Codes

There are various other weighted 4-bit BCD codes, each developed to 
have certain properties useful for special applications. These codes are 
numeric codes, in which each digit of a decimal number is represented 
by four bits. These codes are weighted codes and the weight of each 
bit depends on its position.

Table 2.7.2: Decimal digits and its 4-bit BCD codes

Decimal Digit 6311 5421 5311 5211 4221 3321 7421 7421 8421

0 0000 0000 0000 0000 0000 0000 0000 0000 0000

1 0001 0001 0001 0001 0001 0001 0001 0111 0111

2 0011 0010 0011 0011 0010 0010 0010 0110 0110

3 0100 0011 0100 0101 0011 0011 0011 0101 0101

4 0101 0100 0110 0111 1000 0101 0100 0100 0100

READER NOTE
In the 2421 BCD code, the weights are 2-4-2-
1, meaning that bit 1 and bit 3 have the same 
weight of 2. 

Among those 2421, 3321 and 4221 are the self 
complementing codes. 
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2.8 BIQUINARY CODE

It is a weighted 7-bit BCD code. Each digit of a decimal number is 
represented by seven binary digits. Decimal digits and their biquinary 
codes are given in Table 2.8.1. Note that these seven bits are divided 
into two subgroups; one with 2 bit and other with 5 bits. Each of 
these subgroups contains a single 1. The weights of the bit positions 
are 50 43210, therefore it is also known as 5043210 code.

Table 2.8.1: The biquinary code

Decimal Digit
Biquinary Code

5 0 4 3 2 1

0 0 1 0 0 0 1

1 0 1 0 0 1 0

2 0 1 0 1 0 0

3 0 1 1 0 0 0

4 0 1 0 0 0 0

5 1 0 0 0 0 1

6 1 0 0 0 1 0

7 1 0 0 1 0 0

8 1 0 1 0 0 0

9 1 0 0 0 0 0

This code is a parity data code. Since for each code group there 
are exactly two 1’s and each subgroup there is only one 1, it has the 
error-checking feature. Also, there are two positions with weight 0 so, 
it is possible to encode decimal 0 with a group containing 1’s, unlike 
other weighted codes. The biquinary code is used in the Abacus.

2.9 5-BIT BCD CODES

Like the 4-bit BCD codes, each digit of decimal numbers can also be 
represented by five bits, and hence these codes are known as 5-bit 
BCD codes. Although only 4-bits are needed to encode any decimal 
digit from 0 to 9, an extra-bit will allow us to decode the number 
more easily. Table 2.9.1 shows some 5-bit BCD codes having special 
characteristics. These special characteristics of the code are useful for 
error detection.

Table 2.9.1: Decimal digits and their 5-bit BCD codes

Decimal Digit 63210 Two-out of Five Johnson Code 51111

0 00110 00011 00000 00000

1 00011 00101 00001 00001

2 00101 00110 00011 00011
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Decimal Digit 63210 Two-out of Five Johnson Code 51111

3 01001 01001 00111 00111

4 01010 01010 01111 01111

5 01100 01100 11111 10000

6 10001 10001 11110 11000

7 10010 10010 11100 11100

8 10100 10100 11000 11110

9 11000 11000 10000 11111

The four codes given in Table 2.9.1 are discussed briefly as 
follows:
1. The 63210 is a weighted code (except for the decimal digit 0). 

It has the useful error-detecting property that there are exactly 
two 1’s in each code group. This code has been used for storage 
of digital data on magnetic tapes.

2. The 2-out-of-5 code is a non-weighted code. If also has exactly 
two 1’s in each code group. This code is used in the telephone 
and communication networks. At the receiving end, the receiver 
can check the number of 1’s in each character received.

3. The shift-counter code, also called the Johnson code, has the 
bit pattern produced by a 5-bit Johnson counter. It has the 
advantage of being easy to decode electronically. The 51111 code 
is similar to the Johnson code but is weighted.

2.10 ALPHANUMERIC CODES

Digital systems must be able to handle numericals, alphabets, and 
special symbols. Hence, there is a need of binary codes for alphabets 
and special symbols also. Such codes are known as alphanumeric 
codes. A complete alphanumeric code includes 26 lower case letters, 
26 uppercase letters, 10 numeric digits, 7 punctuation marks, and 20 
to 40 other characters, such as +, /, #, %, *, etc. 

The most commonly used alphanumeric codes are the ASCII 
code and the EBCDIC code, discussed below.

2.10.1 The ASCII Code

American Standard Codes for Information Interchanging (ASCII) 
is the most widely used alphanumeric code. It is pronounced as 
‘ASKEE’. This is basically a 7-bit code and so, it has 2 1287 =  
possible code groups. The ASCII code can be used to encode both 
the lowercase and uppercase characters of the alphabet (52 symbols) 
and some special symbols as well, in addition to the 10 decimal 
digits. This code is used to exchange the information between 
input/output device and computers, and stored into the memory. 
The ASCII code and its local and hexadecimal equivalents are given 
in Table 2.10.1.

READER NOTE
An alphanumeric code represents all of the 
various characters and functions that are 
found on a computer keyboard.
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representing characters, this code uses BCD as the basis of binary 
assignment. Table 2.10.2 shows the EBCDIC code.

Table 2.10.2: The EBCDIC Code

MSD (Hex)

L S D 
(Hex)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL DLE DS SP & [ ] \ 0

1 SOH DC1 SOS / a j ~ A J 1

2 STX DC2 FS SYN b k s B K S 2

3 ETX DC3 c l t C L T 3

4 PF RES BYP PN d m u D M U 4

5 HT NL LF RS e n v E N V 5

6 LC BS EOB YC f o w F O W 6

7 DEL IL PRE EOT g p x G P X 7

8 CAN h q y H Q Y 8

9 EM i r z I R Z 9

A SMM CC SM f ! I :

B VT . $ , #

C FF IFS DC4 < * % @

D CR IGS ENQ NAK ( ) – ‘

E SO IRS ACK + ; > =

F SI IUS BEL SUB I ’ ? ’

2.11 ERROR DETECTING CODES

In digital systems problem of error detection and correction is of 
great significance. During the transmission of digital data(streams of 
bits), because of noise errors may occur. The ‘0’ may become ‘1’ or 
‘1’ may become ‘0’, and wrong information may be received at the 
destination.

There are various methods to detect the occurrence of a single-
bit error in a binary word, so that whenever such an error occurs 
the concerned binary word can be corrected and retransmitted. The 
simple error detecting codes are : (i) parity codes and (ii) repetition 
code and (iii) Check sum. These are discussed as follows.

2.11.1 Parity Code

In this method, an extra bit (known as the parity bit) is added to the 
data to be transmitted. There are two types of parity, odd parity and 
even parity.  We have an even parity, where the added bit is such that 
the total number of l’s in the data bit string becomes even, and an 
odd parity, where the added bit makes the total number of l’s in the 
data bit string odd. This added bit could be a ‘0’ or a ‘1’.

For an example, if we have to add an even parity bit to 

LIMITATION OF PARITY CODE
This method also has some limitations; it can 
detect only odd combinations of errors. It fails 
to detect an even combination of errors.
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EXAMPLES

EXAMPLE 2.16
Perform the following decimal addition in BCD code.
(a) 25 13+  
(b) 58 37+  
(c) 91 81+

SOLUTION :

(a)

There is no invalid BCD code in the result. So, this is the correct sum.

(b)

(c)

EXAMPLE 2.17
(a) Convert the decimal number 8520 in Excess-3 code.
(b) Convert the following Excess-3 number in decimal.
             0111 1011 1100
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SOLUTION :

(a)

So, excess equivalent 10111000 0101 0011=

(b)

Thus, Decimal equivalent 489
10

= _ i

EXAMPLE 2.18
Convert the following into the Gray number.
(a) 5A

16_ i  (b) 527
8_ i

SOLUTION :

First we convert the given numbers into equivalent binary and then 
convert it into Gray code.

(a) 5A
16_ i  01011010

2
= _ i

 Gray code of 5A
16_ i  0111 0111=

(b) 527
8_ i  101011011

2
= _ i

 Gray code of 527
8_ i  111110110=

EXAMPLE 2.19
Determine the single error-correcting code for the message code 
11010_ i. Assume the parity code is odd.

SOLUTION :

Given message code is 11010.
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Step 1: Find the number of parity bits ( )k  required.

 2 k  n k 1$ + +

 2 k  k5 1$ + +

 k  4=
The length of the message n k 5 4 9= + = + =

Step 2: Position of parity bit

Bit Number B9 B8 B7 B6 B5 B4 B3 B2 B1

Binary Equivalent 1001 1000 0111 0110 0101 0100 0011 0010 0001

Parity Bits - P4 - - - P3 - P2 P1

Message Bit M5 - M4 M3 M2 - M1 - -

Hamming Code Word M5 P4 M4 M3 M2 P3 M1 P2 P1

where M 15 = , M 14 = , M 03 = , M 12 = , M 01 =

Step 3: Assign the value of the parity bits such that the parity of the 
code is odd. Assign the value to P1 such that the parity of (M5, M4

, M2, M1, P1) is odd, i.e. parity of P1110 1_ i is odd, P 01 = . Assign the 
value to P2 such that the parity of (M4 , M3, M1, P2) is odd, i.e. parity 
of P100 2_ i is odd, P 02 = . Assign the value to P3 such that the parity 
of (M4 , M3, M2, P3) is odd, i.e. parity of P101 3_ i is odd, P 13 = . Assign 
the value to P4 such that the parity of (M5, P4) is odd, i.e. parity of 

P1 4_ i is odd, P 04 = .

The Hamming code for the message 11010_ i is 101011000.

***********



3
BOOLENA ALGEBRA AND LOGIC GATES

3.1 INTRODUCTION

Boolean algebra has been introduced by the mathematician, George 
Boolean in 1854. It is a two state algebra to solve logic problems and 
used the logical and arithmetic calculations for digital equipment. This 
operates with logic variables, namely ‘0’ and ‘1’. The logic variables 
can also be represented by logical TRUE and logical FALSE.

Boolean algebra defines different types of logical operations. 
These logical operations can be realized by electronic circuitry; such 
electronic circuits are known as Gate. The gate has one or more 
inputs and one output. Both the input and output are in digital form 
(i.e., either logic 1 or logic 0).

In this chapter, we will have a closer look at the different 
postulates and theorems of Boolean algebra and their applications in 
minimizing Boolean expressions. After that we will study basic Gates 
and their characteristics. Finally in the end of chapter we will learn 
to write boolean expression from given logic circuits and vice-versa. 

3.2 BOOLEAN ALGEBRA

Boolean algebra is mathematics of logic. It is one of the most basic 
tools which is used in the analysis and synthesis of logic circuit. It 
can be effectively used for simplification of complex logic expressions. 
A variable or function of variables in Boolean algebra can assume 
only two value, either a 0 or a 1. There are certain rules and laws of 
Boolean algebra which are discussed later in next sections.

Boolean Constants, Variables and Functions
In Boolean algebra, often the variable are represented by capital 
letters such as A, B , C , X , Y , Z . The Boolean value of a variable 
is either logic 0 or logic 1. These 0 and 1 are known as Boolean 
constants.

The Boolean variables are often used to represent the voltage 
level present on a wire or at the input/output terminals of a circuit. 
The Boolean value of a variable is either logic 0 or logic 1. These 0 
and 1 are known as Boolean constants.

An equation which is formed by different Boolean variables and 
operators is referred to as Boolean function or Boolean expression. 
Boolean algebra is also called switching algebra hence, the terms 
Boolean expressions and switching expressions mean the same thing.

EXPLANATION OF LOGIC LEVELS
Boolean logic variable ‘0’ or ‘1’ is not used 
to represent actual numbers but it is used to 
represent the state of voltage variable called 
logical level. Commonly used representation of 
logic levels are shown in Table below.

Logic 0 Logic 1

False True

Open switch Close switch

Low High

No Yes

Off On
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3.3 TRUTH TABLE

A truth Table represents the relation between all possible inputs and 
outputs of any logic device or logic circuit in a tabular form. The 
number of inputs may vary from one to many depending upon the 
device or complexity of the circuit. Number of output also varies in 
this way and may be one or more.

As any truth Table represents all types of variations of its 
inputs, therefore, there is a relation between the number of variations 
of possible input conditions and the number of inputs itself. If there 
are n -inputs, then the number of variations possible for these inputs 
will be 2n . For example, in 3-input case, the number of variations will 
be 2 3 or eight. This is because any variable can take only two values, 
either 0 or 1. For a given digital circuits, some of the examples of 
truth Table are given below.

Table 3.3.1: Examples of truth Tables for 1-input, 2-input and 3-input 
circuits

3.4 BASIC BOOLEAN OPERATIONS

The normal algebra includes all standard arithmetic operations such 
as addition, subtraction, division, square, cube, square root, etc. On 
the other hand, Boolean algebra is simpler in that sense, as it uses 
only three basic operations, namely
1. OR operation

2. AND operation

3. NOT operation

The OR, AND and NOT operations of Boolean algebra are 
explained as follows.

3.4.1 Boolean Addition (Logical OR)

The OR operation in Boolean algebra is similar to addition in ordinary 

DO REMEMBER
One important point regarding the preparation 
of truth Table is that the order of presentation 
of input conditions follows the sequence of 
binary counting. It will always start with all 
of its inputs as zero (logic low) and finally all 
inputs will be 1 (logic high). This systematic 
presentation of all input conditions usually 
makes it easier to prepare the input part of 
any truth Table.
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algebra i.e., OR means logical addition operation. The minimum 
number of inputs for OR operation is two. The number of output is 
always one, irrespective of the number of inputs. 

Let A and B  be two Boolean variables. The logical OR 
operation on A and B  is denoted by 

 Y  A B= + ,  where ‘+’ is the OR operator

The output of any logical OR operation will be ‘1’ whenever one of 
the input is ‘1’ or both the inputs are ‘1’. If all the inputs are ‘0’, in that 
case the output will also be ‘0’. The output Y  corresponding to various 
combinations of inputs, A and B , is shown in Table 3.4.1 below.

Table 3.4.1: Truth table for OR operation

Input Output

A B Y A B= +

0 0 0

0 1 1

1 0 1

1 1 1

 In general, the operation of the OR operator is denoted by 
...Y A B C= + + + , where A, B , C , ... are the inputs and Y  is the 

corresponding output.

3.4.2 Boolean Multiplication (Logical AND)

The AND operation in Boolean algebra is similar to multiplication in 
ordinary algebra i.e, AND performs logical multiplication operation. 
The minimum number of inputs for AND operation is two. The 
number of output is always one, irrespective of the number of inputs. 

Let A and B  be two Boolean variables. Then, the logical AND 
operation on A and B  is denoted by 

 Y  A B:= ,  where : is the AND operator 

The output of AND operation is ‘1’ only when all of its inputs 
are ‘1’. If any of its input is ‘0’, then the output will be ‘0’. The 
output Y  corresponding to various combinations of inputs, A and B
, is shown in Table 3.4.2 below.

Table 3.4.2: Truth table for AND operation

Input Output

A B Y AB=

0 0 0

0 1 0

1 0 0

1 1 1

In general, the operation of the AND operator is denoted by 
...Y A B C: : := , where A, B , C ... are the inputs and Y  is the output.

DO REMEMBER
In other words, the output of any logical OR 
operation will be ‘0’ if and only if all of its 
inputs are simultaneously ‘0’. In all other cases 
of inputs, the output will be ‘1’.

READER NOTE
While writing the Boolean expressions, often 
the dot symbol is not used to denote the AND  
operation. The operands are placed side. Thus  
the AND operation of A and B  also can be 
written as

 Y  AB=
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AND operation OR operation NOT operation

1. 0 0 0: = 5. 0 0 0+ = 9. 1 0=

2. 0 01: = 6. 0 1 1+ = 10. 0 1=

3. 0 01 : = 7. 01 1+ =

4. 1 1 1: = 8. 1 1 1+ =

The theorems of Boolean algebra can be used to simplify 
many complex Boolean expression and also to transform the given 
expression into a more useful and meaningful equivalent expression. 
These theorems are discussed as below.

3.6.1 Theorem 1 (Complementation Laws)

The term complement implies to invert, i.e. to change 1’s to 0’s and 
0’s and 1’s. The five laws of complementation are as follows:

1. 0 1=
2. 1 0=
3. If A 0= , then A 1=
4. If A 1= , then A 0=

5. A A=  (double complementation law)

Note that the double complementation does not change the 
function.

3.6.2 Theorem 2 (AND Laws)

The four AND laws are as follows:

1. A 0 0: =  (Null law)

2. A A1: =  (Identity law)

3. A A A: =
4. A A 0: =

where A is not necessarily a single variable i.e., it could be a term or 
even a large expression. For example, 

 0 A B B C C D: : : :+ +_ i 0=

 1 A B C C D: : :+ +_ i A B C C D: := + +_ i

 A B C A B C: : :+ +_ _i i A B C:= +_ i

 A B C A B C: : :+ +_ _i i 0=
where A, B  and C  are Boolean variables.

3.6.3 Theorem 3 (OR Laws)

The four OR laws are as follows:
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1. 0A A+ =  (Null law)

2. 1A 1+ =  (Identity law)

3. A A A+ =
4. A A 1+ =

where A could be a variable, a term or even a large expression. For 
example

 0 A B C C D: :+ + +_ i A B C C D: := + +

 A B B C C D1 : : :+ + +_ i 1=

 A B C A B C: :+ + +_ _i i A B C:= +_ i

 A B C A B C: :+ + +_ _i i 1=
where A, B  and C  are Boolean variables.

3.6.4 Theorem 4 (Commutative Law)

Commutative law states that the order of the variable in OR and 
AND operations is not important. The two commutative laws are

 A B+  B A= +  (3.6.1a)

 A B:  B A:=  (3.6.1b)

Theorem (3.6.1a) states that, result of A OR B  is the same 
as B  OR A i.e., the order in which the variable are ORed is not 
important. This law can be extended to any number of variables. For 
example,

 A B C+ +  B C A C A B B A C= + + = + + = + +

Similarly. Theorem (3.6.1b) states that, result of A AND 
B  is the same as B  AND A, i.e. the order in which the variables 
are ANDed is not important. This law also can be extended to any 
number of variables. For example,

 A B C: :  B C A C A B B A C: : : : : := = =

3.6.5 Theorem 5 (Associative Law)

Associative law states that the grouping of variables in AND or OR 
expression does not affect the result. There are two associative laws.

 A B C+ +_ i A B C= + +_ i  (3.6.2a)

 A B C: :_ i A B C: := _ i  (3.6.2b)

Theorem (3.6.2a) states that, result of A OR B  ORed with C  
is the same as A ORed with B  OR C  i.e., the way the variables are 
grouped and ORed is not important. This law can be extended to any 
number of variables. For example,

 A B C D+ + +_ i A B C D A B C D= + + + = + + +_ _ _i i i

Similarly. Theorem (3.6.2b) states that, the result of A AND B  
ANDed with C  is the same as A ANDed with B  AND C  i.e., the way 
the variables are grouped and ANDed is not important. This law also 
can be extended to any number of variables. For example,

 A BCD_ i ABC D AB CD= =_ _ _i i i
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ANDing of the two variables. This law can be proved algebraically as 
shown below.

 A A B+_ i AA AB= +

  AB0= +  AB=

3.6.8 Theorem 8 (Idempotent Law)

Idempotence means the same value. There are two idempotent laws

  A A A A: : : :g  A=  (1..6.5a)

 A A A Ag+ + + +  A=  (3.6.5b)

The law (3.6.5a) states that ANDing of a variable with itself is 
equal to that variable only. Similarly, law (3.6.5b) states that ORing 
of a variable with itself is equal to that variable only.

 For example, let us apply idempotent laws to simplify the 
following Boolean expression:

 A B B C C A B B A B C C: : : : : : : :+ + +_ _i i

  A B C A B A B C: : : := + + +_ _i i

  A B C A B C: : := + +_ _i i

  A B C:= +

3.6.9 Theorem 9 (Absorption Law)

There are two absorption laws

 A A B:+  A=  (3.6.6a)

 A A B: +_ i A=  (3.6.6b)

Theorem (3.6.6a) states that ORing of a variable A with the 
AND of that variable A and another variable B  is equal to that 
variable itself(A). The proof of this theorem is very simple as follows:

 A A B:+  A B A A1 1:= + = =_ i

Similarly, theorem(3.6.6b) states that ANDing of a variable A 
with the OR of that variable A and another variable B  is equal to 
that variable itself(A). This can be proved in the following way,

 A A B+_ i A A A B: := +

  A AB= +

  1A B A A1 := + = =_ i  B1 1+ =_ i

The conclusion of this theorem is that, if a term appears in to 
another term, then the latter term becomes redundant and may be 
removed from the expression without changing its value. Removal of 
a term is equivalent to replacing that term by 0 if it is in a sum or by 
1 if it is in a product.

 The following examples further illustrate the use of this 
theorem in minimizing Boolean expression.
A A B A B C A B C C B A: : : : : : :+ + + +

    A A B B C B C C B: : : := + + + +_ i

    A=

and, A B C A B C B A: :+ + + + +_ _ _i i i A B= +

DO REMEMBER
Redundant Literal Rule states that the 
complement of a term appearing in another 
term is redundant.

READER NOTE
The scope of idempotent laws can be expanded 
further by considering A to be a term or an 
expression.

DO REMEMBER
The other forms of Theorem (3.6.6a) and 
(3.6.6b) can be written as

Any termA A A:+ =

Any termA A A+ =_ i
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3.6.12 Theorem 12

 A B A B C: : :+  A B A C: := +  (3.6.9a)

 A B A B C:+ + +_ _i i A B A C:= + +_ _i i (3.6.9b)

Proof of equation (3.6.9a) is given as follows

 A B A B C: : :+  A B B C:= +_ i

  A B C= +_ i Using Theorem (3.6.3a)

  AB AC= +

Similarly, we can prove equation (3.6.9b)

 A B A B C:+ + +_ _i i A B A B C:= + + +_ _i i

Using Theorem (3.6.3b) the RHS can be written as

 A B A B C:+ + +_ _i i A B B C= + +_ i

  A BB BC= + +

  A BC= +  BB 0=

Again, using Theorem (3.6.3b) in reverse manner

 A B A B C:+ + +_ _i i A BC A B A C= + = + +_ _i i

The conclusion of these theorems is that,  when a smaller term 
appears in a larger term except for one of the variables appearing 
as a complement in the larger term, the complemented variable is 
redundant. For example,

 A B A B C A B D: :+ + + + +_ _ _i i i

  A B B C A B D: := + + + +_ _ _i i i

  A B B C B D: := + + +_ _ _i i i

In first step term A  was redundant so we eliminated it. Similarly, in 
second step term B  was redundant and hence eliminated.

3.6.13 De Morgan’s Theorem

De Morgan’s theorem gives two of the most powerful laws in Boolean 
algebra. These theorems are very useful in simplification of Boolean 
expressions. The first law is 

 A B+  A B=  (3.6.10a)

This law states that the complement of a sum of variables is 
equal to the product of their individual complements. In other words 
the complement of two or more variables ORed together, is the same 
as the AND of the complements of each of the individual variables.

This law can be extended to any number of variables or 
expressions. For example,

 ....A B C D+ + + +  ....A B C D=

 ...AB CD EFG+ + +  AB CD EFG= _ _ _i i i

De Morgan’s second theorem is given as

 AB  A B= +  (3.6.10b)

This law states that the complement of the product of variables 
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is equal to the sum of their individual complements. That is, the 
complement of two or more variables ANDed together, is equal to the 
sum of the complements of each of the individual variables.

This law also can be extended to any number of variables or 
expressions. For example,

 ....ABCD  ...A B C D= + + + +

 ...AB CD EFG_ _ _i i i  ...AB CD EFG= + + +
In next section, we will see that how De Morgan theorems can be used 
to obtain the complements of Boolean expressions.

EXAMPLE 3.3
Apply DeMorgan’s theorem to each of the following expression.
(a) A B C D+ +_ _i i (b) A B C D+ +_ i

(c) ABC DEF+  (d) AB CD EF+ +

SOLUTION :

(a) Let, X  A B= +

 Y  C D= +

So, A B C D+ +_ _i i XY X Y= = +  (DeMorgan Theorem)

 A B C D+ +_ _i i A B C D= + + +

  A B C D= + + +
Again, applying Demorgan theorem to R.H.S

 A B C D+ +_ _i i AB CD= +

(b) Let,  A B C+ +  X=

and  D  Y=
The expression A B C D+ +_ i  is of the form XY X Y= +  and can 
be rewritten as

 A B C D+ +_ i  A B C D= + + +
Next, apply DeMorgan’s theorem to the term A B C+ + .

 A B C D+ + +  A B C D= +

(c) Let, ABC  X=

and DEF  Y=
The expression ABC DEF+  is of the form X Y X Y+ =  and can be 
rewritten as

 ABC DEF+  ABC DEF= _ _i i

Next, apply DeMorgan’s theorem to each of the terms ABC  and 
DEF .

 ABC DEF_ _i i A B C D E F= + + + +_ _i i

(d) Let AB X= , CD Y= , and EF Z= . The expression 
AB CD EF+ +  is of the form X Y Z X Y Z+ + =  and can be 
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3.6.15 Theorem 15

 , , , , ...X f X X Y Z: _ i , , , ....X f Y Z1 0:= _ i (3.6.11a)

 , , , , ...X f X X Y Z+ _ i , , , , ...X f Y Z0 1= + _ i (3.6.11b)

Theorem (3.6.11a) states that if a variable X  is multiplied by 
an expression containing X  and X  in addition to other variables, 
then all X ’s and X ’s can be replaced with 1’s and 0’s respectively. 
This is permissible because X X X: =  and X X1: = . Also, X X 0: =  
and X 0 0: = .

On the other hand, Theorem (3.6.11b) states that, if a variable 
X  is added to an expression containing terms having X  and X  in 
addition to other variables, then all X ’s can be replaced with 0’s and 
all X ’s can be replaced with l’s. This is valid because X X+  as well 
as X 0+  equals X . Also, X X+  and X 1+  both equal ‘1’.

The following examples will illustrate above two theorems.

Using Theorem (3.6.11a)

A A B A C A D A E: : : :+ + + +_ _i i7 A

  A B C D E0 1 0 1: : : := + + + +_ _i i7 A

  A C D:= +_ i

Using Theorem (3.6.11b)

A A B A C A B A E: : :+ + + + +_ _i i7 A

  A B C B E1 0 1 0: : := + + + + +_ _i i7 A

  A B E= + +

3.7 EQUIVALENT AND COMPLEMENT OF BOOLEAN EXPRESSIONS

Two given Boolean expressions are said to be equivalent if one of 
them equals ‘0’ only when the other equals ‘0’ and also one equals ‘1’ 
only when the other equals ‘1’. 

On the other hand, two Boolean expressions are said to be the 
complement of each other if one expression equals ‘1’ only when the 
other equals ‘0’, and vice versa. The complement of a given Boolean 
expression is obtained by following steps:

M E T H O D O L O G Y
1. Change all the ANDs to ORs and all the ORs to ANDs i.e., 

change all ‘ :’ to ‘+’ and all ‘+’ to ‘ :’
2. Complement each of the individual variables.
3. Change all 0’s to 1’s and 1’s to 0’s.

EXAMPLE 3.5
Find the complement of each of the following Boolean function.

(a) f A BC AB C1 = +

(b) f B AC A C2 = +_ i

READER NOTE
This pair of theorems is very useful in 
eliminating redundancy in a given expression. 

DEMORGANIZATION
Note that the complement of a given is nothing 
but applying DeMorgan’s theorem. Therefore, 
procedure of complimenting a Boolean 
function is also called Demorganization of the 
function.
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(c) f A B C A BD C D3 = + + + +_ _i i

SOLUTION :

(a) f1 A BC AB C= +
We apply step 1 and 2 of given methodology i.e., change all ANDs to 
ORs and vice-versa, and complement each variable.

 f 1 A B C A B C:= + + + +_ _i i

Alternate:
We can obtain complement of a given function by applying 
Demorgan theorem. The process of DeMorganization is also called 
complementation of function.

 f 1 A BC AB C= +

  A BC AB C:=  (Demorgan’s Th. 3.6.10a)

  A B C A B C:= + + + +` `j j (Demorgan Th. 3.6.10b)

  A B C A B C:+ + + +_ _i i

(b) f2 B AC A C= +_ i

Replacing all AND with OR and all OR with AND, and complementing 
each of the variable we get the complement of f2.

 f 2 B A C A C:= + + +_ _i i7 A

Alternate:

Using Demorgan’s Theorem

 f 3 B AC A C= + +_ i

  B AC A C= + +_ i (DeMorgan’s Th. 1.6.10b)

  B AC A C:= +  (DeMorgan’s Th. 1.6.10a)

  B A C A C:= + + +_ _i i7 A (DeMorgan’s Th. 1.6.10b)

(c) f3 A B C A BD C D= + + + +_ _i i7 7A A

Replacing all AND with OR and all OR with AND, and by 
complementing each of the variable we get the complement of the 
given function.

 f 3 A B C A B D C D: : : := + + +_ _i i7 7A A

  A B C A B D C D= + + +_ _i i7 A

3.8 PRINCIPAL OF DUALITY

Duality is a very important property of Boolean algebra. Duals of 
Boolean expressions are mainly of interest in the study of Boolean 
postulates and theorems. The duality theorem implies that once a 
theorem or statement is proved, the dual also thus stands proved. 
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(c) A A:  0=

(d) AB AC+  A B C:= +_ i

3.9 SIMPLIFICATION OF BOOLEAN EXPRESSIONS USING BOOLEAN ALGEBRA

In boolean algebra we have to reduce the Boolean expression into its 
simplest form such that the hardware cost reduces efficiently. The 
basic rules, laws and theorems of Boolean algebra discussed in this 
chapter, are used to simplify  Boolean expressions.

The following steps are used to simplify a Boolean expression 
using Boolean algebra,

M E T H O D O L O G Y
1. Remove all parentheses and multiply all variables.
2. Look for the identical terms. Only one of those terms be 

retained and all others skipped. For example,
 AB AB AB+ +  AB=
3. Look for a variable and its complement in the same term. 

This term can be removed. For example,
 A BB:  A 0 0:= = ; ABCC AB 0 0:= =
4. Look for pairs of terms that are identical except for one 

variable which may be missing in one of the terms. The 
larger term can be removed. For example,

 ABC D ABC+  ABC D ABC ABC1 1:= + = =_ i

5. Look for pairs of terms which have the same variables, 
except in one term a variable is complemented and in other 
term is it not. Such terms can be combined into a single 
terms. For example,

          

ABC D ABCD ABC D D ABC ABC

AB C D AB C D AB C D C D

AB AB

1

1

:

:

+ = + = =

+ + + = + + +
= =

_

_ _ _ _

i

i i i i7 A

6. Apply Boolean theorem and laws discussed earlier for 
further simplification.

EXAMPLE 3.8
Using Boolean algebra techniques, simplify this expression :

 f  AB A B C B B C= + + + +_ _i i

SOLUTION :

Step 1: Apply the distributive law to the second and third terms in 
the expression, as follows :

 f  AB AB AC BB BC= + + + +

Step 2: Apply rule BB B=_ i to the fourth term.

 f  AB AB AC B BC= + + + +

Step 3: Apply rule AB AB AB+ =_ i to the first two terms.
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 f  AB AC B BC= + + +

Step 4: Apply rule B BC B+ =_ i to the last two terms.

 f  AB AC B= + +

Step 5: Apply rule AB B B+ =_ i to the first and third terms.

 f  B AC= +

EXAMPLE 3.9
Simplify the following Boolean expression :

 f  ABC AB C A B C ABC ABC= + + + +

SOLUTION :

Step 1: Factor BC  out of the first and last terms.

 f  BC A A AB C A B C ABC= + + + +_ i

Step 2: Apply rule A A 1+ =_ i to the term in parentheses, and factor 
AB  from the second and last terms.

 f  1BC AB C C A B C:= + + +_ i

Step 3: Apply rule (X X1: = ) to the first term and rule C C 1+ =_ i 
to the term in parentheses.

 f  1BC AB A B C:= + +

Step 4: Apply rule (X X1: = ) to the second term.

 f  BC AB A B C= + +

Step 5: Factor B  from the second and third terms.

 f  BC B A A C= + +_ i

Step 6: Apply rule A A C A C+ = +_ i to the term in parentheses.

 f  BC B A C= + +_ i

Step 7: Use the distributive and commutative laws to get the following 
expression :

 f  BC AB B C= + +

EXAMPLE 3.10
Simplify the following expression using Boolean Algebra.

(a) A B AC B C D+ + +_ i7 A

(b) A BC AB ABC+ +_ _i i

SOLUTION :



Page 130 Boolena Algebra and Logic Gates Chapter 3

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

(c) f  AB AC A C ABC A BC= + + + +

  A B C BC A C BC= + + + +_ _i i

Applying Theorem, 1.6.4a, we have

 C CB+  C B= +

 C CB+  C B= +

So, f  A B C B A C B= + + + +_ _i i

  A C B B A C B= + + + +_ _i i

  A C A C B1= + + +_ _i i 1B B+ =_ i

  A A C B= + +_ i C 1 1+ =_ i

Again applying theorem 1.6.4a

 f  A C B= + +

(d) f  A BC BC= + +_ i

Applying DeMorgan’s theorem A BC A BC:+ =

So,  f  A BC BC:== +

Again, using DeMorgan’s theorem BC B C= +

So, f  A B C BC= + +_ i

  A B A C BC= + +
Applying consensus theorem to the 2nd and 3rd term we obtain term 
A B  redundant

So, f  A C BC= +

Alternative :
If student do not remember consensus theorem, one can simplify 
it through another method, which is basically proof of consensus 
theorem.

 f  A B A C BC= + +

  A B C C A C BC= + + +_ i

  A BC A B C A C BC= + + +

  BC A A C B1 1= + + +_ _i i

or, f  BC A C= +

EXAMPLE 3.12
Using Boolean algebra and postulates, simplify each of the following 
expression.

(a) A B CD AB CD BD BCD+ + +

(b) A BCD ABC A C BC B C+ + + +

(c) B D A B C D A C+ + + +_ _ _ _i i i i

SOLUTION :
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(a) f  A B CD AB CD BD BCD= + + +

  B CD A A B D DC= + + +_ _i i

  B CD B D DC= + +_ i A A 1+ =_ i

Apply Theorem 7, D DC D C+ = +_ i , So

 f  B CD B D C= + +_ i

  B CD BD BC= + +

  D B B C BC= + +_ i

Apply Theorem 7, B B C B C+ = +

So, f  D B C BC= + +_ i

  BD CD BC= + +
Applying Consensus theorem to the term BC  and CD , we get term 
BD  redundant.

 f  CD BC= +

Alternate:
Instead of applying consensus theorem directly, we can use another 
method which is the proof of consensus theorem.

 f  BD CD BC= + +

  BD C C CD BC= + + +_ i

  BCD BCD CD BC= + + +

  BCD BC BCD CD= + + +

  BC D CD B1 1= + + +_ _i i

  BC CD= +

(b) f  A BCD ABC A C BC B C= + + + +

  A BCD ABC C A B B= + + + +_ i

  A BCD ABC C A 1= + + +_ i B B 1+ =_ i

  A BCD ABC C= + +  A 1 1+ =_ i

  A BD AB C C= + +_ i

Let A BD AB+  X=

 C  Y=

So, f  XY Y Y YX= + = +

  Y X= +  (Applying Theorem 7)

or, f  C A BD AB= + +

(c) f  B D A B C D A C= + + + +_ _ _ _i i i i

  B D B A C D C A= + + + +_ _ _ _i i i i

Applying distributive law,

 f  B AD C AD= + +_ _i i

Applying distributive law

 f  AD BC= +



Chapter 3 Boolena Algebra and Logic Gates Page 133

by two different voltage levels or two different current levels. There 
are two different ways to assign a signal value to logic level such as 
positive logic and negative logic.
1. If higher of the two voltage levels represents a logic ‘1’ and the 

lower of the two levels represents a logic ‘0’, then the logic system 
is referred to as a positive logic system. 

2. If the higher of the two voltage levels represents a logic ‘0’ and 
the lower of the two levels represents a logic ‘1’, then the logic 
system is referred to as a negative logic system. 

Figure 3.10.1 and 3.10.2 shows the representation of positive 
logic and negative logic systems. 

For example, if the two voltage levels are 0 V and 5 V+ , then in the 
positive logic system the 0 V represents a logic ‘0’ and the 5 V+  
represents a logic ‘1’. In the negative logic system, 0 V represents a 
logic ‘1’ and 5 V+  represents a logic ‘0’

As another example, if the two voltage levels are 0 V and 5 V-
, then in the positive logic system the 0 V represents a logic ‘1’ and 
the 5 V-  represents a logic ‘0’. In the negative logic system, 0 V 
represents a logic ‘0’ and 5 V-  represents a logic ‘1’.

Mixed Logic
In mixed logic, the assignment of logical values to voltage values 
is not fixed, and it can be decided by the logic designers. Mixed 
logic provides a simplified mechanism for the analysis and design of 
digital circuits. The proper use of mixed logic notation provides logic 
expressions and logic diagrams that are analogue to each other. Also, 
a mixed logic diagram provides clear information as to the operation 
of a circuit.

3.11 THE AND GATE

An AND gate is a logic circuit with two or more inputs and one 
output that performs ANDing operation. The output of an AND gate 
is HIGH only when all of its inputs are in the HIGH state. In all other 
cases, the output is LOW. For a positive logic systems, it means that 
the output of the AND gate is a logic ‘1’ only when all of its inputs 

READER NOTE
It is interesting to note, that a positive OR is 
a negative AND. That is, OR gate hardware 
in the positive logic system behaves like an 
AND gate in the negative logic system. The 
reverse is also true. Similarly, a positive NOR 
is a negative NAND, and vice versa.

Figure 3.10.1: Positive logic

Figure 3.10.2: Negative logic

DO REMEMBER
In this book, we shall use positive logic systems 
unless or otherwise specified.



Page 134 Boolena Algebra and Logic Gates Chapter 3

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

are in logic ‘1’ state. In all other cases, the output is logic ‘0’.
The logic symbol and the truth Table of a two-input AND gate 

are shown in Table 3.11.1 and Figure 3.11.1.

Table 3.11.1: Truth table of a 2-input AND gate

Input Output

A B Y AB=

0 0 0

0 1 0

1 0 0

1 1 1

3.11.1 Diode Circuit of a 2-input AND Gate

The AND gate may be realized by using diodes i.e., diode logic. Figure 
3.11.2 shows a 2-input AND gate using diodes, in which A and B  
represent the inputs and Y  is the output. Resistance RL  is the load 
resistance. Assume that the input voltages are either 0 V (logic 0) or 

5 V+  (logic 1). The diodes are ideal. The following are the four cases:
1. If A 0=  and B 0= , both the diodes conduct since they are 

forward biased, and hence the output is Y 0= .
2. If A 0=  and B 1= , the diode D1 conducts and D2 does not 

conduct, and hence the output is Y 0= .
3. If A 1=  and B 0= , the diode D1 does not conduct and D2 

conducts, and hence the output is Y 0= .
4. If A 1=  and B 1= , both the diodes do not conduct sice they 

are reverse biased, and hence the output is Y 1= .

Switching Circuit of a 2-input AND Gate
The AND gate can be represented by a set of switches connected 
in parallel, as shown in Figure 3.11.3. The Boolean constant 1 is 
assigned to a closed switch and the existence of a closed path between 
the terminals of the configuration of switches; while the Boolean 
constant 0 is terminals of the configuration of switches. Algebraically, 
each switch is denoted by a Boolean variable in which the variable is 
uncomplemented if the switch is normally open and complemented if 
it normally closed. 

The lamp is on when either A or switch B  is closed. Note that 
the lamp is also on if both A and B  are closed.

Figure 3.11.3: AND Function Represented by Switches

DO REMEMBER
If A and B  are the input variables of an AND 
gate and Y  is its output, then

 Y A B:=
where the dot ( :) denotes the AND operation.

Figure 3.11.1: Two-input AND gate

Figure 3.11.2: Diode circuit of a 2-input 
AND gate
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It means that for a positive logic system, the output of an OR 
gate is a logic ‘0’ only when all of its inputs are at logic ‘0’. For all 
other possible input combinations, the output is a logic ‘1’. 

The logic symbol and the truth Table of a two-input OR gate 
are shown in Figure 3.12.1 and Table 3.12.1.

Table 3.12.1: Truth table of a 2-input OR gate

Input Output

A B Y A B= +

0 0 0

0 1 1

1 0 1

1 1 1

3.12.1 Diode Circuit of a 2-input OR Gate

Likewise AND Gates, OR gates may be realized by using diodes 
i.e., diode logic. An OR gate made up of diodes is shown in Figure 
3.12.2, in which A and B  represent the inputs and Y  is the output. 
Resistance RL  is the load resistance. Assume that the input voltages 
are either 0 V (logic 0) or 5 V+  (logic 1). The diodes are ideal. The 
following are the four cases:

1. If A 0=  and B 0= , both the diodes will not conduct. No 
current flows through load RL , and so, no voltage drop occurs 
across RL . Hence, the output Y 0= .

2. If A 1=  and B 0= , diode D1 conducts, then output will be 
5 V+  or Y 1= .

3. If A 0=  and B 1= , diode D2 conducts and hence Y 1= .
4. If A 1=  and B 1= , both the diodes conduct and hence Y 1=

Switching Circuit of a 2-input OR Gate
The AND function can be explained by the series switching 

circuit shown in Figure 3.12.3. Two switches A and B  are connected 
in series with a voltage source and lamp. The lamp will turn on when 
switches A and B  are both closed. If any of them is open, then lamp 
will be off.

Figure 3.12.3: OR Function represented by switches

3.12.2 Pulsed Operation of OR Gate

Now, we consider the operation of an OR gate with pulsed inputs, 

Figure 3.12.1: Two-input OR gate

Figure 3.12.2: Diode circuit of a 2-input 
OR gate
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keeping in mind its logical operation which follows the truth Table 
3.12.1. Figure 3.12.4 illustrate OR gate operation with waveforms on 
the inputs.

1. During the time interval t1, inputs A and B  are both 1, 
making the output 1.

2. During time interval t2, input A is 0, but because input B  is 
1, the output is 1.

3. During time interval t3, both inputs are 0, so there is a 0 
output during this time.

4. During time interval t4 , the output is 1 because input A is  1.

3-input OR Gate
Like AND gate, OR gate can have several inputs, such as a 3-input 
OR gate is shown in Figure 3.12.5. The truth Table for the 3-input 
AND gate is also shown below. From Table it is seen that the output 
is HIGH (1)when at least one input is HIGH (1).

Table 3.12.2: Truth table of a 3-input OR gate

Inputs Output

A B C Y A B C= + +

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

3.13 THE NOT GATE

A NOT gate, also called an inverter is a one-input, one-output logic 
circuit whose output is always the complement of the input. That is, 
a LOW input produces a HIGH output, and vice versa. It means that  
for a positive logic system, a logic ‘0’ at the input produces a logic 
‘1’ at the output, while a logic ‘1’ at the input produces a logic ‘0’ 
output. It is also known as a complementing circuit or an inverting 
circuit.  The logic symbol and the truth Table of an inverter are 
shown in Figure 3.13.1 and Table 3.13.1 respectively.

Table 3.13.1 Truth table of NOT gate

Input Output

A Y A=

0 1

1 0

Figure 3.12.4 Pulsed operation of a 
2-input OR gate

Figure 3.12.5 Symbol for 3-input OR gate

READER NOTE
The NOT operation on a logic variable A is 
denoted as A  That is, if A is the input to a 
NOT gate, then its output Y  is given by 

Y A=
It is read as Y  equals NOT A or A bar. Thus, 
if A 0= , Y 1=  and if A 1= , Y 0= .

Figure 3.13.1: Symbol for a NOT gate
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NAND gate operation is logically expressed as

 Y  A B:=

Table 3.14.1: Truth table of a 2-input NAND gate

Input Output

A B Y AB=

0 0 1

0 1 1

1 0 1

1 1 0

3-input NAND Gate
The logic symbol and truth Table for a three-input NAND gate are 
shown in Figure 3.14.2 and Table 3.14.2.

Table 3.14.2: Truth table of a 3-input NAND gate

Inputs Output

A B C Y ABC=

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Bubbled OR Gate
Using DeMorgan’s theorem, we can express the output of a two-input 
NAND gate as

 Y  AB A B= = +
Thus, a NAND function can also be realized by first inverting 

the inputs and then ORing the inverted inputs as shown in Figure 
3.14.3. Therefore, the NAND gate can perform the OR function with 
inverted inputs  A  and B . The OR gate with inverted inputs is called 
a bubbled OR gate or a negative OR gate. The standard logic symbol 
of a bubbled-OR gate is shown in Figure 3.14.3. 

Figure 3.14.3: Bubbled OR gate

THE NAND OPERATION
In general, the Boolean expression for a 
NAND gate with more than two inputs can 
be written as

...Y A B C D: : := _ i

Figure 3.14.2: Symbol for 3-input 
NAND gate

NAND=INVERT OR
Looking at the truth Table of a two-input 
NAND gate, we see that the output Y  is 1 
when either A 0=  or B 0=  or when both 
A and B  are equal to 0, i.e. if either A 1=  
or B 1=  or both A  and B  are equal to 1. 
Therefore, the NAND gate can perform 
the OR function with inverted inputs and 
equivalent to Invert OR.
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3.14.1 Pulsed Operation of NAND Gate

Now, let us consider the pulsed operation of a NAND gate. Remember 
from the truth Table that the only time a ‘0’ output occurs is when 
all of the inputs are ‘1’.

Consider a two waveforms A and B  applied at the inputs of a 
2-input NAND gate as shown in Figure 3.14.4. In order to determine 
the output level, we will look at the inputs with respect to each other 
with reference to the truth Table shown in Figure 3.14.4.

Figure 3.14.4: Pulse operation of a 2-input NAND gate

1. During the time interval t1, both inputs A and B  are 1, so 
output Y  will be 0.

2. During the interval t2, one of the input A 0= , so output Y 1= .

3. During the interval t3, again both the inputs A and B  are 1, so 
the output Y 0= .

4. During interval t4 , one of the input B 0= , so output will be 1.

3.15 THE NOR GATE

The term NOR implies NOT-OR. A NOR gate is equivalent to OR 
gate followed by a NOT gate. The standard logic symbol for a 2-input 
NOR gate is shown in Figure 3.15.1. This symbol is same as OR gate 
symbol except for a small circle (bubble) on its output. This circle 
represents the NOT function. 

Figure 3.15.1: Logic symbol of NOR gate

The truth Table of a NOR gate is obtained from the truth Table 
of an OR gate by complementing the output entries. The output of a 
NOR gate is a logic ‘1’ when all its inputs are logic ‘0’. For all other 
input combinations, the output is a logic ‘0’. The output of a two-
input NOR gate is logically expressed as

 Y  A B= +

THE NOR OPERATION
In general, the Boolean expression for a NOR 
gate with more than two inputs can be written 
as

...Y A B C D= + + + +_ i
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3.15.1 Pulsed Operation of NOR Gate

Consider waveforms A and B  applied at the inputs of a 2-input NOR 
gate as shown in Figure 3.15.4. Again, as with the other types of 
gates, we will simply follow the truth Table operation to determine 
the output waveforms with respective to applied inputs.
1. During interval t1, one of the input A 1= , so output Y 0= .

2. During interval t2, both the inputs are 0, so output Y 1= .

3. During the interval t3 one of the input B 1= , so output will be 
Y 1= .

4. During t4 , again both the inputs are 0, so Y 1= .

3.16 THE EXCLUSIVE-OR (XOR) GATE

The Exclusive-OR gate, commonly known as EX-OR gate, is a two-
input, one-output gate. The logic symbol for the Ex-OR gate is shown 
in Figure 3.16.1 and the truth Table for a two-input EX-OR operation 
is given in Table 3.16.1.

Table 3.16.1: Truth table of a 2-input Ex-OR gate

Input Output

A B Y A B5=

0 0 0

0 1 1

1 0 1

1 1 0

From the truth Table it can be stated that, the output of an 
EX-OR gate is a logic ‘1’ when the two inputs are at different logic  
and a logic ‘0’ when the two inputs are at the same logic.

Unlike other gates, three or more variable Ex-OR gates are 
not available. Normally, multiple-input EX-OR logic functions can 
be implemented using more than one two-input Ex-OR gates. For a 
multiple output-input EX-OR logic function we can conclude:

The output of a multiple-input EX-OR logic function is a logic ‘1’ 
only when an odd number of input variables are ‘1’. 

3.16.1 Pulsed Operation of XOR Gate

Consider waveform A and B  applied at the inputs of an exclusive-OR 
gate as shown in Figure 3.16.3. 
1. We can see that the input waveforms A and B  are at opposite 

levels during time intervals t2 and t4 . Therefore, the output Y  is 
‘1’ during these two times. 

2. Since both inputs are at the same level, either both ‘1’ or both 
‘0’, during time intervals t1 and t3, the output is ‘0’ during those 
times as shown in the timing diagram.

Figure 3.15.4 Pulsed operation of a 
2-input NOR gate

If A and B  are the input variables of an Ex-
OR gate and Y  is its output, then

Y AB AB A B5= + =
where the symbol (5) is used to represent the 
Ex-OR operation. 

Figure 3.16.1: Symbol for 2-input Ex-
OR gate

DO REMEMBER
The output of a 2-input Ex-OR gate will be 
‘1’ when one and only one of its input is ‘1’. 
If both the inputs are ‘1’ or both are ‘0’, then 
output will be ‘0’.

Figure 3.16.2: Pulsed operation of a 
2-input Ex-OR gate
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XOR Gate as a Inverter
An X-OR gate can be used as an inverter by connecting one of the 
two input terminals to logic 1 and applying the input to be inverted 
to the other terminal as shown in Figure 3.16.3. 

If the input bit is a 0, the output is, 0 1 15 = , and if the input 
bit is a 1, the output is, 1 1 05 = . Here, one of its inputs is used to 
decide whether the signal at the other input will be inverted or not 
i.e. it controls the operation of inversion. Hence, an X-OR gate can be 
used as a controlled inverter.

Application of Ex-OR Gate
An important property of Ex-OR gate is that it can perform modulo-2 
addition. It should be noted that the same Ex-OR truth Table applies 
when adding two binary digits (bits). A 2-input Ex-OR circuit is, 
therefore, sometimes called a modulo-2 adder or a half-adder without 
carry output.

3.17 THE EXCLUSIVE-NOR (XNOR) GATE

The exclusive-NOR gate, commonly known as Ex-NOR, is an Ex-OR 
gate, followed by an inverter. It has two inputs and one output. The 
logic symbol for the Ex-NOR gate is shown in Figure 3.17.1 and the 
truth Table for the two-input Ex-NOR operation is given in Table 
3.17.1. The truth Table of an EX-NOR gate is obtained from the 
truth Table of an EX-OR gate by complementing the output entries.

Table 3.17.1: Truth table of a 2-input Ex-NOR gate

Input Output

A B Y A B9=

0 0 1

0 1 0

1 0 0

1 1 1

The Boolean expression for the Ex-NOR gate is Y A B5= . 
Using DeMorgan’s theorem,

 A B5  AB AB AB AB:= + =

  ( )( )A B A B AB A B= + + = +

The output of a two-input EX-NOR gate is a logic ‘1’ when the 
inputs are same and a logic ‘0’ when they are different .

Likewise Ex-OR gates, three or more variable Ex-NOR gates 
also do not exist. Normally, multiple-input EX-NOR logic functions 
can be implemented using more than one 2-input Ex-NOR gates. For 
a multiple output-input EX-NOR logic function we can conclude:

The output of a multiple-input EX-NOR logic function is a logic 
‘1’ only when an even number of input variables are ‘0’. Note if all 
inputs are 0, then also output will be ‘1’.

Figure 3.16.3: Ex-OR gate as an inverter

READER NOTE
If A and B  are the input variables of an Ex-
NOR gate and Y  is its output, then

Y AB A B A B9= + =
where the symbol (9) is used to represent the 
Ex-NOR operation. 

Figure 3.17.1: Symbol for 2-input Ex-
NOR gate

DO REMEMBER
The output of a 2-input Ex-OR gate will be ‘1’ 
if both the inputs are ‘1’ or if both the inputs 
are zero. The output will be ‘1’ if one of the 
input is ‘0’ and the other is ‘1’.
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certain other control inputs. INHIBIT implies that the gate produces 
a certain fixed logic level at the output irrespective of changes in the 
input logic level. 

For example, if one of the inputs of a four-input NOR gate is 
fixed to logic ‘1’ level, then the output will always be at logic ‘0’ level 
irrespective of the other inputs. This gate will behave as a NOR gate 
only when this control input is at logic ‘0’ level. This is an example 
of the INHIBIT function.

The INHIBIT function is available in integrated circuit form. 
A four input INHIBIT AND gate is shown in Figure 3.18.1,  which is 
basically an AND gate with one of its inputs negated by an inverter. 
The negated input acts to inhibit the gate. In other words, the gate 
will behave like an AND gate only when the negated input is driven to 
a logic ‘0’. The truth Table for this circuit can be obtained as below.

Table 3.18.1: Truth table of a 4-input INHIBIT gate

Inputs Output

A B C D Y

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 0

EXAMPLE 3.15
Refer to the INHIBIT gate of Figure E3.15(a). If the waveform of 
Figure E3.15(b) is applied to the INHIBIT input, draw the waveform 
at the output.

Figure 3.18.1: INHIBIT gate

Figure : E3.15
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SOLUTION :

Since all other inputs of the gate have been permanently tied to logic 
‘1’ level, a logic ‘0’ at the INHIBIT input would produce a logic ‘1’ 
at the output and a logic ‘1’ at the INHIBIT input would produce a 
logic ‘0’ at the output. The output waveform is therefore inversion of 
the input waveform and is shown in Figure in right side

3.19 UNIVERSAL GATE

As we have already discussed, OR, AND and NOT gates are the 
three basic gates which can be used to implement any given Boolean 
expression. We have also discussed the NAND and NOR gates. NAND 
and NOR gates are known as universal gates because any of these 
two gates is capable of implementing all other gate functions. Hence, 
it is possible to use either only NAND gates or only NOR gates to 
implement any Boolean expression.

3.19.1 NAND Gate as a Universal Gate

The NAND gate can be used to implement the NOT function, AND 
function, the OR function and other functions also as explained below.

The NOT Gate using NAND Gate

An inverter can be made from a NAND gate by connecting all of the 
inputs together and creating, in effect, a single common input, as 
shown in Figure 3.19.1, for a two-input NAND gate.
Algebraically,

 Y  A B:=  A A A:= =

The AND Gate Using NAND Gate

To construct an AND gate from NAND gates, an inverter or a NOT 
gate is required to invert the output of a NAND gate. This inversion 
cancels out the first inverted operation of NAND gate and the final 
result will be AND function as depicted in Figure 3.19.2. 
Algebraically,

 Y  AB AB= =

The OR Gate using NAND Gate

To construct OR function using only NAND gates, first we transform 
the OR function as follows.
We know that Boolean expression for OR gate is,

 Y  A B= +  A B= +  A A=

  A B:=  (De Morgan’s Theorem)

READER NOTE
Any gate can be replaced by a combination of 
NAND gates or NOR gates.

Figure 3.19.1: NOT gate using NAND 
gate

Figure 3.19.2: AND gate using NAND gate
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The Ex-OR Gate using NAND Gate

The Boolean expression for Ex-OR gate is given by 

 Y  AB AB= +

  AB AB= +  X X=

  AB AB:= _ _i i (De Morgan Theorem)
So, five NAND gates are required to implement the Ex-OR gate 

as shown in Figure 3.19.5 The first two NAND gates are necessary to 
invert A and B  inputs. Then, two more NAND gates are necessary 
to get the inputs A and B  in one case, and A  and B  in other case 
as shown in the Figure. The outputs from these two NAND gates are 
fed to the fifth NAND gate to generate the final output Y , which is 
A B A B: :+ , which is the expression for the XOR gate.

Figure 3.19.5: Ex-OR gate using NAND gate

Note that, Ex-OR gate can also be implemented using four 
NAND gates. Algebraically, we may write .

 Y  AB AB= +

or, Y  AA AB BA BB= + + +  AA BB 0= =

  A A B B A B= + + +_ _i i

  A AB B AB= +_ _i i (Using DeMorgan Theorem)

  A AB B AB= +  X X=

  A AB B AB:=  (Using DeMorgan Theorem)

This expression require only four NAND gates as shown in Figure 

3.19.6. 

Figure 3.19.6: Ex-OR gate using 4 NAND gates



Chapter 3 Boolena Algebra and Logic Gates Page 149

The Ex-NOR Gate using NAND Gate

Ex-NOR gate can be constructed by taking complement of Ex-OR. 
That is, we need one more NAND gate to implement the Ex-NOR 
function. Figure 3.19.7 shows Ex-NOR implementation using five 
NAND gates. 

Figure 3.19.7: Ex-NOR gate using NAND gate

3.19.2 NOR Gate as a Universal Gate

Just like the NAND gate, the NOR gate also may be used to implement 
all other operations of Boolean algebra. These are explained as below.

The NOT Gate using NOR Gate

In the same way as the NAND gate described above, an inverter can 
be made from a NOR gate by connecting all of the inputs together 
and creating, in effect, a single common input, as shown in Figure 
3.19.8.
Algebraically,

 Y  A B= +  A A A= + =

2. The OR Gate using NOR Gate

An OR gate can be created by simply inverting the output of a NOR 
gate as shown in Figure 3.19.8. .

Figure 3.19.9: AND gate using NOR gate

Algebraically,

 Y  A B A B= + = +

The AND Gate using NOR Gate

AND function can be generated using three NOR gates. We know 
that Boolean expression for AND gate is

 Y  A B:=  A B:=  A A=

  A B= +  (DeMorgan’s Theorem)

Figure 3.19.8: NOT gate using NOR 
gate
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Figure 3.19.12: Ex-OR gate using NOR gate

The Ex-NOR Gate using NOR Gate

To implement Ex-NOR gate using NOR gates, we just remove the last 
NOR gates from the circuit of Ex-OR gates shown in Figure 3.19.13. 

Figure 3.19.13: Ex-NOR gate using NOR Gate

3.20 ALTERNATE LOGIC-GATE REPRESENTATIONS

We have discussed the five basic logic gates (AND, OR, INVERTER, 
NAND, and NOR) and the standard symbols used to represent them 
in a logic circuit diagram. Most of the logic networks use standard 
symbols. But in some networks an alternative set of symbols is used 
in addition to the standard symbols. The Figure 3.20.1 shows the 
alternate set of symbols for the five basic gates. 

Logic Normal Symbol Alternate symbol

NOT

AND

OR

NAND

NOR

Figure 3.20.1: Normal and alternate symbols of logic gates

DO REMEMBER
Note that these alternate symbols do not 
change the operation of the circuit. A logic 
circuit remains identical even after replacing a 
few or all standard symbol by their equivalent 
alternate representations.
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To convert any normal symbol to its corresponding alternate 
symbol, the following steps are used:

M E T H O D O L O G Y
1. Add bubbles (indication of inversion) at those input or 

output points where it is not present.
2. Remove all pre-existing bubbles of the normal symbol, if 

there is any at the point (only NOT, NAND and NOR 
gates)

3. If the existing normal logic symbol is AND, change it to 
OR, Similarly, if it is OR, then change it to AND. There is 
no change for the triangular symbol of NOT gate.

DO REMEMBER
If the number of input is more than two, 
the same steps are still valid to generate the 
alternate symbols from the normal symbols.

These alternate symbols are equivalent to the standard symbols 
and their equivalent can be proved using DeMorgan’s theorem. For 
example, we know that the output expression from the standard 
NAND symbol is AB A B= + , which is same as the output expression 
for the alternate symbol.

Significance of Alternate Logic-Gate Representation
We know that any digital signal has two states: High (1) and Low (0) 
state. Depending upon various factors, the functioning of any signal 
is decided. 

The logic gates and circuits discussed so far are called active-
HIGH gates and circuits. It means that a high state of input activates 
a device. But in some digital circuits, devices get activated when one 
of several inputs is a 0. Such an input is said to be an active-LOW 
input.

The circuit designers prefer to present the circuit diagram in 
such a fashion so that the circuit diagram itself indicates which one is 
the active state of any logic signal. In this matter, alternate symbols 
help in implementing this idea along with the normal symbols. On 
logic diagrams, placing the inversion bubble at the point where the 
input signal is connected, shows an active-LOW input. 

EXAMPLE 3.16
Draw the circuit shown in Figure using alternate symbols.

SOLUTION :

CONFUSION CLEARING
From the Figure 3.20.1, note that the NAND 
gate is equivalent to an active-LOW input OR 
gate. The NOR gate is equivalent to an active-
LOW input AND gate. The AND gate is 
equivalent to active-LOW NOR gate and the 
OR gate is equivalent to active-LOW NAND 
gate.
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3. Now, C  must be the output of an inverter whose input is C  and 
similarly, A  will be the output of an inverter whose input is A. 
So we put two inverters as shown below. 

 

This is the complete logic diagram of given function. To find 
much simpler circuits, first we have to simplify the given Boolean 
expression using basic theorems and laws of Boolean algebra. This 
was explained earlier in the Section 3.9. The following examples 
further illustrate the method.

EXAMPLE 3.17
Let us consider the following Boolean expression for which its 
equivalent digital circuit is to be designed.

 Y  A BC B CA C AB= + + +_ _ _i i i

SOLUTION :

Step 1: The function contains three terms given in parenthesis which 
are ANDed together. This may be implemented by a 3-input AND 
gate as shown in figure below.

Step 2: Out of the three inputs of the AND gate, the second input 
B CA+_ i is the output of a NOT gate as shown in fig below.

Step 3: A BC+_ i is the output of a 2 input OR gate with inputs 
A and BC , term B CA+_ i is the output of 2-input OR gate with 
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inputs B  and AC  and similarly, C AB+_ i is the output of a 2-input 
OR gate with inputs C  and AB . We insert these OR gates as shown 
in figure below.

Step 4: Some of the inputs of OR gates in above figure above can be 
obtained from the output of AND gate. Term BC  is the output of 
a 2-input AND gate with input B  and C , term CA is the output of 
a 2-input AND gate with input A and C  similarly, term AB  is the 
output of a 2-input AND gate with input A  and B . We insert three 
AND gates as shown in figure below.

Step 5: Now, we observe from above figure that some of the inputs 
are inverted. So we insert a NOT gate corresponding to each of the 
inverted input as shown in figure below.

Note that all inputs to the circuit are elementary inputs and do not 
need any further disintegration.
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 Y  A AB AB A B C AB= + + + + +__ _ii i

Demorgan’s Theorem X Y X Y+ =

 Y  A AB AB A B C AB= + + + +_ i7 7A A

  A AB AB A B C= + + +_ i7 7A A

Applying Demorgan’s Theorem AB A B= +

 Y  A A B A B A B C= + + + + +_ i7 7A A

  AA AB A A B C= + + + +_ _i i

  AB B C1= + +_ i 0, 1AA A A= + =_ i

  AB=  B C1 1+ + =_ i

EXAMPLE 3.19
Draw the simplest logic diagram for the logic diagram shown in figure 
below.

SOLUTION :

Starting From the input side and writing the expressions for the 
outputs of the individual gates as shown in diagram below, we have

 Y  BCD A BCD AC= + + +

Simplification:

 Y  BCD A BCD AC= + + +

Applying Demorgan’s Theorem A BCD A BCD+ = _ i

 Y  BCD A BCD AC= + +_ i
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Let BCD X=

 Y  X X A AC= + +
Applying theorem 7; X X A X A+ = +

 Y  X A AC= + =

 Y  BCD A AC= + +

Again by applying theorem 7, A AC A C+ = +

 Y  BCD A C= + +

 Y  C BD A1= + +_ i

 Y  C A= +  BD 1 1+ =_ i

EXAMPLE 3.20
Draw the simplest possible logic diagram that implements the output 
of the logic diagram shown below.

SOLUTION :

Starting from the input side and writing the expressions for the 
outputs of the individual gates as shown in the diagram below, we 
have

 Y  A A B B B C= + + + +_ _i i
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3.22.1 NAND-NAND Logic

A logic network can be converted into NAND-NAND gate network by 
going through following steps:

M E T H O D O L O G Y
1. First draw the circuit in AOI logic i.e., using AND, OR and 

NOT gates.
2. Add a circle (bubble) at the output of each OR gate and at 

the inputs to all the AND gates.
3. Add an inverter on each line that received only one circle in 

steps 2, so that the polarity of signals on those lines remains 
unchanged from that of the original diagram.

4. Replace bubbled OR by NAND and each inverter by its 
NAND equivalent.

The following example best illustrate the procedure. 

3.22.2 NOR-NOR Logic

The procedure of converting an AOI logic to NOR-NOR logic is same 
as above except steps 2 and 4.

M E T H O D O L O G Y
1. First draw the circuit in AOI logic i.e., using AND, OR and 

NOT gates.
2. Add a circle (bubble) at the output of each OR gate and at 

the inputs to all the AND gates.
3. Add an inverter on each line that received only one circle in 

steps 2, so that the polarity of signals on those lines remains 
unchanged from that of the original diagram.

4. Replace bubbled AND by NOR and each inverter by its 
NOR equivalent.

Again, we consider the following example for better illustration 
of above discussed methodology.

EXAMPLE 3.21
Convert the following AOI logic circuit to 
(a) NAND logic, and  
(b) NOR logic.
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SOLUTION :

(a) NAND logic :

Step 1: Add a circle at the output of each AND gate and at the inputs 
to all OR gate as shown.

Step 2: Add an inverter to each of line which receives only one circle 
in previous step as shown below.

Step 3: Inverters in lines C  and D  can be removed, if C  and D  are 
replaced by C  and D . Replace bubbled OR gates and NOT gates by 
NAND gates. Using only NAND gates, the logic circuit can now be 
drawn as shown below.

(b) NOR logic:

Step 1: Put a circle at the output of each OR gate and at the inputs 
to all AND gates as shown below.

EXPLANATION
Line P , Q , C  and D  receives only circle only 
in previous state so we place an inverter in 
these line. Whereas, line receives S  circles so 
we do not place inverter in this line.
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EXAMPLES

EXAMPLE 3.22
Using the consensus theorem show that

 , ,f A B C_ i AB BC CA AB BC CA= + + = + +

SOLUTION :

Applying the consensus theorem to the 1st and 2nd, 2nd and 3rd, and 
3rd and 1st terms of LHS, we get three redundant terms as AC , BA
, and CB . So. we may adding these terms to L.H.S.

 f  AB BC CA AB BC CA= + + + + +
Now applying consensus theorem to 4th and 5th, 5th and 6th, 6th 
and 4th terms, the terms 3rd, 1st and 2nd become redundant. So 
removing 1st, 2nd and 3rd terms, we have

 f  . . .R H SAB BC CA= + + =
This is an example of , , , ,f A B C f A B C=_ _i i, that is, by 
complementing all the literals the function remains the same.

EXAMPLE 3.23
Find

(a) Dual of A B B C C D: : :+ +

(b) Complement of A B C D E F: : :+ +_ i7 A

SOLUTION :

(a) f1 A B B C C D: : := + +

Dual, f d1  A B B C C D= + + +_ _ _i i i

(b) f2 A B C D E F: : := + +_ i7 A

Complement, f 2 A B C D E F: := + + +_ i7 A

EXAMPLE 3.24
Simplify the following Boolean expression :

 f  AB C BD A B C= + +_ i7 A

SOLUTION :

Step 1: Applying the distributive law to the terms within the brackets.

READER NOTE
Note that in dual expression variables are not 
complemented.
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 f  ABC ABBD A B C= + +_ i

Step 2: Apply rule  BB 0=_ i to the second term within the parentheses.

 f  ABC A D A B C0: := + +_ i

Step 3: Apply rule A D0 0: : =_ i to the second term within the 
parentheses.

 f  ABC A B C0= + +_ i

Step 4: Apply rule (X X0+ = ) within the parentheses.

 f  ABC A B C= +_ i

Step 5: Apply the distributive law.

 f  ABCC A BC= +

Step 6: Apply rule CC C=_ i to the first term.

 f  ABC A BC= +

Step 7: Factor out BC

 f  BC A A= +_ i

Step 8: Apply rule A A 1+ =_ i

 f  BC 1:=

Step 9: Apply rule (X X1: = ).

 f  BC=

EXAMPLE 3.25
Simplify the function , ,f A B C A B A C A B A C= + + + +_ _ _i i i

SOLUTION :

Applying redundant literal rule (RLR) to the 1st and 2nd terms

 A B A C+ +_ _i i A BC+

So, f  A BC A B A C A A B A C BC= + + + = + + +
Applying redundant rule to 1st and 2nd terms, and 1st and 3rd terms

 f  A B A C BC= + + + +
Applying Idempotence law to 1st and 3rd terms.

 f  A B C BC= + + +

 f  A B C B1= + + +_ i

 f  A B C= + +  1 1B+ =_ i

EXAMPLE 3.26
Simplify the following Boolean equations

(a) , ,F A B C ABC AB ABC= + +_ i

(b) , , ,F A B C D ACD ABCD= +_ i
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 L.H.S A B C A A C B= + + +_ _ _i i i

From distributive law (1.6.3b), A C A C A CC+ + = +_ _i i

 L.H.S. A B A CC B= + +_ _i i

  A B AB= +_ _i i CC 0=_ i

  AAB ABB= +

  AB0 +  ,AA BB B0= =_ i

  AB=

(d) AB BC AC+ +_ i AB BC AC= _ _ _i i i (Demorgan’s Theorem)

  A B B C A C= + + +_ _ _i i i

   (Demorgan’s Theorem)

  A B A C B C= + + +_ _ _i i i

Applying distributive law (3.6.3b), A B A C A B C+ + = +_ _i i

So,

 L.H.S A B C B C= + +_ _i i

  A B C B A B C C= + + +_ _i i

  A B B B C A C B C C= + + +

  A B B C A C B C= + + +  B B B=_ i

  A B A C B C= + +  X X X+ =_ i

EXAMPLE 3.28
Implement the following
(a) a four-input NAND gate using two input AND gates and NOT 
gates;
(b) a three-input NAND gate using two-input NAND gates;
(c) a NOT circuit using a two-input NAND gate;
(d) a NOT circuit using a two-input NOR gate;
(e) a NOT circuit using a two-input EX-NOR gate.

SOLUTION :

(a) Figure given below is equivalent to a four input NAND gate 
consists of AND and NOT gates. The first step is to a get a four-input 
AND gate using 3 two-input AND gates. The output thus obtained is 
then complemented using a NOT circuit as shown.

(b) Figure given below  is equivalent to a three input NAND gate 
consists of 3 two-input NAND gates. The first step is to get a two-
input AND from a two-input NAND. The output of a two-input AND 
gate and the third input then feed the inputs of another two-input 
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NAND to get the desired output.

(c) A NOT gate can be obtained by shorting the inputs of a NAND as 
shown in Figure. This is because when all inputs of the NAND are at 
logic ‘0’ level the output is logic ‘1’, and when all inputs to a NAND 
are at logic ‘1’ level the output is logic ‘0’.

(d) Again, A NOT gate can be obtained by shorting the inputs of a 
NOR gate as shown in Figure. From the truth table of a NOR gate it 
is evident that an all 0s input to a NOR gate gives a logic ‘1’ output 
and an all 1s input gives a logic ‘0’ output.

(e) If one of the inputs of Ex-NOR gate is permanently tied to a logic 
‘0’ level and the other is connected to input A, then it acts as a NOT 
gate. When the input is a logic ‘0’, the two inputs become 00, which 
produces a logic ‘1’ at the output. When the input is at logic ‘1’ level, 
a 01 input produces a logic ‘0’ at the output.

EXAMPLE 3.29
If AB AB C+ = , then prove that AC AC A B+ = +

SOLUTION :

 AC AC+  A AB AB A AB AB= + + +_ _i i

  A A B AB A A B AB= + + + + +_ _i i

  1A A B B A A B B1= + + + + +__ _i i i7 A

  A A B A A B= + + +_ i 7 A

  A AB A A A B= + +_ i

  AB A A B= + +

  AB A B1= + +_ i B1 1+ =_ i
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By applying the same procedure as previous we obtain the logic 
diagram of Y  as shown below.

Step 1:

Step 2:

Step 3:

Step 4:
Taking Common inputs together we have
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(c) Y  AB C D= +_ i

Step 1:

Step 2:

Step 3:

(d)Y  A B C D B C= + + +_ i7 A

We split the given expression in to smaller parts as given below.

 Y  A BY1= +  where Y C D B C1 = + +_ i

Step 1:

Step 2:

Step 3:

We have, Y1 C D B C= + +_ i

 Y1 C DY2= + ,  where, Y D B C2 = +_ i

So Y1 is implemented as shown below
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EXAMPLE 3.31
Write a boolean expression for each of the logic diagrams.
(a) 

(b) 

(c)

SOLUTION :

(a) Starting From the input side and writing output expression for 
each of the gates as shown in diagram below, we have

 Y  ABD C A D E A= + + +_ _i i
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(b) Y  A A B C D E E A B C D E= + + + + + + + +_ _ _ _i i i i7 7A A

(c) Y  A B A C D A C D= + + + +_ _ _i i i7 A

EXAMPLE 3.32
For the logic circuit shown in figure below, find an equivalent logic 
circuit with as few gate inputs as possible.

SOLUTION :

Starting From the input side and writing output expression for each 
of the gates as shown in diagram below, we have

 Y  BC AB C= +_ i
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Now we simplify the above expression.

 Y  A A AB AB:= + +_ i7 A  X X=_ i

  AB AB1 := +7 A  A A 1+ =_ i

  AB AB= +

  AB A B= = +  AB AB AB+ =_ i

EXAMPLE 3.34
Redraw the circuit given below after simplification.

SOLUTION :

 Y  A B A B5 9= +_ _i i

  A B A B A B A B5 5= + + +_ _ _ _i i i i

  AB AB A B AB A B A B= + + + +_ _ _ _i i i i

  AB AB A B AB A B B= + + = + +_ i A AB= +

  A A A B A B AB= + + = + =_ _ _i i i

So, the simplified circuit is just a two-input NAND gate.

EXAMPLE 3.35
Redraw the circuit given in figure after simplification.
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SOLUTION :

From the logic diagram, we see that

 Y  A B AB5 5= _ _i i

  A B AB A B AB5 : 5 := +_ _i i

  A B AB AB AB AB A B= + + + +_ _ _i i i

  AB AB AB A B B AB A AB= + + = + + = +_ i

  X A A B A B= + + = +_ _i i

So, the simplified circuit is a two input OR gate.

EXAMPLE 3.36
Implement the Boolean expression Y AC D= +  using two-input 
NAND gates only.

SOLUTION :

First we realize the given expression using AOI Logic.

Now we convert the above AOI logic circuit to NAND logic.

Step 1: Add a circle at the output of each AND gate and at the inputs 
to all OR gate as shown.

Step 2: Add an inverter to each of line which receives only one circle 
in previous step as shown below.

Step 3: Replace Bubbled OR gates and NOT Gates by NAND gates 
as shown below.

READER NOTE
Q  receives one circle only in previous state so 
we place an inverter in this line. Whereas, line 
receives 2 circles so we do not place inverter 
in this line.
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Step 3: Replace bubbled AND gate and NOT gates by NOR gates.

EXAMPLE 3.38
a. Determine a Boolean expression to describe the behaviour of the 
configuration shown in following figure

b. Determine a series-parallel configuration of switches whose 
behaviour is described by the Boolean expression.

 , , ,f A B C D_ i AB D C D A B C= + + + +_ _ _i i i

SOLUTION :

(a) Series connected switches are equivalent to AND operation and 
parallel connected switches are equivalent to OR operation, therefore

 Y  A B C D B D= + +_ i7 A

(b) For the given function, series parallel switch network can be drawn 
as shown below
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EXAMPLE 3.39
Implement the following Boolean expressions using NAND gates only.

, , ,f A B C D C AB ABD= + +_ i

SOLUTION :

 , , ,f A B C D_ i C AB ABD= + +
First we implement the given function using AOI logic. Use 
methodology discussed in Section 3.21

Step 1:

Step 2:

Step 3:
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Verification:

 f  C AB ABD= _ i

  C AB ABD= + +

EXAMPLE 3.40
Realize the following Boolean function using NOR-NOR logic.

 , , ,f A B C D_ i C AB ABD= + +

SOLUTION :

First we implement the given function using AOI logic. Use 
methodology discussed in Section 3.21.

Step 1:

Step 2:

Step 3:



Page 182 Boolena Algebra and Logic Gates Chapter 3

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

Now, we convert the above AOI logic to NOR logic using the same 
methodology discussed in the chapter.

Step 1: Put a circle at the output of each OR gate and at the input 
of each AND gate, as shown in figure below.

Step 2: Add inverter to the lines which receives only one circle in the 
previous step.

Step 3: Two NOT gate in cascaded gives same output A A= , so can 
be removed.
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REVIEW QUESTIONS

1. How Boolean Algebra differs with an ordinary algebra?

2. Explain the importance of Boolean algebra in digital system.

3. State and prove the laws in Boolean algebra.

4. Explain the principle of duality with the help of example.

5. State the basic theorems used in Boolean algebra.

6. Explain the DeMorgan’s theorems in Boolean algebra.

7. State and prove the consensus theorems in Boolean algebra.

8. What are the basic operations in Boolean algebra? Describe 
each in brief.

9. What is a positive logic system?

10. What is a negative logic system?

11. What do you mean by a bubbled OR gate and a bubbled 
AND gate?

12. Explain about Universal gates.

13. (a) Explain postulates of boolean algebra.

(b) What is duality ? Explain it.

14. Why are NAND and NOR gates known as Universal gates?

REVIEW PROBLEMS

15. Simplify the following Boolean expressions using postulates 
of Boolean algebra.

(a) Y A B C D A B C D ABC D ABCD= + + +

  ABCD AB CD ABCD ABCD+ + + +

(b) Y A B C D ABC D ABC D AB C D= + + +

  A BCD ABCD A BCD ABCD+ + + +

    ABCD ABCD+ +

(c) Y ABC AB C ABC ABC= + + +

(d) Y A B C ABC AB C ABC= + + +

(e) Y ABC D ABCD ABCD ABCD= + + +

16. Simplify the following Boolean expressions:

(a) ABC ABC ABC AB C ABC ABC+ + + + +

  A B C A BC+ +

(b) A B C A B C C D C D E+ + + + + + +_ _ _ _i i i i

17. (a) Find the dual of ABCD AB CD A B C D+ +

(b) Find the complement of A B C D E F+ + +_ i7 A

18. The dual of complement of a certain Boolean expression is 
given by ABC DE BCE+ + . Find the expression.

19. Simplify the following expressions using Boolean algebra 
rules:

(a) F A B C D ABCD= + + + +

(b) F A B A B A B= + + +_ _ _i i i

(c) F A B C A B C= + + + +_ _i i

20. (a) Show that AB C A B C 1+ + =_ _i i

(b) Show that B AD BC A D C A D 0+ + + =_ _ _i i i

(c) Show that B D D C A D D ABC+ + + = +_ _ _i i i

(d) Show that 

 B D A D B C A C+ + + +_ _ _ _i i i i AB CD= +

21. Prove that

(a) If A B A C+ = +  and A B A C+ = + , then B C=

(b) If A B A C+ = +  and AB AC= , then B C=

22. Simplify each of the following expressions using only the 
consensus theorem (or its dual):

(a) BC D ABC ACD ABD ABD+ + + +  (reduce to three 
terms)

(b) B C D A B C A C D B C D+ + + + + + + +_ _ _ _i i i i

(c) ABC BC D ACD BCD ABD+ + + +

23. Which of the following statements are always true? Justify 
your answers.

(a) If A B C+ = , then AD BD CD+ =

(b) If AB AC AD+ = , then B C D+ =

(c) If A B C+ = , then A B D C D+ + = +

24. Figure shows a waveform applied to the input of an 
INVERTER. Sketch the output waveform Y  corresponding 
to the input.

 

25. Determine the output, X  for a 2-input AND gate with the 
input waveforms shown in Figure.

 

26. Determine the output, X  for a 2-input OR gate with the 
input waveforms shown in Figure

 

27. Determine the 2-input NOR gate output for the waveforms 
shown in Figure and draw the timing diagram.
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28. What is the only input combination that

(a) will produce a logic ‘1’ at the output of an eight-input 
AND gate?

(b) will produce a logic ‘0’ at the output of a four-input 
NAND gate?

(c) will produce a logic ‘1’ at the output of an eight-input 
NOR gate?

(b) will produce a logic ‘0’ at the output of a four-input 
OR gate?

29. Two square waves, A of 2 kHz and B  of 4 kHz frequency, 
are applied as inputs to the following logic gates. Draw the 
output waveform in each case.

(a) AND   (b) OR

(c) NAND   (d) NOR

(e) X-OR   (f) X-NOR

30. Implement the XOR gate using minimal number of NAND 
gates. Show that the circuit drawn realizes the XOR gate.

31. Implement an Exclusive-NOR gate using minimal number 
of NAND/AND gates.

32. Simplify the following Boolean expressions and implement 
them using minimum number of gates.

(a) f ABC ABC AB C ABC= + + +

(b) f ABC AB C= +

(c) f AB AC CD= + +

(d) f ABC ABC AB C A B C A B C ABC= + + + + +

33. Using the graphical procedures,convert the logic diagram 
of Fig. into a logic diagram consisting of only NAND-gates 
and a logic diagram consisting of only NOR-gate. *Verify 
your results by obtaining the Boolean expression for each 
network.

34. Write a Boolean expression for each of the logic diagrams 
in Figure.

 

 

 

35. Realize the following Boolean function using basic gates:

(a) Y A BC AB C= + +_ i

(b) Y A B AB= +_ i

(c) Y AB AB AB= +_ i

(d) Y ABD C D E A DBC ABC CAD= + + + + +__ _` _ii ij i

36. Implement the following Boolean function using NAND 
gates only:

(a) Y A B C AB= + +_ i

(b) Y A BC BCA= +__ i i

(c) Y AB AB A B= + +_ i

(d) Y ABD C D E A DBC ABC CAD= + + + + +__ _` _ii ij i

37. Convert the following expressions to NAND logic using 
graphical procedure.

(a) A B C D+ +_ _i i  (b) A C ABC ACD+ +_ _i i

(c) A BC D+_ i   (d) AB CD AB CD+ +_ i

38. Convert the following expression to NOR logic using 
graphical procedure.

(a) A B AB+ +   (b) AB A A B+ + +_ i

(c) A AC1 +_ _i i

*********** 
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  AB , AB , ABC , ABCD .

When two or more product terms are ORed (Boolean addition), 
the resulting expression is called Sum-of-Products (SOP). This form 
is also called the Disjunctive Normal Form (DNF). Some examples of 
sum-of-products are:

 Y  BC AB ABC= + +

 Y  AB ACD BC= + +

 Y  B AC ACD= + +

Note that sum-of-products expression may contain a single 
variable term also.

4.2.2 Product-of-Sum (POS)

In Boolean algebra, a sum term is the sum of literals (or Boolean 
variables). In logic circuits, a sum term is produced by an OR 
operation with no AND operations involved. Some examples of sum 
terms are:

 A B+ , A B+ , A B C+ +  and A B C D+ + +

When two or more sum terms are multiplied(ANDed), the 
resulting expression is a product-of-sums (POS). This form is also 
called the Conjunctive Normal Form (CNF). Some examples of 
product-of-sums form are:

 Y  B D A B C C D E= + + + + +^ ^ ^h h h

 Y  B B C D A C= + + +^ ^h h

It may be carefully noted that product-of-sums (POS) expression 
can contain a single variable term also. 

4.2.3 Standard or Canonical Sum-of-products (SOP) Form

If each term in the sum of products form contains all the variables 
(literals), then the expression is known as standard sum of products 
form or canonical sum of products form. Note that in this form each 
product term contains all the variables of the function either in 
complemented or uncomplemented form. 

For example, , , ,f A B C D ABCD A BCD ABCD= + +_ i  is a 
standard sum-of-products form because all the four variables A, B , 
C  and D  appear in each product term in the expression.

MINTERM
Each of the product terms in the standard SOP form is called a 
minterm i.e., a product term which contains all the variables of the 
function either in complemented or uncomplemented form is called a 
minterm. The following points are noticeable about the minterms of 
a given standard SOP form.

CONFUSION CLEARING
In a sum-of-products form, a single overbar 
cannot extend over more than one variable, 
although more than one variable in a term can 
have an overbar. For example, ABC  can be 
a term in sum-of-products expression but not 
ABC .

CONFUSION CLEARING
In the product-of-sums (POS) expression, a 
single overbar cannot extend over more than 
one variable, although more than one variable 
in a term can have an overbar. For example, 
a product-of-sums (POS) expression can have 
the term A B C+ +  but not A B C+ + .
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P O I N T S  T O  R E M E M B E R

1. An n  variable function can have in all 2 n  minterms. A 
minterm is equal to 1 for only one combination of variables. 
For example the term ABCD  is equal to 1 only when 

, 0, 1A B C1= = =  and D 0= . 

2. The sum of the minterms whose value is equal to 1 is the 
standard sum of products form of the function.

3. The minterms are often denoted as m0, m1, m2,..., where the 
subscripts are the decimal equivalent of the binary number 
of the minterms. 

4. For minterms, the binary words are formed by representing 
each non-complemented variable by a 1 and each 
complemented variable by a 0. For example, for the minterm 
A B C D  binary number is 1001 and decimal equivalent is 9. 
Hence it is represented as m9

READER NOTE
In general, for k variables there are 2n  
minterms designated as mj  where the 
subscript j represents the decimal equivalent 
of the binary number of the minterm.

Table 4.2.1 shows the 8 minterms for the variables A, B , and 
C , and their designations.

Table 4.2.1: Minterms for 3 variables and their designation

A B C Minterm Designation

0 0 0 A B C m0

0 0 1 A BC m1

0 1 0 ABC m2

0 1 1 ABC m3

1 0 0 AB C m4

1 0 1 ABC m5

1 1 0 ABC m6

1 1 1 ABC m7

S Notation

S notation is used to represent sum-of-products Boolean expressions. 
Let us consider the following function expressed in standard SOP 
form:

 , ,f A B C_ i A BC ABC ABC ABC= + + +

Another way of representing the function in canonical SOP 
form is by showing the sum of minterms for which the function value 
equals 1.

Thus, , ,f A B C_ i m m m m1 2 3 5= + + +

Yet another way of representing the function in canonical form 
is by listing the decimal equivalents of the minterms for which f 1= .

EXPLANATION
In the given expression, the different terms 
has binary value as 001, 010, 011 and 101. 
The decimal equivalents of these terms are 
1, 2, 3 and 5 respectively. Therefore, the 
corresponding mean terms are m1, m2 , m3  and 
m5 respectively.
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P O I N T S  T O  R E M E M B E R

1. For an n -variable function, there will be at the most 2 n  
maxterms. A maxterm assumes the value 0 only for one 
combination of the variables. For example, the term 
A B C D+ + +  is 0 only when , ,A B C0 1 0= = =  and D 1=
. For all other combinations it will be 1.

2. The product of maxterms whose value is 0 gives the standard 
or canonical product of sums form of the function.

3. Maxterms are often represented as M0, M1, M2,....,where the 
subscripts denote decimal equivalent of the binary number 
of the maxterms.

4. For maxterms, the binary words are formed by 
representing each non-complemented variable by a 0 and 
each complemented variable by a 1. For example, for the 
maxterm A B C D+ + +  binary number is 0110 and decimal 
equivalent is 6. Hence, it is represented as M6.

DO REMEMBER
In general, for n  variables there are 2 n  
maxterms designated as Mj  where the 
subscript j  represents the decimal equivalent 
of the binary number of the maxterm.

For three variables, the 8 maxterms and their designation are 
shown in Table 4.2.2.

Table 4.2.2: Maxterms for 3 variables and their designation

A B C Maxterm Designation

0 0 0 A B C+ + M0

0 0 1 A B C+ + M1

0 1 0 A B C+ + M2

0 1 1 A B C+ + M3

1 0 0 A B C+ + M4

1 0 1 A B C+ + M5

1 1 0 A B C+ + M6

1 1 1 A B C+ + M7

P Notation
Let us now take the case of a product-of-sums Boolean function and 
its representation using P notation. Consider the Boolean function

 , ,f A B C_ i A B C A B C A B C A B C= + + + + + + + +_ _ _ _i i i i

Another way of representing the function in canonical POS 
form is by showing the product of maxterms for which the function 
value equals 0.

Thus,  , ,f A B C_ i M M M M0 74 6: : :=
Yet another way of representing the function in canonical POS form 
is by listing the decimal equivalents of the maxterms for which f 0= .

 , ,f A B C_ i , , ,0 4 6 7P= _ i

where P represents the product of all maxterms whose decimal code 
is given within the parenthesis. 

EXPLANATION
In the given expression, the different maxterms 
has binary value as 000, 100, 110 and 111. 
The decimal equivalents of these terms are 
0, 4, 6 and 7 respectively. Therefore, the 
corresponding mean terms are M0 , M4 , M6  
and M7  respectively.
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EXAMPLE 4.2
Represent the Boolean expression , , , , ,F A B C 0 2 4 5P=_ _i i is standard 
POS Form.

SOLUTION :

 , ,F A B C_ i , , ,M 0 2 4 5P= _ i

The function F  is the product of maxterms M0, M2, M4 and M5.

 , ,F A B C_ i M M M M0 2 4 5=
Subscripts of maxterms represents the decimal equivalent of the 
binary number of maxterms. For example M2 represents maxterm 
whose decimal equivalent is 2 or binary equivalent is 010.

 M0 A B C000= = + +

 M2 A B C010= = + +

 M4 A B C100= = + +

 M5 A B C101= = + +
Boolean expression in standard POS form

 , ,F A B C_ i A B C A B C A B C A B C= + + + + + + + +_ _ _ _i i i i

4.3 CONVERTING EXPRESSIONS TO STANDARD SOP OR POS FORMS

The standard SOP or POS forms are obtained by including all possible 
combinations of the missing variables. This can be possible by using 
laws and rules of Boolean algebra, as discussed below.

4.3.1 Converting SOP Form to Standard SOP Form

The following methodology is followed for the expansion of a Boolean 
expression in SOP from to the standard or canonical SOP form. 

M E T H O D O L O G Y
1. Find the missing literal in each product term if any.
2. If one or more variables are missing in any term, expand 

that term by multiplying it with the sum of each one of 
the missing variables and its complement. 

 For example, in a three variable SOP function consider a 
term AB . The third variable C  is missing. So, to convert 
it into standard form we multiply the term by  ( )C C+  
and expand it as ( )AB C C ABC AB C+ = +

3. Remove repeated product terms if any. 

EXAMPLE 4.3
Convert the following Boolean function into standard SOP and 
express it in terms of minterms.

 , ,Y A B C_ i AB AC BC= + +

EXPLANATION
Convert each binary value to the corresponding 
sum term by replacing each 1 with the 
corresponding variable complement and each 
0 with the corresponding variable
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(b) , ,f A B C_ i A B C C= + +_ i  A B AC C= + +

In first product term variable C  is missing, in second terms B  is 
missing and in third term A and B  is missing.

So, the given function can be converted into standard SOP by 
multiplying first term by C C+_ i, the second term by B B+_ i and 
the third term by A A B B+ +_ _i i.

 , ,f A B C_ i A B C C AC B B C A A B B= + + + + + +_ _ _ _i i i i

  A BC A B C ABC A BC AC A C B B= + + + + + +_ _i i

  A BC A B C ABC A BC ABC= + + + +

   AB C ABC A B C+ + +
Remove repeated product terms

 , ,f A B C_ i A BC A B C ABC ABC AB C ABC= + + + + +
writing mean term for each product term,

        A BC m001 1=_ i A B C m000 0=_ i

        ABC m011 3=_ i ABC m110 6=_ i

        AB C m100 4=_ i ABC m010 2=_ i

The expression in the sum of minterm form can be written as

 , ,f A B C_ i m m m m m m0 1 2 3 4 6= + + + + +

  , , , , ,m 0 1 2 3 4 6S= _ i

(c) , ,f A B C_ i A B A C= + +_ _i i A AC AB BC= + + +

Here the missing terms from the first product term is B  and C , from 
the second term is B , form the third terms is C  and from the fourth 
term is A.

So, the given expression can be converted into standard SOP by 
multiplying first term by B B C C+ +_ _i i, the second term by 
B B+_ i, the third term by C C+_ i and the fourth term by A A+_ i.

 , ,f A B C_ i A B B C C AC B B AB C C= + + + + + +_ _ _ _i i i i

   BC A A+ +_ i

  AB AB C C ABC ABC ABC AB C= + + + + + +_ _i i

   ABC A BC+ +

  ABC ABC ABC AB C ABC ABC= + + + + +

   ABC AB C ABC A BC+ + + +
Removing repeated product terms

 , ,f A B C_ i ABC ABC ABC AB C A BC= + + + +
Writing mean term for each product term.

        ABC m111 7=_ i ABC m110 6=_ i

        ABC m101 5=_ i AB C m100 4=_ i

        A BC m001 1=_ i

The expression in the sum of minterms can be written as
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 , ,f A B C_ i m m m m m1 4 5 6 7= + + + +

  , , , ,m 1 4 5 6 7S= _ i

Alternate Method:

 , ,f A B C_ i A B A C= + +_ _i i

  A BC= +  Theorem (3.6.3b)

  A B B C C BC A A= + + + +_ _ _i i i

  AB AB C C BC A A= + + + +_ _ _i i i

  ABC ABC ABC AB C ABC A BC= + + + + +

  ABC ABC ABC AB C A BC= + + + +

4.3.2 Converting POS Form to standard POS Form

Following is the methodology for expanding a POS expression to the 
standard or canonical POS form

M E T H O D O L O G Y
1. Find the missing literals in each sum term if any.
2. If one or more variables are missing in any sum term, 

expand that term by adding the products of each of the 
missing variable and its complement.

3. For expanding, apply rule A BC A B A C+ = + +_ _i i. 
For example, in a three variable POS function consider 
a term A B+ . The third variable C  is missing. So, to 
convert it into standard form we add the term ( )CC   and 
expand it as A B CC A B C A B C+ + = + + + +_ _i i.

4. Remove repeated sum terms if any. 

EXAMPLE 4.5 
Convert the following Boolean function into standard POS and 
express it in terms of maxterms.

 , ,f A B C_ i A B B C A C= + + +_ _ _i i i

SOLUTION :

Given equation is

 , ,f A B C_ i A B B C A C= + + +_ _ _i i i

This equation can be into standard POS by ORing the first term by 
CC_ i, second term by AA_ i, and third term by BB_ i.

 , ,f A B C_ i A B CC B C AA A C BB: := + + + + + +_ _ _i i i

Expanding the terms, we get

 , ,f A B C_ i A B C A B C A B C A B C= + + + + + + + +_ _ _ _i i i i

   A B C A B C+ + + +_ _i i

EXPLANATION
Here literal missing from 1st sum term is C
, from 2nd term is A and from 3rd term is B
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This equation can be converted into standard POS by ORing the first 
term by AA , second term by BB  and third term by AA .

 , ,f A B C_ i AA B C A BB C AA B C= + + + + + +_ _ _i i i

By expanding using distributive law, we get

 , ,f A B C_ i A B C A B C A B C= + + + + + +_ _ _i i i

   A B C A B C A B C+ + + + + +_ _ _i i i

Removing the repeated sum terms we have

 , ,f A B C_ i A B C A B C A B C= + + + + + +_ _ _i i i

   A B C A B C+ + + +_ _i i

Writing corresponding max term for each sum term,

        A B C M001 1+ + =_ i A B C M101 5+ + =_ i

        A B C M000 0+ + =_ i A B C M010 2+ + =_ i

        A B C M100 6+ + =_ i

The expression in terms of max terms can be written as

 , ,f A B C_ i M M M M M0 1 2 5 6=  , , , ,M 0 1 2 5 6P= _ i

(c) , ,f A B C_ i A A C B C= + +_ i

Let X  C B C= +_ i

So, , ,f A B C_ i A AX= +
By applying Theorem 7, A AX A X+ = +

So, , ,f A B C_ i A C B C= + +_ i

By applying distributive law

 , ,f A B C_ i A C A B C= + + +_ _i i

This equation can be converted into standard POS by ORing the first 
term by BB .

 , ,f A B C_ i A BB C A B C= + + + +_ _i i

  A B C A B C A B C= + + + + + +_ _ _i i i

writing corresponding max term of each sum term.

        A B C M001 1+ + =_ i A B C M011 3+ + =_ i

        A B C M000 0+ + =_ i

The expression in terms of max terms can be written as

 , ,f A B C_ i M M M0 1 3=  , ,M 0 1 3P= _ i

4.4 CONVERTING STANDARD SOP FORM TO STANDARD POS FORM

The complement of a function expressed as the sum of minterms 
equals the sum of minterms missing from the original function. This 
is because, the original function is expressed by those minterms that 
make the function equal to 1, whereas its complement is a 1 for those 
minterms that make the function equal to 0. For example, consider 
the following Boolean function in minterms,
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 , ,f A B C_ i , , ,1 2 6 7S= _ i m m m m1 2 6 7= + + +

  A BC ABC ABC ABC= + + +
After incorporating the missing minterm numbers in original 

function, we can get the complement of function , ,f A B C_ i given as

 , ,f A B C_ i , , ,0 3 4 5S= _ i m m m m0 3 4 5= + + +

  A B C ABC AB C ABC= + + +
Now, if we take the complement of f , we get f  as,

 , ,f A B C_ i m m m m0 3 4 5= + + +

By applying De Morgan’s Theorem

 , ,f A B C_ i m m m m3 4 50 : : :=  (4.4.1)
Writing standard product term corresponding to each minterm in 
above expression

 , ,f A B C_ i A B C ABC AB C ABC: : :=

By applying De Morgan’s Theorem

 , ,f A B C_ i A B C A B C A B C A B C= + + + + + + + +^ ^ ^ ^h h h h

 , ,f A B C_ i M M M M0 3 4 5=  , , ,0 3 4 5P= _ i (4.4.2)

Comparing Eq. (4.4.1) and (4.4.2), we get

 m j  Mj=

It can be stated that maxterm complement is the minterms 
and vice versa. From above discussion we can conclude following two 
points.

P O I N T S  T O  R E M E M B E R

1. To convert one canonical form to another, interchange the 
symbols S and P, and list those numbers missing from the 
original form.

2. The complement of a function which is expressed as the 
Canonical sum of products (SOP) is equal to the Canonical 
product of sum (POS).

For example, Consider a given Boolean function , ,f A B C_ i 
expressed in standard SOP form as,

Standard SOP Form, , ,f A B C_ i , , ,0 1 4 7S= _ i, then

Standard POS Form, , ,f A B C_ i , , ,2 3 5 6P= _ i

Complement Function, , ,f A B C_ i 2,3,5,6 0,1,4,7S P= =

EXAMPLE 4.7 
Convert the following SOP expression to an equivalent POS expression.

 , ,f A B C_ i A B C A BC ABC ABC ABC= + + + +

SOLUTION :

 , ,f A B C_ i A B C A BC ABC ABC ABC= + + + +
The given function is in canonical SOP form writing minterm for each 
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Complement of F  in standard SOP form will include missing minterms 
2, 3, 7 So

 , ,F A B C_ i , ,m 2 3 7S= _ i

(d) From (b) part, We have

 , ,F A B C_ i , ,M 2 3 7P= _ i

Complement of F  in standard POS Form will include missing 
maxterms 0, 1, 4, 5, 6

So, , ,F A B C_ i , , , ,M 0 1 4 5 6P= _ i

4.5 BOOLEAN EXPRESSIONS AND TRUTH TABLES

Sometimes, we have a Boolean expression and we want to find its 
truth table. The Boolean expression can be written in minterms or 
maxterms. This is done by using binary values for each term in the 
expression. Conversely, the truth table can also be used to determine 
a standard SOP or POS expression.

4.5.1 Obtaining Truth Table From SOP Expressions

From a given SOP expression, we can find the truth table using the 
following steps:

M E T H O D O L O G Y
1. List all the possible combinations of binary values of the 

variables in the given expression.
2. Convert the SOP expression to standard form if it is not 

already so.
3. Place a 1 in the output column Ŷ h of truth table, for each 

binary value that makes the standard SOP expression a 1 
and place a 0 for all the remaining values.

The methodology can be best illustrated with the help of 
following example.

EXAMPLE 4.9 
Construct a truth table for the following Boolean expression.

 , ,f A B C_ i AB ABC AC ABC= + + +

SOLUTION :

 , ,f A B C_ i AB ABC AC ABC= + + +
Note that all the terms are product term except AC , So, we express 
AC  into product term using De Morgan’s Theorem.

 , ,f A B C_ i AB ABC A C ABC= + + + +
Now, convert the given function into standard SOP form

 , ,f A B C_ i AB C C ABC A B B C C= + + + + +_ _ _i i i
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   C A A B B ABC+ + + +_ _i i

  ABC ABC ABC ABC ABC A BC= + + + + +

   A B C ABC AB C ABC A B C ABC+ + + + + +
Removing repeated product terms

  , ,f A B C_ i ABC ABC ABC A BC A B C AB C ABC= + + + + + +

The equation on the right above is a standard SOP expression. Since 
there are 3 variables in the domain, therefore there are eight possible 
combinations of binary values. The binary values that make the 
product terms in the expression equal to 1 are 011 (for ABC ), 010 
(for ABC ), 110 (for ABC ), 001 (for A BC ), 000 (for A B C ), 100 
(for AB C ), and 101 (for ABC ). For each of these seven binary 
values, we place a 1 in the output column as shown in the table above. 
The only remaining binary combination is 111 and we place a 0 for 
this combination in the output column.

4.5.2 Obtaining Truth Table From POS Expression

We have already discussed that a POS (product-of-sums) expression 
is equal to 0 only if at least one of the sum terms is equal to 0. On 
the basis of this, we can find a truth table from given POS expression. 
The steps are as given below:

M E T H O D O L O G Y
1. List all the possible combinations of binary values of the 

variables.
2. Convert the POS expression to standard form if it is not 

already so.
3. Place a 0 in the output column Ŷ h for each binary value 

that makes the expression a 0 and place a 1 for all the 
remaining binary values.

To illustrate this, we will consider the following example.

EXAMPLE 4.10 
Construct a truth table for the following standard POS function.

 , ,F A B C_ i A B C A B C A B C= + + + + + +_ _ _i i i

SOLUTION :

 , ,F A B C_ i A B C A B C A B C= + + + + + +_ _ _i i i

The binary values that make the sum terms in the expression equal to 
0 are 111 (for A B C+ + ), 101 (for A B C+ + ), 011 (for A B C+ +
). For each of these binary values, a 0 is placed in the output column 
as shown in the table. For each of the remaining binary combinations, 
a 1 is placed in the output columns. The truth table is shown in right 
side.

Inputs Output

A B C f

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Inputs Output

A B C , ,F A B C_ i

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0
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Standard SOP expression:
From the given truth table we find, that there are four 1’s in the 
output column and the corresponding binary values are, 010, 011, 
110 and 111. These binary values are converted to product terms as 
follows:

 010 ABC"

 011 ABC"

 110 ABC"

 111 ABC"

Thus the resulting standard SOP expression for the output Y  is,

 Y  ABC ABC ABC ABC= + + +

Standard POS expression:
From the given truth table, we find that the output is 0 for binary 
values 000, 001, 100 and 101. These binary values are converted to 
sum terms as follows:

 000 A B C" + +

 001 A B C" + +

 100 A B C" + +

 101 A B C" + +
The resulting standard POS expression for the output,

 Y  A B C A B C A B C A B C= + + + + + + + +_ _ _ _i i i i

4.6 CALCULATION OF TOTAL GATE INPUTS USING SOP AND POS FORMS

We can compute the total number of gate inputs required to realize a 
Boolean expression from the given SOP or POS form.
1. If the expression is in the SOP form, count the number of AND 

inputs and the number of AND gates feeding the OR gate.

2. If the expression is in the POS form, count the number of OR 
inputs and the number of OR gates feeding the AND gate.

3. If it is hybrid form, count the gate inputs and the gates feeding 
other gates.

The cost of implementing a circuit is roughly proportional to 
the number of gate inputs required. In the following examples we will 
calculate the total number of gate inputs required to implement a 
given expression.

EXAMPLE 4.12 
How many gate inputs are required to realize the following expressions?
(a) f ABC ABCD EF AD1 = + + +
(b) f A B C D B C E A B C E2 = + + + + + + +_ _ _i i i

SOLUTION :

Inputs Output

A B C Y

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1
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(a) Write the expression ABC ABCD EF AD+ + +

Count the AND inputs 3 4 2 2 11+ + + =

Count the AND gates feeding the OR gate 1 1 1 1 4+ + + =

Total gate inputs 15=

(b) Write the expression

  A B C D B C E A B C E: : :+ + + + + + +_ _ _i i i

Count the OR inputs 0 3 3 4 10+ + + =

Count the OR gates feeding the AND gate 1 1 1 1 4+ + + =

Total gate inputs 14=

4.7 KARNAUGH MAP (K-MAP)

We have already discussed that Boolean expressions can be simplified 
algebraically. But, this method has a drawback that we can never be 
sure whether the simplified expression is in its simplest form or it can 
be simplified further. This problem of algebraic simplification method 
is overcome in Karnaugh map or K-map simplification. 

The following points describe the structure and characteristics 
of a K-map.
1. The K-map is a chart, or a graph, composed of an arrangement 

of adjacent cells, each representing a minterm or maxterm of a 
Boolean expression. Like a truth table, it is a means of showing 
the relationship between the logic inputs and the desired output.

2. The number of cells in K-map depends upon the number of 
variables in the Boolean expression. Actually, K-maps can be 
used for any number of variables. But it is used only upto six 
variables; beyond six variables, it becomes very difficult.

3. An n  variable function can have 2n  possible combinations of 
product terms in SOP form, or 2n  possible combinations of sum 
terms in POS form. Since the K-map is a graphical representation 
of Boolean expressions, a two-variables K-map will have 2 42 =  
cells or squares, a three variable map will have 2 83 =  cells or 
squares, and a four variable map will have 2 164 =  cells, and so 
on.

Figure 4.7.1 shows a 2-variable, 3-variable and 4-variable 
K-map.

Figure 4.7.1: General structure of K-maps

K-MAP
A Karnaugh map is used to find input variable 
redundancies and to reduce output Boolean 
equation.
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The small number on the top right corner of each cell indicates 
the minterm or maxterm designation. This can be obtained by taking 
decimal equivalent of the binary value of each cell. Take A as the 
MSB of designator and C  as the LSB. For example in a 3-variable 
K-map(Figure 4.7.3a), the cell in the lower right corner has a binary 
value of 101, so it represents minterm m5 or maxterm M5.

For illustration we consider the three variable K-map for SOP 
and POS expressions.

K-map For SOP Expressions
The binary numbers along the top of the map indicate the condition 
of A and B  for each column. The binary number along the left 
side of the map against each row indicates the condition of C  for 
that row. For example, the binary number 01 on top of the second 
column in Figure 4.7.2a indicates that the variable A appears in 
complemented form and the variable B  in non-complemented form in 
all the minterms in that column. The binary number 0 on the left of 
the first row indicates that the variable C  appears in complemented 
form in all the minterms in that row.

In this way we can write minterm corresponding to each cell. For 
example, cell with designation 6 represents a min term m ABC6 = .

K-map For POS Expression
Similarly in case of POS expressions, the binary number 01 on top 
of the second column in Figure 4.7.2b indicates that the variable 
A appears in non-complemented form and the variable B  in 
complemented form in all the maxterms in that column. The binary 
number 0 on the left of the first row indicates that the variable C  
appears in non-complemented form in all the maxterms in that row.

Thus, we can write maxterm corresponding to each cell. For 
example, cell with designation 5 represent a max term M A B C5 = + +

Another Structure of K-map
A k-map can also be drawn by labelling rows and columns in terms 
of variables and their compelemented form as shown in Figure 
4.7.5. This is same as previous K-maps shown in Figure 4.7.2-
4. This representation of K-maps is used when the expression for 
mininimzation is given in product term or sum term.
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Figure 4.7.5: Another way to represent 2, 3 and 4 variables K-map

Cell Adjacency
Observe that the binary numbers along the top of the K-map are not 
in normal binary order. They are, in fact, in the Gray code. This is 
to ensure that two physically adjacent squares are really adjacent, i.e. 
their minterms or maxterms differ by only one variable.

This helps the grouping of the adjacent cells and in their 
simplification by the application of the rule AX AX A+ = . In addition, 
the left and right-most cells of the 3-variable K -map are adjacent. 
For example, the cells 0 and 4 are adjacent, and the cells 1 and 5 are 
adjacent. This is because each pair differs in just a single variable. In 
the 4-variable K -map, the cells to the extreme left and right as well 
as those at the top and bottom-most position are adjacent.

4.7.2 Plotting a K-map

We know that logic function can be represented in various forms such 
as SOP expression, POS expression or truth table. In this section, we 
will see the procedure of filling cells with binary values 1 or 0 for a 
given expression or truth table.

Plotting Standard SOP on K-map
Boolean expressions in SOP may or may not be in a standard form. 
First, the expression is converted into standard SOP and then, 1’s are 
marked in each cell corresponding to the minterm of expression and 
remaining cells are filled with 0’s.  This is illustrated in the following 
example. Consider the Boolean function:
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The K-map representation is shown as shown in Figure 4.7.7. To 
represent standard POS on K-map place a 0 in each cell corresponding 
to the max term which are present in the function. Place 1 in remaining 
cells.

Plotting a Truth Table on K-map
We can construct a K-map from a given truth table also. In case of 
SOP K-map, the product terms which are having output 1, have the 
corresponding cells marked with 1’s. The other cells are marked with 
0’s.

In case of POS K-map, the product terms which are having 
output 1, have the corresponding cells marked with 0’s. The other 
cells are marked with 1.

For example, minterm K-map for a truth Table 4.7.1 and 
maxterm K-map for an another truth Table 4.7.2 are shown as below.

Table 4.7.1: A truth table and corresponding SOP K-map

Inputs Output

A B C Y

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Table 4.7.2: A truth table and corresponding POS K-map

Inputs Output

A B C Y

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

DO REMEMBER
The output column of a truth table is 
represented by 0’s or 1’s, 0 indicates that 
the particular minterm (product term) is not 
presented in the given function and 1 indicates 
that the minterm appears in the function.
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EXAMPLE 4.13 
Represent the following Boolean function by K-map:

 , , ,F A B C D_ i ABC BCD BD= + +

SOLUTION : 

Given Boolean expression is

 , , ,F A B C D_ i ABC BCD BD= + +
It is a four variable Boolean expression is SOP. Variable D  is missing 
in the first term, variable A in the second term, and variables A and 
C  are missing in the last term. The expression is not in a standard 
form. The standard SOP can be obtained by ANDing the first term 
with D D+_ i, the second term with A A+_ i, and the last term with 
A A+_ i and C C+_ i.

 , , ,F A B C D_ i ABC D D BCD A A BD A A C C= + + + + + +_ _ _ _i i i i

  ABCD ABCD ABCD A BCD ABCD= + + + +

   ABCD ABCD ABCD+ + +

Binary values of minterms present in the function are as follows:

 A BCD 0011_ i m3=

 ABCD 0101_ i m5=

 ABCD 0111_ i m7=

 ABCD 1011_ i m11=

 ABCD 1110_ i m14=

 ABCD 1101_ i m13=

 ABCD 1111_ i m15=
K-map representation of the expression is shown in figure in right side. 
In K-map we place a 1 in each cell represented by above minterms and 
0 in remaining cells.

EXAMPLE 4.14 
Represent the following Boolean expression by K-map:

 , , ,Y A B C D_ i A B C A C D= + + + +_ _i i

SOLUTION : 

Given Boolean expression is

 , , ,Y A B C D_ i A B C A C D= + + + +_ _i i

It is a four variable Boolean expression in POS. Variable D  is missing 
in the first term, B  is missing in the second term, and the expression 
is not a standard POS. The standard POS can be obtained by ORing 
the first term with DD  and the second term with BB .

 , , ,Y A B C D_ i A B C DD A C D BB= + + + + + +_ _i i

  A B C D A B C D A B C D= + + + + + + + + +_ _ _i i i
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The simplification of logical functions with K-map is based on 
the principle of combining terms in adjacent cells. Two cells are said 
to be adjacent, if they differ in only one variable. Four cells are said 
to be adjacent, if they differ in two variables. Eight cells are said to 
be adjacent, if they differ in three variables, and so on. To simplify a 
Boolean expression, the method is as below:

The simplified SOP is obtained by grouping adjacent 1’s and the 
simplified POS is obtained by grouping adjacent 0’s.

First we discuss the grouping for SOP expression i.e., grouping 
of adjacent 1’s in the K-map. Remember that grouping of adjacent 0’s 
for POS expression is also same, only the form of expression changes.

Grouping of Two adjacent Cells (Pair)
Two cells are said to be adjacent if they differ in only one variable. 
In a pair, one variable appears in normal form in one cell and it 
appears in complemented form in another cell. These two terms can 
be grouped to give a resultant that eliminates the variable which 
appears in both forms. The rule used here is AX AX A+ = .

Hence, by grouping a pair of adjacent 1’s in a K-map we can 
eliminate the variable that appears in normal and complemented 
form. 

Now, we will consider some examples for combining two adjacent 
cells and obtain the resultant term after grouping.

2-variable K-map

(a) The K-map shown in Figure 4.7.7,  contains a pair of 1’s that 
are horizontally adjacent to each other, the first cell represents A B  
and second cell represents AB . Note that in these two terms, the 
variable A appears in both normal and complement form (B  remains 
unchanged). These two terms can be grouped to give a resultant that 
eliminates the variable A, since it appears in both forms. 

 f  A B AB= +  B A A B= + =_ i  A A 1+ =_ i

(b) Now, the K-map shown in Figure 4.7.8,  contains a pair of 1’s 
that are vertically adjacent to each other, the first cell represents A B  
and second cell represents AB . Note that in these two terms, the 
variable B  appears in both normal and complement form (A  remains 
unchanged). These two terms can be grouped to give a resultant that 
eliminates the variable B , since it appears in both forms. 

 f  A B AB= +  A B B A= + =_ i  B B 1+ =_ i

3-variable K-map

(a) The 3-variable K-map shown in Figure 4.7.9 contains a pair of 1’s 
that are horizontally adjacent to each other, the first cell represents 
ABC  and second cell represents AB C . Note that in these two terms, 
only the variable B  appears in both normal and complement form (A 
and C  remain unchanged). These two terms can be grouped to give 
a resultant that eliminates the variable B , since it appears in both 
forms.

Figure 4.7.7:

Figure 4.7.8:

Figure 4.7.9:
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            f  ABC AB C= +  AC B B= +^ h AC 1= ^ h AC=

(b) The same principle holds true for any pair of vertically (or) 
horizontally adjacent 1’s. Figure 4.7.10 shows an example of two 
vertically adjacent 1’s. The first cell represents ABC  and second cell 
represents ABC . These two cells can be grouped and the variable 
C  is eliminated, since it appears in both its uncomplemented and 
complemented form

          f  ABC ABC= +  AB C C= +^ h AB 1= ^ h AB=

(c) In a K-map the left most column and right most column of squares 
are considered to be adjacent. Thus, the two 1’s in these columns with 
a common row can be combined to eliminate one variable. This is 
illustrated in the Figure 4.7.11. The left most column cell represents 
A B C  and right most column  cell represents ABC  Here the variable 
A has appeared in both its complemented and uncomplemented forms 
and hence it is eliminated

         f  A BC ABC= +  BC A A= +^ h BC 1= ^ h BC=

(d) Now consider the example of K-map that has two overlapping 
pairs of 1’s. This shows that one cell can be shared between two pairs 
as shown in Figure 4.7.12.

 f  A B C A BC A BC ABC= + + +

  A C B B AB C C= + + +_ _i i

  A C AB= +

4-variable K-map

Now we consider the possible grouping of pairs in a 4-variable K-maps.
1. Two horizontal adjacent cells (Figure 4.7.13)

2. Two vertical adjacent cells (Figure 4.7.14)

3. Any two cells of first and last rows and belong to same column 
(Figure 4.7.15)

4. Any two cells of first and last columns and belong to same row 
(Figure 4.7.15).

Figure 4.7.10:

Figure 4.7.11:

Figure 4.7.12:

Figure 4.7.14

Y  ABC D ABC D= +

    BC D A A= +_ i BC D=

Figure 4.7.15

Y  ABCD ABCD= +

    ABD C C= +_ i ABD=

Figure 4.7.16

Y  AB C D ABCD= +

    AB D C C= +_ i AB D=
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4-variable K-map

Y  ABC D ABCD ABCD ABCD= + + +

   ABC D D ABC D D= + + +_ _i i

   ABC ABC= +

   AB C C= +_ i AB=

Y  A BCD ABCD ABCD ABCD= + + +

    ACD B B ACD B B= + + +_ _i i

    ACD ACD= +

    CD A A= +_ i CD=

Y  ABC D ABC D ABCD ABCD= + + +

    BC D A A BCD A A= + + +_ _i i

    BC D BCD= +

    BD C C= +_ i

    BD=

Y  ABCD ABCD ABCD ABCD= + + +

    BCD A A BCD A A= + + +_ _i i

    BCD BCD= +

    BD C C= +_ i

    BD=

Y  A B C D AB C D A BCD ABCD= + + +

    B C D A A BCD A A= + + +_ _i i

    B C D BCD= +

    B D C C= +_ i

    B D=



Chapter 4 Minimization Techniques Page 215

P O I N T S  T O  R E M E M B E R

(1) Looping a quad of 1’s eliminates the two variables that 
appear in both normal and complemented form.

(2) After grouping a quad, the resultant term contains only 
n 2-^ h variables, where ‘n ’ is the number of variables of 

K-map.

Grouping of Eight adjacent cells (Octet)
Eight cells are said to be adjacent, if they differ in three variables. It is 
possible to make a group of eight adjacent ones. Such a group is called 
an octet. In an octet, three variables associated with minterms will 
change and only one variable will remain same. The three variables 
that change will be eliminated and the variable which remain same 
will appear as result. Thus octet eliminates three variable. Some 
examples of octet in a 4-variable K-map are given as below.

 Y  A B CD ABCD ABCD AB CD A BCD= + + + +

   ABCD ABCD ABCD+ + +

  A CD B B ACD B B ACD B B= + + + + +_ _ _i i i

   ACD B B+ +_ i

  A CD ACD ACD ACD= + + +

  CD A A CD A A= + + +_ _i i

  CD CD= +

  D C C= +_ i D=

 Y  A B C D ABC D A B CD ABCD A BCD= + + + +

   ABCD A BCD ABCD+ + +

  A C D B B A CD B B ACD B B= + + + + +_ _ _i i i

   ACD B B+ +_ i

  A C D A CD ACD ACD= + + +

  A C D D AC D D= + + +_ _i i

  A C AC= +

  A C C= +_ i

  A=

 Y  A B C D ABC D ABC D AB C D A BCD= + + + +

   ABCD ABCD ABCD+ + +

  A C D B B AC D B B ACD B B= + + + + +_ _ _i i i

   ACD B B+ +_ i

  A C D AC D ACD ACD= + + +

  C D A A CD A A= + + +_ _i i

  C D CD= +

  D C C= +_ i D=
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a group, that variable is eliminated from the resultant expression. 
Variables that are same in all with the group must appear in the final 
expression. Each group gives us a product term and summation of all 
product term gives us a Boolean expression.

From the above discussion we can outline generalized procedure 
to simplify Boolean expressions as follows:

M E T H O D O L O G Y
1. Construct the K-map as discussed. Enter 1 in those cells 

corresponding to the minterms for which function value 
is 1. Place 0’s in other cells.

2. Form the groups of possible 1s as pair, quad and octet. 
There can be overlapping of groups if they include 
common cells. While doing this make sure that there are 
minimum number of groups.

3. Encircle the cells which contain 1s and are not adjacent 
to any other cell. These are known as isolated minterms 
and they appear in the expression in same form.

4. Avoid any redundant group.
5. Write the Boolean term for each group and obtain the 

minimized expression by summing product terms of all 
the groups.

EXAMPLE 4.16 
Minimize the expression using K-map.

 , ,F A B C_ i ABC A BC ABC AB C A B C= + + + +

SOLUTION :

Step 1: The given function in standard SOP form. So we represent the 
function on K-map as shown below.

Step 2: Form the group of possible adjacent 1s. Note that in given 
K-map there is one Quad and one pair as shown below.

EXPLANATION
To represent standard SOP on K-map, place 
a 1 in the cells corresponding to the minterms 
which are present in the function. Place 0 for 
all remaining cells. 
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Step 3: There is no isolated cell having 1.

Step 4: There is no redundant group.

Step 5: Write the Boolean term for each group as shown in the K-map.

Summing product terms of all groups, we get the minimized expression 
in SOP form

 , ,F A B C_ i AC B= +

EXAMPLE 4.17
Minimize the expression

 , , ,F A B C D_ i ABC D ABCD ABC D ABCD= + + +

   AB CD A BCD+ +

SOLUTION : 

Step 1: The given function in standard SOP form, so we represent the 
function on K-map as shown. To represent standard SOP on K-map, 
place a 1 in the cells corresponding to the minterms which are present 
in the function. Place 0 for all remaining cells.

Step 2: Form the groups of possible adjacent 1s. In the given K-map 
there is one Quad, one pair.

Step 3: The bottom corner cell is not adjacent to any other cell. 
Encircle this cell.

Step 4: There is no redundant group.

Step 5: Write the Boolean term for each group as shown below.

Summing product term for all groups, we get the minimized expression 
in SOP form

 , , ,F A B C D_ i A BCD ACD BC= + +
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EXAMPLE 4.19 
Minimize the expression , , , , ,f m 0 2 3 4 5 6S= _ i using K-map and 
implement it in AOI logic as well as in NAND logic.

SOLUTION :

 f  , , , , ,m 0 2 3 4 5 6S= _ i

Construct the K-map for the given function as shown below. To 
obtain minimized SOP expression, we form groups of adjacent 1’s. 
There could be 1 quad and 2 pairs in the given K-map.

Now, we implement the given function using AND, OR gates.

To implement the given function using NAND gates, either we can 
use the graphical methodology discussed in section 3.22.1 or just 
write minimized expression into NAND terms.

 f  C AB AB= + +

 f  f C AB AB C AB AB: := = + + =

  AB AB C: :=
The logic diagram using NAND gates.

Minimized SOP expression is

f  C AB AB= + +



Page 222 Minimization Techniques Chapter 4

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

EXAMPLE 4.20 
Minimize the following logic function using K-map and realize using 
universal gates.

 , , ,f A B C D_ i AB AC C AD ABC ABC= + + + + +

SOLUTION :

The given SOP function is not in standard form. Rather than 
converting it into standard form, we directly construct the truth table. 

For example, variable C  and D  are missing from first term, so 
standard product term will be

 AB C C D D+ +_ _i i ABCD ABCD ABCD ABC D= + + +
For this term we place 1 in four cells which have AB  as common 
term. Similarly we fill cells corresponding to other terms AC . The 
complete K-map is shown below. There is one octet and one quad of 
adjacent 1’s after grouping.

NAND realization:

 , , ,f A B C D_ i A CD A CD:= + =

EXAMPLE 4.21 
Simplify the logic function specified by the truth table given below.

A B C Y

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

SOLUTION :

We construct the K-map from the given truth table using the method 
described earlier in section 4.7.2.

Minimized SOP expression is

f  A CD= +
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Step 1: Represent the given function on K-map. To represent standard 
POS on K-map, place a 0 in the cells corresponding to the maxterm 
which are present in the function. Place 1 for all remaining cells as 
shown.

Step 2:  Form the groups of adjacent 0’s. In the given K-map there is 
three pairs as shown below.

Step 3: There is no isolated cells having 0s.

Step 4: There is no redundant group.

Step 5: Write the sum term for each group as shown below.

Minimized POS function

 , ,F A B C_ i A B B C B C= + + +_ _ _i i i

Alternate Grouping:
We can also group in an alternative way as shown below. There is 
three pairs.

Minimized POS expression

 , ,F A B C_ i A C B C B C= + + +_ _ _i i i
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EXAMPLE 4.23 
Minimize the following expression in the POS form

 , , ,F A B C D_ i A B C D A B C D= + + + + + +_ _i i

   A B C D A B C D+ + + + + +_ _i i

   A B C D A B C D+ + + + + +_ _i i

   A B C D A B C D+ + + + + +_ _i i

SOLUTION :

Step 1: The given function in standard POS form. To represent the 
given function on K-map, we place 0s in the cells corresponding to 
maxterms present in the function and remaining cells are filled with 
1s as shown.

Step 2: Form the groups of adjacent 0’ss. In the given K-map there 
are two quad and one pair as shown.

Step 3: There is no isolated 0’s.

Step 4: There is no redundant group.

Step 5: Writing the sum term for each group and product all the sum 
terms of groups, we get the minimized POS expression.
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(c) , ,f A B C_ i A B A C A B C A B C= + + + + + +_ _ _ _i i i i

The K-map for the given function is shown as below.

Given function is not is standard POS form. So, first we convert it 
into standard form.

 , ,f A B C_ i A B CC A C BB A B C= + + + + + +_ _ _i i i

   A B C+ +_ i

  A B C A B C A B C= + + + + + +_ _ _i i i

   A B C A B C A B C+ + + + + +_ _ _i i i

Removing repeated sum terms

 , ,f A B C_ i A B C A B C A B C= + + + + + +_ _ _i i i

   A B C+ +_ i

The K-map for the given function is shown below. There are two pairs 
of adjacent 0’s as shown in K-map. Writing sum term of each pair 
and product them together, we obtain the minimized POS expression.

(d) , ,f A B C_ i A B C A C A B C A B C= + + + + + +_ _ _ _i i i i

We convert the given POS expression into standard form to represent 
the given function, but the conversion seems cumbersome sometime. 
So, we directly map the given expression into K-map. In the cells 
having sum term A, B C+_ i, A C+_ i, A B C+ +_ i A B C+ +_ i 
put a 0. Rest of the cells are filled with 1 as shown.

There are 2 quads and 1 pair of adjacent 0’s. Writing sum term 
for each group and product them togethers, given us the minimized 
POS expression.

 , ,f A B C_ i CA A B= +_ i A B AC= +_ i

EXAMPLE 4.25 
Minimize each of the following function using K-map.

Minimized POS expression

f B C A B B C= + + +_ _ _i i i

Minimized POS expression

f A B A C= + +_ _i i
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(a) , , , , , , , , , ,f A B C D M 1 3 4 5 10 11 12 14P=_ _i i

(b) , , , , , , ,f A B C D M 1 4 5 6 14P=_ _i i

(c) , , ,f A B C D A B D A B C A C D A B D= + + + + + + + +_ _ _ _ _i i i i i

SOLUTION :

(a) , , ,f A B C D_ i , , , , , , ,M 1 3 4 5 10 11 12 14P= _ i

The K-map for the given function is shown below. There are 4 pairs 
of adjacent 0’s. Writing sum term and taking product of these term, 
we get the minimized POS expression.

 , , ,f A B C D_ i  A B C A B D A B D A B C= + + + + + + + +_ _ _ _i i i i

(b) , , ,f A B C D_ i , , , ,M 1 4 5 6 14P= _ i

The K-map for the given function is shown below, There are three 
pairs of adjacent 0’s. Writing sum term for each group and taking 
product, we get the minimized POS expression.

 , , ,f A B C D_ i A B C A C D B C D= + + + + + +_ _ _i i i
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4.7.6 Converting SOP to POS and Vice-Versa

When a POS expression is mapped, it can easily be converted to the 
equivalent SOP form directly from the Karnaugh map. Also, given 
a mapped SOP expression, an equivalent POS expression can be 
derived directly from the map. This provides a good way to compare 
both minimum forms of an expression to determine if one of them can 
be implemented with fewer gates than the other.

Converting From SOP to POS Form Using K-map
The procedure is as follows:

M E T H O D O L O G Y
1. Map the SOP expression
2. For an SOP expression, all the cells that do not contain 

1s contains 0s. Group all the cells containing 0.
3. Write sum term for each of the group. This will provide 

the minimized POS expression.

Converting From POS to SOP form using K-map
It is also possible to employ a K-map to convert an equation from it’s 
POS form to its SOP form. The procedure is as follows:

M E T H O D O L O G Y
1. Map the POS expression
2. For a POS expression, all the cells that do not contain 0s 

contains 1s. Group all the cells containing 1.
3. Write product term for each of the group. This will 

provide the minimized SOP expression.

EXAMPLE 4.27
Write down the simplified Boolean expression in (a) sum of products 
form and (b) products of sums form for:
(i) , , , , , , , , , ,Y A B C D m 1 4 6 9 10 11 14 15S=_ _i i

(ii) , , , , , , , , , , , , , ,Y A B C D M 0 1 3 5 6 7 9 10 11 12 13 15P=_ _i i
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SOLUTION :

(i) Given Boolean expression is

 Y  , , , , , , ,m 1 4 6 9 10 11 14 15S= _ i

Given function is in standard SOP form. To represent it on K-map, 
we place 1s in the cells corresponding to minterms present in the 
function. Remaining cells are filled with 0s as shown.

(a) To write the simplified expression in sum of products form, we 
have to form groups of adjacent 1’s as shown in the K-map. Note that 
there are 2 pairs and 1 quad of adjacent 1’s in the given K-map.

(b) To write the simplified expression in product of sums form, we 
have to form groups of 0’s as shown. There are 4 possible pairs of 
adjacent 0’s. The simplified Boolean expression is

 , , ,Y A B C D_ i A B C B C D A B C A B D= + + + + + + + +_ _ _ _i i i i

(ii) Given Boolean expression is

 , , ,Y A B C D_ i , , , , , , , , , , ,M 0 1 3 5 6 7 9 10 11 12 13 15P= _ i

Given function is in standar POS form. To represent this on K-map, 
place 0’s in the cells corresponding to maxterms present in the 
function. Remaining cells are filled with 1s as shown in side column.

(a) To write the simplified expression in sum of products form, we 
have to form groups of adjacent 1’s as shown in Figure below.

The simplified Boolean expression:

, , ,Y A B C D_ i AC ABD B CD= + +
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EXAMPLE 4.28 
Minimize the following function using K-map

(a) , , , , , , , , , ,f A B C D m d0 1 2 5 8 15 6 7 10S= +_ _ _i i i

(b) , , , , , , , , ,f A B C D m d2 8 9 10 12 13 7 11S= +_ _ _i i i

(c) , , , , , , , , , , ,f A B C D m d7 9 11 12 13 14 3 5 6 15S= +_ _ _i i i

SOLUTION :

(a) , , ,f A B C D_ i , , , , , , ,m d0 1 2 5 8 15 6 7 10S= +_ _i i

The function is given in terms of minterms and don’t care conditions. 
K-map representation of the given function is shown. To obtain a 
minimize SOP expression, we form groups of adjacent 1’s and also 
include don’t cares if they can be used in grouping. There are 2 pairs 
and 1 quad of adjacent 1’s and don’t cares as shown.

Minimized POS expression

 , , ,f A B C D_ i B D A CD BCD= + +

(b) , , ,f A B C D_ i , , , , , ,m d2 8 9 10 12 13 7 11S= +_ _i i

The K-map for the given function is shown below. To obtain a 
minimize SOP expression, we form groups of adjacent 1’s and also 
include don’t cares if they can be used in grouping. There is 1 pair 
and 1 quad of adjacent 1’s and don’t cares as shown.

Minimized SOP expression.

 , , ,f A B C D_ i AC BCD= +

Alternate Grouping:
If we group adjacent 1’s don’t care in another way as shown below, we 
would not get the minimized function.

 , , ,f A B C D_ i AC BCD AB= + +

(c) , , ,f A B C D_ i , , , , , , , ,m d7 9 11 12 13 14 3 5 6 15S= +_ _i i

K-map for the given function is as shown. To obtain a minimize SOP 
expression, we form groups of adjacent 1’s and also include don’t 
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cares if they can be used in grouping. There are 3 quads of adjacent 
1’s and don’t cares as shown.

Minimized SOP expression

 , , ,f A B C D_ i AB AD CD= + +
There may be another way of grouping, out no. of terms will remain 
same in the minimized expressions.

EXAMPLE 4.29 
Minimize the following function using K-map.

(a) , , , , , , , ,f A B C D M d0 8 10 11 14 6P= +_ _ _i i i

(b) , , , , , , , ,f A B C D M d2 8 11 15 3 12 14P= +_ _ _i i i

(c) , , , , , , , , , , ,f A B C D M d0 2 6 11 13 15 1 9 10 14P= +_ _ _i i i

SOLUTION :

(a) , , ,f A B C D_ i , , , ,M d0 8 10 11 14 6P= +_ _i i

The function is given in terms of maxterms and don’t care condition. 
The binary values of maxterms and don’t care terms appearing in the 
function are as below.

     M A B C D 00000 = + + + _ i M A B C D 10008 = + + + _ i

     M A B C D 101010 = + + + _ i M A B C D 101111 = + + + _ i

     M A B C D 111014 = + + + _ i M A B C D 01106 = + + + _ i

Given function is in standard POS form with don’t cares. To represent 
this on K-map, we place 0s in the cells corresponding to above 
maxterms and X in the cell corresponding to don’t cares as shown. 
To obtain a minimized POS expression, we form groups of adjacent 
0’s and also consider don’t cares if they are useful in grouping. There 
are 3 possible pairs of adjacent 0’s including some don’t cares, as 
shown in the K-map.

Minimized POS expression.

 , , ,f A B C D_ i B C D A B C A C D= + + + + + +_ _ _i i i

Alternate Grouping:
There could be another way of grouping adjacent 0’s and don’t 
care, but the no. of terms will remain same in the minimized POS 
expressions.

Minimized POS expression

 , , ,f A B C D_ i B C D B C D A B C= + + + + + +_ _ _i i i

(b) , , ,f A B C D_ i , , , , ,M d2 8 11 15 3 12 14P= +_ _i i

First we represent the given POS function on K-map. The binary 
values of maxterms and don’t care terms appearing in the function 
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EXAMPLE 4.30
Write down the simplified Boolean expression in (a) Sum-of-Products 
form and (b) Product-of-sum for the following functions.

(i) , , , , , , , , , , ,f A B C D m d6 7 9 10 13 1 4 5 11 15S= +_ _ _i i i

(ii) , , , , , , , , , , ,f A B C D M d0 3 4 11 13 2 6 8 9 10:P=_ _ _i i i

SOLUTION :

(i) Given Boolean function is

 , , ,f A B C D_ i , , , , , , , ,m d6 7 9 10 13 1 4 5 11 15S= +_ _i i

The given function is expressed in terms of minterms and don’t care 
condition. We represent the given function on K-map by filling cells 
corresponding to minterms present in the function with 1. Cells 
corresponding to don’t care term are filled with X and remaining 
cells contain 0. 

(a) To write the simplified expression in sum-of-Product form, we 
have to form groups of adjacent 1’s considering don’t cares also which 
are useful in grouping, as shown in K-map. There are 2 quads and 1 
pair of adjacent 1’s including some don’t cares as  shown.

Minimized SOP expression

 , , ,f A B C D_ i AB CD ABC= + +

(b)  To obtain minimized expression in POS form, we form groups of 
adjacent 0’s along with some don’t cares which are useful in grouping. 
There are 2 quads and 1 pair of adjacent 0’s  in the given K-map as 
shown.

Minimized POS expression

 , , ,f A B C D_ i A B C D A B C= + + + +_ _ _i i i

(ii) , , ,f A B C D_ i , , , , , , , ,M d0 3 4 11 13 2 6 8 9 10:P= _ _i i

The given function is expression in terms of maxterms and don’t 
care conditions. We represent the given function on K-map by filling 
cells corresponding to maxterms present in the function by 0.  Cells 
corresponding to don’t care term are filled with X and remaining cells 
are filled with 1s. 
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(a) To write the simplified expression in sum-of-product form, we 
have to make groups of adjacent 1’s considering don’t cares also which 
are useful in grouping, as shown in K-map. There are 2 quads and 1 
pair of adjacent 1’s including some don’t cares as  shown.

Minimized SOP expression

 , , ,f A B C D_ i AD BC A CD= + +

(b) To obtain minimized expression in POS form, we form groups of 
adjacent 0’s along with some don’t cares which are useful in grouping. 
There are 2 quads and 1 pair of adjacent 0’s  in the given K-map as 
shown.

Minimized POS expression.

 , , ,f A B C D_ i A D B C A C D= + + + +_ _ _i i i

4.9 FIVE VARIABLE K-MAP

A 5-variable K-map requires 2 325 =  cells, but adjacent cells are 
difficult to identify on a single 32 cell map. Therefore, two 16 cell 
K-maps are generally used as shown in Figure 4.9.1. The five variables 
are A, B , C , D , E . The first K-map contains entries corresponding to 
A and BC D E  whereas the other one contains entries corresponding 
to A  and BC D E .



Chapter 4 Minimization Techniques Page 239

Figure 4.9.3: Illustration of adjacent rows in a 5-variable K-map

Figure 4.9.4: Illustration of adjacent columns in a 5-variable K-map

Figure 4.9.5: Non-adjacencies between the columns
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Figure 4.9.6: Non-adjacencies between the Top and bottom rows of the 
two K-maps in a 5 variable K-map

4. In a similar way we can find the adjacent groups in the two 
K-maps as shown in Figure 4.9.7.

Figure 4.9.7: Illustration of some adjacent groups in a 5-variable K-map

EXAMPLE 4.31
Minimize the following Boolean functions using K-maps :

(a) , , , , , , , , , , , , , , ,Y A B C D E m 0 1 5 6 9 13 14 17 21 22 25 29S=_ _i i

(b) , , , , , , , , , , , , , , ,Y A B C D E M 3 4 7 11 15 19 21 23 27 28 29 31P=_ _i i

SOLUTION :

(a) Given Boolean function is

 , , , ,Y A B C D E_ i , , , , , , , , , , ,m 0 1 5 6 9 13 14 17 21 22 25 29S= _ i

It is a five-variable Boolean function. Its K-map representation is 
shown in Figure below.
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M E T H O D O L O G Y
1. Each minimized expression should have as many terms 

in common as possible with those in the other minimized 
expressions. During the implementation of functions, the 
common terms will be shared.

2. To find the common terms, in addition to separate K-maps 
for each output expression, draw an additional K-map called 
the shared minterm K-map for the minterms which are 
common to all the output expressions and then obtain the 
common terms from it.

3. Out of the common terms obtained from the shared minterm 
K-map, select only those terms whose inclusion will result in 
the reduction of the overall cost.

The above procedure best can be illustrated with the help of an 
example as given below.

EXAMPLE 4.32
Minimize and implement the following multiple output functions and 
realize the minimized functions using basic gates.

 f1 , , , , , , ,m 1 2 3 6 8 12 14 15S= _ i

 f2 , , , , , ,M 0 4 9 10 11 14 15P= _ i

SOLUTION :

In the given problem, f1 is in SOP form and f2 is in POS form. To 
minimize the multiple output functions, we find both the function in 
same form. So convert f2 into equivalent SOP form.

 f2 , , , , , , , ,M 1 2 3 5 6 7 8 12 13P= _ i

First we find a function f  which has the minterms common to both 
f1 and f2. 

 f  , , , , ,f f m 1 2 3 6 8 121 2: S= = _ i

Now, we draw the K-maps for f1, f2 and f  and obtain a minimized 
SOP expression for each.

f A BD ACD AC D ABC1 = + + + f AD ACD BCD AC D2 = + + +
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Note that the terms ACD , AC D  are the shared minterms by both 
the function. So the logic diagram can be drawn as

4.11 VARIABLE MAPPING

Variable mapping is a technique, which reduces a large mapping 
problem to one that uses just a small map. For example, using variable 
mapping we can reduce a 4-variable K-map problem to a 3-variable 
K-map problem.

This technique can reduce the map size for 3, 4, 5, 6, 7, and 8 
variable maps. It is especially useful in those problems which have a 
few isolated variables among more frequently used variables. Consider 
the Boolean expression,

 f  A B C A BC ABC ABC ABCD= + + + +
This is a four-variable problem. We can note that the variable 

   f A BD ACD AC D= + +
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K-map is shown as below. Grouping is shown separately in another 
K-map.

Minimized SOP expression

 , , ,f A B C D_ i AB BCD A BCD= + +

4.12 LIMITATIONS OF K-MAP

K-maps are not suitable when the number of variables involved 
exceed four. It may be used with difficulty up to five and six variable 
systems. But, beyond ‘six variables’ K-maps cannot be physically 
visualized. Another limitation is that the K-map simplification is a 
manual technique and simplification process is heavily dependent on 
the abilities of the designer. It cannot be programmed. To meet this 
need, W.V. Quine and E.J.McCluskey developed an exact tabular 
method to simplify the Boolean expression. This method is called the 
Quine McCluskey or tabular method.

4.13 QUINE-MCCLUSKEY OR TABULAR METHOD OF MINIMIZATION OF LOGIC FUNCTIONS

The K-map method is suitable for simplification of Boolean functions 
up to 5 or 6 variables. As the number of variables becomes more than 
six, it becomes difficult to form the group and simplify the Boolean 
expression. The Quine-McCluskey or Tabular method is employed in 
such cases. This is a systematic step by step procedure for minimizing 
a Boolean expression in standard form.

Basic Principal of Quine-McCluskey Method
In K-map simplification, we observed that the adjacent minterms 
could be reduced because they differ by only one variable. For 
example, ABC  and ABC  can be reduced because only C  variable 
differs. The binary equivalents of these minterms are 111 and 110. 
From the binary equivalents, it is clear that the minterms, whose 
binary equivalent differ only in one place, can be combined to reduce 
the minterms. This is the basic principle of Quine-McCluskey method.

Prime Implicants and Essential Prime Implicants
In a K-map each square or rectangular made up by combining adjacent 
minterms is referred to as subcube. Each of these subcube is a prime 
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implicant. The prime implicant which contains at least one 1 which 
can not be covered by any other prime implicant is called an essential 
prime implicant.

The steps used to simplify the Boolean function using Quine-
McCluskey method are:
1. Represent each minterms of the Standard SOP form of logic 

function by a binary code and its decimal equivalent.

2 Arrange all minterms in groups. Groups are made according 
to number of 1’s in the binary representation of minterms. For 
example, in group-0 of minterms, number of 1’s is zero; in group 
1 minterms have a single 1; in group-2, minterms have two 1’s 
and so on. Separate each group by a horizontal line as shown in 
Table E4.34.1. 

3. Compare every term of the lowest group with each term in the 
adjacent group. If two minterms differ in only one variable, 
that variable should be removed and a dash (–) is placed at 
the position, thus a new term with one less literal is formed. 
If such a situation occurs, a check mark () is placed next to 
both minterms. After all pairs of terms have been considered, a 
horizontal line is drawn under the last terms as depicted in Table 
E4.34.2.

4. Now we repeat step 3 with newly formed groups i.e. we combine 
four minterms of adjacent groups if possibilities exist. In this 
case, dashes (–) exist in same position of two groups and only one 
position will be different. Table E4.34.3 shows the combination 
of four minterms.

 The process continues to next higher stages until no further 
comparisons are possible. (i.e., no further elimination of literals).

5. All terms which remain unchecked during the process are 
considered to be prime implicants. Thus, a set of all prime 
implicant of the function is obtained

6. From the set of all prime implicates, a set of essential prime 
implicants must be determined by preparing prime implicant 
chart as follow:

 (a) The prime implicants should be represented in rows and 
each minterm of the function in a column.

 (b) Place a cross mark under each decimal number, which 
means the particular minterm is contained in the prime 
implicants represented by the row.

 (c) A complete prime implicant chart should be inspected for 
columns containing only a single cross. Prime implicants that 
cover minterms with a single cross in their column are called 
essential prime implicants. A tick() mark is put against each 
column which has only one cross mark. A star (*) mark is 
placed against each. EPI.

7. The minterms which are not covered by the essential prime 
implicants are taken into consideration and a minimum cover is 
obtained form the remaining prime implicants.

The better illustration of above procedure can be possible with 
an example as given next.
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Apply same process to the resultant column of Table and 
continue until no further elimination of literals. No further elimination 
of literals is possible after this, so we move to next step.
Step 4: All terms which remain unchecked are the PIs. However 
note that the minterms combination ,0 2_ i and ,8 10_ i form the same 
combination , , ,0 2 8 10_ i as the combination ,0 8_ i and ,2 10_ i. The 
order in which these combinations are placed does not prove any 
effect. Moreover, as we know that x x x+ = , thus, we can eliminate 
one of these combinations. The same occur with combination ,2 3_ i 
and ,6 7_ i.

Step 5: Now we perpare a PI chart to determine EPIs as follows 
shown in Table E4.34.4 using the following steps.

(a) All the PIs are represented in rows and each minterm of the 
function in a column.

(b) Crosses are placed in each row to show the composition of 
minterms that make PIS.

(c) The column that contains just a single cross, the PI corresponding 
to the row in which the cross appear is essential. Prime implicant. A 
tick mark is part against each column which has only cross mark. A 
star *_ i mark is placed against each EPI.

Table E4.34.4 Prime Implicants Chart

Prime Implicants
Minterms

0 2 3 6 7 8 10 12 13

,8 12_ i # #

, *12 13_ i # #

, , , *0 2 8 10_ i # # # #

, , , *2 3 6 7_ i # # # #

     

Step 6: All the minterms have been covered by EPIs. Finally, the sum 
of all the EPIs gives the function in its minimal SOP form

Table E4.34.5 Essential Prime Implicants and their representation

EPIs

Binary 
Representation Variable 

Representation
A B C D

12, 13 1 1 0 – ABC

0, 2, 8, 10 – 0 – 0 B D

2, 3, 6, 7 0 – 1 – AC

Minimized SOP expression

 F  ABC B D AC= + +
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EXAMPLE 4.35
Simplify the following Boolean function using Quine McClusky 
method.

 , , ,f A B C D_ i , , , , , , , , ,m 0 1 2 7 8 9 10 11 14 15S= _ i

SOLUTION :

Step 1: Step is shown in Table E4.35.1. The don’t care minterms are 
also included.

Table E4.35.1 Minterms in binary equivalent and groups of minterms according to no. of 1’s

Minterms Binary  
ABCD

No. of 1’s Minterms Index Binary 
ABCD

m0 0000 0 0 0 0000 
m1 0001 1 1

I

0001 
m2 0010 1 2 0010 
m7 0111 3 8 1000 
m8 1000 1 9

II
1001 

m9 1001 2 10 1010 
m10 1010 2 7

III

0111 
m11 1011 3 11 1011 
m14 1110 3 14 1110 
m15 1111 4 15 IV 1111 

Step 2: Step 2 is shown in Table E4.35.2.
Table E4.35.2 The combinations of two minterms

Minterms
Binary

A B C D

0, 1 0 0 0 –   
0, 2 0 0 – 0   
0, 8 – 0 0 0   
1, 9 – 0 0 1   
2, 10 – 0 1 0   
8, 9 1 0 0 –   
8, 10 1 0 – 0   
9, 11 1 0 – 1   
10, 14 1 – 1 0   
7, 15 – 1 1  1 PI

11, 15 1 – 1 1   
14, 15 1 1 1 – PI

STEP 1:
The minterms of the function are represented 
in binary form. The binary represented are 
grouped into a number of sections in terms 
of the number of 1’s index as shown in Table 
E4.35.1.

STEP 2:
Compare every term of the lowest group 
with each term in the adjacent group. If two 
minterms differ in only one variable, that 
variable should be removed and a dash (–) is 
placed at the position, thus a new term with 
one less literal is formed. If such a situation 
occurs, a check mark () is placed next to 
both minterms. After all pairs of terms have 
been considered, a horizontal line is drawn 
under the last terms as depicted in Table 
E4.35.2.
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Verification:
We can verify the result using K-map. For the given function K-map 
is shown as below.

EXAMPLE 4.36
Simplify the following Boolean expression using Quine-McCluskey 
method.

 , , ,Y A B C D_ i ABC D AB C D A B CD ABCD ABC D= + + + +

SOLUTION :

Given Boolean expression is

 , , ,Y A B C D_ i ABC D AB C D A B CD ABCD ABC D= + + + +

  0100 1000 0001 1101 1100_ _ _ _ _i i i i i

In minterms, the function can be written as,

 , , ,Y A B C D_ i , , , ,m 1 4 8 12 13S= _ i

Step 1: Step is shown in Table E4.36.1.

Table E4.36.1 Minterms in binary equivalent and groups of minterms 
according to no. of 1’s

Minterms Binary

 ABCD

No. of 1’s Minterms Index Binary

ABCD

m1 0001 1 1

I

0001 PI

m4 0100 1 4 0100 

m8 1000 1 8 1000 

m12 1100 2 12 II 1100 

m13 1101 3 13 III 1101 

STEP 1:
The minterms of the function are represented 
in binary form. The binary represented are 
grouped into a number of sections in terms 
of the number of 1’s index as shown in Table 
E4.36.1.
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Step 2: Step 2 is shown in Table E4.36.2.

Table E4.36.2 The combinations of two minterms

Minterms 
Group

Binary

A B C D

4, 12 – 1 0 0 PI

8, 12 1 – 0 0 PI

12, 13 1 1 0 – PI

Step 3: Now we repeat step-2 with newly formed groups i.e. we 
combine four minterms of adjacent groups if possibilities exist. In this 
case, dashes (–) exist in same position of two groups and only one 
position will be different. We can see that no four minterm group is 
possible here.

Step 4: 
Table E4.36.3 Prime implicants chart

Prime Implicants
Minterms

1 4 8 12 13

1* #

4, 12 : # #

8, 12 : # #

12, 13 : # #

   

Step 5: Here minterm 1 is the essential prime implicants. But, all the 
minterms present in the function are not covered by the essential prime 
implicants. So, we select the prime implicants which covers maximum 
number of unaccounted minterms. We select prime implicants ,4 12_ i

, ,8 12_ i and ,12 13_ i such that all minterms are covered by these PI 
and Essential prime implicants.

Step 6: Finally all essential prime implicants along with chosen prime 
implicant gives the minimized expression. Following table contains 
product term corresponding to PIs.

Table E4.36.4

Prime Implicants Binary Representation Product term

1* 0 0 0 1 A B CD

4, 12 – 1 0 0 BC D

8, 12 1 – 0 0 AC D

12, 13 1 1 0 – ABC

STEP 2:
Compare every term of the lowest group 
with each term in the adjacent group. If two 
minterms differ in only one variable, that 
variable should be removed and a dash (–) is 
placed at the position, thus a new term with 
one less literal is formed. If such a situation 
occurs, a check mark () is placed next to 
both minterms. After all pairs of terms have 
been considered, a horizontal line is drawn 
under the last terms as depicted in Table 
E4.36.2.

STEP 4:
All terms which remain unchecked are the 
PIs. We remove repeated prime implicants 
as shown in table E4.36.2. Now, construct 
the prime implicant chart as shown in table 
E4.36.3.
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Step 2: Step 2 is shown in Table E4.37.2.

Table E4.37.2 Combination of two minterms

Minterm 
Group

Binary

A B C  D

0, 2 0 0 – 0   

0, 8 – 0 0 0   

2, 3 0 0 1 –   

2, 6 0 – 1 0   

2, 10 – 0 1 0   

8, 10 1 0 – 0   

3, 7 0 – 1 1   

3, 11 – 0 1 1   

5, 7 0 1 –  1     PI

6, 7 0 1 1 –   

10, 11 1 0 1 –   

7, 15 – 1 1 1   

11, 15 1 – 1 1   

Step 3: Step 3 is shown in Table E4.37.3.

Table E4.37.3 Combination of four minterms

Minterm Group
Binary

A B C D

0, 2, 8, 10 – 0 – 0 PI

0, 8, 2, 10 – 0 – 0 PI Eliminated

2, 3, 6, 7 0 – 1 – PI

2, 3, 10, 11 – 0 1 – PI

2, 6, 3, 7 0 – 1 – PI Eliminated

2, 10, 3, 11 – 0 1 – PI Eliminated

3, 7, 11, 15 – – 1 1 PI

3, 11, 7, 15 – – 1 1 PI Eliminated

Step 4: All terms which remain unchecked are the PIs. We remove 
repeated prime implicants as shown in Table E4.37.3. Now, construct 
the prime implicant chart as shown in Table E4.37.4. 

STEP 2:
Compare every term of the lowest group 
with each term in the adjacent group. If two 
minterms differ in only one variable, that 
variable should be removed and a dash (–) is 
placed at the position, thus a new term with 
one less literal is formed. If such a situation 
occurs, a check mark () is placed next to 
both minterms. After all pairs of terms have 
been considered, a horizontal line is drawn 
under the last terms as depicted in Table 
E4.37.2.

STEP 3:
Now we repeat step-2 with newly formed 
groups i.e. we combine four minterms of 
adjacent groups if possibilities exist. In this 
case, dashes (–) exist in same position of two 
groups and only one position will be different. 
Table E4.37.3 shows the combination of four 
minterms.

EXPLANATION:
Note, however, that don’t care minterms will 
not be listed as column headings in the chart 
as they do not have to be covered by the 
minimal (simplified) expression.
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Table E4.37.4 Prime implicant chart

Prime 
Implicants

Minterms

0 2 3 6 7

,5 7_ i #

, , , *0 2 8 10_ i # #

, , , *2 3 6 7_ i # # # #

, , ,2 3 10 11_ i # #

, , ,3 7 11 15_ i # #

 

Step 5: All the minterms have been covered by EPIs. Finally, the sum 
of all the EPIs gives the function in its minimal SOP form

Minimized SOP expression

 , , ,F A B C D_ i B D AC= +

EXAMPLE 4.38
Simplify the function , , , , , , , ,F d0 1 2 3 5 9 11 4 7 15S= +_ _i i using Quine 
Mclusky method and verify the result by Karnaugh map.

SOLUTION :

If don’t care condition are given, they are also used to find the prime 
implicating, but it is not compulsory to include them in the final 
simplified expression.

Step 1: Step is shown in Table E4.38.1. The don’t care minterms are 
also included.

Table E4.38.1 Minterms and don’t cares in binary equivalent and groups of minterms according to no. of 1’s

Minterms
Binary 

ABCD
No. of 1’s

Minterms 
Group

Index
Binary

ABCD

m0 0000 0 0 0 0000   
m1 0001 1 1

I

0001   
m2 0010 1 2 0010   
m3 0011 2 4 0100   
m5 0101 2 3

II

0011   
m9 1001 2 5 0101   
m11 1011 3 9 1001   
m4 0100 1 7

III
0111   

m7 0111 3 11 1011   
m15 1111 4 15 IV 1111   

Table E4.37.5 Essential Prime Implicants and their 
representation

EPIs
Binary Representation Variable 

RepresentationA B C D

, , , *0 2 8 10_ i – 0 – 0 B D

, , , *2 3 6 7_ i 0 – 1 – AC

STEP 1:
The minterms and don’t cares of the function 
are represented in binary form. The binary 
represented are grouped into a number of 
sections in terms of the number of 1’s index as 
shown in Table E4.38.1.
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Table E4.38.4 Prime implicant chart

Prime 
Implicants

Minterms

0 1 2 3 5 9 11

0, 1, 2, 3* # # # #

0, 1, 4, 5 : # # #

1, 3, 5, 7 # # #

1, 3, 9, 11* # # # #

3, 7, 11, 15 # #

 

Step 5: Here all the minterms present in the function are not covered 
by the essential prime implicants. So, we select the prime implicants 
which covers maximum number of unaccounted minterms. We select 
prime implicants , , ,0 1 4 5_ i such that all minterms are covered by this 
PI and Essential prime implicants.

Step 6: Finally all essential prime implicants along with chosen prime 
implicant gives the minimized expression. Table E4.38.5 contains 
product term corresponding to PIs.

Minimized SOP expression

 , , ,f A B C D_ i A B A C BD= + +

Verification:

 , , ,f A B C D_ i A B A C BD= + +

EXAMPLE 4.39
Determine the prime implicants of the function.

 , , , ,f A B C D E_ i , , , , , , , , , ,m 4 5 6 7 9 10 14 19 26 30 31S= _ i

SOLUTION :

Step 1: 

Table 4.39.1 Minterms in binary equivalent and groups of minterms 
according to no. of 1’s.

Minterms
Binary

 ABCDE
No. of 1’s

Minterm 
Group

Index
Binary

 ABCDE

m4 00100 1 m4 I 00100   
m5 00101 2 m5

II

00101   
m6 00110 2 m6 00110   
m7 00111 3 m9  01001    PI

m9 01001 2 m10 01010   

Table E4.38.5

Prime 
Implicants

Binary Representation Product 
TermA B C D

0, 1, 2, 3 0 0 – – A B

0, 1, 4, 5 0 – 0 – A C

1, 3, 9, 11 – 0 – 1 BD
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Minterms
Binary

 ABCDE
No. of 1’s

Minterm 
Group

Index
Binary

 ABCDE

m10 01010 2 m7

III

00111   
m14 01110 3 m14 01110   
m19 10011 3 m19  10011 PI

m26 11010 3 m26 11010   
m30 11110 4 m30 IV 11110   
m31 11111 5 m31 V 11111   

Step 2:

Table E4.39.2 Combination of two minterms

Minterm 
Group

Binary

A B C D   E

4, 5 0 0 1 0 –   

4, 6 0 0 1 – 0   

5, 7 0 0 1 – 1   

6, 7 0 0 1 1 –   

6, 14 0 – 1 1   0 PI

10, 14 0 1 – 1 0   

10, 26 – 1 0 1 0   

14, 30 – 1 1 1 0   

26, 30 1 1 – 1 0   

30, 31 1 1 1 1   – PI

Step 3:

Table E4.39.3 Combination of four minterms

Minterm Group
Binary

A B C D E

4, 5, 6, 7 0 0 1 – – PI

4, 6, 5, 7 0 0 1 – – PI Eliminated

10, 14, 26, 30 – 1 – 1 0 PI

10, 26, 14, 30 – 1 – 1 0 PI Eliminated
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Step 2: Step 2 is shown in tableE4.40.2.

Table E4.40.2 The combinations of two minterms

Minterm 
Group

Binary

A B C  D

1, 3 0 0 – 1   
1, 5 0 – 0 1   
4, 5 0 1 0 –   
4, 6 0 1 – 0   
4, 12 – 1 0 0   
3, 7 0 – 1 1   
5, 7 0 1 – 1   
5, 13 – 1 0 1   
6, 7 0 1 1 –   

12, 13 1 1 0 –   

Step 3: Step 3 is shown in table E4.40.3.

Table E4.40.3

Minterm Group
Binary

A B C D

1, 3, 5, 7 0 – – 1 PI

1, 5, 3, 7 0 – – 1 PI Eliminated

4, 5, 6, 7 0 1 – – PI

4, 5, 12, 13 – 1 0 – PI

4, 6, 5, 7 0 1 – – PI Eliminated

4, 12, 5, 13 – 1 0 – PI Eliminated

Step 4: 

Table E4.40.4 Prime implicants chart

Prime Implicants Minterms

1 3 4 5 6 7 10 12 13

10* #

1, 3, 5, 7* # # # #

4, 5, 6, 7* # # # #

4, 5, 12, 13* # # # #

   

Step 5: All the minterms have been covered by EPIs. Finally, the sum 
of all the EPIs gives the function in its minimal SOP form

STEP 2:
Compare every term of the lowest group 
with each term in the adjacent group. If two 
minterms differ in only one variable, that 
variable should be removed and a dash (–) is 
placed at the position, thus a new term with 
one less literal is formed. If such a situation 
occurs, a check mark () is placed next to 
both minterms. After all pairs of terms have 
been considered, a horizontal line is drawn 
under the last terms as depicted in Table 
E4.40.2.

STEP 3:
Now we repeat step-2 with newly formed 
groups i.e. we combine four minterms of 
adjacent groups if possibilities exist. In this 
case, dashes (–) exist in same position of two 
groups and only one position will be different. 
Table E4.40.3 shows the combination of four 
minterms.

STEP 4:
All terms which remain unchecked are the 
PIs. We remove repeated prime implicants 
as shown in table E4.40.3. Now, construct 
the prime implicant chart as shown in Table 
E4.40.4.
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Table E4.40.5 Essential Prime Implicants and their representation

EPIs Binary Representation Product term

10 1  0  1  0 ABCD

1, 3, 5, 7 0  –  –  1 AD

4, 5, 6, 7 0  1  –  – AB

4, 5, 12, 13 –  1  0  – BC

Minimized SOP expression

 , , ,f A B C D_ i A BCD AD AB BC= + + +

Verification:

 , , ,f A B C D_ i AB AD BC ABCD= + + +

***********
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EXAMPLES

EXAMPLE 4.41
Represent the function f A BC ABD ABCD= + + +  into minterms 
and maxterms.

SOLUTION :

The given expression is a four-variable function. In the first term 
A, the variables B , C , and D  are missing. So, multiply it by 
B B C C D D+ + +_ _ _i i i. In the second term BC , the variables A 

and D  are missing. So, multiply it by A A D D+ +_ _i i. In the third 
term, ABD , the variable C  is missing. So, multiply it by C C+_ i. 
In the fourth term ABCD , all the variables are present. So, leave it 
as it is. Therefore,

 A A B B C C D D= + + +_ _ _i i i

  ABCD ABCD ABCD ABC D ABCD= + + + +

   ABCD AB CD AB C D+ + +

 BC  BC A A D D= + +_ _i i

  ABCD ABC D ABCD ABC D= + + +

 ABD  ABD C C ABCD ABC D= + = +_ i

           f  ABCD ABCD ABCD ABC D ABCD ABCD= + + + + +

   AB CD AB C D ABCD ABC D+ + + +

 f  m m m m m m m m m m15 14 13 12 11 10 9 8 5 4= + + + + + + + + +

  , , , , , , , , ,m 4 5 8 9 10 11 12 13 14 15S= _ i

In the SOP form, the minterms 0, 1, 2, 3, 6, and 7 are missing. So 
in the POS form, the maxterms 0, 1, 2, 3, 6 and 7 will be present. 
Therefore, the POS form is 

 f  , , , , ,M 0 1 2 3 6 7P= _ i

EXAMPLE 4.42 
For a Boolean function , 0,2f A B S=_ _i i, prove that , 1,3f A B P=_ _i i 
and , , ,f A B 1 3 0 2S P= =_ _ _i i i.

SOLUTION :

 ,f A B_ i , A B AB B A A B0 2S= = + = + =_ _i i

Now, ,1 3P_ i A B A B:= + +_ _i i AA AB B A B B= + + +

  AB A B B B= + + =
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(c) , , ,f A B C D_ i , , , , , ,m 1 4 6 7 8 12 14S= _ i

In standard SOP representation of function of minterms 0, 2, 3, 5, 9, 
10, 11, 13, 15 are missing, So these terms will be present in standard 
SOP representation of complement of f .

 , , ,f A B C D_ i , , , , , , , ,m 0 2 3 5 9 10 11 13 15S= _ i

To convert given function into standard POS form, we write the 
maxterms 0, 2, 3, 5, 9, 10, 11, 13, 15.

 , , ,f A B C D_ i , , , , , , , ,M 0 2 3 5 9 10 11 13 15P= _ i

In standard POS representation of function f  maxterm 1, 4, 6, 7, 8, 
12, 14 are missing, So these terms will be present in standard POS 
representation of complement of f .

 , , ,f A B C D_ i , , , , , ,M 1 4 6 7 8 12 14P= _ i

So , , ,f A B C D_ i , , , , , , , ,m 0 2 3 5 9 10 11 13 15S= _ i

  , , , , , ,M 1 4 6 7 8 12 14P= _ i

(d) Standard POS form

 , , ,f A B C D_ i , , , , ,M 3 7 8 10 12 13P= _ i

Complement function (In POS form)

 , , ,f A B C D_ i , , , , , , , , ,M 0 1 2 4 5 6 9 11 14 15P= _ i

Standard SOP form

 , , ,f A B C D_ i , , , , , , , , ,m 0 1 2 4 5 6 9 11 14 15S= _ i

Complement function (In standard SOP form)

 , , ,f A B C D_ i , , , , ,m 3 7 8 10 12 13S= _ i

So , , ,f A B C D_ i , , , , , , , , ,M 0 1 2 4 5 6 9 11 14 15P= _ i

  , , , , ,m 3 7 8 10 12 13S= _ i

EXAMPLE 4.44
Determine the boolean function of the truth table given in right side 
in terms of minterms and draw the logic diagram.

SOLUTION :

From the given truth table we find, that there are four 1’s in the 
output column and the corresponding binary values are, 000, 001, 
100 and 101. These binary values are converted to product terms as 
follows:

 000 A B C"

 001 A BC"

 100 AB C"

 101 ABC"

Thus the resulting standard SOP expression for the output Y  is,

 Y  ABC ABC ABC ABC= + + +

Inputs Output

A B C

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0
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Logic Diagram:

EXAMPLE 4.45 
Develop the truth table of the logic expression , , , , ,F M 0 1 2 4 5 7P= _ i

SOLUTION :

 , ,F A B C_ i , , , , ,M 0 1 2 4 5 7P= _ i

The binary values that make the sum terms in the expression equal 
to 0 are 000 (for M0), 001 (for M1), 010 (for M2), 100(for M4), 101(for 
M5) and 111(for M7). For each of these binary values, a 0 is placed in 
the output column as shown in the table. For each of the remaining 
binary combinations, a 1 is placed in the output columns.

Inputs Output

A B C ( , , )F A B C

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0
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EXAMPLE 4.46 
Develop the truth table of the logic expression , , , , ,F m 1 2 3 4 6 7S= _ i

SOLUTION :

The binary values that make the product terms in the expression 
equal to 1 are 001 (for m1), 010 (for m2), 011 (for m3), 100 (for m4) 
and 110 (for m6) and 111 (for m7). For each of these binary values, a 
1 is placed in the output column as shown in the table. For each of the 
remaining binary combinations, a 0 is placed in the output columns.

Inputs Output

A B C ( , , )F A B C

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

EXAMPLE 4.47 
Map the expression f A BC ABC ABC ABC ABC= + + + +

SOLUTION :

In the given expression, the minterms are :

001A BC m1=_ i ;  101ABC m5=_ i ;

010ABC m2=_ i ; 110ABC m6=_ i ;

111ABC m7=_ i . 

So the expression is

 f  , , , , , , , ,m m1 5 2 6 7 1 2 5 6 7S S= =_ _i i

The corresponding K-map is shown in side column. For each minterm 
present in the function we place a 1 in the corresponding cell on 
K-map.

EXAMPLE 4.48 
Map the expression

 f   A B C A B C A B C A B C A B C= + + + + + + + + + +_ _ _ _ _i i i i i

SOLUTION :

In the given expression the maxterms are:
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 A B C 000+ + _ i M0=

 A B C 101+ + _ i M5=

 A B C 111+ + _ i M7=

 A B C 011+ + _ i M3=

 A B C 110+ + _ i M6=

So the expression is, f  , , , , , , , ,M M0 5 7 3 6 0 3 5 6 7P P= =_ _i i

The mapping of the expression is shown in the K-map.

EXAMPLE 4.49 
Minimize the following Boolean functions using K-map.

(a) , , , , , , ,F A B C m 1 3 4 5 6 7S=_ _i i

(b) , , , , , ,F A B C m 2 3 4 5 7S=_ _i i

(c) , ,F A B C AB CB C= + +_ i

(d) , ,F A B C AB A B C ABC= + +_ i

SOLUTION :

(a) , , , , , , ,F A B C m 1 3 4 5 6 7S=_ _i i

The K-map for the given function is shown in the side header. To 
obtain the minimize SOP expression, we form groups of adjacent 1’s. 
In the K-map, there are two possible quads of adjacent 1’s as shown.

Minimized SOP expression

 , ,F A B C_ i A C= +

(b) , ,F A B C_ i , , , ,m 2 3 4 5 7S= _ i

First represent the given SOP function on K-map. There are three 
pairs of adjacnet 1’s as shown in K-maps. Writing product term for 
each group and summing then, we get the minimized expression.

 , ,F A B C_ i AB AC AB= + +

Alternate Grouping:
There is another possible grouping as shown below.

(c) , ,F A B C_ i AB CB C= + +
The given SOP is not a standard form. So first we convert into 
standard SOP.

 , ,F A B C_ i AB C C CB A A C A A B B= + + + + + +_ _ _ _i i i i

Minimized Boolean expression is

F AB BC AB= + +
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EXAMPLE 4.51 
Simplify the following Boolean expressions :
(a) , , , , , , , , ,f A B C D M 1 2 5 6 8 9 15P=_ _i i

(b) , , , , , , , , , ,f A B C D M 0 1 2 3 5 6 7 12P=_ _i i

SOLUTION :

(a) The Boolean expression is , , , , , , , , ,f A B C D M 1 2 5 6 8 9 15P=_ _i i

The K-map representation is shown as below. To obtain a minimized 
POS expression, we form groups of adjacent 0’s. There are 3 possible 
pairs of adjacent 0’s in the given K-map. One isolated 0’s is not 
adjacent to any other cell.

(b) The Boolean expression is , , , , , , , , , ,f A B C D M 0 1 2 3 5 6 7 12P=_ _i i

The K-map representation is shown in Figure below. While grouping 
adjacent 0’s, we make 3 quads and 1 isolated 0 as shown.

The simplified Boolean expression is

 , , ,f A B C D_ i A B C D A B A D A C= + + + + + +_ _ _ _i i i i

EXAMPLE 4.52
Minimize the following expressions using K-maps.
(a) , , , , , , , , , , , , , ,Y A B C D M 1 2 3 5 6 7 9 10 11 13 14 15P=_ _i i

(b) , , , , , , , , , ,Y A B C D M 1 4 6 9 10 11 14 15P=_ _i i

(c) , , , , , , , ,Y A B C D M 2 7 8 9 10 12P=_ _i i

The simplified Boolean expression:

 , , ,f A B C D_ i A B C A B C D A C D A C D= + + + + + + + + +_ _ _ _i i i i

The simplified Boolean expression:

, , ,f A B C D_ i A B C D A B A D A C= + + + + + +_ _ _ _i i i i
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SOLUTION :

(a) Given Boolean expression is

 , , ,Y A B C D_ i , , , , , , , , , , ,M 1 2 3 5 6 7 9 10 11 13 14 15P= _ i

The K-map representation is shown in Figure below.

(b) Given Boolean expression is

 , , ,Y A B C D_ i , , , , , , ,M 1 4 6 9 10 11 14 15P= _ i

The K-map representation is shown in Figure below.

(c)

The simplified Boolean expression: 

, , ,Y A B C D D C=_ i

Minimized POS expression:

Y  A C B C D A B D= + + + + +_ _ _i i i

Minimized POS expression:

, , ,Y A B C D_ i A B C A C D B C D A B C D= + + + + + + + + +_ _ _ _i i i i
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EXAMPLE 4.53 
Simplify the following Boolean expressions

(a) , , , , , ,Y m d1 3 7 11 15 0 2 5S= +_ _i i

(b) , , , , , , , , , ,Y M d4 5 6 7 8 12 1 2 3 9 11 14:P= _ _i i

SOLUTION :

(a) Given Boolean function is

 , , ,Y A B C D_ i , , , , , ,m d1 3 7 11 15 0 2 5S= +_ _i i

The function is defined in terms of minterm and don’t care conditions. 
K-map representation of the given function is shown. The simplified 
Boolean expression is

 , , ,Y A B C D_ i CD A B= +

(b) Given Boolean function is

 , , ,Y A B C D_ i , , , , , , , , , ,M d4 5 6 7 8 12 1 2 3 9 11 14:P= _ _i i

The function is defined in terms of maxterms and don’t-care conditions. 
K-map representation of the given function is shown in Figure.

The simplified Boolean expression is

 , , ,Y A B C D_ i A B A C D= + + +_ _i i

EXPLANATION
From the above problem, it is clear that X 
mark (don’t care) in a cell may be assumed 
to be 1 or 0 if it is necessary to form a larger 
group of adjacent ones or zeros, otherwise it 
is neglected.
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 , , ,Y A B C D_ i , , , , , , ,m 0 1 2 3 16 17 18 19S= _ i

It is a five-variable Boolean function. Its K-map representation is 
shown in Figure below.

The simplified Boolean expression is , , , ,Y A B C D E B C=_ i

(b) Given Boolean function is

 , , , ,Y A B C D E_ i , , , , , , ,m 4 5 6 7 20 21 22 23S= _ i

It is a five-variable Boolean function. Its K-map representation is 
shown below..

The simplified Boolean expression is , , , ,Y A B C D E BC=_ i

EXAMPLE 4.56
Simplify the following Boolean expression using K-map.

 , , , ,f A B C D E_ i , , , , , , , , , , , , ,m 0 2 4 6 9 11 13 15 17 21 25 27 29 31S= _ i

SOLUTION :

First we represent the given function on K-map. Binary values of 
minterm present in the given function are as below.
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     m A B C D E 000000 = _ i m A B CDE 000102 = _ i

     m A B C D E 001004 = _ i m A BCDE 001106 = _ i

     m ABC DE 010019 = _ i m ABCDE 0101111 = _ i

     m ABCDE 0110113 = _ i m ABCDE 0111115 = _ i

     m A B C DE 1000117 = _ i m ABCDE 1010121 = _ i

     m ABC DE 1100125 = _ i m ABCDE 1101127 = _ i

     m ABCDE 1110129 = _ i m ABCDE 1111131 = _ i

Corresponding to each minterm in the given expression, we substitute 
a 1 in the cell and remaining cells are filled with 0’s.

G2, G3 are quads on the single K-maps. group G1 is an octet formed 
by two quads on each of the K-map, which are adjacent. Minimized 
Sop expression.

 , , , ,f A B C D E_ i BE A B E ADE= + +

EXAMPLE 4.57
Simplify the following expression using K-map.

 , , , ,f A B C D E_ i , , , , , , , , , , , ,m 0 2 5 7 13 15 18 20 21 23 28 29 31S= _ i

SOLUTION :

First we represent the given function on K-map. Binary values of 
minterms present in the given function are as below.

     m A B C D E 000000 = _ i m A B CDE 000102 = _ i

     m A BCDE 001015 = _ i m A BCDE 001117 = _ i

     m ABCDE 0110113 = _ i m ABCDE 0111115 = _ i

     m AB CDE 1001018 = _ i m ABCD E 1010020 = _ i

     m ABCDE 1010121 = _ i m ABCDE 1011123 = _ i

     m ABCD E 1110028 = _ i m ABCDE 1110129 = _ i

     m ABCDE 1111131 = _ i
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f AB ACD= +
The shared minterms function f  has two terms AB  and ACD . Out 
of these two, only AB  can be used in logic design.

EXAMPLE 4.59
Reduce by mapping :

 f  A BCD A BCD ABCD ABC D ABCD= + + + +

   ABCD ABCD ABCD ABC D AB CD+ + + + +

SOLUTION :

Although this is a four-variable problem, it can be treated as a three-
variable one and plotted on a three-variable K-map and reduced as 
shown in K-map . Thus, the three-variable problem in A, B , C  would 
be :

 F  m D D m D D m D D m D1 6 7 5= + + + + + +_ _ _i i i

   m D m D m D3 2 4+ + +
Note that all parts of D D1 +_ i must be covered.

As seen from the K-map,

The D ’s of m1 and m5 form a 2-square which is read as BCD .

The D ’s of m1 and m3 form a 2-square which is read as ACD .

The D ’s of m4 and m6 form a 2-square which is read as ACD .

The D ’s of m2 and m6 form a 2-square which is read as BC D .

m1 and m6 are fully covered.

Since m7  is not fully covered it can be combined with m6 to form a 
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2-square which is read as AB . So, the reduced expression is

 f  ACD BCD ACD BC D AB= + + + +

EXAMPLE 4.60
Simplify the following function using Quine-McCluskey method.

 , , ,Y A B C D_ i , , , , , , ,M 1 4 6 9 10 11 14 15P= _ i

SOLUTION :

Given Boolean expression is

 , , ,Y A B C D_ i , , , , , , ,M 1 4 6 9 10 11 14 15P= _ i

This expression is in maxterms. It can be written in minterms as

 , , ,Y A B C D_ i , , , , , , ,m 0 2 3 5 7 8 12 13S= _ i

Step 1: Step is shown in Table E4.60.1.

Table E4.60.1 Minterms in binary equivalent and groups of minterms 
according to no. of 1’s

Minterms
Binary 
ABCD

No. of 1’s
Minterms 

Group
Index

Binary 
ABCD

m0 0000 0 0 0 0000   
m2 0010 1 2

I
0010   

m3 0011 2 8 1000   
m5 0101 2 3

II

0011   
m7 0111 3 5 0101   
m8 1000 1 12 1100   
m12 1100 2 7

III
0111   

m13 1101 3 13 1101   

Step 2: Step 2 is shown in Table E4.60.2.

Table E4.60.2 The combinations of two minterms

Minterms 
Group

Binary

A B C D

0, 2 0 0 – 0 PI

0, 8 – 0 0 0 PI

2, 3 0 0 1 – PI

8, 12 1 – 0 0 PI

3, 7 0 – 1 1 PI

5, 7 0 1 – 1 PI

5, 13 – 1 0 1 PI

12, 13 1 1 0 – PI

STEP 1:
The minterms of the function are represented 
in binary form. The binary represented are 
grouped into a number of sections in terms 
of the number of 1’s index as shown in Table 
E4.60.1

STEP 2:
Compare every term of the lowest group 
with each term in the adjacent group. If two 
minterms differ in only one variable, that 
variable should be removed and a dash (–) is 
placed at the position, thus a new term with 
one less literal is formed. If such a situation 
occurs, a check mark () is placed next to 
both minterms. After all pairs of terms have 
been considered, a horizontal line is drawn 
under the last terms as depicted in Table 
E4.60.2.
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Step 3: Now we repeat step-2 with newly formed groups i.e. we 
combine four minterms of adjacent groups if possibilities exist. In this 
case, dashes (–) exist in same position of two groups and only one 
position will be different. We can see that no four minterm group is 
possible here.

Step 4: 

Table E4.60.3 Prime implicants chart

Prime Implicants
Minterms

0 2 3 5 7 8 12 13

0, 2 : # #

0, 8 # #

2, 3 # #

8, 12 : # #

3, 7 : # #

5, 7 # #

5, 13 : # #

12, 13 # #

Step 5: Here the function does not have any essential prime implication 
so we choose the prime implicants such that all minterms are covered. 
We choose the following prime implicants:

Prime Implicants Binary Representation Product Term

0, 2 0 0 – 0 A B D

8, 12 1 – 0 1 AC D

3, 7 0 – 1 1 ACD

5, 13 – 1 0 1 BCD

Minimized SOP expression

 , , ,f A B C D_ i A B D AC D ACD BCD= + + +

Verification:

  , , ,f A B C D A B D ACD BCD AC D= + + +_ i

EXAMPLE 4.61
Minimize the following Boolean expression using tabulation method :

 , , ,f A B C D_ i , , , , , , , ,m d6 7 8 9 10 11 12 13 14 15S= +_ _i i

SOLUTION :

STEP 4:
All terms which remain unchecked are the 
PIs. We remove repeated prime implicants 
as shown in Table E4.60.2. Now, construct 
the prime implicant chart as shown in table 
E4.60.3.
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Step 3: After removing all eliminated PI, we get the following table.

Table  E4.61.3 Combination of two minterms

Minterm Group Binary

A B C D

8, 9, 10, 11 1 0 – – PI

8, 9, 12, 13 1 – 0 – PI

8, 10, 9, 11 1 0 – – PI Eliminated

8, 10, 12, 14 1 – – 0 PI

8, 12, 9, 13 1 – 0 – PI Eliminated

8, 12, 10, 14 1 – – 0 PI Eliminated

6, 7, 14, 15 – 1 1 – PI

6, 14, 7, 15 – 1 1 – PI Eliminated

9, 11, 13, 15 1 – – 1 PI

9, 13, 11, 15 1 – – 1 PI Eliminated

10, 11, 14, 15 1 – 1 – PI

10, 14, 11, 15 1 – 1 – PI Eliminated

12, 13, 14, 15 1 1 – – PI

12, 14, 13, 15 1 1 – – PI Eliminated

Step 4:
Table E4.61.4 Combination of four minterms

Minterm Group Binary

A B C D

8, 9, 10, 11 1 0 – –   
8, 9, 12, 13 1 – 0 –   
8, 10, 12, 14 1 – – 0   
6, 7, 14, 15 – 1 1 –    PI

9, 11, 13, 15 1 – – 1   
10, 11, 14, 15 1 – 1 –   
12, 13, 14, 15 1 1 – –   

Step 4: 
Table E4.61.5 Combination of Eight minterms

Minterm Group Binary

A B C D

8, 9, 10, 11, 12, 13, 14, 15 1 – – – PI

8, 9, 12, 13, 10, 11, 14, 15 1 – – – PI Eliminated

8, 10, 12, 14, 9, 11, 13, 15 1 – – – PI Eliminated

STEP 4:
Now we repeat step-2 with newly formed 
groups i.e. we combine four minterms of 
adjacent groups if possibilities exist. In this 
case, dashes (–) exist in same position of two 
groups and only one position will be different. 
Table 4.28 shows the combination of four 
minterms.

STEP 5:
Now we repeat step-4 with newly formed 
groups i.e. we combine eights minterms of 
adjacent groups if possibilities exist. In this 
case, dashes (–) exist in same position of two 
groups and only one position will be different. 
Table 4.28 shows the combination of eight 
minterms.
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Step 5:

Table E4.61.6 Prime implicant chart

Prime Implicants Minterms

6 7 8 9

6, 7, 14, 15* # #

8, 9, 10, 11, 12, 13, 14, 15* # #

   

Step 6: All the minterms have been covered by EPIs. Finally the sum 
of all EPIs (Table E4.61.7)gives the function in its minimal SOP form. 

Minimized SOP expression

 , , ,f A B C D_ i A BC= +

Verification

 , , ,f A B C D_ i A BC= +

EXAMPLE 4.62
Using the Quine-McCluskey method, obtain all the prime implicants 
for each of the following function.

(a) , , , , , , , , , , ,f A B C D m 0 2 3 4 8 10 12 13 14S=_ _i i

(b) , , , , , , , , ,f A B C D m d7 9 12 13 14 15 4 11S= +_ _ _i i i

SOLUTION :

(a) , , ,f A B C D_ i , , , , , , , ,m 0 2 3 4 8 10 12 13 14S= _ i

Step 1: 
Table E4.62.1 Minterms in binary equivalent and groups of minterms 
according to no. of 1’s.

Minterms
Binary 
ABCD

No. of 1’s Minterm 
Group

Index
Binary 
ABCD

m0 0000 0 0 0 0000   
m2 0010 1 m2

I

0010   
m3 0011 2 m4 0100   
m4 0100 1 m8 1000   
m8 1000 1 m3

II

0011   
m10 1010 2 m10 1010   
m12 1100 2 m12 1100   
m13 1101 3 m13

III
1101   

m14 1110 3 m14 1110   

Table E4.61.7

EPIs Binary  
Representation

Variable 
Representation

6, 7, 14, 15 –  1  1  – BC

8, 9, 10, 11, 12, 
13, 14, 15

1  –  –  – A
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Step 5: 
Table E4.62.5 Prime Implicants and their representation

Prime 
Implicants

Binary 
Representation

Variable 
Representation

2, 3 0  0  1  – A BC

12, 13 1  1  0  – ABC

0, 2, 8, 10 –  0  –  0 B D

0, 4, 8, 12 –  –  0  0 C D

8, 10, 12, 14 1  –  –  0 AD

(b) , , ,f A B C D_ i , , , , , ,m d7 9 12 13 14 15 4 11S= +_ _i i

Step 1: 

Table E4.62.6 Minterms in Binary Equivalent and Groups of Minterms According to no. of 1’s.

Minterms Binary 
ABCD

No. of 1’s Minterm Group
Index

Binary 
ABCD

m7 0111 3 m4 I 0100   
m9 1001 2 m9

II
1001   

m12 1100 2 m12 1100   
m13 1101 3 m7

III

0111   
m14 1110 3 m11 1011   
m15 1111 4 m13 1101   
m4 0100 1 m14 1110   
m11 1011 3 m15 IV 1111   

Step 2:
Table E4.62.7 Combination of two minterms

Minterm 
Group

Binary

A B C  D

4, 12 – 1 0  0 PI

9, 11 1 0 – 1   
9, 13 1 – 0 1   
12, 13 1 1 0 –   
12, 14 1 1 – 0   
7, 15 – 1 1 1 PI

11, 15 1 – 1 1   
13, 15 1 1 – 1   
14, 15 1 1 1 –   
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Step 3:
Table E4.62.8 Combination of four minterms

Minterm 
Group

Binary

A B C D

9, 11, 13, 15 1 – – 1 PI

9, 13, 11, 15 1 – – 1 PI Eliminated

12, 13, 14, 15 1 1 – – PI

12, 14, 13, 15 1 1 – – PI Eliminated

Step 4:
Prime implicant chart is shown in Table E4.62.9

EXAMPLE 4.63
Simplify the given Boolean function using tabular method.

 , , ,f A B C D_ i , , , , , , , , , ,m d2 3 4 7 9 11 12 13 14 1 10 15S= +_ _i i

SOLUTION :

If don’t care condition are given, they are also used to find the prime 
implicating, but it is not compulsory to include them in the final 
simplified expression.

Step 1: Step is shown in Table E4.62.1. The don’t care minterms are 
also included.

Table  E4.63.2 Minterms and don’t cares in binary equivalent and 
groups of minterms according to no. of 1’s

Minterms
Binary

ABCD
No. of 1’s

Minterms 
Group Index

Binary

ABCD

m2 0010 1 m1

I

0001   
m3 0011 2 m2 0010   
m4 0100 1 m4 0100   

m7 0111 3 m3

II

0011   
m9 1001 2 m9 1001   
m11 1011 3 m12 1100   
m12 1100 2 m10 1010   
m13 1101 3 m7

III

0111   
m14 1110 3 m11 1011   
m1 0001 1 m13 1101   
m10 1010 2 m14 1110   
m15 1111 4 m15 IV 1111   

Table E4.62.9 Prime implicant chart

Prime  
Implicants

Binary 
Representation

Variable 
Representation

4, 12 –  1  0  0 BC D

7, 15 –  1  1  1 BCD

9, 11, 13, 15 1  –  –  1 AD

12, 13, 14, 15 1  1  –  – AB

STEP 1:
The minterms and don’t cares of the function 
are represented in binary form. The binary 
represented are grouped into a number of 
sections in terms of the number of 1’s index as 
shown in Table E4.62.1.
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Step 2: Step 2 is shown in TableE4.63.2.

Table E4.63.2 Combination of two minterms

Minterm Group
Binary

A B C  D

1, 3 0 0 – 1   
1, 9 – 0 0 1   
2, 3 0 0 1 –   
2, 10 – 0 1 0   
4, 12 – 1 0  0 PI

3, 7 0 – 1 1   
3, 11 – 0 1 1   
9, 11 1 0 – 1   
9, 13 1 – 0 1   
12, 13 1 1 0 –   
12, 14 1 1 – 0   
10, 11 1 0 1 –   
10, 14 1 – 1 0   
7, 15 – 1 1 1   
11, 15 1 – 1 1   
13, 15 1 1 – 1   
14, 15 1 1 1 –   

Step 3: Step 3 is shown in Table 4.62.3.

Table E4.62.3 Combination of four minterms

Minterm 
Group

Binary

A B C D

1, 3, 9, 11 – 0 – 1 PI

1, 9, 3, 11 – 0 – 1 PI Eliminated

2, 3, 10, 11 – 0 1 – PI

2, 10, 3, 11 – 0 1 – PI Eliminated

3, 7, 11, 15 – – 1 1 PI

3, 11, 7, 15 – – 1 1 PI Eliminated

9, 11, 13, 15 1 – – 1 PI

9, 13, 11, 15 1 – – 1 PI Eliminated

12, 13, 14, 15 1 1 – – PI

12, 14, 13, 15 1 1 – – PI Eliminated

STEP 2:
Compare every term of the lowest group 
with each term in the adjacent group. If two 
minterms differ in only one variable, that 
variable should be removed and a dash (–) is 
placed at the position, thus a new term with 
one less literal is formed. If such a situation 
occurs, a check mark () is placed next to 
both minterms. After all pairs of terms have 
been considered, a horizontal line is drawn 
under the last terms as depicted in Table 
E4.62.2.

STEP 3:
Now we repeat step-2 with newly formed 
groups i.e. we combine four minterms of 
adjacent groups if possibilities exist. In this 
case, dashes (–) exist in same position of two 
groups and only one position will be different. 
Table E4.62.3 shows the combination of four 
minterms.
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REVIEW QUESTIONS

1. What are SOP and POS forms ? Explain with an example.

2. What are min terms and max terms. In which form of 
expressions do they occur ? Give one example of expression 
in the form of min terms and max terms.

3. How do you convert a standard POS form into a standard 
SOP form and vice-versa ?

4. Name the two basic types of boolean expressions and explain 
each with an example.

5. Define Maxterm and Minterm.

6. What is the use of Karnaugh map ? How is it drawn ? Give 
example. What is the difference between this map for min 
terms and max terms ?

7. Explain the procedure for grouping of cells in Karnaugh 
map.

8. What is meant by Don’t care conditions ? Give example.

9. Explain the K-map reduction technique.

10. What is variable mapping technique ? What is its 
advantage  ?

11. Discuss the features of the Quine-McCluskey method.

12. State the advantage of Quine-McCluskey technique over 
K-map technique.

13. Explain complete steps used in Quine-McClusky 
minimization techniques for simplifying the given expression.

14. Write short note on incompletely specified functions.

REVIEW PROBLEMS

15. Convert into other canonical form (POS).

  , , , ,y M 0 5 1 8 9S= _ i

16. Write minterm and maxterm Boolean functions expressed 
by , , 0,3,7f A B C P=_ i .

17. Find the minterm and canonical sum of products (SOP) 
form of the switching function , ,f A B C_ i whose truth table 
is given as follows :

A B C , ,f A B C_ i

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

18. Find the maxterms and canonical product of sum (POS) 

form of the switching function , ,f A B C_ i whose truth table 
is given in Table 2.20.

19. Find the sum of minterms and product of maxterms 
expression for the switching function , ,f A B C A BC= +_ i .

20. Convert the following to the other canonical form.

(a) , , , ,F x y z 1 3 7S=_ _i i

(b) , , , , , , , ,F A B C D 0 2 6 11 13 14S=_ _i i

(c) , , , , ,F x y z 0 3 6 7P=_ _i i

(d) , , , , , , , , ,F A B C D 0 1 2 3 4 6 12P=_ _i i

21. Given , , , , , , , , ,F A B C D m 0 1 2 6 7 13 15S=_ _i i.

(a) Find the minterm expansion for F  (both decimal and 
algebraic form).

(b) Find the maxterm expansion for F  (both decimal and 
algebraic form).

22. Express each of the following functions by a minterm 
canonical formula without first constructing a truth table.

(a) , ,f x y z x y z z= + +_ _i i

(b) , ,f x y z x y x z= + +_ _ _i i i

23. Express each of the following functions by a maxterm 
canonical formula without first constructing a truth table.

(a) , ,f x y z y z xy z= + +_ _ _i i i

(b) , ,f x y z x x z y z= + +_ _i i

24. Transform each of the following canonical expressions into 
its other canonical form in decimal notation.

(a) , , , ,f x y z m 1 3 5S=_ _i i

(b) , , ,f x y z M 3 4P=_ _i i

(c) , , , , , , , , , , ,f w x y z m 0 1 2 3 7 9 11 12 15S=_ _i i

(d) , , , , , , , , , , ,f w x y z M 0 2 5 6 7 8 9 11 12P=_ _i i

25. Plot on Karnaugh map

, , , , , , , , , ,Y A B C D m 0 2 3 6 8 9 14 15S=_ _i i

26. Plot on K-map , , , , , , , , ,f A B C D M 0 4 6 8 10 12 14P=_ _i i

27. The sum of all minterms of a Boolean function of n  variables 
to 0.

(a) Prove the above statement for n 3= .

28. The product of all maxterms of a Boolean function of n  
variables is 0.

(a) Prove the above statement for n 3= .

29. Represent each of the following Boolean functions on a 
Karnaugh map

(c) , , , , , , , , ,f w x y z m 1 6 7 8 10 12 14S=_ _i i

(d) , , , , , , , , ,f w x y z M 0 3 4 7 9 13 14P=_ _i i

(e) , ,f x y z xy xy yz= + +_ i

(f) , ,f x y z x z y z y z= + + +_ _ _ _i i i i

30. Obtain the simplified SOP and POS expression for the 
following using K-map.

(i) , , , , , , , , , , ,Y A B C D 0 2 3 5 6 8 10 13 14S=_ _i i

(ii) , , , , , , , , ,Y A B C D 1 4 7 9 11 12 15S=_ _i i

(vi) , , ,Y A B C 5 7P=_ _i i

31. Obtain the simplified POS and SOP expressions for the 



Page 288 Minimization Techniques Chapter 4

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

following using K-map.

(i) , , , , , , , , , , ,Y A B C D d0 3 5 8 9 13 1 4 7 12S= +_ _ _i i i

(ii) , , , , , , , , , , , ,Y A B C D d0 3 4 6 8 9 14 1 2 5 15S= +_ _ _i i i

(iii) , , , , , , , , , , ,Y A B C D d0 3 5 8 9 13 1 4 7 12P= +_ _ _i i i

(iv) , , , , , , , , , , , ,Y A B C D d0 3 4 6 8 9 14 1 2 5 15P= +_ _ _i i i

32. Obtain the simplified expressions in sum of products for the 
following Boolean functions :

(a) xy x y z xyz+ ++
(b) AB BC B C+ +

(c) a b bc abc+ +
(d) xyz xyz xyz xyz+ + +

33. Obtain the simplified expressions in sum of products for the 
following Boolean functions :

(a) D A B B C AD+ + +_ _i i

(b) ABD A C D AB ACD AB D+ + + +

(d) A B C D AC D BCD ABCD BCD+ + + +

(e) xz wxy w xy xy+ + +_ i

34. Obtain the simplified expressions in (1) sum of products and 
(2) product of sums :

(a) x z y z yz xyz+ + +

(c) A B D A B C A B D B C D+ + + + + + + +_ _ _ _i i i i

(d) A B D A D A B D A B C D+ + + + + + + +_ _ _ _i i i i

35. Simplify the Boolean function F  in sum of products using 
the don’t-care conditions d  :

(a) F y x z= + ,   d yz xy= +

(b) F B C D BCD ABCD= + + ,   d BCD ABCD= +

36. Simplify the Boolean function F  using the don’t care 
conditions d , in (1) sum of products and (2) product of 
sums:

(a) F ABD ACD ABC= + +

 d ABCD ACD AB D= + +

(b) F w xy x y xyz x z y w= + + + +_ _i i

 d wx yz yz wyz= + +_ i

37. Using Karnaugh maps, determine all the minimal sums 
and minimal products for each of the following Boolean 
functions.

(a) , , , , , , , , ,f w x y z m 0 1 6 7 8 14 15S=_ _i i

(c) , , , , , , , , , ,f w x y z m 1 3 4 5 10 11 12 14S=_ _i i

(f) , , , , , , , ,f w x y z M 4 6 7 8 12 14P=_ _i i

(g) , , ,f w x y z w xz xyz wxz xy z= + + +_ i

38. Using Karnaugh maps, determine all the minimal sums 
and minimal products for each of the following Boolean 
functions.

(a) , , , , , , , , ,f w x y z m 0 2 6 7 9 10 15S=_ _i i

(d) , , , , , , , , , ,f w x y z M 0 2 6 8 10 12 14 15P=_ _i i

(g) , , ,f w x y z wx yz wx y wxyz= + + +_ i

(i) , , ,f w x y z w x w y z w x z w y z= + + + + + + +_ _ _ _ _i i i i i

39. Reduce the following expressions using K-map and 

implement them in universal logic.

(a) , , , , , , , ,m 5 6 7 9 10 11 13 14 15S _ i

(c) , , , , , , ,M d1 4 5 11 12 14 6 7 15P _ _i i

40. Reduce the following expressions using K-map and 
implement them in universal logic.

(d) , , , , , , , ,M d3 6 8 11 13 14 1 5 7 10P _ _i i

(e) , , , , , , , , ,m d0 1 4 5 6 7 9 11 15 10 14S +_ _i i

41. Minimize the following expression using K-map and realize 
using NOR gates only :

 , , , , , , , , , ,f P Q R S M 1 4 6 9 10 11 14 15P=_ _i i

42. Obtain the minimal SOP expression for 
, , , , , , , , ,m 2 3 5 7 9 11 12 13 14 15S _ i and implement it in NAND 

logic.

43. Obtain the minimal POS expression for 
, , , , , , , , , , ,M 0 1 2 4 5 6 9 11 12 13 14 15P _ i and implement it in 

NOR logic.

44. Using K-map, simplify the equation :

, , , , , , , , , , ,F A B C D m d0 2 8 9 3 7 10 11 14 15S= +_ _ _i i i

Obtain the minimal SOP expression and implement it in 
NAND logic.

45. Using a Karnaugh map, determine a minimal sum and a 
minimal product for each of the following functions.

(a) , , , ,f v w x y z_ i

    , , , , , , , , , , , ,m 1 5 9 11 13 20 21 26 27 28 29 30 31S= _ i

(b) , , , ,f v w x y z_ i

  , , , , , , , , , , , , ,M 0 2 4 6 8 12 14 15 16 18 20 22 30 31P= _ i

46. For each of the following Boolean functions, determine a 
minimal sum and a minimal product using variable entered 
map technique.

(a) ABC ABCD ABCD ABC+ + +

(c) A BCD A BCD ABCD ABCD ABCD+ + + +

           ABC D ABCD ABC D+ + +

47. Simplify the following using the tabular method.

(i) , , , , , , , , , ,Y A B C D 0 2 4 5 7 8 10 12S=_ _i i

(ii) , , , , , , , , , , , ,Y A B C D 0 1 2 3 4 6 8 10 12 14S=_ _i i

48. Reduce the following using Quine-McCluskey method:

(a) 0,1,2,4,5,6,8,9,14S

(b) 1,2,8,9,10,14 , , ,d 0 3 6 11S + _ i

(d) , , , , , , , ,d0 1 6 7 9 10 14 2 3 8P +_ _i i

49. Using the Quine-McCluskey method, obtain all the prime 
implicants for each of the following Boolean functions.

(d) , , , , , , , , , , ,f w x y z m dc0 1 2 6 7 9 10 12 3 5S= +_ _ _i i i

(b) , , , , , , , , , ,f w x y z M dc0 2 3 4 5 12 13 8 10P= +_ _ _i i i

50. For each function, find a minimum sum-of-products solution 
using the Quine-McCluskey method.

(b) , , , , , , , , , , , ,f a b c d m d0 1 5 6 8 9 11 13 7 10 12S S= +_ _ _i i i

(c) , , , , , , , , , , , , ,f a b c d m d3 4 6 7 8 9 11 13 14 2 5 15S S= +_ _ _i i i

*********** 



5
COMBINATIONAL ARITHMETIC CIRCUITS

5.1 INTRODUCTION

In this chapter, and in the next chapter, we will take a comprehensive 
look at various building blocks used to design more complex 
combinational circuits. Generally, digital circuits are divided into two 
categories:

1. Combinational logic circuit, and
2. Sequential logic circuit.

Combinational Logic Circuits
In combinational logic circuits, output at any instant of time depends 
only on the inputs present at that instant of time. The logic gate is 
the most basic building block of combinational logic. Combinational 
logic circuits do not have memory elements (storage device). It can be 
designed using gates or available ICs.

Adder, subtractor, ALU comparators, parity generator and 
checker, multiplexer, demultiplexer, encoder, and code converters are 
the examples of combinational logic circuits.

Sequential Logic Circuits
The other category of logic circuits, called sequential logic circuits, 
in which the output depends upon not only the present but also the 
past state of inputs. Sequential circuits comprise both logic gates and 
memory elements such as flip-flops. Basic building blocks of sequential 
logic circuits are described in detail in Chapters 10 and 11.

5.2 DESIGN PROCEDURE FOR COMBINATION LOGIC CIRCUITS

The block diagram of a combinational circuit is shown in Figure 5.2.1. 
It has n  input variables and m  output variables or simply outputs. 
Since the number of input variables is n , there are 2 n  possible 
combinations of bits at the input. Each output can be expressed in 
terms of input variables by a Boolean expression.

Figure 5.2.1: Block diagram of a combinational circuit

EXAMPLE OF SEQUENTIAL CIRCUIT
Flip-flops, counters and registers are the 
examples of sequential logic circuits.

READER NOTE
Also, each of the input variables may be 
available as only the normal input on the input 
line. In that case, the complemented input, if 
desired, can be generated by using an inverter. 
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Inputs Output

A B C D Y

1 1 1 0 0

1 1 1 1 1

Step 2: Now using the truth table, we represent the given function on 
K-map as shown. To obtain a minimized POS expression, we make 
groupus of adjacent 1’s. Here, no grouping is possible, we have 8 
isolated minterms on K-map.

POS expression for the logic

 Y  A B C D ABC D ABCD AB CD A BCD= + + + +

   ABCD ABCD ABCD+ + +

  C D A B AB CD AB AB CD A B AB= + + + + +_ _ _i i i

   CD AB AB+ +_ i

  A B C D CD CD CD A B9 5= + + +_ _ _ _i i i i

  A B C D A B C D9 9 5 5= +_ _ _ _i i i i

Step 3: Now, we implement the above function using Ex-OR and Ex-
NOR gates as shown in the logic diagram.

5.3 ARITHMETIC CIRCUITS

Now, we will study those combinational logic building blocks that can 
be used to perform addition and subtraction operations on binary 
numbers. Addition and subtraction are the two most commonly used 
arithmetic operations, since the other two, namely multiplication 
and division, are respectively the processes of repeated addition and 
repeated subtraction.

We start with the basic building blocks that form the basis of 
all hardware used to perform the arithmetic operations on binary 
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numbers. These include half-adder, full-adder, half-subtractor, full 
subtractor etc.

5.4 ADDERS

The most basic arithmetic operation is the addition of two binary 
digits. Only four cases can occur in adding two binary bits. There are,
 0 0 0+ = , 0 1 1+ = , 1 0 0+ =  and 1 1 10+ =

The first three operations produce a sum whose length is one 
digit, but in the fourth case, the binary sum consists of two digits. 
The higher significant bit of this result is called a carry, which may 
get added to the next higher bit addition.

A combinational circuit that performs the addition of two 1-bit 
numbers is called as half-adder, and the logic circuit that adds three 
1-bit numbers is called as full-adder.

5.4.1 Half-Adder

The logic circuit that performs the addition of two 1-bit numbers is 
called as half-adder. It is the basic building block for addition of two 
single bit numbers. This circuit has two outputs namely Carry C_ i 
and Sum S_ i. Figure 5.4.1 shows the block diagram of half adder. The 
truth table of half-adder is given in Table 5.4.1, where A and B  are 
the inputs, and sum and carry are the outputs.

Table 5.4.1 Truth table for half-adder

Inputs Outputs

A B Sum S_ i Carry C_ i

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

K-map Simplification for Carry and Sum
Using the table above, we construct K-maps for carry and sum 
outputs of half-adder. Boolean expressions for the sum S^ h and carry 
Ĉ h output may be obtained from the K-maps as given below.

Sum, S  AB AB= +  A B5= ^ h (5.4.1)

Figure 5.4.1: Block diagram of a half-
adder
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Half-Adder Using NOR Gates

For implementation of half-adder using NOR gates only, we write the 
expression of carry and sum in the form of NOR logic as shown below.

Sum, S AB AB= +  AB AA AB BB= + + +

  A A B B A B= + + +_ _i i

  A B A B= + +_ _i i

  A B A B= + +_ _i i

  A B A B= + + +

Carry, C  AB AB A B= = = +
The above expressions of sum and carry can be implemented 

using NOR gates as shown in Figure 5.4.5 below.

EXAMPLE 5.2
For the half-adder circuit of Figure E5.2(a), the inputs applied at A 
and B  are as shown in Figure E5.2(b). Plot the corresponding SUM 
and CARRY outputs for the half-adder.

Figure 5.4.4: Logic diagram of half-adder 
using only 2-input NAND gates

Figure 5.4.5: Logic diagram of half-adder 
using only 2-input NOR gates

Figure E5.2
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SOLUTION :

The SUM and CARRY waveforms can be plotted by keeping in mind 
the truth table of the half-adder. For a half-adder, we know that 0 0+  
gives a ‘0’ as the SUM output and a ‘0’ as the CARRY. 0 1+  or 1 0+  
gives ‘1’ as the SUM output and ‘0’ as the CARRY. 1 1+  produces a 
‘0’ as the SUM output and ‘1’ as the CARRY. The output waveforms 
are as shown in Figure .

5.4.2 Full-Adder

A full adder circuit is an arithmetic circuit block that can be used to 
add three bits to produce a sum and a carry output. Let us consider A 
and B  as two 1-bit inputs. Cin  is a carry generated from the previous 
order bit additions; S (sum) and Cout (carry) are the outputs of the 
full-adder.

The block diagram and the truth table of a full-adder are shown 
in Figure 5.4.6 and Table 5.4.2 respectively.

Table 5.4.2 Truth Table of Full-Adder

Inputs Outputs

A B Cin Sum S_ i Carry Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

K-map Simplification For Carry and Sum
We draw K-maps for sum and carry output with the help of truth 
Table 5.4.2. Simplified Boolean expressions for the sum S^ h and carry 
Cout^ h output may be obtained from the K-maps as given below.

Sum, S  A BC ABC ABC AB Cin in in in= + + +

  ( ) ( )C A B AB C AB ABin in= + + +

  ( ) ( )C A B C A Bin in9 5= +

  ( ) ( )C A B C A Bin in5 5= +

 S  C A Bin 5 5=  (5.4.3)

Carry, Cout AB AC BCin in= + +  (5.4.4)

Logic Diagram
Considering equation (5.4.3) and (5.4.4) we can realize logic diagram 
of a full-adder using gates as shown in Figure 5.4.7.

READER NOTE
A half-adder has two 1-bit inputs and there is 
no provision to add a carry which could have 
been generated from lower bit order additions. 
This limitation of half-adder is overcome in 
full-adder. 

Figure 5.4.6: Block diagram of a full-adder
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Full-Adder using Basic Gates

As we have seen, a full-adder can be constructed using two half-
adders shown in Figure 5.4.8. But, the disadvantage is that the bits 
must propagate through several gates in succession, which makes the 
total propagation delay greater than that of the full-adder circuit 
using basic gates (AND, OR and NOT) as shown in Figure 5.4.9. This 
circuit can be obtained by realizing the expression for Sum and Carry. 

Figure 5.4.9: Sum and carry outputs of a full-adder using basic logic

Full-adder using NAND Gates

To implement the full-adder using NAND gates, we express the 
Boolean equation (5.4.3) and (5.4.4) in NAND logic as shown below.

Sum, S  C A Bin 5 5=

  A B Cin5 5= 7 A  (5.4.5)

We know that,

 X Y5  X XY Y XY: : := _ _i i (5.4.6)
Taking, X A B5= _ i and Y Cin= , and using the expression above, 
equation (5.4.5) can be written as

 S A B Cin5 5= _ i  A B A B C C A B Cin in in5 : 5 : : 5= _ _ _i i i

In the above expression, for implementing A B5_ i using NAND 
gates, we again use equation (5.4.6).

Similarly,

 Cout  C A B AB C A B ABin in5 5 := + =_ _i i

The circuit diagram is shown in Figure 5.4.10. 
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Figure 5.4.10: Logic diagram of a full-adder using only 2-input NAND 
gates

Full-adder using NOR Gates

Sum, S  A B Cin5 5= 7 A  (5.4.7)

We know that

 X Y5  X Y X Y= + + +_ i  (5.4.8)

Using the above equation, expression (5.4.7) can be written as

 S  A B C A B C
in in5 5= + + +_ _i i

In the above expression, for implementing A B5_ i using NOR 
gates, we again use equation (5.4.8).

Similarly, 

 Cout  AB C A B A B C A Bin in5 5= + = + + +_ i

The logic diagram is shown in Figure 5.4.11 below.

Figure 5.4.11: Logic diagram of a full-adder using only 2-input NOR 
gates
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5.5 SUBTRACTORS

The subtraction of two binary numbers is performed in a similar 
manner as the subtraction of decimal numbers. Only four cases can 
occur in the subtraction of two binary bits in any position, those are:

 0 0-  0=

 1 0-  1=

 1 1-  0=

 0 1-  1=  (with borrow 1)
As in forth case, if the minuend bit is smaller than the subtrahend 

bit, a 1 is borrowed from the next significant position. Just as there 
are half and full adders, there are half and full subtractors.

The logic circuit of subtraction of two 1-bit numbers is called 
as half-subtractor. The logic circuit, which performs the subtraction 
of two 1-bit numbers, taking into account the borrow of the pervious 
stage, is called as full-subtractor.

5.5.1 Half-Subtractor

The half-subtractor is a combinational logic circuit, which performs 
the subtraction of two 1-bit numbers. It subtracts one binary digit 
from another to produce a DIFFERENCE output and a BORROW 
output. The BORROW output here specifies whether a ‘1’ has been 
borrowed to perform the subtraction.

Figure 5.5.1 shows the block diagram of The truth table of 
half-subtractor is given in Table 5.5.1, where A, B  are the inputs and 
difference ( )D  and borrow ( )B  are the outputs.

Table Truth Table of Half-subtractor

Inputs Outputs

A B D Bout

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

K-map Simplification For Difference and Borrow
We draw K-maps for difference and borrow outputs of a half-subtractor 
as shown below.

Figure 5.5.1: Block diagram of a half-
subtractor
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Figure 5.5.4: Logic diagram of a half-subtractor using only 2-input 
NAND gates

Half-Subtractor using NOR Gates

Again, we consider the expression of difference and borrow given by 
equations (5.5.1) and (5.5.2) in the following way.

 D  A B AB AB AB BB AB AA5= = + = + + +

  B A B A A B= + + +_ _i i

 D  B A B A A B= + + + + +

 B  AB A A B A A B A A B= = + = + = + +_ _ _i i i

Figure 5.5.5 shows the logic circuit of half-subtrator using NOR 
gates only.

Figure 5.5.5: Logic diagram of a half-subtractor using only 2-input NOR 
gates

EXAMPLE 5.3
Write the simplified Boolean expressions for DIFFERENCE and 
BORROW outputs in the figure below.
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SOLUTION :

Let us assume that the two inputs to the half-subtractor circuit are X  
and Y , with X  equal to the SUM output of half-adder and Y  equal 
to C . DIFFERENCE and BORROW outputs can then be expressed 
as follows:

DIFFERENCE output

 D  X Y XY XY5= = +  and

BORROW output

 Bout XY=

Also, X  AB AB= +  and Y C=
Substituting the values of X  and Y , we get

 D  AB AB C AB AB C: := + + +_ _i i

  AB A B C AB AB C: := + + +_ _i i

  ABC A BC ABC AB C= + + +

 Bout XY AB AB C:= = +_ i

  AB A B C:= +_ i  ABC A BC= +

5.5.2 Full-Subtractor

A full subtractor performs subtraction operation on two bits, a 
minuend and a subtrahend.  It also takes into consideration whether a 
‘1’ has already been borrowed by the previous adjacent lower minuend 
bit or not. Therefore, there are three input bits, namely the two bits 
to be subtracted and a borrow bit designated as Bin .

There are two outputs, namely the difference output D  and 
the borrow output Bout. The BORROW output bit tells whether the 
minuend bit needs to borrow a ‘1’ from the next possible higher 
minuend bit.

Figure 5.5.6 shows the block diagram of full-subtractor. The 
truth table of full-subtractor is given in Table 5.5.2.

Table 5.5.2 Truth table of Full-Subtractor

Inputs Outputs

A B Bin D Bout

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

READER NOTE
A half-subtractor has only two 1-bit inputs 
and there is no provision for subtraction of 
borrows which may be generated from lower 
order bit subtraction. This limitation of half-
subtractor is overcome in full-subtractor.

Figure 5.5.6: Block diagram of a full-
subtractor
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  AB AB B AB B BBin in in= + + +

  1AB B AB B BBin in in= + + +7 A

  AB A B B BBin in= + +  (1 1)Bin+ =

  ( )AB AB B BB A Ain in= + + +  ( 1)A A+ =

  AB A B B ABB ABBin in in= + + +

  (1 ) ( )AB B B AB ABin in= + + +

 Bout AB B A Bin 5= + _ i

Substituting CH  and DH , we will get

Borrow, Bout C B DH in H= +
The logic diagram of full-subtractor using two half-subtractors is 
shown in Figure 5.5.8. 

Figure 5.5.8: A full subtractor using two half-subtractors

Full Subtractor Using NAND Gates

Difference,

 D  A B B A B Bin in5 5 5 5= = _ i

  A B A B B B A B Bin in in5 5 : 5= _ _ _i i i  (5.5.5)

where,

  A B5  A AB B AB: : :=  (5.5.6)

Borrow,

 Bout AB B A B AB B A Bin in5 5= + = +_ _i i

  AB B A Bin: 5= _ i

  B A B B B A Bin in: 5= + +_ __i ii

 Bout B AB B B A Bin in: : : 5= _ i7 9A C$ .  (5.5.7)
Now, equation (5.5.5) and (5.5.7) can be implemented using (5.5.6) 
and NAND gates only as shown in Figure 5.5.9 below.
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Figure 5.5.9: Logic diagram of a full-subtractor using only 2-input NAND 
gates

Full Subtractor Using NOR Gates

Difference, D  A B B A B Bin in5 5 5 5= = _ i

  A B B A B Bin in5 5= +_ _i i

We know that  XY X Y+  X X Y Y X Y= + +_ _i i

By applying the above identity we can further write D  as shown 
below

 D  A B A B B B A B Bin in in5 5 5= + +_ _ _i i i7 7A A

  A B A B B B A B Bin in in5 5 5= + + + + +_ _ _i i i

  A B A B B B A B Bin in in5 5 5= + + + + +_ _ _i i i  (5.5.8)

where, A B5  A B A B= + + +_ i  (5.5.9)

Borrow, Bout AB B A Bin 5= + _ i

  A A B A B A B Bin5 5= + + +_ _ _i i i7 A

  A A B A B A B Bin5 5= + + + + +_ _ _i i i  (5.5.10)
Now, equation (5.5.8) and (5.5.10) can be implemented using (5.5.9) 
and NOR gates only as shown in Figure 5.5.10 below.

Figure 5.5.10: Logic diagram of a full-subtractor using only 2-input NOR 
gates
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Figure 5.6.3: Block diagram of 4-bit binary adder

Propagation Delay in Parallel Adder
Parallel adders suffer from propagation delay problem because higher 
bit additions depend on the carry generated from lower bit addition.   
In effect, carry bits must propagate or ripple through all stages before 
the most significant sum bit is valid. Thus, the total sum (the parallel 
output) is not valid until after the cumulative delay of all the adders.

Consider the addition of the LSB bits A0 and B0. It produces 
the carry C0, which is the input carry for the next full-adder. This 
carry when added to the bits of the second position (i.e. C A B0 1 1+ +
) produces a carry into the third position and so on. If tp  is the 
propagation delay of full-adder, then the result S0 and C0 is obtained 
after a delay of tp , S1 and C1 after a delay of t2 p , S2 and C2 after a 
delay of t3 p , S3 and C3 after a delay of t4 p  and so on. Hence for an N
-bit parallel adder, the total delay time is equal to Ntp .

This problem is overcome in look-ahead carry adder, which  
speeds up the process by eliminating this ripple carry delay, as 
discussed in following section.

5.7 CARRY LOOK-AHEAD ADDER

As we have discussed previously, the speed of parallel adder depends 
on the time required for the carries to propagate or ripple through all 
of the stages of the adder. On the other hand, the look-ahead-carry 
adder speeds up the operation by eliminating this ripple carry delay. 
It examines all the input bits simultaneously and also generates the 
carry-in bits for all the stages simultaneously.

The method of speeding up the addition process is based on the 
two additional functions of the full-adder, called the carry generate 
and carry propagate functions. These are discussed hereunder. 

5.7.1 Carry Generation

Consider one full adder stage; say the n th stage of a parallel adder 
shown in Figure 5.7.1. Carry is generated only if both the input bits 
are 1, that is, if both the bits A and B  are 1’s, a carry has to be 
generated in this stage regardless of whether the input carry Cin  is a 
0 or a 1. Otherwise carry will not be generated. 

CONFUSION CLEARING
You may think that even if the value of one 
of these two bits A or B  is 0, a carry may 
still be generated if the carry-in bit is 1. The 
reader may note that such a case is called 
carry-propagation (not carry-generation) and 
we will discuss it during carry-propagation. 
Please note that generation and propagation 
are two different activities. 
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If we designate G  as the carry-generation function, then we 
may express our observation as,

 G  A B:=
If we consider the present bit as the n th bit, then we may rewrite the 
above function as

 Gn  A Bn n:=

Figure 5.7.1: Carry look-ahead generator circuit 

5.7.2 Carry Propagation

A carry is propagated if any one of the two input bits A or B  is 1. If 
both A and B  are 0, a carry will never be propagated. On the other 
hand, if both A and B  are 1, then it will not propagate the carry but 
will generate the carry, as already described above. If we designate P  
as the carry-propagation function, then we may express it as

 Pn  A Bn n5=

For further illustration, we construct the truth table of the 
full-adder as given below. Here, within the column of Cout, we have 
indicated where the carry is generated or propagated. 

Table 5.7.1: Carry-generation and carry-propagation

Inputs Outputs

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0     1 X

1 0 0 1 0

1 0 1 0     1 X

1 1 0 0     1 &

1 1 1 1     1 &

:X  Indicates carry propagated
:&  Indicates carry generated
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Figure 5.7.2: Four-bit full-adder with a look-ahead carry generator

Observe that the final output carry is expressed as a function of 
the input variables in SOP form, which is a two-level AND-OR form. 
To produce the output carry for any particular stage, it is clear that it 
requires only that much time required for the signals to pass through 
two levels only. Hence the circuit for look-ahead-carry introduces a 
delay corresponding to two gate levels. 

EXAMPLE 5.4
If the CARRY GENERATE Gi  and CARRY PROPAGATE Pi  are 
redefined as P A Bi i i= +_ i and G A Bi i i= , show that the CARRY 
output Ci 1+  and the SUM output Si  of a full adder can be expressed 
by the following Boolean functions :

 Ci 1+  C G P G P Ci i i i i i: := + = +_ i  

and  Si  P G Ci i i: 5= _ i

SOLUTION :

 Gi 1+  C G P C A B A Bi i i i i i i i: : := + = + +_ _ _i i i7 A

  C A B A Bi i i i i: : := +_ _i i7 A

  C A B A Bi i i i i: := + +_ _i i

  C A B A B A Bi i i i i i i: := + + +_ _i i
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  C A B A B P C Gi i i i i i i i: : := + + = +_ i

 Si  A B C A B A B Ci i i i i i i i5 5 : : 5= = +_ _i i

Also,

 P G Gi i i: 5_ i  A B A B Ci i i i i: : 5= +_ _i i7 A

  A B A B Ci i i i i: 5= + +_ _i i7 A

  A B A B Ci i i i i: : 5= +_ i

Therefore, Si  P G Ci i i: 5= _ i

5.8 IC PARALLEL ADDERS

Several parallel adders are available as ICs. The most common binary 
parallel adder in the integrated circuit (IC)  form is IC 74 LS 83/74 LS 
283. It is a 4-bit parallel adder, which consists of four interconnected 
full adders alongwith the lookahead carry circuit. Figure 5.8.1 shows 
the functional symbol of IC 74LS83. The inputs to this IC are two 
4-bit numbers, A A A A3 2 1 0 and B B B B3 2 1 0 and outputs are the sum 
bits S S S S3 2 1 0 and the carry out C4 at the MSB position. 

5.8.1 Cascading IC Parallel Adders

The addition of large binary numbers can be accomplished by 
cascading two or more parallel adder chips. As shown in Figure 5.8.2, 
when two 74LS83 chips are cascaded to add two 8-bit numbers, the 
first adder adds the 4 LSBs of the numbers. The C4 output of this 
adder is connected as the input carry to the first position of the 
second adder which adds the 4 MSBs of the numbers.

A A7 0-  and B B7 0-  are the two eight bit numbers to be added. 
Adder-1 in Figure 5.8.2 adds the four LSB bits of the two numbers, 
i.e., A A3 0-  and B B3 0- . The carry input of first adder has been 
connected to ground (logic 0). The C3 output of adder-1 is connected 
to Cin  input of adder-2. This adder adds this carry and the four MSB 
bits of the two numbers. Also, Cout of adder-2 acts as the final output 
carry and the sum output is from S 7  through S0.

Figure 5.8.1: Logic symbol of 74LS83
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value of B , the input carry is 0, and the circuit performs A plus B . 
When M 1= , we have B B15 =  and 1Cin = . The B  inputs are all 
complemented and a 1 is added through the input carry. The circuit 
performs the operation A plus the 2’s complement of B , i.e. A B- .

Figure 5.10.1: A 4-bit adder-subtractor

5.11 SERIAL ADDER

A serial adder performs addition of binary numbers in serial form. 
Figure 5.11.1 shows the circuit diagram of an n -bit serial adder. 
The two binary numbers to be added serially are stored in two shift 
registers A and B . Bits are added one pair at a time through a single 
full adder (FA) circuit. Here, SO stands for the serial output of shift 
register.

The sum output of the full adder is coupled to the serial input (SI) 
or register-A. By shifting the sum into A while the bits of A are shifted 
out, it is possible to use one register for storing both augend and the sum 
bits. The serial input register B  can be used to transfer a new binary 
number while the addend bits are shifted out during the addition.

Figure 5.11.1: Serial adder
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The carry output of the full-adder is applied to a D  flip-flop. 
The output of this flip-flop is then used as the carry input for the next 
pair of significant bits

5.11.1 Working Operation

The working operation of serial adder can be explained as below:

1. Let register-A holds the first number and register-B holds the 
other number. The carry flip-flop is cleared initially so Q 0=  
and 0Cin = .

2. The serial outputs (SO) of the two registers will provide the 
LSBs of the two numbers. They will act bits x  and y  for the full 
adder. The full adder will add these bits and produce sum S  and 
carry out Cout. Thus the addition of LSBs is complete.

3. The shift control is used to enable both registers and carry flip-
flop. So, at the clock pulse both registers are shifted once to the 
right, the sum bit from S  enters the left most register of A, and 
the output carry is transferred into flip-flop Q .

4. The shift control enables the registers for a number of clock 
pulses equal to the number of bits of the registers. For each 
succeeding clock pulse a new sum bit is transferred to A, a new 
carry is transferred to Q , and both registers are shifted once 
to the right. This process continues until the shift control is 
disabled. 

5. In this way, the addition is accomplished by passing each pair of 
bits together with the previous carry through a single full adder 
circuit and transferring the sum, one bit at a time, into register A.

5.11.2 Comparison Between Serial and Parallel Adder

Comparison between serial and parallel adder is outlined in the table 
below.

Table 5.11.1:  Comparison between serial and parallel binary adders

S. No. Function Serial adder Parallel adder

1 Process of addition
Only one bit at a time, 
as one after another

All bits are added at a time

2 Num of full adders used One
Equal to number bits in the binary number i.e., 
one for each bit addition

3 Total time
The time required or 
addition depends on the 
total number of bits

Time required for addition does not depends on 
the number of bits in each operand

4 Cost Cheap Expensive

5 Speed of operation Slow Fast

6 Type of registers used It uses shift registers It uses registers with parallel load capability
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To obtain a minimized expression for Y , we construct a 
5-variable K-map using above truth table as shown below.

From the above K-map,

 Y  C S S S Sout 3 2 3 1= + +

Whenever 1Y = , it is necessary to add the correction factor 
0110 to the sum bits, and to generate a carry. Figure 5.12.1 shows 
the complete circuit for a BCD adder, including the logic circuit 
implementation for Y .

Figure 5.12.1: Logic diagram of BCD adder using 4-bit adders
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5.12.2 Working Operation of BCD Adder Circuit

The circuit of Figure 5.12.1 consists of three basic parts. The two 
BCD code groups A A A A3 2 1 0 and B B B B3 2 1 0 are added together in the 
upper 4-bit adder, to produce the sum S S S S3 2 1 0 and carry out Cout

. The logic gates implements the expression for Y . The lower 4-bit 
adder will add the correction 0110 to the sum bits, only when 1Y = , 
producing the final BCD sum output represented by 3 2 1 0S S S S . The 
Y  is also the carry-out that is produced when the sum is greater than 
01001. Of course, when 0Y = , there is no carry and no addition of 
0110. In such cases, S S S S3 2 1 0 3 2 1 0S S S S = .

5.13 BINARY MULTIPLIERS

A binary multiplier is an electronic device which is used in digital 
electronics for multiplication of two binary numbers. Multiplication of 
binary number is performed in the same way as in decimal numbers. 
The multiplicand is multiplied by each bit of the multiplier starting 
from the least significant bit. Each such multiplication forms a partial 
product, successive partial products are shifted one position to the left. 
The final product is obtained from the sum of the partial products.

5.13.1 2-bit by 2-bit Binary Multiplier

Let us consider the multiplication of two 2-bit numbers A and B
as shown in Figure 5.13.1. The multiplicand bits are A1 and A0, the 
multiplier bits are B1 and B0 and the products is P P P P3 2 1 0.

Initially, B0 is multiplied with A1 and A0 and generates partial 
product A B1 0, A B0 0. Then B1 is multiplied with A1 and A0 and 
generates partial product A B1 1, A B0 1 which are shifted by one 
bit left. Then sum of these partial products produce the result of 
multiplication.

The partial product can be implemented with AND gates and 
the sum can be implemented using half-adders as shown in the Figure 
5.13.2. Usually there are more bits in the partial products and it 
is necessary to use full adders to produce the sum of the partial 
products. 

DO REMEMBER
The multiplication of two bits such as A0  and 
B0  produces 1 if both bits are 1; otherwise, it 
produces a 0. 

Figure 5.13.1: 2-bit multiplication
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Figure 5.13.4: Logic Diagram for 4-bit by 3-bit Multiplication

5.14 MAGNITUDE COMPARATOR

The comparator is a combinational logic circuit. It compares the 
magnitude of two n -bit numbers and provides the relative result as 
the output. The block diagram of an n -bit digital comparator has 
been shown in Figure 5.14.1. A and B  are the two n -bit inputs. The 
comparator has three outputs namely A B2 , A B=  and A B1 . 
Depending upon the result of comparison, one of these outputs will 
go high.

5.14.1 1-bit Magnitude Comparator

The one bit comparator is a combinational logic circuit with two 
inputs A and B  and three outputs namely A B1 , A B=  and .A B1  
It compares the two single bit numbers A and B  and produces an 
output that indicates the result of the comparison. Let the 1-bit 
numbers be A A0=  and B B0= . Truth table of 1-bit comparator is 
given in Table 5.14.1. 

Figure 5.14.1: Block diagram of a digital 
comparator
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Table 5.14.1: Truth table of a one-bit comparator

Inputs Outputs

A B X A B<_ i Y A B=_ i Z A B>_ i

0 0 0 1 0

0 1 1 0 0

1 0 0 0 1

1 1 0 1 0

Design of 1-bit Magnitude Comparator
The K-maps for the three outputs X , Y  and Z  can be constructed 
as shown below.

From the K-map, we can write the expressions for the three 
outputs as under:

For A B1^ h, X   A B0 0=

For A B=^ h, Y   A B A B0 0 0 0= +  A B0 05=

For A B>^ h, Z  A B0 0=
The expression for Y2 is nothing but the expression for an EX-

NOR gate. Hence the single bit comparator can be realized using Ex-
NOR and AND gates as shown in Figure 5.14.2a. It can be realized 
using basic gates also as illustrated in Figure 5.14.2b.

Figure 5.14.2: Logic diagram of 1-bit comparator
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ForA B2 , Z  A B B A A B A B0 1 0 1 0 0 1 1= + +

For A B= ,

 Y  A B A B A A B B A A B B A A B B1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0= + + +

  ( ) ( )A B A B A B A B A B A B1 1 0 0 0 0 1 1 0 0 0 0= + + +

  ( ) ( )A B A B A B A B1 1 0 0 1 1 0 09 9= +

  ( )( )A B A B A B0 0 1 1 1 19= +

  ( )( )A B A B0 0 1 19 9=
The logic diagram for the 2-bit digital comparator is shown in 

Figure 5.14.3.

Figure 5.14.3: Logic diagram of 2-bit Comparator

5.14.3 4-bit Magnitude Comparator

Let the two 4-bit numbers be A A A A A3 2 1 0=  and B B B B B3 2 1 0= . 
The following steps are used in comparing two 4-bit numbers:
1. First compare the two most significant bits (A3 and B3). If 

A B>3 3, then A B> ; if A B<3 3, then A B< . If A B3 3= , then 
we can not say which number is of higher magnitude and the 
next pair of bits (A2 and B2) must be compared.

2. If A B3 3=  and A B>2 2, then A B> ; if A B3 3=  and A B<2 2

, then A B< . Again, if A B3 3=  and A B2 2= , then we can not 
obtain which number has a higher magnitude and the next pair 
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of bits (A1 and B1) will be compared.

3. If A B3 3= , A B2 2=  and A B>1 1; then A B> ; if A B3 3= , 
A B2 2=  and A B<1 1, then A B< . However, if A B3 3= , A B2 2=  
and A B1 1= , then we can not conclude that which number is of 
higher magnitude and we compare the LSBs (A0 and B0).

4. If A B3 3= , A B2 2= , A B1 1=  and A B>0 0, then A B> ; if A B3 3=
, A B2 2= , A B1 1=  and A B<0 0, then A B< . 

Figure 5.14.4: Logic diagram of 4-bit Comparator

However, if A B3 3= , A B2 2= , A B1 1=  and A B0 0= , then A B=
. We can express this equality relation of each pair of bits by NOR 
function as given below.
If the most significant bits are equal (i.e., A B 03 3= =  OR A B 13 3= =
), then 

 X3 A B A B A B3 3 3 3 3 35= + =
If the next two most significant bits are equal i.e,. A B2 2= , then 

 X2 A B A B A B2 2 2 2 2 25= + =
If the next two most significant bits are equal i.e,. A B1 1= , then 
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Figure 5.14.6: Cascading of two 4-bit magnitude comparators

***********
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EXAMPLES

EXAMPLE 5.5
Design a combinational logic circuit with three input variables that 
will produce logic 1 output when more than one input variables are 
logic 0.

SOLUTION :

Step 1: Consider A, B , and C  as input variables and Y  as the output 
variables. Truth table for the given problem can be constructed as 
shown below.

Inputs Output

A B C Y

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Step 2: Now using the truth table, we represent the given function on 
K-map as shown. To obtain a minimized POS expression, we make 
groupus of adjacent 1’s. In the given K-map, there are 3 possible pairs 
of adjacent 1’s. Minimized SOP expression

 Y  A B AC B C= + +
Step 3: Now, we implement the above function using basic gates as 
shown in the logic diagram.
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EXAMPLE 5.8
Design a 5-bit comparator using a single 7485 and one gate.

SOLUTION :

The circuit is shown in Figure below. The two 5-bit numbers to be 
compared are X X X X X4 3 2 1 0 and Y Y Y Y Y4 3 2 1 0.

EXAMPLE 5.9
Design a combinational circuit with three inputs and one output.
(a) The output is 1 when the binary value of the inputs is less than 

3. The output is 0 otherwise.

(b) The output is 1 when the binary value of the inputs is an odd 
number.

SOLUTION :

(a)

Step 1: Let three inputs are A, B  and C , and Y  is the output. The 
truth table for the given problem is constructed as below.

Inputs Output

A B C Y

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0
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Inputs Output

A B C Y

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

Step 2: Boolean expression from the truth table

 Y  A B C A BC ABC= + +
Step 3: Minimization of Y  using K-map. as shown. There are 2 
possible pairs of adjacent 1’s, so minimized SOP expression

 Y  A B AB= +
Step 4: Now we realize the given logic gates.

(b)

Step 1: Let three inputs are A, B  and C , and Y  is the output. The 
truth table for the given problem is constructed as below.

Inputs Output

A B C Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Step 2: Boolean expression from the truth table

 Y  A BC ABC ABC ABC= + + +
Step 3: Minimization of Y  using K-map as shown. There is only 1 
quad of adjacent 1’s. So minimized POS expression

 f  C=

*********** 



6
COMBINATIONAL LOGIC CIRCUITS

6.1 INTRODUCTION

In the previous chapter, we discussed combinational logic circuits 
that can be used to perform arithmetic and related operations. In 
designing those circuits, we used to simplify the expression and realize 
the simplified expression using logic gates. But these methods are 
suitable for small circuits. They cannot be used when the circuit 
complexity increases. 

Now several combinational circuits are available in the 
integrated (MSI) form and are easily available in market. Depending 
upon the level of complexity, the integrated circuits may be classified 
into four categories as under:
(a) SSI : Small scale integration

(b) MSI : Medium scale integration

(c) LSI : Large scale integration

(d) VLSI : Very large scale integration

In this chapter, we discuss the MSI devices which are available 
in the form of IC packages such as multiplexer, demultiplexer, adders, 
parity generators, priority encoders, decoders etc. Particular emphasis 
is given to the operational basics and use of these devices to design 
more complex combinational circuits.

6.2 MULTIPLEXER

A multiplexer, abbreviated as MUX, is a digital switch which 
selects one of the many inputs to a single output. A number of 
control lines determine which input data is to be routed to the 
output.

A multiplexer selects binary information present on any one of 
the input lines, depending upon the logic status of the selection inputs, 
and routes it to the output line. If there are n  select lines, then the 
number of maximum possible input lines is 2n  and the multiplexer 
is referred to as a 2n -to-1 multiplexer or 2 1n #  multiplexer. For 
example, to select 1 out of 4 input lines, two select lines are required; 
to select 1 of 8 input lines, three select lines are required and so on.

The block diagram of a multiplexer with m  input lines, n  
selection lines and one output line is shown in Figure 6.2.1. In the 
multiplexer shown I 0 to Im 1-  are the m  inputs to the multiplexer, S0 
to Sn 1-  are the n  control lines, which are responsible for diverting one 

READER NOTE
Because of availability of combinational 
circuits in the IC form; the design of 
combinational circuits has been simplified to 
a great extent. It also improves the reliability 
of the system because the number of external 
wired connections. 

DO REMEMBER
Control lines are also referred to as select line 
and we may use these terms interchangeably.

Figure 6.2.1: Block diagram of a 2n -to-1 
multiplexer
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of the m  inputs to the output line Y . A multiplexer with m  inputs 
and one output is also called an m -to-1 multiplexer, where 2m n= .

Also, multiplexers in IC form have an ENABLE input, which 
needs to be active for the multiplexer to be able to perform its 
intended function.

6.2.1 2-to-1 Multiplexer

A 2 to 1 multiplexer has 2 inputs. Since 2 21= , this multiplexer 
will have one control (select) line. The block schematic of a :2 1 
multiplexer is shown in Figure 6.2.2. It has two data inputs I0 and I1
, one select input S  and one output. The truth table of this MUX is 
given as below.

Table 6.2.1: Truth Table of a 2-to-1 Multiplexer

Select Input Output

S Y

0 I 0

1 I 1

In the truth table, when S 00 = , input I 0 is routed to the output 
Y  and when S 10 = , input I 1 is routed to the output Y . Thus the 
SOP expression for the output Y  is,

 Y  I S I S0 0 1 0= +  (6.2.1)

Realization of a 2:1 MUX using Logic Gates
Implementing Boolean expression (6.2.1) using basic gates, we get the 
logic circuit for a 2 input multiplexer as shown in Figure 6.2.3.

6.2.2 4-to-1 Multiplexer

A 4-to-1 multiplexer has 4 inputs. Since 4 2 2= , this multiplexer will 
have two select lines. With two select lines there are four possible 
combinations to select one of the four multiplexer inputs to the output 
as shown in Table .

The block schematic of a :14  multiplexer is shown in Figure 
6.2.4, where I0 to I3 are the four inputs to the multiplexer, and S0 and 
S1 are the select lines. The truth Table is shown in right side.

Figure 6.2.2: Block diagram of a 2-to-1 
Multiplexer

Figure 6.2.3: Logic Diagram of a 2-to-1 Multiplexer

Figure 6.2.4: Block Diagram of a 4-to-1 
Multiplexer
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have three select lines. With three select lines, there are eight possible 
binary combinations to select one of the eight multiplexer inputs to 
the output as shown in Table 6.2.3.

The block schematic of a :18  multiplexer is shown in Figure 
6.2.6, where I 0 to I 7  are the eight inputs to the multiplexer, and S0, 
S1 and S2 are the control signals.

Table 6.2.3: Truth Table of an 8 to 1 Multiplexer

Select Inputs Output

S2 S1 S0 Y

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

Figure 6.2.7: Logic diagram of a 8-to-1 multiplexer

Figure 6.2.6: Block diagram of a 8-to-1 
multiplexer
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From the truth Table 6.2.3, we can obtain the logic expression 
for output Y  in a similar manner as we have obtained for 4-input 
multiplexer. For example, if S S S2 1 0 011= , then the data input I 3 
is selected and output Y  will follow the input I 3. Thus, complete 
expression for output Y  of the multiplexer will be

 Y  I S S S I S S S I S S S I S S S0 2 1 0 1 2 1 0 2 2 1 0 3 2 1 0= + + +

  I S S S I S S S I S S S I S S S4 2 1 0 5 2 1 0 6 2 1 0 7 2 1 0+ + + +  (6.2.3)

Realization of a 8:1 MUX using Logic Gates
We can realize a :8 1 MUX using gates by implementing the Boolean 
expression (6.2.3). This is shown in Figure 6.2.7.

6.2.4 Multiplexer with ENABLE Input

Multiplexers ICs usually have an ENABLE input that can be used to 
control the multiplexing function. When this input is enabled, that 
is, when it is in logic ‘1’ or logic ‘0’ state, depending upon whether 
the ENABLE input is active HIGH or active LOW respectively, the 
output is enabled. The multiplexer operates normally. When the 
ENABLE input is inactive, the output is disabled and permanently 
goes to logic ‘0’  state. 

The block schematic of a 4-to-1 multiplexer with ENABLE input 
is shown in Figure 6.2.8. Note that a small circle on ENABLE input 
indicates that it is an active-LOW input. It means that multiplexed 
functions normally when EN 0= , and when EN 1=  it gets disabled. 
The truth table of 4-to-1 multiplexer with ENABLE input is given in 
Table 6.2.4 below.

Table 6.2.4: Truth Table for a 2-to-1 Multiplexer with Active Low 
Enable Input

Enable Select Lines Output

EN S1 S0 Y

1 X X 0

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

Figure 6.2.9 shows how the 4-to-1 multiplexer of Figure 6.2.5 
can be modified to include an ENABLE input. Note that this is an 
active LOW ENABLE input i.e. the multiplexer works normally if 

0EN =  and if 1EN = , then the multiplexer will be disabled or Y 0=
. The functional table of this modified multiplexer is also given below.

Figure 6.2.8: A 4-to-1 Mux with 
ENABLE input

USE OF ENABLE INPUT
The enable input (also called strobe) can be 
used to cascade two or more multiplexer ICs 
to construct a multiplexer with larger number 
of inputs as we will see in next section.
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M E T H O D O L O G Y
1. If 2 n  is the number of input lines in the available lower 

order multiplexer and 2N  is the number of input lines in 
the desired multiplexer, then the number of lower order 
multiplexers required to construct the desired multiplexer 
circuit would be 2N n- .

2. From the knowledge of the number of selection inputs of the 
available multiplexer and that of the desired multiplexer, 
connect the less significant bits of the selection inputs of the 
desired multiplexer to the selection inputs of the available 
multiplexer.

3. The most significant bits of the selection inputs of the 
desired multiplexer circuit are used to enable or disable the 
individual multiplexers so that their outputs when ORed 
produce the final output.

The above methodology can be explained using some examples. 
In following sub sections we will see how to implement a 4-to-1 mux 
using 2-to-1 mux, a 8-to-1 mux using two 4-to-1 mux and some other 
examples also.

6.3.1 A 4-to-1 MUX using Two 2-to-1 MUX

A 4-to-1 multiplexer can be constructed from two 2-to-1 multiplexers 
having an ENABLE input. The ENABLE input is taken as the second 
selection variable occupying the MSB position. Figure 6.3.1 shows the 
complete logic circuit diagram.

Here, to select one of the 4 inputs, two selection lines ( )S S1 0  are 
required. Among the two select lines, the least significant select lines 
( )S0  are connected with one select inputs of both the multiplexer ICs. 
The most significant select line S2 is connected directly to the EN  
input of MUX1 while the same is connected through an inverter to 
the EN  input of MUX2. 

Therefore, when 0S1 = , MUX1 is selected and the inputs (I0 
and I1) are multiplexed to the output Y  and MUX2 is disabled. When 

1S1 = , the MUX1 is disabled while MUX2 enabled and the inputs (I2 
and I3) are multiplexed to the output Y . Also, note that the outputs 
of MUX1 and MUX2 (i.e. Y1 and Y2) are ORed using an OR gate to 
generate output Y .

Figure 6.3.1: A 4-to-1 multiplexer using two 2-to-1 Multiplexers
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6.3.2 A 8-to-1 MUX Using Two 4-to-1 MUX

The cascading of two :4 1 multiplexer results in :8 1 multiplexer as 
shown in Figure 6.3.2. 

Again, we have 8-inputs and so three select lines ( )S S S2 1 0  are 
required. The two least significant select lines ( )S S1 0  are connected to 
two select lines of both the multiplexers. The most significant select 
line S2 is connected directly to the EN  input of MUX1 while the same 
is connected through an inverter to the EN  input of MUX2.

When S3 is in logic ‘0’ state, the MUX1 is enabled and MUX2 
is disabled. Therefore, inputs (I0 to I3) are multiplexed to the output 
Y . When S3 is in logic ‘1’ state, the MUX2 is enabled and MUX2 is 
disabled. So, the inputs (I4 to I7) are multiplexed to the output Y . 

The outputs of MUX1 and MUX2 (i.e. Y1 and Y2) are ORed 
using an OR gate to generate output Y .

8-to-1 MUX Using 4-to-1 and 2-to-1 MUX
It is also possible to implement an 8:1 multiplexer using 4:1 and 
2:1 multiplexers as shown in Figure 6.3.3. Here, we use a 2-to-1 
multiplexer rather than an OR gate. 

We can see that output of two mux with selection line S1 and S0 
is connected to input of the third mux having select line S1.
For MUX 1, output Y1 is given as,

 Y1 I S S I S S I S S I S S0 1 0 1 1 0 2 1 0 3 1 0= + + +
For MUX 2, output Y2 is given as,

 Y2 I S S I S S I S S I S S4 1 0 5 1 0 6 1 0 7 1 0= + + +
Y1, Y2 are inputs of MUX 3. So, output Y  will be

 Y  Y S Y S21 2 2= +

 Y  I S S I S S I S S I S S S0 1 0 1 1 0 2 1 0 3 1 0 2= + + +_ i

   I S S I S S I S S I S S S4 1 0 5 1 0 6 1 0 7 1 0 2+ + + +_ i

 Y  I S S S I S S S I S S S I S S S0 2 1 0 1 2 1 0 2 2 1 0 3 2 1 0= + + +

Figure 6.3.2: An 8-to-1 multiplexer using two 4-to-1 
Multiplexers
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EXAMPLE 6.2
Implement a 4-to-1 multiplexer using 2-to-1 multiplexer only.

SOLUTION :

It is also possible to implement a 4-to-1 multiplexer using three 2-to-1 
multiplexer as shown below.

We can see that output of two mux with selection line S0 is connected 
to input of the third mux having select line S1.

For upper 2-to-1 mux

 Y1 I S I S0 0 2 0= +

For bottom 2-to-1 mux

 Y2 I S I S2 0 3 0= +

Y1, Y2 are inputs of third mux. So, output of third mux will be

 Y  Y S Y S1 1 2 1= +

 Y  I S I S S I S I S S0 0 1 0 1 2 0 3 0 1= + + +_ _i i

  I S S I S S I S S I S S10 0 1 1 0 1 2 0 1 3 0= + + +

  I S S I S S I S S I S S0 1 0 1 1 0 2 1 0 3 1 0= + + +
which is same as output expression of a 4-to-1 mux.

6.4 IMPLEMENTATION OF BOOLEAN EXPRESSIONS USING MULTIPLEXERS

Any boolean or logical expression can be easily implemented using 
a multiplexer. A 2 n -to-1 MUX can be used to implement a Boolean 
function with n 1+  variables. Out of n 1+  variables, n  are connected 
to the n  selection lines of the 2 n -to-1 multiplexer. The remaining one 
variable(either in complemented or normal form) along with constants 
1 and 0 is used as the inputs of the multiplexer.
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For example, if A is the remaining variable, then the inputs 
of the multiplexer are A, A , 1 and 0. Which input line is given 
what logic status can be easily determined with the help of a simple 
procedure. To demonstrate this procedure, consider the function

 , ,F A B C_ i (2,4,7)S=
As the given function is a three-variable function, we need a 

multiplexer with 2 select lines and four inputs. 
1. Two of the three variables are connected to the two selection 

lines, with the higher order variable connected to the higher-
order selection line. For example, in the present case, variables 
B  andC  are the chosen variables for the selection lines and are 
respectively connected to selection lines S1 and S0.

2. In the next step, a table of the type shown in Table 6.4.1 is 
constructed. In the columns of table list all the input of the 
multiplexer. This table sometimes referred to as implementation 
table.

3. Under the inputs to the multiplexer, minterms are listed in 
two rows, as shown. The first row lists those minterms where 
remaining variable A is complemented, and second row lists 
those terms where A is uncomplemented. 

4. In the table, the minterms for which the output of the Boolean 
function is 1, will be marked in circles (brackets) as shown.

5. The following rules are applied to find the values for the inputs 
of the multiplexer.

(i) If both the minterms in a column are not circled, apply 0 to 
the corresponding input.

(ii) If both the minterms in a column are circled, apply 1 to the 
corresponding input.

(iii) If the bottom minterm is circled and the top is not circled, 
apply A to the input.

(iv) If the top minterm is circled and the bottom is not circled, 
apply A  to the input.

Now using the procedure and the Table 6.4.1, the given function 
can be implemented using 4-to-1 mux as shown in Figure  6.4.1.

Table 6.4.1: Implementation table 

I0 I1 I2 I3

A 0 1 (2) 3

A (4) 5 6 (7)

A 0 A A

Alternate Method
It is not necessary to choose the most significant variable as an input 
to the multiplexer. One can choose any one of the variables as an 
input and accordingly the multiplexer implementation table will 
get modified. Now, we choose A and B  as select inputs S1 and S0 
respectively. So implementation table is constructed according to this 
variable as shown in Table 6.4.2.

DO REMEMBER
If the given function is not in the standard 
SOP form, then first we have to convert it to 
the standard form and then proceed.

Figure 6.4.1: Implementation of function 
(2,4,7)f S=  using a 4-to-1 MUX

READER NOTE
Here the first row lists those minterms 
where variable A is complemented and 
second row lists those minterms where A is 
uncomplemented.
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EXAMPLE 6.4
Implement the following Boolean expression using an 8-to-1 line 
multiplexer where A, B , C  appear on select lines S2, S1 and S0 
respectively.

 , , ,F A B C D_ i , , , , , , , ,1 2 6 7 9 11 12 14 15S= _ i

SOLUTION :

In the given problem, A, B , C  are taken as select inputs, so remaining 
variable is .D  Now, the inputs of the multiplexer will be chosen among 
D , D , 0  or 1 according the implementation table. Here the first row 
lists those minterms where variable D  is complement and second row 
lists those minterms where D  is uncomplemented.

I0 I1 I2 I3 I4 I5 I6 I7

D 0 (2) 4 (6) 8 10 (12) (14)

D (1) 3 5 (7) (9) (11) 13 (15)

D D 0 1 D D D 1

Now, we connect the multiplexer inputs given by the table and 
implemented the function using a 8-to-1 mux as shown.

EXAMPLE 6.5
Implement the following function with a 4-to-1 mux. Choose A and 
B  as select inputs.

 , ,F A B C_ i , , ,m 1 2 4 7S= _ i

SOLUTION :

Since A and B  are select inputs. The implementation table is 
constructed according to remaining variable C .Here the first row lists 
those minterms where variable C  is complemented i.e. m0, m2, m4 and 
m6. Second row lists those minterms where C  is uncomplemented i.e., 
m1, m3, m5and m7 .

I0 I1 I2 I3

C 0 (2) (4) 6

C (1) 3 5 (7)

C C C C

Now, we connect the multiplexer inputs given by the table and 
implemented the function using a 4-to-1 mux as shown in right side.
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EXAMPLE 6.6
Implement the following Boolean function using an 8-to-1 multiplexer.

 , , ,F A B C D_ i ABD ACD BCD A CD= + + +

SOLUTION :

Given function

 , , ,F A B C D_ i ABD ACD BCD A CD= + + +
The given Boolean function is not in Standard SOP form. So, first we 
convert this in standard form.

 , , ,F A B C D_ i ABD C C ACD B B BCD A A= + + + + +_ _ _i i i

   A CD B B+ +_ i

  ABCD ABC D ABCD ABCD ABCD= + + + +

   A BCD ABCD A B CD+ + +
Removing repeated product terms, we get

 , , ,F A B C D_ i ABCD ABC D ABCD ABCD A BCD= + + + +

   ABCD A B CD+ +
Binary representation of minterms

 , , ,F A B C D_ i 0111 0100 1111 1011 0011 0101 0001= + + + + + +

  , , , , , ,m 6 4 15 11 3 5 1S= _ i

  , , , , , ,m 1 3 4 5 6 11 15S= _ i

We choose variables B , C , D  as select inputs S2, S1 and S0 
respectively. Remaining variables A is selected for inputs of mux. 
The implementation table is shown below.

I0 I1 I2 I3 I4 I5 I6 I7

A 0 (1) 2 (3) (4) (5) (6) 7

A 8 9 10 (11) 12 13 14 (15)

0 A 0 1 A A A A

Now, we connect the multiplexer inputs given by the table and 
implemented the function using a 8-to-1 mux as shown in right side.

EXAMPLE 6.7
Implement the following Boolean function using an 8-to-1 multiplexer.

 , , ,F A B C D_ i , , , , , , , ,m d0 2 6 10 11 12 13 3 8 14S= +_ _i i

SOLUTION :

In the given function don’t care conditions are also specified. We 
know that don’t care condition can be treated as either 1’s or 0’s, So, 
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Inputs Output

A B Cin Sum Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

We write expressions of Sum and carry in terms of minterms.

 Sum , , ,m 1 2 4 7S= _ i

 Carry , , ,m 3 5 6 7S= _ i

Here we choose B  and Cin  as select inputs S1 and S0 respectively. 
Remaining variable is A, so we contruct the implementation table for 
sum and carry outputs according the variable A.

Table E6.9.1 Implementation table for Sum.

I0 I1 I2 I3

A 0 (1) (2) 3

A (4) 5 6 (7)

A A A A

Table E6.9.2 Implementation table for Carry

I0 I1 I2 I3

A 0 1 2 (3)

A 4 (5) (6) (7)

0 A A A

Now, the circuit of full adder using two 4-to-1 multiplexer can be 
constructed as shown.

EXAMPLE 6.10
Realize the Boolean expression

 , , ,f A B C D_ i , , , , , ,m 4 5 7 8 10 12 15S= _ i

using a 4-to-1 line multiplexer and external gates.

SOLUTION :

No. of variables in the given function n 4= , so we need a 2n 1- -to-1 
or 8-to-1 multiplexer. But, in the this problem a 4-to-1 multiplexer is 
given, so we use another method to implement this.



Chapter 6 Combinational Logic Circuits Page 347

Let A and B  are select inputs on lines S1 and S0 respectively. We 
construct the truth table of given function as shown below.

Since there are 4 inputs available with a 4-to-1 mux, so we divide the 
truth table into four section as shown. Now, we have to obtain inputs 
I0, I1, I2 and I3 in terms of variables C  and D . So, we draw k-maps 
for I0, I1, I2 and I3 in terms of C  and D .
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A block diagram of a demultiplexer is shown in Figure 6.6.1. 
The demultiplexer has one input lines and m  output lines. Again 
m 2 n= , so it requires n  select lines. A demultiplexer with one input 
and m  outputs is called a 1-to-m  demultiplexer.

6.6.1 1-to-2 Demultiplexer

A 1 to 2 demultiplexer has one input and two outputs. Since 2 21=
, it requires only one control (select) line. Figure 6.6.2 shows the 
block diagram of a 1-to-2 demultiplexer. The truth table of a 1-to-2 
demultiplexer is also shown in Table 6.6.1. 

Table 6.6.1: Truth table of a 1-to-2 multiplexer

Input Select Input Outputs

S0 Y1 Y0

D 0 0 D

D 1 D 0

From the truth Table 6.6.1, when the select input S 00 = , the 
data input D  appears at the output Y0, and when the select input 
S 10 =  the data input D  appears at the output Y1. Thus, the Boolean 
expressions for the outputs can be written as

 Y0 DS 0=

 Y1 DS0=

Realization of a 2:1 DMUX using Logic Gates
Implementing above two equations using basic gates, we get the 
circuit shown in Figure 6.6.3. 

6.6.2 1-to-4 Demultiplexer

A 1 to 4 demultiplexer has one input and four outputs as shown in 
Figure 6.6.4. Since 4 2 2= , it required two select inputs. The truth 
table of a 1 to 4 demultiplexer is shown in Table 6.6.2.

Figure 6.6.2: Block diagram of a 1-to-2 
demultiplexer

Figure 6.6.3: Logic diagram of a 1-to-2 Demultiplexer
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Table 6.6.2: Truth table of a 1-to-4 demultiplexer

Data Input Select Inputs Outputs

S1 S0 Y3 Y2 Y1 Y0

D 0 0 0 0 0 D

D 0 1 0 0 D 0

D 1 0 0 D 0 0

D 1 1 D 0 0 0

From the truth table of Table 6.6.2, we can obtain expressions 
for outputs. When the select inputs S 01 =  and S 00 = , the data input 
D  appears as the output Y0. When the select inputs S 01 =  and S 10 =
, the data input D  is the output of Y1. When the select inputs S 11 =  
and S 00 = , the data input D  is the output of Y2. When the control 
signal S 11 =  and S 10 = , the data input D  is the output of Y3. Thus 
the Boolean equation for the output are

 Y0 DS S1 0=

 Y1 DS S1 0=

 Y2 DS S1 0=

 Y1 DS S1 0=

Realization of a 4:1 DMUX using Logic Gates
Now, using the above expressions, realization of a 1-to-4 demultiplexer 
can be possible using four 3-input AND gates and two NOT gates as 
shown in Figure 6.6.5.

Figure 6.6.5: Logic diagram of a 1-to-4 demultiplexer

Figure 6.6.4: Block diagram of a 1-to-4 
demultiplexer
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6.7.1 A 1-to-4 DMUX using Two 1-to-2 DMUX

This is similar to implementation of a 4-to-1 multiplexer using two 
2-to-1 multiplexers. The select lines S0 of both the :1 2 demultiplexers 
are connected together and considered as S0 line of the :1 4 demux. 
The second select line S1 is connected directly to the enable EN^ h 
input of demux 1 whereas inverted S1 is connected to the enable input 
of demux-2 as shown in Figure 6.7.1. 

6.7.2 A 1-to-8 DMUX using two 1-to-4 DMUX

Let us consider a 1:8 demultiplexer using two 1:4 demultiplexers as 
shown in Figure 6.7.2.  For a 1:8 demultiplexer, the number of select 
inputs should be 3. The demultiplexer 1:4 has two select inputs and 
hence the enable input is used as the third select input S2.

The select line S1 and S0 of the two :1 4 demultiplexers are 
connected together as input select line of 1:8 demultiplexer. The third 
select line S2 is connected directly to the enable EN^ h input of demux 
1 whereas inverted S1 is connected to the enable input of demux-2 as 
shown in Figure 6.7.2. 
Whenever S 02 = , demux1 is enabled and demux 2 is disabled and 
when S 12 = , demux1 is disabled and demux2 is enabled. The bubble 
on the ENABLE shows that it is active low. The truth table of this 
circuit is shown in Table 6.7.1.

Figure 6.7.1: A 1-to-4 DMUX using two 1-to-2 DMUX

Figure 6.7.2: A 1-to-8 DMUX using two 1-to-4 DMUX
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Table 6.7.1: Truth table of 1-to-8 demultiplexer using two 1-to-4 
demultiplexers

Select Inputs
Enable Disable

Outputs

S2 S1 S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 DMUX 1 DMUX 2 0 0 0 0 0 0 0 D

0 0 1 DMUX 1 DMUX 2 0 0 0 0 0 0 D 0

0 1 0 DMUX 1 DMUX 2 0 0 0 0 0 D 0 0

0 1 1 DMUX 1 DMUX 2 0 0 0 0 D 0 0 0

1 0 0 DMUX 1 DMUX 2 0 0 0 D 0 0 0 0

1 0 1 DMUX 1 DMUX 2 0 0 D 0 0 0 0 0

1 1 0 DMUX 1 DMUX 2 0 D 0 0 0 0 0 0

1 1 1 DMUX 1 DMUX 2 D 0 0 0 0 0 0 0

6.8 APPLICATIONS OF DEMULTIPLEXES

Demultiplexers are used in
1. Data transmission

1. Implementation of Boolean Functions

3. Combinational logic circuit design

4. Generate enable signals (enable one out of many). The application 
of enable signals in microprocessor systems are:

(i) Selecting different banks of memory
(ii) Selecting different input/output devices for data transfer
(iii) Enabling different functional units
(iv) Enabling different rows of memory chips depending on address

Usually, demultiplexers are used to implement multiple Boolean 
functions and decoder circuits.

6.9 COMPARISON BETWEEN MULTIPLEXER AND DEMULTIPLEXER 

The following table illustrates comparison between multiplexer and 
demultiplexer in terms of some parameters indicated in the first 
column.

Table 6.9.1: Performance Comparison of MUX and DEMUX

S.No. Parameter of comparison Multiplexer Demultiplexer

1. Type of logic circuit Combinational Combinational

2. Number of data inputs m 1

3. Number of select inputs n n

4. Number of data output 1 m

5.
Relation between input/
output lines and select lines

2m n= 2m n=
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four outputs can be determined as given below.

 Y0 A B=   and Y AB1 =

 Y2 AB=   and Y AB3 =
Now, using these expression a 2-to-4 line decoder can be 

implemented using 2 NOT gates and 4 AND gates as shown in Figure 
6.10.3. The inputs A and B  are decoded into 4 outputs, each output 
represents one of the minterms of 2-input variables.

6.10.2 3-to-8 Line Decoder

A 3-to-8 line decoder has three inputs and eight outputs as shown in 
Figure 6.10.4. A, B  and C  are the three inputs whereas Y0 to Y7  are 
the eight outputs. Based on the 3 inputs, one of the eight outputs is 
selected. The truth table for 3-to-8 decoder is shown in Table 6.10.2. 

Table 6.10.2: Truth Table of 3-to-8 Line Decoder

Inputs Outputs

A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

The logical expression for the outputs can be obtained using 
the above truth table. These are given as below.

READER NOTE
This decoder is also called a 1 to 4 decoder, 
since for a particular input combination, only 
one of the four outputs is HIGH, For Example, 
when AB 10= , only the AND gate-1 (second 
gate from top) has HIGH at all its inputs, and 
therefore HIGHY2 = .

Figure 6.10.3: Logic diagram of a 2-to-4 line decoder

Figure 6.10.4: Block diagram of a 3-to-8 
line decoder
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 Y0 A B C= ; Y A BC1 = ; Y ABC2 = ; Y ABC3 =

 Y4 AB C= ; Y ABC5 = ; Y ABC6 = ; Y ABC7 =
Using the above expressions, it is possible to construct logic 

circuit of a 3-to-8 decoder using three NOT gates and eight 3-input 
AND gates as shown in Figure 6.10.5. 

The three inputs, A, B  and C  are decoded into eight outputs, 
each output represents one of the minterms of the 3-input variables. 
This decoder can be used for decoding any 3-bit code to provide eight 
outputs, corresponding to eight different combinations of the input 
code.

6.10.3 Decoder with ENABLE Input

Some decoders have one or more enable inputs which are used to 
control the operation of the decoder. The enable input may be active 
HIGH or active LOW. In case of active HIGH enable, if the enable 
line 1EN = , the decoder functions normally and the input code, A
, B  and C  will determine which output is HIGH. In case of active 
LOW enable, the decoder functions normally if 0EN = .

A truth table of a 2-to-4 line decoder with active LOW enable 
input is shown as in Table 6.10.3. 

READER NOTE
This is also called a 1-of-8 decoder, since 
only one of eight output lines is HIGH for a 
particular input combination. For Example, 
when ABC 110= , only the AND gate-
6 has HIGH at all its inputs, and therefore 

HIGHY6 = . It is also called a binary-to-octal 
decoder since the inputs represent three-bit 
binary numbers and the outputs represent the 
eight digits in the octal number system.

Figure 6.10.5: Logic diagram of a 3-to-8 
line decoder
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Whenever 0A = , decoder-1 is enabled and decoder-2 is disabled. 
Decoder-1 produces first 4 minterms from 000 to 011. On the other 
hand, when S 12 = , decoder-1 is disabled and decoder-2 is enabled. 
In this case decoder-2 produces remaining 4 minterms from 100 to 
111. Hence, the output lines of both decoders together constitute the 
output lines of desired 3-to-8 decoder.

6.11.2 4-to-16 Decoder using 3-to-8 Decoder

The implementation of a 4-to-16 decoder using 3-to-8 decoders is 
illustrated in Figure 6.11.2. Let us consider ( )MSBA , B , C  and 

( )LSBD  are four inputs of 4-to-16 decoder. Again, we connect less 
significant three bits ( , , )B C D  to three inputs of both the decoders. 
The most significant bit A_ i is connected directly to the enable input 
of decoder-1 and A  is connected to the enable input of decoder-2.

When 0A =  decoder-1 is enabled and decoder-2 is disabled. 
The outputs of decoder-1 produce first 8 minterms through 0000 to 
0111. When 1A =  decoder-2 is enabled and decoder-1 is disabled. The 
output of decoder-2 produces remaining 8 minterms from 1000 to 1111. 

Figure 6.11.1: Implementation of a 3-to-
8 decoder using 2-to-4 decoder

Figure 6.11.2: Implementation of a 4-to-
16 decoder using 3-to-8 decoder
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6.12 IMPLEMENTATION OF LOGIC EXPRESSIONS USING DECODERS

A decoder can be conveniently used to implement a given Boolean 
function. A decoder provides 2n  minterms of n  input variables. As 
we know, any Boolean function can be expressed in sum of minterms, 
one can use a decoder to generate the minterms and an external OR 
gate to form the logic sum. Thus, any combinational circuit with n  
inputs and m  outputs can be implemented with an n -to-2 n  decoder 
and m  OR gates.

M E T H O D O L O G Y
1. Express the given Boolean function in sum of minterms.
2. A decoder that generates all the minterms of the input 

variables is then chosen.
3. The inputs to each OR gate are selected from the decoder 

outputs according to the list of minterms of each function.

This procedure will be illustrated by an example as follows.
Consider the Boolean function given by the equation

 Y  A B C A B C A B C A B C: : : : : : : := + + +

First we express the given function in sum of minterms.

 Y  , , , , , ,4 2 7 0 0 2 4 7S S= =_ _i i

Since there are 3 inputs and 8 minterms, we need a 3-to-8 decoder 
and one OR gate. The decoder generated 8 minterms for ,A B , and 
C . The OR gate performs logical sum of the minterms 0, 2, 4 and 7. 
The output of OR gate gives the Boolean function Y . This is shown 
in Figure 6.12.1. 

Alternate Method
Note that function with a large number of minterms requires an OR 
gate with a large number of input pins. In all such cases, where the 
number of minterms in a given Boolean function with n  variables is 
greater than 2 /2n , the complement Boolean function will have fewer 
minterms. For example, a function having a list of K  minterms can 
be expressed in its complemented form Y  with K2 n -  terms. In that 
case, it is advantages to use a NOR gate to sum the minterms of Y
. The output of the NOR gate complements this sum and generates 
the normal output Y .

Figure 6.12.1: Implementation of a function 
, , ,Y 0 2 4 7S= _ i using 3-to-8 decoder
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(c) , ,f A B C_ i , , , ,m 0 1 5 6 7S= _ i

Note that in the given function there are 5 minterms, so we require 
5 input OR gate. But the complement of given function will have 3 
minterms only.  In this case, it is advantageous to use a NOR gate to 
sum the minterms of f . The output of the NOR gate complements 
this sum and generates the normal output f .

 , ,f A B C_ i , , , ,m 0 1 5 6 7S= _ i

 , ,f A B C_ i , ,m 2 3 4S= _ i

 , ,f A B C_ i , , , ,f A B C m 2 3 4S= =_ _i i

So we connect output Y2, Y3 and Y4 of the decoder to a 3 input NOR 
gate.

EXAMPLE 6.12
Implement a full adder circuit using a 3-to-8 line decoder.

SOLUTION :

The truth table of the full adder is given in Table.

Table Truth table for full-adder

Inputs Sum Carry

A B C S C0

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

From the truth table, Boolean functions for SUM and CARRY 
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outputs are given by the following equations.

Sum output, S  1,2,4,7S=

Carry output, C0 3,5,6,7S=
To realize sum output, we connect decoder outputs Y1, Y2, Y4 and 
Y7   to 3 input OR gate and, to realize sum output, connect decoder 
outputs Y3, Y5, Y6 and Y7 .

6.13 BCD-TO-DECIMAL DECODER

The BCD to decimal decoder converts BCD (8421) code into one of 
the 10 decimal digits from 0 to 9. It is also called 4 line to 10 line 
decoder. 

The logic diagram of a BCD-to-decimal decoder can be 
constructed in the same way as for the 1-to-16 decoder, except that 
only ten decoding gates are required because BCD code represents 
only the ten decimal digits. A list of the ten BCD codes and their 
corresponding decoding functions is given in Table 6.13.1.

Table 6.13.1: BCD decoding function

Decimal Digit BCD Code Decoding Function

A B C D

0 0 0 0 0 A B C D

1 0 0 0 1 A B CD

2 0 0 1 0 A BC D

3 0 0 1 1 A BCD

4 0 1 0 0 ABC D

5 0 1 0 1 ABCD

6 0 1 1 0 ABCD

7 0 1 1 1 ABCD

8 1 0 0 0 AB C D

9 1 0 0 1 AB CD
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Figure 6.13.2: Logic Symbol of BCD-to-decimal decoder (a) Active low outputs (b) Active high outputs

6.14 BCD-TO-SEVEN SEGMENT DECODER

In most of the applications, seven segments are used to display any 
one of the decimal digits, 0 through 9. This type of decoder accepts 
the BCD code and provides outputs to energize seven segment device 
in order to display a decimal digit. 

Figure 6.14.1 shows a seven-segment display consisting of seven 
light emitting segments. The segments are designated by letters a , b , 
c , d , e , f , and g . By illuminating various combinations of segments 
as shown in Figure 6.14.2, the numbers 0-9 can be displayed. For 
example, to display a 1, the segments b  and c  have to be illuminated; 
to display a 4, the segments b , c , g  and f  have to be illuminated.

Figure 6.14.2: Display of decimal digits in a seven segment display due to illumination of different segments

READER NOTE
Each segment is made up of a material that 
emits light when current is passed through it. 
The most commonly used materials include 
LEDs, incandescent filaments and LCDs.

Figure 6.14.1: Seven segment display
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The seven segments are of two types: (i) common anode and (ii) 
common cathode. In a common anode type seven segment, the segment 
is ON when the input is 0 and it is OFF when the input is 1.  On the 
other hand, in a common cathode type seven segment, the segment is 
ON when the input is 1 and it is OFF when the input is 0. Here for the 
sake of simplicity, we will consider only common cathode type.

6.14.1 Design of BCD-to-Seven Segment Decoder

A BCD-to-seven-segment decoder is a logic circuit whose block 
diagram is shown in Figure 6.14.3. Here, four BCD inputs are A
, B , C  and D  and seven outputs are a , b , c , d , e , f  and g , which 
correspond to seven segments of a display. The truth table of the 
BCD-to-7 segment decoder is shown in Table 6.14.1.

Table 6.14.1: Truth Table of a BCD-to-seven segment decoder

Decimal Digit
BCD Inputs Seven Segment Code

A B C D a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

Note that only BCD inputs are valid here, rest of the input 
combinations i.e. 10, 11, 12, 13, 14 and 15 are considered as don’t care. 
Now, the logic expressions corresponding to seven-segements can be 
written from the truth table in the standard SOP form as follows.

 a  (0,2,3,5,6,7,8,9) (10,11,12,13,14,15)m dS= +

 b  (0,1,2,3,4,7,8,9) (10,11,12,13,14,15)m dS= +

 c  (0,1,3,4,5,6,7,8,9) (10,11,12,13,14,15)m dS= +

Figure 6.14.3: Logic circuit of BCD-to-
seven segment decoder
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 d  (0,2,3,5,6,8,9) (10,11,12,13,14,15)m dS= +

 e  (0,2,6,8) (10,11,12,13,14,15)m dS= +

 f  (0,4,5,6,8,9) (10,11,12,13,14,15)m dS= +

 g  (2,3,4,5,6,8,9) (10,11,12,13,14,15)m dS= +
The above expression can be simplified using K-maps as shown 

below.

From the above K-map the simplified expression for outputs 
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6.14.2 Basic Connection For Driving Seven-Segment 
Displays

Figure 6.14.5 shows the basic connections of BCD to seven segment 
decoder/driver for common-cathode displays. Here, resistors are used 
to limit the source current of the driver.

Figure 6.14.5: Logic diagram-common cathode display

6.15 APPLICATIONS OF DECODER

There are many useful applications of decoder in digital systems. 
Some of important applications are listed hereunder. 
1. When the decoder inputs come from a counter which is being 

continually pulsed, the decoder outputs will be activated 
sequentially. Hence, they can be used as timing or sequencing 
signals to turn devices on or off at specific times.

2. Decoder are use in memory system of a computer where they 
respond to the address code generated by the microprocessor to 
activate a particular memory location.

3. They are also used in computers for selection of external devices 
that include printers, modems, scanners, internal disk drives, 
keyboard, video monitor etc.

6.16 ENCODERS

An encoder is a combinational logic circuit that performs the inverse 
operation of a decoder. An encoder has 2 n  (or fewer) input lines 
and n  output lines. The opposite of the decoding process is called 
encoding, i.e. encoding is a process of converting familiar numbers or 
symbols into a coded format. 

The Figure 6.16.1 shows the general structure of the encoder 
circuit. It has m  input lines, only one of which is activated at a given 
time, and produces an n -bit output code depending on which input 
is activated. 

DO REMEMBER
In an encoder the number of outputs is less 
than the number of inputs.
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Figure 6.16.1: Block diagram of encoder

6.16.1 Octal-to-Binary Encoder

Let us take the case of an octal-to-binary encoder. Such an encoder 
would have eight input lines, each representing an octal digit, and 
three output lines representing the three-bit binary equivalent. The 
block diagram of an octal-to-binary decoder is shown in Figure 6.16.2.

The operation of this encoder is just the opposite to that of 
a 3-to-8 decoder. That is, out of the eight inputs, at any instant of 
time, only one input line has a value 1; the 3-bit binary equivalent 
corresponding to the activated input will be generated at the output.  
The truth table of an octal to binary encoder is shown in Table 6.16.1.

Table 6.16.1: Truth Table of an Octal to Binary Encoder

Inputs Outputs

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

In the truth table, D0 to D7  represent octal digits 0 to 7. A, B  
and C  represent the binary digits. 

Octal-to-Binary Encoder Using Basic Gates
Considering the truth table, we can write the logical expressions for 
the outputs as follows

 A D D D D4 5 6 7= + + +

 B  D D D D2 3 6 7= + + +

 C  D D D D1 3 5 7= + + +
Using above equations, we can implement an octal-to-binary 

encoder using basic gates as shown in Figure 6.16.3. 

Figure 6.16.2: Block diagram of an octal 
to binary encoder
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Input Output

0 1 2 3 4 5 6 7 8 9

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 A B C D

0 0 0 0 0 0 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1

Decimal-to-BCD Encoder using Basic Gates
From the table, we can determine the Boolean expression for the 4 
outputs of a decimal-to-BCD encoder. These are given as follows:

 A D D8 9= +

 B  D D D D4 5 6 7= + + +

 C  D D D D2 3 6 7= + + +

 D  D D D D D1 3 5 7 9= + + + +

Now, using the above expression, we construct the logic 
diagram of decimal-to-BCD encoder using basic gates as shown in 
Figure 6.16.5. 

Figure 6.16.5: Logic diagram of decimal-to-BCD encoder

6.16.3 Priority Encoders

In practical encoders, it is possible that two or more inputs are active 
at a time. To overcome this, priority encoders are used. A priority 
encoder is a practical form of an encoder. The encoders available in 
IC form are all priority encoders. In this type of encoder, a priority 
is assigned to each input so that, when more than one input is 
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simultaneously active, the input with the highest priority is encoded.
We will illustrate the concept of priority encoding with following 

encoders. 

4-Input Priority Encoder
The truth table of a 4-input priority encoder is given in Table 6.16.3. 
According to the truth table, the higher the subscript number, the 
higher the priority of the input. 

Table 6.16.3: Truth table of a four-input priority encoder

Inputs Outputs

D0 D1 D2 D3 A B V

0 0 0 0 X X 0

1 0 0 0 0 0 1

X 1 0 0 0 1 1

X X 1 0 1 0 1

X X X 1 1 1 1

The Xs are don’t care conditions indicating that the binary 
values they represent may be equal to 0 or 1. The truth table can be 
justified as follows:
1. Input D3 has the highest priority. So regardless of the values of 

other inputs, when this inputs is 1, the output for AB  is 11 and 
(binary 3).  D2 has the next priority level.

2. The output is 10 if D 12 =  and D 03 = , irrespective of the values 
of the other two lower-priority inputs.

3. The output is 01 if D1 is 1, provided both higher priority inputs 
D2 and D3 are 0, irrespective of the value of lower-priority input 
D0.

4. The output is 00 if D0, provided all other inputs are 0.

K-map Simplification and Circuit Realization

Using the above truth table, we can construct K-maps for outputs 
A and B , and thus simplified expressions will be obtained for two 
outputs.

EXPLANATION OF OUTPUT V
In addition to the outputs A and B , the 
circuit has a third output designated by V . 
This is a valid bit indicator that is set to 1 
when one or more inputs are equal to 1. If all 
inputs are 0, there is no valid input and V  
is equal to 0. The other two outputs are not 
inspected when V  equals 0 and are specified 
as don’t care conditions. 
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Table 6.16.5: Truth table of decimal-to-BCD priority encoder

Inputs Outputs

0 1 2 3 4 5 6 7 8 9 A B C D

X X X X X X X X X 0 0 1 1 0

X X X X X X X X 0 1 0 1 1 1

X X X X X X X 0 1 1 1 0 0 0

X X X X X X X 1 1 1 1 0 0 1

X X X X X 0 0 1 1 1 1 0 1 0

X X X X 0 1 1 1 1 1 1 0 1 1

X X X 0 1 1 1 1 1 1 1 1 0 0

X X 0 1 1 1 1 1 1 1 1 1 0 1

X 0 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1

It has 10 active LOW inputs representing the decimal digits, 
1 through 9 and produces the inverted BCD code corresponding to 
the highest order activated input. Here we say inverted BCD codes 
because outputs are available as active-Low.

When all the inputs (D D0 9- ) are HIGH, all the outputs are 
HIGH (i.e. 1111) which is the inverse of 0000, the BCD code for 0. 
When D9 is LOW, the ABCD  output is 0110, which is the inverse 
of 1001, the BCD code for 9; when D8 is LOW, the ABCD  output is 
0111, the inverse of 1000, the BCD code for 8.

EXAMPLE 6.13
We have an eight-line to three-line priority encoder circuit with D0

, D1, D2, D3, D4 , D5, D6, and D7  as the data input lines, the output 
bits are MSBA_ i, B  and LSBC _ i. Higher order data bits have been 
assigned a higher priority, with D7  having the highest priority. If the 
data inputs and outputs are active when LOW, determine the logic 
status of output bits for the following logic status of data inputs :
(a) All inputs are in logic ‘0’ state.
(b) D1 to D4 are in logic ‘1’ state and D5 to D7  are in logic ‘0’ state.
(c) D7  is in logic ‘0’ state. The logic status of the other inputs is not 
known.

SOLUTION :

(a) Since all inputs are in logic ‘0’ state, it implies that all inputs are 
active. Since D7  has the highest priority and all inputs and outputs 
are active when LOW, the output bits are A 0= , B 0= , and C 0= .

(b) Inputs D5 to D7  are the ones that are active; among these, D7  
has the higher priority. Therefore, the output bits are A 0= , B 0=
, and C 0= .

(c) D7  is active. Since D7  has the highest priority, it will be encoded 
irrespective of the logic status of other inputs. Therefore, the output 
bits are A 0= , B 0= , and C 0= .

Figure 6.16.7: Block diagram of a  
decimal-to-BCD priority encoder
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6.17 KEYBOARD ENCODERS

A typical keyboard encoder is shown in Figure 6.17.1. It consists of 
a diode matrix. It is used to encode the 10 decimal digits in BCD(8-
4-2-1).

In the circuit the S -R  flip-flops are used to store the BCD 
output. When a key corresponding to one of the decimal digits is 
pressed, a positive voltage forward biases the selected diodes connected 
to the SET(S ) and RESET (R) inputs of the flip-flops. 

The diodes are arranged in such a manner that each flip-flop 
sets or resets, as necessary to produce the 4-bit code corresponding to 
the decimal digit. For example, when the key 7 is pressed, the diodes 
connected to the S  inputs of Q4 , Q2, and Q1 are forward biased, as is 
that connected to the R  input of Q8. Thus, the output is 0111. Diode 
matrix encoders are found on printed circuit boards of many devices 
having a keyboard as the means of data entry.

Figure 6.17.1: A keyboard encoder using a diode matrix
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6.18 CODE CONVERTERS

Code is the symbolic representation of information in a particular 
format. The codes are used to store and transmit the data efficiently. 
There is a wide variety of binary codes used in digital systems. 
Different digital systems may use different coding schemes. It is 
sometimes necessary to use the output of one system as the input to 
other. Therefor code conversion is necessary between the two systems 
to make them compatible for the same information. We have already 
discussed different types of binary codes in chapter 2.

A code converter is a combinational logic circuit which accepts 
the input information in one binary code, converts it and 
produces an output into another binary code. A general block 
diagram of a code converter is shown in Fig. 6.18.1.

Figure 6.18.1: Block diagram of a code convertor

There are a wide variety of binary codes used in digital systems. 
Some of these codes are BCD code, EX-3 code, gray code etc. In this 
section we will consider various code converters and their design.

6.18.1 Binary-to-BCD Code Converter

The input is a 4-bit binary. There are 16 possible combinations of 
4-bit binary inputs representing 0 to 15. Since the input is of 4-bits, we 
have a maximum of 2 decimal digits. Each decimal digit is represented 
by its 4 bit BCD code, hence the output has to be an 8-bit one; but 
since the first three bits will all be a 0 for all combinations of inputs, 
the output can be treated as a 5-bit one (read explanation). The 
conversion is shown in the conversion Table 6.18.1.

Table 6.18.1: 4-bit Binary and its equivalent BCD

Decimal
Binary Input BCD Output

A B C D B4 B3 B2 B1 B0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 1

2 0 0 1 0 0 0 0 1 0

3 0 0 1 1 0 0 0 1 1

4 0 1 0 0 0 0 1 0 0

5 0 1 0 1 0 0 1 0 1

6 0 1 1 0 0 0 1 1 0

DO REMEMBER
To convert from binary code x  to binary 
code y , the input lines must supply the bit 
of combination of elements as specified by 
code x  and the output lines must generate 
the corresponding bit combination of code y . 

EXPLANATION
For example, binary equivalent of decimal 
12 is 1100 which is of four bits. BCD code of 
decimal 12 is 0001 0010; but first 3 bits are 0, 
so it can be represented using 5 bits only, that 
is 10010.
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The minimized expression of outputs obtained from the K-maps are 
as below:

 B4 AB AC= +

 B1 AC ABC= +

 B2 AB BC= +

 B3 AB C=

 B0 D=

A logic diagram can be drawn based on the above minimal 
expressions as shown in Figure 6.18.2.

Figure 6.18.2: Logic diagram of a binary-to-BCD code converter

6.18.2 BCD-to-Binary Code Converter

BCD is a 4-bit binary representation of decimal numbers. The 4-bit 
BCD code is converted into 4-bit binary code, and the 5-bit BCD code 
is converted into 5-bit binary code. The conversion of 5-bit BCD-to-
binary is given in Table 6.18.2.
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Table 6.18.2: 5-bit BCD and its Equivalent Binary

Decimal BCD Inputs Binary Outputs

B4 B3 B2 B1 B0 A B C D E

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 1 0 0 0 0 1 0

3 0 0 0 1 1 0 0 0 1 1

4 0 0 1 0 0 0 0 1 0 0

5 0 0 1 0 1 0 0 1 0 1

6 0 0 1 1 0 0 0 1 1 0

7 0 0 1 1 1 0 0 1 1 1

8 0 1 0 0 0 0 1 0 0 0

9 0 1 0 0 1 0 1 0 0 1

10 1 0 0 0 0 0 1 0 1 0

11 1 0 0 0 1 0 1 0 1 1

12 1 0 0 1 0 0 1 1 0 0

13 1 0 0 1 1 0 1 1 0 1

14 1 0 1 0 0 0 1 1 1 0

15 1 0 1 0 1 0 1 1 1 1

16 1 0 1 1 0 1 0 0 0 0

17 1 0 1 1 1 1 0 0 0 1

18 1 1 0 0 0 1 0 0 1 0

19 1 1 0 0 1 1 0 0 1 1

Now we construct five variable K-maps with BCD inputs B4 , 
B3, B2, B1 and B0 for each of the binary output A, B , C , D , and E
. From the K-maps minimized expression for outputs are obtained as 
follows:
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6.18.3 Binary-to-Gray Code Converter

The input to the 4-bit binary-to-Gray code converter circuit is a 4-bit 
binary and the output is a 4-bit Gray code. The 4-bit binary and the 
corresponding Gray code are shown in the conversion Table 6.18.3.

Table  6.18.3: 4-bit Binary and its equivalent Gary code

Binary Inputs Gray Outputs

A B C D G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

From the conversion table, we draw the K-maps for gray codes 
G3, G2, G1 and G0 with binary inputs A, B , C  and D  as shown below. 

READER NOTE
The gray code is widely used in digital systems 
because it has the advantage that only one 
bit in the numerical representation changes 
between successive numbers.
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The minimal expressions for the outputs obtained from the 
K-map are

 G3 A=

 G2 AB AB A B5= + =

 G1 BC BC B C5= + =

 G0 CD CD C D5= + =
The above expression can be realized using XOR gates as shown 

in logic diagram of Figure 6.18.4. 

6.18.4 Gray-to-Binary Code Converter

The conversion of gray code to its equivalent binary code is given in 
conversion Table 6.18.4. The input to the 4-bit Gray-to-binary code 
converter circuit is a 4-bit Gray code and the output is a 4-bit binary. 

Table 6.18.4: Gray code and its equivalent binary code

Gray Inputs Binary Outputs

G3 G2 G1 G0 A B C D

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 1 0 0 1 0

0 0 1 0 0 0 1 1

0 1 1 0 0 1 0 0

Figure 6.18.4: Logic diagram of binary-to-Gray code converter
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The minimized output expression, obtained from the K-maps 
are given as follows:

 A G3=

 B  G G G G G G3 2 2 3 2 35= + =

 C  G G G G G G G G G G G G13 2 1 3 2 1 3 2 1 3 2 1= + + +

  ( ) ( )G G G G G G1 3 2 1 3 25 := +

  ( )G G G G G G1 3 2 1 3 25 5= + _ i

  ( )G G G3 2 15 5=

  ( )G B15=

 D  G G G G G G G G G G G G3 2 1 0 3 2 1 0 3 2 1 0= + +

  G G G G G G G G G G G G3 2 1 0 3 2 1 0 3 2 1 0+ + +

   G G G G G G G G3 2 1 0 3 2 1 0+ +

  ( ) ( ) ( )G G G G G G G G G G G G1 0 3 2 1 0 3 2 1 0 3 25 5 5= + +

   ( )G G G G1 0 3 2#+

  ( )( ) ( )( )G G G G G G G G G G G G3 2 1 0 1 0 3 2 1 0 1 05 #= + + +

  ( )( ) ( )( )G G G G G G G G3 2 1 0 3 2 0 15 # # 5= +

  ( )( ) ( )( )G G G G G G G G3 2 1 0 3 2 0 15 5 5 5= +

  G G G G3 2 1 05 5 5=

  ( )G C0 5=
Based on the above expressions, a logic circuit can be drawn as 

shown in Figure 6.18.5.

6.18.5 BCD-to-Gray Code Converter

The BCD and its equivalent gray code is shown in conversion Table 
6.18.5. Note that for a 4-bit BCD code minterms 10, 11, 12, 13, 14, 
and 15 are don’t cares. 

Table 6.18.5:  4-bit BCD Code and its equivalent Gray Code

BCD Inputs Gray Outputs

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

Figure 6.18.5: Logic diagram of Gray-to-
binary code converter
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The K-maps for outputs G3, G2, G1, and G0 with inputs B3, B2, B1, 
and B0 are shown as below. 

The minimal expressions obtained from K-maps are as following:

 G3 B3=

 G2 B B2 3= +

 G1 B B B B B B2 1 2 1 2 15= + =

 G0 B B B B B B1 0 1 0 1 05= + =
The above expressions can be implemented using XOR gates as 

shown in logic diagram in Figure 6.18.6.

6.18.6 Gray-to-BCD Code Converter

Table 6.18.6 shows the conversion of 4-bit Gray code to equivalent 
BCD code. Note that in BCD six states 1010, 1011, 1100, 1101, 1110 
and 1111 are invalid. So, the Gray code corresponding to these states 
are considered to be invalid and these states are treated as don’t 
cares.

Figure 6.18.6: Logic diagram of BCD-to-
Gray code converter
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The minimal expressions obtained from K-maps are as follows

            B0 G G G G G G G G G G G G G G G G3 2 1 0 2 1 0 3 1 0 2 1 0 2 1 0= + + + +

 B1 G G G G G2 1 3 2 1= +

 B2 G G3 2=

 B3 G3=
Figure 6.18.7 shows the realization of above expression using 

logic gates.

Figure 6.18.7: Logic diagram of Gray-to-BCD code converter

6.18.7 BCD-to-Excess-3 Code converter

Excess-3 code is a modified BCD code. As explained in chapter 2, it 
is obtained by adding 3 to each BCD code. For example, the BCD 
code of 5 is 0101 and the excess-3 code of 5 is 1000. The conversion 
table of 4-bit BCDs and their equivalent excess-3 codes are given 
in Table 6.18.7. Note that the input combinations 1010, 1011, 1100, 
1101, 1110, and 1111 are invalid in BCD. So they are treated as 
don’t cares.
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Table 6.18.7: 4-bit BCD and its equivalent excess-3 codes

Decimal Digit
BCD Code Excess-3 code

B3 2B B1 B0 E3 E2 E1 E0

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

The K-maps for excess-3 codes E3, E2, E1 and E0 with BCD 
inputs B3, B2, B1, and B0 are shown below. 
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Decimal Digit
Excess-3 code BCD code

E3 E2 E1 E0 B3 2B B1 B0

2 0 1 0 1 0 0 1 0

3 0 1 1 0 0 0 1 1

4 0 1 1 1 0 1 0 0

5 1 0 0 0 0 1 0 1

6 1 0 0 1 0 1 1 0

7 1 0 1 0 0 1 1 1

8 1 0 1 1 1 0 0 0

9 1 1 0 0 1 0 0 1

The K-map for BCD codes B3, B2, B1 and B0 with Excess-3 
inputs E3, E2, E1, and E0 are:

The minimized expression obtained from K-map are as follows:

 B3 E E E E E3 2 3 1 0= +

 B2 E E E E E E E2 1 2 0 2 1 0= + +

 B1 E E E E1 0 1 0= +
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 B0 E0=
Figure 6.18.9 shows the realization of above expression using 

logic gates.

Figure 6.18.9: Logic diagram of Excess-3 to-BCD code converter

6.19 PARITY GENERATOR

Parity generators are circuits that accept an n 1-  bit data stream 
and generate an extra bit that is transmitted with the bit stream. 
This extra bit is referred to as the parity bit. 

The parity added in binary message is such that the total 
number of 1s in the message can be either odd or even according to 
the type of parity used. There are two types of parity generators 

1. Even parity generator
2. Odd parity generator

6.19.1 Even Parity Generator

The even parity generator is a combinational logic circuit that 
generates the parity bit such that the number of 1’s in the message 
becomes even. The parity bit is ‘1’ if there are odd number of 1’s in 
the data stream and the parity bit is ‘0’ if there are even number of 
1’s in the data stream. Table 6.19.1 shows the 4-bit data with even 
parity.

READER NOTE
The parity generator is a combinational logic 
circuit that generates the parity bit(s).
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6.19.2 Odd Parity Generator

The odd parity generator is a combinational logic circuit that 
generates the parity bit such that the number of 1’s in the message 
becomes odd. The parity bit is ‘0’ for odd number of 1’s and ‘1’ for 
even number of 1’s in the bit stream. Table 6.19.2 shows the 4-bit 
data with odd parity.

Table 6.19.2: 4-bit Information with odd parity

4-bit data Odd Parity

A B C D P

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

The K-map for P  with inputs A, B , C , and D  can be drawn as 
shown side column.

From the K-map

 P  A B C D ABCD A BCD ABCD AB CD= + + + +

   ABCD ABCD+ +

  ( ) ( ) ( )A C B D BD AC BD BD AC BD BD= + + + + +

   ( )AC BD B D+ +

  ( ) ( ) ( ) ( )A C B D AC B D AC B D AC B D9 5 5 9= + + +

  ( )( ) ( )( )A C AC B D AC AC B D9 5= + + +

  ( )( ) ( )( )A C B D A C B D9 9 5 5= +

  ( )( ) ( )( )A C B D A C B D5 5 5 5= +_ i

  ( ) ( )A C B D5 9 5=
Thus, the logic diagram of odd parity generator can be realized 

using XOR and XNOR gates as shown in Figure 6.19.2.
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Figure 6.19.2: Logic diagram of odd parity generator

6.20 PARITY CHECKER

Parity checker is a combinational circuit that detects single-bit errors 
in the transmitted data word. They do so by regenerating the parity 
bit in the same manner as the parity generator and then compare the 
bit generated with the transmitted parity bit. If the two bits are same 
then there is no error; if the two bits are not the same, there is some 
error. There are two types of parity checkers:
1. Even parity checker

2. Odd parity checker

6.20.1 Even Parity Checker

The even parity checker is a combinational logical circuit having n -bit 
inputs message and a parity error as the output. The circuit checks 
the parity of inputs and provides the output 0/1. For an even parity 
checker, if the parity of input message is even, then the output is 0, 
otherwise the output is 1. If the output is 1, it shows there is error 
in the message. Table 6.20.1 shows the truth table for a 5-bit even 
parity checker.

Table  6.20.1: Five bit even parity checker

5-bit Message Parity Error

A B C D P PE

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

0 0 1 0 0 1

0 0 1 0 1 0

0 0 1 1 0 0

0 0 1 1 1 1

0 1 0 0 0 1

0 1 0 0 1 0

0 1 0 1 0 0

0 1 0 1 1 1

LIMITATION
Parity checker can only detect the single-bit 
error. It cannot determine which bit is the 
error. Also, it cannot detect even number of 
errors.
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  [ ( ) ( )] ( ( )A B D C P D C P AB D C P5 5 5= + +

   ( )) ( ( ) ( ))D C P AB D C P D C P5 5 5+ + +

   ( ( ) ( ))AB D C P D C P5 5+ +

  [( )( ( )] ( ) ( )AB AB D C P D C P A B AB5= + + + + +

   ( ( ) ( ))(( )( ( ))D C P D C P A B D C P# 5 5 5 9 5+

   ( )( )A B Q C P9 5 5+

  [( )( )] [( )( )]A B D C P A B D C P5 5 5 5 5 5= +

  A B C D P5 5 5 5=

The above expression can be realized using XOR gates as shown 
in Figure 6.20.1. 

Figure 6.20.1: Logic diagram of even parity checker

6.20.2 Odd Parity Checker

The odd parity checker is a combinational logical circuit havings n
-bit inputs message and a parity error as the output. The circuit 
checks the parity of inputs and gives the output 0/1. For an odd 
parity checker, if the parity of input message is odd, then the output 
is 0, otherwise it is 1. If the output is 1, it shows there is error in 
the message. The truth table of a 5-bit odd parity checker is given in 
Table 6.20.2.

Table 6.20.2: Five bit odd parity checker

5-bit Message Parity Error

A B C D P PE

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 1 1 0

0 1 0 0 0 0
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From the K-map

 PE  ( ) ( ) ( )A B D C P A BD C P ABD C P9 5 9= + +

   ( ) ( ) ( )ABD C P ABD C P AB D C P5 5 9+ + +

   ( ) ( )ABD C P ABD C P9 5+ +

  [ ( ) ( )] [ ( )A B D C P D C P AB D C P9 5 5= + +

   ( )] [ ( ) ( )]D C P AB D C P D C P5 5 5+ + +

   [ ( ) ( )]AB D C P D C P9+ + +

  [ ( ) ( )] [ ( )A B D C P D C P AB D C P5 5 5= + +

   ( )] [ ( ) ( )]D C P AB D C P D C P5 5 5+ + +

   [ ( ) ( )]AB D C P D C P5 5+ +

  [( )( ( ) ( ))]A B AB D C P D C P5 5= + +

   [( )( ( ) ( ))]AB AB D C P D C P5 5+ + +

  [( )] ( ) ( )AB AB D C P D C P5 5= + +

  [( )( ( ))] [( )( ( )]A B D C P A B D C P9 9 5 9 9 5= +

 PE  [( )( )] ( ) ( )A B D C P A B D C P5 5 5 5 5 5 5= +

  ( ) ( )A B D C P5 9 5 5=
Based on above expression, the logic diagram of an odd parity checker 
can be drawn as shown in Fig 6.20.2.

Figure 6.20.2: Logic diagram of odd parity checker

6.21 HAZARDS IN COMBINATIONAL CIRCUITS

Combinational circuits used in asynchronous sequential circuits may 
have unequal propagation delays. Hazard is an unwanted transient that 
happens due to unequal propagation delays through a combinational 
circuit.

When an input changes from ‘0’ to ‘1’ or ‘1’ to ‘0’, there is a 
momentary unexpected transient output change due to propagation 
delay of logic gates. This momentary unexpected transient output 
change is known as output glitch. A hazard always exists in a 
combinational circuit when it produces an output glitch while one 
or more inputs change. There are two types of hazards: static hazard 
and dynamic hazard, as discussed next.
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6.21.1 Static Hazard

Static hazard is a condition which results in a single momentary 
incorrect output due to the change in an input variable when the 
output is expected to remain in the same state. Static hazard is of two 
types: Static-1 hazard and Static-0 hazard.

Static-0 Hazard
If the output momentarily goes to state 1 due to change in input, when 
the output is expected to remain in state 0 as per the steady state 
analysis, such hazard is known as static-0 hazard. This is illustrated 
in Figure 6.21.1.

Static-1 Hazard
If the output momentarily goes to state 0 due to a change in input, 
when the output is expected to remain in state 1 as per the steady 
state analysis, such hazard is known as static-1 hazard. This is 
illustrated in Figure 6.21.2.

6.21.2 Generation of Static Hazard in Combinational 
Circuits

Let us consider a function (0,1,2,6)Y S=  for which K-map is shown 
as below. After minimizing from K-map, the logic diagram is shown 
in Figure 6.21.3.

 Y  BC A B= +
When the input ABC 000= , the output will be Y 1=  due to 

the HIGH output of AND-1 gate. Now, when the input ABC  changes 
to 010, Y  should remain in the 1 state due to the HIGH output 
of AND- 2 gate. Due to a change in the value of input variable B
, switching of high output from AND-1 to AND-2 gate takes place 
and hence, Y  is supposed to remain in HIGH state. But, due to an 
unequal propagation delay, if the upper AND gate output changes to 
0 shortly before the lower AND gate output becomes 1, then during 
this brief period, Y 0=  momentarily. This situation is called a static 
hazard.

6.21.3 Elimination of Static Hazard in Combinational 
Circuits

A static hazard can be eliminated by forming a group of adjacent cells 
in K-map, as shown below. This provides a redundant grouping that 

Figure 6.21.1: Static-0 hazard

Figure 6.21.2: Static-1 hazard

Figure 6.21.3: A logic circuit with static 
hazard
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EXAMPLES

EXAMPLE 6.14
Design a 16 : 1 multiplexer using 4 : 1 multiplexers.

SOLUTION :

Figure shows the :16 1 multiplexer using two :4 1 multiplexer. Here, 
four 4 :1 multiplexers are connected in series. The  enable inputs of 
multiplexers are connected to ground. The output of multiplexers are 
connected to :4 1 multiplexer; the select inputs of this multiplexers 
are used as the select inputs A and B .
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SOLUTION :

Given function has 4 variables, that is n 3= . So, we need a 2 n 1- -to-1 
or 8-to-1 multiplexer to implement it. Here, we choose variables B
, C , D  for selection lines and variables A for the input of mux. We 
construct the implementation table as shown below.

I0 I1 I2 I3 I4 I5 I6 I7

A 0 (1) 2 (3) 4 5 6 (7)

A 8 (9) 10 11 12 (13) 14 (15)

0 1 0 A 0 A 0 1

Now, now connect the above inputs to the multiplex inputs and 
connecting variables B , C  and D  to the select inputs S2, S1 and S0 
respectively, we obtain the logic diagram of the given function using 
8-to-1 mux.

EXAMPLE 6.17
Implement a half-adder using 2-to-1 multiplexer.

SOLUTION :

The half adder is a combinational logic circuit that adds two 1-bit 
binary numbers and provides the sum and carry as outputs. The 
truth table of half adder is shown in right side.

The Boolean expression for sum and carry can be written as

 Sum ,m 1 2S= _ i

 Carry m 3S= _ i

We have 2-to-1 mux for implementation. So, we choose A as input 
and B  select inputs. Implication table for sum and carry is shown 
below.

Sum

I0 I1

A 0 (1)

A (2) 3

A A

Carry

I0 I1

A 0 1

A 2 (3)

0 A

Now, we implement the half-adder as shown

EXAMPLE 6.18
Implement the following expression using a 8-to-1 multiplexer. Take 
variable A, B , C  as select inputs S2, S1 and S0 respectively.

 , , ,F A B C D_ i , , , , , , ,m 0 2 3 6 8 9 12 14S= _ i

SOLUTION :

Inputs Outputs

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1
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In the given problem, A, B , C  are taken as select inputs, so remaining 
variable is .D  Now, the inputs of the multiplexer will be chosen among 
D , D , 0  or 1 according the implementation table. Here the first row 
lists those minterms where variable D  is complement and second row 
lists those minterms where D  is uncomplemented.

I0 I1 I2 I3 I4 I5 I6 I7

D (0) (2) 4 (6) (8) 10 (12) (14)

D 1 (3) 5 7 (9) 11 13 15

D 1 0 D 1 0 D D

Now, we connect the multiplexer inputs given by the table and 
implemented the function using a 8-to-1 mux as shown.

EXAMPLE 6.19
Implement the following functions with 8-to-1 multiplexer.

(a) , , , , , , , , , ,f A B C D m 2 5 6 7 9 12 13 15S=_ _i i

(b) , , , , , , , , , ,f A B C D m 1 2 4 5 8 10 11 15S=_ _i i

SOLUTION :

(a) , , ,f A B C D_ i , , , , , , ,m 2 5 6 7 9 12 13 15S= _ i

Here, we choose variables B , C  and D  as select input appearing 
on lines S2, S1 and S0 respectively. Remaining variables is A. We 
construct the implementation table as shown below.

I0 I1 I2 I3 I4 I5 I6 I7

A 0 1 (2) 3 4 (5) (6) (7)

A 8 (9) 10 11 (12) (13) 14 (15)

0 A A 0 A 1 A 1
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Here, we choose variables B  and C  as select inputs S1 and S0 respectively. 
Remaining variable is A, So we construct the implementation table 
corresponding to A.

I0 I1 I2 I3

A 0 (1) 2 (3)

A 4 (5) (6) 7

0 1 A A

Now, we connect the multiplexer inputs given by the table and 
implemented the function using a 4-to-1 mux as shown.

EXAMPLE 6.21
Implement the following Boolean function using 8-to-1 multiplexer.

 , , ,F A B C D_ i , , , , , ,m 0 1 3 4 8 9 15S= _ i

SOLUTION :

Let choose B , C , D  as select inputs S2, S1 and S0 respectively. 
Remaining variables is A, so we construct the implementation table 
according to variable A.

I0 I1 I2 I3 I4 I5 I6 I7

A (0) (1) 2 (3) (4) 5 6 7

A (8) (9) 10 11 12 13 14 (15)

1 1 0 A A 0 0 A

Now, we connect the multiplexer inputs given by the table and 
implemented the function using a 8-to-1 mux as shown.

EXAMPLE 6.22
Implement the following Boolean function using two 4-to-1 mux.

 , , ,F A B C D_ i , , , , , , ,m 0 1 2 4 6 9 12 14S= _ i

SOLUTION :

The function has four variables, so we require a 8-to-1 mux. We have 
already seen how to construct a 8-to-1 mux using two 4-to-1 mux. We 
use the same concept here to implement the given function. So, we 
construct the implementation table for a 8-to-1 mux.

I0 I1 I2 I3 I4 I5 I6 I7

A (0) (1) (2) 3 (4) 5 (6) 7

A 8 (9) 10 11 (12) 13 (14) 15

A 1 A 0 1 0 1 0
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The function can be implemented as shown below.

EXAMPLE 6.23
Implement the following Boolean function using an 8-to-1 multiplexer.

 , , ,F A B C D_ i , , , , , , ,m d1 3 5 10 11 13 14 0 2S= +_ _i i

SOLUTION :

The function includes don’t care conditions also. We assume don’t 
care condition to be 1. The implementation table is shown as below.

I0 I1 I2 I3 I4 I5 I6 I7

A (0) (1) (2) (3) 4 (5) 6 7

A 8 9 (10) (11) 12 (13) (14) 15

A A 1 1 0 1 A 0

Now, we connect the multiplexer inputs given by the table and 
implemented the function using a 8-to-1 mux as shown. 

EXAMPLE 6.24
Design 4 line to 16 line decoder using 2 line to 4 line decoders.

SOLUTION :

As shown in figure below five numbers of :2 4 decoder are required to 
design :4 16 decoder. Decoder 1 is used to enable one of the decoder 
2, 3, 4 and 5. Inputs of first decoder are the A and B  MSB inputs of 

:4 16 decoder. The inputs of decoder are connected together forming 
C  and D  LSB inputs of :4 16 decoder.
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Therefore,

 , ,f A B C_ i , , , ,m 2 3 4 5 6S= _ i

Here n 3=  and no. of minterms in the function is greater than /2 2n  
i.e. the complement of the f  will have less minterms. So, we use a 
NOR gate to sum the minterms of f . The output of the NOR gate 
complements this sum and generates the normal output f .

 , ,f A B C_ i , , , ,m 2 3 4 5 6S= _ i

 , ,f A B C_ i , ,m 0 1 7S= _ i

 , ,f A B C_ i , , , ,f A B C m 0 1 7S= =_ _i i

So, we connect the decoder outputs Y0, Y1 and Y7  to the inputs of 
NOR gate as shown below.

(b) , ,f A B C_ i , , , ,M 0 3 5 6 7P= _ i

First we convert the given function into standard SOP form.

 , ,f A B C_ i , ,m 1 2 4S= _ i

Here number of minterms is less than /2 2n , so we use a OR gate to 
get sum of all minterms. Connect the decoder outputs Y1, Y2 and Y4 
to the input of OR gate as shown below.

EXAMPLE 6.26
Implement the Boolean function 0,2,5,6,7F S= _ i with a suitable 
decoder and an external OR/NOR gate having the minimum number 
of inputs.
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SOLUTION :

The given Boolean function has five three-variable minterms. This 
implies that the function can be implemented with a 3-to-8 line 
decoder and a five input OR gate. Also, F  will have only three-
variable minterms, which means that F  could also be implemented 
by considering minterms corresponding to the complement function 
and using a three input NOR gate at the output. The second option 
uses a NOR gate with fewer inputs and therefore is used instead. 

0,2,5,6,7F S= . Therefore, 1,3,4F S= .

So, we connect decoder outputs Y1, Y3 and Y4 to a NOR gate as shown 
in the figure.

EXAMPLE 6.27
Using OR gates and/or NOR gates along with a 3-to-8 decoder, 
realize the following pairs of expressions.

  (a)  , ,f A B C1 _ i , , ,m 1 2 4 5S= _ i

 , ,f A B C2 _ i , ,m 1 5 7S= _ i

  (b) , ,f A B C1 _ i , , , , ,m 0 1 3 4 5 6S= _ i

 , ,f A B C2 _ i , , , ,m 1 2 3 4 6S= _ i

  (c) , ,f A B C1 _ i , , , ,m 1 2 4 5 7S= _ i

 , ,f A B C2 _ i , ,m 0 2 4S= _ i

SOLUTION :

(a) , ,f A B C1 _ i , , ,m 1 2 4 5S= _ i

 , ,f A B C2 _ i , ,m 1 5 7S= _ i

In both the functions, no. of minterms is less than /2 2n , where 
n 2=  (no. of variables). So we use a 3-to-8 decoder and OR gate to 
implement f1 and f2. 

f1 can be implemented by summing decoder outputs Y1, Y2, Y4 and 
Y5 using a OR gate. Similarly f2 can be implemented by summing 
decoder outputs Y1, Y5 and Y7  using a OR gate.
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 , ,f A B C1 _ i , , 0,3,6f A B C m1 S= =_ _i i

 , ,f A B C2 _ i , ,m 0 2 4S= _ i

f2 has minterms less than /2 2n , so we use OR gate to implement this.

EXAMPLE 6.28
Design a four line to two line priority encoder with active HIGH 
inputs and outputs, with priority assigned to the higher order data 
input line.

SOLUTION :

The truth table for such a priority encoder is given in table below, 
with D0, D1, D2, and D3 as data inputs and X , Y  as outputs.

D0 D1 D2 D3 X Y

1 0 0 0 0 0

X 1 0 0 0 1

X X 1 0 1 0

X X X 1 1 1

The Boolean expressions for the two outputs lines X  and Y  are given 
by

 X  D D D D D2 3 3 2 3= + = +

 Y  D D D D D D D1 2 3 3 1 2 3= + = +
We implement the above functions using basic gates as shown below.
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EXAMPLE 6.29
Design a NAND-NAND logic to detect the decimal numbers 5 through 
12 in a 4-bit Gray code input.

SOLUTION :

Step 1: The input to of the given combination circuit is a 4-bit Gray 
code. Let the input Gray code be ABCD . 

Step 2: There are 16 possible combinations of 4-bit Gray code. All of 
them are valid and hence there are no don’t cares. We construct the 
truth table as shown below. Note that the output is 1 for the input 
combinations corresponding to minterms 7, 5, 4, 12, 13, 15, 14, and 
10 (i.e. corresponding to the Gray code of decimal numbers 5, 6, 7, 8, 
9, 10, 11 and 12).

Decimal 
Number

4-bit Gray code Output

A B C D f

0 0 0 0 0 0

1 0 0 0 1 0

2 0 0 1 1 0

3 0 0 1 0 0

4 0 1 1 0 0

5 0 1 1 1 1

6 0 1 0 1 1

7 0 1 0 0 1

8 1 1 0 0 1

9 1 1 0 1 1

10 1 1 1 1 1

11 1 1 1 0 1

12 1 0 1 0 1

13 1 0 1 1 0

14 1 0 0 1 0

15 1 0 0 0 0

Step 3: So the expression for the output can be written from the truth 
table as

 f  , , , , , , ,m 7 5 4 12 13 15 14 10S= _ i

  , , , , , , ,m 4 5 7 10 12 13 14 15S= _ i

Step 5: Now, we minimize the function f  using the K-map as shown. 
Since we have to realized the circuit using NAND-NAND logic, we 
obtain the minimized expression in SOP form. The minimized SOP 
expression is

 f  BC BD ACD= + +
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Decimal Number
5211 code Output

A B C D f

4 0 1 1 1 1

5 1 0 0 0 0

6 1 0 1 0 1

7 1 1 0 0 0

8 1 1 1 0 1

9 1 1 1 1 0

EXAMPLE 6.31
Design of a Circuit to Detect the Decimal Numbers 0, 1, 4, 6, 7, and 
8 in a 4-bit XS-3 Code Input.

SOLUTION :

Step 1: The input to the given combination circuit is a 4-bit Excess-3 
code.  Let the input excess-3 code be ABCD . 

Step 2: There are 16 possible combinations of 4-bit inputs. We 
construct the truth table as shown below. Out of 16, 10 combinations 
shown in the truth table represent valid Excess-3 code. The remaining 
6 combinations (0000, 0001, 0010, 1101, 1110, 1111) are invalid. 
Hence, the corresponding outputs are don’t cares. 

Decimal Number
4-bit Excess-3 Output

A B C D f

0 0 0 1 1 1

1 0 1 0 0 1

2 0 1 0 1 0

3 0 1 1 0 0

4 0 1 1 1 1

5 1 0 0 0 0



Chapter 6 Combinational Logic Circuits Page 417

Decimal Number
4-bit Excess-3 Output

A B C D f

6 1 0 0 1 1

7 1 0 1 0 1

8 1 0 1 1 1

9 1 1 0 0 0

Step 3: From the truth table, we observe that the output is 1 for the 
input combinations corresponding to minterms 3, 4, 7, 9, 10, and 11 
(i.e. corresponding to the XS-3 code of decimal numbers 0, 1, 4, 6, 
7, and 8). So the Boolean expression for the output of the circuit in 
terms of minterms is

 f  , , , , , , , , , ,m d3 4 7 9 10 11 0 1 2 13 14 15S= +_ _i i

Step 4: Now, we minimize the function f  using the K-map as shown.  
We find a minimize expression in both SOP and POS form and 
compare them to realize a minimum hardware. K-maps for SOP and 
POS are shown below.

Minimized SOP expression

 f  CD AD AC A C D= + + +

Minimized POS expression

 f  A C D B C D B C D= + + + + + +_ _ _i i i

Realization:
We can see that minimized POS expression have less literals than 
minimized SOP expression, so use NOR-NOR logic to implement this. 

 f  A C D B C D B C D= + + + + + + + +_ _ _i i i

The logic diagram is shown in the figure.

EXAMPLE 6.32
Design a logic circuit with 4 inputs A, B , C , D  that will produce 
output ‘1’ only whenever two adjacent input variables are 1’s. A and 
D  are also to be treated as adjacent. Implement it using universal 
logic.
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SOLUTION :

Step 1: The input to the given combination circuit is a 3-bit binary 
numbers.  Let the inputs be ABC .

Step 2: There are 8 possible combinations of 3-bit inputs as shown in 
the truth table.

Step 3: From the truth table, we find the expression for the output in 
SOP and POS form as:

In SOP form f  , , ,m 3 5 6 7S= _ i

In POS form f  , , ,M 0 1 2 4P= _ i

Step 4: Now, we minimize the function f  using the K-map as shown.  
We find a minimize expression in both SOP and POS form and 
compare them to realize a minimum hardware. K-maps for SOP and 
POS are shown below.

Minimized SOP expression

 f  AB AC BC= + +
Minimizes POS expression

 f  A B A C B C= + + +_ _ _i i i

Realization: Both SOP and POS forms have equal number of inputs, 
so we may use any form for realization. Here, we realize f  using 
NAND-NAND logic as shown in the diagram.

 f  AB AC BC AB AC BC: := + + =

EXAMPLE 6.34
Design a minimal two-level gate combinational network that detects 
the presence of any of the six illegal code groups in the 8421 code by 
providing a logic-1 output.

Inputs Output

A B C f

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1
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SOLUTION :

Step 1: The input to the given combination circuit is a 4-bit binary 
numbers.  Let the inputs be ABCD .

Step 2: There are 16 possible combinations of 4-bit inputs as shown 
in the truth table.

Step 3: From the truth table, we find the expression for the output in 
SOP and POS form as:

In SOP form f  , , , , ,m 10 11 12 13 14 15S= _ i

In POS form f  , , , , , , , , ,M 0 1 2 3 4 5 6 7 8 9P= _ i

Step 4: Now, we minimize the function f  using the K-map as shown.  
We find a minimize expression in both SOP and POS form and 
compare them to realize a minimum hardware. K-maps for SOP and 
POS are shown below.

Minimized SOP expression

 f  AB AC= +
Minimized POS expression

 f  A B C= +_ i

Realization:
Note that minimized POS expression contains less inputs than the 
minimized SOP expression. So, we realize the given function using 
NOR-NOR logic as shown in the diagram.

 f  A B C A B C= + = + +_ _i i

*********** 

A B C D f

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1
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(a) ABCD ABC AB C+ +

(b) , , , , , ,0 1 3 4 8 9 10S_ i

(c) a b c abc abcd abcd+ + +

(d) , , , , , ,1 3 5 6 11 14 15S_ i

30. Implement the following functions using :3 8 decoder.

, , , , , ,F A B C m 0 1 4 5 71 S=_ _i i

, , , , ,F A B C m 2 4 6 72 S=_ _i i

31. Implement a full subtractor combinational circuit using a 
3-to-8 decoder and external NOR gates.

32. Implement the following multiple output combinational 
logic circuit using a 3-line-to-8 line decoder:

, , ,F m 0 1 2 61 S= _ i

, ,F m 2 4 62 S= _ i

33. Implement a full adder using a 3-line-to-8 line decoder.

34. Realize a full subtractor using a 3-line-to-8 line decoder.

35. Design the following combinational logic circuits using a 
multiplexer:

(a) Half-adder  (b) Full-adder

36. Design and implement a BCD to seven segment decoder 
using truth table, K-maps and logic gates.

37. Design a BCD to Excess-3 code converter using truth table, 
K-maps and logic circuits.

38. Design the following code converters:

(a) Binary to BCD  (b) BCD to binary

(c) Binary to Excess-3 (d) Excess-3 to binary

(e) BCD to Excess-3  (f) Excess-3 to BCD

(g) Binary to gray  (h) Gray to binary

39. Design a BCD to Excess-3 code converter using minimum 
number of NAND gates.

40. Design a parity generator to generate even parity bit for a 
4-bit word. Use Ex-OR and EX-NOR gate.

41. Design a logic circuit to generate

(a) an even parity bit

(b) an odd parity bit for a 3-bit binary input

42. Design a BCD to decimal decoder by solving the K-map and 
making a suitable circuit diagram.

43. Implement BCD to seven segment decoder with multiplexer.

44. Design a combinational circuit that accepts a three-bit 
binary number and generates on output binary equal to the 
cube of the input number.

45. A limited company has four directors A, B , C , D  holding 
%35 , %30 , %20  and %15  of the shares respectively. A 

major decision must have a support of minimum %60  of the 
stock. Design a combinational logic circuit for the voting in 
the company.

46. Design a logic which will allow input signal A to pass 
through to the output when control input B  is low while 
control input C  is high, otherwise the output is low.

47. A 4-bit binary number is represented by A A A A3 2 1 0  where 
A0  is LSB. Design a combinational logic circuit so that 
output is high when binary number is greater than 0010 
but less than 1000.

48. Design a combinational circuit with four input lines that 
represent a decimal digit in BCD and four output lines that 
generate that 9’s complement of the input digit.

49. Design a combinational circuit the detects an error in the 
representation of a decimal digit in BCD. In other words, 
obtain a logic diagram whose output is logic-1 when the 
input contain an unused combination in the code.

50. Implement the 4-bit prime number detector using :8 1 
multiplexers.

51. Design a logic circuit that receives a four bit binary ABCD  
and gives an output Y  whenever the number is divisible by 
4 or 5. Realize it through 8 : 1 multiplexer.

52. Design a combinational circuit which generate output 1 if 
4 bit input contains even number of one’s and outputs zero 
otherwise.

***********



7
LATCHES AND FLIP-FLOPS

7.1 INTRODUCTION

In the previous chapters, we have discussed the combinational logic 
circuit and its design. Now, in this chapter and in next chapter we 
will study another type of digital circuits knows as sequential logic 
circuits. 

As a logic gate is the most basic building block of combinational 
logic, in sequential circuits it is the flip-flop. Flip-flop is a 1-bit 
memory cell; it stores the 1-bit logical data (logic 0 or logic 1). The 
data available in memory can be used for further operation. This 
chapter includes the study of different types of flip-flops in terms of 
their functionality, truth tables, salient features and applications.

Before discussing the Flip-flops, first we study classification 
of digital circuits(i.e., combinational and sequential circuit) and 
comparison between them.

7.2 CLASSIFICATION OF DIGITAL CIRCUITS

Digital circuits are classified as combinational logic circuits and 
sequential logic circuits. The circuits considered so far have been 
combinational logic circuits.

7.2.1 Combinational Circuits

In combinational logic circuits, output at any instant of time depends 
only on the inputs present at that instant of time. The logic gate is 
the most basic building block of combinational logic. Combinational 
logic circuits do not have memory elements (storage device). It can be 
designed using gates or available ICs.

Adder, subtractor, ALU comparators, parity generator and 
checker, multiplexer, demultiplexer, encoder, and code converters are 
the examples of combinational logic circuits as discussed in last two 
chapters.

7.2.2 Sequential Logic Circuits

The other category of logic circuits, called sequential logic circuits, 
in which the output  is a function of the present inputs as well as the 
past inputs and outputs. Sequential circuit include memory elements 
to store the past data. The flip-flop is a basic element of sequential 
logic circuits. Using flip-flops and combinational logic circuit, any 
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sequential circuit can be designed. 
Figure 7.2.1 shows a block diagram of a sequential circuit. The 

memory elements are connected to the combinational circuit as a 
feedback path.

Figure 7.2.1: Block diagram of a sequential circuit

The information stored in the memory element at any given 
time defines the present state of the sequential circuit. The present 
state and the external inputs determine the outputs and the next 
state of the sequential circuit. Thus, we can specify the sequential 
circuit by a time sequence of external inputs, internal states (present 
state and next state) and outputs.  There are two types of sequential 
circuits: 
(i) asynchronous circuit and 

(ii) synchronous circuit

7.2.3 Comparison Between Combinational and Sequential 
Circuits

Table 7.2.1 explains the comparison of combinational and sequential 
logic circuits.

Table 7.2.1: Comparison between combinational and sequential 
circuits

Combinational circuits Sequential circuits

1.
For combinational circuits, the output 
variables at any instant of time depend 
only on the present input variables.

1.

For sequential circuits, the output variables at any 
instant of time depend not only on the present input 
variables, but also on the present state, i.e. on the past 
history of the system.

2.
Memory unit is not needed in combinational 
circuits.

2.
Memory unit is needed to store the past history of the 
input variables in sequential circuits.

3.

Combinational circuits are faster in speed 
because the delay between input and 
output is due to propagation delay of 
gates.

3.
Sequential circuits are slower than combinational 
circuits.

4. Combination circuits are easy to design. 4. Sequential circuits are comparatively difficult to design.



Chapter 7 Latches and Flip-Flops Page 425

7.3 CLASSIFICATION OF SEQUENTIAL CIRCUITS

The sequential circuits can be classified as synchronous sequential 
circuits and asynchronous sequential circuits depending on the timing 
of their signals.

The sequential circuits which are controlled by a clock are 
called synchronous sequential circuits. These circuits get activated 
only when clock signal is present.

The sequential circuits which are not controlled by a clock are 
called asynchronous sequential circuits, i.e. the sequential circuits in 
which events can take place any time the inputs are applied are called 
asynchronous sequential circuits.

7.3.1 Comparison Between Synchronous and Asynchronous 
Sequential Circuit

The comparison of synchronous and asynchronous sequential circuit 
is given in Table 7.3.1.

Table 7.3.1: Comparison between Synchronous and Asynchronous 
Sequential Circuit

Synchronous Sequential Circuits Asynchronous Sequential Circuits

1.
In synchronous circuits, the change in input 
signals can affect memory elements upon 
activation of clock signal. 

1.
In asynchronous circuits, change in input signals can 
affect memory elements at any instant of time. 

2.
In synchronous circuits, memory elements are 
clocked FFs.

2.
In asynchronous circuits, memory elements are either 
unclocked FFs or time delay elements.

3.
The maximum operating speed of the clock 
depends on time delays involved.

3.
Since the clock is not present, asynchronous circuits 
can operate faster than synchronous circuits.

4. They are easier to design. 4. More difficult to design.

7.4 LATCHES AND FLIP-FLOPS

Now, we discuss the most basic memory elements flip-flops and latches 
and difference between them.

Flip-flop is an electronic circuit or device which is used to store 
a data in binary form. Actually, flip-slop is an one-bit memory device 
and it can store either 1 or 0. Flip-flops is a sequential device that 
changes its output only when a clocking signal is changing.

On the other hand, latch is a sequential device that checks all 
its inputs continuously and changes its outputs accordingly at any 
time independent of a clock signal. It refers to non-clocked flip-flops, 
because these flip-flops ‘latch on’ to a 1 or a 0 immediately upon 
receiving the input pulse. They are not dependent on the clock signal 
for their operation.

7.4.1 Difference Between Latch and Flip-Flop

The basic difference between latch and flip-flops are mentioned in the 
Table 7.4.1 below.
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can be constructed and using two NAND gates, an active-LOW S -R  
latch can be constructed.

7.5.1 S -R Latch using NOR Gates

Figure 7.5.2 shows the logic diagram of the S -R  latch composed of 
two cross-coupled NOR gates. The NOR gates are connected in such 
a way that the output of one feeds back to the input of another. 

S  and R  are two inputs of S R-  latch. Here, S  stands for set, it 
means that when S  is 1, it stores 1. Similarly, R  stands for reset and 
if R 1= , flip-flop reset and it’s output will be 0. This circuit is called 
as NOR gate latch or S R-  latch. The truth table for NOR gate S R-  
latch is shown in Table 7.5.1. Qn  represents the state of the flip-flop 
before applying the inputs (i.e. the present state of the flip-flop). Qn 1+  
represents the state of the flip-flop after the application of the inputs 
(i.e. the next state of the flip-flop).

Circuit Operation
We analyze the circuit of Figure 7.5.2 by keeping in mind that the 
output of a NOR gate is 0 if any input is 1 and the output is 1 only 
when all inputs are 0. We consider the four possible input combinations 
of S  and R , and their corresponding outputs, as follows:

Case 1: 0S = , 0R =

This is the normal resting state of the NOR latch and the latch does 
not changes its previous state. That is, the next state of the latch 
( )Qn 1+  is just the present state Qn . For example, the next state of the 
latch will be Q 0n 1 =+  if Q 0n =  and Q 1n 1 =+  if Q 1n = . 

First, suppose that Q 1n =  and Q 0n =  as shown in Figure 
7.5.3a. This 1 is applied to the input of lower NOR gate and therefore 
the output becomes 0 (i.e. Q 0n 1 =+ ). This Q 0n 1 =+  is fed to the 
input of upper NOR gate, thereby producing a 1 at its output; so 
Q 1n 1 =+ , as originally assumed.

Next, suppose that Q 0n =  and Q 1n =  as shown in Figure 
7.5.3b. The inputs of upper NOR gate are 1 and 0, and therefore 
its output Q 0n 1 =+ . This Q 0n 1 =+  is fed back to lower NOR gate 
input, thereby producing a 1 at its output; so Q 1n 1 =+ , as originally 
assumed.

Figure 7.5.2:  NOR based S-R latch

Table 7.5.1: Truth table of NOR gate 
S R-  Latch

Inputs Output Operation
ModeS R Qn 1+

0 0 Qn No Change

0 1 0 Reset

1 0 1 Set

1 1 ? Forbidden
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Figure 7.5.3: NOR Latch with 0R =  and 0S =

Thus, the condition S 0=  and R 0=  will not affect the outputs 
of latch. Output will remain in whatever state they were prior to the 
occurrence of this input condition. This is hold operation of S R-  
latch.

Case 2: 0S = , R 1=

Since R 1= , the output of upper NOR gate will always be 0 (i.e., 
Q 0n 1 =+ ) as shown in Figure 7.5.4. This output is fed back to lower 
NOR gate input. Now both the inputs of lower NOR gate are 0 and 0 
and the output will be Q 1n 1 =+ . Thus, the input combination S 0=  
and R 1=  will always reset the latch to 0. When the reset input 
returns to 0, the latch will remain in the 0 state.

Case 3: S 1= , 0R =

Since S 1= , the output of lower NOR gate will always be 0 (i.e 
Q 0n 1 =+ ). This output is fed back to one of the input of upper NOR 
gate as shown in Figure 7.5.5. Now both the inputs of upper NOR 
gate are 0 and 0, and therefore the output will be 1 i.e., Q 1n 1 =+ . 
Hence, the condition S 1=  and R 0=  will always set the latch to 1.

Figure 7.5.4: NOR Latch with 0S =  and R 1=

Figure 7.5.5: NOR Latch with S 1=  and R 0=  
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Table 7.5.3: Truth table of NAND gate S -R  latch

Inputs Output
Operation Mode

S R Qn 1+

0 0 1 Not used (Invalid)

0 1 1 Set

1 0 0 Reset

1 1 Qn Hold

From the truth table, it is notable that the operation of this 
latch is the reverse of the operation of the NOR gate latch discussed 
earlier. The input signals for the NAND require the complement 
of those values used for the NOR latch. Because the NAND latch 
requires a 0 signal to change its state. Therefore, it is sometimes 
referred to as S -R  latch or active-LOW S -R  latch.

Circuit Operation
The operation of NAND S -R  latch can be understood in the same 
manner as that of NOR latch. Keep in mind that the a LOW(0) 
input at NAND gate will always produce a HIGH(1) output. We 
consider the four possible input combinations of S  and R , and their 
corresponding outputs, as follows:

Case 1: 0S = , 0R =

Since one of the input of both the NAND gates is zero, the output 
of latch will be Q 1n 1 =+  and Q 1n 1 =+  as shown in Figure 7.5.8. This 
conditions is not allowed and should not be used. Therefore this state 
is called invalid state of latch.

Case 2: 0S = , R 1=

Since S 0=  forces output of upper NAND gate to be 1 i.e., Q 1n 1 =+

. This  output is fed back to input of lower NAND gate. Now, the 
inputs of lower NAND gate are 1 and 1, hence the output will be 
Q 0n 1 =+  as shown in Figure 7.5.9. Hence, the condition 0S =  and 

1R =  always produces Q 1n 1 =+  regardless of the present state of the 
latch output. This condition sets the state of the latch to 1.

READER NOTE
If the 0s are replaced by 1’s and 1’s by 0’s in 
Table 7.5.3, we get the same truth table as 
that of the NOR gate latch shown in Table 
7.5.1.

Figure 7.5.8: NAND Latch with 0S =  and R 0=
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Case 3: S 1= , R 0=

Since R 0= , the output of lower NAND gate will be 1 i.e, Q 1n 1 =+  as 
shown in Figure 7.5.10 . This output is fed back to one of the input of 
upper NAND gate. Now, both the inputs of upper NAND gate are 1, 
and therefore the output of upper NAND gate will be 0 i.e., Q 0n 1 =+ , 
regardless of the prior state of the latch. Hence,  This condition resets 
(clear) the latch to 0.

Case 4: S 1= , R 1=

This is the normal resting state of S R-  Latch and in this condition 
there is no effect on output. It remains in its prior state i.e., the state 
of Qn 1+  and Qn 1+  will not be changed as shown in Figure 7.5.11a and 
Figure 7.5.11b.

Figure 7.5.11: NAND Latch with S 1=  and R 1=

Characteristic Table
The output or next state can be represented in terms of present state 
and inputs as shown characteristic Table 7.5.4.

Figure 7.5.9: NAND Latch with 0S =  and R 1=

Figure 7.5.10: NAND Latch with S 1=  and R 0=
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SOLUTION :

Initially we assumed Q 0= . We start observing inputs S  and R  and 
draw the output Q  accordingly by keeping in mind truth table of 
NOR based S -R  latch. (read explanation) Output is shown as below:

EXAMPLE 7.2
The input signals shown in Figure are applied to the S R  latch of 
Figure 7.5.7 when initially in its 0-state. Sketch the Q  and Q  output 
signals. Assume all timing constraints are satisfied.

SOLUTION :

Initially we assumed Q 0= . We start observing inputs S  and R  
and draw the output Q  accordingly by keeping in mind truth table 
of NAND based S -R  latch. (read explanation) Output is shown as 
below:

EXPLANATION
When 1, 0, 1S R Q= = = ,  (set)
When 0, 1, 0S R Q= = = , (reset)
when 1, ,S R Q0 1= = = , (set)
when , 1, 0S R Q0= = =  (reset)
when , , 0S R Q0 0= = =   (hold)
So on..

EXPLANATION
When 1, 0, 0S R Q= = = , (reset)
When 0, 1, 1S R Q= = = , (set)
when , 1, 1S R Q1= = =  (hold)
So on..
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EXAMPLE 7.3
Confirm that circuit shown in Figure E7.3 is an S -R  latch. What 
happens when S R 1= =  for this circuit ?

SOLUTION :

For a 4-to-1 MUX, output can be written as

 Y  Q I S S I S S I S S I S Sn 0 1 0 1 1 0 2 1 0 3 1 0= = + + +

From the circuit, I I Qn0 3= = , I 01 = , I 12 = , S S1 =  and S R0 =

So, Qn 1+  Q S R SR SR Q SR0 1n n: := + + +

  Q S R SR Q SRn n= + +
Now, we find the output for different input combination as given 
below.

For ,S R0 0= = ,  Y Qn=

For , 0S R1= = ,  Y 1=

For 0,S R 1= = ,  Y 0=

For ,S R1 1= = ,  Y Qn=
For every input/state combination the circuit functions as S -R  latch.  
When S R 1= = , the latch holds its state.

7.6 FLIP-FLOPS

In the latches described earlier, the output can change state any time 
the input conditions are changed. So, they are called asynchronous 
latches. This operation of the basic latch can be modified, by providing 
an additional control input that determines, when the state of the 
circuit is to be changed. The latch with the additional control input 
is called the Flip-Flop. 

The additional control input is either the clock (CLK) or 
ENABLE input. Since this type of flip-flop responds to the changes 
in inputs only as long as the clock is HIGH, these types of flip-flops 
are also called level triggered flip-flops.

There are different kinds of flip-flops such as S R- , D , J K-  and 
T  flip-flops. Now, we will discuss each of them in following sections.

7.6.1 S-R Flip-Flop

The addition of two AND gates at the R  and S  inputs as shown in 
Figure 7.6.1 will result in a flip-flop that can be enabled or disabled. 

Figure 7.6.1: Logic diagram of Clocked S-R flip-flop

Figure  E7.3

DO REMEMBER
Flip-flops are synchronous bistable devices. 
The term synchronous means that the changes 
in the output occur at a specified point on a 
triggering input called the clock.
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When the CLK or ENABLE input is low, the output of both 
the AND gates must be low and changes in neither R  nor S  will have 
any effect on the flip-flop output Q . The latch is said to be disabled. 
When the CLK input is high, the values at R  and S  inputs will be 
transmitted directly to the outputs of AND gates. The latch is said 
to be enabled. The output will change according to changes in input 
as long as the CLK is high. This flip-flop is called a gated or clocked 
RS  flip-flop.

In this way, we can strobe or clock the flip-flop such that it 
stores information at any time, and then holds the stored information 
for any desired period of time. This flip-flop is called a gated or 
clocked RS  flip-flop. 

The proper symbol of clocked S -R  flip is shown in Figure 7.6.2 
and the truth is given in Table 7.6.1. Note that there are now three 
inputs-R , S  and the ENABLE or CLOCK input. When 0CLK = , 
the flip-flop is disabled and R  and S  have no effect, thus the truth 
table entry for R  and S  is X (don’t care).

Table 7.6.1: Truth table of S R-  flip-flop

CLK Inputs Output Operation Mode

S R Qn 1+

1 0 0 Qn No change

1 0 1 0 Reset

1 1 0 1 Set

1 1 1 ? Invalid (Forbidden)

0 X X Qn

NAND Based S-R Flip Flop
The clocked S -R  flip-flop can be realized using basic NAND latch 
and two additional NAND gates as shown in Figure 7.6.3. The two 
NAND gates at the input have been used to couple the R  and S  
inputs to the flip-flop inputs under the control of the clock signal. 
When the clock signal is HIGH, the two NAND gates are enabled and 
the S  and R  inputs are passed on to flip-flop inputs and it works as 
normal latch.

On the other hand,  When the clock is LOW, the two NAND 
gates produce a ‘1’ at their outputs, irrespective of the S  and R  
status. This produces a logic ‘1’ at both inputs of the flip-flop, with 
the result that there is no effect on the output states. 

READER NOTE
This is also called Clocked S-R Flip-flop or 
Gate S-R Latch. The clocked S-R flip-flop is 
simply referred as S-R flip-flop.

Figure 7.6.2: Block diagram of a clocked 
S-R flip-flop

Figure 7.6.2:7.6.3: Logic diagram of clocked S-R flip-
flop using NAND gates
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Timing Diagram
The operation of the S -R  flip-flop can be illustrated by timing 
diagram as shown in Figure 7.6.4. The flip-flop responds to inputs 
only when CLK  is enabled (i.e., CLK 1= ). 
1. Initially all the inputs are zero and the output Q  is 0.

2. At the time when first clock pulse goes HIGH (at point a ), 
inputs are 0S = , R 0= , hence the flip-flop does not change 
state on this transition and output will remain in same state i.e.,
Q 0= .

3.. Again, when the clock pulse goes HIGH at point c , inputs are 
1S =  and R 0= . This cause flip-flop to go into SET state i.e., 

Q 1= .

4. At point e  clock pulse goes HIGH and inputs are 0S =  and 
R 1= , hus, the output of flip-flop will be reset to Q 0=  state.

 Similarly we can obtain output of flip-flop at all clock transitions. 
The condition R 1=  and S 1=  will not be used here.

NOR Based S-R Flip Flop
We can construct a S-R flip-flop using NOR gate latch and additional 
two NAND gates also as shown in Figure 7.6.5. The operation and 
truth table is same as discussed previously.

Figure 7.6.5: Logic diagram of clocked S-R flip-flop using NOR gates

Figure 7.6.4: Timing diagram of clocked 
S-R flip-flop



Page 438 Latches and Flip-Flops Chapter 7

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

7.6.2 D-Flip Flop

The RS  flip-flop has two data inputs, R  and S . Generation of two 
signals to drive a flip-flop is a disadvantage in many applications. 
Furthermore, the forbidden condition of both R  and S  high may 
occur inadvertently. This has led to the D  flip-flop, a circuit that 
needs only a single data input. The logic symbol of D  flip-flop is 
shown in Figure 7.6.6. 

It differs from the S -R  flip-flop in that it has only one input 
in addition to CLK. It can be constructed from an S R-   flip-flop by 
inserting an inverter between S  and R  and assigning the symbol D  to 
the S  input as shown in Figure 7.6.6a. The complete circuit diagram 
is also shown in Figure 7.6.7b.

Figure 7.6.7: Clocked D flip-flop (a) Using S-R Flip-flop (b) Using NAND 
gates

The truth of a D  flip-flop is shown in Table 7.6.3.

Operation
The operation of circuit of Figure 7.6.6b can be realized as follows:
1. When the CLK  input is LOW, output of both NAND gates will 

be HIGH and any change in the values of D  input does not affect 
the output at all. 

2. When the CLK  goes HIGH, the Q  output will take on the value 
of the D  input. If CLK 1=  and D 1= , then we have S 0=  and 

0R = . It causes the latch to SET to 1 i.e., it follows D  input. 

3. Similarly, for CLK 1=  and D 0=  we have S 1=  and R 0= , 
causing the latch to RESET to 0 i.e., it follows D  input

Hence, if D  changes while the CLK is HIGH, Q  will follow D  
and change quickly. 

Characteristic Table
Now, we construct the characteristic table of a D  flip-flop by 
representing next state in terms of input D  and present state Qn  as 
shown in Table 7.6.4.

Timing Diagram
Figure 7.6.8 shows the timing diagram of D  latch. Any time D  is high 
and CLK  is high, the output Q  is high. Any time D  is low and CLK  

DO REMEMBER
D flip-flop is also referred to as delay flip flop.

Figure 7.6.6: Block diagram of a clocked 
D flip-flop

Table 7.6.3: Truth table of D  flip-flop

CLK
Input Output 

D Qn 1+

1 0 0

1 1 1

0 X No change

Table 7.6.4: Characteristics table of D  
Flip-flop

Input Present State Next State

D Qn Qn 1+

0 0 0

0 1 0

1 0 1

1 1 1
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analyze the operation of circuit. 

Operation
We study the circuit operation for the different input combinations 
as follows.

Case 1:

For J 0=  and K 0= , the outputs of both the AND gate will be 0, 
whatever be the value of Qn  or Qn . Therefore, the inputs to the basic 
S -R  flip-flop will be S 0=  and R 0= . Hence, the output will be 
same as previous state i.e, Q Qn n1 =+ . 

Case 2:

If ,J K0 1= =  and let the previous state of flip-flop is SET i.e., Q 1n =  
and Q 0n = , then 0 0 0S JQn := = =  and 1 1 1R KQn := = = . Since  
S 0=  and R 1= , the output will be RESET to 0 on the application 
of a clock pulse.

Let us consider the opposite case, when ,J K0 1= =  and the 
previous state of flip-flop is RESET i.e., Q 0n =  and Q 1n = . Now, input 
to S -R  flip-flop will be 0 1 0S JQn := = =  and 1 0 0R KQn := = = . 
Since, S 0= , R 0=  the output of flip-flop remains in same state i.e. 
in RESET state.

Case 3:

If J 1= , K 0=  and let the previous state of flip-flop is RESET i.e., 
Q 0n =  and Q 1n = , then 1 1 1S JQn := = =  and 0 0 0R KQn := = =
. Since, S 1=  and R 0= , the output of flip-flop will be SET to 1 on 
the application of clock pulse.

Again, consider the opposite case, when J 1= , K 0=  and 
previous state of the flip-flop is SET i.e., Q 1n = , Q 0n = . Now, input 
to S -R  flip-flop will be 1S JQ 0 0n := = =  and 0 0R KQ 1n := = = . 
Since  S 0= , R 0=  the output of flip-flop remains in same state i.e. 
in SET state.

Case 4:

Now, we consider one of the important condition of J 1= , K 1=
. When J 1= , K 1=  and let the previous state be SET i.e., Q 1n =
, Q 0n = , then 1 0 0S JQn := = =  and 1 1 1R KQn := = = . Since 
S 0=  and R 1= , the output of flip-flop will be RESET to 0 on the 
application of a clock pulse. Hence, the flip-flop toggles from SET to 
RESET state or from 1 to 0.

Figure 7.6.10: J-K flip-flop using S-R 
flip-flop
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Let us consider another condition, when J 1= , K 1=  and the 
previous state is RESET i.e, Q 0n = , Q 1n = , then 1 1 1S JQn := = =  
and 1 0 0R KQn := = = . Since, S 1=  and R 0= , the output of flip-
flop will be SET to 1 on the application of a clock pulse. Again, the 
output is toggled. 

In short, when J 1= , K 1=  and 1CLK = , the flip-flop toggles. 
Toggles mean that the the present output is the complement of 
previous output. 

Characteristic Table
Based on above discussion, we can easily drawn the characteristic 
table of a J -K  flip flop as given in table 7.6.6.

Timing Diagram
The operation of the J -K  flip-flop can be illustrated by timing 
diagram as shown in Figure 7.6.11. We consider the following cases:
1. Initially all the inputs are zero and the output Q  is 1.

2. At the time when first clock pulse goes HIGH (at point a ), 
inputs are J 0= , K 1= . Thus, the output of flip-flop will be 
reset to Q 0=  state. 

3.. Again, when the clock pulse goes HIGH at point c , inputs are 
J K 1= = . Therefore, the flip-flop output toggle to its opposite 
state i.e., Q 1= .

4. At point e  clock pulse goes HIGH and inputs are J K 0= = , 
hence the flip-flop does not change state on this transition and 
output will be Q 1= .

5. At point g , clock pulse goes HIGH and input are J 1= , K 0=  
This cause flip-flop to go into SET state i.e., Q 1= . Since it is 
already 1, and it will remain in the same state.

6. At point i , clock pulse goes high and inputs are J K1= = . 
Therefore, the flip-flop toggles to its opposite state and output 
will be 0.

7. We can determine output for remaining clock transitions in the 
same way.

Table 7.6.6: Characteristic Truth table 
of J -K  flip flop

Inputs Present State Next State 

J K Qn Qn 1+

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Figure 7.6.11: Timing diagram of J-K  
flip-flop
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7.7 TRIGGERING OF FLIP-FLOPS

The momentary change in clock input of flip-flop to switch it from 
one state to the other is called trigger and the transition it causes is 
said to trigger the flip-flop. The process of applying the clock signal 
to change the state of a flip-flop is called triggering. There are two 
types of triggering the flip-flops: level triggering and edge triggering 
as explained below.

7.7.1 Level Triggering

In level triggering, the input signals affect the flip-flop only when 
the clock is at logic 1 level. Such type of flip-flop knows as level-
triggered flip-flops. The flip-flops discussed in previous section are 
level-triggered flip-flops.

In a level-triggered flip-flop, the output responds to the data 
present at the inputs during the time the clock pulse level is HIGH. 
That is, any changes at the input during the time the clock is active 
(HIGH) are reflected at the output as per its truth table. Since the 
flip-flop changes its state only when clock pulse is HIGH, this is also 
referred to as positive level triggered flip-flop.

Note that in some cases flip-flop changes its state when clock 
pulse is LOW and it is called negative level triggered flip-flop. These 
are shown in Figure 7.7.1.

7.7.2 Edge Triggering

The clock changes state from 0 to 1 or 1 to 0, as shown in Figure 
7.7.2. The change of state from 0 to 1 is known as positive edge and 
the change of state from 1 to 0 is known as negative edge. In edge 
triggering, the input signals affect the flip-flop only if they are present 
at the positive going or negative going edge of the clock pulse. 

The flip-flop that responds for the positive edge is known as 
positive edge-triggered flip-flop. The flip-flop that responds to the 
negative edge is known as negative edge-triggered flip-flop. The edge 
triggered flip-flop shall be discussed in next section.

Methods of Generating Edge Triggering
The circuit that convert the clock pulse into positive edge and negative 

Figure 7.7.1: Level Triggering

Figure 7.7.2: Edge Triggering
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edge are shown in Figure 7.7.3a and 7.7.3b, respectively. This is a RC
-differentiator circuit. 

Figure 7.7.3: Circuit that converts pulse triggering to edge triggering

When the pulse is applied as an input to the differentiator, the 
positive going pulse and the negative going pulse with small duration 
are available at the output, as shown in Figure 7.7.3. The duration 
of pulse is a function of resistor and capacitor values. We choose the 
RC  time constant much smaller than the clock’s pulse width. Due 
to this, the capacitor can charge fully when the clock goes high; this 
exponential charging produces a narrow positive voltage spike across 
the resistor.

In Figure 7.7.3a, the diode conducts for positive edge and a 
positive narrow spike is obtained at the output. In Figure 7.7.3b, 
the diode conducts for negative edge and a negative narrow spike is 
obtained at the output.

Another method of generating narrow spikes or achieving edge 
triggering uses an inverter and AND gate as shown in Figure 7.7.4a 
and Figure 7.7.4b.

Figure 7.7.4: Generation of edge triggering using AND and inverter gate
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Now, we will discuss the four types of edge triggered flip-flops.

7.8.1 Edge Triggered S -R Flip Flop

The logic symbol of a positive edge-triggered S -R  flip-flop is shown 
in Figure 7.8.3 and the truth is given in Table 7.8.1. 

Table 7.8.1: Truth Table of Positive edge triggered S R-  flip-flop

Inputs Outputs Operation Mode

CLK S R Qn 1+

1 0 0 Qn No change

1 0 1 0 Reset

1 1 0 1 Set

1 1 1 X Invalid

0 X X Qn

From the table, note that without a clock pulse, the S  and R  
inputs cannot affect the output. The truth table can be analysed by 
considering following points.
1. When S 1=  and R 0= , then output Qn 1+  will be 1 on the 

positive going edge of the clock pulse and the flip-flop is SET.

2. When S 0=  and R 1= , the output Qn 1+  will be 0 on the positive-
going edge of the clock pulse and the flip-flop is RESET, i.e. 
cleared.

3. When both S  and R  are 0, the output does not change from its 
prior state (If it is in SET state, it remains SET and if it is in 
RESET state, it remains RESET).

4. When both S  and R  are 1 simultaneously, an invalid condition 
exists. 

Negative Edge Triggered S -R-Flip Flop
The truth table of a negative edge-triggered S -R  flip-flop is the same 
as that of a positive edge triggered S -R  flip-flop except that the 

Figure 7.8.2: Logic symbols of negative 
edge-triggered FFs

Figure 7.8.3: Logic symbol of positive 
edge-triggered S-R FF
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arrows point downwards. This flip-flop will trigger only when the 
clock input goes from 1 to 0 i.e., at the negative edge of the clock 
pulse. The symbol and truth table of negative edge S -R  flip are 
shown in Figure 7.8.4 and Table 7.8.2 respectively.

Table 7.8.2: Truth Table of negative edge triggered S R-  flip-flop

Inputs Outputs Operation Mode

CLK S R Qn 1+

1 0 0 Q No change

1 0 1 0 Reset

1 1 0 1 Set

1 1 1 X Invalid

Timing Diagram

The timing diagram for a positive edge-triggered S -R flip-flop is 
shown in Figure 7.8.5. Initially assume that S 0=  and R 0=  and 
Q 1= .
1. At the positive edge of first clock pulse, since S 0=  and R 0= , 

so output Q  remains 1 according to the hold operation of FF.

2. At the positive edge of 2nd clock pulse, since S 0=  and R 1= , 
therefore output of flip-flop will reset to 0 i.e., Q 0= .

3. At the positive edge of 3rd clock pulse, since S 1=  and R 0= , 
the output will set to 1.

4. Similarly, we can determine output for remaining clock 
transitions.

7.8.2 Edge Triggered D  Flip-Flop

The operation of level-triggered D  flip-flop is already discussed in 
Section 7.6.2. It responds to the data inputs D  only when the enable 
input is high. But, the edge triggered D  flip-flops responds on either 

Figure 7.8.4: Logic symbol of negative 
edge-triggered S-R FF

Figure 7.8.5: Timing diagram of positive 
edge-triggered S-R flip-flop
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at positive edge of applied clock pulse.

Table 7.8.5: Truth table of Positive edge triggered J K-  flip-flop

CLK Inputs Output Operation Mode

J K Qn 1+

- 0 0 Qn No change

- 0 1 0 Reset

- 1 0 1 Set

- 1 1 Qn Toggle

0 X X Qn

For different input combination the truth table can be 
understood in following way.
1. When J 0=  and K 0= , no change of state takes place even if a 

clock pulse is applied.

2. When J 0=  and K 1= , the flip-flop resets at the positive-going 
edge of the clock pulse.

3. When J 1=  and K 0= , the flip-flop sets at the positive going 
edge of the clock pulse.

4. When J 1=  and K 1= , the flip-flop toggles, i.e. goes to the 
opposite state at the positive going edge of the clock pulse. In this 
mode, the flip-flop toggles or changes state for each occurrence of 
the positive going edge of the clock pulse.

Negative Edge Triggered J -K  Flip Flop
A negative edge-triggered J -K  flip-flop operates in the same way 
as a positive edge-triggered J -K  flip-flop except that the change of 
state takes place at the negative going edge of the clock pulse. In 
the truth-table of a negative edge-triggered J -K  flip-flop the arrows 
point downwards. The truth table and logic symbol of a negative 
edge triggered D  flip-flop is shown in Table 7.8.6 and Figure 7.8.10 
respectively.

Table 7.8.6: Truth table of negative edge triggered J K-  flip-flop

CLK Inputs Output Operation Mode

J K Qn 1+

. 0 0 Qn No change

. 0 1 0 Reset

. 1 0 1 Set

. 1 1 Qn Toggle

Timing Diagram
The timing diagram for a positive edge-triggered J -K  flip-flop is 
shown in Figure 7.8.11. Initially assumed that J 0=  and K 0= , and 
the output is 0.
1. At the positive going edge of the 1st clock pulse, since J 0=  and 

Figure 7.8.9: Logic symbol of positive 
edge-triggered J-K FF

Figure 7.8.10: Logic symbol of negative 
edge-triggered J-K FF
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K 0= , therefore the output remains in same state i.e., Q 0= .

2. At the positive going edge of the 2nd clock pulse, since J 1=  and 
K 1= , therefore the FF toggles and output will be 1.

3.  At the positive going edge of the 3rd clock pulse, since J 0=  
and K 1= , therefore the FF will reset to 0.

4. In the same way, we can determine the output for remaining 
clock transitions.

Figure 7.8.11: Timing diagram of positive edge-triggered J-K flip-flop

7.8.4 Edge Triggered T -Flip-Flop

The edge triggered T  flip-flop responds to the data input T  only 
when the clock input is activated. The clock is asserted on either the 
positive or negative edge of a clock pulse. Figure 7.8.12  shows the 
symbol of positive edge triggered T  flip-flop and the truth table is 
given in Table 7.8.7. 

Table 7.8.7: Truth table of positive edge triggered T  flip-flop

CLK Input Output 

T Qn 1+

- 0 Qn

- 1 Qn

0 X No change

From the truth table it can be observed that when T 1= , the 
flip-flop toggles at positive edge of clock pulse and when T 0=  there 
is no change of state. 

Negative Edge Triggered T  Flip Flop
The truth table of a negative edge-triggered T  flip-flop is the same 
as that of a positive edge triggered T  flip-flop except that the arrows 

Figure 7.8.12: Logic symbol of positive 
edge-triggered T FF
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SOLUTION :

We observe the inputs S  and R  at each negative edge of clock input 
and draw the output accordingly. Following table illustrated the 
timing diagram at different clock instants.

CLOCK Inputs Output Operation 
ModeS R Q

Initially 0 0 0

1st 1 0 1 Set

2nd 1 0 1 Set

3rd 0 1 0 Reset

4th 0 0 0 Hold

EXAMPLE 7.5
Fill in the timing diagram below for a falling-edge triggered J -K  flip-
flop assume Q  begins at 0.

SOLUTION :

We observe the inputs J  and K  at each negative edge of clock input 
and draw the output accordingly. Following table illustrated the 
timing diagram at different clock instants.

CLOCK Inputs Output Operation Mode

J K Q

Initially 0 0 0

1st 1 0 1 Set

2nd 0 0 1 Hold

3rd 1 1 0 Toggle

4th 1 0 1 Set
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EXAMPLE 7.6
(a) Find the input for a rising-edge triggered D  flip-flop which would 
produce the output Q  as shown. Fill in the timing diagram.
(b) Repeat for a rising-edge triggered T  flip-flop.

SOLUTION :

We observe the output Q  at each negative edge of clock and draw the 
inputs D  and T  accordingly. Following table illustrated the timing 
diagram at different clock instants.

CLOCK Output Input Input

Q D T

1st 0 0 0

2nd 1 1 1

3rd 1 0 0

4th 0 0 1

5th 1 1 1
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clock pulse, the output is uncertain. This situation is known as the 
race-around condition.

7.10 MASTER-SLAVE J-K FLIP FLOP

The race-around condition is a major problem in J -K  flip-flop. To 
overcome this problem, edge-triggered circuits can be used whose 
output is determined by the edge, instead of the level, of the clock 
signal. Another way to resolve the problem is to use the J -K  flip-flop 
in Master-and-Slave mode as shown in Figure 7.10.1. 

Figure 7.10.1: The Master-slave flip-flop

This is the cascade connection of two J -K  flip-flops. The first 
flip-flop is called master and other one is called as slave. The master 
is clocked in the normal way but the inverted clock is applied to slave 
i.e, the master is positive-level-triggered and the slave is negative-
level-triggered. 

It is assumed that the changes in J  and K  inputs does not 
effect on output when clock is low and master flip-flop is disabled. 
The operation of a Master-Slave FF has two phases as discussed 
below:
1. When the clock is high, the master flip-flop is enabled while 

the slave flip-flop is disabled. As a result, the output of master 
flip-flop (Qm  and Qm ) changes and these changes are fed to the 
input of the slave flip-flop. But there is no change at the output 
of slave flip-flop (Q  and Q ) as inverted clock pulse is applied to 
slave flip-flop. 

2. When the clock goes LOW, the master flip-flop gets disabled 
while the slave flip-flop is enabled. Therefore, the slave J -K  flip-
flop changes state as per the logic states at its J  and K  inputs. 
The contents of the master flip-flop are therefore transferred to 

Figure 7.9.1: Illustration of race-around 
condition
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the slave flip-flop, and the master flip-flop, being disabled, can 
acquire new inputs without affecting the output. 

The timing diagram of J -K  master slave flip-flop is shown in 
Figure 7.10.2.

Figure 7.10.2: Timing diagram of a master-slave J-K flip-flop

For further illustration we consider four input combinations of 
inputs J  and K  and see how master and slave responds for them.
1. When the clock is high (point a ) and J 1= , K 0= , the master 

flip-flop sets i.e, Q 1m =  and Q 0m = . The Qm  outputs of master 
is fed to the J  input of slave and Qm  is fed to the K  input of 
slave. Therefore, slave flip-flop have inputs 1J =  and 0K = . 
When clock goes LOW (point b) the slave output will also set to 
1 i.e. it copies the action of master.

2. Next time when the clock is high (point c ), the inputs are J 0=  
and K 0= , so master holds its previous state that is Q 1m =  and 
Q 0m = . Therefore, slave flip-flop has inputs J 1=  and K 0= . So 
when the clock goes to negative (point d ), the slave output sets 
to 1.

2. Now, when clock is high (point e ) and J 0= , K 1= , the master 
flip-flop resets to 0 i.e, Q 0m =  and Q 1m = . Therefore, slave flip-
flop have inputs J 0= , K 1=  and when clock goes to low(point 
f ), the slave flip-flop will reset to 0. Again, the slave has copied 
the master.

3. If the master’s J  and K  inputs are both 1, it toggles when the 
clock is high and the slave then toggles when the clock is low . 
Regardless of what the master does, therefore, the slave copies 
it: if the master sets, the slave sets; if the master resets, the slave 
resets.

4. If J K 0= = , the output Q  remains unchanged.

READER NOTE
The master is set according to J  and K  while 
the clock is high; the contents of the master are 
then shifted into the slave (Q  changes state) 
when the clock goes low. This particular flip-
flop might be referred to as pulse-triggered, to 
distinguish it from the edge-triggered flip-flops 
previously discussed.
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J-K Flip-Flop

Table 7.11.3: Characteristic Truth table of J -K  flip flop

Inputs Present state Next state 

J K Qn Qn 1+

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

T Flip-Flop

Table 7.11.4: Characteristic table of T  flip-flop

Input Present state Next state

T Qn Qn 1+

0 0 0

0 1 1

1 0 1

1 1 0

The characteristic equation for all types of flip-flop thus can be 
represented as given below.

P O I N T S  T O  R E M E M B E R

SR  flip-flop: Qn 1+  S RQn= +

D  flip-flop: Qn 1+  D=

JK  flip-flop: Qn 1+  JQ KQn n= +

T  flip-flop: Qn 1+  TQ TQn n= +

7.11.2 Excitation Tables of Flip-Flops

Excitation table of a flip-flop is looking at its truth table in a reverse 
way. The excitation table lists the present state, the desired next state 
and the flip-flop inputs (J , K , D , etc.) required to achieve that. The 
truth table and excitation tables of various flip-flops are given below.

Excitation Table of S -R flip-flop
The truth table and excitation table of an S -R  flip-flop are given in 
Tables 7.11.5a and 7.11.5b.

Characteristic Equation of J-K FF:
Q JQ KQn n n1 = ++

Characteristic Equation of T FF:
Q TQ TQn n n1 = ++
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Table 7.11.5a: Truth Table of S -R  Flip-flop 

S R Qn 1+

0 0 Qn

0 1 0

1 0 1

1 1 ?  

Explanation:

1. 0 0"  transition: It means that present state of the Flip-flop is 
0 and it remains 0 when a clock pulse is applied. It is possible 
when the inputs are S 0= , R 0=  (hold condition) or S 0= , 
R 1=  (reset condition). Thus, S  has to be 0 but R  can be either 
0 or 1. So 0XSR =  for this transition.

2. 0 1"  transition: It means that the present state of the Flip-flop 
is 0 and if it goes to 1 when a clock pulse is applied. It is possible 
only when the inputs are S 1=  and R 0=  (set condition). So 
SR 10=  for this transition.

3. 1 0"  transition: It mean the present state of the Flip-flop is 
1 and if it goes to 0 state when a clock pulse is applied. It is 
possible only when the inputs are S 0= , R 1=  (reset condition). 
So SR 01=  for this transition.

4. 1 1"  transition: It means that the present state of the Flip-flop 
is 1 and it remains 1 when a clock pulse is applied. It is possible 
when the inputs are S 0= , R 0=  (no change condition) or S 1=
, R 0=  (set condition). Thus R  has to be 0 but S  can be either 
0 or 1. So 0XSR =  for this transition.

Excitation Table of J -K  flip-flop
The truth table and excitation table of a J -K  flip-flop are shown in 
Table 7.11.6a and 7.11.6b.

Table 7.11.6a: Truth table of J -K  Flip-flop 

J K Qn 1+

0 0 Qn

0 1 0

1 0 1

1 1 Qn

Explanation:

0 1"  transition: The present state of the FF is 0 and it has to go to 1 
state after the clock pulse. This can happen with either J 1= , K 0=  
(set condition) or J 1= , K 1=  (toggle condition).Thus J  has to be 1 
but K  can be either 0 or 1. So 1XJK =  for this transition.

The other entries of the excitation table can be explained in 
similar manner.

Table 7.11.5b: Excitation Table of S -R  Flip-flop

Present State Next State Required inputs

Qn Qn 1+ S R

0 0 0 X

0 1 1 0

1 0 0 1

1 1 X 0

Table 7.11.6b: Excitation table of J -K  Flip-flop

Present State Next State Required Inputs

Qn Qn 1+ J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0
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 S  AB A B= +

 R  B=
(b) Now we construct the characteristic table of AB  flip-flop by 
keeping in mind operation of SR  flip-flop.

Table E7.7.1 Characteristic table of AB  flip-flop

A B Qn S R Qn 1+

0 0 0 1 0 1

0 0 1 1 0 1

0 1 0 0 1 0

0 1 1 0 1 0

1 0 0 0 0 0

1 0 1 0 0 1

1 1 0 1 1 X

1 1 1 1 1 X

To obtain characteristic equation of AB  flip-flop, we construct K-map 
in terms of A, B  and Qn  and find a minimized expression for Qn 1+ .

 Qn 1+  A B AQn= +

(c) First we obtain a truth table of the flip-flop as shown in Table 
E7.7.2.

Table E7.7.2 Truth table of AB  flip-flop

A B Qn 1+ Operation

0 0 1 Set

0 1 0 Reset

1 0 Qn No change

1 1 X Indeterminate

The excitation table of flip-flop is shown in Table E7.7.3, which is 
looking at its truth table in a reverse way.

7.12 CONVERSION OF FLIP-FLOPS

In this section, we will see how one type of Flip-flop can be converted 
into another type. To convert one type of flip-flop into another type, 
we have to obtain the expressions for the inputs of the given flip-flop 
in terms of the inputs of the required flip-flop and the present state 
variables of given flip-flop. Then, this expression can be implemented 
using a combination circuit (read explanation). 

Table E7.7.3 Excitation table of AB  flip-flop

Present State Next State Required Inputs

Qn Qn 1+ A B

0 0
0 1 or

1 0

0 1 0 0

1 0 0 1

1 1 X 0

EXPLANATION
For example to convert a S -R  flip-flop to 
J -K  flip flop first we find the expression of 
inputs of S  and R  in terms of J , K  and 
present state Qn . Now, this expression can be 
implemented using combination circuit and 
we would obtain the J -K  flip-flop using this 
combination circuit and a S -R  flip-flop.
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The combinational circuit connected with given flip-flop will 
perform as required flip-flop. The arrangement is as shown in Figure 
7.12.1.

Figure 7.12.1: Block diagram for conversion of flip-flops

In this conversion process, some steps are followed. These are 
given in methodology as below.

M E T H O D O L O G Y
1. The first step of conversion is that write the present and 

next state table (i.e., characteristic table) of the required 
flip-flop. 

2.  In the table, for each transition Q Qn n 1" + , write the values 
of required inputs of given flip-flop. For this, excitation 
table of given flip-flop should be referred. The complete 
table is called conversion table as shown in Table 7.12.2.

3. Draw K-maps for each of the input variable of given flip-
flop in terms of present state and inputs of required flip-
flop. From the K-map, obtain the simplified expression of 
each of the input of given flip-flop.

4. Now, design a combination circuit for the above obtained 
expression and connect this with given flip-flop in correct 
manner.

Now, we will consider conversion of flip-flops from one type to 
all another type.

7.12.1 Conversion of S -R Flip-Flop to J -K  Flip-Flop

Here, S -R  flip-flop is available and we want J -K  flip-flop operation 
from it. So J -K  is the external input and S  and R  are the actual 
inputs to the existing flip-flop. Now, we have to find expressions of S  
and R  in terms of J , K  and Qn .

Step 1: Construct the present-state-and-next-state table of a J -K  
flip-flop as shown in Table 7.12.1.

Step 2: Write the values of S  and R  that are required to change 
the state of the flip-flop from Qn  to Qn 1+ . We obtain the complete 
conversion table as shown in table 7.12.2.

Table 7.12.1: Present-state-and-next-
state table of a J K-  flip-flop

J K Qn Qn 1+

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0



Page 464 Latches and Flip-Flops Chapter 7

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

Step 1: Construct the present-state-and-next-state table of a D  flip-
flop as shown in Table 7.12.3.

Step 2: We write the values of inputs S  and R  that are required 
to change the state of the flip-flop from Qn  to Qn 1+ . The complete 
conversion table as shown in Table 7.12.4.

Table 7.12.4: Conversion Table

External Input Present State Next State Flip-flop Inputs

D Qn Qn 1+ S R

0 0 0 0 X

0 1 0 0 1

1 0 1 1 0

1 1 1 X 0

Step 3: Draw K-map for S  and R  with inputs D  and Qn  as shown 
below.

Step 4: From the K-map of we get the simplified expressions, S D=
and R D= . The logic diagram showing the conversion S R-  flip-flop 
to D  flip-flop is shown in Figure 7.12.3.

7.12.3 Conversion of S -R Flip-Flop to T  Flip-Flop

Here, S -R  flip-flop is available and we want T  flip-flop operation 
from it. So T  is the external input and S  and R  are the actual inputs 
to the existing flip-flop. So, we have to find expressions of S  and R  
in terms of T  and Qn .

Step 1: Construct the present-state-and-next-state table of a T  flip-
flop as shown in Table 7.12.5.

Table 7.12.3 Present-state-and-next-
state table

D Qn Qn 1+

0 0 0

0 1 0

1 0 1

1 1 1

Figure 7.12.3: D FF using S-R FF

Table 7.12.5: Present-state-and-next-
state table of T  flip-flop

T Qn Qn 1+

0 0 0

1 1 0

1 0 1

0 1 1
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Step 2: Write the values of inputs S  and R  that are required to change 
the state of the flip-flop from Qn  to Qn 1+ . The complete conversion 
table as shown in Table 7.12.6.

Table 7.12.6: Conversion table

External Input Present State Next State Flip-flop Inputs

T Qn Qn 1+ S R

0 0 0 0 X

1 1 0 0 1

1 0 1 1 0

0 1 1 X 0

Step 3: Draw K-map for S  and R  with inputs D  and Qn  as shown 
below. 

Step 4: From the K-map of we get the simplified expression as 
S TQn=  and R TQn= . The logic diagram showing the conversion 
S R-  flip-flop to T  flip-flop is shown in Figure 7.12.4.

7.12.4 Conversion of J -K  Flip-Flop to S -R Flip-Flop

Here, J -K  flip-flop is available and we want S -R  flip-flop operation 
from it. So S  and R  are the external inputs, and J  and K  are the 
actual inputs to the existing flip-flop. So, we have to find expressions 
of J  and K  in terms of S , R  and Qn .
Step 1: Construct the present state and next state table of an S -R  
flip-flop. This is shown in Table 7.12.7.

Figure 7.12.4: T FF using S-R FF
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J K Qn Qn 1+

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Step 2: We write the values of input D  that is required to change the 
state of the flip-flop from Qn  to Qn 1+ . The complete conversion table 
is as shown in Table 7.12.16.

Table 7.12.16: Conversion table

External Inputs Present State Next State Flip-flop Input

J K Qn Qn 1+ D

0 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 1 0 0

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 0

Step 3: Draw K-map for D  with inputs J , K  and Qn  as shown below.

Step 4: From the K-map, we get simplified expression for D  as

 D  JQ Q Kn n= +

Thus, the logic diagram showing the conversion of D  flip-flop 
to J -K  flip-flop is shown in Figure 7.12.9.

D KQ JQn n= +
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7.12.9 Conversion of D  flip-flop to T  flip-flop

Here, D  flip-flop is available and we want to convert it into T  flip-
flop. Hence T  is the external input and D  is the actual input to the 
existing flip-flop. So, we have to find expression of D  in terms of T  
and Qn .

Step 1: Construct the present-state-and-next-state table of a T  flip-
flop as shown in Table 7.12.17.

Step 2: We write the values of input D  that is required to change the 
state of the flip-flop from Qn  to Qn 1+ . The complete conversion table 
is as shown in Table 7.12.18.

Table 7.12.18: Conversion table

External Input Present State Next State Flip-flop Input

T Qn Qn 1+ D

0 0 0 0

1 1 0 0

1 0 1 1

0 1 1 1

Step 3: Draw K-map for D  with inputs T  and Qn  as shown below. 

Step 4:  From the K-map, we get the simplified expression for D  as, 

 D  TQ TQ T Qn n n5= + =

Thus, the logic diagram showing the conversion of D  flip-flop 
to T  flip-flop is shown in Figure 7.12.10

Figure 7.12.9: J-K FF using D FF

Table 7.12.17: Present-state-and-next-
state table of a T  flip-flop

T Qn Qn 1+

0 0 0

1 1 0

1 0 1

0 1 1

D TQ TQn n= +
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Step 4: From the K-map, we get the simplified expression for T  as,

 T  JQ Q Kn n= +

Thus, the logic diagram showing the conversion of T  flip-flop to 
J -K  flip-flop is shown in Figure 7.12.12.

7.12.12 Conversion of T  flip-flop to D  Flip-flop

Here, T  flip-flop is available and we want to convert it into D  flip-
flop. Hence D  is the external input and T  is the actual input to the 
existing flip-flop. So, we have to find expression of T  in terms of D  
and Qn .

Step 1: Construct the present-state-and-next-state table of a D  flip-
flop as shown in Table 7.12.23.

Step 2: We write the values of input T  that is required to change the 
state of the flip-flop from Qn  to Qn 1+ . The complete conversion table 
is as shown in Table 7.12.24.

Table 7.12.24: Conversion Table

External Input Present State Next State Flip-flop Input

D Qn Qn 1+ T

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Step 3: Draw K-map for T  with inputs D  and  Qn  as shown in rught 
side.

Step 4: From the K-map, we get the simplified expression for T  as,

 T  DQ DQ D Qn n n5= + =

Thus, the logic diagram showing the conversion of T  flip-flop to 
D  flip-flop is shown in Figure 7.12.13.

Figure 7.12.12: J-K FF using T FF

Table 7.12.23: Present-state-and-next-
state table

D Qn Qn 1+

0 0 0

0 1 0

1 0 1

1 1 1

T DQ DQn n= +
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EXAMPLE 7.8
A PN flip-flop has four operations, no change clear to 0, set 1 and 
toggle, when inputs P  and Q  are 01, 00, 11 and 10, respectively.
(a) Determine the characteristic table of the flip-flop.
(b) Find the characteristic Equation of the flip-flop.
(c) Determine the excitation table.
(d) Convert the flip-flop to a D  flip-flop.

SOLUTION :

According to given problem statement function table of PN flip-flop 
is as shown below.

Table E7.8.1 Truth table of PN flip-flop

Inputs Output Operation Mode

P N Qn 1+

0 0 0 Reset

0 1 Qn No change

1 0 Qn Toggle

1 1 1 Set

(a) The Characteristic table is constructed in terms of present state 
and inputs

Table E7.8.2 Characteristic table of PN flip-flop

Inputs Present State Next State

P N Qn Qn 1+

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Figure 7.12.13: D FF using T FF



Chapter 7 Latches and Flip-Flops Page 477

7.13 ASYNCHRONOUS INPUTS IN FLIP-FLOPS

For the Flip-flops discussed so far, because their effect on the flip-flop 
output is synchronous with the clock input. That is, data on these 
inputs are transferred to the flip-flop’s output only on the triggering 
of the clock pulse. 

Flip-Flops available in IC packages also have asynchronous 
inputs. These asynchronous inputs affect the flip-flop output 
independently of the synchronous inputs and the clock input. These 
asynchronous inputs force the flip-flop output to go to SET (1) state 
or RESET(0) state at any time regardless of the conditions at the 
other inputs. 

PRESET and CLEAR inputs are examples of asynchronous 
inputs. They are also referred to as direct set SD_ i and direct reset 
RD_ i respectively. An active level on the PRESET input will SET the 

flip-flop and an active level on the CLEAR input will RESET it. That 
is, when active, the PRESET and CLEAR inputs place the flip-flop  
output Q  in the ‘1’ and ‘0’ state respectively. 

Asynchronous inputs may be active HIGH or active LOW. 
Usually, these are active LOW inputs. For an example, we will 
consider a J -K  flip-flop with active-LOW PRESET and CLEAR and 
discuss the operation of same as follows.

7.13.1 J -K  Flip-flop with Asynchronous Inputs

Figure 7.13.1 shows the logic diagram for a J -K  flip-flop with 
active-LOW PRESET and CLEAR  inputs. These are indicated by a 
small bubble at the input terminals and labelled as PRE and CLR 
respectively. 

Table 7.13.1: Truth table of J -K  Flip-flop with PRESET and CLEAR 
Inputs

PRESET CLEAR Flip-flop Response

PRE_ i CLR_ i

0 0 Not used

1 0 Q 0=

0 1 Q 1=

1 1 Clocked operation

The truth table is given in Table 7.13.1 and the operation of 
flip-flop can be analysed as follows.

Case 1 : PRE 1= , CLR 1=

The asynchronous inputs are inactive and the flip-flop responds 
according to J , K  and CLK inputs in the normal way. In other 
words, the clocked operation can take place.

Case 2: PRE 0= , 1CLR =

Since PRESET is activated, output Q  will immediately SET to a 1, 

READER NOTE
Asynchronous inputs are also referred to as 
overrides inputs because they override all the 
other inputs and clock input in order to place 
the flip-flop in SET or RESET state.

Figure 7.13.1: J-K flip-flop with 
PRESENT and CLEAR inputs



Page 478 Latches and Flip-Flops Chapter 7

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

no matter what conditions are present at the J , K  and CLK inputs. 
The CLK input cannot affect the flip-flop in this case.

Case 3: PRE 1= , CLR 0=

Since CLEAR input is activated, so output Q  will be reset to a 0 
independent of the conditions on the J , K  or CLK inputs. The CLK 
input has no effect in this case.

Case 4: PRE 0= , CLR 0=

Both asynchronous inputs can not be active simultaneously. This 
condition should not be used, since it can result in an invalid state.

These inputs are connected directly into the latch portion of 
the flip-flop so that they override the effect of the synchronous inputs, 
J , K  and the CLK. The logic circuit of J -K  flip-flop with PRESET 
and CLER inputs is shown in Figure 7.13.2.

EXAMPLE 7.9
Consider the waveforms shown in Figure E7.9(a) that are applied to 
the J -K  flip-flop shown in Figure E7.9(b). Draw the output waveform.

Figure 7.13.2: Logic diagram of a J -K flip-flop with 
active-LOW PRESET and CLEAR

Figure E7.9(a)
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7. Power dissipation

8. Clock transition times

Now, we will define each of above parameter as follows:

7.14.1 Propagation Delay

The propagation delay of flip-flop is the amount of time required to 
change the state after the clock hits the input, as illustrated in Figure 
7.14.1. The typical value of tp  is 10 to 20 ns.

The flip-flop data sheet usually specifies propagation delays 
for both HIGH-to-LOW (tpHL) and for LOW-to-HIGH (tpLH ) output 
transitions. 

7.14.2 Set-up Time

Set up time is the minimum time that input signal must be present 
on input terminal prior to the triggering edge of the clock pulse as 
illustrated in Figure 7.14.2. The typical value of set-up time is from 5 
to 40 ns. If the set-up time of the signal is less than the desired set-up 
time, then the response of flip-flop is not reliable.

7.14.3 Hold Time

The hold time is the minimum time interval that signal must remain at 
the terminal after the triggering edge of the clock pulse as illustrated 
in Figure 7.14.3. 

Figure 7.14.1 Propagation delay of flip-flop

EXPLANATION 
For example consider a D  flip-flop  having 
a set-up time equal to ns20 .Therefore, the 
input of the D  flip-flop must be held constant 
for at least ns20  before applying a positive 
edge-triggering clock into the flip-flop.

Figure 7.14.2 Set-up Time

EXPLANATION
For example consider a D  flip-flop  having a 
hold time equal to ns5 .Therefore, the input 
signal of D  flip-flop can be removed at about 

ns5  after the positive edge of the clock has 
applied. 

Figure 7.14.3 Hold-up Time
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In positive edge-triggered flip-flops, the output changes with 
the rising edge of the clock. It does not mean that after the rising 
edge of clock, the input signal can be changed immediately. The input 
signal should be held at least for the hold time. The typical hold-up 
time is from 0 to 10 ns.

7.14.4 Maximum Clock Frequency

This is the highest clock frequency at which the flip-flop can be 
triggered. If the clock frequency is above maximum, the flip-flop will 
work reliably and properly. 

7.14.5 Asynchronous Active Pulse Width

This is the minimum time duration for which the asynchronous input 
(PRESET or CLEAR) must be held in its active state (usually LOW), 
for the output to respond properly. 

7.14.6 Clock Pulse High and Low Times

The clock high pulse time is the minimum time for which the clock 
must remain in high state. Similarly, the clock low pulse time is the 
minimum time for which the clock must remain in low state. Failure 
to meet these requirements can lead to unreliable triggering. 

7.14.7 Power Dissipation

The power dissipation of a flip-flop is the total power consumption of 
the flip-flop. It is equal to the product of the supply voltage VCC_ i and 
the current ICC_ i drawn from the supply by it. That is,

 P  V ICC CC=
The power dissipation of a flip-flop is usually in mW.
    

7.14.8 Clock Transition Times

The manufacturers specify the maximum transition times (rise time 
and fall time) for the output to respond properly.  If the clock signal 
takes too long to make the transitions from one level to the other, the 
flip-flop may either trigger erratically or not trigger at all.

7.15 APPLICATION OF FLIP-FLOPS

Flip-flops are used in a variety of application circuits. Some of the 
basic applications are frequency division and counting circuits and 
data storage and transfer circuits. These are briefly described in the 
next subsections. 

7.15.1 Registers

Shift registers are most commonly used to store digital data. Shift 
register can be constructed by a group of flip-flops. The output of 
one flip-flop is taken to the next flip-flop as input. A common clock is 

EXAMPLE
For example, if the flip-flop operates on a 5 V 
dc supply and draws 20 mA current, the power 
dissipation will be,

V mA mWP V I 5 20 100CC CC #= = =
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be written into memory and data can also be read from memory. A 
1-bit read/write memory is shown in Figure 7.15.2.

7.15.4 Frequency Division

Flip-flops can be used to divide the frequency of an applied input 
signal. A single flip-flop may be used to divide the input frequency 
by 2. Two flip-flops may be used to divide the input frequency by 4. 
In general, N  flip-flops may be used to divide the input frequency 
by 2N .

For example, if a waveform is applied to the clock input of 
J K-  flip-flop, which operates in toggle mode, the frequency of output 
waveform is half of the input frequency as shown in Figure 7.15.3. 
Therefore, the frequency has been divided by 2.

Figure 7.15.3: Frequency division by 2 using J-K FF

Similarly, using two flip-flops we can divide input frequency by 4 as 
shown in Figure 7.15.4.

Figure 7.15.4: Frequency division by 4 using J-K FF

One more application of flip-flops is found as bounce elimination 
switch, which is used to avoid bouncing problems in mechanical 
switch. This is discussed in Appendix A.

Figure 7.15.2: One bit memory cell
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EXAMPLE 7.10
Consider the cascaded arrangement of two T  flip-flops shown in figure 
E7.10(a). Draw the Q1 output waveform for the given input signal of 
Figure E7.10(b). If the time period of the input signal is 10 sm , find 
the frequency of the output signal ? If, in the flip-flop arrangement, 
FF-1 were positive edge-triggered, draw the Q1 output waveform.

SOLUTION :

The output Q0 and Q1 along with clock input are drawn in Figure 
E7.10(c) below. The output of the first T  flip-flop changes state for 
every negative-going edge of the input clock waveform. Its frequency 
is therefore half the input signal frequency. The output of the first flip-
flop acts as the clock input for the second T  flip-flop in the cascade 
arrangement. The second flip-flop, too, toggles for every negative 
going edge of the waveform appearing at its input. The final output 
thus has a frequency that is one-fourth of the input signal frequency :

1. Now the time period of input signal 10 sm= .

2. Therefore, the frequency 100 kHz= .

3. The frequency of the output signal / 25 kHz100 4= = .

When the second flip-flop (FF-1) is a positive edge-triggered one, it 
will respond to the positive edges of the waveform appearing at its T  
input, which is the waveform appearing at the Q  output of FF-0. The 
relevant waveforms in this case are shown in Figure E7.10(d).

Figure E7.10(a)

Figure E7.10(b)

Figure E7.10(c)
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EXAMPLES

EXAMPLE 7.11
A latch can be constructed from an OR gate, an AND gate, and an 
inverter connected as follows :
(a) What restriction must be placed on R  and H  so that P  will 
always equal Q  (under steady-state conditions) ?

(b) Complete the following timing diagram for the latch.

SOLUTION :

(a) In the given circuit where R 1= , H 0= , the output of OR gate 
must be 1 and the output of AND gate must be 0. Therefore Q 1=  
and P Q1 != . Therefore R 1=  and H 0=  cannot occur at the 
same time.

(b) Circuit operation:
We analysis the circuit by keeping in mind that the output of a OR 
gate is 1 if any input is 1 and output of AND gate is 0 if any input 
is 0.

Case 1 : R 0= , H 0=

Since H 0= , the output of AND gate must be 0 as shown in figure. 
This output is fed back to OR gate. Now, the inputs of OR gate 
are 0 and 0, so output Q 0n 1 =+  and P Q1n n1 1= =+ + . Thus input 
combination R 0= , H 0=  will always reset the latch to 0.
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EXAMPLE 7.13
A reset-dominant flip-flop behaves like an S -R  flip-flops, except 
that the input S R 1= =  is allowed, and the flip-flop is reset when 
S R 1= = .
(a) Derive the characteristic equation for a reset-dominant flip-flop.
(b) Show how a reset-dominant flip-flop can be constructed by adding 
gate(s) to an S -R  flip-flops.

SOLUTION :

(a) According to given problem statement, first we constuct the 
characteristic table of given reset-dominant flip-flop as shown. Let 
the inputs of this flip-flops are SA and RA.

Table E7.13.1 Characteristics table of given flip-flop

Inputs Present State Next State

SA RA Qn Qn 1+

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

To obtain characteristic equation, we draw a K-map in terms of SA, 

RA and Qn  with help of characteristic table and determine a minimized 

expression for next state. From the K-map

  Qn 1+  S R R QA A A n= +  (Characteristic equation)
(b) We compare the above characteristic equation, with standard 
characteristic equation of S -R  flip-flop

 Qn 1+  S RQn= +  (Standard Equation)

So, S S RA A=  and R RA= . The logic diagram is shown as below
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EXAMPLE 7.14
Complete the following timing diagram for an S -R  latch. Assume Q  
begins at 1.

SOLUTION :

EXAMPLE 7.15
Complete the following timing diagrams for a gated D  latch. Assume 
Q  begins at 0.

SOLUTION :

We check input D  when CLK  is high and draw the corresponding 
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EXAMPLE 7.17
The input signals shown in figure below are applied to the master-
slave JK  flip-flop of Fig. 6.14a when initially in its 0-state. Sketch the 
QM  and QS  output signals. Assume all timing constraints are satisfied.

SOLUTION :

EXAMPLE 7.18
Verify that the circuit of figure in right side acts as a toggle switch.

SOLUTION :

Let Q 1=  and Q 0=

This makes R Q 1= =  and 0S Q= = . When a clock pulse is applied, 
Q  and Q  will become 0 and 1 respectively. Now, R Q 0= =  and 
S Q 1= =  and on application of a clock pulse Q  and Q  become 1 
and 0 respectively. This shows that Q  and Q  change with every clock 
pulse, and hence the circuit behaves as a toggle switch.
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EXAMPLE 7.19
Identify Q  and Q  outputs of the clocked J -K  flip-flop shown in 
figure below.

SOLUTION :

Let us assume present state Q 1n1 =  and Q 0n2 = . Now, take the input 
combination J 0= , K 1= . The inputs of upper AND gates are 0 and 
1 so its output P 1n = . Now, one of the input of upper NOR gate is 
1 so its output must be 0, i.e. Q 0,n1 1 =+ . This 0Q ,n1 1 =+  fed back 
to input of Lower NOR gate. The other input of lower NOR gate is 
Q J Q 0 0 0n n2: := = = , so output 0 0Q 1,n2 1 = + =+ . Thus, for J 0= , 
K 1=  flip-flop is reset to 0. Q Q1 = , Q Q2 = .

EXAMPLE 7.20
A clock pulse of 100 kHz shown in figure below, is applied to the clock 
inputs of flip-flops shown in fig(a) and fig (b). If Q  output is initially 
‘0’, draw the Q  output waveform in the two cases. Also, determine the 
frequency of the Q  output in the two cases.

                   (a)                                                              (b)
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Table E7.21.1 Characteristic table of G  flip-flop

G Qn Qn 1+

0 0 0

0 1 1

1 0 1

1 1 1

From the characteristic table we find the characteristic equation. 
Represent the characteristic table on K-map as shown.

 Qn 1+  G Qn= +  (Characteristic Equation)

(b) Now, the truth table of given flip-flop can be constructed as given 
in right side. From the truth table we find the excitation table as 
given below

Table E7.21.2 Excitation table of G  flip-flop

Qn Qn 1+ G

0 0 Qn

0 1 1

1 0 #

1 1 #

EXAMPLE 7.22
A PN  flip is constructed using SR  flip flop and logic gates as shown 
in figure below.

(a) Obtain the characteristic equation for the PN  flip-flop.
(b) From this, find expressions for Qn 1+  for N 0=  and N 1=
(c) Explain how N  controls the transfer of information from P  to the 
output.

SOLUTION :

From the given circuit input to SR  flip-flops are

 S  P N:=

 R  P N:=
(a) Now, we construct the characteristic table of PN  flip-flop by 

G Qn 1+

0 Qn

1 1
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keeping in mind operation of the SR  flip flop.

P N Qn S P N:= R P N:= Qn 1+

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 0

1 0 0 0 0 0

1 0 1 0 0 1

1 1 0 1 0 1

1 1 1 1 0 1

Find Qn 1+  in terms of P , N  and Qn .

 Qn 1+  PN NQn= +  (Characteristic equation)

(b) Now, put N 0=  in characteristic equation

 Qn 1+  Qn= , when N 0=
Put N 1=  in characteristic equation

 Qn 1+  P=

(c) Since Qn 1+  Qn= , when N 0=

 Qn 1+  P= , when N 1=
Thus, when N 1= , P  is latched as the output and, when N 0=  the 
output does not change.

EXAMPLE 7.23
Fill in the following timing diagram for a rising-edge triggered T  flip-
flop with an asynchronous active-low Preset input. Assume Q  begins 
at 1.
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REVIEW QUESTIONS

1. What are sequential logic circuits and asynchronous logic 
circuits? Write difference between them.

2. With the help of truth tables, explain the function of an 
S R-  latch. What is its application?

3. Draw an S R-  flip-flop using NOR gates and develop its 
truth table.

4. What is S R-  latch? Draw its logic circuit using

(a) NOR gates 

(b) NAND gates. Explain the working.

5. What is a flip-flop?

6. State the disadvantages of R S-  flip-flop. How can they be 
avoided?

7. Explain with diagram the working of D  type flip-flop. Give 
its truth table.

8. Give reason why D  flip-flop is called as data latch?

9. Explain S R-  flip-flop using NOR gates.

10. Describe how two cross-coupled NAND gates form a R S-  
flip-flop. Write its truth table.

11. Draw the schematic diagram of J K-  flip-flop and describe 
its working. Write down its truth table.

12. Draw the circuit of J K-  flip-flop using NAND gate.

13. What are clocked flip-flops?

14. Explain the different methods for triggering of flip-flops.

15. What is meant by the race problem in J K-  flip-flops? 
How does a master-slave configuration help in solving this 
problem?

16. Draw a neat diagram of master slave J K-  flip-flop. Explain 
how race around condition is avoided using master slave 
J K-  flip-flop?

17. Give the truth table and the excitation table of the following 
flip-flops

(a) S R-  flip-flop  (b) J K-  flip-flop

(c) D  flip-flop  (d) T  flip-flop

18. What are asynchronous inputs? Why are PRE-SET and 
CLEAR called asynchronous inputs?

19. Briefly describe the following flip-flop timing parameters:

(a) set-up time and hold time

(b) propagation delay

(c) maximum clock frequency

20. What is the difference between truth table and excitation 
table?

21. List four basic flip-flop applications.

22. What is race around condition ? How is it avoided ?

23. Draw a logic diagram of clocked R -S  flip-flop and obtain its 
characteristic equation.

24. Draw the logic diagram of S -R  flip-flop and explain its 
working.

25. What is Race Around condition in J -K  flip-flop ?

26. Write short notes on the following :

(a) J -K  Master slave flip-flop 

(b) Shift register

27. Draw and explain the working of J -K  flip-flop with their 
truth table using suitable triggering signal.

28. Explain timing hazards in digital circuits.

29. Differentiate between combinational and sequential circuit.

30. Distinguish between

(a) Flip-Flop and Latch

(b) Combinational Circuit and Sequential Circuit.

31. Explain various methods to generate positive and negative 
edges for triggering.

32. What is Race around condition ? Explain it and how it can 
be removed.

33. Explain how one type of flip-flop can be converted to 
another by designing a logic circuit. Take one example.

REVIEW PROBLEMS

34. For a gated S R-  latch, determine the Q  and Q  outputs for 
the inputs in Figure Show them in proper relation to the 
enable input. Assume that Q  starts LOW.

35. For a gated D  latch, the waveforms shown in Figure are 
observed on its inputs. Draw the timing diagram showing 
the output waveform you would expect to see at Q  if the 
latch is initially RESET.

36. The waveforms shown in Figure are applied to (a) a positive 
edge-triggered S R-  flip-flop and (b) a negative edge-
triggered S R-  flip-flop. Draw the output waveform in eahc 
case.
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37. The waveforms shown in Figure are applied to (a) a positive 
edge-triggered J K-  flip-flop and (b) a negative edge-
triggered J K-  flip-flop, and (c) a master-slave J K-  flip-
flop. Draw the output waveform in each case.

38. The Q  output of an edge-triggered S R-  flip-flop is shown 
in relation to the clock signal in Figure Determine the 
input waveforms on the S  and R  inputs that are required 
to produce this output if the flip-flop is a positve edge-
triggered type.

39. Draw the Q  output relative to the clock for a D  flip-flop 
with the inputs as shown in Figure Assume positive edge-
triggering and Q  initially LOW.

40. The waveforms of Figure are applied as input to a J K-  
master slave flip-flop. Assume that Q  is Lcw initially. Sketch 
Q  and Q  output waveforms.

41. A latch is to be defined with inputs L  and M  (an LM  
latch). The table specifying the desired next state at a clock 
pulse is given in Table below.

(a) Describe how the latch state is to change for each 
combination of L  and M  values. (For example, for 
LM 10= , the next state is 1, independent of the 
present state.)

(b) Write expressions for the next state Q+ in terms of L , 
M  and present state Q

(c) Construct the table of excitation requirements

(d) Construct a diagram of a circuit that realizes this latch 
using a clocked SR  latch and any additional gates 
needed

(e) Repeat part d  using a JK  latch.

42. The schematic diagram of an H  flip-flop is shown in Figure 
The transitions allowed are

Q 0=+  when H 0= ,        Q Q=+  when H 1=

(a) Write an expression for the next state Q+ in terms of 
H  and present state y

(b) Construct the excitation requirements table for H

43. A D  flip-flop is connected as shown in Figure Determine the 
Q  output in relation to the clock. What specific function 
does this device perform?

44. Realize an S R-  flip-flop using

(a) J K-  flip-flop (b) D  flip-flop (c) T  flip-flop

45. Realize a J K-  flip-flop using

(a) S R-  flip-flop (b) D  flip-flop (c) T  flip-flop

46. Realize an T  flip-flop using

(a) S R-  flip-flop (b) J K-  flip-flop (c) D  flip-flop

47. Realize an D  flip-flop using

(a) S R-  flip-flop (b) J K-  flip-flop (c) T  flip-flop

*********** 
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COUNTERS

8.1 INTRODUCTION

A counter is one of the most useful subsystems in a digital system.

Counter is a sequential circuit that is used to counting the 
number of clock pulses arriving at its clock input. 

A counter is a set of flip-flops connected in cascade. The FFs 
are interconnected such that their combined state at any time is the 
binary equivalent of the total number of pulses that have occurred 
up to that time. Thus, as its name implies, a counter is used to 
count pulses. In this chapter, we shall discuss different types of 
counter, design methodologies of counters using flip-flops and their 
applications.

8.2 CLASSIFICATION OF COUNTERS

There are various types of counters, which are used to count binary 
numbers. Based on application of clock, counter are classified as 
asynchronous and synchronous counters. Counters may be an up 
counter or down counter. 

8.2.1 Asynchronous (Ripple) Counters

In asynchronous counter, the external clock pulse is applied to the first 
flip-flop and the output of first flip-flop (either Q  or Q ) is connected 
as clock of the next flip-flop. Similarly, each successive flip-flop is 
clocked by the Q  or Q  of the previous one. Therefore, all the flip-flops 
do not change states at the same time because they are not triggered 
simultaneously. There is some propagation delay between responses 
of successive flip-flops.

The asynchronous counter is also called as ripple counter. 
The term ripple counter comes from the mode in which the clock 
information ripples through the counter from one flip-flop to next. 
The maximum clock frequency of an asynchronous counter decreases 
with the increase of number of flip-flops.

8.2.2 Synchronous Counters

In a synchronous counter, all the flip-flops in the counter change state 
at the same time in synchronism with the input clock signal. The clock 
signal in this case is simultaneously applied to the clock inputs of all 

READER NOTE
A counter can also be used as a frequency 
divider They are also used to perform the 
timing function as in digital watches, to create 
time delays, to produce non-sequential binary 
counts, to generate pulse trains, and to act as 
frequency counters, etc.
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4 states and it is called a mod-4 counter. It requires two flip-flops. 
Similarly, a 3-bit counter uses 3 flip-flops and has 2 83 =  states. It 
divides the input clock frequency by 2 3, i.e. 8. In general,

An n -bit counter will have n  flip-flops and 2 n  states, and divides 
the input frequency by 2n . Hence, it is a divide by 2n  counter. It 
can count in binary from 0 to through 2 1n - .

A counter may have a modulus less than 2n . This is possible 
with the help of a additional combinational logic. This type of counter 
does not utilize all the possible states. Some of the states are  skipped. 
The number of flip-flops required to construct a mod-N  counter 
equals the smallest n  for which N 2 n# . For example, if the desired 
modulus is 10, the smallest integer greater than or equal to 10 and 
which is also an integral power of 2 is 16. The number of flip-flops in 
this case would be 4, as 16 2 4= . 

In general, the arrangement of a minimum number of n  flip-
flops can be used to construct any counter with a modulus given by 
the equation,

 2 1n 1+-
_ i 2modulus n# #

8.4 ASYNCHRONOUS COUNTERS OR BINARY RIPPLE COUNTERS

As we discussed already, a binary ripple counter consists of a series 
connection of flip-flops in toggle mode, with the output of each flip-
flop connected to the clock input of the next higher order flip-flop.

Since flip-flops are used in toggle mode, we can construct 
counters using J -K  flip-flops with the J  and K  inputs tied together 
or from T  flip-flops. A third possibility is to use a D  flip-flop with 
the complement output connected to the D  input. In this way, the 
D  input is always the complement of the present state, and the next 
clock pulse will cause the flip-flop to toggle.

Also, we may use positive edge-triggered or negative edge-
triggered flip-flop to design counters. For simplicity, here we consider 
all counters using negative edge-triggered J -K  flip-flops. The other 
design using T  or D  or positive edge-triggered flip-flops will be 
explained through examples.

8.4.1 2-bit Ripple Up-counter

The 2-bit up counter counts in the order 0, 1, 2, 3, 0, 1,...or in binary 
as 00, 01, 10, 11, 00, 01,.... etc. A 2-bit ripple up-counter, using 
negative edge-triggered J -K  FFs is shown in Figure 8.4.1. The timing 
diagram is illustrated in Figure 8.4.2.

Working
The counter is initially reset to 00. The counting sequence can be 
understood as follows:
1. When the first clock pulse is applied, FF-0 toggles at the 

negative-going edge of this pulse, therefore, Q0 goes from 0 to 1. 
This becomes a positive going signal at the clock input of FF- 1. 

READER NOTE
A counter that goes through all the possible 
states before restarting is called the full 
modulus counter. A counter in which the 
maximum number of states can be changed is 
called the variable modulus counter. 

READER NOTE
FF is short term used for flip-flop.
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So, FF-1 is not affected and 0Q1 = , Hence, the state of the 
counter after one clock pulse is 1Q0 =  and 0Q1 = , i.e.Q Q 011 0 = .

2. At the negative-going edge of the second clock pulse, FF-0 
toggles. So Q0 changes from 1 to 0 and this negative-going signal 
applied to CLK of FF-1 activates FF-1, and hence, Q1 goes from 
0 to 1. Therefore, 0Q0 =  and 1Q1 = , i.e., Q Q 101 0 =  is the state 
of the counter after the second clock pulse.

3. At the negative-going edge of the third clock pulse, FF-0 toggles. 
So Q0 changes from a 0 to a 1. This becomes a positive-going 
signal to FF-1, hence, FF-1 is not affected i.e., 1Q1 = . Therefore, 

1Q1 =  and 1Q0 = , i.e. 1Q Q 11 0 =  is the state of the counter after 
the third clock pulse. 

4. At the negative-going edge of the fourth clock pulse, FF-0 
toggles. So, Q0 goes from a 1 to a 0. This negative-going signal 
at Q0 toggles FF-1, hence, Q1 also changes from a 1 to a 0. 
Therefore, 0Q1 =  and 0Q0 = , i.e., Q Q 001 0 =  is the state of the 
counter after the fourth clock pulse. 

For remaining clock pulses, the counter goes through the same 
sequence of states. The 2-bit ripple counter circuit has four different 
states as depicted in Table 8.4.1. So, it acts as a mod-4 counter with 
Q0 as the LSB and Q1 as the MSB. The counting sequence is thus, 00, 
01, 10, 11, 00, 01, ....., etc.

8.4.2 2-bit Ripple Down Counter

A 2-bit down-counter counts in the order 0, 3, 2, 1, 0, 3, ....or, in 
binary as 00, 11, 10, 01, 00, 11, ...., etc. A 2-bit ripple down-counter, 
using negative edge-triggered J -K  FFs is shown in Figure 8.4.3. The 

Figure 8.4.1: Logic diagram of 2-bit binary ripple up-counter

Figure 8.4.2: Timing diagram of 2-bit 
binary ripple up-counter

Table 8.4.1: Counting sequence of 2-bit 
ripple up counter

Clock Pulse Q1 Q0

0 0 0

1 0 1

2 1 0

3 1 1

4 (repeat) 0 0
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Therefore FF-1 toggles and Q1 goes from a 0 to a 1. So, after 
fourth clock pulse 1Q1 =  and 1Q0 = , i.e. the state of the counter 
is 11.

For remaining clock pulse the counter goes through the  same 
sequence of states, i.e. the counter counts in the order 11, 10, 01, 00, 
and 11...Table 8.4.2 shows the counting sequence of 2-bit ripple down 
counter.

8.4.3 3-bit Ripple up counter

The 3-bit up counter counts in the order 0, 1, 2, 3, 4, 5, 6, 7, 0, 1,...
or in binary as 000, 001, 010, 011, 100, 101, 110, 111,.... etc. A 3-bit 
ripple up-counter, using negative edge-triggered J -K  FFs is shown in 
Figure 8.4.5. The timing diagram is illustrated in Figure 8.4.6. 

Figure 8.4.5: Logic diagram of a 3-bit binary ripple up-counter

Figure 8.4.6: Timing diagram of a 3-bit binary ripple up-counter

The outputs of the three flip-flops are designated as Q0 (LSB), 
Q1, and Q2 (MSB). Counting sequence of a 3-bit up counter is shown 
in Table 8.4.3. The output Q0 (LSB) changes its state (toggle) at each 
negative transition of clock. Output of FF-0 i.e, Q0 is applied as the 
clock input of FF-1. Therefore, Q1 output of FF-1 changes state every 

Table 8.4.2: Counting sequence of a 
2-bit ripple down counter

Clock Pulse Q1 Q0

0 1 1

1 1 0

2 0 1

3 0 0

4 (repeat) 1 1
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time Q0 goes from 1 to 0 (negative edge).
Output of FF-1 i.e., Q1 is the clock of FF-2. Therefore, output 

Q2 of FF-2 toggles each time when Q1 goes from 1 to 0.

Table 8.4.3: Counting sequence of 3-bit ripple up counter

Clock Pulse Q2 Q1 Q0

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 (repeat) 0 0 0

Working
The basic operation is same as that of the 2-bit up counter discussed 
earlier, except that the 3-bit counter has eight states, as it has 3 flip-
flops. Let us assume that all the flip-flops are initially cleared to the 
‘0’ state.
1. On the negative-going edge of the first clock pulse, FF-0 toggles 

and Q0 goes from ‘0’ to ‘1’. As the flip-flops used are negative 
edge-triggered ones, the ‘0’ to ‘1’ transition of Q0 does not trigger 
flip-flop FF-1. Therefore, FF-1 along with FF-2, remains in its 
‘0’ state. So, on the occurrence of the first negative-going clock 
transition, Q 10 = , Q 01 = , Q 02 =  i.e., counter state Q Q Q 0012 1 0 =

2. On the negative edge of the second clock pulse, Q0 toggles again. 
That is, it goes from ‘1’ to ‘0’. This ‘1’ to ‘0’ transition at the Q0 
output triggers FF-1, the output Q1 of which goes from ‘0’ to ‘1’. 
The Q2 outputs remains unaffected. Therefore, immediately after 
the occurrence of the second clock pulse, Q 00 = , Q 11 = , Q 02 =  
i.e., counter state Q Q Q 0102 1 0 = .

3. On the negative edge of third clock pulse, FF-0 toggles and Q0 
becomes 1. This 0 to 1 transition at the Q0 output does not affect 
FF-1 because it is negative edge triggered. So output at the third 
clock pulse will be 01Q Q Q 12 1 0 = .

In the similar way, we can explain the logic status of Q0, Q1 and 
Q2 outputs immediately after subsequent clock transitions.

8.4.4 3-bit Ripple Down Counter

A 3-bit down-counter counts in the order 7, 6, 5, 4, 3, 2, 1, 0, 7 ....or, 
in binary as 111, 110, 101, 100, 011, 010, 001, 000, 111 ...., etc. A 3-bit 
ripple down-counter, using negative edge-triggered J -K  FFs is shown 
in Figure 8.4.7. The timing diagram is illustrated in Figure 8.4.8.

DO REMEMBER
If you compare this counter with the up-
counter in Figure 8.4.5 the only difference 
you will notice is that, in the down counter in 
Figure 8.4.7 the complement output instead 
of the normal output, is connected to the 
clock input of the next flip-flop. However, the 
counter output in both up and down counters, 
is the normal output, Q, of the flip-flops.
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From the Table 8.4.4 and Figure 8.4.8, we can see that Q0 
toggles at every negative going clock edge. On the other hand, Q1 
toggles each time when Q0 changes from 0 to 1 i.e., Q 0 goes from 1 
to 0 (negative edge). Similarly, Q2 toggles each time when Q1 changes 
from 0 to 1 i.e., Q1 goes from 1 to 0 (negative edge).

Working
Let as assume initial count of the counter is Q Q Q 1112 1 0 = . 
1. On the negative-going edge of the first clock pulse, FF-0 toggles 

and Q0 goes from ‘1’ to ‘0’ i.e., Q 0 goes from 0 to 1. As the 
flip-flops used are negative edge-triggered ones, the ‘0’ to ‘1’ 
transition of Q 0 does not trigger flip-flop FF-1. Therefore, FF-1 
along with FF-2, remains in its ‘1’ state. So, on the occurrence of 
the first negative-going clock transition, Q 00 = , Q 11 = , Q 12 =  
i.e., counter state Q Q Q 1102 1 0 = .

2. On the negative edge of the second clock pulse, Q0 toggles again. 
That is, it goes from ‘0’ to ‘1’ i.e., i.e., Q 0 goes from 1 to 0. This 
‘1’ to ‘0’ transition at the Q 0 output triggers FF-1, the output Q1 
of which goes from ‘1’ to ‘0’ i.e., Q1 make a positive transition(0 
to 1) and therefore, the Q2 outputs remains unaffected. Hence, 
immediately after the occurrence of the second clock pulse, 
Q 10 = , Q 01 = , Q 12 =  i.e, counter state 1Q Q Q 012 1 0 = .

In the similar way, we can explain the logic status of Q0, Q1 and 
Q2 outputs immediately after subsequent clock transitions.

8.4.5 4-bit Ripple up counter

A 4-bit up-counter counts from 0 to 15 or in binary, from 0000 to 
1111. A 4-bit ripple up-counter, using negative edge-triggered J -K  
FFs is shown in Figure 8.4.9. The inputs J  and K  of flip-flops are 
connected to logic 1. Each flip-flop acts as a toggle switch.

Figure 8.4.9: Logic diagram of a 4-bit binary ripple up-counter

The output of the first flip-flop feeds the clock input of the 
second, and the output of the second flip-flop feeds the clock input 
of the third, the output of which in turn feeds the clock input of the 
fourth flip-flop. The outputs of the four flip-flops are designated as 
Q0 (LSB), Q1, Q2 and Q3 (MSB). Figure 8.4.10 shows the waveforms 
appearing at Q0, Q1, Q2 and Q3 outputs as the clock signal goes 
through successive cycles of trigger pulses.
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Figure 8.4.10: Timing diagram of a 4-bit binary ripple up-counter

The counting sequence of a 4-bit ripple counter is given in 
Table 8.4.5.

Table 8.4.5: Counting sequence of 4-bit ripple up counter

Clock Pulse Q3 Q2 Q1 Q0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1
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If you compare this counter with the up-counter in Figure 8.4.9 
the only difference you will notice is that, in the down counter in 
Figure 8.4.11, the complement output instead of the normal output, 
is connected to the clock input of the next flip-flop. However, the 
counter output in both up and down counters, is the normal output, 
Q, of the flip-flops.

Figure 8.4.11: Logic diagram of a 4-bit binary ripple down-counter

The timing diagram is shown in Figure 8.4.12. It shows the 
waveforms appearing at Q0, Q1, Q2 and Q3 outputs as the clock signal 
goes through successive cycles of trigger pulses.

Figure 8.4.12: Timing diagram of a 4-bit binary ripple down-counter

Figure 

The counting sequence of a 4-bit ripple counter is given in 
Table 8.4.6.
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Table 8.4.6: Counting sequence of 4-bit ripple down counter

Clock Pulse Q3 Q2 Q1 Q0

0 1 1 1 1

1 1 1 1 0

2 1 1 0 1

3 1 1 0 0

4 1 0 1 1

5 1 0 1 0

6 1 0 0 1

7 1 0 0 0

8 0 1 1 1

9 0 1 1 0

10 0 1 0 1

11 0 1 0 0

12 0 0 1 1

13 0 0 1 0

14 0 1 0 1

15 0 0 0 0

Working
The basic operation is same as that of a 3-bit down counter. In this 
case each flip flop toggles when its clock input goes from 1 to 0. The 
Q 0 output feeds the clock input of FF-1, Q1 output feeds clock input 
feeds clock input of FF-2 and Q 2 output feeds clock input of FF-3. 
Thus FF-1 toggles when Q 0 goes from 1 to 0 (this is equivalent to Q0 
going from 0 to 1). Initially counter state is Q Q Q Q 11113 2 1 0 = . 
1. On the negative-going edge of the first clock pulse, FF-0 toggles 

and Q0 goes from ‘1’ to ‘0’ i.e., Q 0 goes from 0 to 1. As the 
flip-flops used are negative edge-triggered ones, the ‘0’ to ‘1’ 
transition of Q 0 does not trigger flip-flop FF-1. Therefore, FF-1 
along with FF-2 and FF-3 remains in its ‘1’ state. So, on the 
occurrence of the first negative-going clock transition, Q 00 = , 
Q 11 = , Q 12 =  and Q 13 =  i.e., counter state 110Q Q Q Q3 2 1 0 = .

2. On the negative edge of the second clock pulse, Q0 toggles again. 
That is, it goes from ‘0’ to ‘1’ i.e., i.e., Q 0 goes from 1 to 0. This 
‘1’ to ‘0’ transition at the Q 0 output triggers FF-1, the output Q1 
of which goes from ‘1’ to ‘0’ i.e., Q1 make a positive transition(0 
to 1) and therefore, the Q2 outputs remains unaffected. Hence, 
immediately after the occurrence of the second clock pulse, Q 10 =
, Q 01 = , Q 12 =  and Q 13 = i.e, counter state 1 01Q Q Q 12 1 0 = .

In the similar way, we can explain the logic status of Q0, Q1, Q2 
and Q3 outputs immediately after subsequent clock transitions.
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EXAMPLE 8.3
Design a 3-bit binary ripple counter using negative edge trigger T  
flip-flops.

SOLUTION :

For ripple counters, the FFs used must be in toggle mode. The T  
FFs may be used in toggle mode by connecting T  input to logic 1. 
As explained in section 8.5, if the flip-flops used to construct the 
counter are negative edge triggered and the clock inputs are fed from 
Q  outputs, the counter counts in the reverse or downward count 
sequence. So, the logic diagram of 3-bit down counter using negative 
edge trigger T FFs are as shown below.

Table E8.3.1 Counting sequence of 3-bit ripple down counter

Clock Pulse Q2 Q1 Q0

0 1 1 1

1 1 1 0

2 1 0 1

3 1 0 0

4 0 1 1

5 0 1 0

6 0 0 1

7 0 0 0

8 (repeat) 1 1 1

Explanation:
From the count sequence we observe that Q0 changes with every clock 
pulse. Q1 changes whenever Q0 changes from 0 to 1, therefore, if Q 0 is 
used as the clock input for FF-1 with T 11 = , the desired changes in 
Q1 will be obtained. Similarly, Q2 changes whenever Q1 goes from 0 to 
1. The desired changes in Q2 can be obtained by using Q1 as the clock 
input for FF-2 with T 12 = .
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EXAMPLE 8.4
Implement a 3-bit ripple up counter using negative edge triggered D  
flip-flops.

SOLUTION :

For ripple counters, the FFs used must be in toggle mode. The D  
FFs may be used in toggle mode by connecting the Q  of each FF 
to its D  terminal. If the flip-flops used to construct the counter are 
negative edge triggered and the clock inputs are fed from Q  outputs, 
the counter counts in the normal upward count sequence. The 3-bit 
ripple counter using D  FFs is shown in Figure.

8.6 UP/DOWN RIPPLE COUNTERS

As the name indicates an up-down counter is a counter which can count 
both in upward and downward directions. To form an asynchronous 
up/down counter one mode control input say M  is required to choose 
the direction of count.

We know that for a ripple up counter, the Q  output of preceding 
flip-flop is connected to the clock input of the next one. Also, for 
a ripple down counter, the Q  output of the preceding flip-flop is 
connected to the clock input of the next one. The selection of Q  or 
Q  output of the preceding flip-flop be controlled by the mode control 
input M . Let we choose M  such that,
1. If M 0= , the counter will count down and we connect Q  to clock 

input.

2. If M 1= , the counter will count up and we connect Q  to clock 
input.

Let us design a combinational logic to satisfy all the requirements 
stated above as shown in Figure 8.6.1.

.

Figure 8.6.1: The combination circuit to 
design a Up/Down ripple counter
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The counter works as follows:

1.  M 0=  (Down counting mode)
If M 0=  and M 1= , the AND gate 1 will be disabled whereas AND 
gate 2 will be enabled. Therefore, Q 0 gets connected to clock input 
of FF1 and the circuit becomes same as that of 2-bit down counter 
discussed in Section 8.4.1. Thus, for M 0=  the circuit will work as 
down counter.

2. M 1=  (up counting mode)
If M 1= , then AND gate 1 will be enabled whereas the AND gate 2 
will be disabled. Hence, Q0 gets connected to the clock input of next 
flip-flop FF1 and the circuit becomes same as that of 2-bit up counter 
as discussed in Section 8.4.2. Thus, for M 1=  the circuit works as up 
counter.

3-bit Ripple up/down Counter

The Figure 8.6.4 shows the 3-bit up/down counter that will count 
form 000 up to 111 when the mode control input M  is 1 and from 
111 down to 000 when mode control input M  is 0. The circuit works 
as follows

Figure 8.6.4: Logic diagram of a 3-bit ripple up-down counter

1.  M 0=  (Down counting mode)
If M 0=  and M 1= , the AND gates 1 and 3 in Figure 8.6.4 will be 
disabled whereas the AND gates 2 and 4 will be enabled. Hence, Q 0 
gets connected to the clock input of FF1 and Q1 gets connected  to 
the clock input of FF2. These connections are same as those for the 
normal down counter discussed in Section 8.4.3. Thus, with M 0= , 
the circuit works as a down counter.

2.  M 1=  (Up counting mode)
If M 1= , then AND gates 1 and 3 in Figure 8.6.4 are enabled whereas 
the AND gates 2 and 4 are disabled. Hence, Q0 gets connected to the 
clock input of FF1 and Q1 gets connected to the clock input of FF2. 
Now, the circuit becomes same as that of 3-bit up counter discussed in 
Section 8.4.4. Hence, with M 1= , the circuit works as an up counter.
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4.-bit Ripple up/down Counter

Similarly, a 4-bit up/down counter is shown in Figure 8.6.7, that will 
count down for M 0=  and will count up for M 1= . The working is 
same as discussed for 2-bit and 3-bit up/down counters.

Figure 8.6.4: Logic diagram of a 4-bit ripple up-down counter

8.7 BINARY RIPPLE COUNTER WITH A MODULUS OF LESS THAN 2N

The ripple counters discussed so far are full modulus counters. That is 
if n  is the number of flip-flops or bits, then it will have MOD number 
equal to 2n . This is the maximum MOD-number that can be obtained 
using n  flip-flops.

The basic n -flip-flop binary ripple counter can be modified 
to have a modulus less than 2 n , with the help of simple externally 
connected combinational logic. This type of counter does not utilize 
all the possible states. Some of the states will be skipped. We will 
illustrate this simple concept with the help of an example.

Mod-7 Ripple Counter
Consider the four flip-flop binary ripple counter as shown in 
Figure 8.7.1. Note that it uses J -K  flip-flops with an active LOW 
asynchronous CLEAR input.
1. The NAND gate in the Figure 8.7.1 has its output connected 

to the CLEAR inputs of all four flip-flops. Note that as long as 
the NAND gate output is HIGH, it will have no effect on the 
counter. But, when the NAND gate output goes LOW, it will 
clear all flip-flops, and the counter immediately goes to the 0000 
state.

2. The inputs to this three-input NAND gate are from the Q  
outputs of flip-flops FF-0, FF-1 and FF-2 i.e., Q0, Q1 and Q2 are 
the three inputs of NAND gate. The counter keeps counting as 
long as the asynchronous CLEAR inputs of the different flip-
flops are inactive. That is, the NAND gate output is HIGH. This 
is the case until the counter reaches 0110. 

3. With the seventh clock pulse it tends to go to 0111 i.e. 
Q Q Q 12 1 0= = = . It makes all NAND gate inputs HIGH, forcing 
its output to LOW. This HIGH-to-LOW transition at the NAND 
gate output clears all flip-flop outputs to the logic ‘0’ state, thus 
disallowing the counter to settle at 0111. 

READER NOTE
Note that if we disregard the NAND gate for 
some time, this counter will go through its 
natural binary sequence from 0000 to 1111. 



Chapter 8 Counters Page 519

As another illustration, if the NAND gate used in the counter 
arrangement of Figure 8.7.1 is a two-input NAND and its inputs are 
from the Q2 and Q3 outputs, the counter will go through 0000 to 1011 
and then reset to 0000 again, as, the moment the counter tends to 
switch from the 1011 to the 1100 state, the NAND gate goes from the 
‘1’ to the ‘0’ state, clearing all flip-flops to the ‘0’ state. Hence, this 
is a MOD-12 counter.

Steps to be followed to design MOD-N  are summarized as 
follows:

M E T H O D O L O G Y
1. Determine the minimum number of flip-flops n  so that 2N < n  

and connect these flip-flops as a binary ripple counter. 

2. Find the binary number for N .

3. Identify the flip-flops for which output Q 1= , when the count 
is N . Choose a NAND gate with the number of inputs equal 
to the number of flip-flops for which output Q 1= .

 As an example, if the objective were to design an MOD-11 
counter, then, in the corresponding count, that is, 1011, three 
flip-flops output are 1. The desired NAND gate would therefore 
be a three-input gate.

4. Connect the Q  outputs of the identified flip-flops to the inputs 
of the NAND gate and the NAND gate output to asynchronous 
clear inputs of all flip-flops.

Now, we shall consider design of a MOD-6 and MOD-10 ripple 
counter by using above methodology. 

Figure 8.7.3: Logic Diagram of MOD-6 Ripple Counter

8.7.1 Design of MOD-6 Ripple Counter

The steps are as follows:

1. Here N 6= , so the minimum number of flip-flops such that



Page 520 Counters Chapter 8

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

26 < 3, will be 3. Now, connect three-flops as a binary ripple 
counter shown in Figure 8.7.3.

2. The binary number for N  is 110.

3. The flip-flops for which output will be 1 at the count 110 are FF2 
and FF1. So we choose a 2-input NAND gate.

4. Connect the Q  outputs of the FF2 and FF1 flip-flops that is Q2 
and Q1 to the inputs of the NAND gate and the NAND gate 
output to asynchronous clear inputs of all flip-flops.

The arrangement is shown in Figure 8.7.3 and the timing 
diagram is shown in Figure 8.7.4.

Figure 8.7.4: Timing Diagram of MOD-6 ripple counter

The counter counts from 000 to 101 until NAND gate output is 
HIGH. But, when it goes to state 110, all NAND gate inputs becomes 
HIGH and its output will be LOW. Therefore, all the flip-flops will 
be cleared and it resets back to state 000. 

From timing diagram we can see that the frequency of the Q2 
output is one-sixth of the input clock frequenc y. In other words, this 
MOD-6 counter has divided the input frequency by 6.

8.7.2 Design of MOD-10 Ripple Counter (Decade or BCD 
Counter)

A MOD-10 counter is a decade counter. It counts from 0000 through 
1001 and is also called a BCD counter, because it’s ten-states sequence 
is the BCD code. These counters are useful in display applications in 
which BCD is required for conversion to a decimal read out. 

The design procedure is same as discussed earlier. Steps are 
given as below:
1. Here N 10= , so the minimum number of flip-flops such that

210 < 4 , will be 4. Now, connect four-flops as a binary ripple 
counter shown in Figure 8.7.5.

2. The binary number for N 10=  is 1010.

READER NOTE
MOD-10 counter is also referred to as divide 
by-10 counter.
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The counter counts from 0000 to 1001 until NAND gate output 
is HIGH. But, when it goes to state 1010, all NAND gate inputs 
becomes HIGH and its output will be LOW. Therefore, all the flip-
flops will be cleared and it resets back to state 0000. 

From timing diagram we can see that the frequency of the Q3 
output is one-tenth of the input clock frequency. In other words, this 
MOD-10 counter has divided the input frequency by 10.

EXAMPLE 8.5
Design a divide-by-5 ripple counters using negative edge triggered T  
flop-flops :

SOLUTION :

To design MOD-5 counter we follow the steps as below:

Step 1: Here MOD of counter is 5, so we need 5 2 3#  i.e., 3 flip-flops. 
Binary number for N 5=  is 101.

Step 2: Binary number for N 5=  is 101.

Step 3: Flip Flops for which output will be 1 at the count 101 are 
FF-0 and FF-2. So, we choose a 2-input NAND gate.

Step 4: Connect the Q  outputs of FF-0 and FF-2 to the inputs of 
NAND gate and connect the NAND gate output to asynchronous 
clear inputs of all flip-flops.

The logic diagram is shown in Figure below:

EXAMPLE 8.6
A flip-flop has a 10 ns delay form the time the clock edge occurs to 
the time the output is complemented. What is the maximum delay in 
a 10-bit binary ripple counter that uses this type of flip-flop? What is 
the maximum frequency the counter can operate with reliably?

SOLUTION :

Maximum delay, T  ntpd=
Where n  is no. of bits and tpd  is propagation delay. So,

EXPLANATION
For ripple counters, the FFs used must be 
in toggle mode. The T  FFs may be used in 
toggle mode by connecting T  input to logic 
1. As explained in section 8.5, If the flip-flops 
used to construct the counter are negative 
edge triggered and the clock inputs are fed 
from Q  outputs, the counter counts in the 
normal upward count sequence.
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 T  10 100ns ns10= =_ _i i

Maximum clock frequency

 fmax nt
1

100 10
1

pd
9#

= = -

  10 MHz=

8.8 PROPAGATION DELAY IN RIPPLE COUNTERS

A major problem with ripple counters is due to the propagation delay 
of the flip-flops used in the counter. In these counters, each flip-flop is 
triggered by the transition of the output of the preceding flip-flop. Let 
propagation delay of each flip-flop is tpd . Then, due to the inherent 
propagation delay, the first flip-flop output, Q0 will be available after 
a period of propagation delay tpd  when clock pulse is applied as shown 
in Figure 8.8.1. The second flip-flop responds after 2 tpd# . Third flip-
flop responds after t3 pd#  and so on. 

Thus, if the counter consists of ‘n ’ flip-flops, then n th  flip-flop 
changes states after n tpd#  time delay from the input clock pulse. 
Therefore, for the proper operation of n -bit counter, the time period 
of clock signal must be greater than or equal to n tpd# .

So, T clock  n tpd#2

where, T clock  is the period of clock, n  is the number of bits or 
stages and tpd  is propagation delay. The maximum clock frequency 
therefore corresponds to a time period that equals the total 
propagation delay. 

 fmax 1
n tpd#

=
_ i

So the maximum clock frequency for an asynchronous counter 
f max decreases as number of bits increases. 

EXAMPLE
For example, in a four stage asynchronous 
counter, the propagation delay of each flip-
flop is ns20 , then the maximum frequency at 
which the counter operate properly is

f max   n t
1

pd#
=  .

ns
MHz

4 20
1 12 5

#
= =

Figure 8.8.1: Waveform of a 3-bit asynchronous counter 
with propagation delay t3 pd#
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Step 5: Logic Diagram
Using the above minimized expression, the logic diagram of given 
counter can be drawn as shown below.

8.9 DECODING A RIPPLE COUNTER

Sometimes it is important to detect or decode different states of the 
counter. Decoding gates are used to indicate whether counter has 
reached to particular state. We will further illustrate the concept of 
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decoding a counter with the help of an example. 
Consider a 2-bit binary ripple counter with a decoding network 

as shown in Figure 8.9.1. Here each AND gate is referred to as decoding 
gate. A decoding gate is one which can be connected to the outputs 
of a counter and its output will be high only for a particular state.

For example, the decoding gate-2 connected in the circuit will 
decode state (10). Thus the gate output will be high only when 1Q1 =
, 0Q0 = . The logic expression for the decoding gate 3 is Y Q Q2 1 0= . 
Thus, each AND gate decodes a particular state of the counter.

Here, we have two important observations to make given as below. 

P O I N T S  T O  R E M E M B E R

1. The number of AND gates used in the decoder network 
equals the number of logic states to be decoded, which 
further equals the modulus of the counter.

2. The number of inputs to each AND gate equals the number 
of flip-flops used in the counter.

For example, for a mod-8 counter we need 8 decoding AND gates each 
with 3-inputs as shown in Figure 8.9.2.

Glitch Problem in Decoder
Ideally, each decoding output will be high only when the counter 
content is equal to particular state which occurs only once during a 
cycle of 2n -states of the counter, where n  is the number of flip-flops 
in the counter. 

Figure 8.9.1: 2-bit ripple counter with 
decoding gates
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produces a high output more than once during a cycle of 2n -states. 
Such undesired high or low pulses that appear at the decoding gate 
output at undesired time instants are called glitches (or spikes). These 
glitches basically due to the cumulative propagation delay as we move 
from one flip-flop to the next in a ripple counter. 

It can be best illustrated with the help of the 3-bit ripple 
counter shown in Figure 8.9.1. The timing waveforms shown in Figure 
8.9.3 and are self-explanatory. We can see the appearance of glitches 
at the output of decoding gates that decode Y0 and Y2 states. 

The waveform given in Figure shows that the first flip-flop 
output (Q0) is delayed by propagation delay (tpd ) of flip-flop from the 
negative clock transition. Since Q0 acts as trigger for flip-flop FF1, Q1 
is delayed by one flip-flop delay time from each negative transition of 
Q0. Because of this cumulative propagation delay, glitches may appear 
at one or more decoding gate outputs as shown in the Figure. This 
problem for all practical purposes is absent in synchronous counters.

8.10 SYNCHRONOUS COUNTER

The synchronous counter is clocked in such way that all flip-flops 
in the counter are triggered simultaneously and all output bits also 
change state simultaneously. This operation can be performed when 
the clock is connected to clock input of all flip-flops so that all flip-
flops receive the same clock pulse at the same time.

In synchronous counters, whether a flip-flop toggles or not 
depends on the flip-flops inputs (J , K , or D , or T , or S , R). Hence, 
there needs to be additional logic circuitry to ensure that the various 
flip-flops toggle at the same time. 

8.10.1 4-bit Synchronous Up Counter

For example, consider the counting sequence of a four bit binary 
count shown in Table 8.10.1. We note that flip-flop FF-0 toggles with 
every clock pulse, flip-flop FF-1 toggles only when the output of FF0 
is in the ‘1’ state, flip-flop FF2 toggles only with those clock pulses 
when the outputs of FF0 and FF1 are both in the logic ‘1’ state and 
flip-flop FF3 toggles only with those clock pulses when Q0, Q1 and Q2 
are all in the logic ‘1’ state. Such logic can be easily implemented with 
AND gates as shown in Figure 8.10.1. This is a 4-bit synchronous 
counter using J -K  flip-flop. The timing waveforms are shown in 
Figure 8.10.2 which is self-explanatory.

Table 8.10.1: Count sequence of a four bit binary counter

Count Q3 Q2 Q1 Q0 Count Q3 Q2 Q1 Q0

0 0 0 0 0 8 1 0 0 0

1 0 0 0 1 9 1 0 0 1

2 0 0 1 0 10 1 0 1 0

3 0 0 1 1 11 1 0 1 1

4 0 1 0 0 12 1 1 0 0

READER NOTE
Synchronous counter is also referred to as 
parallel counter.

ADVANTAGE
Synchronous counters have the advantages of 
high speed and less severe decoding problems, 
but the disadvantage of having more circuitry 
than that of asynchronous counters.
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Count Q3 Q2 Q1 Q0 Count Q3 Q2 Q1 Q0

5 0 1 0 1 13 1 1 0 1

6 0 1 1 0 14 1 1 1 0

7 0 1 1 1 15 1 1 1 1

Figure 8.10.1: Logic diagram of a 4-bit synchronous up-counter

Figure 8.10.2: Timing diagram of a 4-bit synchronous up-counter

We can now look into the counting process of this counter. We begin 
by resetting the counter to 0000.

 
Q Q Q Q
0 0 0 0

3 2 1 0

Since,Q0 is low and J  and K  are high, the first negative clock edge 
will set FF-0. The counter output will now be as follows:

 
Q Q Q Q
0 0 0 1

3 2 1 0
 (After 1st Clock Pulse)
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Figure 8.10.3: Logic diagram of a 4-bit synchronous down-counter

8.10.3 Propagation Delay in Synchronous Counter

As explained earlier, in ripple counters, the total propagation delay 
is equal to the sum of propagation delays due to different flip-flops. 
On the other hand, in a synchronous counter, all flip-flops in the 
counter are clocked simultaneously in synchronism with the clock, the 
propagation delays of FFs do not add together to produce the overall 
delay. In fact, the propagation delay of a synchronous counter is equal 
to the propagation delay of just one FF plus the propagation delay of 
the gates involved.

The total delay time of a synchronous counter can be expressed 
as,

 Total delay time = Propagation delay of one flip-flop tpd_ i

   + propagation delay of AND gates tg_ i

Thus, the propagation delay is always constant and it is 
independent of the total number of flip-flops. Normally, it is much 
less than the propagation delay of asynchronous counter with the 
same number of flip-flops.

Also, the problem of glitches can be avoided in synchronous 
counters because all the flip-flops are connected to common clock.

8.11 DESIGN OF SYNCHRONOUS COUNTERS

In this section, we will discuss a commonly used technique to design  
synchronous counter using J -K  flip-flop or D  flip-flop or T  flip-flop. 
The design of synchronous counters basically involves designing a 
suitable combinational logic circuit that takes its inputs from the 
normal and complemented outputs of the flip-flops used and decodes 
the different states of the counter to generate the correct logic states 
for the inputs of the flip-flops such as J , K , D , etc. 

But before we illustrate the design procedure with the help of 
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an example, we will explain what is the state transition diagram of a 
counter.

State Transition Diagram
The state transition diagram is a graphical representation of different 
states of a given sequential circuit and the sequence in which these 
states occur in response to a clock input. Different states are represented 
by circles, and the arrows joining them indicate the sequence in which 
different states occur. As an example, Figure 8.11.1 shows the state 
transition diagram of an MOD-8 binary counter.

Design Procedure
The design procedure of synchronous counter is as follows:

M E T H O D O L O G Y

1. Number of Flip-flops
Find the number of flip-flops required. For a Mod-M  counter, the 
minimum number of flip-flops required is n , such that M 2n# .

2. State Transition Diagram
Draw the state transition diagram showing all possible states. Note 
that we can also include invalid state in the state transition diagram. 
If the next state to invalid state is not mentioned, we take it 000.

3. Choice of Flip-flops and Excitation Table
Select the type of the flip-flops to be used and write the excitation 
table for the counter. An excitation table is a table that lists the 
present state (PS), the next state (NS) and the required excitations 
of the flip-flops inputs.

Note that entries for excitations corresponding to invalid 
states are taken as don’t care.

4. Minimal Expression for Flip-flop Inputs
Prepare K-map for each input of flip-flops in terms of the present 
states of flip-flops. Obtain the minimal expressions for the excitations 
of the FFs using the K-maps

5. Logic Diagram
Connect the inputs of the flip-flops as per the simplified Boolean 
equations.

READER NOTE
The circuit excitation table can be drawn very 
easily once we know the excitation table of the 
flip-flop to be used for building the counter.

The above procedure can be best illustrated with some designe 
examples as given in next subsections.

8.11.1 Design of a Synchronous 3-bit Up Counter

Let us consider design of a 3-bit synchronous counter using three J -
K  flip-flops. It has 8 states and also called MOD-8 counter. It counts 
as 000, 001, 010, 011, 100, 101, 110 ,111, 000.... The design procedure 
is given as below.

Figure 8.11.1: State diagram of MOD-8 
counter
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From the K-maps, the simplified expressions for flip-flops input 
excitations are obtained as 

 J2 Q Q1 0= ,   K2 Q Q1 0=

 J1 Q0= ,      K1 Q0=

 J0 1= ,         K0 1=

Step 5: Logic Diagram
Using the above minimized expressions, the logic diagram for the 
3-bit up counter can be drawn as shown in Figure 8.11.3.

Figure 8.11.3: 3-bit synchronous up-counter using J-K flip-flop

8.11.2 Design of a Synchronous MOD-3 Counter

Consider the design of a MOD-3 up counter using J -K  flip-flops. It 
has three states 00, 01 and 10. The steps involved in design are as 
follows:

Step 1: Number of Flip-flops
Here, modulus M 3= , so 23 2#  and therefore, the number of flip-
flops required will be 2.

Step 2: State Transition Diagram
The state transition diagram with three possible states is shown in 
Figure 8.11.4. Transition of states from one state to other take place 
when clock pulse is triggered, otherwise it remains in present state.

Step 3: Choice of Flip-flops and Excitation Table

J -K  flip-flops are selected for this design. The excitation table of 
counter is drawn as shown in Table 8.11.2. Note that inputs J  and 
K  can be obtained with the help of excitation table of J -K  flip-flop. 
Note that state 11 is invalid so the J -K  inputs corresponding to this 
are taken as don’t care.

Figure 8.11.4: State diagram of MOD-3 
counter
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Table 8.11.2: Excitation table for MOD-3 counter

Present State Next State Excitation Inputs

Q1 Q0 Q1 Q0 J1 K1 J0 K0

0 0 0 1 0 X 1 X

0 1 1 0 1 X X 1

1 0 0 0 X 1 0 X

Step 4: Minimal Expression for Flip-flop Inputs
Now we construct the K-map for flip-flops inputs J0, K0, J1 and K1 in 
terms of present states Q1 and Q0 as shown below.

From the above K-maps, the simplified excitation functions are: 

 J0 Q1= ,  K 10 =

and J1 Q0= ,  K 11 =

Step 5: Logic Diagram
Using the above minimized expressions, the logic diagram for the 
MOD-3 counter can be drawn as shown in Figure 8.11.5.

Figure 8.11.5: Logic diagram of synchronous MOD-3 counter

8.11.3 Design of a Synchronous MOD-6 Counter

We know that the MOD-6 counter has six states and it counts as 
000, 001, 010, 011, 100, 101, 000. We consider the design of MOD-6 
counter using J -K  flip-flops. The steps of design are as follows:
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From the K-maps, the simplified expressions for flip-flops input 
excitations are obtained as 

 J2 Q Q1 0= ,   K2 Q0=

 J1 Q Q2 0= ,   K1 Q0=

 J0 1= ,         K0 1=

Step 5: Logic Diagram
Using the above minimized expressions, the logic diagram for the 
MOD-6 counter can be drawn as shown in Figure 8.11.7.

Figure 8.11.7: Logic diagram of synchronous MOD-6 counter

8.11.4 Design of a Synchronous MOD-10 (BCD or Decade) 
Counter

A BCD or Decade (MOD-10) counter has ten states i.e., 0 to 9. We 
consider the design of MOD-10 counter using J -K  flip-flops. The 
steps of design are as follows: 

Step 1: Number of Flip-flops
Here, modulus M 10= , so 210 4#  and therefore, the number of flip-
flops required will be 4.

Step 2: State Transition Diagram
The state diagram for the BCD counter is drawn as shown in Figure 
8.11.8.

Step 3: Choice of Flip-flops and Excitation Table

J -K  flip-flops are selected and the excitation table of a mod-10 
counter using J -K  flip-flops is drawn as in Table 8.11.4. Note that 
six states 1010, 1011, 1100, 1101, 1110 and 1111 are invalid, so the 
excitation inputs corresponding to these states are taken as don’t care 
and hence these states are not included in state diagram as well as in 
excitation table.

Figure 8.11.8: State diagram of 
synchronous MOD-10 (BCD) counter
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Table 8.11.4: Excitation table for MOD-10 counter

Present state Next state Required excitations

Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0 J3 K3 J2 K2 J1 K1 J0 K0

0 0 0 0 0 0 0 1 0 X 0 X 0 X 1 X

0 0 0 1 0 0 1 0 0 X 0 X 1 X X 1

0 0 1 0 0 0 1 1 0 X 0 X X 0 1 X

0 0 1 1 0 1 0 0 0 X 1 X X 1 X 1

0 1 0 0 1 0 0 1 0 X X 0 0 X 1 X

0 1 0 1 0 1 1 0 0 X X 0 1 X X 1

0 1 1 0 0 1 1 1 0 X X 0 X 0 1 X

0 1 1 1 1 0 0 0 1 X X 1 X 1 X 1

1 0 0 0 1 0 0 1 X 0 0 X 0 X 1 X

1 0 0 1 0 0 0 0 X 1 0 X 0 X X 1

Step 4: Minimal Expression for Flip-flop Inputs
The K-maps for excitations of flip-flops J3, K3, J2, K2, J1, K1, J0 and 
K0 in terms of the present state of flip-flops Q3, Q2, Q1 and Q0 can be 
drawn as shown below. 
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Table 8.11.5: Excitation table for MOD-6 Gray Code counter

Present state Next state Required excitations

Q2 Q1 Q0 Q2 Q1 Q0 J2 K2 J1 K1 J0 K0

0 0 0 0 0 1 0 X 0 X 1 X

0 0 1 0 1 1 0 X 1 X X 0

0 1 1 0 1 0 0 X X 0 X 1

0 1 0 1 1 0 1 X X 0 0 X

1 1 0 1 0 0 X 0 X 1 0 X

1 1 1 0 0 0 X 1 0 X 0 X

Step 4: Minimal Expression for Flip-flop Inputs
The K-maps for excitations of flip-flops J2, K2, J1, K1, J0 and K0 in 
terms of the present state of flip-flops Q2, Q1 and Q0 can be drawn as 
shown below. 

From the K-maps, the simplified expressions for flip-flops input 
excitations are obtained as 

 J2 Q Q1 0= ,   K Q2 1=

 J1 Q0= ,       K Q1 2=

 J0 Q Q2 1= ,   K Q0 1=
There is no need to draw K-maps for J0 and K0 as from the truth 
table we can easily determine that J 10 =  and K 10 = .

Step 5: Logic Diagram
Using the above minimized expressions, the logic diagram for the 
MOD-6 Gray counter can be drawn as shown in Figure 8.11.11.
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Figure 8.11.11: Logic diagram of MOD-6 Gray code counter

EXAMPLE 8.8
Design a sequential counter as shown in the state diagram using JK  
flip-flop.

SOLUTION :

Step 1: The number of flip-flops
This counter has 7 different states, so it requires 3 FFs as 7 2 3#_ i.

Step 2: State transition Diagram
State diagram of desired counter is already given in the problem.

Step 3 : Choice of flip-flops and excitation table

JK  flip-flops are selected and the excitation table of this counter 
using JK  flip-flops is drawn as below. The entries for excitations 
corresponding to invalid state (101) is assumed as don’t cares and not 
included in the table.

Present state Next State Flip-Flop Inputs

Q2 Q1 Q0 Q2 Q1 Q0 J2 K2 J1 K1 J0 K0

0 0 0 0 1 0 0 X 1 X 0 X

0 1 0 1 0 0 1 X X 1 0 X

1 0 0 0 1 1 X 1 1 X 1 X

0 1 1 1 1 1 1 X X 0 X 0

1 1 1 1 1 0 X 0 X 0 X 1

1 1 0 0 0 1 X 1 X 1 1 X

0 0 1 0 0 0 0 X 0 X X 1
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EXAMPLE 8.9
Design a type T  synchronous counter that goes through states 0, 3, 
5, 6, 0. 

SOLUTION :

Step 1: The number of flip-flops
This counter has only four stable states, but it requires three FFs, 
because it counts 101 and 110 6 2 3#_ i. 

Step 2 : State transition Diagram
The state diagram for counter is shown in figure. Note that Three 
FFs can have 8 states, out of which states 000, 011, 101, 110 are valid 
and states 001, 010, 100, 111 are invalid. So, we do not include invalid 
states in the state diagram.

Step 3 : Choice of flip-flops and excitation table
 T  flip-flops are selected and the excitation table of this counter 
using T  flip-flops is drawn as below. The entries for excitations 
corresponding to invalid states are don’t cares and not included in 
the table.

Table  E8.9: Excitation table for given counter design

PS NS Required excitations

Q2 Q1 Q0 Q2 Q1 Q0 T2 T1 T0

0 0 0 0 1 1 0 1 1

0 1 1 1 0 1 1 1 0

1 0 1 1 1 0 0 1 1

1 1 0 0 0 0 1 1 0

Step 4 : Minimal expression for flip-flops inputs
The K-maps for excitation of flip-flops T2, T1 and T0 in terms of 
present state of flip-flops Q2, Q1 and Q0 can be drawn as shown below. 
We obtain minimized expression for flip-flops inputs from the K-maps 
as shown.
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Step 5: Logic Diagram
Using above minimized expression, the logic diagram of given counter 
can be drawn as shown below.

EXAMPLE 8.10
A synchronous counter with three J -K  flip-flops has the following 
connections :

 J0 K Q0 2= =

 J1 K Q1 0= =

 J2 Q Q1 0=

 K2 Q2=
Determine its (a) count sequence and (b) the modulus

SOLUTION :

Let us assume initially all flip-flops are reset i.e. Q Q Q 0002 1 0 = . 
Therefore, flip-flops inputs will be

    0J K Q 10 0 2= = = = ; J 10 = , K 10 =

    J K Q 01 1 0= = = ; J 01 = , K 01 =

    J Q Q 0 0 02 1 0 := = = ;
    K Q 02 2= = ;

J 02 = , K 02 =

So, at the first clock pulse, outputs of flip-flops will be

 Q2 0=  (Hold)

 Q1 0=  (Hold)

 Q0 1=  (Toggle)
Now, inputs of flip-flops will be,

    0J K Q 10 0 2= = = = ; J 10 = , K 10 =

    J K Q 11 1 0= = = ; J 11 = , K 11 =

    0 0J Q Q 12 1 0 := = = ;
    K Q 02 2= = ;

J 02 = , K 02 =
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Step 3: Choice of Flip-flops and Excitation Table

J -K  flip-flops are selected and the excitation table of a 3-bit up 
counter using J -K  flip-flops is drawn as in Table 8.12.1.

Table 8.12.1: Excitation table for MOD-8 Up/Down counter

Control Input Present State Next State Excitation Inputs

M Q2 Q1 Q0 Q2 Q1 Q0 J2 K2 J1 K1 J0 K0

0 0 0 0 1 1 1 1 X 1 X 1 X

0 0 0 1 0 0 0 0 X 0 X X 1

0 0 1 0 0 0 1 0 X X 1 1 X

0 0 1 1 0 1 0 0 X X 0 X 1

0 1 0 0 0 1 1 X 1 1 X 1 X

0 1 0 1 1 0 0 X 0 0 X X 1

0 1 1 0 1 0 1 X 0 X 1 1 X

0 1 1 1 1 1 0 X 0 X 0 X 1

1 0 0 0 0 0 1 0 X 0 X 1 X

1 0 0 1 0 1 0 0 X 1 X X 1

1 0 1 0 0 1 1 0 X X 0 1 X

1 0 1 1 1 0 0 1 X X 1 X 1

1 1 0 0 1 0 1 X 0 0 X 1 X

1 1 0 1 1 1 0 X 0 1 X X 1

1 1 1 0 1 1 1 X 0 X 0 1 X

1 1 1 1 0 0 0 X 1 X 1 X 1

Figure 8.12.1: State diagram of 
synchronous 3-bit up/down counter
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Step 4: Minimal Expression for Flip-flop Inputs
The K-maps for excitations of flip-flops J2, K2, J1, K1, J0 and K0 in 
terms of the present state of flip-flops Q3, Q2, Q1 and control input M  
can be drawn as shown below. 

From the K-maps, the simplified expressions for flip-flops input 
excitations are obtained as 

 J2 M Q Q MQ Q1 0 1 0= +

 K2 M Q Q MQ Q1 0 1 0= +

 J1 M Q MQ0 0= +

 K1 M Q MQ0 0= +

 J0 1=

 K0 1=

Step 5: Logic Diagram
Using the above minimized expressions, the logic diagram for the 
3-bit up counter can be drawn as shown in Figure 8.12.2.
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Table 8.13.1: Count Sequence of a 4-bit Ring Counter

Clock Pulse Q0 Q1 Q2 Q3

0 1 0 0 0

1 0 1 0 0

2 0 0 1 0

3 0 0 0 1

4 1 0 0 0

5 0 1 0 0

6 0 0 1 0

7 0 0 0 1

Figure 8.13.3: Timing diagram of the four-bit ring counter

Let us assume that flip-flop FF0 is initially set to a ‘1’ and all 
other flip-flops are reset to ‘0’. The counter output is therefore 1000. 
With the first clock pulse, this ‘1’ gets shifted to the second flip-flop 
output and the counter output becomes 0100. Similarly, with the 
second and third clock pulses, the counter output will become 0010 
and 0001. With the fourth clock pulse, the counter output will again 
become 1000. The sequence repeats after four clock pulses. From the 
above discussion we note the following point.

P O I N T S  T O  R E M E M B E R

The number of distinct states in the ring counter, i.e. the mod of 
the ring counter is equal to the number of flip-flops used in the 
counter.

Figure 8.13.2: State diagram of a 4-bit 
ring counter
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Advantage
An n -bit ring counter can count only n  bits whereas an n -bit ripple 
counter can count 2n  bits. So, the ring counter is uneconomical 
compared to a ripple counter. But, a ring counter does not require 
decoder circuit because we can read the count by simply noting which 
flip-flop is set. It also has the advantage of being very fast.

8.13.2 Johnson Counter

The Johnson counter on the other hand is constructed by providing 
feedback from the inverted output of the last flip-flop to the D  input 
of the first flip-flop. The Q  output of each stage is connected to the D  
input of the next stage, but the Q  output of the last stage is connected 
to the D  input of first stage, therefore, the name twisted ring counter. 
This type of feedback produces a unique sequence of states. Figure 
8.13.4 shows the logic diagram of a basic four-bit Johnson counter 
using D  flip-flops. 

Figure 8.13.4: Logic diagram of a 4-bit Johnson counter

Table 8.13.2 shows the count sequence of 4-bit ring counter. Its state 
diagram and timing diagrams are also shown in Figure 8.13.5 and 
8.13.6 respectively.

Table 8.13.2: Count Sequence of a 4-bit Johnson Counter

Clock Pulse Q0 Q1 Q2 Q3

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

8 0 0 0 0

9 1 0 0 0

Figure 8.13.5: State diagram of a 4-bit 
Johnson counter
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SOLUTION :

(a) The modulus of a ring counter is same as the number of bits (or 
flip-flops). Therefore, the number of flip-flops required is 10. 

(b) The modulus of a Johnson counter is twice the number of flip-
flops. Therefore, the number of flip-flops is 5.

8.14 CASCADING COUNTERS

Counters are connected in cascade to construct higher mod counters 
using smaller mod counters. In cascaded counters, the last stage 
output of one counter is fed to another counter. In the following 
sections, we will discuss such cascade arrangements of ripple counter 
and synchronous counters.

8.14.1 Cascading of Ripple Counters

Ripple counters can be connected in cascade to increase the modulus 
of the counter. A mod-M  and a mod-N  counter in cascade give a 
mod-MN  counter. In cascaded connection, the most significant stage  
of first counter is connected to clock input of second counter and so 
on.

Figure 8.14.1a shows the block diagram of cascade connection 
of two counters: one is mod-4 counter and other is mod-8 counter. 
The output of mod-4 counter is connected with input of clock of 
mod-8 counter. The overall mod value of counter is determined after 
multiplication of individual mod value of counters. So, the mod value 
is 4 8 32# = . The logic diagram is also shown in Figure 8.14.1b.

Figure 8.14.1: Cascade connection of mod-4 and mod-8 counters

Some other examples of counters in cascade are shown in Figure 
8.14.2a and 8.14.2b. Here it is important to note that cascading does 
not affect the frequency division. As shown in Figure 8.14.2a the 
input frequency is 60 Hz, and it is a divide by 6 10 60# =  counter, so 
output frequency will be 60/60 1 Hz= .
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Figure 8.14.2: Examples of cascading of counters

8.14.2 Cascading of Synchronous Counters

We have discussed cascading of ripple counters earlier. Similarly, 
synchronous counters can be connected in cascade from. When 
operating synchronous counters in a cascaded configuration, it is 
necessary to use the count enable CE^ h and the terminal count TC_ i 
functions. These functions are available on counter chips.

When count enable CE^ h signal is HIGH, counters start counting 
and when it is LOW counter does not count. Terminal count TC_ i 
is HIGH when a counter reaches its last count, otherwise it is LOW.

Figure 8.14.3 shows a mod-10 counter and a mod-8 counter 
connected in cascade. The terminal count TC_ i output of counter 1 is 
connected to the count enable CE^ h input of counter 2. 

Figure 8.14.3: Cascade connection of two mod-10 counters

The cascaded arrangement of Figure 8.14.3 works as follows:
1. When counter-1 does not reach its last count state, the TC  

signal of counter-1 is low and therefore, counter-2 is inhibited 
(disabled). 

2. Note that counter-1 completes a cycle after 10 clock pulse. After 
completion of first cycle counting of counter-1, TC  signal of 
counter-1 becomes high. This high enables counter-2 and the 
counter-2 starts to count and changes to next state. 

3. After completion of the second cycle of counter-1, TC  of counter-1 
is again high and counter-2 is again enabled and its state changes 
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to t2 as shown in Figure 8.15.1b. The counter starts counting at t1 
time and the counter stops counting at t2. Thus, the counter counts 
the number of pulses that occur during the sampling interval. This is 
a direct measure of the frequency of the pulse waveform. 

Normally, the counter is made by cascaded BCD counters, the 
decoder and seven segment display units. The decoder converts the 
BCD outputs into seven segment from and display in segment display 
units. In this way, the frequency of a signal is measured.

8.15.2 Other Applications

The other useful applications of counters are given hereunder:

The Digital clock
It is a very common example of a counter application in time keeping 
system. The 74LS160 decade counters (synchronous) are used for 
implementation of various counting operations, exclusively for hours, 
minutes and seconds.

Frequency dividers
The counters can be used as programmable frequency dividers. By 
presetting any number into the counter and counting to the maximum 
(UP counting) or minimum (DOWN counting) count, the division is 
achieved. This division operation is greatly used in various digital 
systems.

Auto parking control
This is a simple application of the UP/DOWN counter to solve the 
parking problem. It monitors and displays the available space in a 
parking garage.

Industrial digital control system
Counters are used in various industrial applications such as counting 
objects, speed measurement, frequency measurement etc.

***********
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EXAMPLES

EXAMPLE 8.12
For what minimum value of propagation delay in each FF will a 10-
bit ripple counter skip a count when it is clocked at 10 MHz ?

SOLUTION :

We know that for n -bit ripple counter clock period is limited by 
T ntC pd= , therefore

 T
1
C

 f nt
1

C
pd

= =

So, tpd  nf
1
C

=

or, mintpd _ i 10 ns
10 10 10

1
6# #

= =

EXAMPLE 8.13
Consider a four bit binary ripple counter shown in figure. Assume it 
is initially in the 0000 state before the clock input is applied to the 
counter. The clock pulses are applied to the counter at some time 
instant t1 and then again removed sometimes later at another time 
instant t2. The counter is observed to read 0011. How many negative 
going clock transitions have occurred during the time the clock was 
active at the counter input ?

SOLUTION :

Remember that this counter will repeat the sequence after every 16 
clock pulses and come back to initial state 0000. Given count 0011 is 
equivalent to decimal 3. This count could be possible after 3 pulses, 
or 19 pulses or 35 pulse or in general 16 3x +  clock pulses, where 

, , ...x 0 1 2=
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EXAMPLE 8.17
Design a 4-bit binary ripple down counter using positive edge triggered 
T -Flip flops.

SOLUTION :

For ripple counters, the FFs used must be in toggle mode. The T  FFs 
may be used in toggle mode by connecting T  input to logic 1. Since 
the given flip-flops are positive edge triggered and we have to design 
a down counter, connect the Q  output of flip-flop to clock input of 
next flip-flops. 

EXAMPLE 8.18
Determine the modulus of the counter and also the frequency of flip-
flop Q3 output in the counter circuit shown in figure.

SOLUTION :

The input to NAND gate which clears all the flip-flops are Q3 and 
Q2. So, when Q Q 113 2 = , he NAND output goes to logic ‘0’ state 
and immediately clears the counter to the 0000 state. Therefore, the 
counter counts in the natural sequence from 0000 to 1011. Therefore 
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modulus of counter 12= .

Frequency of the Q3 output waveform 12
1.2 10 100kHz kHz

3#= =

EXAMPLE 8.19
Design a mod-3 asynchronous counter using a 2-bit ripple counter.

SOLUTION :

The design procedure is given as below.

Step 1: Two J -K  flip flops will be required for mod-3 counter.

Step 2: Binary number for N 3=  is 11.

Step 3: Flip Flops for which output will be 1 at the count 11 are FF-0 
and FF-1. So, we choose a 2-input NAND gate.

Step 4: Connect the Q  outputs of FF-0 and FF-1 to the inputs of 
NAND gate and connect the NAND gate output to asynchronous 
clear inputs of all flip-flops. 

The logic diagram and timing diagram are shown in figure below.

EXAMPLE 8.20
For the ripple counter shown in Figure, draw the complete timing 
diagram for eight clock pulses, showing the clock, Q0, and Q1 
waveforms.

READER NOTE
A MOD N counter divides the input frequency 
by N.
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Step 5. The logic diagram 
The logic diagram based on those minimal expressions obtained from 
K-maps is drawn as shown below.

EXAMPLE 8.22
Consider a certain type of flip-flop with inputs X1 and X2 and 
excitation table as shown below.

Present State Next State Inputs

Qn_ i Qn 1+_ i X1 X2

0 0 0 0

0 1 0 1

1 0 1 #

1 1 # 1

Design a MOD-5 synchronous counter using this flip-flop for the count 
sequence 000, 001, 011, 101, 110, 000, .......If the present state is an 
undesired one, it should transit to 110 on application of clock pulse.
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SOLUTION :

Step 1: The number of flip-flops
This counter has 5 different states, so it requires 3 FFs as 5 2 3#_ i.

Step 2 : Choice of flip-flops and excitation table
We have given a certain type of flip with excitation table shown above. 
So, we contruct the excitation table for the counter. Remember that 
there are three invalid states 010, 101 and 111 and the next state after 
these state will be 110 as given in problem statement.

Table E8.22: Excitation table for given counter design

Present state Next state Inputs

C B A C B A X A1 _ i X A2 _ i X B1 _ i X B2 _ i X C1 _ i X C2 _ i

0 0 0 0 0 1 0 1 0 0 0 0

0 0 1 0 1 1 X 1 0 1 0 0

0 1 0 1 1 0 0 0 X 1 0 1

0 1 1 1 0 1 X 1 1 X 0 1

1 0 0 1 1 0 0 0 0 1 X 1

1 0 1 1 1 0 1 X 0 1 X 1

1 1 0 0 0 0 0 0 1 X 1 X

1 1 1 1 1 0 1 X X 1 X 1

Step 3 : Minimal expression for flip-flops inputs
The K-maps for excitation of flip-flops ( ), ( )X A X A1 2 , ( ), ( )X B X B1 2  
and ,X C X C1 2_ _i i in terms of present state of flip-flops Q2, Q1 and Q0 
can be drawn as shown below. We obtain minimized expression for 
flip-flops inputs from the K-maps as shown.
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(a) Using D  flip-flops

Step 1: Number of flip-flops 
We have to design 3-bit counter, so no of flip-flops is 3.

Step 2: State transition diagram
The state diagram is shown in figure.

Step 3: Choice of Flip-Flops and excitation table.
First we choose D  flip-flops and construct the excitation table of 
given counter using D  flip-flops as shown below. Note that state 000 
is invalid, so the excitation inputs corresponding to these states are 
taken as don’t care and therefore this state is not included in the state 
diagram as well as in excitation table.

Table E8.23.1 Excitation table for given counter design

Present State Next State Required Excitations

Q2 Q1 Q0 Q2 Q1 Q0 D2 D1 D0

0 0 1 1 0 0 1 0 0

0 1 0 0 1 1 0 1 1

0 1 1 0 0 1 0 0 1

1 0 0 1 0 1 1 0 1

1 0 1 1 1 1 1 1 1

1 1 0 0 1 0 0 1 0

1 1 1 1 1 0 1 1 0

Step 4: Minimal expressions for flip-flop inputs
The K-maps for excitation of flip-flops D2, D1 and D0 in terms of 
present state of flip-flops Q2, Q1 and Q0 can be draw as shown below.

Step 5: Logic Diagram
Using the above minimized expression, the logic diagram of given 
counter can be drawn as shown below.
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(b) Now, we use T  flip-flop to design the same counter.

Step 3: Choice of flip-flops and excitation table.
The excitation table of given counter using T  flip-flops is shown 
below.

Table E8.23.2 Excitation table for given counter design

Present state Next state Required Excitations

Q2 Q1 Q0 Q2 Q1 Q0 T2 T1 T0

0 0 1 1 0 0 1 0 1

0 1 0 0 1 1 0 0 1

0 1 1 0 0 1 0 1 0

1 0 0 1 0 1 0 0 1

1 0 1 1 1 1 0 1 0

1 1 0 0 1 0 1 0 0

1 1 1 1 1 0 0 0 1

Step 4: Minimal expression for flip-flop inputs
The K-maps for excitation of flip-flops T2, T1 and T0 in terms of 
present state Q2, Q1 and Q0 can be drawn as shown below.

Step 5: Logic Diagram
Using the above minimized expression, the logic diagram of given 
counter can be drawn as shown below.
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EXAMPLE 8.24
Design a type D -counter that goes through states 000, 001, 100, 110, 
111, 101, 000 etc.

SOLUTION :

Step 1: Number of flip-flops
Here, moduls is M 6= , so 6 2 3#  and therefore, the no. of flip-flops 
required will be 3.

Step 2: State transition Diagram
The state diagram is shown in the figure.

Step 3: Choice of flip-flops and excitation table
We choose D  flip-flops and construct the excitation table of given 
counter as shown below.

Table E8.24: Excitation table for given counter design

Present State Next State Required Excitations

Q2 Q1 Q0 Q2 Q1 Q0 D2 D1 D0

0 0 0 0 0 1 0 0 1

0 0 1 1 0 0 1 0 0

1 0 0 1 1 0 1 1 0

1 1 0 1 1 1 1 1 1

1 1 1 1 0 1 1 0 1

1 0 1 0 0 0 0 0 0

Step 4: Minimal expression for flip-flops inputs.
The K-maps for excitation of flip-flops D2, D1 and D0 in terms of 
present state of flip-flops Q2, Q1 and Q0 can be drawn as shown below.
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Step 3: Choice of Flip-flops and Excitation Table

J -K  flip-flops are selected and the excitation table of a modulo-4 up/ 
counter using J -K  flip-flops is drawn as in table.

X Counter State Flip-flop Inputs

QA QB JA KA JB KB

0 0 0 1 X 1 X

0 1 1 X 0 X 1

0 1 0 X 1 1 X

0 0 1 0 X X 1

1 0 0 0 X 1 X

1 0 1 1 X X 1

1 1 0 X 0 1 X

1 1 1 X 1 X 1

Step 4: Minimal Expression for Flip-flop Inputs
The K-maps for excitations of flip-flops JA, KA and JB  and KB  in 
terms of the present state of flip-flops QA and QB  and control input 
X  can be drawn as shown below. 

This gives JB  K 1B= =

and JA K Q XA B 9= = _ i
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Step 5: Logic Diagram
Using the above minimized expressions, the logic diagram for the 
mod-4 up counter can be drawn as shown in following figure

EXAMPLE 8.26
Design a circuit that gives the input-output shown in Figure below.

SOLUTION :

A divide by 5 circuit will give the required input-output relation ship. 
The states of this circuit are : 000, 001, 010, 011 and 100. The Q2 
output will be the required output when the input waveform is used 
as the clock input.

EXAMPLE 8.27
Determine the count sequence of the circuit of Figure below.
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SOLUTION :

The Flip-Flop inputs are

 J0 Q1= , K 10 =

 J1 Q0= , K 11 =
Let us assume initially both the flip-flops are reset i.e., 00Q Q1 0 = . 
Therefore J Q 10 1= = , K 10 =  and J Q 01 0= = , K 10 = . So at the first 
clock pulse J 10 = , K 10 =  and J 01 = , K 11 = . Hence Q 10 =  (toggle) 
and Q 01 =  (reset).

Now inputs to the flip-flops are J Q 10 1= = , 1K0 =  and J Q 11 0= = , 
K 11 = . So at second clock pulse flip-flop outputs are Q 00 =  (toggle) 
and Q 11 =  (toggle).

Similarly, we can obtain the count sequence as given in table below.

CLK Q1 Q0 J0 K0 J1 K1

Initially 0 0 1 1 0 1

CLK1 0 1 1 1 1 1

CLK2 1 0 0 1 0 1

CLK3 0 0

Hence the count sequence is 00, 01, 10, 00..........

EXAMPLE 8.28
Verify that a synchronous counter with three J -K  flip-flops connected 
as given below is a divide-by-6 counter. Find its count sequence

 J0 K 10= =

 J1 K Q Q1 0 2= =

 J2 Q Q0 1=

 K2 Q0=

SOLUTION :

Let us assume initially all flip-flops are reset i.e., Q Q Q 0002 1 0 = . 
Therefore, flip-flop inputs will be

 J0 K 10= = ; J 11 = , K 11 =

 J1 0K Q Q 0 01 0 2 := = = = ;  J 01 = , 0K1 =

 J2 Q Q 0 0 00 1 := = =

 K2 Q 00= = ;  J 02 = , K 02 =
So at the first clock pulse, outputs of flip-flops will be

 Q2 0=  (Hold)

 Q1 0=  (Hold)

 Q0 1=  (toggle)
Now, inputs of flip-flops will be

 J0 K 10= = ; J 11 = , K 11 =
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 J1 0K Q Q 1 11 0 2 := = = = ;  J 11 = , K 11 =

 J2 Q Q 1 0 00 1 := = =

 K2 Q 10= = ;  J 02 = , K 12 =
So, at the second clock pulse outputs of flip-flop will be

 Q2 0=  (reset)

 Q1 1=  (toggle)

 Q0 0=  (toggle)
In similar manner, we can obtain the complete count sequence.

CLK Q2 Q1 Q0 J2 K2 J1 K2 J0 K0

Initially 0 0 0 0 0 0 0 1 1

1 0 0 1 0 1 1 1 1 1

2 0 1 0 0 0 0 0 1 1

3 0 1 1 1 1 1 1 1 1

4 1 0 0 0 0 0 0 1 1

5 1 0 1 0 1 0 0 1 1

6 0 0 0

Thus, counting sequence is 000, 001, 010, 011, 100, 101, 000...and it is 
a mod-6 or divide-by-6 counter.

EXAMPLE 8.29
Determine the mod value of counter as shown in Fig (a) and (b).

SOLUTION :

(a) The mod value of two cascade counters shown in figure (a) is 
2 10 20# = .

(b) In figure (b), three different counter are connected in cascade. The 
mod value of three cascade counters is 10 5 8 400# # = .
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EXAMPLE 8.30
Find the count sequence of the counter shown below.

SOLUTION :

The inputs of the flip-flop can be found from the given diagram.

 J0 K Q Q2 10= =

 J1 Q0= , K Q Q0 21 :=

 J2 Q Q0 1= , K Q2 1=
Let us assume that initially all flip-flops are reset i.e. Q Q Q 0002 1 0 = . 
Therefore flip-flop inputs will be

0 0J K 100 := = = ; J 10 = , K 10 =

J Q 01 0= =

K Q Q 1 1 00 21 : := = = ; J 01 = , K 01 =

J Q Q 0 0 02 0 1 := = =

K Q 02 1= = ; J 02 = , K 02 =

So, at the first clock pulse, outputs of flip-flops will be

 Q2 0=  (Hold)

 Q1 0=  (Hold)

 Q0 1=  (toggle)
Now, inputs of flip-flops will be

0 0J K 100 := = = ; J 10 = , K 10 =

J Q 11 0= =

0 1K 11 := = ; J 11 = , K 11 =
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0 0J Q Q 12 0 1 := = =

K Q 02 1= = ; J 02 = , K 02 =

So, at the second clock pulse flip-flops output will charge according 
to above inputs.

 Q2 0=  (Hold)

 Q1 1=  (toggle)

 Q0 0=  (toggle)
Similarly, we can determine the complete count sequence as given in 
table below.

CLK Q2 Q1 Q0 J2 K2 J1 K1 J0 K0

Initially 0 0 0 0 0 0 0 1 1

1 0 0 1 0 0 1 1 1 1

2 0 1 0 0 1 0 0 1 1

3 0 1 1 1 1 1 1 1 1

4 1 0 0 0 0 0 1 1 1

5 1 0 1 0 0 1 1 1 1

6 1 1 0 0 1 0 1 0 0

7 0 0 0

Thus counting sequence is

000, 001, 010, 011, 100, 101, 110, 000.....

EXAMPLE 8.31
Design a counter with the following repeated binary sequence : 0, 1, 
2, 4, 6, 0 ........ Use D  flip-flops.

SOLUTION :

Step 1 : Number of flip-flops
Mod of the counter M 5= , so 5 2< 3 and therefore, the no. of flip-
flops is 3.

Step 2: State transition diagram
Binary sequence 0 000_ i, 1 001_ i, 2 010_ i, 4 100_ i, 6 110_ i,... .The state 
diagram is shown in the figure.

Step 3 : Choice of flip-flops and excitation table.
We choose D  flip-flops and construct the excitation table of given 
counter as shown below.

Present State Next State Required Excitation

Q2 Q1 Q0 Q2 Q1 Q0 D2 D1 D0

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 0
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Present State Next State Required Excitation

Q2 Q1 Q0 Q2 Q1 Q0 D2 D1 D0

0 1 0 1 0 0 1 0 0

1 0 0 1 1 0 1 1 0

1 1 0 0 0 0 0 0 0

Step 4 : Minimal expression for flip-flops inputs
The K-maps for excitation of flip-flops D2, D1 and D0 in terms of 
present state of flip-flops Q2, Q1 and Q0 can be drawn as shown below.

Step 5: Logic Diagram

EXAMPLE 8.32
Design a 3-bit counter which produces the following sequence
1, 4, 3, 5, 7, 6, 2, 1...............

SOLUTION :

Step 1 : Number of flip-flops
For 3-bit counter, the no. of flip-flops is 3.

Step 2: State transition diagram
Binary sequence 1 001_ i, 4 100_ i, 3 011_ i, 5 101_ i, 7 111_ i, 6 110_ i 
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2 010_ i, 1 001_ i... .The state diagram is shown in the figure.

Step 3: Choice of Flip-flops and Excitation Table

J -K  flip-flops are selected and the excitation table of a modulo-4 up/ 
counter using J -K  flip-flops is drawn as in table.

Present State Next State Required Excitations

Q2 Q1 Q0 Q2 Q1 Q0 J2 K2 J1 K1 J0 K0

0 0 1 1 0 0 1 X 0 X X 1

1 0 0 0 1 1 X 1 1 X 1 X

0 1 1 1 0 1 1 X X 1 X 0

1 0 1 1 1 1 X 0 1 X X 0

1 1 1 1 1 0 X 0 X 0 X 1

1 1 0 0 1 0 X 1 X 0 0 X

0 1 0 0 0 1 0 X X 1 1 X

Step 4 : Minimal expression for flip-flops inputs
The K-maps for excitation of flip-flops ,J K2 2, ,J K1 1 and ,J K0 0 in 
terms of present state of flip-flops Q2, Q1 and Q0 can be drawn as 
shown below. We obtain minimized expression for flip-flops inputs 
from the K-maps as shown.
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Step 5: Logic Diagram

***********
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REVIEW QUESTIONS

1. What is counter ? What are its types ?

2. What is the difference between synchronous and 
asynchronous counter ?

3. Draw the circuit of a 4-bit ripple counter. Explain its 
working. Draw its having diagram.

4. Discuss the general design procedure for Mod-N  
asynchronous counter.

5. How does the architecture of an asynchronous up-counter 
differ from that of a down-counter ?

6. Draw and explain a four-bit UP/Down counter.

7. Write the count sequences of three bit binary down counter.

8. Define a MOD-5 ripple counter using J -K  flip-flop.

9. Explain with neat diagram a 3-bit ripple counter using T  
flip-flops.

10. How does a counter work as frequency divider ?

11. Briefly explain why a ripple counter’s maximum usable 
clock frequency decreases as more flip-flops are added to the 
counter to increase its MOD-number.

12. What are the merits and demerits of the synchronous 
counter over the asynchronous counter ?

13. Draw a neat circuit diagram of a 3-bit Johnson counter. 
Draw the relevant output waveforms.

14. What is the difference between the counting sequence of  
four-bit ring counter and four-bit Johnson counter.

15. What are the applications of counter ?

16. Explain the working of 4-bit asynchronous counter.

17. Draw and explain working of 4-bit up/down synchronous 
counter.

18. Briefly explain the operation of a digital clock.

REVIEW PROBLEMS

19. Design a 3-bit binary up/down counter. Draw its timing 
diagram.

20. Design and implement a Mod-6 ripple counter using J -K  
flip-flop.

21. Design and implement a Mod-5 synchronous counter using 
J -K  flip-flop.

22. Design a Mod-4 up/down counter.

23. Design and implement a Mod-6 synchronous counter using 
D  flip-flop.

24. Design a 4-bit synchronous counter using J -K  flip-flops. 
Use K -maps.

25. Why is maximum usable clock frequency in case of a 
synchronous counter independent of the size of counter ?

26. Obtain the J -K  flip-flop realization of a Mod-4 synchronous 
counter to run through the states 00, 01, 10 and 11 only.

27. Assume that ‘1011’ input data pattern is loaded into a 

4-bit ring counter. Sketch the resulting flip-flop Q  output 
waveforms. (Assume positive edge triggering).

28. Realize a mod-5 counter using J -K  flip-flop by showing the 
truth table and making a suitable circuit diagram.

29. Design a 3-bit binary counter from a T  flip-flop.

30. Design a Mod-3 ripple (asynchronous) counter.

31. Write the count sequence of a 3-bit binary down counter. 
Design a ripple counter using flip-flops of this sequence.

32. Draw a Mod-12 counter and explain its operations.

33. Draw the divide by 7 asynchronous up counter using T  flip-
flop. Write truth table draw timing diagram.

34. A four-bit binary UP counter is initially in 0000 state. 
Then, the clock pulses are applied. Sometimes later, the 
clock pulses are removed and the counter is observed to be 
in 0011 state. What is the minimum number of clock pulses 
that could possibly have occurred ?

35. A eight-bit binary ripple UP counter with a modulus of 256 
is holding the count 01111111. What will be the count after 
135 clock pulses ?

36. Design a 4-bit binary ripple up-counter using positive-edge-
triggered D  flip-flops. Do not include a count-enable line.

37. Design synchronous counters to count the sequences :

(a) 0–2–4–3–1–7  (b) 0–1–5–4–2–7

38. Design a type-D  counter that goes through states 0, 2, 4, 6, 
0,.... The unused states must always go to a 0 on the next 
clock pulse.

39. Design a counter to produce the following sequence. Use 
J -K  flip-flops.

00, 10, 01, 11, 00,....

40. Determine the count sequence of the counter in Figure.

41. For each of the cascaded counter configuration in Figure 
below, determine the frequency of the waveform at each 
output point, and determine the overall modulus.

(a) 

(b) 

42. Design a counter which counts in the sequence that has been 
assigned to you. Use D  flip-flops and NAND gates.
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(a) 000, 001, 011, 101, 111, 010, (repeat) 000,....

(b) 000, 011, 101, 111, 010, 110, (repeat) 000,....

43. Design a 5-bit synchronous binary counter.

(a) Use T  flip-flops.

(b) Use D  flip-flops.

44. The input frequency to a Mod-8 counter is 1000 Hz. What 
is the output frequency.

45. A ripple counter has 4 flip-flops. The initial 3 states are to 
be skipped. Find the modulus. Draw the circuit.

***********



9
REGISTERS

9.1 INTRODUCTION

Registers are digital circuits which are used to store ‘n ’ bits information 
in the same time and each bit is stored in a flip-flop. Generally, 
registers are built with D  flip-flops. Registers can also be designed 
using S R-  and J K-  flip-flops and presently, they are available in MSI 
ICs. The register is said to be a synchronous device, because all the 
flip-flops change state at the same time.

In this chapter, we will discuss different types of registers, their 
operational basics and applications. 

9.2 BUFFER REGISTER

Figure 9.2.1 shows the simplest register constructed with four D  flip-
flops. The register is also called buffer register. Each D  flip-flop is 
triggered with a common negative edge clock pulse. On the application 
of clock pulse, the output word becomes the same as the word applied 
at the input terminals, i.e. the input word is loaded into the register 
by the application of clock pulse. 

Therefore, when the first negative clock edge arrives, the stored 
binary information becomes,

 Q Q Q Q3 2 1 0 X X X X3 2 1 0=
In this register, four D  flip-flops are used. So it can store 4-bit 

binary information. Thus the number of flip-flop stages in register 
determines its total storage capacity.

Figure 9.2.1: Logic diagram of a 4-bit buffer register

DO REMEMBER
A register is a set of flip-flops used to store 
binary data.
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9.3 SHIFT REGISTER

A number of flip-flops connected together such that data may 
be shifted into and shifted out of them is called a shift register. 

In the shift register, the stored data can move from a particular 
location to some other location within the register. In other words, 
the flip-flops are connected in such a way that the bits of a binary 
number are entered into the shift register, shifted from one position 
to another and finally shifted out.

The storage capacity of a shift register equals the total number 
of bits of digital data it can store, which in turn depends upon the 
number of flip-flops used to construct the shift register. Since each 
flip-flop can store one bit of data, the storage capacity of the shift 
register equals the number of flip-flops used. 

Classification of Shift Registers
Data may be shifted into or out of the register either in serial form or 
in parallel form. So, there are four basic types of shift registers: 
1. Serial-in Serial-out (SISO) Shift Registers

2. Serial-in, Parallel-out (SIPO) Shift Registers

3. Parallel-in Serial-out (PISO) Shift Registers

4. Parallel-in Parallel-out (PIPO) Shift Registers

All of these registers are commercially available as TTL MSI/
LSI circuits. Data can be shifted either in right direction or left 
direction or bi-directional. Also, data may be shifted in serially (left 
or right) or in parallel and shifted out serially (left or right) or in 
parallel.

Now, first we discuss each of the four types of register in brief 
and then in detail.

9.3.1 Serial-in Serial-out (SISO) Shift Register

In Serial-in, Serial-out shift register, data input is in serial form and 
common clock pulse is applied to each of the flip-flop. After each 
clock pulse, data moves by one position. The output can be obtained 
in serial form. In this type of shift register, data moves either in left 
or right direction. 

It is illustrated in Figure 9.3.1 that data inputs in the shift 
register are serially 1001 and data output from shift register is also 
serially.

9.3.2 Serial-In Parallel out (SIPO) Shift Register

In Serial-in, Parallel-out shift register, data is applied at the input of 

Figure 9.3.1: Serial data input and serial data output in SISO 
shift register
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9.4.1 Shift-left Register

A 4-bit left shift register using is shown in Figure 9.4.1 which consists 
of D  flip-flops . In this shift register, data is entered in serial form and 
data output is also in serial form and data moves right to left. Since, 
it has four flip-flops, it can store upto four bits of data. 

Serial data is applied at the D  input of the first flip-flop(rightmost 
flip-flop). The Q  output of the first flip-flop is connected to the D  
input of the second FF, the Q  output of the second FF is connected 
to the D  input of the third FF and the Q  output of the third FF is 
connected to the D  input of the fourth FF. The output data is taken 
from the Q  terminal of the last FF.

Figure 9.4.1: A 4-bit serial-in, serial-out shift-left register

Working
First of all assume that all the flip-flops initially are in the rest 
condition i.e., Q Q Q Q 003 2 1= = = = . Let us consider a four bit 
binary number 1111 which has to be entered into the register. When 
this is to be done, this number must be applied to Din  bit-by-bit with 
MSB bit applied first.
1. We apply MSB bit of the number to be entered to Din . Therefore, 

1D Din 0= = . Now, we apply the clock. On the first falling edge 
of clock, the FF-0 is set and the stored word in the register will 
be

 Q Q Q Q3 2 1 0 0 0 0 1=
2. Then, we apply the next bit to Din . Hence, 1Din = . As soon as 

the next negative edge of the clock hits, FF-1 will set and the 
stored word will change to,

 Q Q Q Q3 2 1 0 0 0 11=
3. Next, we apply the next bit to be stored, i.e., 1 to Din . Then, we 

apply the clock pulse. As soon as the third negative clock edge 
hits, FF-2 sets and the output will get modified to

 Q Q Q Q3 2 1 0 0 111=
4. Similarly, with 1Din = , and with the fourth negative clock edge 

arriving, the second word in the register will be given by

 Q Q Q Q3 2 1 0 1111=
The data in each stage after each of the four shift pulses is 

shown in Table below..
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9.4.2 Shift-Right Register

The right shift register using D  flip-flops is shown in Figure 9.4.2. In 
right shift register, data is entered in serial form and data output is 
also in serial form. Data moves left to right. Its operation is similar 
with left shift register but only difference is the direction of data 
movement. 

In this case, serial data is applied at the D  input of the first 
flip-flop (leftmost flip-flop). The Q  output of the first flip-flop is 
connected to the D  input of the second FF, the Q  output of the 
second FF is connected to the D  input of the third FF and the Q  
output of the third FF is connected to the D  input of the fourth FF. 
The output data is taken from the Q  terminal of the last FF.

Figure 9.4.2: A 4-bit serial-in, serial-out shift-right register

Working
First of all assume that all the flip-flops initially are in the rest 
condition i.e., Q Q Q Q 003 2 1= = = = . Let us consider a four bit 
binary number 1111 which has to be entered into the register. When 
this is to be done, this number must be applied to Din  bit-by-bit with 
LSB bit applied first.
1. On the first falling edge of clock, the FF-3 is set and the stored 

word in the register will be given by

 Q Q Q Q3 2 1 0 0 01 0=
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2. Next, we apply the next bit to Din . Hence, 1Din = . As soon as 
the next negative edge of the clock hits, FF-2 sets and the stored 
word will change to,

 Q Q Q Q3 2 1 0 11 0 0=

3. Further, we apply the next bit to be stored, i.e., 1 to Din . Then, 
we apply the clock pulse. As soon as the third negative clock 
edge hits, FF-1 will sets and the output will get modified to

 Q Q Q Q3 2 1 0 111 0=

4. Similarly, with 1Din = , and with the fourth negative clock edge 
arriving, the second word in the register will be given by

 Q Q Q Q3 2 1 0 1111=

The data in each stage after each of the four shift pulses is 
shown in Table below.

9.5 SERIAL-IN PARALLEL-OUT SHIFT REGISTER

In SIPO shift register, data bits are entered in shift register serially 
and the data bits are taken out of the register in parallel. Once the 
data bits are stored, each bit appears on its respective output line and 
all bits are available simultaneously, rather than on a bit-by-bit basis 
as with the serial output. 

Figure 9.5.1: A 4-bit serial-in, parallel-out shift register
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A 4-bit Parallel-in, Serial-out shift register is shown in Figure 
9.6.1. The circuit is made up of D  flip-flops and logic gates. Here, D0

, D1, D2 and D3 are four parallel input lines, through which the data 
is entered in parallel form. The signal Shift/LOAD allows the data to 
be entered in parallel form into the register and the data to be shifted 
out serially from terminal Q3.

Operation
When Shift/LOAD line is LOW, gates 4, 5, and 6 are disabled, 
whereas gates 1, 2, and 3 enabled allowing the data input to appear 
at the D  inputs of the respective flip-flops. After application of a 
clock pulse, the flip-flop will be set if its D  input is 1 and the flip-flop 
will be reset if its D  input is 0. Therefore, all four bits will be stored 
simultaneously in the register.

When Shift/LOAD line is HIGH, gates 1, 2, and 3 are disable, 
but gates 4, 5, and 6 are enabled allowing the data bits to shift-right 
from one stage to the next.

9.7 PARALLEL-IN PARALLEL-OUT SHIFT REGISTER

In Parallel-in, Parallel-out shift registers, all data bits are entered 
simultaneously on the parallel input lines rather than on a bit by bit 
basis on serial data inputs. After simultaneously entry of all data bits, 
the data bits are available on the output lines immediately. 

Figure 9.7.1 shows a 4-bit parallel-in, parallel-out, shift register 
using D  flip-flops. The D0, D1, D2, D3 are the parallel inputs and 
the Q0, Q1, Q2, Q3 are the parallel outputs. When a clock pulse is 
applied, at the negative-going edge of that pulse, the D  inputs are 
shifted into the Q  outputs of the flip-flops. The register now stores 
the data. The stored data is available instantaneously for shifting out 
in parallel form.

Figure 9.7.1: A 4-bit parallel-in, parallel-out shift register

9.8 BIDIRECTIONAL SHIFT REGISTER

In a bidirectional shift register, the data is shifted to both directions, 
left and right. The direction is controlled by the control input 

/Right Left. The 4-bit bidirectional shift register is shown in Figure 
9.8.1. When Right/Left is a 1, the logic circuit works as a shift-right 
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shift register. When Right/Left is a 0, it works as a shift-left shift 
register. 

Figure 9.8.1: A 4-bit bidirectional shift register

Working
When Right/Left control signal is high, the gates G1, G3, G5 and G7  
are enabled. The output of FF-0 is the input for FF-1, the output of 
FF-1 is the input for FF-2, the output of flip-flop FF-2, is the input 
for FF-3, and DiR  is the input of FF-0. Data is shifted right with the 
clock pulse.

When Right/Left control signal is low, the gates G2, G4 , G6

, and G8 are enabled. The output of FF-3 is the input of FF-2, the 
output of FF-2 is the input of FF-1, the output of FF-1 is the input 
of FF-0, and DiL  is the input of FF-3. Data is shifted left with the 
clock pulse.

9.9 UNIVERSAL SHIFT REGISTER

The universal shift register operates in all possible four modes(SISO, 
SIPO, PISO, PIPO) and also as bidirectional shift registers. The logic 
diagram of a 4-bit shift register is shown in Figure 9.9.1.
In the circuit,

Xi  is serial input of shift register
Xi0, Xi1, Xi2, Xi3 are four parallel inputs of shift registers
Yo  is serial output of shift register
Yo0, Yo1, Yo2, Yo3 are the four parallel outputs of shift register
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Figure 9.9.1: A4 -bit Universal shift register

9.10 APPLICATIONS OF SHIFT REGISTERS

Shift registers can be found in many applications. The common 
applications of shift registers are listed as below
1. Timing circuits to produce time delay

2. Shift register counters: Ring counter and Johnson counter,

3. Serial to parallel converters,

4. Parallel to serial converters,

5. Sequence generators

In this section we will discuss time delay and serial/parallel 
data conversion in details.

9.10.1 Time Delay

In many digital systems, it is necessary to delay the transfer of data 
for some time. The Serial-in, Serial-out shift register can be used to 
produce time delay as shown in Figure 9.10.1. Since, the number of 
stages corresponds to the number of clock pulses required to shift 
each bit completely through the register. Therefore, the number of 
stages in the register and the clock frequency can control the amount 
of time delay.

Figure 9.10.1: Waveform of shift registers producing a time delay
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EXAMPLES

EXAMPLE 9.1
Assume the shift register of Figure 9.4.2 initially contains 1101. What 
is the content of the register after the positive edge of each clock 
signal if the values occurring on the serial-data-in line are 1, 1, 0, 1, 
0, 1, and 0 in that order ?

SOLUTION :

The data shifting is shown as below:

EXAMPLE 9.2
The hexadecimal number A is to be shifted into a 4-bit serial shift 
register, evaluate time if clock frequency is (a) 5 MHz, (b) 2 MHz.

SOLUTION :

The hex number A 1010
2

= _ i . To shift this number into a 4 flip-flop 
shift register, four clock pulses will be required.

(a) For 5 MHzf = :

The time period of this clock is 0.2 sT f
1

5 10
1

8#
m= = = .

This is one clock cycle period. Therefore, to shift A
16_ i , we need

4 0.2 0.8 secsm m# = .

(b) For 2 MHzf = :

One cycle period 0.5 sT f
1

2 10
1

8#
m= = = .
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Therefore, to shift A
16_ i , we need 4 0.5 2 secsm m# = .

EXAMPLE 9.3
How many flop-flops are required to build a shift register to store 
following numbers.
(a) Binary 5 bits (b) Decimal 25
(c) Octal 17       (d) Hexadecimal B.

SOLUTION :

In general, we know that n  number of flip-flops will be required to 
build a shift register to store ‘n ’ bits.

(a) Binary 6 bits

The number of flip-flops required to store binary 6 bits 6= .

(b) Decimal 25

 25
10_ i  11001

2
= _ i

Hence, five bits will be required to represent 25
10_ i  in binary format. 

Therefore, the number of flip-flops required to store 525
10
=_ i .

(c) Octal 17

 17
8_ i  1111

2
= _ i

Hence, 4-bits will be required to represent 17
8_ i  in binary format. 

Therefore, the number of flip-flops required to store 17 4
8
=_ i .

(d) Hexadecimal B

 B
16_ i  1011

2
= _ i

Hence, 4 bits will be required to represents B
16_ i  in binary format. 

Therefore, the number of flip-flops required to store 4B
16
=_ i .

EXAMPLE 9.4
Consider the given circuit shown in figure below. Here, initial output 
condition is Q Q Q 010A B C = . Write truth table of output Q Q QA B C  for 
4 clock pulses.

SOLUTION :
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EXAMPLE 9.5
Determine the output state of a 4-bit SIPO shift register after 3 
clock pulses if a ‘1’ is applied to the serial-in terminal and the initial 
contents of the shift register are :
(a) 1001 
(b) 0001

SOLUTION :

(a) Initial content of the register is 1001. The shifting of data occurs 
serially as shown in table below. After three clock pulse output will 
be available in parallel form as its is a SIPO shift register.

Therefore, output state after 3rd clock pulse 1111= .

(b) Initial content of the register is 0001. The shifting of data occurs 
serially as shown in table below. After three clock pulse output will 
be available in parallel form as its is a SIPO shift register.
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Given that initially the register content is 0000, Q Q Q Q 00 1 2 3= = = =
. The data transfer for first 4 clock pulses is explanation as follows:

1. During first clock pulse, data input is 1. Consequently, after first 
clock pulse, data ‘1’ is stored in Q0 and other flip-flops are in 
reset conditions.

2. At the instant of second clock pulse, data is 0. Just after 
application of second clock pulse, Q0 becomes 0 and Q 11 =  as Q0 
is shifted to Q1. 

3. Similarly after third clock pulse, Q 00 = , Q 01 =  and Q 12 = . 

4. At fourth clock pulse, data is 1, then output will be Q 10 = , 
Q 01 = , Q 02 =  and Q 13 = . As a result, after application of four 
clock pulses, ‘1’ will be output at output data terminal Q3 of 
shift register. 

EXAMPLE 9.7
The clock and data input shown in figure are applied to a 5-bit 
register shown in figure below. Assume that the register is initially 
cleared (00000).

SOLUTION :

The timing diagram is shown in figure below. The first data bit (1) is 
entered into the register on the first clock pulse and then shifted from 
left to right as the remaining bits are entered and shifted. The register 
contains 11010Q Q Q Q Q4 3 2 1 0 =  after five clock pulse.
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EXAMPLE 9.8
Show the states of the 4-bit register for the data input and clock 
waveforms in Figure below. Let the initial content of the register be 
1111.

SOLUTION :

The register contains 0110 after four clock pulses as shown in figure.
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EXAMPLE 9.9
The contents of a four-bit register are initially 1011. The register is 
shift six times to the right, with the serial input being 101111. What 
are the contents of the register after each shift?

SOLUTION :

The data transfer is shown in figure below.

EXAMPLE 9.10
The initial contents of the 4-bit serial-in-parallel-out right-shift, 
register shown in figure is 0 1 1 0. Determine the contents of the shift 
register after 3 clock pulses.

SOLUTION :

We can see that output of Ex-OR gate is the serial input of the 
register. So, we find output of Ex-OR gate before occurrence of each 
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clock pulse and this output is serially transferred into the register at 
each clock pulse.

At pulse 1 serial-input, 1 0 15 =
So contents are 1 0 1 1,
At pules 2 serial-input 1 1 05 =
So contents are 0 1 0 1,
At pules 3 serial-input 0 1 15 = , contents are 1 0 1 0

EXAMPLE 9.11

The 8-bit left shift register and D  flip-flop shown in figure is 
synchronized with same clock. The D  flip-flop is initially cleared.

(a) Verify that the circuit acts as binary-to-Gray codes

(b) If initially register contains byte B7, then after 4 clock pulse 
determine the contents of register.

SOLUTION :

(a) The output of XOR gate is Z b bi i15= +  and this output 
shift the register to left,
Initially 0Z =
After 1st clock 0Z b b7 75= =
After 2nd clock Z b b7 65=
3rd clock Z b b6 55=
4th clock Z b b5 45=

(b) B7 1011=  0111, After four clock

 7 6 5 4b b b bl l l l  7b b b b3 2 1 0= = ,

 3bl  0 1b7 5= =

 2bl  1b b7 65= = ,

 1bl  1b b6 55= =

 0bl  0b b5 45= = ,

 1 1 1 02 E=
So data will be 7E.

*********** 
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REVIEW QUESTIONS

1. Explain the function of a shift register. Give its applications  ?

2. Explain the types of shift registers ?

3. Draw the circuit of a serial-in serial-out shift register and 
explain its working.

4. Draw the circuit of a serial-in-parallel out shift register and 
explain its working.

5. Explain the working operation of a 4-bit left shift register 
with its logic diagram. Also, give its truth table and timing 
diagram.

6. Explain the operation of 4-bit parallel-in-serial-out (PISO) 
register with its logic diagram. Give the truth table and 
timing waveforms.

7. What is a universal shift register ? Draw its circuit and 
explain its working.

8. Define bidirectional shift register. Draw 4-bit bi-directional 
shift register using D  flip-flop.

9. Discuss the various applications of shift registers.

10. Explain the types of shift registers.

REVIEW PROBLEMS

11. Data 11010 is input to 5 bit serial-in-serial-out shift register. 
Draw a diagram to show the states of the registers after 1, 
2, 3, 4, 5 clock pulses.

12. Data 1100 is fed to 4 bit SISO shift register. Show the status 
of registers at various clock pulses.

13. In an 8 bit PIPO shift register, the data input is 10101101. 
What are the data outputs after 4 clock pulses ?

***********



10
SEQUENTIAL CIRCUIT DESIGN

10.1 INTRODUCTION

In chapters so far, we discussed combinational and sequential circuits 
and sufficient examples of both types of circuits. The design of 
combinational circuit is straightforward, and the output is directly 
dependent upon the inputs. So they are more or less static in nature 
as compared with the sequential circuits, which seems dynamic in 
their characteristics.

For sequential circuits, the output not only depends on the 
clock and other inputs but also on the previous state of the circuits 
(memory element). Therefore, state tables and other similar features 
related to the time history of the circuit are considered for sequential 
circuit design. Hence, some special methodologies and terminologies 
are adopted in design of sequential circuits. 

In this chapter, the design procedure of sequential circuits 
has been discussed with examples. However, before starting our 
discussions, first we get familiar with some basic terms and models 
related to sequential circuits.

10.2 FINITE STATE MACHINE

Sequential machines can be considered as machines, which have a 
well organised set of conditions. The conditions are called as states. 
Therefore, sequential machines are also called as state machines. 

All the state variables in sequential circuits are binary in nature. 
Therefore, total possible states for the sequential circuit having state 
variables ‘n ’ is 2n . Even for larger values of ‘n ’, the number of possible 
state is finite. Therefore, sequential circuits are referred to as finite 
state machines (FSM).

The examples of finite state machines are latches and flip-flops, 
which are the simplest types of finite state machines and counters. In 
this chapter, we will consider the finite state circuits.

10.3 MODEL OF A GENERAL SEQUENTIAL CIRCUIT

Figure 10.3.1 shows the model for a general sequential circuit which 
consists of combinational logic circuit for input and output, and 
memory elements. The combinational logic circuit has ‘n ’ inputs 
I I n1-  and ‘m ’ outputs Y Ym0 - . The edge triggered flip-flops are 
used in memory elements. This sequential circuit is driven by a clock 
signal and the output can be changed on either positive or negative 

READER NOTE
We may use the terms sequential circuit or 
finite state machine interchangeably, meaning 
the same thing.
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edge of the clock pulse only. Now we describe each of the three blocks 
of Figure 10.3.1 in detail.

Figure 10.3.1: Block diagram of a general sequential circuit

10.3.1 Memory Elements

Memory elements are used to store the present state of the sequential 
circuit. Therefore, memory elements must be capable to store the 
information and to specify the states of the machine. For example, 
if a sequential circuit has ‘K ’ states, then the memory could be any 
device that can store codes representing these ‘K ’ states.

10.3.2 Input Decoder

The next state of the sequential circuit can be determined by the 
present state of the machine and by the inputs. The input decoder 
performs the logic operations based on the present state of the machine 
and the input to the machine. Then it generates the next state of the 
machine and fed it into the memory. 

Then next state variables become present state variables and 
stored in the memory. This method of changing states is known as 
a state change. The sequential machine is a feedback system as the 
present state of the machine is fed back to the combinational logic 
circuit.

10.3.3 Output Decoder

The output of the circuit is determined by the present state of the 
machine and possibly by the input to the machine. The output 
decoder performs the logic operations on the state of the machine 
and the input to the machine to generate the output.

10.4 CLASSIFICATION OF SEQUENTIAL CIRCUITS

In section 7.3, we have already classified sequential circuits into two 
groups, namely:
1. Synchronous Sequential Circuit

2. Asynchronous Sequential Circuit

DO REMEMBER
If there are n flip-flops in the memory to store 
present state, there are 2n  possible states. All 
2 n  states are stored or store only specified 
states which are needed and used in the design 
of the circuit.
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When a sequential circuit is driven by a clock signal, it is known 
as synchronous sequential circuit. On the other hand, if the circuit 
performs operation without a clock signal, it is called asynchronous 
sequential circuit.

10.5 MODELS FOR SYNCHRONOUS SEQUENTIAL CIRCUITS

Sequential circuits can also be classified depending on the effect of the 
present inputs on the present outputs, such as
1. Moore machine

2. Melay machine

In Moore machine, the outputs depend directly only on the 
present states. But in Melay machine, the outputs directly depend 
both on the preset inputs and on the present states. Based on presence 
or absence of clock, the Moore machine is classified as synchronous 
and asynchronous Moore machine. Similarly, the Melay machine is 
also classified as synchronous and asynchronous Melay machine.

Therefore, we may present our final classification of sequential 
machines as illustrated in Figure 10.5.1. 

Figure 10.5.1: Classification of the sequential circuits

Here, we will discuss Melay and Moore machine only for 
sequential circuit. In the synchronous sequential circuits, the 
combinational circuit consists of a combination of logic gates whereas 
the flip-flops are used as memory elements. 

10.5.1 Moore Machine

The synchronous sequential circuit in which the output depends only 
on the present state of the flip-flops is known as a Moore circuit. 
It is independent of present input(s). The general block diagram of 
synchronous Moore machine is shown in Figure 10.5.2.

Figure 10.5.2: Block diagram of synchronous Moore machine
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Again, the next state decoder (i.e, input decoder) receives inputs 
from the outputs of memory element and from the external inputs. 
But, the most important point to be noted is that the output decoder 
receives signal from the output of memory elements as well as the 
external inputs. Hence, the outputs of Mealy circuit is dependent on 
the present state of memory elements as well as the external inputs. 
The behaviour of Melay machine is defined by the equations,

 Next state f= (present state, inputs)

 Output f= (present state, inputs)

Example of Mealy Machine
The circuit shown in Figure 10.5.5 is an example of Mealy circuit. 
The clock is given simultaneously to both the flip-flops. Therefore, 
the circuit is said tto be a synchronous sequential circuit. The output 
Y Q Q XB A: := . It is a function of the present state of the circuit and 
input.

Figure 10.5.5: An example of Mealy circuit

10.5.3 Comparison Between Moore and Mealy Machines

The following table illustrates the comparison between a synchronous 
Moore and Mealy machines.

Table 10.5.1: Comparison of Moore and Mealy models

S.No. Moore model Mealy model

1.
The final output depends only on the present 
state of memory elements.

The final output depends on the present state of 
memory elements and the external inputs.

2.
The output changes only after the active clock 
edge.

Output can change in between the clock edges if the 
external inputs change.

3.
The implementation of a logic function needs 
more number of states than Mealy circuits.

Implementation of the same logic function requires 
less number of states than Moore circuit.

10.6 ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS

The behavior of a clocked sequential circuit is determined from the 
inputs, the outputs and the state of its flip-flops. The outputs and 

READER NOTE
Synchronous sequential circuits are also known 
as clocked sequential circuits.
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the next state are both a function of the inputs and the present state.
The analysis of clocked sequential circuit is nothing but to 

find the output and the next state for all possible combinations of 
input(s) and present states, which are shown by a table or a diagram. 
Such a table is referred as state table and the diagram is referred as 
state diagram. It is also possible to write Boolean expressions that 
describe the behavior of the sequential circuit. These are known as 
state equation.

In this section, we introduce state table, state diagram and 
state equation for analysis of synchronous sequential circuits.

10.6.1 State Table

The state table lists the output and the next state of a sequential 
logic circuit for all possible combination of input(s) and present 
state(s). The procedure to find the state table is given in following 
methodology:

M E T H O D O L O G Y
1. For a given circuit diagram, find the expression for the inputs 

of flip-flops.

2. Assume input X 0= , and find the next state and output for all 
possible combinations of present states.

3. Assume input X 1= , and find the next state and output for all 
possible combinations of present states.

4. Draw the table which shows the present state, the next state 
when input X 0= , the next state when input X 1= , the 
output when input X 0= , and the output when X 1=

For an example, state table of a typical sequential circuit is 
shown in Table 10.6.1. In the table, there are three sections designated 
as present state, next state and output. The present state assigns 
the states of the flip-flops before the applying a clock pulse. The 
next state assigns the states of the flip-flops after the application of 
the clock pulse. The output section shows the values of the output 
variables for each combination inputs, present states and next states. 
The output and the next state sections have two columns: one for X  

0=  and the other for X 1= .

Table 10.6.1: State transition table

Present State Next State Output

X 0= X 1= X 0= X 1=

Q Q1 0 Q Q1 0 Q Q1 0 Y Y

00 00 01 0 0

01 01 11 0 0

10 10 00 0 1

11 10 11 0 0

STATE TABLE
The state table of any sequential circuit can 
be written by the same procedure. In general, 
if a sequential circuit consists of n flip-flops 
and m input variables, there will be 2 n  rows, 
one for each state. The next state and output 
sections should have 2n  columns, one for each 
combination.
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Table E10.1.3: State Table for the Given Sequential Circuit

Present State Next state Output

X 0= X 1= X 0= X 1=

QA QB QA QB QA QB Y Y

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

1 0 0 1 1 0 1 0

1 1 0 1 0 0 1 0

10.6.2 State Diagram

The state diagram is a graphical way of representing the relationships 
between the present state, the input, the next state, and the output of 
a sequential circuit, i.e. the state diagram is a graphical representation 
of the behaviour of a sequential circuit. For an example, Figure 10.5.6 
shows the state diagram of a Mealy circuit.
The state diagram is featured as,
1. The state is represented by a circle also called the node and the 

transition between states is indicated by directed lines connecting 
the circles. A directed line connecting a circle with itself implies 
that the next state is the same as the present state. 

2. The binary number inside each circle identifies the state 
represented by the circle.

3. The directed lines are labelled with two binary numbers separated 
by a symbol/. The input value that causes state transition is 
labelled first and the output value that occurs when this input is 
applied during the present state is labelled after the symbol/.

In the case of a Moore circuit as shown in Figure 10.5.7, the 
directed lines are labelled with only one binary number representing 
the input that causes the state transition. The output state is indicated 
within the circle below the present state, because the output depends 
only on the present state and not on the input.

10.6.3 State Equation

The state equation of a sequential circuit is a boolean expression 
which represents the conditions of flip-flop state transition. The left 
side of the equation represents the next state of the flip-flop and 
the right side, a Boolean expression that specifies the present state 
conditions that makes the next state equal to 1. The state equation 
can be derived directly from the state table. 

For example, to design the sequential circuit as per Table 
10.6.5, the next state of the flip-flop must be derived from inputs, 
and present state. 

Figure 10.5.6: An Example of state 
diagram for a Mealy machine

Figure 10.5.7: An Example of state 
diagram for a Moore machine
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Table 10.6.5: State Table

Present State Next State Output, Y

X 0= X 1= X 0= X 1=

Q QA B Q QA B Q QA B Y Y

00 00 01 0 0

01 10 01 0 0

10 11 10 1 0

11 11 00 0 0

From the state table we draw a K-map for next state in terms 
of present state QA, QB  and input X . From the next state columns of 
State Table 10.6.5, we observe that the flip-flop A changes go to next 
state of 1: when X 0=  and 01Q QA B =  or 10 or 11 and when X 1=  
and 10Q QA B = . Therefore, these entries are marked ‘1’ in the K-map 
for the flip-flop.

From the K-map we obtain a minimized expression, of next 
state of flip-flop A

 Q t 1A +^ h Q X Q QB A B= +

Similarly, we find that the flip-flop B  goes to 1 state four 
times: when X 0=  and 10Q QA B =  or 11Q QA B =  and when X 1=  
and 00Q QA B =  or 01Q QA B = . Again, we draw a K-map for next 
state transition of flip-flop B  in terms of  present state QA, QB  and 
input X .

From the K-map we obtain a minimized expression, of next 
state of flip-flop B

 Q t 1B +^ h Q X Q XA A= +

The state equation can be derived directly from the logic 
diagram also.

EXAMPLE 10.2
Identity the type of circuit shown in figure and derive the state table, 
and state diagram for the circuit.

READER NOTE
The left side of the equation, with t 1+_ i, 
denotes the next state of the flip-flop one clock 
edge later. The right side of the equation is a 
Boolean expression that specifies the present 
state and input conditions that make the next 
state equal to 1.
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SOLUTION :

The given sequential circuit consists of two flip-flops A and B . The 
Boolean equation for flip-flop inputs JA, KA, JB , KB  and output Y  
can be written as follows :

 JA X QB:= , 1KA =

 JB  X QA:= , 1KB =

 Y  Q QA B= +
Since output depends only on present states of flip-flops, the given 
sequential circuit is a Moore machine.

Now, for input X 0= , we obtain present state, next state and the 
output of circuit as given in following table.

Table E10.2.1

Present State Flip-flop Inputs Next state Output

QA QB JA KA JB KB QA QB Y

0 0 0 1 1 1 0 1 0

0 1 0 1 1 1 0 0 1

1 1 0 1 0 1 0 0 0

1 0 0 1 0 1 0 0 0

Explanation:
Let the present state be Q Q 00A B = . Therefore, for input X 0=  flip-
flops input will be

 JA X Q 0 0 0B: := = = , 1KA =

 JB  0 0X Q 1A: := = = , 1KB =

Output Y  0 0Q Q 0A B= + = + =
Now, when the clock pulse is applied flip-flops A and B  will respond 
to above inputs. Therefore next state of flip-flops will be

 QA 0=  (reset)

 QB  1=  (toggle)

(2) Present state Q Q 01A B =
The flip-flop input will be

 JA X Q 0 1 0B: := = = , 1KA =

 JB  0 0X Q 1A: := = = , 1KB =

  Output Y  0 1Q Q 1A B= + = + =
Now, flip-flop will respond to above inputs and next states will be

 QA 0=  (reset)

 QB  0=  (toggle)
Similarly we can draw the complete state table for input X 0= .

Now, the present state, the next state and the output of the sequential 
circuit for an input X 1=  can be obtained as given in following table.
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Table E10.2.2

Present State Flip-flop Inputs Next State Output

QA QB JA KA JB KB QA QB Y

0 0 0 1 0 1 0 0 0

0 1 1 1 0 1 1 0 1

1 1 1 1 0 1 0 0 0

1 0 0 1 0 1 0 0 0

Thus, combining above two tables we determine the state table of the 
given circuit.

Table E10.2.3

Present State
Next State

Output
X 0= X 1=

QA QB QA QB QA QB Y

0 0 0 1 0 0 0

0 1 0 0 1 0 1

1 0 0 0 0 0 0

1 1 0 0 0 0 0

State Diagram:
The state diagram can be drawn with the help of state table as shown 
in figure.

10.7 STATE REDUCTION AND ASSIGNMENT

Given a description of the desired input-output behaviour of a 
sequential circuit, the first step in designing the circuit is to derive a 
state table using method as discussed in previous section. Before we 
realize this state table using flip-flops and logic gates, reduction of the 
state table to a minimum number of states is desirable. In general, 
reducing the number of states in a table will reduce the amount of 
logic required, and the number of flip-flops may also be reduced.

After the state reduction, the next step in designing the circuit 
is to assign unique coded binary values to the states. The way in which 
this assignment is made will determine the amount of logic required 
for the circuit. The problem of finding a good state assignment which 
leads to an economical circuit is a difficult one, but some guidelines 
for achieving this are discussed in this section.

10.7.1 State Reduction

The design procedure starts with determining the number of flip-
flops required. It depends on the number of states. Using the state 
reduction techniques, we can reduce the number of states. The state 
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because the next state and the outputs are same for the input X 0=  
as well as X 1=  and hence, g  is replaced by e  and the state g  is 
removed from the table as shown in Table 10.7.1. 

Table 10.7.2: Modified state table after reduction of one state

Present State Next State Output

X 0= X 1= X 0= X 1=

a c b 0 0

b d c 0 0

c ( )g e d 1 1

d * e f 1 0

e f a 0 1

f * ( )g e f 1 0

Similarly, the states d  and f  are equivalent and hence, f  is 
replaced by d  and the state f  is removed from the table as shown in 
Table 10.7.3.

Table 10.7.3: State table with f  replaced by d

Present State Next State Output

X 0= X 1= X 0= X 1=

a c b 0 0

b d c 0 0

c e d 1 1

d e ( )f d 1 0

e ( )f d a 0 1

10.7.2 State Assignment

The method of assigning binary values to the states of the sequential 
circuit is known as state assignment. If the present state and next 
state are represented by alphabets, then binary values are assigned 
for the alphabets. The number of bits used to assign binary values to 
alphabets depends on the number of alphabets used. 

If the number of alphabets is M , then n -bits are required to 
represent the alphabets in binary, such that M2 n $ . The selection of 
value of n  is as minimum as possible.

For example, consider the state Table 10.7.3 which has five 
alphabets and therefore the number of bits required to represent the 
alphabets in binary is three. The assigned values for the alphabets 
using 3-bits are given below in Table 10.7.4.

EXAMPLE 10.3
Reduce the number of states in the following state table, and draw 
the reduced state table :

Table 10.7.4: State assignment

Variable Assigned value

a 000

b 001

c 010

d 011

e 100
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Table E10.3.1

Present State Next State Output

X 0= X 1= X 0= X 1=

a f b 0 0

b d c 0 0

c f e 0 0

d g a 1 0

e d c 0 0

f f b 1 1

g g h 0 1

h g a 1 0

SOLUTION :

First we can see that state b  and e  are equivalent, so e  can be 
removed and e  is replaced by b  at other places. Similarly state d  and 
h  are equivalent, So h  can be removed and h  is placed by d  at other 
places. Now reduced state table will be.

Table E10.3.2

Present State Next State Output

X 0= X 1= X 0= X 1=

a f b 0 0

b d c 0 0

c f b 0 0

d g a 1 0

f f b 1 1

g g d 1 0

Now, state a  and c  are equivalent, so we remove state c  from the 
table and replace c  by a  at other places.

Table E10.3.3

Present State Next State Output

X 0= X 1= X 0= X 1=

a f b 0 0

b d a 0 0

d g a 1 0

f f b 1 1

g g d 1 0
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10.8 DESIGN PROCEDURE OF CLOCKED SEQUENTIAL CIRCUITS

In designing sequential circuits using various types of memory 
elements, the following methods are used:

M E T H O D O L O G Y

1. Word statement:
First we define the word description of the problem to which we 
have to design the sequential circuit. It should be realizable with a 
finite number of memory elements. Note that if word statement is 
given, we directly move to step 2.

2. State Diagram:
Based on the word description of the machine, draw the state 
diagram which depicts the complete information about it.

3. State Table:
Write the state table which contains all the information of the state 
diagram in tabular form.

4. State Reduction:
Using the state reduction technique, reduce the number of states 
and write the reduced standard form state table

5. State Assignment:
If the states are not given in binary, assign binary values to each 
state in the state table.

6. Number of flip-flops and Excitation Table:
Choose the type of flip-flops and determine the number of flip-flops 
required to implement the given state table. Draw the excitation 
table for the circuit as per the state table and selection of flip-flops.

7. K-maps and Minimal Expressions:
Based on the entries of the excitation table draw K-maps and write 
simplified Boolean equations for the input and output of flip-flops 
in terms of present states and input variables.

8. Realization:
Draw the circuit to realize the minimal expressions obtained above.

The design procedure of sequential circuits just discussed can be best 
illustrated using some examples.

EXAMPLE 10.4
Design a clocked sequential circuit using J -K  flip-flop for the state 
diagram shown in figure.
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Number of flip-flops and Excitation Table:
The excitation table for the given state diagram using J -K  flip-flop 
is given in Table below. 

Table E10.4.4 Excitation table

Present State Input Next State Output Input of the flip-flops

Q1 Q0 X Q1 Q0 Y J0 K0 J1 K1

0 0 0 0 1 0 1 X 0 X

0 1 0 0 1 0 X 0 0 X

1 0 0 1 1 0 1 X X 0

1 1 0 0 1 0 X 0 X 1

0 0 1 0 0 0 0 X 0 X

0 1 1 1 0 0 X 1 1 X

1 0 1 0 0 0 0 X X 1

1 1 1 1 0 1 X 1 X 0

K-maps and minimal expressions:
Now, we draw the K-maps for all flip-flops inputs and obtain a minimized 
expression in terms of present states and input as shown below. 
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Realization:
Draw the circuit to realize the minimal expressions obtained above, 
as shown in figure below.

10.9 DESIGN WITH UNUSED STATES

A clocked sequential circuit with m  flip-flops will have 2m  states. But 
in some cases the circuit may use less than this maximum number of 
states. Generally the unused states are not listed in the state table. 
When simplifying the input function of flip-flops and circuit output 
function, the unused states are treated as don’t care condition.

Consider the next Example, where the sequential circuit is 
designed without using unused states. After that we will discuss lock 
out condition and the design of same circuit with unused states.

EXAMPLE 10.5
Design a circuit to generator the sequence
 0 2 5 4 7" " " "

SOLUTION :

State Diagram:
For the given sequence first we draw the state diagram. Note that 
we write binary value of each state in the state diagram and invalid 
states are considered to be don’t cares.

State Table:
Write the state table which contains all the information of the state 
diagram in tabular form.

State Reduction: 
From the state table, it is observed that all the states are different 
and there is no possibility to reduce the state table.

Number of flip-flops and Excitation Table:

Table E10.5.1 State Table

Present State Next state

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 1 0

0 1 0 1 0 1

1 0 1 1 0 0

1 0 0 1 1 1

1 1 1 0 0 0
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10.10 LOCK-OUT CONDITION

We have noticed in previous Example, that the clocked circuit is 
designed to generate the sequence 0"2"5"4"7"0 and the states 
1, 3, and 6 are unused states. If the sequence generator finds itself in 
an unused sate, the next state is unknown. It may be possible that 
the sequence generator go from one unused state to another unused 
state, but it never arrives at a used state. Then the circuit is said to 
be locked. 

Figure 10.10.1: State diagram to generate sequence 0"2"5"4"7"0 with elimination of lockout condition

To avoid the condition of lockout, we need to design the circuit 
such that when the circuit is found in an unused state, the next state 
should be known and it must be a used state. The state diagrams 
of the sequence generator to generate the sequence 0"2"5"4"7
"0 with lockout condition is shown in Figure 10.10.1a and Figure 
10.10.1b.

There are two ways to deal with unused states. In Figure 
10.10.1a, when the sequence generator is found in an unused state, its 
next state is a used state 0. On the other hand, in Figure 10.10.1b, 
when the sequence generator is found in an unused state, the next 
state is the nearest used state. For example, for the unused state 1, 
the next state is 2; and for the unused state 3, the next state is 4.

The next example illustrates how to design a sequential circuit 
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that avoids the lockout condition.

EXAMPLE 10.6
Design a sequence generator to generate the sequence 0 2 5 4 7" " " "  
and avoid the lockout condition using J -K  flip-flops.

SOLUTION :

State diagram:
First we draw the state diagram for given sequence generator. Note 
that we use equivalent binary values of states in the diagram. To 
avoid lock out we assume that invalid states goes to next nearest valid 
state after a clock pulse arrived. For example, invalid state 1(001), 
will go to 2(010). 

State table:
Write the state table which contains all the information of the state 
diagram in tabular form.

Table E10.6.1 State table

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 1 0

0 1 0 1 0 1

1 0 1 1 0 0

1 0 0 1 1 1

1 1 1 0 0 0

0 0 1 0 1 0

0 1 1 1 0 0

1 1 0 1 1 1

State reduction: 
From the state table, it is observed that all the states are different 
and there is no possibility to reduce the state table.
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Realization:
Draw the circuit to realize the minimal expressions obtained above, 
as shown in figure below.

10.11 THE SEQUENCE DETECTOR

The sequence detector is a clocked sequential circuit or machine which 
is used to detect the desired binary sequence. The procedure to detect 
a desired sequence is as follows:

M E T H O D O L O G Y
1. Draw the state diagram for the desired sequence. The 

procedure to draw the state diagram is explained in the 
example given below.

2. Construct the state table from the state diagram.
3. Determine the required number of flip-flops.
4. Draw the excitation table for the state table.
5. Construct the K-map and simplify the same.
6. Draw the logic diagram.

The design of sequence detector is explained better in the next 
example.

EXAMPLE 10.7
Design a sequence detector that produces an output ‘1’ whenever the 
non-overlapping sequence 1011 is detected.

SOLUTION :

Form the given problem statement, we have to design a circuit that 
the will accepts a stream of bits and generates an output ‘1’ whenever 
the sequence 1011 has been detected. Then, the circuit will go back 
to the initial state and wait for the next 1011 sequence to generate 
the output. For example, if the input 1011011011011, then the output 
generated will be 0001000001000. But in the case of overlapping 
sequence detector, the output will be 000100100100 i.e., additional 
two 1’s are generated due to overlapping sequence.

Step 1: State Diagram
Let a  be the initial state; b  be the state when the last received 



Page 622 Sequential Circuit Design Chapter 10

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

one symbol in the input sequence is 1; c  be the state when the last 
received two symbols in the input sequence is 10 and d  be the state 
when the last received three symbols in the input sequence is 101. 
The state diagram for the given sequence detector is shown in Figure 
7.11.1.

Figure 10.10.1: State diagram of the given sequence detector

Step 2: State Table
From the above state diagram, state table can be drawn as shown in 
Table 10.11.1. 

Step 3: State Reduction
Since all states are different and there are no equivalent states, state 
reduction is not possible for the given sequential circuit.

Step 4: State Assignment
The state table includes four alphabets and hence, the number of bits 
required to represent the alphabets in binary is two. The assigned 
values for the alphabets using 2-bits are given in Table 10.11.2.

Using the state assignment, the state Table 10.11.1 can be 
modified in binary values as shown below.

Table 10.11.3: State table after state assignment

Present 
State

Next State Output

0X = 1X = 0X = 1X =

Q Q1 0 Q Q1 0 Q Q1 0 Y Y

0 0 0 0 0 1 0 0

0 1 1 0 0 1 0 0

1 0 0 0 1 1 0 0

1 1 1 0 0 0 0 1

Step 5: Number of flip-flops and Excitation Table:
We choose D  flip-flop for the design and no. of FFs required will be 
2. The excitation table is constructed as shown below.

Table 10.11.1: State table of given 
sequence detector

Present 
State

Next State Output

X 0= X 1= X 0= X 1=

a a b 0 0

b c b 0 0

c a d 0 0

d c a 0 1

Table 10.11.2: State assignment

Variable Assigned Value

a 00

b 01

c 10

d 11
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Table 10.11.4: Excitation table of given sequence detector

Present State Input Next State Output Inputs of the flip-flops

Q1 Q0 X Q1 Q0 Y D1 D0

0 0 0 0 0 0 0 0

0 1 0 1 0 0 1 0

1 0 0 0 0 0 0 0

1 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

0 1 1 0 1 0 0 1

1 0 1 1 1 0 1 1

1 1 1 0 0 1 0 0

Step 6: K-maps and minimal expressions:
Now, we draw the K-maps for all flip-flops inputs and obtain a 
minimized expression in terms of present states as shown below.

Step 7: Realization:
Draw the circuit to realize the minimal expressions obtained above, 
as shown in Figure below.
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10.12 COUNTER DESIGN AS SYNCHRONOUS SEQUENTIAL CIRCUIT

Since, synchronous counters are one type of clocked sequential circuit, 
the design procedure discussed in this chapter, can be used to design 
any synchronous counter. We consider the following examples.

10.12.1 Design of a 3-bit Gray Counter

Step 1: Word statement
The counter given should count all 3-bit Gray code and repeats the 
count after every 8 clock pulses. 

Step 2. State diagram
The state diagram based on above word statement is shown in Figure 
10.12.1.

Step 3. State table
The state table of the 3-bit Gray code counter can be drawn as shown 
in Table 10.12.1.

Table 10.12.1: State table for a 3-bit Gray code counter

Present State Next state Output

X 0= X 1= X 0= X 1=

S0 S0 S1 0 0

S1 S1 S2 0 0

S2 S2 S3 0 0

S3 S3 S4 0 0

S4 S4 S5 0 0

S5 S5 S6 0 0

S6 S6 S7 0 0

S7 S7 S0 0 0

4. State Reduction:
All states are distinct and there are no equivalent states, so state 
reductions is not possible.

5. State Assignment:
Note that each of the state correspond to a 3-bit Gray code. Therefore, 
state assignment is 
S 0000 " , S 0011 " , S 0112 " , S 0103 " , S 1104 " , S 1115 " , S 1016 "

, S 1007 "

Now we redraw the using above binary values of states. The 
modified state table is shown in Table 10.12.3.

Figure 10.12.1: State diagram of a 3-bit 
Gray code counter

Table 7.12.2: State assignment

State Binary Code

S0 000

S1 001

S2 011

S3 010

S4 110

S5 111

S6 101

S7 100
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Table 10.12.3: State table after state assignment

Present State
Next State Output

0X = 1X = 0X = 1X =

Q Q QA B C Q Q QA B C Q Q QA B C Y Y

0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 1 0 1 1 0 0

0 1 1 0 1 1 0 1 0 0 0

0 1 0 0 1 0 1 1 0 0 0

1 1 0 1 1 0 1 1 1 0 0

1 1 1 1 1 1 1 0 1 0 0

1 0 1 1 0 1 1 0 0 0 0

1 0 0 1 0 0 0 0 0 0 1

6. Number of flip-flops and Excitation Table:
Choose type of flip-flops and form the excitation table : Select T  type 
flip-flops. The Excitation table is as shown in Table 10.12.4.

Table 10.12.4: Excitation table

PS Input NS Inputs to FFs Output

QA QB QC X QA QB QC TA TB TC Y

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 0 1 0 0 0 0

0 0 1 1 0 1 1 0 1 0 0

0 1 1 0 0 1 1 0 0 0 0

0 1 1 1 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 0 0

0 1 0 1 1 1 0 1 0 0 0

1 1 0 0 1 1 0 0 0 0 0

1 1 0 1 1 1 1 0 0 1 0

1 1 1 0 1 1 1 0 0 0 0

1 1 1 1 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0 0 0 0

1 0 1 1 1 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 1 0 0 1

7. K-maps and minimal expressions:
Step 7. K-maps and minimal expressions : The minimal expressions 
for excitation functions to T  flip-flops, TA, TB  and TC  and output Y in 
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EXAMPLE 10.8
Design a synchronous counter that counts as 000, 010, 101, 110, 000, 
010, .... using J -K  flip-flops.
(a) If the unused states 001, 011, 100, and 111 go to 000 on next clock 
pulse. 
(b) If the unused states are to be considered as ‘don’t care’s.

SOLUTION :

(a) If the unused states 001, 011, 100, and 111 go to 000 on next clock 
pulse.

Step 1: The number of flip-flops
This counter has only four stable states, but it requires three FFs, 
because it counts 110 6 2 3#_ i. 

Step 2 : Choice of flip-flops and excitation table

JK  flip-flops are selected and the excitation table of this counter using 
JK  flip-flops is drawn as below. Note that next state corresponding 
to invalid state is 000.

Table E10.8.1 Excitation table for given counter design

Present State Next State Inputs

Q2 Q1 Q0 Q2 Q1 Q0 J0 K0 J1 K1 J2 K2

0 0 0 0 1 0 0 X 1 X 0 X

0 0 1 0 0 0 X 1 0 X 0 X

0 1 0 1 0 1 1 X X 1 1 X

0 1 1 0 0 0 X 1 X 1 0 X

1 0 0 0 0 0 0 X 0 X X 1

1 0 1 1 1 0 X 1 1 X X 0

1 1 0 0 0 0 0 X X 1 X 1

1 1 1 0 0 0 X 1 X 1 X 1

Step 3 : Minimal expression for flip-flops inputs
The K-maps for excitation of flip-flops ,J K2 2, ,J K1 1 and ,J K0 0 in 
terms of present state of flip-flops Q2, Q1 and Q0 can be drawn as 
shown below. We obtain minimized expression for flip-flops inputs 
from the K-maps as shown.
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Step 4: Logic Diagram
Using above minimized expression, the logic diagram of given counter 
can be drawn as shown below.

(b) If the unused states are to be considered as ‘don’t care’s.

Step 2 : Choice of flip-flops and excitation table

JK  flip-flops are selected and the excitation table of this counter 
using JK  flip-flops is drawn as below. Note that in this case invalid 
states are taken as don’t care.

Table E10.8.1 Excitation table for given counter design

Present State Next State Inputs

Q2 Q1 Q0 Q2 Q1 Q0 J0 K0 J1 K1 J2 K2

0 0 0 0 1 0 0 X 1 X 0 X
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Present State Next State Inputs

Q2 Q1 Q0 Q2 Q1 Q0 J0 K0 J1 K1 J2 K2

0 0 1 X X X X X X X X X

0 1 0 1 0 1 1 X X 1 1 X

0 1 1 X X X X X X X X X

1 0 0 X X X X X X X X 1

1 0 1 1 1 0 X 1 1 X X 0

1 1 0 0 0 0 0 X X 1 X 1

1 1 1 X X X X X X X X X

Step 3 : Minimal expression for flip-flops inputs
The K-maps for excitation of flip-flops ,J K2 2, ,J K1 1 and ,J K0 0 in 
terms of present state of flip-flops Q2, Q1 and Q0 can be drawn as 
shown below. We obtain minimized expression for flip-flops inputs 
from the K-maps as shown.

Step 4: Logic Diagram
Using above minimized expression, the logic diagram of given counter 
can be drawn as shown below.
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10.13 ASYNCHRONOUS SEQUENTIAL CIRCUIT

In a synchronous sequential circuit, transitions from one state to 
next state are controlled by clock pulse. On the other hand, in an 
asynchronous sequential circuit, transitions from one state to next 
state are not controlled by clock pulse. Transitions occur whenever 
there is a change in input to the circuit. Thus, sequential circuits 
without clock pulses are called asynchronous sequential circuits. 

10.13.1 Fundamental Mode and Pulse Mode Asynchronous 
Sequential Circuit

Depending upon the nature of applied input signal, asynchronous 
sequential circuits can be classified as follows :

1. Fundamental mode

2. Pulse mode

Fundamental Mode
In fundamental mode, the inputs and outputs are represented by 
levels rather than pulses. In fundamental mode asynchronous 
sequential circuit, it is also assumed that the time difference between 
two successive input changes is larger than the duration of internal 
changes. 

Fundamental mode operation assumes that the input signals 
will be changed only when the circuit is in a stable state and that only 
one variable can change at a given time.

Pulse Mode
In pulse mode, the inputs and outputs are represented by pulses. In 
this mode of operation the width of the input pulses is critical to the 
circuit operation. The input pulse must be long enough for the circuit 
to respond to the input but it must not be so long as to be present 
even after new state is reached. In such a situation the state of the 
circuit may make another transition.
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10.13.2 Block Diagram of Asynchronous Sequential Circuit

Figure 10.13.1 shows the block diagram of asynchronous sequential 
circuit. This block diagram consists of a combinational logic circuit, 
n  input variables X1, X2, ...Xn , m  output variables ...O O Om1 2 , k  
internal states ...y y yk1 2 , and delay elements on feedback paths. The 
delay element is a gate circuit which can provide propagation delay. 
The present state and next state variables in asynchronous sequential 
circuit are known as secondary variables and excitation variables 
respectively. ...y y yk1 2  are present state (secondary) variables and 

...Y Y Y k1 2  are next state (excitation) variables.

Figure 10.13.1: Block diagram of asynchronous sequential circuit

Note that analysis and design of asynchronous sequential 
circuits is beyond the scope of this book.

10.14 ESSENTIAL HAZARDS IN ASYNCHRONOUS SEQUENTIAL CIRCUITS

We have discussed static and dynamic hazards in Chapter 6. There 
is another type of hazard that may occur in asynchronous sequential 
circuit, called essential hazard. An essential hazard occurs due to 
unequal delays along two or more paths that originate from the same 
input. An excessive delay through an inverter circuit in comparison to 
the delay associated with the feedback path may cause such a hazard. 
Essential hazards cannot be corrected by adding redundant gates as 
in static hazards. 

***********
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EXAMPLES

EXAMPLE 10.9
Draw the state table for the following circuit.

SOLUTION :

Let us assume initially both the flip-flops are reset i.e. Q Q 00B A = . 
Therefore, for input 0X =  flip-flop inputs will be

 JA 0 0 0:= = , 1K 0 0A := =

 JB  0 0 0:= = , 1KB =

 Y  00 0 0: := =
Therefore when the 1st clock pulse arrives, flip-flops will respond 
according to above inputs. Next state will be

 QB  0=  (reset)

 QA 0=  (reset)
Now, assume present state is Q Q 01A B= = . Therefore flip-flops input 
will be

 JA 0 1 0:= = , 1K 0 1A := =

 JB  0 0 0:= = , 1KB =

 Y  10 0 0: := =
Therefore when the clock pulse is applied, flip-flops will respond to 
above inputs. Next state will be

 QB  0=  (reset)

 QA 0=  (reset)
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Similarly, we can obtain other next states. Now, for input X 0= , we 
obtain present state, next state and the output of circuit as given in 
table E10.9.1

Table E10.9.1

Present State Flip-flop Inputs Next state Output

QA QB JA KA JB KB QA QB Y

0 0 0 1 0 1 0 0 0

0 1 0 1 0 1 0 0 0

1 0 0 1 1 1 0 1 0

1 1 0 1 1 1 0 0 0

Now, the present state, the next state and the output of the sequential 

circuit for an input X 1=  can be obtained as given in following table.

Table E10.9.2

Present state Flip-flop Inputs Next state Output

QA QB JA KA JB KB QA QB Y

0 0 0 1 0 1 0 0 0

0 1 1 0 0 1 1 0 1

1 0 0 1 0 1 0 0 0

1 0 1 0 0 1 0 0 0

Thus, combining above two tables we determine the state table of the 
given circuit.

Table E10.9.3 State table

Present State Next state Output

X 0= X 1= X 0= X 1=

QA QB QA QB QA QB Y Y

0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 1

1 0 0 1 0 0 0 0

1 1 0 0 1 0 0 1

EXAMPLE 10.10
Identify the type (Moore/Meley) of the sequential circuit shown in 
figure. Obtain the state table and draw the state diagram for the 
circuit.
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SOLUTION :

First we write the Boolean equation for the flip-flop inputs JA, KA, JB

, KB  and output Y .

 JA X QB:= , K 1A =

 JB  X QA= + , K 1B =

 Y  Q Q XA B: :=
Since the output depends on present states of flip-flops as well as the 
input X , the circuit is a Meley circuit.

The present state, next state and the output of the sequential logic 
circuit for X 0=  is given in the following table.

Table E10.10.1

Present State Flip-flop Inputs Next State Output

QA QB JA KA JB KB QA QB Y

0 0 0 1 1 1 0 1 0

0 1 0 1 1 1 0 0 0

1 0 0 1 1 1 0 1 0

1 1 0 1 1 1 0 0 0

Now, we obtain the present state, next state and output of the 
sequential logic circuit for X 1= , as given in following table.

Table E10.10.2

Present State Flip-flop Inputs Next State Output

QA QB JA KA JB KB QA QB Y

0 0 0 1 0 1 0 0 1

0 1 1 1 0 1 1 0 0

1 0 0 1 1 1 0 1 0

1 1 1 1 1 1 0 0 0
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Now, combining the above two tables we obtain the complete state 
table of the given circuit as shown below.

Table E10.10.3 State table

Present State Next State Output

X 0= X 1= X 0= X 1=

QA QB QA QB QA QB Y Y

0 0 0 1 0 0 0 1

0 1 0 0 1 0 0 0

1 0 0 1 0 1 0 0

1 1 0 0 0 0 0 0

State Diagram:
From the state table, we draw the state diagram as shown in the 
figure in right side.

EXAMPLE 10.11
For the clocked synchronous sequential circuit shown in figure, 
determine the state table and draw the state diagram.

SOLUTION :

First we write the Boolean equation for the flip-flop inputs DA, DB  
and output Y .
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 DA X QB:=

 DB  X Q Q XQ QA B A B: := +

 Y  Q QA B=
The present state, next state and output of the sequential circuit for 
X 0=  are given in the table as below.

Table E10.11.1

Present State Flip-flop Inputs Next State Output

QA QB DA DB QA QB Y

0 0 0 0 0 0 0

0 1 1 1 1 1 0

1 0 0 0 0 0 0

1 1 1 0 1 0 1

Now, we obtain the present state, next state and output of the 
sequential logic circuit for X 1= , as given below.

Table E10.11.2

Present State Flip-flop Inputs Next State Output

QA QB DA DB QA QB Y

0 0 0 1 0 1 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

1 1 0 0 0 0 1

Combining above two table, we obtain the complete state table of the 
given circuit as shown below.

Table E10.11.3 State Table

Present State
Next State

Output
X 0= X 1=

QA QB QA QB QA QB Y

0 0 0 0 0 1 0

0 1 1 1 0 0 0

1 0 0 0 0 0 0

1 1 1 0 0 0 1

State Diagram:
From the state table, we can draw the state diagram as shown in right 
side. Since this is a Moore circuit we write outputs in the circle itself.
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EXAMPLE 10.12
The state diagram of a clocked sequential circuit is shown in figure. 
Obtain a reduced state table and reduced state diagram for the circuit.

SOLUTION :

From the given state diagram, first we draw the state table for the 
circuit as shown below. In the state table, we observe that states c  
and d  are equivalent. So state d  can be removed and d  is replaced by 
c  at other places. The reduced state table is shown in Table E10.12.2 
The reduced state diagram is shown in Figure (a).

Table E10.12.1 State table

Present State Next state Output

X 0= X 1= X 0= X 1=

a a b 0 0

b c b 0 1

c d a 1 1

d d a 1 1

Table E10.12.2 Reduced state table

Present State Next State Output

X 0= X 1= X 0= X 1=

a a b 0 0

b c b 0 1

c c a 1 1

EXAMPLE 10.13
Design a sequential circuit using J -K  flip-flops for the state diagram 
given below.

Figure (a)
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SOLUTION :

State table:
Write the state table which contains all the information of the state 
diagram in tabular form.

Table E10.13.1 State table 

Present State Next State Output

X 0= X 1= X 0= X 1=

Q2 Q1 Q0 Q2 Q1 Q0 Q2 Q1 Q0 Y Y

0 0 0 1 1 0 0 0 1 0 1

0 0 1 0 1 0 1 1 0 0 1

0 1 0 0 1 0 0 0 0 0 1

1 0 0 1 0 0 0 0 1 0 1

1 1 0 1 0 0 0 1 0 0 1

State reduction:
Since all states are different and there are no equivalent states, state 
reduction is not possible for the given sequential circuit.

Number of flip-flops and Excitation Table:
We choose J -K  FFs for design and 3 flip-flops are required. The 
excitation table for the given state diagram is given in Table below. 
Note that remaining states are considered to be don’t cares and not 
included in the excitation table.

Table E10.13.2 Excitation table

Present State Input Next State Output Input of the flip-flops

Q2 Q1 Q0 X Q2 Q1 Q0 Y J0 K0 J1 K1 J2 K2

0 0 0 0 1 1 0 0 0 X 1 X 1 X

0 0 1 0 0 1 0 0 X 1 1 X 0 X

0 1 0 0 0 1 0 0 0 X X 0 0 X

1 0 0 0 1 0 0 0 0 X 0 X X 0

1 1 0 0 1 0 0 0 0 X X 1 X 0

0 0 0 1 0 0 1 1 1 X 0 X 0 X

0 0 1 1 1 1 0 1 X 1 1 X 1 X

0 1 0 1 0 0 0 1 0 X X 1 0 X

1 0 0 1 0 0 1 1 1 X 0 X X 1

1 1 0 1 0 1 0 1 0 X X 0 X 1

K-maps and minimal expressions:
Now, we draw the K-maps for all flip-flops inputs and obtain a 
minimized expression in terms of present states and input as shown 
below.
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Realization:
Draw the circuit to realize the minimal expressions obtained above.
The logic diagram for the given circuit is shown in figure below.
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EXAMPLE 10.14
Design a sequential generator using J -K  flip-flop to generator the 
sequence.
 0 2 4 5 1 7 6" " " " " "

SOLUTION :

State diagram:
For the given sequence first we draw the state diagram. Note that 
we write binary value of each state in the state diagram and invalid 
states are considered to be don’t cares.

State Table:
Write the state table which contains all the information of the state 
diagram in tabular form.

Table E10.14.1 State table

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 1 0

0 1 0 1 0 0

1 0 0 1 0 1

1 0 1 0 0 1

0 0 1 1 1 1

1 1 1 1 1 0

1 1 0 0 0 0

State Reduction: 
From the state table, it is observed that all the states are different 
and there is no possibility to reduce the state table.
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Number of flip-flops and Excitation Table:
We choose J -K  flip-flop for the design and no. of FFs required will 
be 3. The excitation table is constructed as shown below. 

Table E10.14.2 Excitation table

Present State Next State Input of the flip-flops

Q2 Q1 Q0 Q2 Q1 Q0 J0 K0 J1 K1 J2 K2

0 0 0 0 1 0 0 X 1 X 0 X

0 1 0 1 0 0 0 X X 1 1 X

1 0 0 1 0 1 1 X 0 X X 0

1 0 1 0 0 1 X 0 0 X X 1

0 0 1 1 1 1 X 0 1 X 1 X

1 1 1 1 1 0 X 1 X 0 X 0

1 1 0 0 0 0 0 X X 1 X 1

K-maps and minimal expressions:
Now, we draw the K-maps for all flip-flops inputs and obtain a 
minimized expression in terms of present states as shown below. 
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Realization:
Draw the circuit to realize the minimal expressions obtained above, 
as shown in figure below.

EXAMPLE 10.15
The state table shown below is for a clocked synchronous sequential 
network. Assigning codes in binary order to the states, determine 
minimal-sum excitation and output expressions for the sequential 
network assuming the use of 
(a) D  flip-flops  (b) T  flip-flops

Table E10.15.1 State table

Present 
State

Next State Output

X 0= X 1= X 0= X 1=

a b c 0 0

b a a 0 1

c d a 0 1

d a d 0 1

SOLUTION :

State Assignments:
The state table includes four alphabets and hence, the number of bits 
required to represent the alphabets in binary is two. The assigned 
values for the alphabets using 2-bits are given in table E10.15.2.

Table E10.15.2 State assignment

Variable Assigned Value

a 00

b 01

c 10

d 11
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Now, we redraw the state table using binary values as shown below.

Table E10.15.3 State table after state assignment 

Present State Next State Output

X 0= X 1= X 0= X 1=

Q1 Q0 Q1 Q0 Q1 Q0 Y Y

0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 1

1 0 1 1 0 0 0 1

1 1 0 0 1 1 0 1

Number of flip-flops and Excitation Table:
We choose D  flip-flop for the design and no. of FFs required will be 
2. The excitation table is constructed as shown below.

Table E10.15.4 Excitation table for D  flip-flops

Present State Input Next State Output Inputs of the 
flip-flops

Q1 Q0 X Q1 Q0 Y D1 D0

0 0 0 0 1 0 0 1

0 1 0 0 0 0 0 0

1 0 0 1 1 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 1 0

0 1 1 0 0 1 0 0

1 0 1 0 0 1 0 0

1 1 1 1 1 1 1 1

K-maps and minimal expressions:
Now, we draw the K-maps for all flip-flops inputs and obtain a 
minimized expression in terms of present states as shown below.

(b) Now, we construct the excitation table for T -flip-flops.
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Table E10.15.5 Excitation table for T  flip-flops

Present State Input Next State Output Inputs of the flip-flops

Q1 Q0 X Q1 Q0 Y T1 T0

0 0 0 0 1 0 0 1

0 1 0 0 0 0 0 1

1 0 0 1 1 0 0 1

1 1 0 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 1 0 0 1 0 1

1 0 1 0 0 1 1 0

1 1 1 1 1 1 0 0

K-maps and minimal expressions:

EXAMPLE 10.16
Design a clocked sequential circuit whose state table is given in right 
side. Use T  flip-flops.

SOLUTION :

State assignments:
The state table includes four alphabets and hence, the number of bits 
required to represent the alphabets in binary is two. The assigned 
values for the alphabets using 2-bits are given in table E10.16.2. Now, 
we redraw the state table using binary values as shown in Table 10.16.3.

Table E10.16.3 State table after state assignment

Present State Next State Output

X 0= X 1=

Q1 Q0 Q1 Q0 Q1 Q0 Y

0 0 0 0 0 1 1

0 1 1 0 0 0 0

1 0 0 0 1 1 0

1 1 1 0 1 0 1

Table E10.16.1 State table

Present 
State

Next State Output

X 0= X 1= Y

a a b 1

b c a 0

c a d 0

d c c 1

Table E10.16.2 State assignment

Variable Assigned Value

a 00

b 01

c 10

d 11
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Number of flip-flops and Excitation Table:
We choose T  flip-flop for the design and no. of FFs required will be 
2. The excitation table is constructed as shown below.

Table E10.16.4 Excitation table

Present State Input Next State Output Input of Flip-flops

Q1 Q0 X Q1 Q0 Y T1 T0

0 0 0 0 0 1 0 0

0 1 0 1 0 0 1 1

1 0 0 0 0 0 1 0

1 1 0 1 0 1 0 1

0 0 1 0 1 1 0 1

0 1 1 0 0 0 0 1

1 0 1 1 1 0 0 1

1 1 1 1 0 1 0 1

K-maps and Minimal Expressions:

Realization:

*********** 
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REVIEW QUESTIONS

1. (a) Define sequential circuit.

(b) Discuss the classification of sequential circuit with 
examples.

(c) Write difference between synchronous and asynchronous 
sequential circuit.

2. (a) Explain Mealy and Moore machines.

(b) Write difference between Mealy and Moore machines.

3. (a) Discuss state table, state diagram and state equations 
of a finite state machine with example.

(b) Write design procedure of a finite state machine.

4. Describe (a) Mealy machine and (b) Moore Machine. 
Illustrate with them examples.

5. Analyze the given circuit and obtain the state table.

6. Obtain the state table for the given state diagram and 
design the sequential circuit using J -K  flip-flop.

7. Design a sequential circuit for the following state diagram.

8. Design the sequential circuit for the given state diagram 
using T  flip-flop.

9. Draw the state table and state diagram for the given clocked 
sequential circuit shown in following figure.

10. Design a clocked sequential circuit using D  flip-flops for 
the state diagram shown in Fig. 3. Use state reduction if 
possible. Make proper state assignment.

11. Design a circuit to generate the sequence 
0 2 5 4 7 3" " " " "

12. Design a sequence generator to generate the sequence

0 2 3 4 1" " " "  and avoid the lockout condition using J
-K  flip-flops.

13. The state table shown below is for a clocked synchronous 
sequential network. Assigning codes in binary order to 
the states, determine minimal-sum excitation and output 
expressions for the sequential network assuming the use of 
(a) D  flip-flops, (b) J -K  flip-flops.

Present State Next State Output z_ i

X 0= X 1= X 0= X 1=

A B A 0 0

B A C 1 0

C D A 0 0

D D E 1 0

E C D 1 1

14. Design a 3-bit Gray counter using ‘D ’ flip-flops.

15. Design the counter that goes through states 0, 1, 2, 4, 0,....
using D  flip-flops.

16. Design the counter that goes through states 1, 2, 4, 5, 7, 8, 
10, 11, 1, ......using J -K  flip-flops.

17. Design a counter with the following binary sequence : 0, 1, 
3, 7, 6, 4 and repeat. Use T  flip-flops.

*********** 
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DIGITAL LOGIC FAMILIES

11.1 INTRODUCTION

Most of the digital circuits are constructed on a single chip, which are 
referred to as integrated circuits (IC). Digital integrated circuits are 
produced using several different circuit configurations and production 
technologies. Each such approach is called a specific logic family. 

In this chapter, we will discuss different logic families in terms 
of salient features, internal circuitry and interfacing of logic families. 
Logic families discussed in the chapter include transistor logic (TTL), 
metal oxide semiconductor (MOS) logic, emitter coupled logic (ECL), 
bipolar-CMOS (Bi-CMOS) logic and integrated injection logic (I L2 ).

11.2 CLASSIFICATION OF DIGITAL LOGIC FAMILY

11.2.1 Classification Based on Technology

Based on the fabrication technology, the digital logic family has 
broadly two-categories, namely bipolar logic and unipolar logic.

Unipolar Logic Family
In unipolar logic families, unipolar devices are used. MOSFET (Metal 
Oxide Semiconductor Field Effect Transistor) is a unipolar device, 
in which the current flows because of only one type of charge carries 
(that is, either electrons or holes). The examples of unipolar families 
include PMOS, NMOS, and CMOS.

Bipolar Logic Family
In bipolar logic families, transistors and diodes are used as key 
elements. Transistors and diodes are bipolar devices, in which the 
current flows because of both the charge carriers (electrons and holes). 
On the basis of operations of transistors in ICs, bipolar logic families 
are further classified as
1. Saturated bipolar logic families

2. Unsaturated bipolar logic families

Saturated Bipolar Logic Families
In saturated bipolar logic families, transistors operate in saturation 
region. The speed of saturated bipolar logic family is low, reasons 
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of which would be discussed in forthcoming topics. Examples of 
saturated bipolar logic families are :
1. Resistor-transistor logic(RTL)

2. Direct coupled transistor logic(DCTL)

3. Integrated injection logic(IIL)

4. Diode-transistor logic(DTL)

5. High-threshold logic(HTL)

6. Transistor-transistor logic(TTL)

Unsaturated Bipolar Logic Families
In non-saturated bipolar logic families, transistors operate in active 
region. The speed of non-saturated bipolar logic families is high as 
compared to saturated logic families. Examples of unsaturated bipolar 
logic families are :
1. Schottky transistor-transistor logic

2. Emitter-coupled logic

Thus, complete classification of digital logic families is illustrated in 
the Figure 11.1.1 below.

Figure 11.1.1: Classification of digital logic family

11.2.2 Classification Based on Level of Integration

The logic family can also be classified into four groups depending on 
the number of transistors in an IC. Table 11.2.1 shows all four groups. 

Table 11.2.1: Classification of logic family based on level of integration

Name of Group No of Transistors Applications

Small scale integration (SSI) Less than 100
SSI circuits are used for educational purposes, and 
interface complex digital devices.

Medium scale integration (MSI)
Above 100 but 
below 1000

MSI circuits used in multiplexers, demultiplexers, 
registers and counters, etc.
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Large scale integration (LSI)
Above 1000 but 
below 10000

LSI circuits are used in small memory, chips, and 
programmable logic devices.

Very large scale integration 
(VLSI)

More than 10000
VLSI are applied in large computer memories, 
microprocessors, microcontrollers, and digital signal 
processors

11.3 CHARACTERISTIC PARAMETERS OF DIGITAL LOGIC FAMILY

In this section, we will briefly describe the parameters used to 
characterize different logic families. Some of these characteristic 
parameters, as we will see in the paragraphs to follow, are also used 
to compare different logic families. Following are the parameters used 
to compare the performance of digital ICs.

11.3.1 Speed of Operation

A pulse through a gate takes a certain amount of time to propagate 
from input to output. This interval of time is known as the propagation 
delay of the gate. It is the average transition delay time tpd , expressed 
by

 tpd  t t
2

PLH PHL= +

where tPLH  is the signal delay time when the output goes from 
a logic 0 to a logic 1 state and tPHL  is the signal delay time when the 
output goes from a logic 1 to a logic 0 state. The input and output 
voltage waveforms of a logic gate are shown in Figure 11.3.1.

Figure 11.3.1: Input and output voltage waveforms of logic gate with 
propagation delay

The delay times are measured between 50 percent voltage levels 
of input and output waveforms.

11.3.2 Power Dissipation

Every electronic circuit draws some current from the supply for its 
operation. When the power is supplied by an external source, some 
of it is dissipated in electronic circuits. It is wastage of power across 
the circuit components and devices. Requirement of power is less, if 
the dissipation of power is less. Hence power dissipation should be as 
minimum as possible. 

READER NOTE
The propagation delay between input and 
output should be as minimum as possible so 
that the operating speed of IC remains high.
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The average power dissipation is determined by the simplest 
expression V ICC C , where IC  is the average value of current and VCC  
is the supply voltage. Generally, the power dissipation varies in the 
range  of milli-Watts (mW).

11.3.3 Currents and Voltage Parameters

Current and voltage parameters define the minimum and maximum 
limit of current and voltage corresponding to the logic 0 and logic 1 
states. 

Voltage Parameters

minVIH _ i (HIGH level input voltage) :
It is the minimum voltage level required at the input of a gate for that 
input to be treated as a logic 1. Any voltage below this level will not 
be accepted as a logic 1 by the logic circuit.

minVOH _ i (HIGH level output voltage) :
It is the minimum voltage level required at the output of a gate for 
that output to be treated as logic 1. Any voltage below this level will 
not be accepted as logic 1 output.

maxVIL _ i (LOW level input voltage) :
It is the maximum voltage level that can be treated as logic 0 at the 
input of the gate. Any voltage above this level will not be treated as 
a logic 0 input by the logic gate.

maxVOL _ i (LOW level output voltage) :
It is the maximum voltage level that can be treated as logic 0 at the 
output of the gate. Any voltage above this level will not be treated 
as a logic 0 output.

Current Parameters

IIH  (HIGH level input current) :
It is the current that flows into an input when a high level or logic ‘1’ 
voltage is applied to that input.

IIL  (LOW level input current) :
It is the current that flows into an input when a low level or logic ‘0’ 
voltage is applied to that input.

IOH  (HIGH level output current) :
It is the current that flows from an output in a logic 1 state under 
specified load conditions.

IOL  (LOW level output current) :
It is the current that flows from an output in a logic 0 state under 
specified load conditions.
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11.3.4 Noise Immunity or Noise Margin

Noise is always present in electronics circuits due to stray electric and 
magnetic fields. This signal is unwanted and spurious. Sometimes, the 
noise signal distorts the output voltage of the gate. Noise immunity 
of a logic gate means the circuit’s ability to tolerate noise. In order 
to correctly recognise logic ‘0’ and logic ‘1’ states, noise immunity is 
measured quantitatively which is known as noise margin.

Figure 11.3.2: Noise margin

Figure 11.3.2a shows the range of output voltages that can occur 
in a logic circuit. Voltages greater than minVOH _ i are considered as a 
logic 1 and voltages lower than maxVOL _ i are considered as a logic 0. 
Voltages in the disallowed range should not appear at a logic circuit 
output under normal conditions. 

Figure 11.3.2b shows the input voltage requirements of a logic 
circuit. The logic circuit will respond to any input greater than 

minVIH _ i as a logic 1 and to any input lower than maxVIL _ i as a logic 
0. Voltages in the indeterminate range will produce an unpredictable 
response and should not be used.

There are two types of noise margin such as low noise margin 
and high noise margin.

Low Noise Margin VNL  : 

VNL  is the largest amplitude that is guaranteed for no change of the 
output voltage level when the input voltage of the logic gate in the 
LOW interval. Low noise margin is the difference between the largest 
possible low output and the maximum input voltage for a LOW. 

The low noise margin is measured by the expression as given 
below.

 VNL  V VIL OL= -

High Noise Margin VNH  :

VNH  is the largest noise amplitude that is guaranteed for no change of 
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11.3.8 Speed Power Product

Speed power product is used for measuring and comparing overall 
performance of an IC family. It is obtained by multiplying the gate 
propagation delay by the gate power dissipation. A low value of speed 
power product is desirable. The smaller the product, the better the 
overall performance. The speed power product has the units of energy 
and is usually expressed in picojoules. 

For an example, consider an IC family which has the average 
propagation delay of ns15  and an average power dissipation of mW4
, the speed power product is

 5 ns mW1 4#  10 secWatt onds60 12#= --

  0 ( )picojoules pJ6=

11.4 RESISTOR-TRANSISTOR LOGIC (RTL)

RTL family consists of resistors and transistor. In RTL, transistors 
operate in cut-off region or saturation region according to the applied 
input voltage. A 2-input resistor-transistor logic NOR gate is shown 
in Figure 11.4.1. Here A andB  are the inputs of the gate and Y  is 
the output.

Circuit Operation
Before going through circuit operation, we must keep in mind that 
when the transistor operates in saturation region, maximum current 
flows through resistor RC . The output voltage ( 0.2 VV V Vo CEsat CEsat= =  
for silicon and 0.1 V for germanium) i.e., it is logic 0 level voltage. 

On the other hand, when the transistor operates in cut-
off, no current flows through resistor RC  and the output voltage 

5V V Vo CC= =+  i.e., it is logic 1 level voltage. For different input 
combination, the circuit of Figure 11.4.1 works as follows:
1. When both the inputs are in logic 0, transistors Q1 and Q2 

operate in cut-off, and the output is VCC+ , i.e. 5 V+  (logic 1).

2. When any one of the inputs is at logic 1 level, the corresponding 
transistor operates in saturation, and the output is 0.2 VVo =  
(logic 0).

3. When both the inputs are at logic 1 level, both the transistors 
operate in saturation and the output is 0.2 VVo =  (logic 0). 
Circuit operation is illustrated in Table 11.4.1a.

Figure 11.4.1: Two-inputs RTL NOT gate
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Table 11.4.1a: Operation of RTL NOR gate

VA VB Transistor Q1 Transistor Q2 Vo

Logic 0 Logic 0 Cut-off Cut-off Logic 1

Logic 0 Logic 1 Cut-off Saturation Logic 0

Logic 1 Logic 0 Saturation Cut-off Logic 0

Logic 1 Logic 1 Saturation Saturation Logic 0

In terms of 0 and 1, the above table can be written as shown 
in Table 11.4.1.b

Thus, the circuit shown in Figure 11.4.1 acts as a two-inputs 
NOR gate and 11.4.1b is the truth table of NOR gate.

Drawbacks of RTL Family
Some of the drawbacks of RTL family are as listed below :
1. Noise margin is low (Typically 0.1 V)

2. Poor Fan-out (Typically 5)

3. Propagation delay is high and the speed of operation is low 
(Typically 12 ns)

4. Power dissipation is high (Typically 12 mW)

11.5 DIRECT COUPLED TRANSISTOR LOGIC (DCTL)

DCTL is the same as RTL except that base resistances RB  are not 
used. DCTL is simple than RTL. In DCTL, the input signal is directly 
given to the base of the transistor. Figure 11.5.1 shows the circuit of 
a two-inputs DCTL NOR gate.

Circuit Operation
The operation of DCTL is same as the operation of RTL. The 
transistor operates either in saturation or cut-off region. The circuit 
operation can be understood as follows.
1. When both the inputs are in logic 0, transistors operate in cut-

off, and the output is logic 1. 

2. When any one of  the inputs or both the inputs are in logic 1, 
the corresponding transistor or transistors operate in saturation 
and the output is logic 0.

Although DCTL is simple than RTL, it is not popular because 
of the current hogging problem (read side note).

Table 11.4.1b: Operation of RTL NOR 
gate

Inputs Output

VA VB Y

0 0 1

0 1 0

1 0 0

1 1 0

Figure 11.5.1: Two-inputs DCTL NOR gate

CURRENT HOGGING
Current hogging occurs due to slightly different 
transistor characteristics. The base emitter 
saturation voltages of all the transistors are 
never equal. The transistor with the lowest 
base emitter saturation voltage will enter 
saturation first of all and will not allow other 
transistors to enter saturation. This transistor 
will tend to take the whole of the load current 
supplied by driver gate. This is called current 
hogging.
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11.6 DIODE TRANSISTOR LOGIC (DTL)

DTL family consists of diodes and transistors. Figure 11.6.1 shows the 
circuit of a two-inputs diode-transistor logic NAND gate. To perform 
logical operation, inputs are given at the terminals A and B  of the 
diodes D1, D2 and D3 respectively. In the circuit, diodes D1 and D2 , 
perform the logic AND operation followed by a transistor inverter 
which results in a NAND gate. 

Circuit Operation
When the transistor operates in saturation, the output voltage 

0.2 VV V ( )satY CE= =  i.e., logic ‘0’. On the other hand, when it operates 
in cut-off, the output voltage 5 VV VY CC= =+  i.e., logic ‘1’. The 
circuit functions as follows.
1. When both the inputs are in logic ‘1’ state, the diodes D1 and D2 

are reverse-biased. Therefore, diodes D3 and D4 will be forward 
biased. Thus, transistor operates in saturation and the output 
voltage is in logic ‘0’ state.

2. When any one of the inputs is in logic 1, the corresponding diode 
will be forward biased and the input to diode D3 will become 
low. Therefore, transistor will operate in cutoff and output will 
be logic ‘1’. The operation of the circuit is summarized in Table 
11.6.1.

Table 11.6.1: Operation of DTL NAND gate

Inputs Diodes Transistor Output

A B D1 D2 Q Y

Logic 0 Logic 0 Forward biased Forward biased Cut-off Logic 1

Logic 0 Logic 1 Forward biased Reverse biased Cut-off Logic 1

Logic 1 Logic 0 Reverse biased Forward biased Cut-off Logic 1

Logic 1 Logic 1 Reverse biased Reverse biased Saturation Logic 0

Figure 11.6.1: Two-inputs DTL NAND gate
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Above table can be modified in terms of 0 and 1 as shown in 
Table 11.6.2.

The circuit shown in Figure 11.6.1 acts as a two-input NAND 
gate and Table 11.6.2 shows the truth table of NAND gate.

11.7 TRANSISTOR-TRANSISTOR LOGIC (TTL)

TTL stands for transistor-transistor logic. It is a logic family 
implemented with bipolar transistors, PN junction diodes and diffused 
resistors to get the desired logic function. It is the most popular logic 
family. It is also the most widely used bipolar digital IC family. The 
TTL uses transistors operating in saturated mode. It is the fastest 
of the saturated logic families. The NAND gate is the basic building 
block of this logic family. 

The TTL logic family consists of several subfamilies or series 
such as standard TTL, low-power TTL, high-power TTL, low-
power Schottky TTL, Schottky TTL, advanced low-power Schottky 
TTL, advanced Schottky TTL and fast TTL. Later, we will briefly 
describe each of these subfamilies in terms of internal structure and 
characteristic parameters.

11.7.1 Two-input TTL NAND Gate

Figure 11.7.1 shows the internal schematic of a standard TTL NAND 
gate.  Transistor Q1 is a two-emitter NPN transistor, which is equivalent 
to two NPN transistors with their base and emitter terminals tied 
together. The two emitters are the two inputs of the NAND gate. 
Diodes D1 and D2 are used to limit negative input voltages. 

We will now examine the circuit operation for various possible 
logic states at the two inputs.

Circuit Operation
1. When both the inputs A and B  are HIGH 5 V+_ i, both the 

Table 11.6.2: Operation of DTL NAND 
gate 

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

MERITS AND DEMERITS
Good speed, low manufacturing cost, wide 
range of circuits, and the availability in SSI 
and MSI are its merits. Relatively high power 
consumption, moderate packing density, 
generation of noise spikes and susceptibility to 
power transients are its demerits.

Figure 11.7.1:  Two-inputs TTL NAND 
gate
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base-emitter junctions of Q1 are reverse biased. So, no current 
flows to the emitters of Q1. However, the collector-base junction 
of Q1 is forward biased. So, a current flows through R1 to the 
base of Q2 and Q2 turns on to saturation.

Current from Q2’s emitter flows into the base of Q4 . So, Q4 is 
turned on. Since Q2 is in saturation, the voltage at the collector of Q2 
will be low and therefore Q3 will be OFF. Since Q4 is ON, VO  is at its 
low level satVCE __ ii. So, the output is a logic 0.
2. When either A or B  both are LOW, the corresponding base-

emitter junction is forward biased and the collector-base junction 
of Q1 is reverse biased. So, the current flows to ground through 
the emitters of Q1. Therefore, the base of Q1 is at 0.7 V, which 
cannot forward bias the base-emitter junction of Q2. So, Q2 is 
OFF.

With Q2 OFF, Q4 does not get the required base drive. So, Q4 
is also OFF. Transistor Q3 gets enough base drive because Q2 is OFF, 
i.e. since no current flows into the collector of Q2, all the current flows 
into the base of Q3, and therefore, Q3 is ON. The output voltage, 
V V V V VO CC R BE D2 3= - - -  .3 4.  to 3.8 V, which is a logic HIGH 
level. The operation of the circuit is summarized in Table 11.7.1.

Table 11.7.1: Operation of TTL NAND gate

Inputs Transistor Q1
Transistors
Q2 and Q4

Transistor Q3 Output 

A B Emitter Junction A Emitter Junction B Y

Logic 0 Logic 0 Forward biased Forward biased Cut-off Saturation Logic 1

Logic 0 Logic 1 Forward biased Reverse biased Cut-off Saturation Logic 1

Logic 1 Logic 0 Reverse biased Forward biased Cut-off Saturation Logic 1

Logic 1 Logic 1 Reverse biased Reverse biased Saturation Cut-off Logic 0

In terms of 0 and 1, Table 11.7.1 can be written as in Table 
11.7.2.

The circuit shown in Figure 11.7.1 acts as a two input NAND 
gate and its truth table is given in Table 11.7.2.

11.8 TTL CIRCUIT OUTPUT CONNECTION

Different output stages are available in TTL family. TTL comes in 
one of three output circuit configurations commonly referred to as.
1. Totem-pole output

2. Open-collector output

3. Tri-state output

11.8.1 Totem-pole Output

In the circuit diagram of the two-input TTL NAND gate shown in 
Figure 11.7.1, transistors Q3 and Q4 are connected in totem-pole output 
arrangement. In such an arrangement, either  Q3 or Q4 conducts at a 
time depending upon the logic status of the inputs. Both cannot be 

Table 11.7.2: Operation of TTL NAND 
gate

A B Y

0 0 1

0 1 1

1 0 1

1 1 0
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ON or OFF simultaneously. This can be understood as follows.
If Q4 is ON, its base is at 0.7 V with respect to ground. Current 

from Q2’s emitter flows into the base of Q4 . So, Q4 is turned on. So, 
when Q4 is ON, Q2 has to be ON. Therefore, its collector-to-emitter 
voltage is 0.3sat VVCE ._ i . Hence, V VB C3 2= 0.7 0.3 1V V V. .+ . 

For Q3 to be ON, its base-emitter junction must be forward 
biased. When Q4 is ON, D  has to be ON for Q3 to  be ON 
simultaneously. So, the base voltage of Q3 must be satV VB CE3 4= _ i

0.7 0.3 0.7 1.7 VV VD BE3 . .+ + + + , for it to be ON. Since VB3 is 
only 1 V when Q4 is ON, Q3 cannot be ON. Hence, it can be concluded 
that Q3 and Q4 do not be conducted simultaneously.

Advantages of Totem-pole Output
1. Even though the circuit can work with Q3 and D  removed and 

R4 connected directly to the collector of Q4 . With Q3 in the 
circuit, the current flowing through R3 will be equal to zero 
when the output Y 0= , that means when Q4 is ON. Thus by 
introducing Q3 and D , the power dissipation taking place in the 
circuit is reduced.

2. Another advantages of totem-pole arrangement is when the 
output Y  is HIGH. Here Q3 is ON and acting in the emitter 
follower mode. It will therefore have a very low output impedance 
(typically 10W). Because of the low output impedance, any 
stray capacitance at the output can be charged or discharged 
very rapidly through this low impedance, thus allowing quick 
transitions at the output from one state to the other.

Disadvantages of Totem-pole Output
1. A disadvantage of the totem-pole output configuration is that, 

during transition of the output from LOW to HIGH, Q4 turns off 
more slowly than Q3 turns on. As a result, there will be a small 
fraction of time, of the order of a few nanoseconds, when both 
the transistors are conducting, thus drawing heavy current from 
the supply. So, TTL circuits suffer from internally generated 
current transients or current spikes because of the totem-pole 
connections.

2. Totem-pole outputs cannot be wire ANDed, that is, the outputs 
of a number of gates cannot be tied together to obtain AND 
operation of those outputs.

Function of Diode in Totem-pole Output
In totem-pole output TTL, when Q4 operates in saturation, Q3 must 
operate in cut-off or vice versa. The diode D  is used in the circuit 
to keep Q3 in cut-off when the output is low. When Q2 and Q4 are in 
saturation, the voltage available at the base of Q3 is

 VB3 V VBE sat CE sat4 2= +

  0.8 0.2 1 V= + =
In the absence of a diode, the voltage required at the base of Q3 so 
that it starts to conduct is
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 VB3 V V ( )BEcut in0= +  

  0.2 0.5 0.7 V= + =
The voltage available at the base of Q3 is greater than the voltage 
required and hence both Q3 and Q4 are in saturation. To avoid this 
situation, D  is used in the circuit.

In the presence of a diode, the voltage required at the base of 
Q3, for the transistor to conduct, is

 VB3 V V V0 ( )D BEcut in= + +

  0.2 0.7 0.5 1.4 V= + + =
The voltage available at the base of Q3 is less than the voltage required 
and hence Q3 is operating in cut-off.

11.8.2 Open-collector Output

TTL with totem-pole output has a major problem that the two 
outputs of the two gates cannot be together. This problem of TTL 
with totem-pole output is overcome in TTL with open collector 
output. Figure 11.8.1 shows the circuit of a TTL NAND gate with 
open collector output.

In the open-collector TTL, the output is at the collector of Q4 
with nothing connected to it i.e., pull-up transistor Q3 and diode D  
of the totem-pole output are removed. Therefore, the name is open 
collector.

As the collector of Q4 is open, this open collector gate will 
not work properly unless an external pull-up resistor is connected as 
shown in Figure 11.8.2.

Wired-AND Operation using Open-collector Output
Open-collector gates provide the facility of wired AND operation. 
This can be achieved by using two or more NAND gates (4 and 5) as 
shown in Figure 11.8.3a. The same logic operation can be performed 
by simply tying the outputs of NAND gates 1, 2, and 3 as shown in 
Figure 11.8.3b. This is called wired AND operation, because the AND 
operation is obtained by simply connecting the output wires together.

Figure 11.8.1:  Two-inputs TTL NAND gate with 
an open collector output

Figure 11.8.2:  Open collector output 
with external pull-up resistor
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Figure 11.8.3: Wired-AND operation of TTL gates

This has the advantage of combining the output of the three 
devices without using a final OR gate (or AND gate). This combining 
is done by a direct connection of the three outputs to the lower end 
of the common pull-up resistor.

11.8.3 Tri-state Output

The third TTL configuration is the tri-state configuration. It utilizes 
the benefit of high speed of operation of the totem-pole configuration 
and wire ANDing of the open-collector configuration.

The tri-state (three state) output exhibits three possible 
output-state conditions, therefore, the name open collector. Two of 
these states are the conventional logic 0 and logic 1. The third state 
is a HIGH impedance (open circuit) state, also referred to as Hi-Z.

In the Hi-Z state, both the transistors in the totem-pole 
arrangement are turned off, so that the output terminal is a HIGH 
impedance to ground or VCC . In fact, the output is an open or floating 
terminal, that is, neither a LOW nor a HIGH.

Tri-state TTL NAND Gate
Figure 11.8.4 shows the circuit diagram of a tri-state TTL NAND 
gate and Figure 11.8.5 shows its standard symbol. The third state is 
controlled by a separate control input C  as shown in Figure 11.8.5. 
The circuit operation can be illustrated in the following way.
1. When the control input C  is HIGH(1) and any input A or B  is 

LOW(0), Q1 is ON and both Q2 and Q3 are OFF. Hence, Q4 and 
Q5 will be turned ON and the output will be HIGH(1).

2. When the control input C  is HIGH and both inputs A and B  are 
HIGH, transistor Q1 becomes OFF, causes both the transistors, 
Q2 and Q3, ON. Hence, Q4 and Q5 are OFF and the output is 
LOW(0). 

Thus, when the control input C  is HIGH, the circuit operates 
like a totem-pole output circuit.

ADVANTAGE AND DISADVANTAGE
Because of the absence of pull-up transistors, 
the wired-AND connections significantly 
reduce switching speeds. However, they are 
useful in reducing the chip count of a system 
when speed is not a consideration.

Figure 11.8.5: Symbol for tri-state 
NAND gate
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3. When the control input C  is LOW(0), then diode D1 conducts 
and therefore the voltage at the base of transistor Q4 is 0.7 V 
which is not sufficient to make both the transistors, Q4 and Q5

, to switch to the ON state. Also, since Q1 is conducting, the 
transistor Q2 is in a cutoff state and therefore Q3 is also OFF. 
So, neither the output transistor Q5 nor Q3 is ON and the output 
is open circuited or in HIGH impedance state. 

Therefore, it is concluded that there are three states of the 
output-LOW, HIGH and Open circuit as determined by the inputs.

Figure 11.8.4: TTL NAND gate with tri-state output

11.8.4 Unconnected Inputs of TTL

The input circuit of a TTL is shown in Figure 11.8.6. When the input 
is in logic 0 state, the emitter junction is forward biased and the 
current flows through the junction. When the input is in logic 1 state, 
the emitter junction is reversed biased and the current cannot flow 
through the junction.

If any one of the inputs of the TTL gate is unconnected 
(floating), then the corresponding junction cannot be forward biased, 
and the current cannot flow. The input acts exactly in the same way, 
as in case when logic 1 is applied to that input. Therefore in TTL ICs, 
all unconnected inputs are treated as logic 1s.

When an input terminal is left open, it behaves as an antenna 
and may pick up stray noise and interference signals, thus causing the 
gate to function improperly. 

Therefore, it is a must to connect the unused TTL inputs either 
to a logic HIGH or logic LOW, depending upon the gate. For example, 
in AND and NAND gates, the unused input must be connected to a 
logic HIGH as shown in Figure 11.8.7(a)-(c). While, in OR and NOR 
gates the unused inputs should be connected to ground as shown in 
Figure 11.8.7(d)-(e).

ADVANTAGE
The advantage of the tri-state configuration 
is that the outputs of the tri-state can be 
connected together in wired AND operation 
without sacrificing the switching speed.

Figure 11.8.6: Input circuit of TTL 
NAND gate
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Figure 11.8..7: Handling unused inputs of AND and NAND gates

Figure 11.8..7: Handling unused inputs of OR and NOR gates

11.9 TTL PARAMETERS

The most widely used TTL devices series is 54/7400 series. Some of 
the parameters or characteristics of TTL family are discussed in this 
section.

11.9.1 Current Sourcing and Current Sinking

A TTL circuit operates as a current sink in LOW state. That is, 
it receives current from the input of the gate it is driving. Q4 is 
the current-sinking transistor or the pull-down transistor, because it 
brings the output voltage down to its LOW state. Specification sheets 
of standard TTL devices show that any 54/7400 series can sink upto 
16 mA.

On the other hand, a TTL circuit operates as a current source 
in the HIGH state in that it supplies current to the gate it is driving. 
Q3 is the current-sourcing transistor or the pull-up transistor, because 
it pulls up the output voltage to its HIGH state. Standard TTL 
devices can source up to 400 Am .
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11.9.2 Current and Voltage Parameters

Voltage Parameters
VIH  : It is the minimum input voltage to be recognized as logic 1 

state.
VIL  : It is the maximum input voltage to be recognized as logic 0 

state.
VOH  : It is the minimum output voltage corresponding to logic 1 

state.
VOL  : It is the maximum output voltage corresponding to logic 0 

state.

For a standard TTL family :

     2 VVIH = ,  2.4 VVOH = ,  0.8 VVIL = , and 0.4 VVOL =

Current Parameters
IIH  : It is the minimum input current corresponding to logic 1 

state.
IIL  : It is the maximum input current corresponding to logic 0 

state.
IOH : It is the minimum output current corresponding to logic 1 

state. It is called the source current.
IOL  : It is the maximum output current corresponding to logic 0 

state. It is called the sink current.

For a standard TTL family :
     40 AIIH m= ,  400 AIOH m=- ,  1.6 mAIIL =  and 16 mAIOL =

11.9.3 Fan-out

As discussed earlier, fan-out is the capacity of the driver gate to drive 
a number of similar gates. 

When the output of the driver gate is low, it sinks current from 
the load. If n  similar gates are connected at the output, then the 
total sink current IOL  is n  times the input current IIL , where n  is the 
fan-out of TTL.

 IOL  nIIL=

LOW state fan-out, n  
max
I

I
IL

OL
=

_ i

When the output of the driver gate is high, it acts as a current 
source to the load. If n  similar gates are connected at the output, 
then the total source current must be equal to n  times the input 
current IIH , where n  is the fan-out of TTL.

 IOH  nIIH=

HIGH state fan-out n  
max

I
I

IH

OH
=

_ i

The smaller of these two number is the actual fan-out capability 
of the gate. That is

 Fan-out = minimum of ,I I
I

IH

OH

IL

OLI
' 1
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For a standard TTL family :
     40 AIIH m= ,  400 AIOH m=- ,  1.6 mAIIL =  and 16 mAIOL =

Fan-out for a standard TTL = minimum of . ,1 6
16

40
400

' 1

          = minimum of ,10 10 10=# -

11.9.4 Switching Speed

The speed of operation of a TTL is specified in terms of propagation 
delay time. There are two propagation delays of 54/74 TTL gates; 
propagation delay time tPHL from a logical 1 to a logical 0 level at the 
output and propagation delay time tPLH  from a logical 0 to a logical 1 
level at the output. The average propagation delay time tpd , expressed by

 tpd  t t
2

PLH PHL= +

For standard TTL, propagation delays are 15 nstPHL #  and 
22 nstPLH # . The propagation delay time of a standard TTL gate is 

approximately 10 ns.

11.9.5 Noise Margin

As explained in Section 11.3.4, noise margin is the capability of 
tolerating the noise of interference. There are two types of noise 
margin. The low noise margin is measured by the expression as given 
below.

 VNL  V VIL OL= -
The high noise margin is given as

 VNH  V VOH IH= -
For a standard TTL family
    2 VVIH = ,  2.4 VVOH = ,  0.8 VVIL = ,  0.4 VVOL =

Therefore, we have

 VNL  0.8 0.4 0.4V V V= - =

 VNH  2.4 2 0.4V V V= - =

11.9.6 Power Dissipation

In the data sheet of transistor, the specification of power dissipation 
is represented by average power dissipation. A standard TTL gate 
is operated with a power supply of 5 volts, which draws an average 
supply current of 2 mA, resulting in an average power dissipation of 
2 5 10mA V mW# = .

11.9.7 Supply Voltage and Temperature Range

The 74 series and the 54 series are the examples of standard TTL 
logic families. These series operate on a power supply voltage of 5 V+
. But, it is found that the 74 series works reliably over the range 

. V4 75+  to 5.25 V+  and 54 series operates over the range 4.5 V+  to 
5.5 V+ .

The 74 series can work reliably over a temperature range of 
0 Cc  to 70 Cc , while the 54 series can work over a temperature range 
of 55 Cc-  to 125 Cc+ .
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Summary of Parameters of Standard TTL

Table 11.9.1: Summary of typical values of standard TTL parameters

Characteristics 74 Series 54 Series

Supply voltage 4.75 V to 5.25 V 4.5 V to 5.5 V

Voltage levels
2 VVIH = , 2.4 VVOH =
0.8 VVIL = , 0.4 VVOL =

2 VVIH = , 2.4 VVOH =
0.8 VVIL = , 0.4 VVOL =

Current levels
40 AIIH m= , 400 AIOH m=-
1.6 mAIIL = , 16 mAIOL =

40 AIIH m= , 400 AIOH m=-
1.6 mAIIL = , 16 mAIOL =

Fan-out 10 10

Propagation Delay 10 ns 10 ns

Noise Margin 0.4 V 0.4 V

Power Dissipation 10 mW 10 mW

Temperature Range 0 Cc+  to 70 Cc 55 Cc-  to 125 Cc

11.10 TTL SUBFAMILIES

Different subfamilies in this logic family, as outlined earlier, include 
standard TTL, low-power TTL, high-power TTL, low-power Schottky 
TTL, Schottky TTL, advanced low-power Schottky TTL, advanced 
Schottky TTL and fast TTL.

The differences between the various TTL subfamilies are in 
their electrical characteristics such as delay time, power dissipation, 
switching speed, fan-out, fan-in, noise margin, etc. The subfamilies 
are discussed in this section.

11.10.1 Standard TTL, 74 Series

The standard TTL ICs, i.e. 74/54 series are the first version of 
TTL family. Standard TTL have been discussed in the last sections. 
Standard TTL offers fast-switching speed and low output impedance, 
suited in many applications. The standard TTL is now rarely used in 
new systems.

11.10.2 Low Power TTL, 74L Series

The low power TTL is designated as the 74L series. The basic circuit 
of 74L series is same as that of the standard 74 series except for an 
increased resistance value of the different resistors used in the circuit. 
Increased resistance values lead to lower power dissipation, but at the 
expense of reduction in speed. 

The power consumption of low power TTL is about 1/10 of 
that of standard TTL, but the standard TTL is more than three 
times faster than the low power TTL.

DO REMEMBER
The low-power TTL is a low-power variant 
of the standard TTL where lower power 
dissipation is achieved at the expense of 
reduced speed of operation.
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11.10.3 High Speed TTL, 74H Series

The high speed TTL is designated as the 74H series. The basic circuit 
of 74H series is same as that of the standard 74 series except that 
smaller resistance values are used and the emitter follower transistor 
Q3(in Figure 11.7.1) is replaced by a Darlington pair and emitter 
to base joining of Darlington pair is connected to ground through a 
resistance. 

The Darlington arrangement does the same job as diode D1 in 
the conventional totem-pole arrangement. It ensures that Q5 does not 
conduct at all when the output is LOW. The decreased resistance 
values of different resistors used in the circuit lead to higher power 
dissipation. The switching speed of the 74H series is approximately 
two times more than that of the standard TTL, as also the power 
consumption.

11.10.4 Schottky TTL, 74S Series

All the transistors in the circuits of standard TTL, low power TTL, 
and high speed TTL operate in saturation or cut-off region. When 
the transistor is in saturation, it stores the charge and the operation 
causes a storage-time delay during the transistor transition from ON 
to OFF; and this limits the circuits switching speed.

On the other hand, in Schottky TTL families, Schottky 
transistors are used instead of normal transistors. The Schottky 
TTL 74S series reduces this storage time delay by not allowing the 
transistor to go into full saturation. Schottky transistor is nothing 
but a conventional bipolar transistor with a Schottky diode connected 
between its base and collector terminals as shown in Figure 11.10.1a. 
The symbol of Schottky transistor is shown in Figure 11.10.1b.

Figure 11.10.1a: Two-input Schottky TTL NAND gate

The Schottky diode has a forward biased voltage of 0.25 V. 

DO REMEMBER
The high-power TTL is a high-power, high-
speed variant of the standard TTL where 
improved speed (reduced propagation delay) 
is achieved at the expense of higher power 
dissipation.

DO REMEMBER
Schottky TTL has more than three times 
the switching speed of standard TTL, at the 
expense of approximately doubling the power 
consumption.

Figure 11.10.1b: Symbol for Schottky 
transistor
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Because of this diode connected between the base and the collector 
terminals of the transistor, the collector junction of the transistor 
cannot get forward biased and the transistor never goes in saturation; 
the transistor operates in cut-off or active region. 

11.10.5 Low power Schottky TTL, 74LS Series

The 74LS series is a low power Schottky TTL. It uses Schottky 
transistors. It is similar to 74S, but it has a large value of charging 
resistor than 74S series. The larger resistance values reduce the circuit 
power requirement but at the expense of reduction in speed. The 
switching speed of low power Schottky TTL is about the same as that 
of the standard TTL, but the power consumption is about 1/5 of the 
standard TTL. 

11.10.6 Advanced Schottky TTL, 74AS Series

Advanced Schottky TTL provides a speed higher than the 74S series,  
at a much lower power requirement. It is the fastest TTL series and 
its speed-power product is significantly lower than that of the 74S 
series. It is twice as fast and consumes less than half as much power as 
the 74S series. Its fan-out is larger than that of the 74S series because 
of its lower input current requirement.

11.10.7 Advanced Low Power Schottky TTL, 74ALS Series

In advanced Low Power Schottky TTL, both speed and power 
dissipation are improved. The 74ALS has the lowest speed-power 
product of all the TTL series, and it has the lowest power dissipation.

11.10.8 Fast TTL, 74F Series

The 74F series, commonly known as FAST logic, is the newest and 
fastest TTL series. In this series, the advanced Schottky devices are 
fabricated with an improved doping technique and Schottky-clamped 
transistors provide improved isolation. These enhancements reduce 
capacitance and, thus, improve switching times.

Also, it is a more complex circuit design which uses additional 
active devices to speed up switching, reduce power consumption, and 
increase fan-out.

Comparison of TTL Families
A comparison of TTL families with respect to their common 
characteristics is given in Table 11.10.1.

Table 11.10.1: Comparison of TTL families

Performance Rating 74 74L 74H 74S 74LS 74AS 74ALS

Propagation Delay (ns) 9 33 6 3 9.5 1.7 4

Power Dissipation (mW) 10 1 23 20 2 8 1.2

DO REMEMBER
The low-power Schottky TTL is a low-
powered, slower-speed variant of the Schottky 
TTL.

The 74ALS series is a low power variant of the 
advanced Schottky TTL.
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Speed-power Product (pJ) 90 33 138 60 19 13.6 4.8

Max, Clock Rate (MHz) 35 3 50 125 45 200 70

Fan-out (same series) 10 20 10 20 20 40 20

Noise Margin (V) 0.4 0.4 0.4 0.7 0.7 0.5 0.5

11.11 EMITTER COUPLED LOGIC (ECL)

The ECL family is the fastest logic family in the group of bipolar 
logic families. It has high speed or short propagation delay due to the 
following reasons.
1. It is a non-saturating logic. That is, the transistors in this 

logic are always operated in the active region of their output 
characteristics. They are not allowed to go into saturation. So, 
storage time delays are eliminated and, therefore, the speed of 
operation is increased.

2. The circuit currents are relatively high and the output impedance 
is low, with the result that the output capacitance can be charged 
and discharged quickly.

3. The logic swing, that is, the difference in the voltage levels 
corresponding to logic LOW and HIGH states, is kept small 
(typically 0.85 V).

OR/NOR is the fundamental logic gate of ECL family, which is 
discussed in following sections.

11.11.1 ECL OR/NOR Gate

Figure 11.11.1 shows a two-input ECL OR/NOR gate. The circuit 
consists of difference amplifiers and emitter followers. Transistors 
Q2 and Q1 form a differential amplifier. Transistors Q1 and Q1l are 
in parallel. Transistors Q3 and Q4 are emitter followers. Emitter 
terminals of the two transistors are connected together and hence it 
is called as emitter coupled logic. Inputs are applied to Q1 and Q1l, 
and Q2 is supplied with constant voltage 1. VV 152 =- .

Circuit Operation
The emitter followers are used at the output of difference amplifier 
to shift the DC level. The circuit has two outputs Y1 and Y2, which 
are complementary. Y1 corresponds to OR logic and Y2 corresponds to 
NOR logic. The circuit works as follows:
1. When both the inputs are in logic 0, Q1 and Q1l operate in cut-off 

and Q2 operates in active region, voltage VO1 is high, Q3 is ON, 
and the output at Y2 is logic 1, voltage VO2 is low, Q4 operates in 
cut-off and the output at Y1 is logic 0.

2. When any one of the inputs is in logic 1 level, the corresponding 
transistors Q1 or Q1l are operated in active region and Q2 operates 
in cut-off, voltage VO1 is low, Q3 operates in cut-off and Y2 is logic 
0, voltage VO2 is high, Q4 operates in active region and Y1 is logic 
1.
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3. When both the inputs are in logic 1 state, Q1 and Q1l operate 
in active region and Q2 operates in cut-off, voltage VO1 is low, 
Q3 operates in cut-off and Y2 is logic 0, voltage VO2 is high, Q4 
operates in active region and Y1 is logic 1.

The operation of the circuit is summarized in Table 11.11.1.

Table 11.11.1: Operation of ECL circuit

Inputs Transistors Transistors Output

A B Q1 Q1l Q2 Q3 Q4 Y1 Y2

Logic 0 Logic 0 Cut-off Cut-off Active Active Cut-off Logic 0 Logic 1

Logic 0 Logic 1 Cut-off Active Cut-off Cut-off Active Logic 1 Logic 0

Logic 1 Logic 0 Active Active Cut-off Cut-off Active Logic 1 Logic 0

Logic 1 Logic 1 Active Active Cut-off Cut-off Active Logic 1 Logic 0

Above table can be modified in terms 0 and 1 as shown in Table 
11.11.2.

Table 11.11.2: Operation of ECL circuit

A B Y1 (OR) Y2 (NOR)

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

The circuit shown in Figure 11.11.1 acts as a two-input OR/
NOR gate and its truth table is given in Table 11.11.1. The symbol 
of emitter coupled logic OR/NOR gate is shown in Figure 11.11.2.

11.11.2 ECL Characteristics

1. ECL family has a high speed with a propagation delay of the 
order of 1 ns.

Figure 11.11.1: Emitter coupled logic OR/NOR 
gate

Figure 11.11.2: Logic symbol of emitter 
coupled OR/NOR gate
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2. Average power dissipation per gate is large, 40 mWPD =
3. Worst case noise margin is less, about 50 mV2 . So, ECL devices 

are unreliable to work in noisy environments.

4. ECL devices generally produce an output and its complement, so 
there is no need of additional inverter.

5. Due to the emitter follower stages, the output impedance is very 
low.

6. Fan-out is large because the output impedance is low. It is about 
25.

7. The current flowing in ECL circuits remains almost constant so 
no current transients are observed and so associated noise also is 
less.

11.11.3 Advantages and Disadvantages of ECL Family

Advantages
1. It is the fastest logic family.

2. High fan out due to high input resistance and low output 
resistance. Typically fan out 25= .

3. Excellent speed power products.

4. It can provide two outputs simultaneously e.g. OR and NOR. No 
additional inverter is needed.

Disadvantages
1. High power dissipation.

2. Its high speed generates voltage and current transients.

3. Limited logic swing. Hence, more vulnerable to noise.

11.11.4 Wired-OR Connection

The ECL gates are available with open-emitter outputs, that is, with 
resistors in the output emitter followers omitted. The open-emitter 
outputs can be connected together directly to perform a wired OR 
operation as shown in Figure 11.11.3. Consider the circuit shown in 
Figure 11.11.3.

 Y4 Y Y A B C D1 2= + = + + +

 Y5 Y Y A B C D1 2= + = + + +

11.11.5 Unconnected Inputs

If any one of the inputs of the ECL gate is open, then the corresponding 
transistor operates in cut-off and there is no current flow through the 
transistor. The same condition occurs when the inputs is in logic 0 
level and hence the unconnected input of ECL is treated as logic 0.

11.12 INTEGRATED INJECTION LOGIC (I2L)

Integrated injection logic (IIL or I L2 ) is the newest of the logic 

Figure 11.11.3: ECL wired-OR connection
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families and suitable in LSI and VLSI circuits. The integrated 
injection logic uses only transistors for the construction of a gate 
and hence it becomes possible to integrate a large number of gates 
in a single package. The I L2  circuits are easily fabricated and are 
economical. The speed-power product is constant and very small of 
the order of 4 pJ.

11.12.1 Characteristic of I2L

The speed-power product is constant and very small of the order of 
4 pJ, comparable to advanced low power Schottky TTL. The I L2  has, 

1 nstpd = , 1 mWPD = , 0.35NM V= , fan-out 8= , and the relative 
cost is very low.

11.12.2 I2L Inverter

Figure 11.12.1 shows an I L2  inverter circuit. The p-n-p transistor Q1 
acts as a constant current source that injects current into node X . 
When the input is LOW, the injected current flows into the input, 
thus, diverting current from the base of Q2. Transistor Q2 is, therefore, 
OFF and the output is HIGH. 

If the input is HIGH, the injected current flows into the base of 
Q2 turning it ON and making the output LOW.

11.12.3 I2L NAND Gate

The I L2  NAND gate is shown in Figure 11.12.2. When inputs A and 
B  are low or any one of the inputs is low, the current provided by 
Q1 is sinked by the source, Q2 is OFF, and the output is high. When 
both the inputs are high, the base current of Q2 is the sum of currents 
provided by the source and Q1, transistor Q2 is ON and the output 
is low.

Thus, the NAND operation is performed. The transistor Q1 
is called a current injector transistor, because when its emitter is 
connected to an external power source, it can supply current to the 
base of Q2.

11.12.4 I2L NOR Gate

The I L2  NOR gate shown in Figure 11.12.3 is simply two inverters 
with their outputs connected together. If either or both the inputs are 
HIGH, the corresponding output transistor is ON and the output is a 
current sink. So, the output is LOW. On the other hand, if both the 
inputs are LOW, both the output transistors are OFF, and so, the 
output is HIGH. Thus, NOR operation is performed.

11.12.5 Advantages and Disadvantages

Advantages
1. I L2  gates have high speed of operation because they are made 

up of BJTs.

Figure 11.12.1: I2L inverter

Figure 11.12.2: Two-input I2L NAND gate

Figure 11.12.3: Two-input I2L NOR gate
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2. Because only transistors are used for construction, I L2  gates have 
high packing density, and are hence suitable for the construction 
of VLSI circuits.

3. Very low power-supply requirement.

4. Low power dissipation.

5. Process-steps required are less. Hence cost per gate is low.

6. Several functions possible on the same chip.

7. Using standard bipolar technology, it is possible to combine I L2  
logic with other logic families.

Disadvantages
1. Very low power-supply requirement.

2. Lower packing density than NMOS.

3. Lower noise margin.

4. External resistance required for proper functioning.

5. I L2  technology, at present, is dormant.

11.13 METAL OXIDE SEMICONDUCTOR (MOS) LOGIC

This is named as MOS because it uses metal oxide semiconductor 
field effect transistors (MOSFETs). In comparison with bipolar logic 
family, the MOS families are simpler and cheaper to fabricate, require 
much less power, have a better noise margin, a greater supply voltage 
range, a higher fan-out and require much less chip area. But, MOS are  
are slower in operating speed. 

Presently, there are two common types of MOSFETs; depletion 
type and enhancement type. But, enhancement type MOSFETs are 
widely used. The logic families of MOSFETs can be classified into two 
categories: PMOS and NMOS. PMOS logic is slow as compared to 
NMOS logic. Hence, it is not used in new designs.

Symbols of NMOS and PMOS
The circuit symbols of NMOS and PMOS are shown in Figure 
11.13.1a and Figure 11.13.1b respectively. The arrow in the symbols 
of MOSFETs indicates either P  or N  channel.

Figure 11.13.1: Symbol for MOS logic
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11.13.1 NMOS Inverter

Figure 11.13.2 shows the circuit of an NMOS inverter consisting of 
two n -channel MOSFETs. Q1 is called the load MOSFET and Q2 the 
switching MOSFET. Q2 will switch from ON to OFF in response to 
Vin . 

Circuit Operation
1. When the input signal is high (positive voltage), Q2 is ON, the 

current flows through the drain terminal and the output is low.

2. When the input signal is low (0 V or negative voltage), Q2 is 
OFF, there is no current flow through the circuit and the output 
is high 5 V_ i.

This shows that the above circuit acts as an inverter. The 
operation of the circuit is summarized in Table 11.13.1a. In terms of 
0 and 1, we can write it as in Table 11.13.1b. 

Table 11.13.1a: Operation of NMOS inverter

Vin Q2 VO

0 V OFF 5 VVDD =+

5 V+ ON 0 V

Table 11.13.1b: Operation of NMOS inverter

Vin VO

0 1

1 0

11.13.2 NMOS NAND Gate

Figure 11.13.3 shows an NMOS two-input NAND gate. In the circuit 
shown, Q1 is acting as a load resistor and,  Q2 and Q3 are the switching 
elements.  These two switching elements are connected in series, which 
are controlled by the inputs A and B . 

CONFUSION CLEARING
When the drain and gate terminals of 
MOSFETs are short-circuited, then it acts as 
a resistor. Thus, transistor Q1 in fig 11.13.2 
acts as a load resistor.

Figure 11.13.2: NMOS inverter

Figure 11.13.3: NMOS NAND gate
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Circuit Operation
1. When both A and B  are 0 V, both Q2 and Q3 are OFF. The 

current cannot flow through the drain terminal and the output 
is high 5 V+_ i.

2. When any one of the inputs is low (0 V or negative), then 
the corresponding MOSFET is OFF. There is no current flow 
through the circuit and the output is high 5 V+_ i.

3. When inputs are high ( ve+  voltage), Q2 and Q3 are ON. The 
current flows through the drain terminal and the output is low.

Thus, the above circuit works as two-input NAND gate. The 
operation of the circuit is summarized in Table 11.13.2a. In terms of 
0 and 1, we can write it as in Table 11.13.2b. 

Table 11.13.2a: Operation of NMOS NAND gate

A B Q2 Q3 VO

LOW LOW OFF OFF HIGH

LOW HIGH OFF ON HIGH

HIGH LOW ON OFF HIGH

HIGH HIGH ON ON LOW

11.13.3 NMOS NOR Gate

Figure 11.13.4 shows an NMOS two-input NOR gate. Transistor Q1 
acts as a load resistor, Q2 and Q3 are the switching elements. These 
switching elements are connected in parallel, which are controlled by 
inputs A and B . 

Circuit Operation
1. When both the inputs are low, Q2 and Q3 are OFF. The current 

cannot flow through the drain terminal and the output is high 
5 V+_ i.

2. When any one of the inputs is high (0 V or ve- ), then the 
corresponding MOSFET is ON. The current flows through the 
circuit and the output is low(0 V).

3. When inputs are high ( ve+  voltage), Q2 and Q3 are ON. The 
current flows through the drain terminal and the output is low.

Thus, the above circuit works as two-input NOR gate. The 
operation of the circuit is summarized in Table 11.13.3a.

Table 11.13.3a: NMOS NOR Gate

A B Q2 Q3 VO

LOW LOW OFF OFF HIGH

LOW HIGH OFF ON HIGH

HIGH LOW ON OFF HIGH

HIGH HIGH ON ON LOW

In terms of 0 and 1, Table 11.13.3a can be written as in Table 
11.13.3b.

Table 11.13.2b: Operation of NMOS 
NAND gate

A B VO

0 0 1

0 1 1

1 0 1

1 1 0

Figure 11.13.4: NMOS NOR gate

Table 11.13.3b: NMOS NOR Gate

A B VO

0 0 1

0 1 0

1 0 0

1 1 0
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11.13.4 Characteristics of MOS Logic

The MOS logic families have slow operating speed, have a better 
noise margin, a greater supply voltage range, and a higher fan-out 
compared to the TTL logic families. The MOS devices require less 
space in ICs and consume small power with respect to TTL. The 
some basic characteristics are explained below.

Fan Out
MOSFET devices have very high input impedance, therefore fan-out 
is large. But increasing with no of MOS gates, the capacitance will 
be increased at the output. Therefore, the speed of MOS is reduced. 

Propagation Delay Time
A large capacitance is present at input and output of MOS devices. 
The propagation delay is large due to capacitance and speed is low. For 
a N-MOS NAND gate, the propagation delay time is approximately 
50 ns.

Power Dissipation
Power dissipation is a function of current supplied by the source and 
resistance of the load. The power supplied by the source in MOS logic 
family is small and hence the power dissipation is low. So this logic 
circuit can be very useful for Large-Scale Integration (LSI) and Very 
Large Scale Integration (VLSI) ICs. 

Noise Margin
Typically, NMOS noise margins are around 1.5V when operated from 
5 V supply and will be proportionally higher for larger values of 
supply voltage.

11.14 COMPLEMENTARY METAL OXIDE SEMICONDUCTOR 
(CMOS) LOGIC

The CMOS logic family uses both P and N-channel MOSFETs 
in the same circuit to get several advantage over the PMOS and 
NMOS families. In CMOS, P-channel and N-channel MOS devices are 
fabricated on the same chip, which makes its fabrication complicated 
but it reduces the packaging density, and has small power consumption.

11.14.1 CMOS Inverter

Figure 11.14.1 shows a CMOS logic inverter. It consists of a pair 
of  N-channel and P-channel MOSFETs connected in cascade 
configuration. In the circuit, the p -channel MOSFET is ON, when 
the input is 0 V and the n -channel MOSFET is ON, when the input 
is VDD . Q1 is p -channel and Q2 is n -channel. When Q1 is ON, the 
output voltage is equal to VDD  and when Q2 is ON, the output voltage 
is equal to 0 V.

Circuit Operation
1. When the input is low, Q1 is ON and Q2 is OFF, output is high.

Figure 11.14.1: CMOS inverter
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2. When the input is high, Q1 is OFF and Q2 is ON, output is low.

The operation of CMOS inverter of Figure 11.14.1 is summarized in 
the Table 11.14.1.

Table 11.14.1: Operation of CMOS inverter

A Q1 Q2 VO

0 ON OFF 1

1 OFF ON 0

11.14.2 CMOS NAND Gate

Figure 11.14.2 shows the circuit of a CMOS two-input NAND gate. 
Here, Q1 and Q2 are parallel-connected PMOS transistors, and Q3 and 
Q4 are series-connected NMOS transistors.

Circuit Operation
1. When the inputs are low, Q1 and Q2 and ON, Q3 and Q4 are 

OFF, and the output is high VDD_ i.

2. When any one of the inputs is low (0 V are ve- ), then the 
corresponding MOSFET Q1 or Q2 is ON, Q3 or Q4 is ON, and the 
output is high.

3. When the inputs are high ( ve+  voltage), Q1 and Q2 are OFF, Q3 
and Q4 are ON, and the output is low.

Table 11.14.2 illustrates the operation of CMOS NAND gate of 
Figure 11.4.2.

Table 11.14.2: Operations of CMOS NAND gate

A B Q1 Q2 Q3 Q4 VO

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 1

1 0 OFF ON ON OFF 1

1 1 OFF OFF ON ON 0

11.14.3 CMOS NOR Gate

Figure 11.14.3 shows the circuit of a CMOS two-input NOR gate. 
Here, the NMOS transistors Q3 and Q4 are connected in parallel and 
the PMOS transistors Q1 and Q2 in series.

Circuit Operation
1. When inputs are low, Q1 and Q2 are ON, Q3 and Q4 are OFF, 

and the output is high (VDD ).

2. When any one of the inputs is low (0 V or ve- ), then the 
corresponding MOSFET Q1 or Q2 is ON, Q3 or Q4 is ON, and 
the output is low.

3. When inputs are high ( ve+  voltage), Q1 and Q2 are OFF, Q3 and 

Figure 11.14.2: CMOS NAND gate

Figure 11.14.3: CMOS NOR gate
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Q4 are ON, and the output is low.

Table 11.4.3 illustrates the operation of CMOS NOR gate of 
Figure 11.14.3.

Table 11.14.3: Operations of CMOS NOR gate

A B Q1 Q2 Q3 Q4 VO

0 0 ON ON OFF OFF 1

0 1 ON OFF OFF ON 0

1 0 OFF ON ON OFF 1

1 1 OFF OFF ON ON 0

11.14.4 Buffered and Unbuffered Gates

CMOS circuits are available in two forms as
1. CMOS with buffered output

2. CMOS with unbuffered output

The gates discussed above are unbuffered gates. The gates in 
buffered circuits have CMOS inverters in series with their outputs 
to suppress switching transients and to improve the sharpness of the 
voltage transition at the output.

11.14.5 Transmission Gate

A transmission gate is a digital controlled CMOS switch. The circuit 
of a transmission gate is shown in Figure 11.14.4a, where  Q1 is PMOS 
and Q2 is NMOS. Gates of Q1 and Q2 are controlled by the controlled 
inputs C  and C , respectively. Figure 11.14.4b shows the symbol of 
transmission gate.

Figure 11.14.4: Transmission gate

Circuit Operation
1. When C 1=  (high), Q1 and Q2 are ON or OFF depending upon 

the input A. When input A is high, then Q2 is OFF and Q1 is 
conducting in the ohmic region; Q1 behaves as a small resistance 
connecting the output to the input and output Y  is HIGH. 

2. When C 1=  and input A is low, then Q1 is OFF and Q2 is 
conducting in the ohmic region; Q2 behaves as a small resistance 
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connecting the output to the  input and output Y  is low.

2. When C 0=  (low), both the MOSFETs are OFF and transmission 
is not possible. 

11.14.6 CMOS with Open Drain Outputs

The CMOS logic gates are available with open-drain outputs similar 
to as TTL gates with open-collector outputs. An open-drain CMOS 
inverter is shown in Figure 11.4.5.

In these devices, the output stage consists only of an N
-channel MOSFET whose drain is unconnected, since the upper P
-channel MOSFET has been eliminated. As in TTL, an external pull-
up resistance is required to take the output. The diode D1 provides 
protection from electrostatic discharge. Like open-collector outputs, 
the open-drain outputs can be wired ANDed. 

11.14.7 High Impedance outputs

The high impedance output CMOS logic family is similar to the tri-
state output in TTL family. That is, when the device is enabled 
it performs its intended logic function, and when it is disabled its 
output goes to a high-impedance state. The high impedance output 
CMOS logic family is shown in Figure 11.14.6.

Figure 11.14.6: High impedance output CMOS logic family

Note that enable input E  is active low input. When E  is low, 

Figure 11.14.5: CMOS inverter with Open-drain output
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Q1 will be ON as the input to Q1 is E X+_ i, and X  (input) is low. 
Now at the same time, Q2 is off. Therefore the output is high. When 
the enable input is low and the input is high, E X+_ i and EX  inputs 
to Q1 and Q2, respectively, are high. So Q1 will be OFF and Q2 will 
be ON.

When the enable input is high, E X+  is always high, and EX  
is always low, independent of input high. Due to this, Q1 and Q2 are 
OFF, and the output is in a high impedance state.

11.15 CHARACTERISTICS OF CMOS LOGIC

The basic performance parameters are same for TTL and CMOS. So, 
the CMOS parameters are logic levels, source current and sink current, 
noise-margin, fan-in, fan-out, power dissipation, and propagation 
delay. These parameters are explained in this section.

11.15.1 Operation Speed

The propagation delay of CMOS family generally varies in between 
about 20 ns to 100 ns. As compared to TTL, CMOS have more 
propagation delay. When CMOS ICs are connected in cascade form, 
the propagation delay will be increased. If the CMOS operates at high 
supply voltage and low load capacitance, switching speed of CMOS 
increases significantly.

11.15.2 Noise Margin

As we know, the low level noise margin VNL_ i is the difference between 
V maxOH  and V minIH  and high level noise margin VNH_ i is the difference 
between V minIL  and V minOL  as given below:

 VNL  V Vmin minOH H= -

  4.9 3.5 1.4 V= - =

 VNH  V Vmax maxIL OL= -

  1.5 0.1 1.4 V= - =
Generally, the CMOS devices have greater noise margins than 

TTL. The noise margin will be more if the CMOS devices were 
operated at a supply voltage greater than 5 V.

11.15.3 Fan-out

The input resistance of CMOS devices is very high 1012 W^ h. So their 
input current is very small almost zero. Therefore, one CMOS gate 
can drive a large number of other CMOS gates. Hence, fan out of 
CMOS devices will be large as compared to fan out of TTL. Typically, 
the fan-out of CMOS varies in the range of 20 to 50 depending upon 
the operating condition. 

11.15.4 Power Dissipation

The power dissipation of a CMOS gate is about 10 nW. CMOS gate 
dissipates more power, if the frequency is being increased. However, 



Page 680 Digital Logic Families Chapter 11

Digital Electronics by Ashish Murolia and RK Kanodia     For More Details visit www.nodia.co.in

CMOS gates draw transient current during every change of output 
state, from low to high and high to low. Therefore, CMOS ICs have 
greater power dissipation at greater frequencies. At 1MHz, the power 
dissipation is approximately 1 mW.

11.15.5 Unused Inputs

It may be noted that the CMOS inputs should never be left floating. 
All the CMOS inputs should be either connected to 0 V  (ground) 
or VDD , or to another inputs. If inputs of unused CMOS gates are 
open, they are susceptible to noise and static charge that could bias 
both p  and n -channel MOSFETs in the conductive state and power 
dissipation is increased.

11.16 ADVANTAGES AND DISADVANTAGES OF CMOS LOGIC

Advantages of CMOS
1. Low power dissipation.

2. High fan out (typically 50).

3. High noise margin for higher values of VDD .

4. Capable of working over a wide range of supply voltage.

5. Switching speed comparable to those of TTL.

6. High packaging density since MOS devices need less space.

Disadvantages of CMOS
1. Propagation delays longer than those of TTL (25 to 100 ns).

2. Slower than TTL.

3 Susceptible to damages due to static charge.

4. Latch ups can take place.

5. Need protection circuitry.

11.17 COMPARISON BETWEEN CMOS AND TTL FAMILIES

The CMOS and TTL families are compared and the comparison is 
given in Table 11.17.1.

Table 11.17.1: Comparison between CMOS and TTL families

S. No. Parameter CMOS TTL

1. Device used N channel and P channel MOSFET Bipolar junction transistor

2. V ( )minIH 3.5 V 2 V

3. V ( )maxIL 1.5 V 0.8 V

4. V ( )minOH 4.95 V 2.7 V

5. V ( )maxOL 0.005 V 0.4 V
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S. No. Parameter CMOS TTL

6. High level noise margin 1.45 VVNH = 0.4 V

7. Low level noise margin 1.45 VVNL = 0.4 V

8. Noise immunity Better than TTL Less than CMOS

9. Propagation delay 70 ns 10 ns

10. Switching speed Less than TTL Faster than CMOS

11. Power dissipation per gate 0.1 mW 10 mW

12. Speed power product 0.7 pJ 100 pJ

13.  Fan-out 50 10

14. Power supply voltage 3 - 1 5 V Fixed 5 V

15. Unconnected inputs
CMOS inputs should never be left 
unconnected.

Treated as logic 1

16. Application
Portable instrument where battery 
supply is used.

Laboratory instruments.

11.18 INTERFACING

The word interfacing means connecting the output (s) of one 
system to the input (s) of another system or circuits with 
different electrical characteristics. 

If the electrical characteristics of the two circuits or systems 
are different then a direct connection can not be established between 
them. Hence, an interface circuit is required to be inserted between 
the driver circuit and the load circuit. The interface circuit takes the 
input from the driver and converts it, so that it is compatible with the 
requirements of the load.

In this section, we will discuss simple interface techniques that 
can be used for CMOS-to-TTL and TTL-to-CMOS interconnections. 
Other Interfacing of logic families such as CMOS–ECL, ECL–CMOS, 
TTL–ECL and ECL–TTL are also given in the next sub-sections.

11.18.1 TTL Driving CMOS

Here, TTL is a driver circuit and CMOS is a load circuit, The 
two circuits are from different families with different electrical 
characteristics. Therefore, we must check that the driving device can 
meet the current and voltage requirements of the load device.

Table 11.18.1 indicates that the input current values for CMOS 
are extremely low compared with the output current capabilities of 
any TTL series. Thus, TTL has no problem meeting the CMOS input 
current requirements.

But when we compare the TTL output voltages with the CMOS 
input voltage requirements we note that V ( )minOH  for TTL V<< ( )minIH  

Figure 11.18.1: TTL driving CMOS 
using external pull-up resistor
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for CMOS. So, TTL output must be raised to an acceptable level for 
CMOS. This can be done by connecting pull-up resistor at the output 
of TTL, as shown in the Figure 11.18.1. The pull-up resistor causes 
the TTL output to rise to approximately 5 V in the HIGH state, 
thereby providing an adequate CMOS input voltage level.

Table 11.18.1: Input/output currents for standard devices with supply 
voltage of V5

CMOS TTL

4000B 74HC/HCT 74 74LS 74AS

I ( )maxIH 1 Am 1 Am 40 Am 20 Am 200 Am

I ( )maxIL 1 Am 1 Am 1.6 mA 0.4 mA 2 mA

I ( )maxOH 0.4 mA 4 mA 0.4 mA 0.4 mA 2 mA

I ( )maxOL 0.4 mA 4 mA 16 mA 8 mA 20 mA

11.18.2 CMOS Driving TTL

Before we consider the problem of interfacing CMOS outputs to TTL 
inputs, it will be helpful to review the CMOS output and TTL input 
characteristics for the two logic states as shown in Table 11.18.2.

Table 11.18.2: CMOS output and TTL input characteristics

For CMOS For TTL

: 4.95 VV ( )minOH : 2.0 VV ( )minIH

: 0.05 VV ( )maxOL : 0.8 VV ( )maxIL

: 0.4 mAI ( )maxOH : 40 AI ( )maxIH m

: 0.4 mAI ( )maxOL :1.6 mAI ( )maxIL

CMOS Driving TTL in the HIGH state
From the above table, we can note that

 ( )CMOSVOH  ( )TTLV> IH

 ( )CMOSIOH  ( )TTLI> IH

Thus, CMOS outputs can easily supply enough voltage VOH_ i 
to satisfy the TTL input requirement in the HIGH state VIH_ i. Also, 
CMOS outputs can supply more than enough current IOH_ i to meet the 
TTL input current requirements IIH_ i. Thus no special consideration 
is required for CMOS driving TTL in the HIGH state.

CMOS Driving TTL in LOW state
But the TTL input current requirements at LOW state cannot be met 
directly. Therefore, an interface circuit with a LOW input current 
requirement and a sufficiently high output current rating is required. 
A CMOS buffer serves this purpose.

In Figure 11.18.2 the CMOS non-inverting buffer is used as an 
interfacing circuit. 

READER NOTE
The parameters in the Table 1.16 shows that 
the TTL input has a relatively high input 
current in the LOW state (1.6 mA) and CMOS 
output current at LOW state IOL_ i is not 
sufficient to drive even one input of the TTL. 
Therefore, an interface circuit with a LOW 
input current requirement and a sufficiently 
high output current rating is required. A 
CMOS buffer serves this purpose.
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11.18.3 TTL Driving ECL

As TTL is driving ECL, it must meet the current and voltage 
requirements of the load device. A TTL cannot interface directly 
with an ECL; it requires a translator. The MC10H124 is a TTL to 
ECL translator. Figure 11.18.3 shows a TTL-to-ECL interface using 
MC10H124. 

The logic levels of the translator are:
 2 VVIH = ,  0.8 VVIL = ,  0.98 VVOH =-  and 1.63 VVOL =-

The logic levels of the TTL are : VOH  2.4 V=  and 0.4 VVOL =

The logic levels of the ECL are : VIH  1.4 V=-  and 1.2 VVIH =-
It is observed that

 ( )TranslatorVIH  ( )TTLV< OH

 TranslatorVIL _ i TTLV> OL _ i

and ECLVIH _ i TranslatorV< OH _ i,

 ECLVIL _ i TranslatorV> OL _ i

Thus, the input logic levels of a translator are compatible with 
the output logic levels of a TTL and the output logic levels of a 
translator are compatible with the input logic levels of an ECL. 

11.18.4 ECL Driving TTL

An ECL cannot interface directly with a TTL; it requires a translator. 
The MC10H125 is an ECL to TTL translator. Figure 11.18.4 shows a 
ECL-to-TTL interface using MC10H125.

Figure 11.18.2: CMOS driving TTL

Figure 11.18.3: TTL-to-ECL interfaces
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The logic levels of the translator are :

 VIH  1.13 V=- , 1.48 VVIL =- .

 VOH  2.5 V= , and 0.5 VVOL =
Thus, the input logic levels of a translator are compatible 

with the output logic levels of ECL and the output logic levels of a 
translator are compatible with the input logic levels of a TTL. 

11.18.5 CMOS Driving ECL

CMOS-to-ECL and ECL-to-CMOS interfaces are similar to the TTL-
to-ECL and ECL-to-TTL interfaces described in last section. Again, 
translators are used as interfacing circuit. MC10352 is a quad CMOS-
to-ECL level translator chip. 

A CMOS-to-ECL interface is also possible by having firstly a 
CMOS-to-TTL interface followed by a TTL-to-ECL interface using 
MC10124 as shown in Figure 11.18.5.

Figure 11.18.5: CMOS-to-ECL interface

11.18.6 ECL Driving CMOS

Similarly, an ECL-to-CMOS interface is possible by having an ECL-
to-TTL interface using MC10125 or a similar chip followed by a TTL-
to-CMOS interface as shown in Figure 11.18.6.

Figure 11.18.6: ECL-to-CMOS interface

Figure 11.18.4: ECL-to-TTL interfaces
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11.19 COMPARISON OF VARIOUS LOGIC FAMILIES

Table 11.19.1 summarizes, the comparison between various logic 
families, based on the differences in terms of their operating voltage, 
logic level, noise margin, propagation time delay, speed, power 
dissipation, fan-in and fan-out. This table also clearly indicates the 
relative cost, advantages and disadvantages of various logic families. 
Thus Table 11.19.1 clearly compares all the specifications of the 
various logic families already discussed.

Table 11.19.1: Comparison of Logic Families
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Advantages Disadvantages

RTL 4 4
12 to 
30

5 15
0.2 to 
0.4

low low power dissipation
low speed, low 
noise margins low 
fan-out

DTL 10 8 30 10 12 0.7 low low power dissipation low speed

TTL 8 10
5 to 
15

15 10 0.4 low
low power dissipation 
high speed, high fan-
out, low cost

low VCC  tolerance, 
susceptible to 
transients

ECL 5
16 to 
20

2 to 4 200 50 0.4 high
high speed, high fan-
out, low noise

high cost 
interfacing 
problems

I L2 5 8 1 300 0.1 0.35 low
low cost, high 
packing density, low 
power dissipation

low fan-out

PMOS 8 20 50 2 1 0.4 medium
high fan-out, low 
power dissipation

low speed

CMOS 8 50 70 10 0.01 5 medium
high fan-out, low 
power dissipation

very low speed

***********
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REVIEW QUESTIONS

1. What is Fan-in and Fan-out ?

2. Explain Noise margin and gate delays.

3. Give the comparison of TTL series characteristics.

4. Draw the circuit diagram and explain the operation of 2 
input TTL NAND gate with open collector output.

5. Using NOR outputs of two ECL gates show that when 
connected together to an external resistor and negative 
supply voltages, the wired connection produces an OR 
function.

6. Draw and explain the working of a DTL-NAND gate.

7. Compare various logic families line TRL, DTL, TTL, ECL, 
I L2 , PMOS and EMOS in terms of their fan-in, fan-out, 
propagation time, clock rate, power dissipation and noise 
margin. Also mention their relative merits and demerits.

8. Draw the circuit diagram of a TTL-NAND with totempole 
output. Explain its working.

9. Write the differences between saturating and non-saturating 
binary.

10. Define the following :

(a) Fan in & fan out  (b) Noise Margins

(c) Propagation Delay time (d) Transition Delay

11. Draw and explain the working of open collector gate circuit. 
Also give its applications.

12. Write short note on CMOS logic families.

13. Explain following characteristics of logic family :

(a) Propagation delay  (b) Power Dissipation

(c) Noise immunity

14. Write short note on Interfacing of logic families.

15. Explain the characteristics of the following logic families :

(a) ECL  (b) Open Collector TTL

(c) CMOS  (d) RTL

16. (a) What are different types of logic families ? Give a 
comparison of different families with regards to speed, 
power dissipation, noise margin, fan out and fan in.

17. Explain the working of CMOS inverter.

18. Realize a 2-input NAND gate using 7400 TTL series and 
explain its working.

19. Draw the circuit diagram and explain :

(a) CMOS NOR gate (b) CMOS NAND gate

20. Explain the working of Tri-state TTL NAND gate.

21. Explain a basic ECL NOR/OR gate circuit.

22. Explain the following terms :

(a) Tristate gate  (b) Open collector gate

23. With the help of a neat diagram, explain the working of a 
two-inputs CMOS NAND gate. What is the advantage of 
active load ?

24. Describe the difference between current sinking and current 
sourcing in TTL logic.

25. With a neat circuit diagram, explain the operation of a two-
inputs CMOS NOR gate.

26. What is totem-pole output stage ? What are its advantages 
?

27. With the help of suitable schematics, briefly describe how 
you would achieve TTL-to-CMOS and CMOS-to-TTL 
interface ?

28. Explain interfacing of two logic families for the following 
conditions :

(a) TTL driving CMOS logic family

(b) CMOS driving TTL logic family

29. Draw the circuit diagram of Schottky NAND gate and 
explain its operation briefly.

30. Give a list for the characteristics of CMOS logic family and 
compare with TTL logic family.

*********** 




